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“Come then, excellent Sir, and banish all fear of stirring
up the pygmies of our time; long enough have sacrifices
been made to ignorance and absurdity; let us spread the
sails of true knowledge, and search more deeply into the
innermost parts of Nature than has been done hitherto™
(Henry Oldenburg, in a letter to Spinoza, written in July
1662, in which he reports that the Royal Society, of which
he was the first Secretary, had received its Charter.— The
Correspondenee of Spinaza, tr. by A, Wovrr, 1928, p. 100).
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PREFACE

In the following pages the attempt is made to give a reasonably
full account of the achievements of the sixteenth and seventeenth
centuries in the whole field of “natural™ knowledge. All the sciences,
including several which have not hitherto been included in
histories of science, receive due attention, and details are given of
all the important work done in each of them during the first two
centuries of the modern period. A considerable amount of space is
also allotted to the principal branches of technology. The volume,
moreover, includes a fairly full account of the philosophy of the
period as an aid to the understanding of the general intellectual
orientation of its scientists. It is hoped that the exposition is sufficiently
clear, and the illustrations sufficiently illuminating to enable the
general reader to profit greatly from this history. Its primary aim,
however, is to meet the needs of the serious student. For this reason
the work is fully documented. The plan of incorporating a select
bibliography (giving precise references) in the text will probably
be found much more helpful than is the usual formal bibliography,
which makes it about as easy to find the authority for a particular
view as it is to find a needle in a haystack. A more formal biblio-
graphy for the whole modern period will be included in the
concluding volume.

The present book is complete in itself. It is, however, intended to
be only an instalment of a complete history of science. The author
proposes to deal with the eighteenth and nineteenth centuries
next, and then with ancient and mediacval times. But each volume
will be as nearly as possible self-contained. Human history cannot,
of course, be strictly correlated with exact centuries. In science, as
in other fields of human activity, the events of one century have
their antecedents in carlier centuries and their consequences in
later ones. For the sake of greater intelligibility, and self-complete-
ness of each volume, the author accordingly did not, and will not,
hesitate to make occasional incursions into other centuries than
those principally concerned.

An encyclopacdic enterprise like the present may appear 1o be
an anachronism in an age of extreme specialization. It is widely
recognized, however, that the tendency toward a narrow specialism
has already gone too far. The contemporary close relationship of
science and philosophy, and the growing interest in the history and
development of science, may be regarded as evidence of a growing
recognition of the need of a wider outlook, This work was under-
taken, in the first instance, in order to meet the requirements of
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students pursuing courses in the History, Methods, and Principles
of Science in the University of London. It is hoped, however, that
its usefulness will be much more far-reaching.

Needless to say, this enterprise would have been impossible
without the aid of other experts. The author has been very fortunate
in receiving most valuable help from a number of colleagues.
Their names are set down here in alphabetical order, with a bare
indication of the general nature of the assistance rendered by each
of them. Mr. A. Armitage has been unstinting in his services, not
only in connection with his special subjects, astronomy and mathe-
matics, but also in many other ways. Professor F. Dannemann has
placed at the author’s disposal the fruits of many years' work in
this field, though conditions in Germany have unfortunately pre-
vented the closer co-operation intended originally. Miss R. Dowling
has checked the biological portions. Professor L. N. G. Filon has,
in spite of the great burdens of his high office as Vice-Chancellor
of the University of London, made time to go carefully through all
the chapters on astronomy, and has given them the benefit of his
expert knowledge of the subject. To Professor W. T. Gordon are
due some very helpful suggestions concerning the geology of the
period. Mr. S. B. Hamilton has been most helpful with some of the
sections on technology. Professor L. Rodwell Jones has looked
through the chapter on geography. Dr. D. McKie has rendered
valuable help by his special knowledge of the history of chemistry.
Professor L. C. Robbins has examined the section on economics.
Mr. D. Orson Wood has helped with a searching criticism of the
chapters on physics. The book has also benefited from Mr. T. L.
Wren's expert knowledge of the history of mathematics. The author
is deeply grateful to all these colleagues, and warmly appreciates
their friendly interest. But he has no desire to shirk his responsi-
bility for the whole book.

The preparation of this work has naturally involved frequent
appeals to libraries for old and rare books. The librarians of the :
London School of Economics, of University College, London, and
of the University of London have spared no pains in finding what
was required ; and they have laid the author under great obligation.

Special attention has been paid to the illustrations, and all
possible sources have been ransacked for them. Many of the line-
drawings have been copied and adapted by Miss D. Meyer, to whose
skill and sympathy the author is greatly indebted. The authorities
of the Science Museum, London, have kindly permitted the repro-
duction of some of their photographs of old engravings, etc. The
proprictors of The Mining Magazine have given permission for the
use of many of the illustrations from the Hoovers’ edition of Agricola.
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Messrs. John Lane have consented to the reproduction of the
facsimiles of the Bills of Mortality from W. G. Bell's The Great
Plague in London. Messrs. Methuen and Co. have allowed the use
of the frontispiece to The Divining Rod by Sir Wm. Barrett and T.
Besterman. The author is grateful for all this kindness.

The reader will not need to be told that the writing of this book
has cost the author a great deal of hard toil. What has sustained
him throughout the long and laborious enterprise, apart from the
intrinsic interest of the subject, is his belief that the world has
need of a new intellectual re-orientation, and that to this end a
close study of the history of human thought in its most objective
spheres would be the best beginning. It was in this spirit of faith
and hope that the work was undertakenand has been carried thus
far. The author hopes that it may be received in the same spirit of
faith and hope—and charity !

AW,

UNIVERSITY OF LONDON
December 1934



A HISTORY OF SCIENCE, TECHNOLOGY,
AND PHILOSOPHY
IN THE SIXTEENTH AND SEVENTEENTH CENTURIES

CHAPTER I

MODERN SCIENCE

Tue Becmnmc oF MobpErN Science

Tre divorce of science from philosophy, and the differentiation of
science into a multiplicity of sciences, had not yet taken place at
the beginning of the modern period. Knowledge was still regarded
as a whole; and the term philosophy was widely used to denote
any kind of inquiry, whether scientific or philosophical, in the
subsequent and narrower meanings of these terms. These changes,
however, were on the way. The mathematical and the experimental
tendencies of the pioneers of modern science inevitably led to a
divorce between exact or experimentally verified science on the
one hand, and merely speculative philosophy on the other, Simi-
larly, although all sorts of subjects were frequently investigated by
the same person, and dealt with in one and the same volume, the
rapid accumulation of scientific results inevitably led soon to a
division of labour and a differentiation into the several sciences.
The classification of the sciences adopted in the present volume
may possibly appear to some people as something of an anachronism.
But it is justifiable on grounds of simplicity and orderliness. An
account of the first centuries of modern science would be a hopeless
tangle in the absence of an orderly scheme of exposition. And,
after all, it is the business of a history to make things clearer than
they would be otherwise,

Historical epochs do not appear suddenly. They usually need
some antecedent preparation. Hence the difficulty of determining
their beginning. The modern period in science emerged rapidly
out of the Renaissance, which revived certain ancient tendencies
which were opposed to the mediaeval outlook, and, partly for that
reason, appealed to those who were dissatisfied with the mediaeval
attitude towards life and reality. The differences between pagan
antiquity and mediaeval Christendom are fairly obvious. The
tendency of mediaeval Christianity was towards self-repression and
other-worldliness. The ideal Christian, conforming to the vows of
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the religious life, had his thoughts fixed on Heaven. Nature and
natural phenomena had no intrinsic interest for him. Natural
desires had to be transmuted into mystical ecstasy; spontaneous
personal thought had to be subordinated to authority. Into this
oppressive atmosphere the recovered classics of Greece and Rome
came like a refreshing sea breeze. Poets and painters and others
were inspired with a new interest in natural phenomena; and an
impulse to self-assertion, intellectual and emotional, filled some of
the bolder spirits. In these respects, modernism was essentially"a
revival of antiquity, brought about with the help of the literature
of antiquity. And modern science, in its early stages, was helped
more specifically by the astronomical, mathematical, and biological
treatises transmitted from ancient times, and most of all perhaps
by the mechanical treatises of Archimedes and the technological
works of Hero of Alexandria and Vitruvius,

Mediaeval lack of interest in natural phenomena and disregard
of individual judgment had their roots in the domination of a
supernatural outlook, an other-worldly mentality. The Earth was
of little interest in comparison with Heaven, the present life was at
best but a preparation for the life hereafter. And the Church claimed
absolute authority for truths revealed by the light of grace, in com-
parison with which the light of reason was of no comsequence.
True, Thomas Aquinas and his followers recognized the light of
reason as a source of knowledge beside the light of grace; but even
they left no doubt whatever about the subordination of natural
knowledge to revelation. Attempts have been made to claim
rationalism for Scholasticism; and Professor Whitchead has even
gone so far as to describe modern science as “a recoil from the
inflexible rationality of mediaeval thought™ (Science and the Modern
World, p. 11, ed. 192g). This is a somewhat mislcading half-truth.
No doubt the Scholastics were nimble intellectualists, and gave
proof of great subtlety of thought. No doubt, also, they rendered
valuable services in keeping the thought of Christendom alive
during the lean Middle Ages. But their reasoning was always kept
within the bounds of premises based on authority; they never
attempted to exercise, nor permitted others to exercise, that wider
rationality which seeks to embrace the whole of human experience
without such arbitrary boundaries as dogmas prescribed by autho-
rity. Due regard for stubborn facts of observation is an essential
part of any thoroughgoing rationality, not a recoil from it; and
the kind of rationality that stops short of it is but imperfectly
rational, however subtle and justifiable it may be in other respects.
Now in this regard, too, modern science was a return to the implicit
reliance on natural knowledge that was felt by the ancients, And
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the attention which stubborn facts of Nature received at the begin-
ning of the modern era, the stress laid on experience and more
particularly on experiment were largely prompted by the spirit
of naturalism exemplified and encouraged by the recovered litera-
ture of pagan antiquity, as contrasted with the spirit of super-
naturalism which pervaded the intellectual atmosphere of the
Middle Ages. It was not the result of a recoil from rationality, but
a big stride towards a freer and fuller rationality, unrestrained by
arbitrary barriers. That is why science is universal, whereas the
Churches are not. Science imposes no arbitrary restrictions on the
reasoning by which it is cultivated; but the Churches usually
confine the scope of reason within the arbitrary boundaries of their
several creeds or dogmas.

The contrast just indicated may be described in a slightly different
way. The naturalist outlook may be regarded as essentially secular
and matter-of-fact; the supernaturalist outlook is apt to be rather
mysterious. The former view expects regularity in Nature, the
latter is prepared to find miracle and magic in natural phenomena.
Even pagan antiquity was infected with superstitious credulity, but
not to the same extent as was mediaeval Christendom. And it took
a long time for the modern period to divest itself of its mediacval
superstitions. One has only to think of the persistence of the beliel
in witchcraft, and of the enormous number of victims who were
condemned for it by intelligent judges and Church dignitaries
during the early centuries of the modern period to realize what a
strong hold the magical view of Nature had upon the intelligentsia,
as well as upon the masses, of mediaeval and early modern times.
It seems amazing to find great doctors like William Harvey and
Sir Thomas Browne taking part in the examination of alleged
witches. It was only by slow degrees that the growth of natural
knowledge and the invention of mechanical contrivances for doing
wonderful things by “natural” magic helped to rid the modern
world of the mysterious powers of darkness which haunted the
Middle Ages.

The secular attitude towards natural phenomena did not, of
course, necessarily exclude a religious attitude towards the world.
Kepler's is a particularly striking case in point. His attitude was
not only religious but fervently mystical. His great astronomical
discoveries were mainly prompted by religious aims. He set out to
seek the ways of God, and found the courses of the planets. Descartes
likewise had a tendency towards mysticism. This is clear from his
account of the vision he had on the night of November 1o, 1619,
which will be recounted in due course. But his scientific books are
secular in outlook. The pioncers of modern science were practically
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all of them deeply religious men, in fact loyal sons of the Church.
Yet, fortunately for science, their attitude towards natural pheno-
mena was mainly secular and matter-of-fact. Kepler’s mystical
effervescence was effectively restrained by the empiricism of Tycho
Brahe who made a scientific astronomer of him even if he could
not cure him of his tendency to Sun-worship. Galilei drew a definite
line between the function of religion, to teach the way to Heaven,
and the function of astronomical science, to discover the ways of
the Heavens. And even Newton, who was more interested in the
problems of conventional theology than were Galilei or Kepler or
Descartes, was very careful to keep theological dogmas, and even
philosophical hypotheses, out of science. The Scholastic or Thomistic
view of two kinds or sources of knowledge may have been of service
here, as it certainly was in the case of Descartes. Even the mystical
experiences of men like Jacob Boehme, as well as of Kepler and
Descartes, may have been of some value, no matter how they are
c‘.rplaim:d psychologically, For they certainly helped to stiffen
individual judgment against Church authority. Anyway modern
science, like ancient thought, and unlike mediaeval thought,
adopted a secular matter-of-fact attitude.

There are certain other differences distinguishing modern science
from mediaeval thought. The differences in question, however,
unlike those already indicated, do not correspond to any radical
divergence between mediaeval mentality and Greek thought
generally, They were rather due to the fact that mediaeval thinkers
followed one set of Greek ideas, whereas the pioneers of modern
science embraced another set of Greek views. Scholasticism had set
up Aristotle as its authority on matters which did not involve
religious dogma. Now Aristotle was primarily a biclogist, and his
science was mainly qualitative, not quantitative. He was concerned
with the classification of things into classes and sub-classes, the
enumeration of their qualities, and the distinction between essential
and non-essential qualities. Mediaeval thought followed the Aristo-
telian tradition. But there was also another and earlier Greek
tradition or school of thought, namely, the Pythagorean. This school
laid supreme stress on number or quantity. And the founders of
modern science were thoroughly imbued with the Pythagorean
spirit. This is particularly true of Copernicus and Kepler, and
almost as true of Galilei and Newton. So much was this the
case that they tended to deny the objective reality of the
so-called secondary qualities, because these could not be treated
mathematically, It was mainly the non-mathematical men of
science, like Boyle, Gilbert, and Harvey, who did not go to such
extremes. At all events, modern science has continued to cling
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to the ideal of exact quantitative descriptions and laws wherever
possible,

Another divergence in the choice of Greek traditions followed
by mediaeval and modern thinkers is to be found in the kind of
explanation in favour among them. The Scholastics were strongly
addicted to the kind of explanation to which Socrates and Plato
had given vogue. It consisted in the discovery of the ends or pur-
poses which things served, the indication of what they were good
for; and in Plato’s cosmic scheme there was a hierarchy of ends
or “goods” culminating in the supreme “Good™ to which the whole
creation moves. Mediaeval thought ran riot in the invention of
fanciful ends which things were alleged to serve. The ends imagined
were usually human ends. This kind of teleological explanation
thus tended to encourage the homocentric prejudices of the Middle
Ages. Everything was conceived as having been intended and
designed to serve some human need. One might almost say that
God Himself was regarded as mainly occupied with human affairs.
When mankind was thus conceived as the focus of cosmic economy,
the Earth, their stage, was naturally looked upon as the centre of
the Universe. Hence the popularity of the geocentric theory, and
one of the greatest obstacles to astronomical reform. Modern science
started by rejecting and still rejects, as far as possible, teleological
explanation. It embraced the method of explanation advocated by
Democritus and the other atomists, namely explanation by refer-
ence to the causes or conditions which produce things, their efficient,
not their final, causes. And this mode of explanation harmonized
well with the mathematical tendency of modern science, for mathe-
matics was the one department of knowledge in which teleology
had obviously no place.

Such, in brief outline, are the general characteristics which dis-
tinguish modern science from mediaeval thought. Naturally the
transformation was not complete at the outset. The number of
scientific men was comparatively small to begin with, and even
these showed compromises of all sorts, induced by fear or by habit.
The martyrdom of Giordano Bruno and of Michael Servetus, the
experiences of Galilei and others showed the need of caution in face
of the powerful Churches. One can appreciate the wisdom of
Leonardo da Vinci and kindred spirits in the fifteenth century in
refraining from publishing their views. Judged by all the above-
mentioned criteria, Leonardo da Vinci was an eminently modern
man of science. But the world was not yet ready for him, though it
is probable enough that he and his intimate circle helped, in a
personal and unobtrusive manner, to prepare the way for the coming
advance. The first great move was made about the middle of the
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sixteenth century, with the publication of the heliocentric theory of
Copernicus (1543). The scientific advance was not made simul-
taneously along the whole front, but in sections and at different
times. Astronomy led the way. Physics followed in the seventeenth
century. Chemistry moved forward in the cighteenth century. The
biological sciences, in spite of the lead given by Vesalius (1543)
and Harvey, lagged behind, and only made their advance in the
nineteenth century.

ThHe HERITAGE FROM THE PasT

Many of the tasks which the new age took in hand had already
engaged the attention of the ancients, only they had been lost sight
of during the Middle Ages, and the new era had to take them up
again almost at the point where antiquity had left them. To these
old tasks the modern period has, indeed, added new ones in ever-
increasing numbers, and has become conscious of the endless
possibilities in the way of new tasks, new discoveries, and new
inventions. But this does not affect its indebtedness to antiquity,
and our first endeavour must be to indicate summarily the extent
of that legacy from the past.

The elements of mathematics had been developed by the Greeks
in all essentials, and had been systematized most completely by
Euclid. Archimedes and Apollonius made important additions to
mathematical science, notably the theory of conic sections. Next,
Prolemy's Almagest gave the main outlines of plane and spherical
trigonometry. Still later came the current system of numerals and
the rudiments of algebra, largely through the help of India and
Arabia,

The application of mathematics to the solution of problems in
astronomy and mechanics was also taught strikingly by the ancients.
The works of Ptolemy and of Archimedes contain numerous
examples of such applications. Moreover, numerous observations
of the courses of the stars had been made and recorded. A beginning
had also been made with correct astronomical theories, which only
needed fuller development. The astronomical methods and instru-
ments of the Greeks were, in all essentials, the same as those used
by the first astronomers of the modern period ; and their problems,
too, were essentially similar. The determination of the circumference
of the Earth, its relation to the other celestial bodies, the topography
of the region of the fixed stars, the exact measurements of space
and time, the prediction of such astronomical events as eclipses—
all these were problems familiar to antiquity, especially to the
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Alexandrians, and the modern period obtained its first lessons in
these things from the work of Ptolemy.

Statics and optics had likewise been developed scientifically in
ancient times. These studies were, indeed, peculiarly suited to the
deductive methods so dear to the Greeks. The results they obtained
were taken over by the moderns. It was different with other branches
of physics. Apart from a few sporadic observations, there was little
of value that could be learned from Greek physics. This is especially
true of magnetism and electricity. It also applies more or less to the
study of air and of steam, though Hero of Alexandria had made
some interesting contributions to the subject.

Chemistry, too, had been cultivated in Alexandria, where the
empirical knowledge handed down from ancient Egypt came
into contact with Greek thought, which helped to make it more
scientific. But the influence of Neo-Platonism made Alexandrian
chemists mystical searchers after such wonder-working substances
as “the philosopher’s stone” to transmute base metals into precious
ones, or some “elixir’” or “panacea” to cure all the ills of mortal
life. The Middle Ages were specially interested in this kind of
alchemy, though they also contributed some things of value to
empirical chemistry. For a long time after the Copernican beginning
of the modern period chemistry retained essentially its mediaeval
character.

In the domain of natural history, and the descriptive sciences
generally, the modern period likewise just carried on the work of
antiquity. The first stimulus came from the renewed study of the
classical writers, and in due course interest in independent observa-
tion increasingly displaced the customary reliance on books and
authorities. As the more exact scicnces developed they helped to
stimulate the descriptive scicnces so that their wealth of accumulated
observations greatly exceeded what had been known to the ancients.

Moreover, the scientific knowledge acquired in antiquity had not
been entirely lost during the Middle Ages. In the East, at all events,
some measure of continuity with ancient science had been maintained
with the help of Greek refugees or settlers. Attempts were cven made
to develop this knowledge by independent research. During the
ninth and tenth centuries we find a number of Arabian writers
showing some independence in science and medicine. And this
movement reached its zenith in the eleventh century.

An important part in the preparation for the modern period
was played by the development of technology. The technical arts
are, of course, of ancient origin. But the development of mines,
saltworks, foundries, glassworks, etc., in the eleventh century, and
carlier, in Bohemia, Germany, Hungary, etc., had a special signi-
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ficance for the shaping of the modern era. The technicians employed
in the various industries were not as a rule bookish. They inevitably
learned ‘their lessons from a direct study of the facts. No book-
authority was of any use to them. Their practical knowledge was at
first handed on by oral tradition, and so could not exercise much
influence on pure science. But in course of time some of the tech-
nicians became vocal, or rather literary, and after the invention
of printing their books played a part in the development of the
objective attitude of modern science.

THE SEcULARIZATION OoF KNOWLEDGE

The chief obstacle in the path of science during the Middle
Ages was the Christian Church. Concerned mainly with the lowly,
disdainful of the world and the flesh, and believing itself in proud
possession of divinely revealed truth concerning all that mattered,
the Church was at first contemptuous and then hostile towards all
those who sought knowledge of Nature by the independent light of
reason. At times, indeed, the Church found it expedient to make
use of scientific and philosophic arguments in self-defence against
unbelievers or heretics. But any such secular thought had to be
subordinated to Church dogma. Independent spirits like Roger
Bacon (1214-92) and Leonardo da Vinci (1452-1519), who might
have brought about a revival of science if they had been free to do
so, were silenced in one way or another by the power of the Church.
Even the Renaissance and the Reformation afforded no direct help
to the advancement of science. The Renaissance, indeed, brought
a refreshing breeze into Christendom through contact with natural-
istic paganism. But it was more concerned with book-learning than
with the first-hand study of nature, and at the Universities the study
of classical literature proved inimical to the pursuit of science. As
to the Reformers, they were at least as intolerant as was the Catholic
Church. Indirectly, however, both these movements served the
cause of science. The squabbles and the intolerant tyranny of the
Churches alienated some of the best minds from them, and sent
them in search of truth by the light of reason, and independently
of the authority of revelation, which all the Churches claimed, Such
people soon came under the influence of that spirit of naturalism
which the Renaissance had reintroduced. And when the Universities
showed themselves indifferent to science, new institutions or
academies were founded for the advancement of experimental
science. Notable among these new institutions were the Accademia
del Cimento at Florence (founded in 1657), the Royal Society of
London (founded in 1662), and the Paris Académie des Sciences
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(founded in 1666). These institutions were to some extent encouraged
by the States in the hope that they would repay in useful dis-
coveries—much in the same way, for instance, as Greenwich
Observatory was founded (in 1675) in the interests of the British
Navy. In this way the pursuit of knowledge was gradually secu-
larized, passing from the mediaeval cloisters into the modern world,
though the Church did not relinquish its strangle-hold without a
struggle.

Moreover, there were certain political factors at work which
tended in the same direction. At the beginning of the modern period
in the history of science, England and Holland played important
réles in the scientific as well as in the economic and political spheres.
Both these countries had been taught forbearance in the school
of international trade ; both had fought their fight with the Catholic
Church; and their Governments were consequently more inclined
to show a measure of tolerance, and to give considerable freedom
to those who pursued natural knowledge. Holland, indeed, became
the asylum of many learned Frenchmen who did not feel safe in
their native country, where the Catholic Church exercised con-
siderable control over the Universities. To Holland also the learned
and scientific world is indebted for the numerous publications of
the Elzevir and other presses which did so much for the advance-
ment of knowledge in those critical days.

SciENTIFIC INSTRUMENTS

One of the chief characteristics of modern science consists in its
use of scientific instruments. The function of such instruments is
various. They may enable the observer to observe much better
what he can already observe with his unaided senses, though not
so well. They may enable him to perceive something that would
otherwise be entirely imperceptible. They facilitate the precise
measurement of phenomena. Or they may make it possible to study
a phenomenon under conditions so controlled as to justify reliable
conclusions about it. In all these ways scientific instruments have
been, and still are, a most important aid to modern science, and
constitute one of its chief differences from preceding science, which
had but the simplest kind of instruments at its service. Already the
seventeenth century witnessed the invention and use of at least six
very important scientific instruments, namely, the microscope, the
telescope, the thermometer, the barometer, the air-pump, and the
pendulum clock. An account of these and other instruments will be
found in the following pages. But one or two general remarks may
not be out of place here. Obviously the telescope enables astronomers
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to see distant celestial bodies far better than they could be seen
with the naked cye, if indeed they could be seen at all without
the aid of the telescope. Similarly with the microscope in the study
of minute objects. The barometer and the thermometer likewise
made it possible to observe and to measure variations in air-pressure
and in temperature respectively, which would otherwise be cither
imperceptible or at least not measurable. The air-pump enabled
physicists to study the properties of the air under conditions which
settled once for all conflicting speculations about it. Lastly, the
pendulum clock made it possible to measure small time intervals
which either could not be measured at all or at least not so accu-
rately before its invention. Moreover, the measurement and the
quantitative correlation of phenomena plays so important a réle
in modern science that one can hardly imagine the very existence
of modern science without the aid of the above-mentioned and
similar scientific instruments,



CHAPTER 11

THE COPERNICAN REVOLUTION

THE LIFE OF COPERNICUS

Niklas Koppernigk (whom we shall henceforward designate by
the more familiar latinized form of his name, Nicolaus Copernicus)
was born February 19, 1473, at Thorn, on the Vistula. His father
was a merchant whose nationality, whether German or Polish, is
still a matter of controversy. His mother was of German extraction.
The father died in 1483, and Copernicus was brought up by an
uncle who destined him for a career in the Church. After attending
school at Thorn, Copernicus spent three years at the University
of Cracow. Here his interest in mathematics and astronomy was
awakened under the teaching of Albert Brudzewski, and he became
accustomed to the use of astronomical instruments and to the
observation of the heavens. Afiger spending two years with his uncle,
who was now Bishop of Ermland, Copernicus set out in 14g6 for
Italy, where, during the following ten years, he studied successively
at the Universities of Bologna, Padua, and Ferrara. Law and medicine
were his professed subjects of study during these years, but, although
not much is known about his activities in Italy, there is good reason
for supposing that he devoted much of his time there to the pursuit
of astronomy, both theoretical and practical.

While at Bologna Copernicus came into close personal touch with
Domenico di Novara, the Professor of Astronomy there, a leader
in that revival of Pythagorean ideals in natural philosophy which
was awakening the Italian universities about that time. The two
men observed together, and di cussed, with a freedom unusual in
the circles which Copernicus had hitherto frequented, the errors
of Ptolemy’s Almagest, and the possibility of improving upoen the
Ptolemaic system. There is little doubt that it was during his resi-
dence in Italy that Copernicus received the initial impulse towards
that reform of astronomy which he achieved in his later, more
secluded years.

During his absence in Jtaly Copernicus had been appointed a
Canon of Frauenburg Cathedral, in his uncle’s diocese, but afier
his return home he continued to live with his uncle at his palace
at Heilsberg until the Bishop’s death in 1512. He then took up his
duties at Frauenburg, where he lived, with occasional interruptions,
for the remaining thirty years of his life. These thirty years were,
to outward appearance, the most uneventful in the life of Copernicus,
He shared in the business of his Chapter, did a little political work,
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and gave free medical advice to the poor of the district. But it was
during these years that Copernicus thought out the details of his

DNlustr. 2.—Copernicus

planetary system, marshalled the intricate array of calculations by
which that system was eventually reduced from speculation to
numerical precision, and slowly perfected the manuscript in which
the fruits of all his labours were at last given to the world.
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icus from the first was well aware of the opposition, based
on both learned and doctrinal grounds, which would be aroused
by the publication of his novel views on the constitution of the
solar system. Hence, while he kept revising his manuscript year
after year, he hesitated to publish it. Some inkling of his actual
opinions, however, leaked out, awakening discussion and curiosity;
and about 1529 he circulated among his friends a manuscript
Commentariolus. This little tract gives a descriptive account of his
system in very nearly its final form, but with all the calculations
omitted. (A text of the Commentariolus, based on Curtze's collation
of the two extant manuscripts, is printed in L. Prowe’s Nicolaus
Coppernicus, Berlin, 1883, 1884; Bd. IL.) Again, about ten years
later, Copernicus received a long visit from a young astronomer,
Georg Joachim, better known by his Latin name Rheticus, who
studied the still unpublished manuscript, and made its contents
known to a wide circle by means of his printed Narratio Prima (1540).

It was to this Rheticus, three years later, that Copernicus, now
old and ill, committed his manuscript when his friends at length
prevailed upon him to publish it. The book was printed at Nimberg
and published in 1543; and the story goes that the first copy was
given to Copernicus a few hours before his death on May 24, 1543

The printed book bears the title Nicolai Copernici Torinensis de
revolutionibus orbium coelestium Libri VI, and was dedicated to the
reigning Pope, Paul 111, whose interest and protection Copernicus
claimed. The first edition, however, differs on almost every page
from the original manuscript. The title itself is an addition, and
there is reason to suppose that Copernicus would have preferred
to call his work De Revolutionibus simply. The manuscript was lost
for some two hundred years, but was rediscovered in time to serve
as the basis for the Sikular-Ausgabe (Thorn, 1873), which is the
authoritative edition of the text. (There is a German translation of
the book by C. L. Menzzer, Thorn, 1879.)

For some years after the publication of Copernicus’ book there
was uncertainty as to whether his hypothesis was intended as a
description of the actual motions of the Earth and planets, or
merely as a computing device to facilitate the construction of
planetary tables. This question was of all the more moment as, in
the state of religious opinion at the time, the acceptance or rejection
of the teachings of Copernicus depended to a considerable degree
upon the sense in which they were to be understood. The uncer-
tainty arose chiefly out of the circumstances in which the book
was published. Rheticus, who at first superintended the printing,
was called away before it was completed, and he entrusted the
supervision of the work to Andreas Osiander, a local Lutheran
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clergyman, who was a mathematician and a friend of Copernicus.
Osiander was afraid that the doctrine of the Earth’s motion would
offend philosophers and strict Lutherans, and so he inserted a little
preface of his own which stated that the whole was to be regarded
as a mere computing device without prejudice to scriptural or
physical truth. The imposture was recognized by several friends of
Copernicus from the first, and was finally exposed by Kepler
(Astronomia Nova, on the verso of the title-page, ed. Frisch, Vol. III,
p. 136). It was probably well-intentioned ; Osiander had previously
advised Copernicus to inscrt such a deprecatory preface, but
Copernicus had refused to do so. The preface scemed strangely at
variance with the text, but could not be finally proclaimed to be
an addition until the original manuscript was recovered. To
Copernicus, imbued with Pythagorean ideas, the most elegant and
harmonious mathematical representation of the planetary motions
doubtless appeared to be the only true planetary theory.

CoPERNICAN ASTRONOMY

In the dedicatory preface to his De Revolutionibus Copernicus
immediately brings his readers face to face with the long-standing
problem which it was his life’s work to solve. That problem was to
ascertain what geometrical laws govern the motions of the planets
in order to explain the apparent motions observed in the past, and
to predict how the planets would move in the future. The successive
attempts which had been made since ancient times to solve this
problem had produced two main types of theory.

The theories of the first type all went back to the homocentric
spheres of Eudoxus, the pupil of Plato. In that system each planet
was supposed to be embedded in the equator of a uniformly rotating
sphere having the Earth at its centre. The poles of this sphere were
fixed in the surface of a second, exterior sphere, concentric with
the first, and rotating uniformly about an axis constantly inclined
to that of the first. This second sphere was similarly related to a
third, and so on to the number of spheres required to account for
the observed behaviour of the planet. This theory was in accordance
with Aristotle’s system of physics, of which, indeed, it formed the
basis; and it had been revived by mediacval natural philosophers
on that account. But practical astronomers had lost patience with
the system of homocentric spheres, not only because it was belied
by several familiar celestial phenomena, but because the planctary
motions turned out to be far too complicated to be represented in
this way without an intolerably cumbersome combination of spheres.
Thus no numerically determinate theory, fit to serve as the basis
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of planetary tables, had ever been arrived at with the aid of this
hypothesis, and Copernicus realized that no progress was possible
along these lines.

The planetary theories of the second type to which Copernicus
refers in his preface were those which employed the eccentrics and
epicycles of the Alexandrian astronomers. These theories set out
from the simple conception of a planet uniformly describing a circle
with the Earth at the centre, and then refined upon it by displacing
the centre of the circle from the Earth, referring the uniform motion
to an arbitrarily chosen point within the circle, regarding the
moving point on the circle as merely the centre of a smaller circle
in which the planet actually revolved, and so forth. In this way
had been built up the complex planetary system of Ptolemy, which
still, after fourteen centuries, dominated astronomy in the time of
Copernicus. This system, unlike that of Eudoxus, was eminently
suited to serve as the basis of tables; but in its claboration the
essential principles of Aristotelian physics had been thrown to
the wind:.

Copernicus describes how, in his dissatisfaction with this state
of affairs, he resolved to attack the problem on different lines.
Casting about for fresh ideas, he turned to the classical writers to
see what alternative theories they had to offer. He found that quite
a number of the early thinkers, such as Hicetas, Philolaus, and
Heraclides of Pontus, had attributed some form of motion {axial
rotation or revolution in a closed orbit) to the Earth; and he quotes
several classical writers to this effect. We cannot be certain whether
Copernicus really derived his ideas, in the first instance, from the
writers whom he quotes, or whether he introduces their names
merely for the sake of the impression which these would produce
upon the readers of his day. We shall return to the question of the
originality of Copernicus’ conceptions later in this chapter. In any
case he uses these classic passages as an excuse for introducing his
own system, in which the Earth rotates on its axis and revolves
about the Sun as one of the planets.

“Taking occasion thence,” he writes, “I too began to reflect
upon the Earth’s capacity for motion. And though the idea appeared
absurd, yet I knew that others before me had been allowed freedom
to imagine what circles they pleased in order to represent the
phenomena of the heavenly bodies. 1 therefore deemed that it
would readily be granted to me also to try whether, by assuming
the Earth to have a certain motion, demonstrations, more valid
than those of others, could be found for the revolution of the
heavenly spheres.

“And so, having assumed those motions which I attribute to the
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Earth further on in the book, I found at length, by much long-
continued observation, that, if the motions of the remaining planets
be referred to the revolution of the Earth, and calculated according
to the period of each planet, then not only would the planetary
phenomena follow as a consequence, but the order of succession and
the dimensions of the planets and of all the spheres, and the heaven
itself, would be so bound together that in no part could anything
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Illustr. 5.—The Universe according to Copernicus

be transposed without the disordering of the other parts and of the
entire universe" (Preface).

The general arrangement of the solar system as conceived by
Copernicus, suppressing the refinements which he subsequently
introduced, is shown in his well-known diagram, where Mercury,
Venus, the Earth, Mars, Jupiter, and Saturn describe concentric
orbits about the Sun in the centre (see Illustr. 3).

“In the midst of all dwells the Sun. For who could set this
luminary in another or better place in this most glorious temple
than whence he could at one and the same time lighten the
whole? . . . And so, as if seated upon a royal throne, the Sun rules
the family of the planets as they circle round him. . . .” (I, 10).
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Ever since the days of the Pythagoreans objection had been made
to all planetary hypotheses which involved any motion of the
Earth, on the ground that any such motion would give rise to a
corresponding apparent motion in the stars (see Illustr. 4). Such an
apparent motion, though sought, was never observed. Copernicus
anticipates this sort of criticism by supposing that the stars are at
a distance from us incomparably greater than the radius of the
Earth’s orbit, so that our annual motion makes no difference to
their apparent direction. This objection, however, became ever
more serious as observation improved in accuracy yet failed to
reveal any annual stellar parallax. It was only finally removed

Tlustr. 4.—Stellar Parallax

within the last hundred years, when stellar parallax of a minute
order was observed in certain stars.

Copernicus was doubtless won over to the new point of view by
its greater symmetry and coherence. These virtues would appeal
to one imbued with Neo-Pythagorean ideas. For the essence of
Pythagoreanism was its insistence that the universe is to be described
in terms of mathematical relations; and that, of two geometrically
equivalent planetary theories, the more harmonious and symmetrical
was the more correct. But Copernicus had still to justify his point
of view to the scholars of northern Europe, whose master was
Aristotle rather than Pythagoras. He thereflore devotes several of
the early chapters of Book [ to proving that the new system is just
as much in accordance with Aristotelian physics as was the Ptolemaic
system. His problem is to confute the arguments by which Aristotle
had asserted that the Earth is at rest at the centre of the universe,
while at the same time preserving Aristotle’s principles intact and
using them as the basis of his own arguments.
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Copernicus reasons more soundly, however, from the principle
that all motion is relative motion: “Every apparent change of
position is due cither to a motion of the object observed, or to a
motion of the observer, or to unequal changes in the positions of
both. . . . If then a certain motion be assigned to the Earth, it will
appear as a similar but oppositely directed motion, affecting all
things exterior to the Earth, as if we were passing them by” (I, 5).
Copernicus applies this principle of the reciprocity of apparent
motions in the first instance to account for the apparent diurnal
rotation of the heavens: “If you will allow that the heavens have

no part in this motion; but that
E the Earth turns from west to east,
then, so far as pertains to the
apparent rising and setting of the
Sun, Moon, and stars, you will
find, if you think carefully, that
these things occur in this way”
(I, 5). Later he brings this same
principle to bear upon the pheno-
mena connected with the ap-
parent annual circuit of the
Sun: “If [this circuit] be trans-
posed from being a solar to being
a terrestrial [phenomenon], and
Tllustr. 5.—Apparent Planetary it be granted that the Sun is at
Oscillation rest, then the risings and settings
of the constellations and the
fixed stars, whereby they become morning and evening stars, will
appear after the same manner [as before]” (I, g).

The most convincing argument, however, in favour of the
scientific superiority of the Copernican hypothesis was the simple
explanation which it could give of certain peculiarities in the
apparent motions of the planets. If one of these bodies (say a
superior planet) is observed night after night, it is found, in general,
to be moving slowly across the southern sky from west to east
relatively to the background of stars. From time to time, however,
this eastward motion is arrested and reversed, and the planet travels
a short distance from east to west before resuming its normal east-
ward direction. The physical significance of these stations and
retrogressions of the planets had always been an enigma to astrono-
mers; but Copernicus was able to show that these inequalities arise
as necessary consequences of the annual motion of the Earth, Thus,
suppose the respective orbits AB, DE of the Earth and of a superior
planet (see Illustr. 5) to be coplanar circles concentric in C. Suppose
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at first that the Earth moves uniformly in its orbit with its mean
motion, while the planet remains stationary at D. From D draw
tangents DF, DG to the Earth’s orbit. Then while the Earth is
describing the arc FAG, the planet at D appears, to a terrestrial
observer, to move in a retrograde direction through the angle FDG;
but the planet appears to move direct through the same angle while
the Earth is describing the remaining arc GBF of its orbit. That is,
the planet appears to oscillate with an amplitude equal to the
angle FDG. Now let the planet be supposed to move in its orbit

Ly

Tlustr. 6.—Apparent Irregularities in Planetary Motion

with its mean motion, which is less than that of the Earth. Then
the above-mentioned oscillation appears, to a terrestrial observer,
to be superimposed upon the planet’s steady eastward motion, and
the peculiar movement characteristic of a planet is thus produced.

The way in which Copernicus thus explained the oscillation in
the path of a planet as a mere appearance to a terrestrial observer
in consequence of the orbital motion of the Earth may be made
somewhat clearer by means of the above diagram (Illustr. 6).

Let § represent the position of the Sun at the centre of the
universe, Let the smallest circle round S-represent the orbit of the
Earth, and E,, E,, E,, E, four successive positions of the Earth at
intervals of three months. Let the next larger circle represent the
orbit of one of the planets, say Mars, and M,, M., M, M, M, etc.,
successive positions of Mars at intervals of three months. Let the
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largest circle represent the place of the fixed stars, more especially
of the various constellations, or the signs of the zodiac, among
which the planets, as seen from the Earth, appear to move. Now,
when the Earth is at E, then the planet Mars will be seen in the
direction of the line E,M,, and will appear to be at Z,; when the
Earth is at E, and Mars at M, the latter will appear to be at Z,;
similarly when the Earth is at E;, E,, Mars will appear to be at
Z,, Z, respectively.*

It will be seen that in the course of the first year just described,
although Mars really moved at a uniform velocity from M, to M,,
M,, M,, it has the appearance of having moved at varying velocities
from Z, to Z,, Z,, Z,, being apparently stationary for a time, then
receding and forming a loop at Z;, but moving rapidly from Z,
to Z;, and so on. Similarly, when the Earth on completing its second
round passes from E, to E,, Mars, though still moving uniformly
from M, towards M,, in order to complete its first round (for Mars
takes nearly twice as long to complete its orbit as does the Earth),
will appear to be stationary, then to recede, and then to loop
between Z, and Z,. Thus the circular motion of the Earth in its
orbit gives the appearance of loops in the orbits of the planets.

Ptolemy had represented this inequality in a planet’s motion by
supposing the planet to move upon an epicycle especially introduced
for the purpose. This was equivalent to transferring the Earth's
motion to the planet. But this had to be done for each planet, while
Copernicus could explain this phenomenon in each planet by
reference to a single motion of the Earth—a great gain in simplicity.

There are, however, further inequalities in the apparent paths

* Although the distance from the Earth of even the nearest stars is of the
order of a thousand to a million times that of the planets, yet the eye does not
detect any difference in apparent distance between stars and planets. This is
because our powers of judging distance are effective only within such a moderate
range as that over which our vision normally extends on the Earth's surface.
Within this range we instinctively judge the nearness of an object by the difference
in the aspects which it presents to our two eyes, and also o some extent by the
degree of effort necessary for accommodating the lenses of our eyes to the rays
diverging from the object, and in bringing their two lines of gaze to converge
upon it. The apparent size of a familiar object also assists us in localizing it, and
30 does the presence of an interposed series of other objects. But in viewing
objects as distant as the planets, none of these aids to judgment is available.
For the rays coming from these bodies are sensibly parallel, so that no accom-
modation or convergence of gaze is called forth. Moreover, even when (as with
the Sun and Moon) celestial objects have an apparent size, we have no conception
of their absolute size for comparison. And there is no serics of objects extending
from us to the heavens which would give us a scale of distance. Hence stars
and planets alike appear projected on the background of a celestial sphere of
indefinite radius,
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of the planets arising, as we know now, from the ellipticity of their
orbits. Moreover, the Sun’s rate of apparent motion in the ecliptic
is not quite uniform from day to day. In order to account for these
phenomena Copernicus was obliged to refine upon the simple
scheme of Illustr, g (p. 16), where the Earth and planets all
describe concentric circles with the Sun in the centre. In con-
structing his detailed planetary orbits, a task which occupies most
of the De Revolutionibus, Copernicus employs eccentrics and epicycles
like those of the ancients, but, unlike Ptolemy, he is always careful
to ensure that his circular motions are uniformly described relatively
to the centres of the circles, and not merely to arbitrarily chosen
points within the circles.

A whole book of the De Revolutionibus (the third) is devoted to
the consideration of the various motions to be attributed to the
Earth. Already, in the preliminary sketch of Book I, the phenomena
of the seasons are shown to depend upon the Earth’s revolving
annually about the Sun while keeping the direction of its axis
approximately invariable. In the more refined theory of Book III
the Earth’s orbit is assumed to be a circle having the Sun displaced
a little way from its centre. Copernicus determines the direction of
the apse-line (see footnote on p. 136 £.) of this orbit, and its eccentricity
with regard to the Sun. after the manner of Hipparchus. His theory
is complicated by an attempt to represent an (actual) progressive
motion of the apse-line (suspected by the Arab al-Battani in the
ninth century and confirmed by Copernicus), and to allow for
certain (imaginary) fluctuations in this motion, and in the eccen-
tricity of the orbit, suggested by some mediaeval observations of
questionable accuracy, which he felt obliged to take into account.

An important feature of Copernicus’ account of the Earth’s
motion is his explanation of the precession of the equinoxes.
Hipparchus of Rhodes, who discovered this phenomenon about
150 B.c., attributed it to a slow rotation of the sphere of stars about
the axis of the ecliptic. Copernicus introduces the modern explana-
tion of precession as due to an alteration in the plane of the Earth’s
equator causing the Earth’s axis to describe a conc in space. Here
again he needlessly complicates his theory in order to bring it into
conformity with certain ancient and mediaeval observations.
Throughout his work he adopts an entirely uncritical attitude to
traditional data of this kind, and makes no allowance for the possi-
bility of serious errors of observation, fraud, or textual corruption.
This involves his theories in needless intricacies, while at the same
time revealing his remarkable skill in geometry. Occasionally he
relies upon twenty-seven observations of his own, which fill only
one page of a modern edition, and are, on hizs own admission, crude.
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*“If only I can be correct Lo ten minutes of arc,” he once said to
Rheticus, “I shall be no less elated than Pythagoras is said to have
been when he discovered the law of the right-angled triangle”
(Rhetici ephemerides novae, 1550, p. 6).

Following upon this investigation of the Earth’s motion, we have
a book devoted to lunar theory. The Moon’s relation to the Earth
was unaffected by the change of outlook which Copernicus initiated,
and he made no additions to the lunar inequalities in longitude
known to Ptolemy. But his
methods of representing
these inequalities are more
satisfactory than those of
the Almagest. According
to Ptolemy’s theory, the
angular diameter of the
Moon should be twice as
great at some times as it
is at others; Copernicus
found a means of repre-
senting the Moon's motion
in longitude as correctly
as Ptolemy had done, but
without such a gross ex-
agperation of the slight
fluctuations in the appa-
rent size of its disc. Co-
pernicus, however, adopts

Ilustr. 7.—Orbits of the Three Superior ~ With only a slight altera-

Planets tion Prolemy’s gross under-

estimate of the Sun's dis-

tance from the Earth as being only about 1,200 times the Earth's

radius. This error clung to astronomy until the latter half of the

seventeenth century, when the use of the telescope for precise
celestial measurements made an accurate determination possible,

The last two books of the De Revolutionibus (V and VI) treat of
the motions of the planets in longitude and in latitude respectively.

Dealing first with the three superior planets, Copernicus assumes
provisionally that, as regards motion in longitude, each has an
orbit constituted as in Illustr. 7. The planet F describes an epicycle
EF about a centre A, which revolves in a deferent circle AB whose
centre is C. Epicycle and deferent are described in the same sense
and the same period (viz. the sidereal period of the planet). If the
Earth's orbit be represented by the circle NO, with centre D, then
the radius AF is taken as one-third of CD. The elements of such
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an orbit (direction of apse-line ACDB and eccentricity CD/CB)
can be determined, in theory, by three observations of the planet
when it is in mean opposition, i.e. when it appears, to a terrestrial
observer, to lic in the direction diametrically opposite to the
centre D of the Earth’s orbit. Copernicus confirms the adequacy
of such a combination to represent approximately the motion of
each of the superior planets by successively deriving the elements
of the orbit from three of the observations in the Almagest, and then
from three of his own, and by showing that the two sets of clements
so obtained are in tolerable agreement with each other.

The combinations assigned to the inferior planets, Venus and
Mercury, are considerably more complicated, but here too the
clements of the hypothetical orbits are determined from suitably
combined observations.

When once the elements of a planetary orbit had been thus
fixed, Copernicus was able to consider an observation of the planet
made when it was nof in oppasition. He could compare the position
actually observed with the (calculated) position of the planet as it
would appear from the centre of the Earth's orbit, and then find
the difference between these two positions. From such data he was
able to evaluate the radius of the planet’s eccentric circle (deferent)
in terms of the radius of the Earth’s orbit. His results compare
favourably with the modern “mean distances.” We have here the
earliest instance of an astronomer evaluating, in terms of the radius
of the Earth’s orbit, the dimensions of the planetary orbits without
presupposing artificial or fanciful relations between these quantitics,
such as ancient astronomers who attempted the problem had been
forced to assume,

In his account of the observed departures of the planets from the
plane of the ecliptic—their motions in latitude—Copernicus intro-
duces hypothetical periodic fluctuations in the inclinations of the
planes of the several orbits. The necessity for doing this arose from
what Kepler afterwards recognized as the fundamental mistake of
referring the motions of the planets to the centre of the Earth's
orbit instead of to the true Sun. Copernicus’ treatment of the
latitudes of the inferior planets is particularly complicated, and
employs methods borrowed almost wholly from the Almagest.

It was an ambition of Copernicus to produce numerical planetary
tables as accurate as any based on the geocentric hypothesis. From
the theories set forth in the De Revolutionibus he constructed tables
enabling the positions of the Sun, Moon, and planets at any given
instant to be easily calculated. These tables, which form an essential
feature of the book, were in fact an improvement upon those in
current use, and this circumstance helped indirectly to make the
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new doctrine acceptable among astronomers. But the accuracy of
the tables necessarily suffered through their being based upon a
bare minimum of crude and often questionable observations em-
bodied in a theory which was strained to conform to illusory physical
laws. Such little improvement as could be made by a careful
reconsideration of the data was effected a few years later by
Copernicus’ disciple Reinhold. Before the new cosmology could
bear fruit in tables worthy of itself, however, there were needed
the precise and systematic observations of Tycho Brahe, and the
patient but adventurous genius of Kepler,

Tue OricivaLiTy of CoPERNICUS

We may now face the problem of assessing the originality of
Copernicus’ contribution to astronomy. It cannot be denied that
his debts to Ptolemy were considerable. From the Almagest he
derived many of his observational data and geometrical devices,
as well as the material for his star catalogue.

In one sense, however, Copernicus’ debt to Ptolemy was insig-
nificant, for the ideas with which he revolutionized European
astronomy were entirely alien to the Alexandrians, The rudiments
of these ideas are to be found, if anywhere, in the speculations of
a few men who stood apart from the main current of opinion, and
whose recorded teachings are scattered through classical and
mediaeval literature. A study of these passages, so far as they were
probably known to Copernicus, seems to make it clear that the
basic ideas underlying his system did not originate with him, For
instance, the complete heliocentric system had been anticipated,
in its broad outlines, by Aristarchus of Sames (¢. 250 B.c.), who
has been called on that account the “Copernicus of Antiquity”;
though Copernicus’ relation to the ideas of Aristarchus is unfor-
tunately obscure. From whatever source he derived his fundamental
ideas, however, Copernicus’ great and unquestionable contribution
to astronomy must be held to lie in his elaboration of those ideas
into a coherent planetary theory capable of furnishing tables of an
accuracy not before attained. It is true that we can no longer
regard the Sun, or the centre of the Earth’s orbit, or any other
origin of reference, as being at rest in space except as a matter of
temporary convenience in treating some special problem. Never-
theless, the scientific utility of the heliocentric point of view, and
its contacts with observed fact, have increased enormously since it
was formulated by Copernicus. To him it merely represented the
most symmetrical arrangement of the planets, and the simplest
manner of accounting for their observed motions. But to Kepler it
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was the necessary precondition for his discovery of the laws of
planetary motion, and to Newton it opened the way to a rational
explanation of those laws. Lastly, the cosmogonists, from Laplace
to Jeans, have given to the heliocentric theory a new, genetic
significance by recognizing in the Sun the central, parent body
from which, under the action of centrifugal or tidal forces, the
substance of the planets was originally ejected.

Tue Sereap oF COPERNICANIEM

The Copernican system took the better part of a century to
become firmly established in scientific thought. It was opposed
from the beginning by Luther and the Reformers, and though at
first it was tolerated by the Catholics, their resistance to it strength-
ened until, in 1616, they were prepared to forbid Galilei to teach
Copernican astronomy. Nevertheless, the new doctrine spread
widely, especially among practical astronomers. The heliocentric
theory was favourably noticed by a number of English scientific
writers, beginning with John Field in 1556 (Ephemeris anni 1557
currentis juxta Copernici et Reinholdi canones) and including William
Gilbert, who sought to establish a relation between his speculations
in magnetism and the Copernican theory (De Magnete, 1600, Bk. VI).
Francis Bacon opposed the heliocentric hypothesis (Nooum Organum,
Bk. II, xlvi, etc.); and it owed its final acceptance in scientific
circles chiefly to the authority of Galilei, Kepler, and Descartes,
and, later, Newton.

Among the earliest adherents of the Copernican doctrine was
Giordano Bruno (1548-1600), who started as a Dominican monk,
and thereafter wandered through Europe teaching heretical opinions,
for which he was finally burned at the stake by the Inguisition.
In philosophy he was a pantheist, and one of the forerunners of
Spinoza. Bruno’s writings include an apology for Copernican
astronomy, but he went further than his master and abandoned
the belief that the stars are fixed to a crystal sphere having the
Sun at its centre. He regarded them as Suns scattered through
infinite space and forming the centres of innumerable planetary
systems like ours. He intuitively anticipated many discoveries
which were later established by observation, as, for example, that
the Sun rotates on its axis and that the Earth is flattened at the
poles. He regarded comets as a species of planets, and supposed
that the solar system might possess more planets than those known
at that period, Bruno foreshadowed to some extent the doctrine of
the Conservation of Energy, teaching that the only thing that is
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eternal in this world of incessant change is the ereative energy
underlying all things.

After Copernicus, the next important astronomer was Tycho
Brahe, and he would be dealt with next if chronology and astronomy
were the main considerations. His work, however, is inseparable
from that of Kepler, and the work of Kepler from that of Newton,
Now, Galilei was a younger contemporary of Tycho Brahe and an
older contemporary of Kepler. And Galilei holds a peculiarly
important place as a pioneer of modern science. He not only made
valuable astronomical discoveries, but he laid the foundations of
dynamics, and thereby prepared the way for the Newtonian syn-
thesis. Moreover, he made important contributions also to other
sciences, inspired the foundation of the oldest scientific academy,
and gave a great impetus to the invention of new scientific instru-
ments. In these and other ways he exercised a paramount influence
on the general progress of modern science, and not only on
astronomy. It will therefore be convenient and appropriate to deal
with him, with the first scientific academies, and with the new
scientific instruments, before turning to Tycho Brahe and Kepler
and the further progress of astronomical science.

(See J. L. E. Dreyer, History of the Planetary Systems from Thales fo
Kepler, Cambridge, 1906; A. Berry, A Short History of Astronomy,
1898; A. Armitage, Copernicus, the Founder of Modern Astronomy,
London, 1938; E. Rosen, Three Copernican Treatises, New York,
1939; D. Stimson, The Gradual Acceptance of the Copernican Theory
of the Universe, New York, 1917; R. Wolf, Geschichte der Astronomie,
Munich, 1877; E. Zinner, Die Geschichts der Sternkunde, Berlin,
1931.)



CHAPTER 111

GALILEO GALILEI

Itary had been the scene of the revival of classical learning. It
was in Italy likewise that the foundations of modern science were
laid by Galilei and his disciples. When the darkness of the Middle
Ages began to lift, Italy was divided into numerous republics and
principalities which competed for the leadership sometimes by
means of warfare and sometimes by means of more friendly forms
of rivalry. These small States maintained themselves chiefly by
means of commerce and industry. After the introduction of the
mariner’s compass and geographical charts Italian seamen had
developed a considerable traffic with the Levant, One result of
this was the rapid growth of Italian arts and crafts. The glassware
of Venice, and the decorative enamelled pottery and the metal
castings of Majolica and of other Italian citics were unrivalled. Of
course Italy had also far greater achievements to her credit at a
somewhat carlier period—the immortal poctry of Dante and
Petrarch, the universal genius of Leonardo da Vinci, the supreme
art of Raphael and Michael Angelo. But at the beginning of the
modern period Italian art was beginning to decline, and the scientific
spirit burst into vigorous growth. On the very day on which Michael
Angelo died Galileo Galilei first saw the light, as if Italian science
had been destined to take over the glory of Italian art.

Earry Lire oF GALILEI

Galileo Galilei was born on February 15, 1564, at Pisa, which
was at that time under the Medicean government of Florence,
though it had been a free city during the Middle Ages. Galileo's
father was Vincenzio Galilei, an impoverished nobleman with a
passion for music and mathematics, and the author of a Dialogue
on Music, in which he protested against the customary appeal to
authorities. The tastes and tendencies of the father reappeared with
interest in the son.

At school Galileo showed much industry in his work, and a
measure of independent thought which distinguished him from his
schoolfellows. He next took up the study of medicine. In those days
the study of medicine all over Europe was somewhat like the study
of law in England at the present day—something to which sons
might be put when their parents were not yet clear as to what they
ought to do with them. The state of medicine at that time, however,
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was not such as to appeal to the interests of young Galilei, The
exact sciences attracted him much more. The story is told that he
used to listen at the door of the classroom in which lectures were
given on mathematics, and that he tried to gather crumbs of in-
formation from the students as they left. When the lecturer on
mathematics heard of it he took steps which enabled Galilei to
change from the study of medicine to the study of mathematics
and physics. His progress in these sciences was such that at the
age of twenty-five he was appointed lecturer at the university of his
native town.

His independent researches into physical phenomena had by this
time convinced Galilei of the erroncousness of much that was
taught as Aristotelian physics and was accepted as authoritative.
He made no secret of his views. On the contrary, he openly attacked
various Aristotelian views on physics with such persistence that he
made himself unpopular with his colleagues, who regarded him as
rather aggressive. A legend, now rejected, states that he dropped
three bodies of different weights at the same time from the top of the
Leaning Tower of Pisa and showed, from their simultaneous arrival
on the ground, that Aristotle was wrong in teaching that the veloci-
ties of falling bodies varied with their weights. Stevin had made the
experiment elsewhere before Galilei and there is no evidence that
Galilei repeated it. Galilei's attitude displeased his Aristotelian
colleagues and made them unfriendly towards him. When therefore
the Senate of Venice offered him a post in the University of Padua
in 1592, he readily accepted the invitation and began to lecture in
Padua in December of that year.

Galilei was no respecter of books or of the mere shows of learning.
Though well versed in Latin, the Esperanto of scholars of that time
and long afterwards, he preferred to lecture and to write in Italian,
And in his earliest treatise on motion, in which he controverts the
above-mentioned Aristotelian doctrine about the velocity of falling
bedies, he stated explicitly that he was quite indifferent whether his
own view did or did not agree with that of others so long as it was in
harmony with experience and reason. But Galilei did have a passion
for close observation and reasoning. It is related that already as a
youth he noticed, while sitting in the cathedral at Pisa, that as the
lamp, suspended from the roof by a long chain, was swinging to and
fro, each swing, whether short or long, seemed to take the same
time, as ingeniously measured by his pulsc-beat. With such an open
and observant mind it was natural enough for him to take a sym-
pathetic interest in the heliocentric theory of Copernicus, in spite
of the hostility of the Church. Indeed, he seems to have embraced
the Copernican view quite early in life, in fact “many years” before
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1597, as appears from a letter which he wrote in that year to Kepler
in acknowledgment of the latter’s Prodromus. Part of this letter is
worth quoting in this connection. “l consider myself fortunate,”
Galilei wrote, “"to have found such a great confederate in the search
for truth. It is really pitiable that there are so few who strive after
truth and are ready to abandon perverse methods of philosophizing.
However, this is not the place to lament the sorry plight of our
age, but only to congratulate you on your splendid researches. . . .
I do so all the more gladly because 1 have been for many years
a follower of the Copernican theory. It explains to me the reasons of
many phenomena which are quite incomprehensible according to
the views commonly accepted. I have collected many arguments
for the refutation of the latter, but I dare not publish them. .
To be sure, 1 would dare do it, if there were many such men as you
are. But as this is not the case, I must put them aside” (Opere,
Edizione Nazionale, Vol. X, p. 68). Galilei had every reason to be
cautious, as sad experience was to teach him in due course. Indeed,
within three years of the writing of this letter, his countryman,
Giordano Bruno, perished at the stake for his Copernican and
other heresies. Galilei’s first conflict with the anti-Copernicans took
place in 1604, when the observation of a new star arrayed Galilei
and Kepler in a united combat with the Aristotelians, who insisted
on locating it within the lunar sphere, beyond which, according
to the Aristotelians, no changes could occur and nothing new could
a -
The intellectual atmosphere at Padua, Galilei soon discovered,
was not much more encouraging than it had been at Pisa. This is
evident from another letter which he wrote to Kepler, and from
which the following passage is worth citing as evidence of the amazing
extent to which faith in authority may produce blindness to facts.

“I wish, my dear Kepler, that we could have a good laugh
together at the extraordinary stupidity of the mob. What do you
think of the foremost philosophers of this University? In spite of
my oft-repeated efforts and invitations, they have refused, with the
obstinacy of a glutted adder, to look at the planets or the Moon
or my glass [telescope]! . . . Why must I wait so long before I
can laugh with you? Kindest Kepler, what peals of laughter you
would give forth if you heard with what arguments the foremost
philosopher of the University opposed me, in the presence of the
Grand Duke, at Pisa, labouring with his logic-chopping argumen-
tations as though they were magical incantations wherewith to
banish and spirit away the new planets [the satellites of Jupiter]
out of the sky " (Opere, Ed. Naz., Vol. X, p. 423).
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GarLner's Astronomicar Discoveries

The story of the telescope will be told in the chapter on scientific
instruments. Here it need only be stated that in 160g Galilei con-
structed a telescope on the Dutch pattern, and was the first to use it
as a scientific instrument. The most important discovery which he
made by means of it was that Jupiter had four satellites revolving
round it. He first saw three of them on January 7, 1610, and all
four a few days later. As a compliment to the ruling prince, he
named them the “Medicean stars.” The observation of Jupiter
with its moons served Galilei as a convincing analogy of the solar
system as conceived by Copernicus. Towards the end of 1610
Galilei discovered that Venus had phases like the Moon. Next he
discovered the nature of the Milky Way, and very nearly discovered
Saturn’s Rings. What great significance he attached to his dis-
coveries is clear from letters which he wrote to Belisario Vinta in
January and July 1610. “1 am quite beside myself with wonder,”
he wrote on January goth, “and I am infinitely grateful to God
that it has pleased Him to permit me to discover such great marvels
as were unknown to all the preceding centuries. That the Moon is a
body resembling the Earth, of this I felt certain already before. 1
have also observed a multitude of fixed stars that had never been
seen before, and which are more than ten times as numerous as
those which are visible to the naked eye. . . . And I know now
what the Milky Way is" (Opere, Ed. Naz.,, Vol. X, p. 280). On
July g0, 1610, he wrote: *I have discovered that Saturn consists
of three spheres which almost touch each other, which never change
their relative positions, and are arranged in a row along the zodiac
so that the middle sphere is three times as large as the others”
({dem, p. 410). A word or two may be added here in elucidation of
some of the points mentioned in this letter. The Moon, seen through
the telescope, appeared to Galilei to have mountains and valleys,
Jjust like the Earth, and he even estimated the heights of the lunar
mountains from the lengths of their shadows. With regard to the
much larger number of fixed stars visible through the telescope as
compared with the number seen with the unaided eye, Galilei
counted, for instance, forty fixed stars in the constellation Pleiades,
whereas he could only see six of them with the naked eye.
Another important astronomical discovery made by Galilei con-
sisted of the Sun-spots, which he first observed in October 1610,
But the honour of this discovery must be divided between him and
two or three other astronomers of his time. Kepler, as we shall
see, had somehow become aware of the existence of spots on the
surface of the Sun, even without the aid of a telescope. And Fabricius
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had seen them through his telescope before Galilei did. In his
De maculis in sole observatis, published in 1611, Fabricius reported as
follows: ““As I was carefully observing the edge of the Sun a black
spot appeared unexpectedly. At first I thought it was a passing
cloud. The next morning, however, the spot was visible again as
soon as 1 looked, although it appeared to have changed its position
slightly. The weather was dull during the three days following.
When the sky was clear again the spot had shifted from east to
west, and smaller spots occupied its previous position. Afterwards
the large spot gradually moved towards the opposite edge and
disappeared there. From their movements it was evident that the
smaller spots would do likewise. A vague hope prompted me to
expect their return. And the large spot did in fact reappear at the
castern edge ten days later.” Another early observer of the Sun-
spots was Scheiner, who observed them in April 1611. At first he
suspected that the phenomenon was an optical illusion, or that it
was due to some fault in his telescope. But after he and his friends
had seen them through eight different telescopes, he could no longer
doubt the reality of the spots. Even then he was uncertain whether
the spots were on the Sun itself, or only near it. But he inferred from
their movements, which he studied closely and with great perse-
verance, that the Sun must be rotating on its axis. Fabricius main-
tained from the first that the spots were on the Sun itself, and not
due to the revolution of dark bodies near and round the Sun.
Galilei confirmed this view by pointing out that the great diminution
in the velocity with which the spots appeared to move when nearing
the edge of the Sun, as compared with their velocity during the
rest of their path across the Sun, could be best explained on that
assumption. Eventually this view of the nature of the Sun-spots
was generally accepted, and their movements afforded the data
for determining the rotation-period of the Sun and the position of
the solar equator.

Galilei also made various observations of nebulae. But he was not
the first to do so. Simon Marius appears to have made the first
ohservation of a nebula (the one in the constellation Andromeda)
in 1612. Galilei regarded nebulae and the Milky Way as clusters
of numerous stars.

In order to complete this sketch of Galilei’s contributions to
astronomy, we must anticipate some of his later work. His last
telescopic discoveries were made in 1637, just before he went blind
—the daily and monthly librations of the Moon, the small alter-
nations of visibility and invisibility of parts of the Moon’s surface
near the edges of her disc. Galilei next attacked the problem of
measuring longitude on land and at sea—a very important matter
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for seafaring nations. He attempted to utilize for this purpose one
of his early discoveries, namely, the satellites of Jupiter. In ancient
and mediaeval times longitude was sometimes determined by
reference to lunar eclipses, that is, by comparing the local times of
the appearance of a lunar eclipse in different parts of the Earth.
But, owing to the comparative rarity of the lunar eclipses, this
method was not very helpful. The periods of revolution of Jupiter's
satellites being so short that almost every night one or other of
them is eclipsed by the central planet, Galilei thought it would be
possible to use these eclipses for the purpose in question. He had
actually constructed approximately accurate tables of the revolu-
tions of these satellites. But for various reasons the ingenious idea
did not come to fruition,

Tue Diatocue o THE Proremaic axp Copernican Worrp-
SvsTEMS

In 1632 Galilei published his Dialogue concerning the fwo chief
Systems of the World, the Ptolemaic and the Copernican (English transla-
tion by T. Salusbury, 1661). The work consists of four compre-
hensive dialogues (or “Days”). Galilei’s choice of the form of the
dialogue as the medium of his thought may have been prompted
by various literary and other reasons. The chief reason, however,
was probably the desire to be cautious and not to commit himself
too much. A discussion between several interlocutors always leaves
the author the loophole of pleading, if necessary, that certain views
were not really his own, but those of the imaginary character of
the dialogue into whose mouth they have been put on literary or
imaginative grounds. Of the characters in Galilei's Dialogue Salviati
and Sagredo were friends and followers of Galilei, while Simplicio
was named after the Aristotelian commentator, and plays the part
of a fanatical defender of authority and tradition.

The Dialogue opens with an attack on the Aristotelian doctrine
that the celestial bodies are totally different from the Earth in
their nature and composition, and that the heavens are immutable.
The appearance of new stars and the Sun-spots are cited as evidence
to the contrary. The mountains visible in the Moon by means of
the telescope disprove the Aristotelian view that the Moon is a
perfect sphere. As to the indestructibleness of the heavenly bodies,
it is contended that all matter, even terrestrial matter, is indestruc-
tible. “I never,"” says Salviati in the Dialogue, “was thorowly satisfied
about this substantial transmutation (still keeping within pure
natural bounds) whereby a matter becometh so transformed, that
it should be necessarily said to be destroyed, so that nothing
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remaineth of its first being, and that another body quite differing
there-from should be thence produced; and if I fancy to my self a
body under one aspect, and by and by under another very different,
I cannot think it impossible but that it may happen by a simple
transposition of parts, without corrupting or ingendring anything
a-new” (Translation by Thomas Salusbury in his Mathematical
Collections and Translations, London, 1661, Vol. I, pp. 27, 28).

Occasionally the Dialogue throws a shaft of ridicule at the Scholas-
tics, reducing their arguments to absurdity. Thus, for example,
when Simplicio contends that Aristotle could not have committed
any mistakes in reasoning, seeing that he was the founder of Logic,
the retort is made that a man might very well be a competent maker
of musical instruments without being an expert musician.

Turning to the question whether all the heavenly bodies revolve
round the Earth in twenty-four hours or whether the Earth really
rotates on its axis in that period and thercby produces a merely
apparent revolution of the starry heaven, the Dialogue allows that
prima facie either hypothesis would account for the observed pheno-
mena, but that, all considered, the hypothesis of the Earth’s rotation
is the more plausible one. When we consider the vastness of the
starry heaven in comparison with the many million times smaller
Earth, and think of the enormous velocity required for the starry
heaven to complete its revolution round the Earth in one day,
then it scems incredible that the heavens should be moving while
the Earth stands still. Moreover, if the Earth is assumed to stand
still, the fixed stars must be supposed to be moving in a direction
contrary to that of the planets, all of which move from West to East,
and move comparatively slowly. Again, the period of the revolution
of the several planets increases with the size of their several orbits,
the Moon completing its orbit in 28 days, Mars in 2 years, Jupiter
in 12 years, and Saturn, the remotest planet, in 30 years. The
same rule holds good of the satellites of Jupiter, which complete
their orbits in 42 hours, 3} days, 7 days, and 16 days respectively,
according to their increasing distance from Jupiter. But if we
assume the starry heaven to revolve round the Earth, then we
should be faced with the paradox of an increasing periodicity from
the Moon, with its thirty-day period, to Saturn, with its thirty-year
period, followed by a sudden and enormous diminution in the
periodicity of the vastly more distant stars, with a period of one
day! Morcover, we should be compelled to suppose that even the
fixed stars themsclves move with vastly varying velocities according
to their several distances from the celestial pole. To add to the
difficulties of the Ptolemaic view, the positions of the fixed stars
undergo slow changes. Some, which were at the equator thousands
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of years ago and followed the largest orbits, are now at a distance
of several degrees from the equator, and must therefore move more
slowly in smaller orbits. It may even happen that a fixed star which
had always been moving may for a time remain stationary at the
celestial pole, and then begin to move again.

Various arguments are directed not only against the Scholastic
glorification of the heavenly bodies at the expense of the Earth,
but also against the whole notion that immutability is a mark of
perfection. 1 cannot without great admiration, nay more, denial
of my understanding,” says Sagredo, one of the characters of the
Dialogue, *hear it to be attributed to natural bodies, for a great
honour and perfection, that they are impassible, immutable, in-
alterable, etc. And on the contrary, to hear it to be csteemed a
great imperfection to be alterable, generable, mutable, etc. It is
my opinion that the Earth is very noble and admirable, by reason
of so many and so different alterations, mutations, generations, etc.,
which are incessantly made therein. . . . The like I say of the
Moon, Jupiter, and all the other Globes of the World” (op. cit.,
PP: 44, 45). Change is to be observed everywhere. New stars come
into view (for instance, in 1572 and 1604), Sun-spots come and go,
comets appear and disappear. The same kind of natural events
happen throughout the universe, and even the heavens conform
to natural laws. The Copernican or heliocentric hypothesis, it is
contended in the Dialogue, also explains quite simply the halts and
retrogressions of the planets as mere appearances due to the annual
revolution of the Earth, whereas the Ptolemaic or geocentric hypo-
thesis could not explain them at all without resort to the most
extravagant suppositions. There are also certain terrestial pheno-
mena which, according to the Dialogue, seem to support the Coper-
nican hypothesis, namely, the tides and the trade-winds, which are
best explained as due to the rotation of the Earth.

Among the greatest services which Galilei rendered to the Coper-
nican theory must probably be included his treatment of the two
chief objections to the heliocentric hypothesis, namely, the absence
of stellar parallax and the vertical fall of terrestrial bodics, The first
objection had been raised already in ancient times, by Aristotle,
against every kind of non-geocentric view. It was contended,
namely, that if the Earth revolves in an orbit round the Sun, then
the fixed stars should show an apparent change of position (parallax)
when the Earth passcs from one peosition on its orbit to the extreme
opposite position (see Illustr. 4, p. 17). The Dialogue met this
objection by pointing out that the enormous distances of the fixed
stars necessarily made such parallax imperceptible, for the fixed stars
must be at least ten thousand times as far away from the Earth as
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is the Sun. (In fact it was not till 1838 that astronomical instruments
and methods had developed sufficiently for the measurement of
stellar parallax by F. W. Bessel.)

The other objection was equally old, having also been raised
already by Aristotle, who argued that if the Earth rotated, then
an object thrown up vertically should not return to the place from
which it was thrown, but slightly to the west of that position,
because during the time taken up by the rise and fall of the object
the Earth must have rotated slightly towards the east; as a matter
of fact, however, objects so thrown usually return to their original
places. Moreover, it was argued that if the Earth rotated, then
objects on its surface, at least not very near its poles, should be flung
off the surface by the centrifugal force of the rotation. The Diglogue
counters the former argument by reference to the law of inertia,
one of Galilei's most important discoveries in the whole history of
science. A stone dropped from a high tower will fall at its foot
because the stone itself is moving eastward with the same velocity
as the tower is moving eastward. A stone dropped from the mast-
top of a stationary or of 2 moving ship will in either case fall at the
foot of the mast. [It is noteworthy that Tycho Brahe had denied
this, in his Epist. Astr.] If there is a slight deviation in the fall of the
stone in the case of the moving ship, this deviation will be due to
the resistance of the air. For, in relation to the moving ship, the
air is at rest, whereas in the case of the stationary ship the mast,
the stone, and the air share equally in the rotatory motion of the
Earth, and therefore the air through which the stone falls will not
in this case affect the direction of its fall. The second argument is
countered by pointing out that in consequence of the comparative
slowness of the Earth’s rotation round its axis, the centrifugal force
is much smaller than is the force of gravitation, and so objects
remain on the Earth’s surface, undisturbed by its rotation.

Galilei's Dialogue is one of the three greatest masterpieces of
modern astronomical literature, the other two being the Revolutions
of Copernicus, and the Principia of Newton. And it has the advantage
of being the most readable of the three.

GarLiLer axp THE CuurcH oF Roume

At a comparatively early age Galilei, as has already been pointed
out, had become a convinced Copernican. The work of Coper-
nicus was on the Index of Prohibited Books, and Galilei had to be
cautious. But in course of time his enthusiasm for the heliocentric
theory ran away with him, and his dislike of Scholastic prejudice
and intolerance must have betrayed him sometimes into utterances
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that were indiscreet in his time. In 1613 he published his Leiters on
the Solar Spots, which left no doubt about his Copernicanism. He was
accused of heresy, and he defended himself with vigour, trying not
only to explain away Biblical texts adverse to a heliocentric theory,
but even to cite Biblical texts in support of it. He was consequently
warned, in 1615, to abstain from theological argumentation. Early
in 1616 the expert theologians of the Holy Office published the
following edict: “The view that the Sun stands motionless at the
centre of the universe is foolish, philosophically false, and utterly
heretical, because contrary to Holy Scripture. The view that the
Earth is not at the centre of the universe, and even has a daily
rotation, is philosophically false, and at least an erronecous belief,”
All books teaching the doctrine of the Earth’s motion were banned,
and Galilei was warned by Pope Paul V not to “hold, teach, or
defend” the Copernican theory.,

Galilei had left Padua in 1610 and, except for occasional visits
to Rome, was living in Florence under the patronage of the Duke of
Tuscany. For several years following his admonition in 1616 Galilei
kept more or less quiet, diligently pursuing his scientific researches.
In 1623 he published his Saggiatore, in which he rather too ingeni-
ously attempted to explain comets as atmospheric phenomena like
halos and rainbows. It was dedicated to the new Pope, Urban VIII,
who was interested in astronomy, had celebrated in verse Galilei's
discovery of Jupiter’s satellites, and now overlooked some passages
in the Saggiatore containing a covert defence of Copernican views.
Things looked so promising that Galilei appears to have attempted
to convert the Pope to the heliocentric theory, or to persuade him
at least to revoke the decree of 1616. But in vain. And when, in
1632, Galilei published the Dialogue on the Two Chief World-Systems,
which stirred the whole learned world, the storm burst over his
head. The Dialogue had been passed by the Censor before publica-
tion. But the Jesuit Scheiner, who had had a dispute with Galilei over
the question of priority in the observation of the Sun-spots, suc-
ceeded in making mischief. It is alleged that he persuaded the Pope
that it was he who was intended in the Dialogue by Simplicio, the
clumsy defender of the geocentric theory. Anyway the book was
banned, and the author was summoned to Rome by the Inquisition.
At first he pleaded illness, but went to Rome in February 1633,
and was put under detention. In June he was examined by the
Inquisition and threatened with torture. He recanted, was sentenced
to detention during the pleasure of the Inquisition, and was ordered
to recite the seven penitential Psalms every week for three years.
The recantation which Galilei was compelled to make, and to make
in his bare shirt, is worth citing as a document in the history of the



GALILEO GALILEI %7

relation between religion and science. Here it is slightly abridged.
“I bend my knee before the honourable Inquisitor-General, I touch
the holy Gospel and give assurance that I believe, and always will
believe, what the Church recognizes and teaches as true. I had
been ordered by the holy Inquisition not to believe nor to teach
the false theory of the motion of the Earth and the stationariness of
the Sun because it is contrary to Holy Scripture. Nevertheless 1
wrote and published a book in which I expound this theory and
advance strong grounds in its favour. I have consequently been
pronounced to be suspect of heresy. Now, in order to remove every
Catholic Christian’s just suspicion of me, I abjure and curse the
stated errors and heresies, and every other error and every opinion
that is contrary to the teaching of the Church. I also swear that
in future I will never, whether by written or spoken word, utter
anything that may bring me again under suspicion. And I will
immediately inform the holy tribunal if I see or suspect anything
heretical anywhere,” Apparently Galilei was intended, not only to
clange his own convictions, but also to turn spy on others, and to
deliver them to the tender mercies of the holy Inquisition. Legend
describes Galilei, after his enforced humiliating recantation, as
muttering to himself the words, “but the Earth does move.” The
legend at least expresses the general belief as to what really passed
in Galilei’s soul, perhaps even the growing derision and condemna-
tion of any attempt, whether of the Church or any other powerful
organization, to stop the march of scientific thought.

The Dialogue and other Copernican works remained on the Index
until 1822, when at long last the College of Cardinals declared it
permissible to teach the Copernican theory in Catholic countries.
So the infallible Church had to recant its earlier view. Scientific
thought may move extremely slowly in some quarters; “but it
does move.”

After several months of detention or semi-detention Galilei
was allowed to live in seclusion at Arcetri near Florence. His
devotion to science remained unabated. But henceforth he confined
himself to investigations which were not likely to bring him into
conflict with the Church. His most important contributions to
science, the Discourses on Two New Sciences, were published in 1638,
by the Elzevirs, at Leiden, in Holland. It had been completed in
1636, but could not be published at once because his works were
banned in Italy. In 1647 Galilei became totally blind, but he con-
tinued to do what he could, with the aid of his disciples, notably
Viviani and Torricelli.

In 1638 Galilei was visited at Arcetri by John Milton, the great
Puritan poet, whose Samson Agonistes (1671) might be regarded as
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embodying the tragedy of the blind Galilei as well as that of the
poet. Six years afterwards Milton referred to this visit in his Areo-
pagitica (1644), the majestic plea “For the Liberty of Unlicenc'd
Printing,” the opening pages of which express his preference of “the
old and elegant humanity of Greece” over “the barbarick pride of
a Hunnish and Norwegian stateliness.” Milton's remarks are as sig-
nificant to-day as ever, perhaps even more s0, in view of the new
wave of Hunnish barbarity, Fascist tyranny in the land of Galilei,
and the growing contempt for liberty. In the course of his criticism
of the Order of Parliament against printing unlicensed books,
Milton remarks: “And lest som should perswade ye, Lords and
Commons! that these arguments of lerned mens discouragement
at this your Order, are meer flourishes, and not reall, I could
recount what I have seen and heard in other Countries, where this
Kind of Inquisition tyrannizes ; when I have sat among their learned
men, for that honor I had, and bin counted happy to be born in
such a place of Philosophic Freedom, as they suppos'd England was
while themselves did nothing but bemoan the servil condition into
which Lerning amongst them was brought ; that this was it which
had dampt the glory of Italian wits; that nothing had bin there
writt'n now these many years but flattery and fustian. There it was
that T found and visited the famous Galileo grown old, a prisoner
to the Inquisition, for thinking in Astronomy otherwise than the
Franciscan and Dominican Licensers thought™ (Areopagitica, ed.
T. Holt White, 181g, pp. 116 £).

Galilei died in 1642. In the same year a new star rose in the
West—Newton was born.

Discourses on Two New Sciences

Galilei's astronomical discoveries were certainly very important,
and made a great impression on thoughtful people even outside
the ranks of men of science, From a purely scientific point of view,
however, his contributions to mechanics were even more important.
They were epoch-making. And the Discourses in which they were
dealt with were rightly described by him as presenting two new
sciences, or branches of science. Throughout his active life Galilei
had been occupied, on and off, with problems of mechanics, but he
concentrated on them with special intensity after his tragic experi-
ences at the hands of the Church, and brought all his experiments
and results together in the Discourses (English translation by H. Crew
and A. de Salvio, New York, 1914). This work also is in the form
of dialogues, and the characters are the same as in the Dialogue of
1632, namely, Sagredo, Salviati, and Simplicio, of whom the first
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two represent Galilei's views, while the last defends the Aristotelian
or Scholastic views.

Galilei’s epoch-making contributions (o mechanics consisted
mainly in building up dynamics, that is, the science of moving
bodies. Except for some minor contributions made by Archimedes,
Leonardo da Vinci, and a few others, next to nothing had been
done in this branch of mechanics. Galilei’s investigations into the
laws of falling bodies, the movement of pendulums, and of pro-
jectiles, set an example of the scientific combination of quantitative
experiment with mathematical demonstration, which has remained
the ideal method of the exact sciences.

THE LAWS OF FALLING BODIES

R.eference has been made to Galilei's criticism of Aristotelian physics
and his rejection of the Aristotelian view that the velocity of falling
bodies varies with their weight, But this, of course, threw no positive
light on the law of their fall. Even superficial observations had led
to the suggestion that the velocity of falling bodies may vary with the
duration of their fall, but nothing definite had been established.
Galilei first introduced the idea of uniform acceleration, as distin-
guished from uniform velocity, and solved the problem of the law
of falling bodies in terms of such acceleration. By uniform accelera-
tion Galilei meant equal increases in velocity in equal times.
Another requisite for the study of dynamics was a correct idea of
inertia, and this likewise Galilei was the first to introduce. Of course
it was known long before his time that a body at rest can only be
set in motion by the action of some force upon it. But the extension
of the principle of inertia to bodies in motion was not dreamed of
before Galilei, It was commonly supposed that a moving body must
come to rest, even without any kind of resistance, unless some force
continues to keep it moving. As against this assumption Galilei
formulated it as part of the principle of inertia that a body once in
motion continues to move with the same velocity and in the same
direction unless some force acts upon it. Moreover, he held that
when a force does act upon a body, the effect is just the same whether
the body is at rest or in motion. These conceptions made it possible
to describe correctly what happens when a bedy falls freely. In this
case there is a force (gravity) which is acting continuously on the
body with cumulative effect, since the effect produced at every
moment continues, according to the law of inertia. The result is
a uniform acceleration in the velocity of the falling body. Thus if
a body at rest is allowed to fall, and falls for a time ¢, and attains
at the end to a velocity », then its velocity will have increased
uniformly from o at the beginning (when it started from rest) to ¢



40 HISTORY OF SCIENCE, TECHNOLOGY, AND PHILOSOPHY

at the end ; and the distance, s, covered during the fall will therefore
be the same as if it had fallen all the time with the uniform velocity
v/2, namely, vt/2. Galilei’s graphic or geometrical method of dealing
with this problem is typical of his mathematical method, and may
be quoted as a simple example of its application.

The time in whick any space is traversed by a body starting Jrom rest and
uniformly accelerated is equal to the time in which that same space would
be traversed by the same body moving at a uniform speed whose value is the
mean of the highest speed and the speed just before acceleration began.

“Let us represent by the line AB [Illustr. 10] the time in which
the space CD is traversed by a body which starts from rest at C
and is uniformly accelerated; let the final and
< highest value of the speed gained during the interval
Gy AB be represented by the line EB drawn at right
angles to AB; draw the line AE, then all lines
drawn from equidistant points on AB and parallel
to BE will represent the increasing values of the
1 speed, beginning with the instant A. Let the point
F bisect the line EB; draw FG parallel to BA,
and GA parallel to FB, thus forming a parallelo-
gram AGFB which will be equal in area to the
triangle AEB, since the side GF bisects the side
I~ AE at the point 1; for if the parallel lines in the
triangle AEB are extended to GI, then the sum
» of all the parallels contained in the quadrilateral
Mustr. 1o—The 15 ©qual to the sum of those contained in the
Law of Uniform triangle AEB; for those in the triangle IEF are
Acceleration  equal to those contained in the triangle GIA,
while those included in the trapezium AIFB are
common. Since each and every instant of time in the time-interval
AB has its corresponding point on the line AB, from which points
parallels drawn in and limited by the triangle AEB represent
the increasing values of the growing velocity, and since parallels
contained within the rectangle represent the values of a speed
which is not increasing but constant, it appears, in like manner, that
the momenta [momenta] assumed by the moving body may also be
represented, in the case of the accelerated motion, by the increasing
parallels of the triangle AEB, and, in the case of the uniform motion,
by the parallels of the rectangle GB. For what the momenta may
lack in the first part of the accelerated motion (the deficiency of the
momenta being represented by the parallels of the triangle AGI)
is made up by the momenta represented by the parallels of the
triangle IEF,
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“Hence it is clear that equal spaces will be traversed in equal
times by two bodies, one of which, starting from rest, moves with
a uniform acceleration, while the momentum of the other, moving
with uniform speed, is one-half its maximum momentum under
accelerated motion. Q. E.D."

From the equation s = affz Galilei derives various other laws.
The most important of these is the law that the distances covered
by a falling body, starting from rest, vary with the square of the
time of the fall. For it has already been explained that the velocity
of a falling body varies with the time, say » = g, where g stands
for some constant. Therefore s = {® X g/2.

Galilei next tried to ascertain the actual acceleration of falling
bodies. The direct measurement of it was impossible with the appara-
tus available at that time. So he resorted to the device of measuring
the slower accelerations of bodies rolling down an inclined plane.
It was known that the same object descends with varying accelera-
tions according to the varying degrees of inclination of the plane
of descent. The greatest acceleration is achieved when the body
falls vertically, and this acceleration diminishes with the angular
deviation from the vertical. It would seem, therefore, that the
impetus, energy, or the tendency to fall is affected by the surface
along which the body falls. He discovered that this impetus which a
body receives during its fall varies with the proportion which the
height of the inclined plane bears to its length. His experiments with
inclined planes were made in this way. A board about twelve yards
long was grooved. The groove, about half an inch wide, was made
straight and smooth, and was covered with very smooth parchment.
The board was then raised at one end to various heights. A smooth
ball, made of polished brass, was then allowed to roll down the
whole length of the groove, and the time taken to cover the whole
distarre was noted. The same ball was next allowed to run down a
quarter of the whole distance, and the time taken was similarly
noted. It was found that the time taken to cover a quarter of the
distance was half of that taken for the whole distance, and the
general result of numerous repetitions of the experiment was that
the distances were proportional, for any given value of the inclina-
tion, to the squares of the times required to traverse them. The
consistency of the results could only have been moderately good,
since Galilei was unaware of the part played by the rotational
inertia of the rolling ball in checking its acceleration down the slope.

Galilei’s experiments were also handicapped by the lack of a
suitable instrument for measuring short intervals of time. And it
is interesting to note how he surmounted this difficulty. Briefly, he
used the time-honoured water-clock supplemented by the balance.
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Water contained in a larger vessel was allowed to flow through a
small opening at the bottom into a smaller vessel during the time
of the [all under observation, The water collected in the smaller
vessel was then carefully weighed, and the relative weights of water
obtained during the different experiments yielded the relative times
taken by the falling body for the various distances or angles of inclina-
tion. If the level of the water in the large vessel was maintained
constant, then the resulting measure of time would be accurate.
Another important fact discovered by Galilei from his experiments
with inclined planes was this, namely, that the final speed of a
falling body varies only with the vertical height, not with the angular
inclination of the plane. Thus (sce Illustr. 11) a body will acquire
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Iustr, 11.—Motion down Ilustr. 12.—Pendular Oscillations

an Inclined Plane

exactly the same final speed whether it falls from C to A or to
D orto B.

This law was further confirmed by experiments with the pen-
dulum, where the effects of rotational inertia are negligible (see
Illustr. 12). A pendulum, AB, was set swinging near a wall, so as to
describe the arc CBD. By means of a nail in the wall the thread
of the pendulum was then intercepted at E, and the arc described
was changed to BG. When a nail was so placed as to intercept the
thread at F, the arc described was changed to B). Thus in all cases
(allowing for the resistance of the air and of the thread) the pendulum
rose to the level CD, though the actual path was varied. Similarly,
on the return swing the pendulum always rose to C approximately,
whether it began its return journey from D or G. The one thing
that mattered appeared to be the height from which the pendulum
fell (C, D, or G), not the nature of the arc, etc.

PENDULAR OSCILLATIONS

Another difficulty which Galilei encountered in his dynamic
researches was that of eliminating the resistance which the air
offered to the moving bodics with which he experimented. The
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air-pump had not yet been invented, so the influence of the air
could not be eliminated. But Galilei felt sure that the difference in
the velocity of a falling cork and of a falling piece of lead was due
to the greater retardation suffered by the light cork than by the
heavy lead through the same amount of air-resistance. By experi-
menting with inclined planes, down which bodies moved with
slower velocities than when falling vertically, the influence of air
resistance, it is true, was considerably reduced, but then the contact
of the moving bodies with the surface of the plane introduced
a new kind of resistance. Galilei, however, discovered a way of
getting more or less rid of this difficulty by experimenting with a
pair of pendulums, one of
which consisted of a bob
of cork attached to about
four or five yards of fine
thread, while the other
consisted of a bob of lead
attached toasimilarlength
of fine thread. When the
two pendulums were sct in
motion in the same way
and at the same time they
moved along arcs having
the same radius. Even
after swinging to and fro llustr, 13.—Isochronism of Pendular

a greal many tumes, no Oscillations

appreciable difference be-

tween their motions was observable. It appeared, therefore, that
the resistance of the medium played no appreciable rile in the case
of pendular oscillation. This fact led Galilei to pay special attention
to pendulum experiments.

One of the results of these experiments was the confirmation of
his early observation in the Cathedral at Pisa, namely, that a swing
of the same pendulum takes the same time, to all appearance, no
matter how wide or how narrow the sweep of the swing may be.
And this result bore a close resemblance to one of the results of
Galilei’s experiments with inclined planes. A ball rolling down
inclined planes representing the chords of different arcs of a vertical
circle, and each terminated by the lowest point of the circle, takes
the same time to describe each plane. Thus (see Illustr. 13) it takes
the same time for the ball to roll down from B, C, D, or E to F, or
indeed to fall vertically from A to F. Similarly a pendulum sus-
pended from A takes the same time to swing from D, to F as from
E, to F. Pendulums having some of them bobs of lead, others bobs
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of cork, but the same length of fine thread, were set swinging at an
angle of 50° to the vertical. At first they swept an arc extending 50°
on either side of the vertical (AF in Illustr. 13) or 1o0® altogether.
Gradually the arcs diminished to 40°, 30°, 20°, etc., until the pen-
dulums stopped. But all the swings took equally long. Galilei appears
to have confined his experiments to smaller angles. For larger
angles the law just mentioned does not hold good. Huygens subse-
quently showed that the isochronism of pendular oscillations holds
good only of the movements along the arcs of a cycloid, not of a
circle. But in the case of small angles the difference is negligible

A
DB CE
F y
Tlustr. 14-—Circular and Cycloidal Paths Ilustr. 15.—Pendulum
of Oscillation and Toothed Wheel

(see Illustr. 14, in which BFC is an arc of a cycloid, and DFE
is that of a circle),

The discovery of the isochronism of the oscillations of the pen-
dulum suggested to Galilei the possibility of constructing pendulum
clocks. He actually gave his son, and his disciple Viviani, instruc-
tions to that end. His idea of a pendulum clock is represented in
llustr. 15. A strong bristle, C, was fixed to the pendulum, AB, in
such a way that at each swing to and fro it should turn the toothed
wheel, D, on its axis, F, a distance equal to the breadth of one of
its teeth. The necessary calculations presented no difficulty. The
problem was to invent some means to keep the pendulum going
long enough to be of use. This was first achieved by Huygens.

PROJECTILES

Having succeeded in assimilating the oscillations of pendulums
to the movements of falling bodies, Galilei next attempted to do the
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same for the motions of projectiles. His researches were guided by
two principles, namely, the extended principle of inertia (which
has already been referred to), and the principle that every force
acting upon a body produces its independent effect—a principle
which he was the first to recognize explicitly, although it had
already been applied by ancient and mediaeval astronomers to
explain the movements of the heavenly bodies. The application of
these principles naturally leads to the use of the parallelogram of
motions or velocities, which had already been anticipated in some
measure in the Aristotclian Mechanics, Owing to the analogy between
the laws of composition of displacements, and of forces, Newton has
described Galilei as the
discoverer of the principle s 2 & . A
of the parallelogram of ; °
forces. r

We may now consider
Galilei’s application of the
above principle to a par- H L
ticular instance. Suppose
a body moving along a
horizontal surface. Ac-
cording to the principle N
of inertia the body will Mlustr. 16.—Curvilinear Trajectory
tend to move in the same
direction and with a uniform velocity so long as no other force
acts upon it. If, however, the surface on which the body moves
terminates abruptly, then gravity will come into play and
introduce a new motion. The body will now move along a
curvilinear path. Let AB (Illustr. 16) represent the horizontal path
terminating at B. On reaching B the body ceases to be supported
and owing to its weight a new motion is introduced, namely, the
vertical fall along BN. But the uniform motion on the horizontal
path has not been annihilated. The two motions combine, and the
body moves neither along BCDE merely, nor along BOGLN merely,
but along the curvilinear path BJFH, where DF = 4.C]J, because
BD = 2.BC, and the distance through which a body falls varies as
the square of the time. Similarly EH = 9.CJ. The curve is therefore
a semi-parabola. Galilei then proceeds to show that when an
object is thrown obliquely upwards its path will be just a parabolic
path. He supposed that a rope fixed at its two ends and hanging
freely under gravity between them would also tend towards a
parabolic shape (which in fact forms a sufficiently close approxima-
tion to the catenary).

Galilei knew that the actual motions of falling bodies, pendulums,
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and projectiles were not precisely as he described them. There were
various disturbing factors which he had to abstract from in order
to get any results at all. The resistance of the air, the convergence
of gravitational motion towards the centre of the Earth, and other
circumstances had to be ignored by him, because mathematical
analysis was not yet sufficiently developed for the simultancous
treatment of so many variables. A more refined study of ballistic
problems was made by Johann Bernoulli and other mathematicians
of the cighteenth century, but the complete theory of this branch of
mechanics has yet to be established.

THE PRINCIPLE OF VIRTUAL VELOCITIES
Galilei not only laid the foundations of dynamics, as distinguished
from statics, he also taught that peculiar combination of static and
dynamic principles known
/ as the Principle of Virtual

e O B Velocities or Displace-
ments. By these are meant
! the resolutes of the veloci-
24 ties or displacements of a
aQ

g system of particles, in the
Hlustr. 17.—The Lever and the Principle directions of the respective
of Virtual Velocities forces acting upon the par-

: ticles, during any hypo-
thetical motion of the system under those forces, and compatible with
the connections of the system. The principle in question scems to have
bﬂ:l:a explicitly recognized first by Johann Bernoulli in a letter to
Varignon, in 1717. It asserts that when the system is passing through
a position of equilibrium, the sum of the products of the several
forces into the resolved velocitics of their respective points of applica-
tion adds up to zero. Formulated at the beginning of the nineteenth
century by Coriolis, as the Principle of Virtual Work, the proposi-
tion asserts that when the forces acting upon a system are in equili-
brium, the total work which they do in any arbitrarily prescribed
infinitesimal displacement of the system is zero. Thus take, for
cxample, the case of a lever in cquilibrium (see Illustr, 17). Two
forces, P and Q, are acting at right angles on the arms of the lever,
ACB, so that its equilibrium is disturbed, and the arms of the lever
suffer respectively the displacements AD and BE. For small angles
these lines, AD and BE, may be regarded as straight lines at right
angles to ACB. We may say, then, that when cquilibrium is still
maintained the forces P and Q are related 1o cach other inversely
as their displacements, that is 10 say, P : Q ::BE : AD. In this way
merely implicit static relations are made explicit. In the form of the

D
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maxim “whatever is gained in power is lost in speed,” the principle
was implicitly recognized in early times in connection with the
lever; and there are anticipations of it in the works of Aristotle.

Galilei also applied the principle to pulleys and inclined planes.
Take, for instance, the case of cquilibrium of weights, P and Q, on
an inclined plane which is twice as long as it is high (see Illustr. 18).
In this case P = Q/2. As Galilei pointed out, the equilibrium of
bodies may be determined, according to this principle, by bringing
them nearer to, or farther from, the centre of the Earth. Forif the
weight P sinks the distance 4, then the weight Q will rise the distance
#f2. Since P = Q f2, Ph = Qf/a.

By means of the notion of virtual displacements, Galilei also
determined the relation be-
tween force and load in the
case of pulleys. Assuming that
the paths, 5 and w, of the
force and of the load are pro-
portionate to the number of
the ropes over which the & i
load is distributed, Galilei ob- 1.\ 18 The Inclined Plane and
tained the equation Ps=Quw.  the Principle of Virtual Velocities
The work done by the force
(Ps) equals the work done by the load (Qu).

THE DYNAMICS OF IMPACT

Galilei’s rescarches were fruitful so long as he confined himself 1o
the action of forces upon a single body or mass. But he was less
successful in dealing with reactions between bodies, and did not
succeed in unravelling their mathematical laws,

Galilci saw and stated clearly that the force of impact depends on
two factors, namely, the mass of the impinging body and its velocity
at the time of impact. Hence his contention that the force of an
impact is infinitely greater than that of mere pressure, because one
of the two factors determining the energy of an impact, namely
velocity, is equal to zero in the case of mere pressure. Hence also
his application of the term “dead weight” for the mere pressure
of a body at rest,

One of his experiments on impact led to important developments
later on, and it may be of interest to describe it here. He suspended
from one arm of a beam balance two buckets, one of which was
arranged above the other (see Illustr. 19). The upper bucket con-
tained water, the lower one was empty. A weight was suspended
from the other arm of the balance so that the system was in equili-
brium. The water from the upper bucket was then allowed to
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ﬂw{thmughanopcninginthcbOtMmofthishuck:t}inmﬂw
lower bucket. Galilei looked out for the effect of the impact of the
water on reaching the lower bucket; but there appeared to be none.
For a moment at first the arm carrying the buckets actually rose
slightly, as if the system of buckets had become lighter. But as soon
as the water reached the lower bucket equilibrium was re-estab-
lished, and no effect seemed to be produced by the impact of the
flowing water on the lower bucket. Galilei was perplexed and could
not understand it. But the explanation is really as follows. Once a
steady state of flow has been
established (assuming the
amount of water in the upper
bucket so large that there
is, for an appreciable time,
sensible constancy of head)
no extra force can be acting
on the system consisting of
buckets, fluid, and hangers
because the part of the fluid
which moves being in steady
motion, the total wvertical
resolute of momentum of the
system is constant. Hence
Hlustr, 19.—The Interrelation of Forces the total vertical external
in a System of Bodies force is zero. And since the
total weight is clearly con-
stant, the reaction on the hanger must be equal and opposite to
this total weight, and therefore the same as it was initially,

Otier Researcumie v Prysics

HYDROSTATICS

Research into the mechanics of fluids had been neglected since
the time of Archimedes until Galilei took them up again. First of
all he carried out a series of experiments in verification of the
hydrostatic laws formulated by Archimedes, which he found to be
correct. Contrary to the current view that the floating of a solid
depends on its shape, Galilei, like Archimedes before him, showed
that it depends on its specific gravity, and that a body will float in
a fluid if the specific gravity of the body is less than that of the
fluid. The Aristotelian view which associated floating with form
or shape had been based on the familiar phenomenon that very
thin plates of metal float on the surface of water, Galilei showed that
they really rest in a hollow on the surface of the water, and that as



GALILEOQ GALILEI 49

- soon as they are properly immersed in the water they sink and do
not rise again. The actual explanation of the floating of thin metal
plates and needles was not forthcoming until the eighteenth century,
after the discovery of the surface tension of liquids. The same
discovery also explained another phenomenon which Galilei could
not account for, namely, the cohesion of drops of water on leaves.

One of the experiments by means of which Galilei associated
the floating of bodies in liquids with their specific gravities was
the following, He immersed a ball of wax in pure water. The ball
sank to the bottom. He then dissolved varying quantities of salt in the
water, thereby increasing gradually its specific gravity. When the
solution reached a certain degree of concentration the wax ball
rose to the surface.

Galilei also gave vogue to the idea that fluids consist of isolated
particles which are so mobile that the slightest pressure sets them in
motion. In this way every pressure is transmitted through the whole
mass of a fluid. This conception is still generally accepted, and is
indeed at the base of all hydrostatic and hydrodynamic researches.

Galilei attempted to link up the mechanics of fluids with the
general principles of the mechanics of solid bodies. For this purpose
he first applied the Principle of Virtual Work (or Virtual Velocities)
to hydrostatic relations. The full significance of this new method in
hydrostatics was first appreciated by Pascal, who made full use
of it.

In his investigation of static relations Archimedes had introduced
the concept of “static moment,” and when explaining simple
machines he had concentrated attention mainly on the weights
involved and their distances from the fulerum. Galilei, on the other
hand, regarded static relations from a dynamic point of view, and
considered the weights and the distances of their virtual fall (that
is of their fall in the event of a displacement of the system) or virtual
displacements, as the decisive factors for the determination of the
conditions of equilibrium. This principle of virtual velocities o
displacements amounts in the last resort to the statement that
equilibrium is maintained when the work done by the force equals
the work done by the load, the work done being calculated by
multiplying the weight by the vertical displacement.

The simplest instance of the application to Hydrostatics of the
Principle of Virtual Velocities with which Galilei deals is that of
the immersion of a prismatic body in a similar prismatic vessel
filled with some fluid. Galilei compares the displacement of the
prism, or its equivalent velocity, with the displacement which the
surface of the fluid undergoes in the opposite direction. The displace-
ments, or the velocities, of the prism and of the surface are related
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in inverse proportion to the corresponding surfaces, namely, the
base of the prism and the surface of the fluid. When the prism is
drawn out again there is a corresponding fall in the level of the
fluid. The product of the weight multiplied by the velocity of the
immersed body must, if equilibrium is to be maintained, be equal to
the product of the weight and velocity of the raised mass of fluid,
and in this way the Principle of Virtual Velocities finds an applica-
tion in this case. Galilei also extended the application of this
principle to the relations of fluids in intercommunicating pipes,
which seemed to him to be analogous to the preceding case. For
the fall of the fluid in the narrower pipe and its rise in the wider
pipe are analogous to the immersion of the prism and the consequent
rise in the level of the water, and the rise and fall are likewise
inversely proportional to the squares of the diameters of the pipes.

PNEUMATICS

Air, like fire, had been credited from ancient times with the
attribute of “levity,” that is, an absolute tendency to rise, while
water and earth were credited with absolute “gravity” or the
tendency to fall. Gaiilei proved the falsity of this view about air by
experiment. Taking a glass bulb he forced air into it by means of
a syringe. The bulb full of compressed air was then weighed care-
fully. When the scales were in exact equilibrium the bulb was
opened so that some of the air that had been forced into it escaped,
It was then observed that the bulb had lost appreciably in weight.
This showed that air has “gravity” or weight. For if air had levity,
then by forcing extra air into the bulb the bulb should have become
lighter, and the escape of part of the air from it should have made
the bulb heavicr, Having shown that air has weight, Galilei proceeded
to determine its specific gravity. Taking a bulb full of air he filled
it three-quarters full of water without allowing the air to escape.
The bulb with its contents was then weighed exactly. The air was
then allowed to escape, and as much air as had previously filled
three-quarters of the bulb got away. The bulb with its residual
contents was weighed again, and so the weight of the escaped air
was determined in relation to that of an equal volume of water.
Galilei’s estimate was that water is four hundred times as heavy as
air. Actually it is 773 times as hcavy, but, of course, allowance
must be made for the inadequacy of the scales he used to respond
correctly to the difference produced by the escape of a compara-
tively small volume of air,

In view of his determination of the weight of air, it seems remark-
able that Galilei should have failed o clear up the mystery of the
water-pump and kindred phenomena. The rise of water in a pump,
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as also such phenomena as suction, and the adhesion of smooth
plates, used to be explained by the Scholastics as due to Nature's
alleged abhorrence of a vacuum. This kind of quasi-psychical
explanation could not have satisfied Galilei, yet he could not escape
from it altogether. So he tried at least to determine experimentally
the quantitative aspect of the phenomena by attempting to measure
the amount of resistance there is to the formation of a vacuum. The
experiment is described in the Discourses as follows: “I will tell you
how to separate the force of the vacuum from the others, and after-
wards how to measure it. For this purpose let us
consider a continuous substance whose parts lack
all resistance to separation except that derived
from a vacuum, such as is the case with water.
. + . Whenever a cylinder of water is subjected
to a pull and offers a resistance to the separation
of its parts this can be attributed to no other
cause than the resistance of the vacuum. In order
to try such an experiment I have invented a
device which I can better explain by means of a
sketch than by mere words. Let CABD (Illustr. 2o0)
represent the cross section of a cylinder either of
metal or, preferably, of glass, hollow inside and
accurately turned. Into this is introduced a per- - The
fectly fitting cylinder of wood, represented in Rt:;t m&-n
cross section by EGHF, and capable of up- Vacuum
and-down motion. Through the middle of this

cylinder is bored a hole to receive an iron wire, carrying a
hook at the end K, while the upper end of the wire, I, is pro-
vided with a conical head. The wooden cylinder is countersunk
at the top so as to receive with a perfect fit the conical head
of the wire, IK, when pulled down by the end K. Now insert
the wooden cylinder EH in the hollow cylinder AD, so as
not to touch the upper end of the latter but to leave free
a space of two or three finger-breadths; this space is to be filled
with water by holding the vessel with the mouth CD upwards,
pushing down the stopper EH, and at the same time keeping the
conical head of the wire, I, away from the hollow portion of the
wooden cylinder. The air is thus allowed to escape alongside the
iron wire (which does not make a close fit) as soon as one presses
down the wooden stopper. The air having been allowed to escape
and the iron wire having been drawn back so that it fits snugly
against the conical depression in the wood, invert the vessel, bringing
its mouth downwards, and hang on the hook K a vessel which can
be filled with sand or any heavy material in quantity sufficient to

774597
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finally separate the upper surface of the stopper, EF, from the
lower surface of the water to which it was attached only by the
resistance of the vacuum, Now weigh the stopper and wire together
with the attached vessel and its contents; we shall then have the
force of the vacuum” (Discourses concerning Two New Sciences, p- 62,
Vol. VIII, of the National Edition; p. 14 f. of the English translation
by Crew and de Salvio).

SOUND

Our knowledge of Galilei’s work on acoustics is derived mainly
from Mersenne, who continued the work under the influence of
Galilei and apparently under his guidance. It was his discoveries
relating to the laws of the oscillations of the pendulum that led
Galilei to direct his attention to the vibrations of strings, and
especially to the phenomenon of so-called sympathetic vibration,
which was popularly explained as due to some kind of sympathy
on the part of other strings with the vibrating string. First of all,
Galilei showed the dependence of the pitch of a note upon the
number of vibrations occurring in a given time. He did this by
means of the following experiment. He moved a sharp piece of
iron across a plate of brass. Whenever a distinct note was thus
produced, he noticed a number of fine lines on the plate at equal
distances from one another. When, by means of a quicker move-
ment, he produced a higher note, then the lines were closer together;
when the note was lower the lines were farther apart. Evidently
the closeness and number of the lines corresponded to the greater
or smaller number of vibrations of the iron. Galilei next utilized
the number of lines which appeared in a unit of time whenever a
certain note was produced, in order to study the phenomena of
sound quantitatively, He produced, for instance, two notes by
successively stroking the brass plate more rapidly and less rapidly,
and when he obtained two consonant notes which in music are
said to constitute the “fifth,” he counted the lines of the brass plate
and measured their mutual distances, and discovered that there
were forty-five lines (and therefore vibrations) for the higher note
to thirty lines (and therefore vibrations) for the lower note. Experi-
ments on the relation of notes to the strings producing them were,
of course, very old. Pythagoras (sixth century B.c.) had already
instituted such experiments. But the relation hitherto studied had
been solely that between the pitch of a note and the length of the
string. Galilei first drew attention to the rate of vibrations (or fre-
quency) as the really important factor in determining the pitch
of a note produced by any sounding body. By simple experiments
like the above Galilei discovered that the rates of vibration for
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the key-note, the fourth, the fifth, and the octave above it are in the
proportion of 1:4/3:3/2:92, that is, as 6 : 8 : g : 12 (Discourses
concerning Two New Sciences, First Day, near the end). These experi-
ments were important, but the account of them is unfortunately
obscure in some respects.

Galilei also considered the physiclogical problem of the consonance
and dissonance of notes. He suggested that notes are felt to be con-
sonant when the vibrations which produce them stimulate the
drum of the ear with a certain rhythmic regularity. On the other
hand, notes are felt to be dissonant when they are produced by
vibrations that are not rhythmic, and therefore act in an irregular
and disturbing manner upon the drum of the ear.

LIGHT AND MAGNETISM

Apart from his share in the construction of the telescope, Galilei
did not devote much attention to the study of light. It is noteworthy
that he assumed that light travels with a finite velocity, and that
he actually carried out some experiments with light-signals in order
to determine this. But he was not successful.

Under the influence of Gilbert’s work on magnetism Galilei
attempted to apply magnetic concepts to the explanation of
astronomical phenomena. These attempts occupy a certain amount
of space in his Dialogue. Thus, for example, he attributed to magnetic
influences such phenomena as the Earth’s rotation round its axis,
the constancy in the direction of the Earth’s axis, and the fact
that the Moon always has the same side turned towards the Earth.
He also tried various experiments on magnets showing how the
power of a magnet may be greatly intensified by means of a polished
armature. In this way he claims to have increased the power of a
magnet eightyfold, and to have made a magnet carry a load twenty-
six times its own weight.

THE THERMOSCOPE, ETC,

Galilei’s contributions to the construction and use of the thermo-
scope (or thermometer), as also of the microscope, and the telescope,
will be described in the chapter on scientific instruments; his re-
searches on the strength of beams will be dealt with in Chapter XXI.

(See J. J. Fahie, Galileo, 1903, and Memorials of Galileo, 1929;
P. Duhem, Les Origines de la Statique, 2 vols., Paris, 19056, Etudes
sur Léonard de Vinci, 3 vols., Paris, 1g06-13, and papers in Annales de
Philosophie Chrétienne, 1908; E. Wohlwill, Galilei und sein Kampf fiir
die Copernicanische Lefre, 2 vols., Hamburg, 190g-26; W. W. Bryant,
Galiles, 1925; Lane Cooper, Aristotle, Galileo, and the Tower of Pisa,
New York and London, 1935; F. Sherwood Taylor, Galileo and the
Freedom of Thought, London, 1938.)
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SCIENTIFIC ACADEMIES OF THE SEVENTEENTH
CENTURY

Tue Church of Rome might arrest the body of Galilei, but his
spirit went marching on. Not only his disciples, Viviani and Torri-
celli, but many others were infected with his enthusiasm for experi-
mental science; and within a comparatively short time influential
institutions were organized for the express purpose of advancing
experimental science by the co-operative work of their members,
many of whom were also stimulated thereby to pursue important
scientific researches of their own. Of the new institutions the most
important were the Accademia del Cimento of Florence, the Royal
Society of London, and the Académie des Sciences of Paris.

The formation of the scientific academies at that time was no mere
accident; it was a significant expression of the spirit of the age. It
was the spirit that prompted Francis Bacon to put on the title-page
of his Novum Organum the picture of a ship in full sail boldly venturing
to pass beyond the Pillars of Hercules, the limits of the old world
(see Frontispiece).

It was the golden age of pioneers. The spirit of man had been
long fettered by tradition and authority. The craving for knowledge
had had to seek satisfaction within the covers of a few books
sanctioned by authority. The need for intellectual activity could
only find vent in comparing and harmonizing what other people
had already said. Everything else had been more or less out of
bounds. Gradually, however, the force of revolt was growing ; and
now, in spite of powerful resistance on the part of established
authority, some of the bolder spirits broke the shackles of Scholas-
ticism and, venturing out on uncharted seas, sought to see the world
with their own eyes, and to interpret it with their own intelligence.
The Universities might have been expected to lead, or at least to
share, in this movement for intellectual emancipation. But they
did nothing of the kind. For they were controlled by the Church.
Philosophy was only tolerated as the handmaid of Theology, and
the University as the Cinderella of the Church. It was, indeed,
highly significant of the times, that the vast majority of the pioneers
of modern thought were either entirely detached from the Universi-
ties, or were but loosely associated with them, New organizations,
and indeed essentially secular organizations, were necessary to
foster the new spirit, and to enable it to express itself. Francis

Bacon dreamed of such institutions in his New Atlantis. His SUCCEssO0rs,
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partly under the stimulus of his visions, saw his dreams come true.
The scientific academies came into being in response to the new
needs of the new age. It was in these societies that modern science
found the opportunities and the encouragement which were denied
to it at the Universities, not only in the seventeenth century, but for
a long time afterwards.

Tue Accapemia peEL CiMENTO

The Academy of Experiments was founded in Florence in 1657.
Its moving spirits were two of Galilei’s most distinguished disciples,
Viviani and Torricelli. The necessary financial support came from
the two Medicis, the Grand Duke Ferdinand II of Tuscany and his
brother Leopold, who had both of them studied under Galilei. More
than a decade before the formal institution of the Academy the
two Medici brothers had started a laboratory well equipped with
such scientific apparatus as was then obtainable. And during the
years 1651 to 1657 various men of science met more or less regularly
in this laboratory for experimentation and discussion. The Acca-
demia del Cimento was merely a more formal reorganization of this
informal society. The two Medicis continued to be its financial
patrons. They were really interested and active patrons, This was
especially the case with Prince Leopold. It is remarkable that the
year in which he was created a Cardinal (1667) was also the year
in which the Academy was discontinued. Small wonder that some
people suspect a sinister bargain, and see in the closing of the
Academy the price which the Pope exacted from the would-be
Cardinal.

The roll of members of the Florentine Academy of Experiments
included, besides Viviani and Torricelli, the anatomist Borelli, who
applied the principles of mechanics to physiclogy, the Danish
anatomnist and mineralogist Steno, the embryologist Redi, and the
astronomer Domenico Cassini, who was subsequently virtual
director of the newly erected observatory in Paris. These men and
others jointly carried out numerous experiments in physics during
the years 1657 to 1667. When, in 1667, the Socicty was disbanded,
one member of the Academy, Antonio Oliva, fell into the hands of
the Inquisition while at Rome, and to escape torture he committed
suicide by jumping from a high window of the prison. Fortunately
a record of the most important researches has been transmitted to
posterity.

The members of the Accademia del Cimento published an account
of their experiments and discoveries jointly in the Saggi i naturali
esperienze fatte nell’ Accademia del Cimento, Florence, 1666 (English
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translation by Richard Waller: Essayes of Natural Experiments made in
the Academie del Cimento, London, 1684). The most important sections
of this work are those which deal with the measurement of tempera-
ture and of atmospheric pressure.,

The most detailed section of the Saggi is that devoted to experi-
ments on the natural pressure of the air. The Academicians repeated
the barometric investigations of Torricelli (see Chapter V), and
performed a considerable number of interesting pneumatic experi-
ments. In one of these a small bladder containing only a little air
was suspended from the cover of a bell-shaped chamber at the top
of a barometer-tube (see Illustr. 21). The tube was filled with
mercury, and the cover was put on, with the bladder inside the
chamber. The mercury was allowed to subside, and a Torricellian
vacuum was thus formed around the bladder, which immediately
swelled to its full size under the pressure of the contained air.

With similar apparatus it was shown that, in a Torricellian
vacuum, the familiar rise of liquids in fine tubes still occurred, that
drops of liquid retained their globular form, and that a needle was
attracted by a magnet, these phenomena being therefore inde-
pendent of the pressure of the air. But attempts to ascertain whether
excited amber would attract straws, and whether a bell was audible,
in the vacuum, were inconclusive. The Academicians repeated
several of Boyle's experiments, including the boiling of warm water;
and they observed the behaviour of animals deprived of air. They
also constructed an air-pump, but this proved rather a failure.

Several instruments were devised for demonstrating how the
atmospheric pressure falls off with increasing height above the level
of the ground. One of these, shown in Illustr. 22, consisted of a
graduated glass tube, open at each end, and inserted in a glass
vessel having an opening at the side but otherwise air-tight. Enough
mercury was poured into the vessel to cover the lower end of the
tube, and the opening in the side was then sealed up. If the instru-
ment was now taken to the top of some tower or other high place,
the mercury was found to rise in the tube, since the pressure in the
sealed vessel now exceeded the pressure on the mercury surface in
the tube.

Numerous experiments were performed on the freezing of water
and of other liquids, a freezing-mixture of ice and salt, such as
Descartes had described in his Météores, being employed in some of
these. The ratio in which water expands upon freezing was correctly
estimated as about 9 : 8; and in the course of these experiments
the immense force of this expansion was demonstrated, Metal
vessels were completely filled with water, securely closed down,
and then surrounded with ice. They were found to be invariably



SCIENTIFIC ACADEMIES 57

cracked open by the pressure of the freezing water within. The
Academicians used a pendulum to compare the different periods of

F

Ilustr. 21.—Experiment in Nlustr. 22.—Barometer of the
a Vacuum Accademia del Cimento

time required by a freezing-mixture to freeze samples of different
liquids. In order to increase the accuracy of their measurement of
time, they kept the bob of the pendulum always in the same plane
by means of a bifilar suspension (see Illustr. 71). They also tried
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the significant experiment of placing a mass of ice at some distance
in front of a concave mirror and noting the behaviour of a sensitive
thermometer placed at its focus. The thermometer showed a fall of
temperature, but the possibility of direct cooling by the ice could
not be ruled out, so that the experiment was regarded as
inconclusive.

In order to study the compressibility of water the Academicians
repeated Francis Bacon's experiment. They filled a silver vessel with
water, scaled it securely, and then hammered it out of shape so as
to reduce its internal capacity and thus compress the enclosed liquid.
They concluded that the water had transpired through the pores
of the metal. Though convinced by this result that water is highly
incompressible, the investigators did not venture to pronounce
it absolutely incompressible. The fact that water is actually com-
pressible was established by Canton about a century later.

The members of the Accademia del Cimento further investigated
the thermal expansion of solids and liquids, the liberation and
absorption of heat when certain substances are dissolved in water,
and the elementary phenomena of electricity and magnetism, They
calculated the velocity of sound by noting the apparent time-interval
between the flash and the report of a cannon discharged a known
distance away; but they wrongly supposed that the wind had no
effect upon the apparent velocity of the sound. They also repeated
Galilei’s attempt to determine the velocity of light, but with a
negative result. Several of the experiments on projectiles which
Galilei had suggested were first carried out by the Academy. Thus
it was demonstrated that a ball fired horizontally from a cannon
on the top of a tower reached the ground at the same instant as a
similar ball let fall simultaneously.

Of the members of the Academy Torricelli concerned himself
especially with optical problems. He showed how minute glass
spheres could be used as simple microscopes of considerable magnify-
ing power. He also investigated geometrically the properties of lenses,
E:m:_ ;:-_:mstrucml telescopes which were an improvement on those of

alilei.

Capillary phenomena were especially studied by Borelli, whose
work on the subject, however, appeared separately from that of his
fellow members of the Academy. The rise of liquids in fine tubes
had already been described by Leonardo da Ving (r490), but had
been ignored by Pascal. Borelli discovered how the rise depends on
the nature of the tube. He noticed that the rise was more pronounced
when the interior of the tube was wet than when it was dry; and he
found that the height to which the liquid rose was inversely propor-
tional to the diameter of the tube (h: ¥ = d’ : d). He discovered
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also that objects floating on a liquid (such as boards floating on
water) attracted cach other when within a certain distance, provided
both had previously been wetted with the liquid. He found, however,
that repulsion occurred if only one of the objects had been wetted. A
satisfactory explanation of these capillary phenomena was first
provided by Clairaut about the middle of the eighteenth century.

The researches of the Accademia del Cimento, as may have been
noted, were severely scientific, in the sense that they were conducted
on careful experimental lines, and that the conclusions drawn were
strictly limited to the necessitics of the observed evidence, instead
of attempting speculative flights. This kind of self-restraint may
have been due mainly to the mutual eriticism which naturally
resulted from the co-operation of the members in their joint re-
searches. For, as was subsequently remarked by Laplace, “whereas
the individual man of science may be easily tempted to dogmatize,
a scientific society would very soon come to grief through the clash
of dogmatic views. Moreover, the desire to convince others leads
to a mutual agreement not to assume anything beyond the results
of observation and of calculation (Préis de Ihistoire de ['astronomie,
1821, p. gg). It is not unlikely that the speculative restraint exercised
by many members of the Royal Society of London, and especially
Newton’s dislike of speculative hypotheses in science, was due to
similar causes, though the individualism of the members of the
Royal Society was rather more pronounced than that of the members
of its Italian prototype.

Trae Rovar SoceTy

The Royal Society appears to have developed from an informal
association of adherents of Francis Bacon’s experimental philosophy.
These men began to meet weekly in London about 1645 to discuss
natural problems. Among their number were John Wallis (1616
1703), the eminent mathematician and divine; John Wilkins
(1614-72), afterwards Bishop of Chester, whose interests ran to
mechanical inventions and astronomical speculations; a group of
physicians including Jonathan Goddard, George Ent, and Chris-
topher Merret; Samuel Foster, the Professor of Astronomy at
Gresham College; and Theodore Haak, a German from whom the
idea of these weekly meetings seems to have originated. The associa-
tion represented a wide range of interests and opinions, but its
members agreed to exclude theology and politics from their
discussions.

With the removal of Wallis, Wilkins, and Goddard to Oxford,
about 1649, the association was divided into two parts, and a small
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society grew up at Oxford which included Seth Ward (1617-8g),
the Savilian Professor of Astronomy there, who attempted in his
writings to improve on the planetary theories of the time; and
William Petty (1623-87) who was one of the earliest writers to
make a systematic study of the statistics of population and mortality,
For a time the Oxford society met at the lodgings of Robert Boyle
(1627—91), whose name has already been mentioned and whom
we shall meet again in the history of chemistry. This society, however,
soon lost many of its most active members by removal, and it finally
came to an end in 16g0. Meanwhile the London branch was flourish-
ing, and numbered among its members Christopher Wren (1632-
1723), who was versed in many branches of science though princi-
pally remembered now as an architect ; Laurence Rooke (1622-62),
who had been chemical assistant to Boyle before becoming Professor
of Astronomy at Gresham College; Sir Robert Moray, an old
partisan of Charles I and the society’s president until its incorpora-
tion; Lord Brouncker (1620-84), a distinguished mathematician
who was elected to the presidency after the incorporation; and
John Evelyn, the diarist. These and many others were in the habit of
holding their meetings at Gresham College after the weekly lectures
of Wren and Rooke. In 1658 these meetings were interrupted for a
time in consequence of the political upheavals of the period, and
the College was turned into a barracks.

Shortly after the Restoration of Charles II, however, the men
who were soon to form the nucleus of the Royal Society resumed
their weekly meetings at Gresham College. At the same time they
worked out a plan for the establishment of a definite society devoted
to the pursuit of experimental knowledge. This scheme was ulti-
mately realized with the foundation of the Royal Society by charter
on July 15, 1662. A second charter, extending the privileges of the
Society, was granted in the following year.

At the meetings of the Royal Society it was the custom from the
first to allot special inquiries or picces of research to individual
members or groups of members, who were required to report their
results to the Society in due course. Thus we find Lord Brouncker
charged with the prosecution of experiments on the recoil of guns;
Boyle was invited to demonstrate the working of his air-pump ; and
the preparation of a report on the anatomy of trees was entrusted
to Evelyn. At the same time members were urged to come forward
with any new experiments which they thought would advance
the purposes of the Society. Among the earliest such experiments
to be tried were the production of colours by chemical combinations,
the calcination of antimony to see whether its weight would increase
in the process, the measurement of the density of air, the quantita-
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tive comparison of the breaking loads of wires of various metals, and
several ineffectual attempts to compress water. The early meetings
were thus taken up with the reports and discourses of members,
the demonstration of experiments, the exhibition of rarities of every
description, and with the lively discussions and chc‘uIaIJnns to
which all these gave risc. As time went on committees were set
up to direct the various branches of the Society’s activities. One of
these, the Committee for Histories of Trades, concerned itself with
the principles of industrial technology, and reports were made to
the Society from time to time on the processes involved in such
industries as shipping, mining, brewing, refining, the manufacture
of cloth, and so forth. There was a committee for collecting reports
of natural phenomena, and another for improving mechanical
inventions, There were further committees for astronomy, anatomy,
chemistry, ete. The privileges of the Society, however, did not include
any endowment, and some years elapsed before the members could
enjoy the use of proper laboratory accommodation.

In 1662 Robert Hooke was appointed Curator to the Society
with the duty of preparing for each meeting three or four experi-
ments of his own, and any others that the Society might require
from time to time. Hooke was the most able experimenter and the
most ingenious and fertile inventor that the Society had at that
time, and some of the investigations which he carried out in con-
nection with the Society are worth noting. In order to ascertain
whether the force of gravity falls off appreciably with increase of
distance from the Earth’s centre, Hooke took an accurate balance
to the top of Westminster Abbey and there weighed a piece of iron
and a long piece of packthread. He then suspended the iron from
one of the scale-pans by means of the packthread and weighed
the iron and thread again. The iron being now much nearer the
ground should have appeared to weigh more, were the falling off in
gravity appreciable; but Hooke could detect no sensible difference
in weight under the two different conditions. He later repeated
this experiment in the steeple of old St. Paul's, where he also had
the opportunity of studying the behaviour of a 200-ft. pendulum.
One of Hooke's earliest communications to the Society dealt with a
method of verifying the physical relation known as “Boyle’s Law,”
with the original establishment of which he had himself been closely
associated. Hooke also carried out a serics of measurements of re-
fractive indices of transparent liquids with an instrument of his own
design. With his microscope the members of the Society eagerly
examined the cellular structure of cork, the “eels” in vinegar, the
anatomy of insects, and the various other minute objects which were
subsequently described and depicted in his Micrographia (1665).
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Besides their researches in the physico-chemical sciences, the
early members of the Royal Socicty, especially the medical men,
gave much attention to biological problems, and performed many
dissections and experiments on animals. One of the privileges of
the Saciety was the right to claim the bodies of executed persons for
dissection, and in 1664 a committce was formed to undertake
dissections upon every execution-day. Samuel Pepys, after his
admission to the Society (of which he ultimately became the Presi-
dent), showed especial interest in this department of its work.
Reports were received from physicians in all parts of the country
describing clinical cases of exceptional interest. The medical
members also practised vivisection extensively, though generally
without any useful or conclusive results. Injections of liquids (such
as mercury, tobacco-oil, etc.) were made into the veins of animals,
or organs were removed and nerves severed, the results being noted.
Many experiments were made on the transfusion of blood between
similar or dissimilar animals, including dogs, sheep, foxes, and
pigeons—a piece of research to which the Royal Socicty was stimu-
lated upon hearing of the success of Lower’s transfusions at Oxford.
Later the experiment of introducing sheep’s blood into the veins of a
man was tried without untoward consequences,

The role of air both in breathing and in combustion was studied,
chiefly by Boyle and Hooke, with the aid of the air-pump. Small
animals or lighted lamps, or sometimes both together, were placed
in the receiver, and their behaviour when the air was evacuated
was noted. Hooke showed that the heart of a dissected dog could be
kept beating for over an hour by injecting air into its lungs through
an opening in the windpipe. Several members made personal trial
of the number of respirations for which the air enclosed in a bladder
of given size would suffice. The question of the possibility of spon-
tancous gencration came up for discussion at the meetings of the
Society when dead bodies of animals, though sealed so as to exclude
air, were found to breed maggots.

In order to accommodate the growing number of natural speci-
mens (zoological, botanical, geological, etc.) acquired by the
Society, a repository was opened in 1663, Hooke being made
Keeper. Here also were preserved many instruments and ‘mechanical
devices manufactured or invented by the members, as well as many
curiosities of no scientific value. Many of these objects had been
brought by travcllers from abroad. The Royal Society, indeed, sct
on foot many inquirics as to the conditions, natural productions,
etc., of foreign lands, and welcomed reports [tom cxplorers, sea-
captains, and others, together with specimens of any valuable
minerals, fruits, etc., which they might come across. An elaborat=
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programme of physical experiments with the barometer, thermo-
meter, hygrometer, pendulum, etc., was drawn up as early as
1660, and sent out to Teneriffe to be tried at various altitudes
ranging from sea-level to the summit of the Peak.

The Royal Society also frequently undertook to investigate
popular beliefs of the time, from which the members themselves
were not entirely free. Sir Christopher Wren related an alleged
instance of “sympathy” between a wound and a bandage lately
removed from it; attempts were made to produce vipers from the
powdered lungs and livers of these reptiles; and several magnetic
cures were reported. The miraculous properties of the salamander
were discussed, and an experiment was arranged to ascertain
whether a spider could escape when surrounded by powder made
from the horn of a “unicorn,” which had apparently been provided
by the Duke of Buckingham.

The publication of the Philosophical Transactions of the Ropal
Society was begun in March 1665 by Henry Oldenburg, the Secre-
tary of the Society, on his own account. The contents of the Philo-
sophical Transactions consisted mainly of papers and abstracts con-
tributed by the members, observations of remarkable phenomena
reported from various parts, learned correspondence and controversy
with foreign investigators, and notices of newly published scientific
books.

The universal curiosity manifested by the early members of the
Royal Society towards unfamiliar natural phenomena of every
description proved a source of weakness. They cast their net too
widely, and forfeited the advantages of united and prolonged con-
centration upon a limited set of problems. Hence the true significance
of the young Society in the development of science must be measured,
not so much by its corporate contribution to the stock of scientific
knowledge, as by its vitalizing influence upon the master-spirits
whom it bound together and whom we shall meet again, each at work
in his own special field of inquiry.

Tue ACADEMIE DES SCIENCES

The French Académic des Sciences had its origin in certain
informal gatherings of a group of philosophers and mathematicians
in Paris towards the middle of the seventeenth century. This group,
which included such men as Descartes, Pascal, Gassendi, and
Fermat, used to mect at the cell of Mersenne to discuss current
scientific problems and to suggest fresh mathematical and experi-
mental researches. Later, more regular meetings took place at the
houses of Montmort, the Master of Requests, and of Thevenot, a
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widely read and much travelled man. Foreign scholars, including
Hobbes, Huygens, and Steno, were much attracted, and finally,
at the suggestion of Charles Perrault, Colbert proposed to Louis XIV
the establishment of a regular Academy. This body was originally
intended to concern itself with history and literature, as well as with
scientific matters, but this scheme was not realized, and when the
new Academy held its first meeting on December 22, 1666, it wasas a
gathering devoted entirely to scientific studies. Its members received
pensions from the King as well as financial assistance with their
researches. These rescarches fell into the two groups of mathematics
(including mechanics and astronomy), and physics, which at that
time was held also to include chemistry, botany, anatomy, and
physiology. The Academiciahs met in a room in the Royal Library
with a laboratory adjoining, and carried out their researches in
common. They met twice a week, devoting their sessions to physics
and mathematics alternately.

In pure physics the Academy repeated a number of the experi-
ments of the Accademia del Cimento and of the Royal Society. They
studied the expansive force of freezing water as shown by its capacity
to crack the metal vessels in which it was confined. They also per-
formed several experiments with the air-pump. In one of these a
vessel of water containing a fish was placed in the receiver. When
the air was evacuated no change was observed, but when air was
re-admitted the fish sank to the bottom of the vessel and remained
there owing to its sound (i.e. swimming bladder) having been
evacuated during the previous exhaustion of the container of the
air-pump. In order to ascertain whether heat could be transmitted
through a vacuum, some butter was placed in the recciver and, after
exhaustion, a piece of hot iron was held close at hand. It was found
that the butter melted when the iron was brought sufficiently
near. The growth of a plant kept for some days in an exhausted
container was found to be arrested. Experiments were also con-
ducted to ascertain whether the boiling of water made any differ-
ence to the facility with which it subsequently froze. No such
difference could be discerned, but it was noticed that boiled water,
owing to the absence of dissolved air, formed harder and more
transparent ice. From such ice Mariotte, who was one of the carly
members of the Academy, was able to make burning-glasses, In these
physical researches Huygens took a leading part, and it was while
in Paris as a member of the Academy that he wrote his Traité de
{a Lumiére, subsequently published in 16g0.

Among the earliest chemical studies of the Academy was an
investigation of the increase in weight shown by certain metals
on calcination. 5. C. Duclos exposed a pound of powdered antimony



SCIENTIFIC ACADEMIES b5

to the action of a burning mirror for an hour, and found that it
increased by one-tenth of its original weight. He supposed the
increase to be due to the addition of sulphureous particles from the
air. It was suggested, however, that the antimony might have
gained in weight at the expense of the containing vessel. Mineral
waters from several localities were analysed and the several results
compared.

In their biological researches it was the aim of the Academicians
to study both the structure and the functions of the organs of animals
and plants, and to use both their eyes and their reason, but especially
their eyes. Their Natural History of Animals (1666 onwards; English
translation by Alexander Pitfield, London, 1702) was based on
the examination and dissection of a considerable number of animals,
including a panther and an elephant, whose bodies they obtained
from the Versailles menagerie. These dissections, however, were not
carried out in accordance with any prearranged plan, and they
were intended to illustrate the peculiarities of the animais studied
rather than their points of similarity. They served, however, to
remove certain valgar errors in natural history. Following the
example of the Royal Society the Academicians tried experiments
on the transfusion of blood with dogs and other animals, but with
little success. A prolonged study was made of coagulation in blood,
milk, and other such fluids, with special reference to the conditions
under which it occurs, Human bodies were also occasionally dis-
sected at the sessions of the Academy. The siructure of the human
eye and ear was carefully described, and in this department Mariotte
made his important discovery of the blind spot in the eye.

The methods adopted in the Academy for studying the constitu-
tion of plants were too crude and misinformed to give results of
much value. A frequent procedure was to make a decoction or
extract of the given plant, to mix this with certain solutions of iron
or lead salts, and, from the resulting coloration or precipitate, if
any, to pronounce which plants contained the more “terrestrial”
sulphureous salts. Finding that “wvulnerary” herbs were able to
precipitate lead from solution in vinegar, they supposed that the
extract absorbed the “points” which give vinegar its peculiar effect
upon the tongue (a Cartesian notion), and that such herbs act in a
similar manner upon the acids which ulcerate wounds; hence their
healing virtue, Another mode of studying plants was to squeeze
out their juices, allow these to evaporate, and then examine the
essential salts which crystallized out. Much time, however, was
wasted upon the fractional distillation of plants in retorts. The
issuing vapours were condensed and tested for acid reactions and
“sulphureous” properties with corrosive sublimate and other re-
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agents, and the capul morfuum in the retort was thrown away. This
process was applied to four hundred and fifty different plants, and on
one occasion forty toads were subjected to fractional distillation. It
was not until 167g that Mariotte pointed out the futility of the pro-
cedure, which naturally destroys the very substances which it is
desired to examine.

The pure mathematical researches of the Academy ran chiefly to
discussions on problems arising out of Descartes’ work in this field,
and out of the use of vanishingly small quantities in geometry. A
number of separate treatises by members of the Academy were
produced ; a joint treatise on mechanics was also compiled, but was of
little scientific value. In hydrostatics the Academicians investigated
the relation between the velocity of efflux of a fluid from a vessel
and the head of pressure behind it, on lines already laid down by
Torricelli.

In the sphere of applied mechanics the Academy appointed
several of its members to study the tools and machines in common
industrial use, with a view to elucidating their working principles,
and improving or simplifying their consiruction. In addition, many
ingenious mechanical devices were designed by the Academicians
and were published in an illustrated catalogue. Especial attention
was given to frictionless pulley combinations, pumps, and automatic
saws. Foremost among the inventors was Perrault. He designed a
movable mirror for directing the rays ol a star or other heavenly
body into a large fixed telescope. This device, which partly antici-
pated the modern siferostat, enabled an observer to follow the
course of a star without moving the telescope. Perrault also suggested
a form of clock in which the pendulum was to be kept in motion by
water which flows into vessels on either side of the pendulum and
depresses them alternately.

The work of the astronomical members of the Academy, especially
of Picard and Auzout, represented a distinct advance, for it was
they who introduced the practice of systematically using telescopes
in conjunction with graduated circles for the precise measurement
of angles. The line of collimation of the telescope was accurately
defined by means of intersecting wires in the focal plane of the
object glass. Systematic usc was also made of micrometers for
measuring the small angular separations of ohjects simultaneously
visible in the ficld of view of the telescope. Picard conceived the idea
of using the times of meridian transit of stars to determine their
differences in right ascension, using Huygens' lately developed
pendulum clock for this purpose. A special study was made at
Paris of the somewhat neglected factor of astronomical refraction.
The carliest astronomical observations of the Academicians were
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made in a garden at the back of their accustomed meeting place.
But this was too much hemmed in by houses, and an appeal was
made to the King to found a proper observatory. This was built, to
Claude Perrault’s design, in the Faubourg S. Jacques, and was
practically finished by 1672. From 1669 the astronomical work of
the Academy was carried on under G. D, Cassini, an Italian astrono-
mer invited to Paris by Colbert.

Several foreign expeditions were organized by the Academy.
Of these, two are especially noteworthy. In 1671 Picard went to
Denmark in order to determine accurately the position of Uraniborg,
Tvcho Brahe's former observatory, already in ruins. He brought
back with him to Paris Olaus Rémer, who became a member of
the Academy, and who, while in France, discovered that light was
propagated gradually, not instantaneously. Another expedition,
under Jean Richer, was sent to Cayenne in 1672 to observe an
opposition of Mars. From a comparison of Richer's observations
with those made simultaneously by Cassini in Paris, values of the
parallax of the planet and of the Sun were deduced far exceeding
in accuracy any previously obtained. Richer also made the im-
portant discovery that a pendulum, in order to beat seconds, must
be made shorter at Cayenne than at Paris—a discovery that marked
the beginning of speculations as to the exact shape of the Earth.

Upon the death of Colbert, in 1683, Louvois was appointed
Protector of the Académie Royale des Sciences. He had little
sympathy with purely theoretical researches, and the activities of
the Academy waned until its complete reorganization and enlarge-
ment by Bignon in 160g9.

TaE BERLIN ACADEMY

During the seventeenth century a number of scientific societies
were founded in Germany. Among the earliest institutions of this
kind was the Societas Ereunetica, founded at Rostock in 1622 by
Joachim Jungius, the biologist and educational reformer, with the
object of fostering and propagating natural science, and of placing
it upon an experimental basis. This society, however, seems to
have lasted only for about two years. Thirty years later there was
founded the Collegium Naturae Curiosorum. This was essentially a
brotherhood of physicians, and its chief activity was to be the publi-
cation of a journal describing the specialized medical researches of
its members. There was also the Collegium Curiosum sive Experimentale,
established in 1672, and recruited from among the students of its
founder, Christopher Sturm, of Altdorf, whose fine collection of
physical instruments served for the specifically experimental work
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of his academy. The only German scientific society, however, to
attain the importance of the Royal Society, or of the Académie des
Sciences, was the Berlin Academy. As an embodiment of the ideals
of its founder, Leibniz, it must be regarded as a product of the
seventeenth century, though, as it was not founded until 1700, the
story of its later fortunes does not concern us here.

The Berlin Academy was the outcome of many years of careful
planning and persistent advocacy on the part of Leibniz, though
representing only a part of his ambitious schemes, He had early
fallen foul of the current methods of education, with their emphasis
upon abstractions and merely verbal scholarship. He thought the
teaching of the young should rather be centred upon objective
realities, and he stressed the importance of proper instruction in
mathematics, physics, biology, geography, and history. He was
anxious that German should take the place of Latin as the medium
of instruction. If that step were taken, knowledge would be brought
within reach of the whole nation, and linguistic associations with
obsolete forms of thought would be broken in Germany, as they
had already been broken in England and France through the
influence of the vernacular writings of Bacon and Descartes. Leibniz
thought that he could best propagate his views and achieve his
reforms through the medium of a society of men like-minded with
himself. From the time of his earliest manhood, his ideas on the
constitution and functions of such a society underwent a gradual
development, and they issued from time to time in concrete pro-
posals. As first conceived by him, the society was to consist of a
limited number of scholars whose duty it would be to record experi-
ments, to correspond and co-operate with other scholars and
academies abroad, to form a universal library, and to advise on
matters concerning commerce and the arts. The society was to have
authority, in Germany, to license the publication of only those books
which satisfied their standards. Further detajls were embodied in
two memoranda written by Leibniz about 1670 in which the pro-
posed institution was designated as an Academie oder Socieldl in
Teutschland zum aufnehmen der Kiinste und Wissenschaften (Foucher de
Careil, Fuwres de Leibniz, Vol. V11, Paris, 1875, pp. 27 ff. and 64 f.).
The interests of the society were to be very extensive, and were 10
include history, commerce, records, art, education, etr., besides
science and technology. Extensive research was to be carried on
in anatomy and physiology, and new methods in social science were
to be tested in connection with the treatment of the sick poor, the
technical education of orphans, the supervision of prisons, ¢te, The
society was Lo send out travelling teachers, and to publish a journal
through which useful inventions, by whomsoever made, could be
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widely circulated, In these memoranda Leibniz complains that in
Germany important inventions are not applied to practical life
for the good of mankind, as they might be. They are often lost, or
else they go abroad, and are subsequently re-introduced into
Germany as novelties. This might be remedied, he thought, if
there were a socicty to preserve and develop such inventions.
Shortly afterwards Leibniz was able, during visits to Paris and
London, to study the working of the Académie des Sciences and of the
Royal Society at close quarters. He was thereby inspired to put
forward a fresh scheme for establishing a society of picked men,
adequately maintained and provided with instruments. Each
member was to devote himself to experiment on some chosen
problem, and to report his results in the German language. The
knowledge so accumulated was to be applied systematically in
the service of humanity, and ultimately to be embodied in a vast
encyclopaedia of all the sciences. In 1676 Leibniz became Librarian
to the Duke of Hanover, and, when a daughter of that house
married the Elector Frederick I of Prussia, it occurred to Leibniz that
a society such as he had in mind might be founded in Berlin under
the protection of the Elector. He learned that meetings of scientists
were already being held there at the house of Spanheim, the
diplomat, whom he accordingly approached. He also seems to have
tried to persuade the Electress to extend her scheme for founding
an observatory at Berlin to include an academy of the sort he
desired. Again, in 1699, Germany decided to adopt the Gregorian
Calendar, and Leibniz suggested that the Elector should retain
the monopoly of the calendars, and should apply the proceeds to
endow an observatory and an academy. This was agreed to, and the
new Academy received its charter on July 11, 1700.

The plans for organizing the Academy were mainly drawn up
by Leibniz, in consultation with Jablonski, the Court preacher,
while the Elector stipulated that history and the development of
the German language should be among the Academy’s interests.
Leibniz was to be president, and, as in the Royal Society, there
was to be a Council charged with the government of the Academy
and the election of new members. There were to be three classes
of meetings, concerned respectively with Res physico-mathematicae,
Lingua Germanica, and Res literariae. To get the Academy properly
running, with a meeting-place of its own and definite statutes,
required ten years of effort in the face of obstacles and disappoint-
ments of all sorts. The Academy published the first volume of its
Miscellanea Berolinensia in 1710, in Latin, after all. It contained
fifty-eight articles, mainly on mathematics and science, of which
twelve were by Leibniz himsell. Thereafter, however, Leibniz
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became alienated from the other leaders of the Academy, which
now fell for a time into decline, especially under the adverse rule
of Frederick William I, but only to revive brilliantly when more
favourable circumstances prevailed. In the original scheme of
Leibniz the Berlin Academy was to be the centre of a network of
related socicties extending all over Germany and eventually all
over the civilized world. Although this plan was not realized, yet
the establishment of the St. Petersburg Academy (1724) seems
traceable to a conversation which Leibniz had with Peter the Great.

(See M. Ornstein, The Réle of Scientific Societies in the Seventeenth
Century, Chicago, 1928; T. Birch, The History of the Royal Society of
London, 1756-7; Sir Henry Lyons, The Royal Society, 16601940,
Cambridge, 1944; R. T. Gunther, Early Scence in Oxford, vol. iv,
Oxford, 1925; J. L. F. Bertrand, L' Académie des Sciences et les Acadé-
miciens de 1666 d 1793, Paris, 1869 ; H. Brown, Scientific Organizations
in Sevenleenth-Century France, Baltimore, 1934.)



CHAPTER V

SCIENTIFIC INSTRUMENTS OF THE SEVENTEENTH
CENTURY

RerereNcE has already been made to the important function of
scientific instruments in modern science. The merest beginnings of
the history of modern science cannot be told without reference
to some scientific instruments. And in the foregoing pages explicit
mention has already been made of some of them, while the use of
others has been implied in the results narrated. It will be con-
venient at this stage to relate as briefly as possible the story of the
most important of the scientific instruments invented in the seven-
teenth century, and some anticipations of subsequent developments
will have to be included in the story in order to make it reasonably
self-contained. The instruments selected for historical treatment in
the present chapter are the microscope, the telescope, the thermo-
meter, the barometer, the air-pump, the pendulum-clock, and a
few marine instruments. Various other scientific instruments will
be dealt with in subsequent chapters. It will be seen that these
instruments made their appearance, in some form or other, at
the very beginning of the modern period. This is highly characteristic
of an age which set out with a resolute determination to find things
out for itself,

Tae MicroscoPE

The simple microscope, or single converging lens of short focus,
has a long history. Such magnifying glasses, as well as burning
glasses, were well known to the ancient Greeks and to the mediaeval
Arabs. The different kinds of images formed by various sorts of
mirrors were also a favourite theme of the early mathematicians,
who explained them on geometrical principles. The compound
microscope, however, does not seem to have been discovered until
about 1590, or even a little later. The compound microscope consists
of a combination of several convergent lenses, one of which has a
short focal length. The history of its invention is uncertain. But the
credit for the invention most probably belongs to the Netherlands,
where already in the Middle Ages the art of polishing glass and
precious stones flourished, and where, by the end of the sixteenth
century, the making of lenses for spectacles was a well-established
industry. The earliest compound microscopes were so imperfect that
some men of science, including Lecuwenhoek, one of the greatest
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microscopic biologists of the seventeenth century, preferred to use
the single microscope.

The credit for the invention of the compound microscope probably
belongs to Zacharias Jansen. He was a spectacle-maker of Middel-
burg, Holland, and is said to have chanced upon the invention by
a happy accident about the year 15g90. His microscope consisted of
a combination of a double convex lens and a double concave lens,
the former serving as object-glass, the latter as eyepiece. One of
the oldest examples of this type of compound microscope has been
described by Borelius. The tube was about
18 inches long, and had a diameter of about
2 inches. Small objects placed on the pedestal
of the microscope appeared much larger when
seen through the tube. The Science Society
of Middelburg still owns such a compound
microscope reputed to have been constructed
by Jansen.

The compound microscopes used nowadavs
are, of course, constructed differently, They
consist of two convergent lenses, or of two lens-
systems, each of which functions as a single
lens. The lens nearest to the object (lens a in
Ilustr. 28) produces a real image which can
be looked at through the second lens () as
llustr. 28.—Micro- 'PYOUSR a magnifying glass. This kind g
scope with Two Con-  MICTOSCOpe, however, was not constructed till

vergent Lenses the second decade of the seventeenth century.
Galilei, it would appear, was the first to
make use of the compound microscope for scientific purposes.
In 1610, or even earlier, he studied by means of it the organs
of motion and of sense in insects, and observed among other
things the compound eyes of insects. Special credit for making
microscopy popular is due to Hooke. He constructed one of the
most famous of early compound microscopes, and his Micrographia
(1665), the earliest treatise devoted entirely to an account of
microscopical observations, showed abundantly how effectively the
microscope could be used. Hooke's compound microscope (see
Iustr, 29) had a single plano-convex lens for object-glass, and
a plano-convex lens for eyepiece. The tube was 6 inches long,
but could be lengthened by means of extra draw tubes. It was
screwed on to a movable ring attached to a stand. The object to
be observed was fixed on a pin rising from the base, and was
illuminated by means of a lamp to which a spherical condenser
was attached.
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[lustr. 2g.—Hooke's Compound Microscope

Hlustr, §1.—Lecuwenhoek’s Simple
Microscope

—Kircher's
Microscope

Iustr. g0.
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Other types of compound microscopes were made by Chérubin
d'Orleans (1671), Kircher (1691), and Hertel (1716).

Of the single or simple microscopes in use in the seventeenth
century that used by Athanasius Kircher, in 1646, was more or
less typical. It consisted of a short tube,
about the size of a thumb, having a
lens at one end and a plane glass at
the other end. The object to be
observed was put against the flat glass,
illuminated by means of a candle,
and was looked at through the magni-
fying lens (see Illustr. go).

As these simple microscopes were
often used for observing insects they
were nicknamed “‘flea-glasses” or “fly-
E_las-!‘ﬂ‘.l‘l

Leeuwenhoek’s simple microscopes
were made differently. He mounted
a lens in a flat plate of brass, or of
silver, and used a concave mirror so
as to focus the light on the object to
be examined (see Illustr. 31).

Ilustr. 32 shows Leeuwenhoek’s use
of the simple microscope in order to
observe the circulation of the blood
in the transparent tail of a small fish.
The fish was put in a glass tube con-
taining water. The tube was fixed in a
metal frame. And a metal plate (D)
carrying the magnifying lens (just
above D) was attached to the metal
frame. The observer brought his eye
close to the lens, which could be

.. adjusted by means of the screws.
;:,i:;: M%“‘_L‘p:l“*::;““*t; Mllustrs. 33 and 34 show some other
Observe the Circulation of the SiMPple screw devices for adjusting
Blood in the Tail of a Fish  the microscope which were used by
: Campani (1686) and Wilson (1700).

Finally, mention must also be made here of Stephen Gray’s
water microscope (Illustr. 35). The frame of the instrument was
of brass about % inch in thickness, and it was pierced at A by a
hole about X inch in diameter, surrounded on each face of the
metal by a spherical depression in the surface. In using the micro-
scope, the hole and the depression were filled with water so as to
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constitute a double convex lens. This was used for examining small
objects, placed on the point F, or drops of water, placed in the
hole C. The position of the object in relation to the lens could be
adjusted by turning the support CDE about E, and by turning the
screw G, which acted upon the support at D so as to bend it towards,
or away from, the frame AB. In this way the object could be brought
into focus. At B the metal was rather thicker, and contained a hole

Illustrs. 93 and 34.—Compani’s and lustr. 35._—Gfrar':
Wilson's Screw Microscopes Water Microscope

about L inch in diameter. In this a drop of water could be formed,
and the contained animalculae could be examined in light reflected
from the opposite surface of the drop, which thus, according to
Gray, served as its own microscope (Phil. Trans., 1696, Vol. XIX,
No. 223).

Tue TELESCOPE

The history of the invention of the telescope is not very clear.
The claims made on behalf of Roger Bacon may be dismissed. A
better case might be made out for Leonard Digges, an Oxford
mathematician, who died in 1571. He would appear to have con-
structed some kind of telescope. For his son, Thomas, has left a fairly
circumstantial account of its use. But that is all the evidence there is.
To all intents and purposes the telescope may be said to have been
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invented in 1608 by Hans Lippershey, a Dutch spectacle-maker, of
Middelburg. A rival claim has been set up on behalf of another
spectacle-maker of Middelburg, namely, the above-mentioned
Zacharias Jansen, whose son is reported to have stated that his
father made a telescope in 1604 on the model of an Italian telescope
which was dated 1590. Descartes attributed the invention to James
Metius. Official documents at the Hague are in favour of Lippershey.
They go to show that on October 2, 1608, the States General
considered Lippershey’s application for a patent for a telescope
which he had invented. He was awarded a sum of money and was
asked to improve his instrument so that it might be used with
both eyes at once. On December 15th he accordingly submitted a
binocular, and received another money award, but he was refused
the exclusive licence to sell the instrument on the ground that there
were others who could make such instruments. It is noteworthy
that an application by Metius for a similar patent was considered
by the States General on October 17th. The whole dispute is of
no great importance. The Dutch spectacle makers in any case only
regarded the telescope as a curious toy. Its effective scientific use
is 50 closely connected with Galilei that the Dutch telescope soon
came to be known as the Galilean telescope.

The first telescope constructed by Lippershey was very like the
first compound microscope, consisting of a combination of a double-
convex lens, as object-glass, and a double-concave lens, as eye-
piece. This kind of instrument is still sometimes called a Dutch
telescope ; and opera glasses and other binoculars are still constructed
in that kind of way. Like the invention of the compound microscope,
that of the telescope seems to have been the result of a happy
accident. It is related that quite by chance Lippershey one day
turned such a combination of lenses towards the weather-vane on
a neighbouring church steeple and was pleasantly surprised to find
the weather-vane considerably magnified.

The news of the wonderful invention spread rapidly. In Germany
telescopes are said to have been on sale already by the end of 1608.
In Italy Galilei heard of the invention in t6og. In France the tele-
scope was used in 1610 for the observation of Jupiter’s satellites.

For the fullest appreciation of the scientific possibilities of the
new invention we must turn to Galilei. He was at the height of his
powers when news of the invention reached him. It filled him with
such eager enthusiasm that he set to work al once to construct a
telescope and to use it for making astronomical observations, In his
Sidereus Nuntius, published in 1610 (translated into English as The
Sidereal Messenger by E. S. Carlos in 1880), Galilei wrote as follows :—

“About ten months ago news reached my ears that a Dutchman
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had invented an instrument by means of which distant objects could
be seen as clearly as near ones. This made me ponder how I could
construct such an instrument. Guided by the laws of optics 1 hit
upon the idea of fixing two lenses to the ends of a tube, one lens
being plane-convex and the other plane-concave. When I brought
my eye near the latter lens objects appeared to me only about a
third of their actual distance away and nine times as large. As |
stinted neither pains nor pence I was so successful that I obtained
an excellent instrument which enabled me to see objects almost a
thousand times as large and only one-thirtieth of the distance in
comparison with their appearance to the naked eye.”

Galilei’s telescope was essentially a Dutch telescope, but was
much better than those constructed by the Dutch spectacle-makers,
as might have been expected from his superior knowledge of optics.

The optical principles involved in the Dutch or Galilean telescope,
as well as those involved in the microscope, were explained by
Kepler in his Dioptrics, published in 1611. He explained that the
blurred images scen when the eye looks through the concave lens
LM (see Illustr. 36) become larger and more distinct when the
convex lens NO is placed at a certain distance from the concave
lens. He further explained that rays which are made to converge
by means of a convex lens, NO, and fall on a concave lens, LM,
before they reach their point of intersection, are refracted in such a
way that either their point of intersection is moved farther forward
(to A) or the rays become parallel (D, E) or divergent (Z, K).

The Dutch telescope was soon displaced by the so-called “astrono-
mical telescope” suggested by Kepler in his Dioptrics. The later
telescope, like the later microscope, consists of two convergent
lenses (see Illustr. 37). The object-glass, AB, is placed at such a
distance from the object, CE, that its inverted image would be
indistinct, but by placing a second convex lens, OP, between the
eye and this blurred image the rays coming from D and F are made
convergent and distinct. And the image thus produced by the eye-
piece appears larger than that which the lens OP receives from
the lens AB. The astronomical telescope had two advantages over
the Dutch telescope which it displaced. It had a wider field of view,
and it rendered possible the compurison of the image of a distant
object with a small object placed in the common focus of the two
lenses, which led to the invention of the micrometer by Gascoigne
(about 1638). Curiously enough Kepler did not comstruct the
telescope described by him and named after him. The first telescope
of the kind was made by Scheiner, whom we have already met in
the chapter on Galilei. It was Scheiner also who, following yet
another suggestion of Kepler's, constructed a telescope containing
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a third convex lens, which transformed the inverted image into an
erect image.

Other suggestions made by Kepler for the improvement of the
telescope were the following. The substitution of two convex lenses
(one placed immediately behind the other) for a single eyepiece
would make it possible to use shorter tubes. A movable tube would
make it possible to adapt the telescope to the eye of the observer.
Lastly, he showed how, by combining a concave lens with a convex
lens real images could be obtained which would be larger than
those produced by a convex lens alone. This is shown in Illustr. 38,
which shows the path of three beams of rays coming from an object
at the points C, A, E. The concave lens, LN, is placed where the
convex lens, GH, would project a blurred image. The concave lens
catches the pencils of rays just before they come to a point, and
brings them to a point at S, P, T, where a real image is formed which is
more distinct and larger than theimage at F, B, D, which would have
been produced by the convex lens alone. This suggestion of Kepler's
led in recent times to the invention of telephoto lens combinations.

It is not quite certain when the first “astronomical” or Kepler
telescope was constructed. Scheiner made it probably some time
between 1613 and 1617. Scheiner was certzinly among the first to
use a telescope for astronomical observations, and in April or May
1611 he observed the Sun-spots at about the same time that
Fabricius and Galilei observed them. In the course of many years
of astronomical work he made thousands of observations, and his
experiences led him to devise a method of protecting the eyes
during telescopic ohservations, namely by fitting the telescope with
special darkening glass. He fixed polished plates of coloured glass
in front of the lenses, and even tried, though without success, to
make the lenses themselves of coloured glass, so as to reduce the
intensity of the light. It is possible that Galilei’s blindness was
brought about through his observing the Sun without the protection
of some such device as that of Scheiner,

Scheiner also devised a method of enabling several people to see
at the same time what the telescope revealed. Placing what he
called a helioscope (really a kind of Dutch or Galilean telescope) in
a dark room, and directing it toward the Sun, he obtained an image
of the Sun’s disc with the Sun-spots on a white surface arranged at
the rear of the telescope, so that all who were present in the room
could see it. (Sce Illustr. 39.)

Scheiner gave an account of his astronomical work in a book
called Rosa [frsina, which he published in 1630. (“Rosa” was the
symbolic designation of the Sun; “Ursina” was intended as a
compliment to his patron, the Duke of Orsini.)
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The lenses in use then were soon felt to be unsatisfactory. Their
real defect was not understood until Newton discovered it. In the
o : : o meantime Kepler, Descartes, and
i + others attributed the aberration

: ol the lenses to their spherical
! ; surface, and sought to surmount
' the trouble by the use of lenses

“ *’hﬁ with an hyperbolic surface. But
N | R L LS such lenses were difficult to

construct. Another way of get-
. i ting over the difficulty consisted
: : in the use of very long telescopes.
HsE: i Hevelius (or Hevel) of Danzig
had a telescope which was 150
feet long, and he designed a
tower to support it. To avoid the
. e difficulties of constructing and
T A e mounting such long telescopes
: ; Huygens, following a suggestion
il of Auzout, introduced the “aerial
g tetescope,” which dispensed with
Aot the usual tube by arranging the
object-glass and the eyepiece in
the way shown in the accompany-
ing illustration (Illustr. 41).
Newton’s discovery of the com-
posite nature of white light early
led him to the conclusion that
i the principal defect of the re-
i 5 fracting' telescopes then in use
b was due, not to the spherical
aberration of their object-glasses,
+ but to their chromatic aberra-
i 5 tion, whereby the images formed

e Y ) have coloured edges. Moreover,

D ——T he considered this defect of re-
= ™ fracting telescopes incurable, He
Hiustr. 42.—Newton's Reflecting B Dt SOLEANIC

Telescope (Schema) therefore considered the possi-

bility of constructing some other

type of telescope. Now in 1663 James Gregory had proposed the
construction of a reflecting telescope as a cure for spherical aberra-
tion. Newton took up the suggestion in his own way, and in 1668
constructed the first reflecting telescope. In this instrument the rays
coming from a distant object were concentrated by reflection from
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a concave mirror, the convergent beam being intercepted just
before reaching its focus by 4 small plane mirror which directed it
into an eyepiece placed at the side of the tube (see Illustr. 42).
Newton ground his own speculum and succeeded in producing
a diminutive instrument of about 6 inches in length and 1 inch in

Iustr. 43.—Newton's Little Reflector

aperture, with which, however, he was able to observe the satellites
of Jupiter and the phases of Venus. He subsequently constructed a
similar telescope of larger dimensions. This he presented to the
Royal Society, in whose Library it is now preserved (Illustr. 43).
Newton’s assumption that the chromatic aberration of refracting
telescopes was irremediable was subsequently shown to have been
too pessimistic. In 1733 Chester More Hall succeeded in constructing
achromatic lenses which produced images devoid of colour. He
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seems to have been led to his discovery by considering the (false)
analogy of the human eye, an analogy which had been conceived
also by David Gregory (1695), and was revived again later by
Euler {1747). By mistake he thought that the different humours
in the eye, by their different refractions of rays of light, produced
colourless images on the retina, and so he concluded (fortunately)
that lenses composed of different refracting media might produce
images free from colour. The same discovery was made inde-
pendently, in 1758, by John Dollond, who rendered valuable ser-
vices in the construction of achromatic
refracting telescopes. His achromatic lenses
consisted of a convex lens of crown glass
combined with a concave lens of flint glass,
which corrects the colour dispersion caused
by the crown lens.

Soon after 1630 astronomers began to
use telescopes for the measurement of
angles. The telescopes used at first were
of the Dutch (or Galilean) type. As will
be more fully explained in a subsequent
chapter, better results were obtained later
when the Kepler (or “astronomical”) tele-
scope was used in conjunction with a micro-
meter, like that invented by Gascoigne. But
this did not happen until about 1660, Some
of the astronomers, in fact, preferred to do
without any sort of telescope for angular

Hlustr. 44.—Galilei's ~ measurement. This is evidenced by the con-

Thermoscope troversy which raged between Hevelius and
Hooke during the years 1668-79. Hooke
strongly advocated the superiority of the telescope over diopters
(open sights). Hevelius insisted that he could observe as accurately
with open sights as Hooke could with telescopic sights. In 1679
Halley went to Dantzig for several weeks in order to compare the
accuracy of his own observations, made by means of Hooke's
telescopic sights, with Hevelius' observations by means of open
sights. Halley declared that Hevelius had made out his case.
Nevertheless Hooke was certainly right in his vindication of tele-
scopic sights,

ToE THERMOMETER

Galilei is usually credited with the invention of the first thermo-
meter in modern times. His claim rests mainly on the testimony of
his friends and pupils, as his own writings, so far as they have
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survived, seem to contain only one incidental reference to the
principle of the instrument. Writing to Galilei on May g, 1613, his
friend Sagredo attributes the invention to him, though in a later
letter (February 7, 1615) he claims himself to have improved upon
the primitive form of the instrument, of which he made extensive
use (Le Opere di Galileo Galilei, Edizione Nazionale, 18g0-19g09,
Vol. XI, p. 506, and Vol. XII, p. 139). Again, according to Viviani
(Vita di Galileo Galilei, Florence, 1718), Galilei invented the instru-
ment about 1592; and Castelli writes to Cesarini (September 20,
1638) of having seen him use it in lectures in 1603 : “Galilei took a
glass vessel about the size of a hen’s egg, fitted to a tube the width
of a straw and about two spans long; he heated the glass bulb in
his hands and turned the glass upside down so that the tube dipped
in water contained in another vessel ; as soon as the ball cooled down
the water rose in the tube to the height of a span above the level in
the vessel; this instrument he used to investigate degrees of heat
and cold” (Opere, Vol. XVII, p. 377. See also H. C. Bolton: The
Evolution of the Thermometer, 1592-1743, 1900, p. 18).

It was thus an air-thermometer or air-thermoscope with which
Galilei experimented in his early years, and it consisted of a tube
ope1 at the lower end and terminating in a closed bulb at the
upper end (Illustr. 44). The bulb contained air, and the water in
the tube moved downwards or upwards according as the air in
the bulb expanded or contracted with the rise or fall in temperature.
Presumably the tube had some sort of scale attached to it. For, in
the “First Day” of his Dialogue, Galilei speaks of 6, g, and 10 degrees
of heat (Opere, Ediz. Naz., Vol. VII, p. 55). Sagredo, too, must
have affixed a scale to his instrument, for (in his letter of February 7,
1615) he gives its readings in the greatest heat of summer (360
degrees), and when immersed in snow (100 degrees), and in a
mixture of snow and salt (zero).

The suggestion for the construction of a thermoscope may well
have come to Galilei while reading the works of Hero of Alexandria.
The ancients already knew that air expands when it becomes
warmer. Some of Hero’s mechanical toys were constructed and
operated on this basis, and Philo of Byzantium (first century B.c.
orA.n.) had actually made a thermoscope. Robert Fludd, who died
n 1637, gave an account of a thermoscope which he said he had
seen described in a manuscript about five hundred years old
(Philosophia Maysaica, Goudae, 1638 ; Mosaicall Philosophy, London,
1659). Be that as it may, Galilei was the first modern man of science
to think of utilizing the expansion of air for the measurement of
temperature,

Sagredo describes the thermometer as an “instrument for
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measuring heat and cold.” The word thermoméire first appears in La
récréation mathématique (1624) by J. Leurechon.

While Galilei and Sagredo appear to have compared the tempera-
ture of various places and seasons, and to have experimented with
freezing mixtures, Sanctorius, a medical friend of Galilei, and
Professor of Medicine at Padua, used a special form of the thermo-
scope to indicate fluctuations in the heat of the human body, as

Ilustr, 45.—Guericke's Thermoscope

he describes in his Commentaria in artem medicinalem Galent, Venice,
1612 (written 1611). This peculiar thermoscope may be described
as the first clinical thermometer. An account and illustration of it
will be found in Chapter XVIII (see page 432). Here it need only
be added that Sanctorius also used his thermoscope in an attempt
to compare the heat of the Sun with that of the Moon,

In his Novum Organum (1620) Francis Bacon describes an instru-
ment very like Galilei’s thermoscope with a paper scale attached
to it (Book II, xiii, 38). Nothing, however, is known about this
scale. In any case, such a scale could not have been reliable, if only
because variations in atmospheric pressure, as well as variations
in temperature, affected the position of the fluid in the tube, so
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that it could only be used for comparing temperatures within short
intervals of time.

This characteristic fault of air-thermometers was clearly recog-
nized by Boyle, following the discovery of his pneumatic law, and
in the light of the known variability of the atmospheric pressure.
“These Instruments,” he writes, “being subject to be wrought upon
by the differing weights of the Atmosphere, as well as by Heat and
Cold, may . . . easily misinform us in several cases, unless in such
Cases we observe by other Instruments the present weight of the
Atmosphaere” (New Experiments and Observations touching Cold,
London, 1665, p. 71; Works, ed. 1772, Vol. II, p. 498). The air-
thermometer, however, continued to be employed and developed
throughout the first half of the seventeenth century. Kircher
(Magnes, sive de arte magnetica, Rome, 1641) describes a thermoscope
in which a glass tube open at each end dipped into liquid contained
in an otherwise closed bulb. Heating the air imprisoned above
the liquid in the bulb caused it to expand and to force some of the
liquid up the tube. Kircher mentions the use of mercury in this
connection,

An improved air-thermometer was constructed by Otto von
Guericke (Experimenta Nova, 1672, Book III). It consisted of a copper
sphere containing air. To the sphere was attached a U-tube con-
taining alcohol, which sealed the vessel (Illustr. 45). On the alcohol
there was a float from which a thread passed over a pulley and
supported a figure of a little angel which indicated the temperature.
When the air in the sphere expanded, the alcohol in the open limb
of the U-tube rose, and the angel fell; conversely when the air
contracted the angel rose. Guericke used a scale of six “degrees,”
from “great heat” to ‘“‘great cold.” As an experimenter with baro-
meters he knew, of course, of the varying pressure of the atmosphere,
and he put a valve in the sphere of his thermoscope to compensate
for variations of atmospheric pressure by correlated variations in
the volume of air enclosed.

An air-thermometer in which temperatures were measured not
by the expansion of the enclosed air, but by its increased pressure.
and whose readings were regularly corrected for fluctuations in
atmospheric pressure, was produced by Amontons (Mém. de I’ Acad.
des Sciences, Paris, 1688).

This instrument consisted of a mercury siphon barometer ABC,
the tube of which was enlarged at the lower mercury surface into
a bulb C, and was then continued vertically upwards so as to end
in another bulb F, The portion CD of the tube contained potassium
carbonate solution, while above that was a column DE of oil, and
the tube ended in a sealed bulb FE of air. In constructing the



# HISTORY OF SCIENCE, TECHNOLOGY, AND PHILOSOPHY

L,

e e T T e ]

T DT T N N . e o

L N e e
Y

IMustr, 46.—Amontons’

instrument, the tube, initially open at A and
F, was held upright and filled with mercury,
by means of a funnel attached with sealing-
wax at F, until the level rose to within half
an inch of A. The opening at A was then
hermetically sealed by means of a candle-
flame and blow-pipe. The tube was next
inverted so as to remove the air from the
bulb B, and the mercury from the limb FG.
When the tube was set upright once again,
the mercury rose to C, and a Torricellian
vacuum was formed above B. The empty
tube above C was now filled up to D with
coloured potash solution, and the other half,
up to E, with oil. The tube was allowed to
stand for about a week for the liquids to find
their true levels. The end F was then
hermetically sealed, and the tube was fastened
to a board upon which graduations were
marked along CE. The temperature was
shown by the position of the junction of the
oil and the salt solution against the scale.

What Amontons' instrument, and others
of the period, chiefly needed was an accu-
rate standard scale. In a later paper on this
problem (Histoire de I'Académie des Sciences,
1703}, Amontons described another air-ther-
mometer in the form of a U-tube in which
the volume of the air was kept constant while
its pressure (represented by the height of the
confining mercury column) was varied and
measured at the various temperatures to be
compared. In this way Amontons hoped to
avoid errors due to want of uniformity in
the bore of the thermometer tube,

The first suggestion of a liquid thermometer
seems to have been made by Jean Rey, a
French doctor, in a letter to Mersenne, dated
January 1, 1632 (Rey's Essays, 1777, p. 136).
He reversed the arrangement in Galilei’s
thermoscope, filling the bulb with water and
the stem with air, and using the expansion
of the water as an index of temperature. He
writes: “To make use of it, I put it in the
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sun, and sometimes in the hands of a fever patient, having filled it
quite full of water except the neck; the heat expanding the water
makes it ascend by a greater or less amount according to the great
or little heat” (Bolton, op. cit., p. 30). He does not appear to have
sealed the end of the stem, and in that event the evaporation of the
water must have made his instrument very unreliable,

A great improvement in the construction of liquid thermometers
is attributed to the Grand Duke Ferdinand 11 of Tuscany, one
of the founders of the Florentine Accademia del Cimento. He
substituted coloured alcohol for water as the thermometric liquid,
and the tube was hermetically sealed. This improvement may have
been introduced as early as 1641, certainly by 1654. Such thermo-
meters were in regular use among the members of the Florentine
Academy, and were consequently known as Florentine thermo-
meters (see Illustr. 47). The divisions on these thermometers were
made directly on the glass, not on a separate scale attached to
it; but as the divisions were marked by minute glass beads, in-
stead of fine lines, some of the advantage of this arrangement was
lost. Four kinds of thermometers were used by the Academy,
according to the degree of accuracy required. They had from
fifty to three hundred divisions respectively. Illustr. 48 shows a
Florentine thermometer with three hundred divisions. As the tube
was much too long to be left straight, it was ingeniously shaped into
spiral form. The various instruments were made comparable by
securing the same relation between the size of the bulb, the diameter
of the stem, and the quantity of alcohol. Curiously enough these
thermometers had no fixed points. The only attempt made by
the Florentine Academy to secure fixed points consisted in taking
the lowest position of the alcohol in the thermometer registered in
Tuscany in mid-winter and the highest point registered in mid-
summer. These points coincided approximately with the sixteenth
and the eighticth division respectively on the hundred-division
thermometer.

The Academicians used also to estimate temperature by means of
a graduated series of hollow glass balls floating on the surface of
alcohol in a vessel. Each of the balls would sink when the liquid
rose above a corresponding degree of temperature and thus fell
below a certain density. Thus as the alcohol was warmed up, the
balls sank one after another in regular succession, and so registered
the rise of temperature.

Florentine thermometers soon spread over Europe. Among the
first Englishmen to occupy themselves with thermometric experi-
ments were Boyle and Hooke. Boyle deplored the lack of an absolute
thermometric standard (New Experiments and Observations touching
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Cold, London, 1665 Discourse II; Works, ed. 1772, Vol. 1I,
PP- 489 [). He suggested the freezing point of oil of aniseed as a
fixed point, but did not see the need for two fixed points. Hooke, in
his Micrographia (1665, pp. 38, 3a), writes of sealed thermometers

Hlustr, 47.—Florentine Ilustr. 48.—Florentine
Thermometer Spiral Thermometer
‘which I have . . . brought to a great certainty and tenderness.*

They were filled with spirit of wine coloured with cochineal, which
stood near the top of the tube in summer and near the bottom in
winter, and was not easily frozen. A fixed point was obtained by
marking on the stem where the spirit stood when the bulb was im-
mersed in distilled water just freezing : “the rest of my divisions |
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I place according to the Degrees of Expansion, or Contraction of
the Liquor in proportion to the bulk it had when it indur’d the
newly mention'd freezing cold.”

Huygens, writing to Robert Moray on January 2, 1665, SuggtsT_.cd
standardizing thermometers by agreeing upon a definite proportion
between the capacity of the bulb and the bore of the tube, and taking
the freezing point or the boiling point of water as a fixed point from
which degrees could be measured (Schriften der naturforschende Gesell-
schaft, Danzig ; N.F. VII). The desirability of experimentally defining
tzo fixed points and of dividing the intermediate range of tempera-
ture into an arbitrary number of equal degrees was recognized by
H. Fabri (Physica, Leyden, 166g), who used snow and the greatest
summer heat to give the extreme temperatures; by Dalencé
( Traittez des baromélres, thermométres, etc., Amsterdam, 1688), who
suggested the freezing point of water and the melting point of butter
as fixed points; and by C. Renaldini (Naturalis Philosophia, Padua,
16g3, 1694), who had belonged to the Accademia del Cimento, and
who suggested using both the melting point of ice and the boiling
point of water, and dividing the interval into twelve equal parts,

It is not known when or by whom the expansion of mercury
was first thought of or employed in thermometry. The Florentine
Academicians experimented with the metal, and found it less expan-
sive than water, though quicker to respond to changes of tempera-
ture. Musgrave described mercury clinical thermometers. Halley
(Phil. Trans., 1693, Vol. XVII, p. 650) experimented on the thermal
expansion of water, mercury, and alcohol, to see which would serve
best for thermometry. He found water slow to respond to heating
and cooling, though it ultimately showed appreciable changes in
bulk. But the high freezing point of water ruled it out as unfit for
use in our climate. Mercury scored a point by responding imme-
diately to heating, but the proportional expansion of mercury was
less than that of water, spirit of wine expanded very considerably,
but boiled off violently before the water in the surrounding bath
had reached boiling point. Reflecting on the results of his experi-
ments, Halley concluded that no thermometric medium could
rival the claims of air, and he seems to have conceived the idea
of reviving the air-thermometer, with suitable safeguards against
its defects.

Of more consequence were Newton's researches in thermometry,
undertaken about the same time as Halley’s, but not published until
later (Phil. Trans., 1701, Vol. XXII, p. 824). Newton drew up a
scale of degrees of heat covering the range from the freezing point
of water to the heat of a coal fire, and affording such intermediate
data as the degrees of heat required to boil water, to melt wax,
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lead, and various combinations of casily fusible metals, and to raise
bodies to red heat. In constructing this scale, Newton used, for the
lower temperatures, a linseed-oil thermometer having its zero at
the freezing point of water, and giving twelve degrees for the heat
of the human body. The degree of heat was taken as proportional
to the expansion of the oil. For the higher temperatures Newton
employed a thick plate of iron which was heated red-hot and
then cooled in a steady draught. The degree of heat of the plate
at any instant was estimated by observing the time subsequently
required for the iron to cool down to the degree of heat of the
human body. For this purpose Newton assumed the Law of Cooling
which bears his name: “the heat which hot iron, in a determinate
time, communicates to cold bodies near it, that is, the heat which
the iron loses in a certain time, is as the whole heat of the iron; and
therefore, if equal times of cooling be taken, the degrees of heat
will be in geometrical proportion” (Phil. Trans., 1701, Vol. XXII,
p. 828). This is now generally expressed by saying that the rate of
cooling of a body at any moment is proportional to the excess of
its temperature above that of its surroundings. The law holds only
for small excesses of temperature; but Newton employed it to
compare the degrees of heat at which various specimens of metals
placed on the heated iron solidified as it cooled. He incidentally
discovered that solidification occurred at definite degrees for the
metals investigated. The series of determinations with the thermo-
meter and the plate overlapped sufficiently to allow all the degrees
of heat to be expressed in terms of the divisions of the thermometer.
In 1714 or thereabouts D, G. Fahrenheit (1686-1736) introduced
the familiar type of thermometer still known by his name. Fahren-
heit was the son of a wealthy Danzig merchant, but he spent most
of his life in Amsterdam, where he devoted himself to scientific
pursuits, He visited England, and was clected a member of the
Royal Society. An interest in meteorology led him to the construc-
tion and improvement of thermometers. After working with alcohol
for some time, Fahrenheit adopted mercury as the thermometric
liquid, taking for his fixed points the temperature of melting ice and
blood-temperature. He took the zero of his scale below the tempera-
ture of melting ice by half the interval between the two fixed points,
the upper of which he first marked 224", whereby the melting point
of ice was 74°. For convenience, he subdivided each degree into four
parts, giving the figures 30 and go; later he replaced go by g6, and
then the melting point of ice became 32° and the boiling point of
water 212°, as on the scale now in use, Allowing for the fact that the
boiling point of water varies with atmospheric pressure, Fahrenheit
constructed a thermometer with which there was combined a
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barometer to be used, not for measuring heights, but for meteoro-
logical purposes only (a thermo-barometer, as it came to be called
subsequently when improved by Cavallo, in 1781, and by W. H.
Wollaston in 1817).

Only a few other facts relating to the thermometer need be
mentioned here. The scale of 8o degrees between the freezing
and boiling points of water was introduced
by Reaumur in 1730 (Mém. de I'dcad. des
Sciences, Paris, 1730, p. 452; 1731, P. 250). g e
He was led to introduce this scale by noting

that alcohol of standard concentration ex- -
panded from 1,000 parts by volume to
1,080 parts upon being warmed from the 3

freezing point to the boiling point of water.
Each degree in his scale thus represented a
rise of temperature corresponding to an
average expansion of one-thousandth of the
initial volume of the alcohol. The scale of
100 degrees was invented in 1742 by A.
Celsius, though the present centigrade scale
is due to Christin of Lyons (1743). Celsius
denoted the temperature of melting ice by
100°, and put zero at the boiling point
of water (Velenskaps Akademiens Handlingar,
Stockholm, 1742). The first efficient maxi-
mum and minimum thermometer, with steel
indices adjustable by a magnet, was in-
vented by James Six (Phil. Trams, 1782,
Vol. LXXII, p. 72).

Before closing this account of thermo-
meters, reference may be made to an allied
instrument, namely, Fahrenheit's Hypso- . 49.—Fahrenheit’s
meter (Illustr. 4g). Hypsometer

This instrument, for measuring the boiling
points of liquids, was suggested by the discovery that the boiling point
of a liquid depends upon the atmospheric pressure. It consisted of a
cylinder AB out of which rose a tube BC leading, through a small
bulb CD, to a tube DE of very fine bore, terminating in another bulb.
The cylinder was filled with a liquid of good conducting properties,
which, when exposed to normal air temperatures, rose to a point
somewhere in the tube BC, thus measuring the temperature on the
scale bc. When, however, the instrument was placed in boiling water,
the liquid by its expansion filled the bulb CD and entered the
tube DE, where its height served to measure, on the scale de, the
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temperature at which the water boiled under the existing pressure
(Phil. Trans., 17234, XXXIII, No. 385).

Tue BaroueTER

Down to the middle of the seventeenth century suction phenomena,
such as the rise of water in the shaft of a pump, were generally
attributed to Nature’s alleged abhorrence of a
vacuum. Galilei, however, in 1638, drew atten-
tion to the curious fact, known in his time, that
water will not rise in the shaft of a common
pump more than about 32 feet above its external
level.

This observation led Galilei’s pupil, Torricelli,
to inquire to what height the alleged horror vacui
was capable of raising mercury, which is about
fourteen times as dense as water. He suspected
that this height would be only about one-four-
teenth of the height to which water could be
raised, and when, on his suggestion, Viviani
made the experiment, Torricelli’s surmise proved
correct. The apparatus used by the two investi-
gators in joint experiments, in 1643, is shown in
Hlustr. 50 (Esperienza dell’ Argento Vivo, Hell-
mann’s Neudrucke, No. 7). A glass tube, about
two yards in length and sealed at one end, was
filled with mercury. The open end was stopped

. with the finger and the tube was then inverted
Illustr. 50.—Torri-  and placed with the stopped end dipping into
celli's Barometer  ap gpen vessel of mercury. When the finger was
removed the mercury surface in the tube sank to
a height of about g0 inches above the mercury surface in the vessel,
and remained at that level, leaving at the top of the tube an empty
space which subsequently received the name of the “Torricellian
Vacuum.” Torricelli suspected that the column of mercury was
counterpoised by the pressure of the atmosphere upon the free
mercury surface; and he attributed small fluctuations in the height
of the mercury column from day to day to changes in the atmo.
spheric pressure. Torricelli’s early death in 1647 prevented him from
establishing his hypothesis and pressing it upon others; and the
doctrine of the horror vacui was so deeply rooted that the convincing
experiments of Pascal and Guericke were necessary before it could
be banished from physics.
Pascal learned, through Mersenne, of Torricelli’s experiments,
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and he repeated them for himself, both with mercury and with
water, He was at first inclined to attribute the results to horror
vacui, but he was won over to Torricelli’s hypothesis, and definitely
confirmed it by means of a crucial experiment, the idea of which
he may have owed to Descartes. The experiment was carried out
under Pascal's instructions by his brother-in-law Périer, in Sep-
tember 1648 (Récit de la Grande Expérience de I Equilibre des Ligueurs,
Paris, 1648, Hellmann's Neudrucke, No. 2). A Torricellian barometer
was set up, each time with the same tube and the same mercury, at
successive stations on the way up to the summit of the Puy-de-Déme,
in Auvergne. The height of the mercury was measured at each
station, and it showed a progressive fall with increase of altitude.
Meanwhile a second barometer, set up at the foot of the mountain,
was read from time to time by another observer, and showed little
change., The concomitant variation of barometric height with
atmospheric pressure thus established pointed to an intimate
connection between them. Upon the following day Périer repeated
his observations, with a positive though less appreciable result, at
the foot and on the pinnacle of the highest tower in Clermont ; and
later Pascal performed the experiment for himself upon lofty build-
ings in Paris. Later on such experiments became a favourite exercise
among the members of the scientific societies of the period.

In his report to Pascal, Périer suggested that the height of the
barometer might be tabulated numerically against the altitude of
the place of observation, and the table used for ascertaining the
height to which the atmosphere extends above the Earth, Pascal
proposed the barometer as an instrument for the measurement of
heights. He also estimated the weight of the entire atmosphere at
eight trillion pounds. Halley was later able to tabulate pressure
against altitude on the theoretical basis of Boyle’s Law; he thus
arrived at an estimate of the extent of the atmosphere, and showed
how the table could be used with a barometer for measuring the
heights of mountains, but this was not done until the beginning
of the eighteenth century.

Robert Boyle about 1659 proved experimentally that the height
of the fluid in a barometer depends upon the external pressure (New
Experiments Physico-Mechanicall, 1660). He set up a barometer in the
receiver of his air-pump, and noted that the column fell as the air
was withdrawn, and rose as it was re-admitted.

A water-barometer was constructed by Otto von Guericke, but
whether independently or in imitation of Torricelli is uncertain
(Experimenta Nova, etc., 1672). He found that it was possible, by
means of an exhausted receiver, to raise water by suction from the
ground level to the third storey of his house, but not to the fourth
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storey. In order to ascertain the exact height to which the water
would rise, Guericke contrived the apparatus shown in Illustr. 51.
It consisted of a series of four brass tubes, ab, ed, ¢f, gh (I) joined
end to end to form one long vertical tube (II), terminating above in a
glass receiver ik (shown on a large scale in IV), and below in a tap
which was immersed in a vessel of water ma. This tap was closed at
first and the whole length b of the tube and receiver was filled
with water. The tap being then opened, the water in the tube
sank to a certain level which could be observed through the side of
the glass receiver, and which was indicated on a graduated scale
by the outstreiched arm of a wooden mannikin floating on the
surface. The difference in the levels in the tube and in the vessel
could then be ascertained with the aid of a plumb-line.

Guericke attributed the rise of the water to the pressure of the
atmosphere, and the fluctuations in the level from day to day to
variations in that pressure. He made a long-continued study of
these fluctuations, and sought to correlate them with changes in
the weather. A sudden drop in the pressure enabled him to foretell
the onset of a severe storm in 1660. The connection between baro-
metric height and weather was extensively investigated, and gave rise
to much speculation in the seventeenth century and later. More or
less crude mechanical explanations of the relation of pressure to rain-
fall, etc., were advanced by Boyle, Mariotte, and Halley among others.

Subsequent modifications of Torricelli's original form of barometer
aimed at making the instrument more compact and portable, or
more precise in its indications. An early improvement was the
siphon-barometer in which the mercury trough was dispensed
with, and the open end of the tube bent through two right angles,
the atmospheric pressure being measured by the difference in the
levels in the closed and open limbs respectively. Amontons, in 1665
(Remarques et expériences physigues, p. 121), suggested a form of baro-
meter narrowing towards the closed end and suited for use at sea
(see Ilustr. 53), and later, in 1688 (Acta Eruditorum, p. 374), another
type in which the pressure of the air was balanced by several suc-
cessive columns of mercury, the height of the instrument being
correspondingly reduced (Illustr. 54). In Morland's form (which
was based on that of Ramazzini) the tube rose obliquely, so that
a slight change in atmospheric pressure produced a considerable
displacement of the mercury in the tube. In other forms based on
the same principle the tube ascended in the form of a spiral.
Huygens, fullowing some suggestions of Descartes, sought to increase
the sensitiveness of the barometer to changes of pressure by employ-
ing, in conjunction with mercury, liquids of lower specific gravity,
such as water or spirit of wine.



Hlustr. 51

Guericke's Water-Barometer



Mustr. 52

Onto Guericke
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One of the most famous barometers is that known as Hooke's Wheel
Barometer (Micrographia, The Preface, and Sprat, H.R.S., p. 173). Hooke
took a bulb AB (see Illustr. 55) with a stem CD 2} feet long, to the
end of which was cemented an inverted siphon-tube DEF having

Tlustr. 53.—Amontcns’ Tlusir. 54.—Amontons’
Sea-Barometer Compound Barometer

an opening at E and rising about 8 inches above that point. He
attached the whole firmly to a board whose length he graduated
in inches and tenths of an inch, starting from the line XY which
was level with the centre of the bulb. He then sealed F with wax
or cement, inverted the apparatus, and, by means of a funnel
inserted in the opening at E, filled the bulb and tube with mercury,
occasionally shaking the apparatus to detach air bubbles. He then
sealed the opening at E, placed the instrument in an upright posi-
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tion, opened the end F of the tube, and, by means of a siphon,
withdrew sufficient mercury from the open limb to make the level
in the closed limb sink to XY. He then graduated the tube EF, or
the adjoining wood, into divisions each corresponding to a change

lustr. 55.—Hooke's Wheel-Barometer

of 1 inch in the difference of level of the mercury in the two limbs
of the tube. He next fixed to the frame a graduated circle MNOP,
at the centre of which was mounted a cylinder I capable of turning
easily about its axis and carrying a light pointer KL over the
graduated circle. Over this cylinder, whose circumference was twice
the length of one of the divisions of the tube EF, was wound a silken
thread with small steel weights at each end, the heavier of which
rested on the mercury surface in the tube EF, while the other hung
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freely, “by means of which contrivance, every the least variation
of the height of the Mercury will be made exceeding visible by the
motion to and fro of the small Index KL."”

Hooke later devised a method (described and depicted in Phil.

Ilustr, 56.—Hooke's Simplified Wheel-Barometer

Trans., Vol. I, No. 13) for applying a pointer and scale to an ordinary
barometer in which the tube stood in a trough of mercury
(Hlustr. 56). The pointer was worked as before by the rise and fall
of a weight which, in this case, rested on the free surface of the
mercury in the trough.

Stephen Gray in 1698 (Phil. Trans., No. 237, p. 45) proposed to use
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a travelling microscope and micrometer screw for reading the level
of the mercury with the utmost precision ([llustr, 57).

These and other more fantastic forms of barometer, however,
have mostly gone out of use for scientific purposes, accuracy now

Ilustr. 57.—Gray's Barometer with Microscope and Micrometer

being sought by refinement in methods of reading the instrument
and in allowance for its various errors, such as those due to the
thermal expansion of the mercury.

The earliest suggestion of the principle of the aneroid barometer,
in which a fluid column is dispensed with altogether, appears to

have been made by Leibniz in letters written to his friends abou
1700,
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Tae Amr-Puup

Of fundamental importance for the study of the physical properties
of gases was the invention of the air-pump by Otto von Guericke,
about the middle of the seventeenth century.

Guericke was born at Magdeburg in 1602, of an aristocratic
family, and he died at Hamburg in 1686, After ecarly studies in
jurisprudence, he turned to mathematics and mechanics ; and amid
the upheavals of the Thirty Years War he spent much time helping

Tllustr. 58 —Guericke’s First Air-Pump

to fortify various German towns. When Tilly’s troops sacked
Magdeburg in 1631, Guericke narrowly escaped with his life, but
later he returned to his native city, helped to rebuild and fortify i,
and became its burgomaster. Guericke shared many of the usual
philosophical notions of his time, and was moved to undertake
his researches in pneumatics by controversies about the vacuum;
but his work was remarkable for an emphasis on experiment, which
was something new in Germany; and he was among those who
prepared the way for the rise of experimental science in northern
Europe.

The exact date of Guericke’s invention of the air-pump is un-
certain, but it cannot have been later than 1654, when he gave a
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public demonstration of its capabilities. There is some reason for
supposing that the bulk of his researches may have been carried
out between 1635 and 1645. The form of the instrument underwent
a gradual evolution in his hands. The earlier types were of very
simple design (see Illustr. 58). The first consisted of a cask well
caulked with pitch and filled with water, which was evacuated by
means of a brass pump having two valves. As the water was pumped
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Muste. 59.—Guericke’s Second Air-Pump

out, however, the air was heard rushing in through the pores of
the wooden cask.” A similar result was obtained when the cask
was completely enclosed in a larger one, also containing water.
Guericke accordingly gave up using wooden vessels, and attempted
instead to evacuate a copper sphere from which he pumped out the
air directly without previously filling it with water (see Illustr. 50).
The labour was heavy, and the sphere collapsed when a certain
degree of exhaustion had been reached, owing, as Guericke realized,
to the pressure of the external air, the vessel not having been made
perfectly spherical. Guericke, however, had another copper sphere
constructed free from this defect, and succeeded in obtaining fairly



(1) sasandsiuag] Sangapdegy s uswadxy s aqouano

0g “nsn[y



Tusir. G

Guericke's Experimenis with Magdeburg Hemispheres (2)
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high vacua. This must have been before 1654, for in that year he
performed some striking pneumatic experiments before the Imperial
Diet assembled at Ratisbon. The most impressive of these was that
of the celebrated “Magdeburg Hemispheres.” Two hollow bronze
hemispheres were fitted carefully edge to edge, and the interior
was evacuated through a stop-cock in one of them which was then
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1lustr. 62.—Weight of Air

closed. A team of eight horses was harnessed to each hemisphere
and the two teams were driven in opposite directions, but they
were unable to pull the hemispheres asunder so long as the stop-cock
was kept closed. (Ilustr. 6o.)

In another experiment it was shown, by means of weights, how
much force was required to separate the two halves of such an
evacuated sphere. (Illustr. 61.)

With his pumps Guericke performed many other interesting
experiments in connection with problems which were later more
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thoroughly explored by Robert Boyle. By weighing a receiver on a
balance before and after evacuation (see Illustr. 62) and showing
that it weighed less when exhausted than when full, Guericke
demonstrated that air has weight, and he arrived at a rough
numerical estimate of the density of air. The fluctuations which he
observed from day to day in the apparent weight of the exhausted
receiver Guericke correctly attributed to small variations in the
pressure of the atmosphere and in its Archimedean upthrust on
the suspended receiver. He also noted that upon allowing air in a
glass vessel to expand suddenly into an exhausted receiver, a cloud
of moisture which showed rainbow colours formed in the vessel,

Originally Guericke had no intention of writing about his dis-
coveries, but he was impelled to do so by the opposition which he
encountered. His book was completed in 1663, but first appeared
in 1672 under the title Experimenta Nova (ut vocantur) Magdeburgica de
Vacuo Spatio. The book deals generally with cosmology, but by far
the most important section is Book III, which bears the title De
propriis experimentis. It forms one of the most weighty and instructive
of the older monographs on physical topics (German translation by
F. Dannemann, in Ostwald’s Klassiker, No. 59).

The earliest published account, however, of Guericke’s air-pump
and of his pneumatic experiments was the work of Kaspar Schott
(1608-66), a Jesuit Professor of Physics and Mathematics at
Wirzburg who, at Guericke's request, repeated his experiments
with his air-pump. Schott was largely out of sympathy with the new
experimental science, and never freed himself from the doctrine
of the horror vacui, which Guericke vigorously combated. Yet he
rendered definite services to the quickening of scientific investiga-
tion in Germany. Like Mersenne, he helped, by his correspondence
with numerous inquirers, to spread tidings of new observations and
discoveries; he suggested fresh problems, and kept controversies
going. Schott’s account of Guericke’s researches appeared in his
Mechanica Hydraulico-Preumatica (1657). It was this work which was
the means of stimulating Robert Boyle to have an air-pump con-
structed, as he had already long purposed to do.

Boyle described this instrument, and his experiments with it, in
his book New Experiments Physico-Mechanicall touching the Spring of
the Air (Oxford, 1660). This air-pump was actually contrived
and constructed, after several attempts, in 1658 or 1659, by Robert
Hooke, as Boyle duly acknowledges. It marked an improvement on
Guericke’s model in several respects, e.g. the receiver could be
evacuated with less labour, and contained an opening at the top
through which objects could be let down, and which could then
be closed with an air-tight stopper. The machine, shown in Illustr, 63,
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consisted essentially of a glass receiver, and a pump with which to
exhaust it, the whole being supported on a wooden framework.
The receiver had a stop-cock opening into the barrel of the pump.

K

Ilustr. 63.—Bovle's First Air-Pump

The latter consisted of a brass cylinder, a piston in the form of a
leather pad which fitted the cylinder closely and which was raised
and lowered by means of a rack and pinion operated by a crank,
and a valve consisting of a hole in the cylinder which could be
stopped with a brass peg, or unstopped, at will. At the downward
stroke of the pump the stop-cock was opened and the valve was
closed, so that air was withdrawn from the receiver; at the upward
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stroke the stop-cock was closed and the valve opened, so that this
air was expelled from the apparatus, and so on for successive strokes.

Boyle’s second air-pump resembled the first, except that the
cylinder was immersed in water and the glass receiver. resting on a
shelf at the side of the apparatus was evacuated by a pipe cemented

Ihustr. 64.—Boyle's Second Air-Pump

into a groove in the shelf and with its orifice projecting upwards into
the receiver to be evacuated. A stop-cock was arranged between the
cylinder and the receiver.

Boyle's third air-pump was double barrelled. BB are two hollow
pistons, with two valves CC opening outwards to allow air to escape
and prevent its re-entry. DDDD are connecting rods. GGG is a
cord connected to the stirrups and passing over pulley H. LL, two
valves at the bottom of the cylinders, opening inwardly to admit ajr
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from tube MM, which reaches via PPQQ to Plate O, on which the
receivers, such as R, are placed, the plate O being bored in the
middle. The engine was supported on a wooden frame; and water
was poured through the orifice of Q) in the plate O in a quantity just

more than sufficient to fill
the cylinders. The pumper
stood in the iron stirrups, EE,
and raised and depressed each
alternately with his feet.

With this apparatus Boyle
and Hooke performed numer-
ous experiments. They noted
that, in the partial vacuum of
the receiver, small animals
were suffocated: a candle
flame went blue and was soon
extinguished; glowing coal
lost its redness, though the
gunpowder priming of a pistol
could still be discharged, and
the sound of a suspended
watch could no longer be
heard, though the attraction
of a magnet upon a compass-
needle was unaffected. They
found that closed bladders,
partially filled with air and
placed in the receiver, swelled
and finally burst as the air
was pumped out, while warm
liquids broke into spontaneous
chbullition. In the presence of
Wallis, Ward, and Wren,
Boyle proved experimentally
that the column of mercury
in the barometer is supported
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Illustr, 65.—Boyle's Third Air-Pump

by atmospheric pressure. He did so by setting up a barometer in
the receiver with its top projecting through the stopper, and noting
the gradual fall of the column as the air was pumped out, and its
re-ascent when air was once more admitted. By weighing in the
exhausted receiver the air contained in a bladder, Boyle also arrived
at a rough estimate of the density of the air. He noticed what
appears to have been a luminous electrical discharge in the
exhausted receiver, but was unable to account for it.
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Stimulated by Boyle s work, Guericke constructed an improved
air-pump, shown in Ilustr. 66. The instrument was mounted on a
tripod screwed to the floor. The barrel Jz of the pump was fixed
at a convenient height between the legs of the iriped, and the

Hlustr. 66.—Guericke’s Improved Air-Pump

piston was worked by means of the lever. The barrel ended in a
tube a (Illustr. 66) into which the conical end of the receive;
was thrust, and under which was a leather valve. This valye
opened at the downward stroke of the pump, and allowed air 1
pass from the receiver to the barrel; at the upward stroke i closed.
and the air was expelled through the external valve. When the
apparatus had been connected up and caulked, the funnel-shapeg
receptacle was filled with water to prevent as far as possible the
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re-entry of air into the receiver. With the same object the lower end
of the barrel was immersed in a water-container (Illustr. 66).

Huygens had his interest in the air-pump awakened by Boyle
while on a visit to London in 1661 ; and he had one made for himself
in that year, with which he later performed many experiments.
His instrument was based upon Boyle's, but contained many im-
provements. Thus the substitution, for the flask-shaped receiver of
Guericke and Boyle, of a dome-shaped vessel inverted over a table
and kept in air-tight contact with the surface by soft cement, seems
to have been an improvement due to Huygens (see his letter dated
December 21, 1661, (Evvres complétes, Vol. 111, p. 414). Huygens
seems also to have introduced the systematic use of a barometer
in the receiver as a means of testing the degree of exhaustion (sce
E. Gerland in Wiedemann's Annalen, 1883, Vol. XIX, p. 540).
Among further improvements in the air-pump during the latter
part of the sevenieenth century were the two-way tap, introduced
by Papin; and the double-cylindered pump, probably intro-
duced by Papin and perfected by Hauksbee, through whom the
design of the air-pump assumed what long remained its standard
form.

Boyle presented his original air-pump to the Royal Society, but
some years later he had another one made for his own use. He
described his further researches with it in his book A Continuation of
New Experiments Physico-Mechanical touching the Spring and Weight of
the Air (Oxford, 1669). He performed many of his earlier experi-
ments again, and also some new one., showing that, in an exhausted
receiver heat could be produced by friction, and sparks by rubbing
steel on sugar, A bunch of feathers fell in the receiver like a stone,
while barely a sound could be heard when a bell suspended in the
receiver was struck by a spring clapper operated by turning an
external handle. Several of these experiments aimed at proving
that the heights to which fluids could be raised by suction or pressure
varied inversely as their specific gravities, other things being equal.
Arising out of these experiments, trial was made by Boyle of the
height to which water could be raised, with an apparatus somewhat
similar to the water-barometer of Guericke. (See Illustr. 67.) He
supported a tube whose upper section was of glass against the wall
of a house. The lower end of the tube was made to dip into a vessel
of water, and the upper end was connected with the receiver of an
air-pump placed on the flat roof of the house some g0 fect above
the ground. Boyle succeeded in raising the water 1o a level of
33 feet 6 inches above its level in the vessel, but continued applica-
tion of the pump produced no further cffect. By comparing the
simultaneous heights of the columns in the water and mercury
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Ilustr. 67.—Boyle's Experiments on the Spring of the Ajr
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barometers respectively, Boyle obtained an improved value for the
relative density of these two fluids.

Tue Pewspurum CLock

Various instruments for measuring time were used in antiquity
and during the Middle Ages, and some of them have survived, if

o

-
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Ilustr. 68.—The Dover Clock (1348)

only as ornaments or toys, to the present day. People are still more
or less familiar with sun-dials (or shadow-clocks), clepsydras (or
water-clocks), and sand-glasses. Burning wax candles, or oil-
lamps, with scales attached, were likewise used as measures of
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fleeting time. During the later Middle Ages crude wheel-clocks
came into use. Such clocks, driven by weights, appcar to have
been used in certain monasteries as early as the eleventh century.
In the course of the thirteenth century the practice arose of placing
such clocks in the steeples of important churches; and the practice
became fairly common in the course of the fourteenth century, These
clocks were regulated either by means of wind-vanes or by means

ETN

Miustr. 6g.—Verge Escapement Iustr. y0.—Galilei's Pendulum Clock

of an horizontal loaded beam or verge. The oldest surviving
example of such a clock is that shown in Illustr. 68, which told the
time at Dover from 1348 to 1872, and is now preserved at the
Science Museum, South Kensington, London. The driving-weight
{not shown) hangs from the rope and turns the cog-wheel, which
engages and sets in motion the adjoining cog-wheel, whose teeth in
turn engage the vertical axis of a horizontal pendulum. The latter
Es set in motion by impulses communicated through two plates on
its axis, which engage the cogs of the second wheel at diametrically
opposite points. The frequency of the oscillations is controlled by
means of sliding weights. The next diagram (Ilustr. 6g) gives
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a clearer idea of the mechanism of such clocks with a verge escape-
ment. AB is a rod (called the “verge”) having a weight attached
to each end. It is fixed at right angles to a horizontal axis C, which
is mounted on pivots close to a
horizontal “crown’ wheel, E.
On the axis C are mounted two
“pallets,” F and G, so as to
engage opposite teeth of the
crown wheel, E, which is made
to rotate by a cord and weight,
H. As the crown wheel rotates
one of the pallets engages with
a tooth in the wheel. This stops
the verge and sets it swinging
in the opposite direction. And,
as the process continues, a
periodic oscillation is kept up
by means of which time can be
measured on a dial connected
with the crown wheel by means
of “wheels within wheels.”

Of all the above-mentioned
clocks the clepsydra was found
to be the least unsuitable for
measuring short intervals of
time, and it continued to be 50
used even in the seventeenth
century. We have already seen
with what ingenuity Galilei
combined the water-clock with
the balance in order to measure
intervals of time short enough
for his experiments on falling
bodies. We shall also see how
Galilei’s discovery of the iso-
chronism of the pendulum was
applied to the construction of a Mlustr. 71.—Bifilar Pendulum
clinical instrument (the pulsilogy
or pulsimeter) for measuring the rate of a patient’s pulse (sec
page 433). It consisted of a pendulum suspended by a thread which
could be shortened or lengthened until the frequency of the vibration
of the pendulum was the same as the rate of the pulse; and an index
of arbitrary units made it possible to make useful comparisons
for medical purposes. Moreover, as has already been explained,
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Galilei near the close of his life devised a means of measuring time
by means of a pendulum which was to be kept in motion by impulses
aut‘umafﬂca]l}r administered, and was to record the number of
oscillations on a dial, by means of clock-work. He explained his
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Hlustr. 72.—Huygens' Clock

project to his son, Vincenzio, and his disciple, Viviani, and they
r:}adc a drawing upon which Illustr. 70 is based. Vincenzio, however
:dmd I:_ncfurc he could complete his father’s plan, and the task o’f‘
inventing the pendulum clock fell to the lot of Christian Huvgens
though the Accademia del Cimento made an important contribuy.
tion by the invention of the bifilar pendulum (Ilustr. 71).
Huygens patented his clock in 1657. A full dﬂcﬁptill-:rn of it is
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given in his Horologium Oscillatorium (Paris, 1673), which deals
besides with numerous mechanical problems which arose out of his
investigations of pendular motion. Huygens' clock is shown in
section in Illustr. 72, which is taken from his book. Like the earlier
clocks it is driven by a descending weight supported by a cord
which is wound on the drum D. The pull of the weight drives the
clock and keeps the pendulum in motion by administering to it
periodic, momentary impulses through an escapement. The pen-
dulum, on its part, regulates the descent of the weight and the
motion of the hands. The essential part of the instrument is the
horizontal escapement-wheel, K, whose teeth alternately act upon
the two pallets, L, L, of a horizontal axis connected with the pen-

Mlustr. 73.—The Cycloidal Oscillation Nlustr. 74.—Cycloidal
of a Pendulum Jaws

dulum. One of Huygens' pendulum clocks is still preserved in
Leiden University, but it is not his first one, as is sometimes alleged
to be the case.

The anchor-escapement now in common use was invented some-
what later. It was introduced into the art of clockmaking by Clement,
a London horologist, in 1680, but had previously been described,
and perhaps invented, by Robert Hooke.

Among the numerous mechanical problems discussed in the
Horologium Oscillatorium is that of constructing an accurately iso-
chronous simple pendulum, which Huygens solved by making the
suspending thread wrap itself alternately about two cycloidal jaws
(Ilustr. 74). Under these conditions the bob itsell describes a
cycloid, which Huygens showed to be an isochronous curve, i.e. the
bob always reaches the lowest point B of its arc in the same time,
from whatever point, P, between A and B it starts. Huygens’
application of this principle to his clock is shown in Illustr. 52;
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but the device was soon rendered unnecessary by the introduction of
the anchor-escapement and by the use of small impulses. Huygens
was also an independent inventor of the balance-spring for watches
(Illustr. 75). He published his book on the pendulum clock at
Paris, and we shall shortly see the important use which Picard
made of his colleague’s invention at the Paris Observatory.

At one time there raged a controversy between the followers
of Galilei and the friends of Huygens concerning the priority in the
invention of the pendulum clock. There is no doubt, however, that
Huygens' invention was made independently of Galilei’s, from

Hlustr. 75.—Huygens® Balance Spring

which it differs essentially in principle. While Galilei had attempted
to apply clockwork to the pendulum, Huygens applied the pendulum
to the existing form of the clock, in place of the old balance.

Marine INsTRUMENTS

The seventeenth century witnessed the invention or the intro-
duction of a number of scientific instruments for special use at sea.
The most important of these were Huygens' marine clock, that is
his pendulum clock especially adapted for use on ships; a new kind
of sounding instrument, invented by Hooke, for ascertaining the
depth of the sea without the use of a line; and another instrumen
also invented by Hooke, for procuring samples of sea-water :

’ SR from
any desired depth. Other scientific instruments, such as mag

netic
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dipping needles, wind gauges, and hydrometers, also came gradually
to be regarded as part of the regular equipment of ships going on
distant sea voyages,
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Ilustr. 76.—Huygens' Marine Clock (1)

HUYGENS' MARINE CLOCK

About 1659 Huygens designed a marine clock, i.e. a clock in-
tended to show standard time at sea for the purpose of determining
longitude, and within a year or two several of these instruments
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had been constructed. In this work Huygens had the assistance of
Alexander Bruce, Earl of Kincardine, who had taken refuge in
Holland for political reasons. The marine clock was regulated by
a short pendulum beating half seconds (Illustrs. 76 and 77). The
bob, which was supported by a V-shaped bifilar suspension so as to
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Illustr. 77.—Huygens® Marine Clock (2)

swing in one plane, can be seen in the figure above the base of the
instrument, together with the movable weight on one of the sus.
pending cords, which could be raised or lowered so as to regulate
the rate of the clock. The cords wrapped themselves at each swing
on cycloidal cheeks so that the bob performed strictly isochronous
vibrations. The clock was kept in motion by a coiled spring which
was regulated by the pendulum through a verge escapement, The
crown-wheel, which was horizontal, was not moved by the direct
action of the spring, but by impulses from a periodically falling
weight which was wound up by the spring between successive
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impulses. This so-called remontoire, forms of which seem to have been
known from the beginning of the seventeenth century, received
manifold developments in the subsequent history of clockmaking.
Its function was to maintain the driving force at a practically con-
stant value. The instrument was weighted below by a heavy leaden
counterpoise, and was to be slung in gimbals amidships, so as to be
as little affected as possible by the
motion of the ship. Lord Kincar-
dine tested two of these marine
clocks at sea, and was satisfied with
their performance. They also proved
of service to an expedition to the
Guinea Coast under Holmes in
1664 (Phil. Trans., Vol. I). But they
must have been unsatisfactory ex-
cept in very calm weather. Later,
Huygens made some experiments
on the use of the balance spring to
control marine clocks, but he did
not bring this scheme to practical
fruition.

HOOKE'S S0UNDING INSTRUMENT

In 1666 some instructions to
seamen bound on distant voyages
were drawn up by the Royal Society
(Phil. Trans., 1666, No. g, and 1667,
No. 24). These instructions contain
a description of a contrivance
invented by Hooke for estimating
the depth of the sea without using
a line. It consisted of a ball of light  1ilusir. 78.—Hooke's Sounding
wood A, and a mass oflead or stone, Instrument
D, sufficiently heavy to sink the first
in water (Illustr. 78). The ball D was hung from A on the end, F, of a
spring which was kept bent by interposing the ring E between the
end of the spring and the staple B. The whole was to be allowed to
sink in the sea where the depth was to be measured, and the shock
of D upon the bottom would release the spring C, so that the ball A
could rise to the surface. The time between the immersion of the
apparatus and the reappearance of the wooden ball at the surface
was to be measured by a watch, minute-glass, or seconds pendulum,
and would enable the depth of the sea to be estimated when tables
had been constructed on the basis of observations with the instru-
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ment at known depths. To this end trial was made of the apparatus
in the Thames,

HOOKE'S SEA-WATER SAMPLER

Another instrument was proposed by Hooke for

bringing up
samples of water from any desired depth of the sea

(Hlustr. 5g).

Mustr. 79.—Hooke's Water-Sampler

As the apparatus sank in the sea, the resistance of the water kept
open the ends, E, E, of the box C, but when 1

he: apparatus was

pulled up by the line F the box sank to the position G, where it was
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supported by the handles D, D, to the ends of which the doors E, E,
were fixed. In this position the box was closed, and water could
neither enter nor leave it. Thus it was possible to procure a specimen
of the water at the greatest depth to which the apparatus was lowered.
Various forms of sinking weights were to be employed for different
depths,

DIPPING NEEDLES, ETC.
In the course of further instructions to sailors (Phil. Trans.,
Vol. 11, No. 24), they were recommended to carry dipping needles

Tllustr. 8o.—Dipping Needle Tlustr. B1.—Boyle's
Hydrometer

(1llustr. 8o) for measuring the angle of dip of a mapnetic needle
suspended al its centre of gravity, and free to turn in the magnetic
meridian. They were to keep a register of the direction and strength
of the wind at all places where they might happen to be. For
obtaining numerical measurements of the strength of the wind,
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Hooke's apparatus, shown in Illustr. 176 (p. 309}, was recommended.
It worked somewhat like the drogue in a modern aerodrome. A flat
board swung freely by an arm which travelled over a graduated
dial as the board was blown outward by the wind, whose strength
was thus measured in arbitrary units. The dial acted as a wind-vane
to keep the board facing the wind.

Measured volumes of the sea-water at various places were to be
weighed and the specific gravities compared, account being taken
of temperature. The water could then be evaporated to dryness
5o that the salt could be weighed and the salinity estimated. A
hydrometer was also recommended for comparing the specific
gravities of various samples of sea-water. As improved by Boyle
(Illustr. 81), this instrument consisted of a sealed, bulbous tube
containing so much mercury as just to float in fresh water. When
immersed in other liquids it sank to various depths which could be
compared by means of graduations engraved on the stem with a
diamond. (Hooke’s instruments, above described, for ascertaining
the depth of the sea, and procuring samples of water from below
the surface, are again explained in this paper in Phil. Trans., No. 24.)

(See E. Gerland and F. Traumilller, Geschichte der physikalischen
Experimentierkunst, Leipzig, 1899; C. Dobell, Antony van Leewwenhoek
and his “Little Animals,” London, 1932; R. T. Gunther, Early Science
in Oxford, vols. I and 11, Oxford, 1923; R. S. Clay and T. H. Court,
The History of the Microscope, London, 1932; H. Servus, Die Geschichie
des Fernrokrs, Berlin, 1886; R. T. Gould, The Marine Chronometer, its
History and Development, London, 1923; J. A. Repsold, Jur Geschichte
der astromomischen Messwerkzeuge, Leipzig, 1908; E. Rosen, The Naming
of the Telescope, New York, 1947; F. S. Taylor, “The Origin of the
Thermometer,” Annals of Science, 1942, vol. 5, 120-156. Some of
Hooke’s works have been republished in vols. VI, VII, VIII, X
and XIIT (1930-38) of R. T. Gunther's Early Science in Oxford,
together with an account of his life and his diary from 1688 to 16g3:
see also The Diary of Robert Hooke, M.A., M.D., F.RS., 1672-1680,
edited by H. W. Robinson and W. Adams, London, 1935.)



CHAPTER VI

THE PROGRESS OF ASTRONOMY: TYCHO BRAHE
AND KEPLER

Tue Copernican theory of the solar system chiefly commended
itself to astronomers by the improved planetary tables which accom-
panied it. The original tables which Copernicus himself had com-
puted were revised and enlarged some years after his death by
Erasmus Reinhold, who called his edition Tabulae Prutenicae (1551)
in honour of his patron the Duke of Prussia. But the observational
data at the disposal of Copernicus and Reinhold were few and
questionable, and the tables based upon them were far from giving
an accurate representation of the actual motions of the planets. I
was clear that little progress could be made towards securing
correct tables until a stock of accurate and systematic observations
of the planets had been obtained. Accordingly the history of
astronomy in the latter half of the sixteenth century is concerned
chiefly with the attempts that were made to meet this need. The
outstanding figure of the period was the Danish astronomer Tycho
Brahe, who recognized the need of the time most clearly and did
most to supply it.

Tue Lire oFr TvcHo BrRAHE

Tycho Brahe was born on December 14, 1546, at Knudstrup in
Scania (now in southern Sweden, but then a part of Denmark). He
was the son of a Danish nobleman, and went as a boy to Copen-
hagen University. While he was there the occurrence of a solar
eclipse at its predicted time awakened his curiosity, and turned
his attention towards astronomy. He neglected his regular studies,
secured and read the works of Prolemy, and made his first recorded
astronomical observation in 1563, on the occasion of a conjunction
of the planets Jupiter and Saturn. Even the crude, home-made
instruments at his disposal sufficed to reveal to Tycho the serious
discrepancies between the positions of the planets as calculated
from the Prussian or other tables and the positions actually observed.
He seems already to have recognized the necessity of basing planetary
tables upon a prolonged series of systematic and accurate
observations,

After leaving Copenhagen, Tycho studied successively at the
Universities of Leipzig, Wittenberg, Rostock, and Basle, everywhere
sceking out the leading teachers of mathematics and astronomy,
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making observations from time to time, and occasionally producing
astrological prognostications. In 1570 Tycho returned to Denmark,
where he seeins to have devoted himself for some time to chemical
researches. But his interests were soon recalled to astronomy by
the appearance of a remarkable new star, in the constellation Cassio-
peia, in November 1572, This phenomenon remained visible for
some cighteen months, during which Tycho repeatedly measured
its angular distances from neighbouring stars by means of a home-
made sextant. From these data he was able to draw an important
conclusion, as will be related in due course. He traced the
changes in the brightness and colour of the star throughout its
period of visibility, and published an account of it, De Nova Stella,
in 1573.

Shortly afterwards, in the course of a tour through Europe,
Tycho visited the Landgrave Wilhelm IV of Hesse, a keen astronomer
who had built an observatory with a movable roof at Cassel, and
was already employing a crude type of clock. At the request of the
Landgrave Wilhelm, the King of Denmark, Frederick 11, decided
in 1576 to extend his patronage to Tycho, who was offered a pension
and the island of Hveen, in the Sound between Copenhagen and
Elsinore, as a site for an observatory. Tycho accepted the offer, and
built at Hveen a castle and observatory which he called Uraniborg
(the Tower of Heaven). Surrounded by gardens, and sumptuously
furnished, it comprised, besides observing apartments, a workshop
in which nearly all the instruments were constructed, a library, a
chemical laboratory, printing offices, etc. Besides his annual pension
from the King, Tycho received the incomes from a number of
farms and estates, and from a prebend of Roskilde Cathedral, and
occasional lump sums to pay the debts into which he ran from
time to time through his lavish expenditure. Aided by his children
and by a band of assistants, Tycho continued observing at Hveen
from 1576 o 1597.

In 1588, however, the King of Denmark died, and Protectors
were elected to govern the country during the minority of the young
Prince. Soon afterwards Tycho began to lose favour with the Court,
which had never taken much interest in his work. He appcears to
have been tactless in his dealings with the nobles, extravagant with
money, and oppressive towards his tenants, and he neglected certain
obligations attached to his prebend of Roskilde. In consequence
he was gradually deprived of his emoluments, and in 1597 he left
Uraniborg with his family. After a short stay in Copenhagen he
went to visit a German nobleman near Hamburg, where he wrote
an account of his life, and of his instruments and methods, Astrons-
mige instauratae Mechanica, which appeared in 1598, In the same
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year Tycho was invited to Prague by the German Emperor
Rudolph II, who in 1599 granted him a pension and installed him
in a castle near the city, which Tycho fitted up as an observatory.
While waiting for his instruments and books to be brought to him
from Hveen, Tycho looked about for assistants to aid him in his

Ilustr. 82.—Tycho Brahe's Observatory, Uraniborg

future researches, It was at this stage that he was joined by Johann
Kepler, a young German astronomer. Kepler had attracted Tycho's
notice by sending him a copy of his book, Mysterium Cosmographicum,
which had been published in 1596. Early in 1600 Kepler arrived on
a visit to Tycho, who engaged him as an assistant. Soon afier this
Tycho moved into Prague so as to be near the Emperor, and for a
brief space resumed his observations. But before he could settle
down to systematic work he was overtaken by sudden illness, and
died on October 24, 1601,
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Tycao Braue's CoNTRIBUTIONS TO ASTRONOMY

There were not many problems in precise astronomy which Tycho
Brahe did not attack, and few important astronomical constants
which he did not determine with an accuracy not before attained. His
work was destined to bear its richest fruit after his death, but even
during his lifetime his diligence and the refinement of his instruments
and methods enabled him to make several important discoveries.

Illustr. 83.—The Universe according to Tycho Brahe

The earliest of his discoveries arose out of his observations of
the new star in Cassiopeia, already alluded to. He was able to show
that the new star showed no appreciable daily shift (parallax)
relatively to the surrounding stars, as it would have done had it
been as near to us as the Moon. Nor had it any proper motion such
as a planet possesses. He concluded that the new star must belong
to the region of the fixed stars—a region in which, according to the
accepted Aristotelian cosmology of the time, no physical changes
could occur. Tycho was later led to a somewhat similar conclusion
concerning comets. He observed a series of these celestial bodies,
beginning with the great comet of 1577, and was able to prove
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that they showed no sensible daily parallax, and hence must be
considerably more remote than the Moon. His account of the comet
of 1577 appeared in 1588 as De Mundi aetherii recentioribus phaeno-
menis. This was intended to be a part of a larger work, Astronomiae
instauratae Progymnasmata, which was never completed. ;

It was in this volume of 1588 (Chap. VIII) that Tycho also outlined
his theory of the solar system, hoping later to develop it in detail.
He rejected the Copernican system in favour of a scheme of
his own in which the planets
Mercury, Venus, Mars, Jupiter,
and Saturn revolve about the
Sun, while the Sun and Moon
revolve about the Earth. Each
of these bodies revolves in its
own distinctive period, and, in
addition, they all share with
the sphere of fixed stars in a
daily revolution about the
Earth, which is the immovable
centre of the universe (see
Hlustr. 8g).

Tycho's reasons for abandon-
ing the Copernican system were
that the alleged motion of
the heavy and sluggish Earth
seemed to be contrary to the
principles of sound physics and
to the words of Scripture.
Further, it had been known
from antiquity that a revolu-  [llustr. 84.—Tycho Brahe's Giant
tion of the Earth about the Sun Quadrant
would necessarily produce an
annual parallactic shift in the apparent positions of the stars.
No one had ever observed such a shift; Tycho himself could not
detect it; and hence, if it existed, it must be so small as to remove
the stars to an incredible distance from the Earth. It was not,
however, as a theorist but primarily as an observer that Tycho
Brahe rendered the greatest services to asironomy; and to his
observations we must now turn,

Tycho's earliest observations were made with such crude and
portable instraments as were then in use among navigators. A con-
siderable advance on these, however, was shown by a giant quadrani
which he designed for the burgomaster of Augsburg, while on a
visit to the city in 1569, This instrument, shown in Illustr. 84, was
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about 19 feet in radius, the framework being of wood, and the
graduated limb of brass. The quadrant could be turned by levers
about a vertical axis, and also, in its own plane, about its centre,
so that the two sights (shown on the right-hand radius) could be
set upon any celestial object above the horizon. The altitude of
the object was read, to fractions of a minute, off the graduated
scale with the aid of a plumb-line,

The instruments later constructed and employed by Tycho
Brahe at Uraniborg were of several different types. Some were
based on the armillary sphere of the ancient astronomers, which
consisted of a combination of concentric, graduated metal circles
representing the various circles of the celestial sphere, and which
was employed to determine the celestial longitudes and latitudes
of stars, etc. Tycho modified this type of instrument so that it
gave instead right ascensions and declinations, and in so doing
he reduced the number of circles required, and increased the
symmetry of the instrument.

There were also in Tycho's observatory a number of other in-
struments cach consisting essentially of some sector of a circle
(quadrant, sextant, or octant) made of wood or metal, having at its
circumference an accurately graduated metal rim and, at its centre,
an accurately located sight. A movable sight was provided which
cither slid up and down the graduated metal are, or was carried
over it by a radial arm or alidade turning about the centre of the
sector. These instruments were mounted on ball-and-socket sup-
ports, and so could be set in the plane determined by the observer’s
eye, and any two stars whose angular separation was required. To
determine this angle the line of sights was directed to each star in
succession, and the setting of the movable sight was in each case
read off the graduated limb, when the difference of the two readings
would give the angular separation of the stars. Sometimes two
movable sights or alidades were available, when the two settings
could be made simultaneously by two observers, and errors due
to the diurnal motion of the stars could be thus avoided. Such a
sector could be set up in the plane of the meridian with one end
of the graduated arc vertically below or above the central sight,
and could then be used to measure the altitudes at which celestial
objects crossed the meridian. This latter type of instrument was
exemplified in Tycho's celebrated Mural Quadrant (Illustr. 85).

Tycho also constructed quadrants which could be rotated into
any vertical plane so as to measure both the azimuth and the
altitude of any celestial object in that plane. One of these instru-
ments, to which the modern theodolite is analogous, is shown in
Hlustr, 86.
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Such observations were the more important as, in the absence
of clocks, the time had frequently to be deduced from the observed

Ilustr. 85.—Tycho Brahe's Mural Quadrant

altitude of some known star or other celestial body. Tycho, indeed,
possessed several of the imperfect clocks available in his day, and
experimented with clepsydras of various types. But for accurate
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work he relied almost exclusively on the measurement of angular
magnitude by such instruments as we have mentioned.
Previously to Tycho, increased refinement in the graduation of
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Hlustr, 86.—Tycho Brahe's Theodalite

scales 'had been sought by using very large instruments, but there
was always a danger of these becoming distorted under their own
weight. Tycho, however, was able to employ several then recently
invented devices for graduating scales, Among these was 1he
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Nonius, so called after its inventor, Nunez, in which the metal
limb of the sector was engraved with a number of concentric arcs
each divided into a different number of equal parts. The setting
of the alidade could, in theory, be read to minutes and seconds
by noting the division with which the fiducial line coincided, and
the particular circle upon which that division lay. But in practice
the graduation of instruments in this manner presented great diffi-
culties, and Tycho ultimately adopted the “method of transversals”
which is familiar to us as the basis of the diagonal scale. The vernier
now used so extensively in physical and astronomical instruments
was not described until 1631. Tycho also made important improve-
ments in the construction of the sights by means of which the
alidade of an instrument was directed towards a star.

Aided by such devices, by the excellent workmanship of his
instruments, and by his own acuity of vision, Tycho developed
extraordinary accuracy of observation. He reduced the margin
of error by the repetition and combination of observations, so that
the co-ordinates of the standard stars in his catalogue were defined
with probable errors of the order of only 25 seconds. Moreover, he
adopted an essentially modern attitude towards instrumental errors.
Recognizing that these must exist, however careful the construction
of any given instrument, he sought to detect them from suitable
combinations of observations, and thenceforward applied them as
corrections to all observations with that instrument.

Tycho's observations were thus sufficiently refined to be appre-
ciably affected by atmospheric refraction. He endeavoured to correct
this factor by investigating how the Sun’s apparent declination (or
distance from the celestial equator) varied with its altitude above
the horizon, using the results of these and kindred observations for
the construction of the earliest empirical refraction tables. Since,
however, these involved a grossly exaggerated estimate of the Sun's
parallax, they were misleading.

A knowledge of the topography of the fixed stars which form the
background to the movements of the planets is of fundamental
importance in precise astronomy. Tycho accordingly devoted much
time at Hveen to the determination of star-places, and produced a
catalogue which, upon its publication in 1602, superseded the
antiquated catalogue in the Almagest of Prolemy. Tycho's usual
procedure was to determine the declinations of stars directly by
measuring their meridian altitudes, and to determine their right
ascensions (or celestial longitudes) indirectly by means of a chain of
comparisons in which the Sun, the planet Venus, and suitably
selected standard stars, formed the connecting links. Venus was
chosen to serve as intermediary between the Sun and the stars
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because, when suitably placed, this planet is visible both by day and
by night. Hence the difference in right ascension of Venus and the
Sun could be obtained during the day (by measuring their respective
declinations and their angular separation), while the difference
in right ascension of Venus and a selected star could be similarly
obtained the following night, when both Venus and the star were
above the horizon. By combining the two results the difference in
right ascension of the Sun and the star could be deduced, allowance
being made for the travel of Venus between the observations. All
that was now needed to define the star’s place was the absolute right
ascension of the Sun at the time of observation ; and this was known
from tables which were ultimately based upon Tyche’s absolute
determinations of the constants of the Sun’s apparent orbit. Having
thus determined the co-ordinates of a few selected stars in various
parts of the sky, Tycho was able to dispense with Venus and the
Sun and to use these stars as a standard scale of reference for the
determination of further star-places. In this manner 777 star-places
were accurately defined, but this number was later, and somewhat
hurriedly, brought up to 1,000. Comparison of his right ascensions
with thosz recorded by ancient and mediaeval observers led Tycho
to an accurate estimate of the rate of precession of the equinoxes;
and he gave up the long-established notion that this rate is subject
to serious fluctuations in value.

Tycho made systematic observations of the Sun's meridian alti-
tude throughout the year, and was thus able to improve upon the
accepted values of the chief constants of the Sun’s apparent orbit
(eccentricity, longitude of apogee, length of the year, elc.). He
could thus compute the accurate solar tables which, as we have scen,
were required for the determination of the absolute right ascensions
of stars. His instruments, with their open sights, were not sufficiently
refined to enable him to correct the gross underestimate of the
Sun’s distance, which had come down from Ptolemy, and which had
been modified only slightly by Copernicus.

During his years of work at Hveen, Tycho made regular deter-
minations of the Moon’s position at all points of her orbit, and it fell
to him to make the first important advances in lunar theory since
Prolemy. He was in all probability the earliest to discover the
inequality called the variation, which is now known to arise from
the fact that the Earth and the Moon, when at different distances
from the Sun, are attracted by the Sun with different intensitics,
this difference operating as a disturbing force, alternately accclera-
ting and retarding the Moon in its orbit, He also recognized and
allowed for another inequality, the ennuwal equation, which is due to
a yearly fluctuation in this disturbing force. This latter effect was
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independently discovered by Kepler. Tycho further detected
fluctuations in the inclination of the Moon’s orbit to the ecliptic
(the Earth's orbit or the Sun’s apparent orbit), and in the rate at
which the nodes of the orbit travel round the ecliptic.

Of the greatest importance for the future progress of astronomy
were Tycho Brahe's observations of the planets. He commenced
these at an early age, his procedure being to measure the angular
distances of a planet from adjacent stars with such crude instruments
as were available. He continued this task with his mural quadrant
and armillary spheres throughout his years of work at Hveen, but
his early death deprived him of the opportunity of developing
a numerical planetary theory on the basis of the observations so
obtained. On his death-bed Tycho committed this task to Kepler;
and the story goes that he exhorted him to fashion the new theory
in accordance with the Tychonic, and not the Copernican, planetary
system. To learn how the task was fulfilled we must follow the career
of Johann Kepler.

Tue Lire or KEPLER

Johann Kepler was born December 27, 1571, at Weil, near Stutt-
gart, the son of a Protestant officer in the service of the Duke of
Wiirtemberg. From his earliest years Kepler was dogged by ill-
health, and his parents were crippled by poverty. The Duke,
however, had him educated at the monastic school of Maulbronn,
and he passed from there to the great Protestant University of
Tiibingen, where he took his MLA. degree in 1591. Kepler's early
studies were mainly theological, but at Tibingen he made the
acquaintance of Michael Mistlin, the Professor of Mathematics and
Astronomy there. Mistlin awakened his interest in these subjects
and converted him to the Copernican doctrine as, according to some
accounts, he had already converted Galilei. The growing freedom
of Kepler’s opinions made him ineligible for a career in the Church,
where a rigorous orthodoxy then prevailed. He was glad, for the
time being, to obtain a post as lecturer in astronomy at Graz, in
Styria. Here, in his spare time, he began those researches on

tary problems which he pursued throughout his life, and which
ultimately led him, after many failures, to his great discoveries.
The fruits of his earliest speculations in this direction appeared in
1596 in his work Prodromus Dissertationum Cosmographicarum comtinens
Mpysterium Cosmographicum. He sent a copy of this book to Tycho
Brahe, and we have seen how this led to correspondence between
the two astronomers, and to an invitation from Tycho for
Kepler to visit him at Prague. Very soon afterwards the growing
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persecution of Protestants in Styria forced Kepler to withdraw
hurriedly into Hungary. He returned to Graz for a short space,
but, in view of the changed conditions there, resolved to visit Tycho,
and arrived at Prague early in 1600. He was cordially received by
Tycho, who set him to work on the reduction of his planetary
observations, There were a few initial difficulties in the relations of
the two astronomers, due to their embracing different cosmaological
theories, and also to uncertainty as to Kepler's status. But during
the last year of Tycho’s life they worked amicably together, and
we have seen how Kepler received from Tycho on his death-bed
the treasure of his accumulated observations. Shortly before Tycho's
death Kepler had received from the Emperor Rudolph the title of
Imperial Mathematician ; and he now succeeded to Tycho's position.
The retrenchment of his salary, however, and the irregularity
with which it was paid, kept him in constant financial difficulties
and forced him to turn to teaching and the practice of astrology
for additional income. “Mother Astronomy (he is reported to have
said) would certainly starve if daughter Astrology did not earn
the bread of both.” In 1612 he left Prague for Linz, where he
taught mathematics and supervised surveying operations. But
despite these interruptions Kepler pressed on with his twofold
task, first of working out a planetary theory in harmony with the
doctrines of Copernicus, and secondly of constructing tables of the
planetary motions, on the basis of Tycho's observations, which should
supersede the inaccurate tables then in use. How Kepler succeeded
in this task we shall relate in due course. The completion of the
tables was delayed by shortage of money, by religious hostility, and
by other interruptions. On one occasion Kepler had to hasten to
the assistance of his mother, who had been brought to trial on a
charge of witchcraft. He was at length forced to leave Linz for
Ulm, and it was here that, in 1627, he published his Tabulae
Rudolphinae, so called in honour of his old patron, the Emperor
Rudolph, who had died fifteen years before. With the publication
of his tables Kepler's work was practically at an end, and only a
few more years of wandering life remained to him. For a time he
associated himself with Wallenstein, who was then at the height
uf’hia power. The Imperialist leader valued Kepler for the sake of
his services as an astrologer, and he made him Professor of Astronomy
at Rostock. After the fall of Wallenstein, Kepler journeyed to
Ratisbon to claim the arrears of his salary from the Diet, but was
attacked by fever upon his arrival and died November 1 5, 1630,
He was buried outside the gates of the city, but all trace of his
grave was swept away during the Thirty Years War,



THE PROGRESS OF ASTRONOMY 133

KerLER’s CONTRIBUTIONS TO AsTRONOMY

From the time of his earliest researches Kepler was inspired by the
belief that God had created the world in accordance with some pre-
existent harmony, certain manifestations of which might be traced
in the number and sizes of the planetary orbits, and in the motions
of the planets therein. This attitude to nature was probably not
unconnected with the revival of Pythagorean ideas in the Italian
Universities of the time—a movement which had already inspired
Copernicus.

The results of Kepler’s first attempts to discover simple relations
or harmonies underlying the construction of the universe were set

&

lllustr. 87.—The Five Regular Solids

forth in his Mysterium Cosmographicum (“The Mystery of the Uni-
verse”) of 1596. In this book are the germs of all his future inquiries,
He seems to have tried, in the first instance, to find simple arith-
metical proportions between the distances of the several planets
from the Sun. He supposed that certain of these distances might be
simple multiples of others; but no such rule emerged. Kepler next
tried simple geometrical relations. He constructed a series of regular
polygons of such sizes that a circle could be inscribed in each and
at the same time circumscribed to the succeeding member of the
serics, He thought that the radii of successive circles might be pro-
portional to the distances of successive planets; but here again he
was disappointed. This last attempt, however, led him on to calculate
the radii of the pairs of spheres which can be severally inscribed
and circumscribed to the five regular solids (Illustr, 87) to see whether
there might be any cosmic significance in these. The result satisfied
him that he had discovered one of the fundamental secrets of the
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universe. The radii of the inscribed and circumscribed spheres of
an octahedron were tolerably proportional to the greatest distance
of Mercury and the least distance of Venus, respectively, from the
Sun. Similarly the radii of the inscribed and circumscribed spheres
of an icosahedron were found to represent the greatest distance
of Venus and the least distance of the Earth. The dodecahedron,

Illustr. 88.—Kepler's Conception of the Planetary Spheres

tetrahedron, and cube could similarly be interpolated between the
successive orbits of the Earth, Mars, Jupiter, and Saturn (Illustr, as),

The existence of only six planets (as then known) seemed thus
to be connected with the existence of only five regular solids. The
numerical agreement of the planetary distances, calculated from this
scheme, with those deduced from observation was, indeed, im-
perfect ; but Kepler could, at that time, reasonably attribute these
discrepancies to faulty observations,

The Mpysterium Cosmographicum contains also a valuable defence
of the Copernican planetary system as against the Ptolemaic.
Attention is drawn to the fact that the motions of the superior
planets in their principal (Ptolemaic) epicycles are simply replicas
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of the Earth’s motion in its annual (Copernican) orbit. Kepler,
however, did not hesitate to break away from the practice of
Copernicus in several important respects, in order to bring the data
into closer agreement with his theory. Thus Kepler defined the
orbits of the planets with reference to the Sun and not, as Copernicus
had done, with reference to the centre of the Earth’s eccentric orbit,
This was a valuable step towards Kepler's subsequent discoveries;
and the data, when recalculated on this basis, were more favourable
to his ingenious hypothesis concerning the regular solids. The more
accurate data later available, however, did not bear out the hypo-
thesis, and noscientific significance is now attached toit. However, the
hope that improved measurements of the planetary distances would
confirm his surmise was one of Kepler's motives for seeking access to
Tycho Brahe’s store of observations ; and the Mysterium Cosmographicum
was the means of introducing him to the Danish astronomer.

Tycho was always rather secretive in the matter of his observa-
tions, but he soon set Kepler to work on perfecting a theory of the
motions of Mars upon which Longomontanus, one of Tycho’s old
assistants at Hveen who had followed him to Prague, was then at
work. Tycho claimed that, by a suitable combination of epicycles,
etc., the theory had already been made to fit his observations of
the longitude of Mars when in opposition to the Sun within two
minutes of arc. When a planet is in oppesition to the Sun its longi-
tude measured from the Earth is the same as its longitude measured
from the Sun; but, between oppositions, the distance of the Earth
from the Sun is sufficient to produce an appreciable angle (helio-
centric parallax) between the apparent direction of the planet as
viewed respectively from the Earth and from the Sun. Tycho’s theory,
as it was laid before Kepler, could not account at all satisfactorily for
the observed heliocentric parallaxes of Mars, nor for the observed
deviations of the planet from the plane of the ecliptic. Moreover, its
agreement with observations at opposition had been exaggerated.
The oppositions upon which Tycho had based his theory were
oppositions to the mean position of the Sun, and not to its frue
position. Kepler objected that this complicated the study of the
planet’s apparent motion by introducing into the problem any
uncertainties affecting the Sun's apparent motion. Again, whil-
Tycho had supposed the Sun to describe a circular orbit with -
uniform angular velocity about its centre, Kepler assigned thi
motion to the Earth, but with an important modification, namel:
that the angular velocity was uniform neither about the cexn:-
nor about the Sun, but about a third point, the equani. He made th:
same assumption provisionally with regard to the other planets. He
endeavoured, however, to keep faith with Tycho by developing his
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planetary theory along three parallel lines, namely in accordance
with the Ptolemaic, Copernican, and Tychonic systems respectively.
But every step in the process convinced him more and more of the
scientific accuracy of the Copernican system.

Tycho's early death left Kepler a free hand. Assuming Mars to
have such an orbit as that described, his first task was to determine
its fundamental elements from a combination of suitably chosen
observations. He found immediately that the plane of such an
orbit would pass through the Sun, and that its inclination to the

ecliptic would be invariable and un-
affected by such periodic oscillations
as had always been assumed in pre-
vious planetary theories, His efforts to
determine the apse-line and eccentri-
I city of the orbit and the position of
the equant from four positions of the
planet at true opposition cost Kepler
much labour. He could proceed only
by a method of trial and error, and
B the seventy trials which he had to
Illustr, 8o.—Diagram to Explain n:!nkc before he succeeded E:} fitting
Certain Technical Terms in the his theory to the data occupied four
Astronomy of Kepler, etc years. The theory so obtained from
four oppositions admirably fitted all
Tycho's other observed oppositions. But it failed seriously to account
for the observed latitudes of the planet, and even for its longitudes
when not in opposition.!

1 Most of the technical terms involved in the deseription of Kepler's planctary
theories may be explained by reference to Illustr, Bg. In the simplest possible
form of the heliocentric theory a planet (P) would uniformly describe a circle
(APB) having the Sun at its centre (C). Variations, however, were detected
in the angular velocity of the planet about the Sun, and in the length of the
radius pector, that is the straight line (SP) drawn from the Sun to the planet.
Hence it was necessary to suppose that the Sun (S) was not at the centre (C) of
the planet’s orbit (which thus became an sccemiric circle), and further that the
centre about which the planet’s motion was uniform lay neither at C nor at §,
but at some third point E (eguant). The system might be further complicated by
making the planct describe a small circle (rpicyele) about its mean position, which
meanwhile traversed the circle APB (deferent). The points A and B in which C5,
when produced in both directions, met the orbit, were the apses, A being the
pearer apse, or perikelion, and B the farther apse, or aphelion, and AB the apse-line.
The ratio CS to CA was the seceniricily. When subsequently Kepler's circular orbit
gave place to an ellipse, the apse-line became the major axis of the latter, and the
Sun occupicd the focus. The plane of the planet’s orbit about the Sun is inclined
at a certain angle (inclinafion) to the plane of the Earth’s orbit (ecliptic), angle ASI,
and the two planes intersect cach other in a straight line (fine of nodes) passing
through the Sun, and cutting the planet's orbit in the two nodes N, N, The
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Kepler was thus obliged to begin his task again. Adopting
Prolemy’s procedure of “bisecting the eccentricity,” i.e. locating
the centre of the orbit midway between the 5Sun and the equant, he
reduced the discrepancies to within 8 minutes of arc. But he was
not content with this degree of agreement. “For our part,” he
writes, “since divine goodness has given to us in Tycho Brahe
such a painstaking observer, from whose observations an error in
these Ptolemaic calculations amounting to 8 minutes is revealed, it
is fitting that we should gratefully recognize and use this gift of
God. That is to say we should labour . . . finally to trace out the
true nature of the celestial motions. . . . For if I had believed
these 8 minutes in longitude to be negligible, I should already have
sufficiently corrected the hypothesis set out in Cap. XVI (by the
bisection of the eccentricity). But as that error cannot be neglected,
these 8 minutes alone have shown the way to the complete reforma-
tion of astronomy ; they have been made the material for a great part
of this work™ (Ast. Nop., Cap. XIX).

From his failure Kepler inferred that the orbit of Mars could not be
regarded as a circle described by the planet with a uniform angular
velocity about some point within it. The orbit might be a circle, but
in that case the equant could not be a fixed point,

In order to prepare the ground for a further attack on Mars,
Kepler now resolved to investigate the precise nature of the Earth's
orbit, and to locate the equant about which the Earth moved with
uniform angular velocity. Suitably chosen observations of Mars,
when at a given point in its orbit showed that the equant must lie
on the Earth's apse-line, with the geometrical centre of the orbit
midway between it and the Sun (see note on p. 136). This was the
arrangement which had given the best results in the case of Mars.
From the fact that the equant did not coincide with the centre of
the orbit, it followed that the linear velocity of the Earth in its
course could not be uniform, and that, at the two apses, the times
for describing equal small arcs must be proportional to the distances
of the Earth from the Sun at those times, Already in his Mysterium
Cosmographicum Kepler had suggested that the planets might be
impelled in their orbits by an anima motrix (a moving spirit) which
was located in the Sun, and which acted more powerfully upon
planets the nearer they were to the Sun. The force emanating from
the Sun, he thought, was confined to the plane of the ecliptic, and

planet’s longitude is the angular distance between its projection on the ecliptic and
a standard point on the ecliptic, as viewed from the Sun (eliocentric longitude) or
from the Earth (geocentric longitude). The planct’s latitude is its angular distance
from the ecliptic as viewed from the Sun (Aelioccemiric latitude) or from the
Earth (geoceniric latitudy).
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therefore varied inversely as the simple distance. The velocity,
supposed to be maintained by the force, should therefore obey the
same law. Having apparently verified this law in the neighbourhood
of the apses, Kepler surmised that the planet might describe equal
small arcs in all parts of its orbit in times proportional to the lengths
of the radii vectores drawn to these arcs from the Sun, He accordingly
divided the Earth’s orbit into three hundred and sixty equal arcs, and
computed the length of the radius vector to each point of division. He
found that the time required for the Earth to travel from one point
to another on its orbit was approximately proportional to the sum
of the radii vectores drawn to the divisions intercepted between these

Illustr. go.—The Earth's Orbit

points. Kepler seems to have simplified his approximate calculations
by noting that in an orbit of small eccentricity the sum of such a
series of radii vectores, each multiplied by the corresponding small
arc, was nearly proportional to the area included by the terminal
radii vectores and the arc of the orbit intercepted by them. And he
was eventually led to adopt, as rigorously descriptive of the Earth’s
orbital velocity, the law that the time taken by the Earth in moving
from one point on its orbit to another was proportional to the area
swept out by the radius vector during that time,

Kepler’s method of determining the eccentricity and orientation
of the Earth's orbit may be explained by reference to the above
diagram (Illustr. go).

Let E be the position of the Earth when Mars, the Earth, and the
Sun are in a straight line (MES). In 687 days Mars will be in the
same place again (M), but the Earth will not yet have completed
its second round, so that, instead of being at E, it will only be at
E,. Now the angles of the triangle ME,S could be measured, and
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consequently also the relation of SE; to SM. In another 687 days
Mars will again be in its original position (M), but the Earth will
be at E,. The angles of the triangle ME,S can now be determined,
and also the relation of SE, to SM. Similarly with the successive
periods of 687 days each, after which Mars always returns to the
position M whereas the Earth is successively at positions Ey and E,, etc.
At these positions the relations of SE,, SE,, etc., to SM can be deter-
mined. But as SM is constant, Kepler thus got the relations of SE,
to SE, to SE, to SE,, etc., which are the radii vectores of the Earth.

Assuming that the Earth described its eccentric in accordance
with his new area-law, Kepler now returned to the attack on Mars.
But he still found himself unable
to construct an entirely satis-
factory theory, and began at
last to surmise that the orbit of
Mars was not a circle at all
Determinations of the relative
distances of the planet from the
Sun at several parts of its orbit
suggested that the required
curve was some sort of oval
lying wholly within the old
eccentric but touching it at the
two apses. Only after trying
many ovals, all larger at one
end than at the other, did it
occur to Kepler to try an ellipse, Iuste. g1.—The Orbit of Mars
the simplest form of oval. He
eventually arrived, by trial and error, at an elliptic orbit, for which
the area-law was found to hold strictly,

Kepler's method of dealing with Mars will be clear from the
above diagram ([llustr. g1).

Let M,, M,, M,, etc., represent different positions of Mars when
in opposition to the Sun, that is when Mars, the Earth, and the
Sun are in a straight line (MES). And let E,, E;, E;, mark the
positions of the Earth 687 days after the respective oppositions
when Mars has completed another circuit. By reasoning analogous
to that explained above in connection with the determination of the
relative distances of the Earth (Illustr. go) Kepler deduced from the
triangles SE,M,, SE,M,, SE,M,, etc., the relative distances of
SM,, SM,, SM,, ctc. And he found eventually that the positions of
M,, M,, M,, etc., are positions on an elliptic orbit with the Sun
in one focus,

Kepler found that such an orbit of Mars satisfied everywhere the
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requirements of Tycho's observations, both in longitude and lati-
tude, on the assumption that the planet described it in accordance
with the area-law, and about the Sun in one focus (see Illustr, g1).
He was thus able to enunciate, for the case of Mars in the first in-
stance, his first two Laws of planetary motion:

1. The planet describes an ellipse about the Sun in one focus;
2. The radius vector drawn from the Sun to the planet describes
equal areas in equal times.

These discoveries, together with an account of the painful process
by which they had been arrived at, were published by Kepler in
1609 in his great work Astro-
nomia Nova asrwdoyeros seu
Physica Coelestis, tradita com-
mentariis de  Motibus Stellae
Martis (German translation
by Max Caspar, Miinchen-
Berlin, 1929). The two Laws
are enunciated in Chapter
LIX of this book.

The full significance of
Kepler's contributions to
astronomy was not apparent
until years after his death,
when his Laws were the
Tilustr, 92.—The Radius Vector sweeps owt Means of leading Newton to

Equal Areas in Equal Times his far more comprehensive
Law of Universal Gravita-
tion. But already in his lifetime Kepler put his discoveries to
practical account by making them the foundation of his Rudolphine
Tables. This work remained an indispensable aid to precise
astronomy for about a century. Besides tables and rules for
predicting the positions of the planets, the work contains Tycho's
catalogue of one thousand star places, as well as refraction tables,
The laborious task of preparing these tables was lightened somewhat
towards the end by the use of logarithms. These had just then been
invented independently by Napier, in Scotland, and by Biirgi, a
Swiss clockmaker who worked in the Landgrave Wilhelm’s observatory
at Cassel and later entered the service of Kepler’s patron, Rudolph I1.
A logarithm table computed by Kepler is included in the tables,

Among Kepler’s other writings we may note his Epitome Astronomige
Copernicange (1618-21), a comprehensive catechism of Copernican
astronomy in which Kepler's two Laws of planetary motion are
explicitly extended (though without adequate proof) to the remain-

ne*
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- ing planets, to the Moon, and to the Medicean satellites of Jupiter.
Kepler’s third, and last, great Law of planetary motion is contained
in his Harmonices Mundi, 1619 (V, 3), and runs:

3. The squares of the periodic times of the several planets are
proportional to the cubes of their respective mean distances
from the Sun.

‘This law is usually expressed by saying that a*/T? is constant—where
a stands for the planet’s mean distance from the Sun, that is the
semi-axis major of the planet’s elliptic orbit about the Sun, and T
for the planet’s periodic time, that is the time it takes to complete
its orbit. This may be seen from the following table, in which the
Earth’s periodic time and the semi-axis of its orbit are taken as
units, and the constant = 1 approximately.

Flanet Tﬁtﬂﬁy < (a) n -
Year

Earth 1 100 1 1
Mercury 0-24 o-387 o-058 0-058
Venus o0-61 0" 725 0378 0-378
Mars 1-88 1-524 3:54 3°54
Jupiter 11-86 5-202 140+7 140-8
Saturn 29-46 9°539 867:9 868 o

A considerable portion of the Harmonices Mundi is taken up with a
supposed analogy between the angular velocities of the several
planets about the Sun and the frequencies of musical notes. As a
planet’s angular velocity fluctuates in the course of its periodic
circuit round the Sun, so the corresponding note alters, returning
to its initial frequency when the planet returns to its starting-point.
Kepler wrote down in musical notation the tunes thus associated
with the several planets. They remind us of the Pythagorean “music
of the spheres”; but Kepler did not ascribe to them an audible
existence.

Kepler concerned himself much with attempts to explain on
physical grounds the remarkable planetary laws which he had
obtained inductively; but his speculations in this direction, though
significant as initiating a new era, were in themselves of relatively
little value. He supposed that the anima motrix, located in the Sun,
sent out straight lines of force, like the spokes of a wheel, and that
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push) upon each planet, carrying it round the Sun (see Illustr. 93).

It is worth noting that this theory anticipated by some years the
actual discovery of the Sun’s axial rotation. The differences in the
planets’ periods arise from differences in their masses and in the
orbits which they have to traverse, as well as from the falling off
with distance of the solar virtue, which Kepler was inclined to
regard as a species of magnetic effluvium. Magnetism also played a
part in his explanation of the shape of the planetary orbits. Largely
under the inspiration of Gilbert’s researches, he supposed that each
planet behaved like a huge magnet whose axis kept its direction
in space unaltered during the
revolution of the planet. The
two poles were alternately
presented to the Sun, which
attracted one and repelled the
other. Hence the whole planet
was alternately attracted to and
repelled from the Sun, and the
radius vector thus underwent
those fluctuations in length
which characterize the elliptic
orbit,

Kepler speculated on the
nature of gravity, which he
Hllustr. 93.—Kepler's Idea of the Suns regarded as “a mutual affection

Action on the Planets between cognate bodies tending
towards union or conjunction,
similar in kind to magnetism, so that the Earth attracts a stone
rather than the stone secks the Earth. . . . If the Moon and
Earth were not held in their orbits by their animal force or
some other equivalent, the Earth would rise to the Moon by one
fifty-fourth part of their distance apart, and the Moon would fall
to the Earth through the other fifty-three parts” (Introduction
to the Commentaries on the Motion of Mars, where Kepler also suggests
that two neighbouring stones “would come together in the inter-
mediate point, each approaching the other by a space proportional
to the comparative mass of the other.” Presumably he estimated the
masses of the Earth and the Moon to be in the ratio of 53 to 1). But
Kepler did not succeed in identifying gravity with the force keeping
the planets in their orbits.

Kepler has some claim to be regarded as the discoverer of Sun-
spots. He endeavoured in 1607 to observe the transit of the planet

across the Sun’s disc. When he supposed the transit was
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due to take place, he formed an image of the Sun upon a screen by
admitting direct rays through a narrow opening in a dark room,
To his surprise a small, indistinct spot appeared on the bright disc,
which he took to be an image of Mercury in transit. There is little
doubt, however, that the object was a Sun-spot, for Mercury did
not transit on that day, and even if it had done it could not have
been seen in the manner described. After the discovery of Sun-spots
Kepler withdrew the interpretation which he had too hastily put
upon this observation.

Kepler’s writings include also short accounts of the new star of
1604, whose lack of diurnal parallax he demonstrated, and a treatise
on comets, wherein he suggested that these bodies were condensa-
tions in the aether which fills space.

Horrocks

In the Temple of Fame, where the names of Kepler and Newton
are writ large, some small place must be consecrated to the memory
of a young English astronomer who may be regarded as an inter-
mediate link between them, and who, but for his untimely death
at the carly age of twenty-four, might conceivably have anticipated
some of Newton’s greatest discoveries. The astronomer referred to
was Jeremiah Horrocks (1617-41). He was almost unknown in his
lifetime, and it was not until he had been dead some thirty years
that such of his writings as had survived received proper publication
(Opera Posthuma, edited by J. Wallis, London, 1672).

Horrocks studied astronomy on his own account as a boy and as
a Cambridge undergraduate, and he carried on a scientific corre-
spondence with William Crabtree, cloth-dealer and astronomer, to
whom he had been introduced by Christopher Towneley, the
antiquary. He studied the astronomical tables of Lansberg and
Kepler, which he corrected from the results of his own observations,
and he satisfied himself that a transit of Venus, unpredicted by
Kepler, would take place on November 24 (0.8.), 1639. He com-
municated his discovery to Crabtree, and when the phenomenon,
which had never previously been observed, took place at the pre-
dicted time the two men were the only spectators. Horrocks, who
was then working as a curate near Preston, missed the beginning
of the spectacle owing to his attendance at Church service, but was
later able to follow the transit until sunset by throwing an image
of the Sun from a telescope on to a screen.

Horrocks was a keen student of Kepler's planetary theory, and he
tentatively assigned an elliptic orbit to the Moon, attributing
variations in the elements of this orbit to the disturbing action of
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the Sun. Horrocks' rudimentary lunar theory was afterwards
developed by Flamsteed with the aid of his own observations. In his
speculations on the forces producing the motions of the planets,
Horrocks was one of the pioneers in the theory of universal gravita-
tion. He discovered that the mean rate of Jupiter’s motion was
greater, and that of Saturn’s motion less, than it had been in Kepler's
time—an inequality confirmed by Halley. Horrocks also arrived at
an improved estimate of the solar parallax, and made some of the
carliest systematic observations of the tides. The former of these was
noteworthy, because it was practically the first scientific improve-
ment in the estimate of solar parallax since the time of Hipparchus.
Horrocks' estimate of the solar parallax (14" or 1 5, as against the
present estimate of about 9) was a great improvement on the values
accepted by Ptolemy (2’ 50"), Lansberg (2’ 147), and Kepler (50").
But Horrocks’ method was very questionable and very much in
the Keplerian vein. From the approximate telescopic measurements
available of the angular diameters of the planets, he calculated what
these diameters would be if viewed from the Sun. For this purpose
he had to estimate roughly the Sun’s distance. Kepler's statement
that the parallax of Mars, though about twice that of the Sun, was
insensible, gave Horrocks a lower limit for the Sun’s distance. When
some rather arbitrary adjustments had been made on the score of
correcting for irradiation, all the diameters as measured from the
Sun came out at about 30", He assumed that the same value would
hold of the Earth as viewed from the Sun, giving a parallax of 3072
or 15" (Astronomia Kepleriana: Disputatio V, Chap. 5).

(See J. L. E. Dreyer, Tycho Brake, Edinburgh, 18g0; J. Kepler,
Opera Omnia, ed. C. Frisch, Frankfurt, 1858-71; Tychonis Brahe Dani
Opera Omnia, ed. ]. L. E. Dreyer, Hauniae, 1913-29; H. Shapley
and H. E. Howarth, 4 Source Book in Astronomy, New York and
London, 1929; and the list of books on p. 26.)
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Ilustr. g6

Isaac Newton



CHAPTER VII

THE NEWTONIAN SYNTHESIS

Tae whole history of science affords but few parallels to the develop-
ment of astronomy from Copernicus to Newton. The progress made
during that comparatively short period was so continuous and com-
plete as to give it something of the character of a self-contained drama
exhibiting the natural unfolding of the logic of events. Beginning
with Copernicus’ revolutionary conception of the Earth as one of
the smaller planets of the solar system, the work of Galilei, Tycho
Brahe, and Kepler led progressively to Newton’s great synthesis of
the physical world. Thereby the traditional cleavage between the
sublunar and the superlunar worlds, and the associated demarca-
tion between the natural and supernatural, between this world
and other worlds, were abolished or undermined. For it was shown
that the whole physical universe is subject to the same law of
gravitation and the same laws of motion, so that all physical objects
or events in one part of the universe exercise some influence upon
all others, and thus together constitute one cosmic system of inter-
connected parts.

It is profoundly significant that the five principal thinkers whose
co-operation resulted in the Newtonian Synthesis belonged to five
different nations, The revelation of the physical unity of the universe
was thus the achievement of a certain spiritual unity of mankind.
The preceding pages have already unfolded the story of the parts
played by Copernicus, Galilei, Tycho Brahe, and Kepler. We now
reach the climax of the story in the work of Newton.

Tue LirE oF NEwTON

Isaac Newton was born on December 25 (0.8.), 1642, at Wools-
thorpe near Grantham, in Lincolnshire, the posthumous son of a
farmer of moderate means. He was delicate as a child, but was
sent at the age of twelve to the Grammar School at Grantham, Here
he eventually became head boy, and excelled in the construction
of mechanical toys and models. A water-clock which he contrived
at this period remained in use after he had left Grantham, and one
of his sundials still survives.

In 1656 Newton's mother, who had married a second time, was
again widowed, and Newton was called home to help with the
l'a.rm_at Woolsthorpe. As, however, he showed no interest or skill in
farming, he was sent back to school at Grantham, and soon after-
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wards, at the recommendation of his uncle, William Ayscough, he
proceeded to the University of Cambridge.

Newton entered Trinity College in June 1661. As an under-
graduate he ranged through the mathematics and optics of the
time, but he worked largely on his own account, and attracted
little attention. It was not until after he had taken his B.A. degree,
early in 1665, that his career of discovery began. In the course
of the following two years, 1665 and 1666, much of which he spent

Hlustr. g7.—Manor House, Woolsthorpe, the Birthplace of Newton

at Woolsthorpe, owing to the prevalence of the Plague, Newton
discovered the binomial theorem, invented the method of fluxions,
began his experiments on colour, and took the first steps towards the
establishment of the law of universal gravitation. In 1667, after
returning to Cambridge, Newton was elected a Fellow of Trinity
College. He proceeded to his MA. in the following year, and in
1669 he succeeded Isaac Barrow as Lucasian Professor of Mathe-
matics. In the meantime he had resumed his interrupted researches
in optics ; and to this period belong the construction of his reflecting
telescopes, and his discovery of the composite nature of sunlight,
which he eventually communicated, early in 1672, to the Royal
Society, of which he had shortly before been elected a Fellow, At
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this period also he found time to develop his method of fluxions,
and to make experiments in chemistry, which had interested him
ever since he was a schoolboy.

Newton’s attention was recalled from time to time to the problem
of gravitation by conversations and correspondence with scientific
friends. In 1684, however, at the instigation of Halley, he entered
upon the period of intensive research in theoretical mechanics
which culminated in the publication of his Principia in July 1687*

Earlier in that year Newton had appeared in the High Court
before Judge Jeffreys as one of a number of delegates representing
the University of Cambridge in a dispute with King James II con-
cerning the privileges of the University. From this episode may be
dated Newton’s increasing participation in public affairs and social
life. In 1689 he was elected Member of the Convention Parliament
for the University, and later on, in 1701, he returned to Westminster
again for a few months in the same capacity. Afier the Dissolution
of Parliament in 16go Newton appears to have returned to Cam-
bridge, and for some years devoted much attention to the textual
study and interpretation of Scripture. About this time he began to
suffer in health and spirits from the effects of years of overwork and
self-neglect. In 1695, however, he was appointed Warden of the
Mint, and threw himself eagerly into his new duties. These were
just then peculiarly responsible, as they involved supervising the
complete re-coinage of the silver currency, which had become
seriously debased. In 1699, when this task had been successfully
completed, Newton was made Master of the Mint, an office which
he retained until his death. In 1699 also he was elected a Foreign
Associate of the French Academy of Sciences. In 1701 he resigned
his Fellowship at Trinity College and the Lucasian Professorship,
but continued to occupy himself from time to time with minor
scientific problems and with the preparation for the Press of the
Opticks, and of further editions of the Principia. In 1703 Newton was
elected President of the Royal Society, and he was re-elected annually
until his death. In 1705 he received a knighthood from Queen
Anne. His closing years were somewhat troubled by his contro-
versies with Flamsteed and with Leibniz. He was taken ill while
presiding at a meeting of the Royal Society, and a fortnight later,
on March 20, 1727, he died, in his eighty-fifih year. He was buried
in Westminster Abbey. All things considered, there are but few
men in the earlier history of science whose genius met with such
ready recognition at home and abroad as did the genius of Newton,
In comparison with Galilei, for example, Newton’s good fortune
formed a very pleasing contrast,
pulii‘:hedmin ﬁzmggr*hdmna English translation (1726} of the FPrincipia was
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Tue Discovery or UnivErsar GrAVITATION

The revolution in dynamical ideas initiated by the researches of
Galilei made it necessary to formulate in new terms the problem of
assigning a mechanical explanation to the motions of the planets.
Galilei’s experiments showed that an external force is required,
not to maintain, but to alter a body’s uniform rectilinear motion.
This meant that astronomers had to explain not why the planets
continue to move, nor why they fail to move in exact circles, but
why they revolve about the Sun in closed curves at all, and do not
travel in straight lines into outer space. It was in developing the
implications of the new dynamics, and in applying them to the
concrete mechanical problems presented by the solar system, that
Newton made his greatest contributions to astronomy.

Newton’s earliest recorded speculations on gravitation date from
the plague year 1666, during his temporary retirement from
Cambridge to Woolsthorpe. Our information as to this earliest phase
comes from several independent sources, which do not show com-
plete agreement with one another. These include a memorandum in
Newton's handwriting, and printed statements in the works of his
friends Pemberton and Whiston, claiming to be based on CONVErsa-
tions with Newton.

From these accounts it appears that in 1666 Newton began to
wonder whether the force of gravity, which is observed to extend
to the tops of the highcst mountains, might not extend to the Moon
and influence that body—perhaps even keep it in its orbit,

At one time Newton appears to have thought of the orbital
motion of the Moon and of the other Planets as analogous to the
movement of a projectile, or as a limiting case of it, in accordance
with modified Galilean laws of Projectiles. This seems clear from the
following passage: “That by means of centripetal forces the planets
may be retained in certain orbits, we may casily understand, if we
consider the motions of projectiles; for a stone projected is by the
pressure of its own weight forced out of the rectilinear path, which
by the projection alone it should have pursued, and made to
describe a curve line in the air; and through that crooked way is
at last brought down to the ground ; and the greater the velocity
is with which it is projected, the farther it goes before it falls to
the Earth. We may therefore suppose the velocity to be so increased,
that it would describe an arc of 1, 2, 5, 10, 100, 1,000 miles before
it arrived at the Earth, till at last, exceeding the limits of the Earth,
it should pass quite by. without touching it (Illustr. g8).

“Let AFB represent the surface of the Earth, C its centre, VD,
VE, VF, the curve lines which a body would describe if projected
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in an horizontal direction from the top of a high mountain succes-
sively with more and more velocity; and, because the celestial
motions are scarcely retarded by the little or no resistance of the
spaces in which they are performed, to keep up the parity of cases,
let us suppose cither that there is no air about the Earth or at least
that it is endowed with little or no power of resisting ; and for the
same reason that the body projected with a less velocity deseribes
the lesser arc VD, and with a greater velocity the greater arc VE,
and, augmenting the velocity, it goes farther and farther to F and G,
if the velocity was still more and more augmented, it would reach
at last quite beyond the circumference of the Earth, and return
to the mountain from which it was
projected. A
“And since the areas which by this T #llll'
motion it describes by a radius drawn / ) 5
to the centre of the Earth are propor- A
tional to the times in which they are f
described, its velocity, when it re- (
turns to the mountain will be no less

than it was at first; and, retaining the | 3

same velocity, it will describe the same X o
curve over and over by the same law. T
“But if we now imagine bodies to

be projected in the directions of Illustr, 98.—The Centripetal
lines parallel to the horizon from Motion of Projectiles
greater heights, as of 5, 10, 100, 1,000,

or more miles, or rather as many semi-diameters of the Earth,
those bodies, according to their different velocity and the different
force of gravity in different heights, will describe arcs either con-
centric with the Earth, or variously eccentric, and go on revolving
through the heavens in those trajectories, just as the planets do in
their orbs” (Andrew Motte’s translation of Newton's De Systemate
Mundi, London, 1803, pp. 3-4).

The well-known story that the problems of gravitation were
vividly brought home to Newton by the fall of an apple in the
orchard at Woolsthorpe, seems to rest upon fairly good authority.
To test the possible connection between the force producing the
fall of an apple and that kecping the Moon in a closed orbit, it was
necessary (1) to ascertain according to what law the force of gravity
fell off (as it was then generally supposed to do) with increase of
distance from the Earth; (2) to calculate from this law and from
the measured acceleration of bodies at the Earth’s surface what
acceleration gravity should produce in a body at the Moon’s
distance ; (3) to calculate what was the actual centripetal acceleration
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of the Moon, assuming its orbit to be a circle about the Earth in the
centre; and (4) to ascertain whether the accelerations calculated
under (2) and (g) were sensibly equal, and so could be regarded as
arising from the operation of one and the same force.

This was evidently the procedure essentially followed by Newton,
for he writes: “And the same year [1666] I began to think of gravity
extending to the Orb of the Moon, and having found out how to
estimate the force with which [a] globe revolving within a sphere
presses the surface of the sphere from Kepler's Rule of the periodical
times of the Planets being in a sesquialterate proportion of their
distances from the centres of their Orbs I deduced that the forces
which keep the Planets in their Orbs must [be] reciprocally as the
squares of their distances from the centres about which they revolve ;
and thereby compared the force requisite to keep the Moon in her
Orb with the force of gravity at the surface of the Earth, and found
them answer pretty nearly” (Manuscript quoted in the Catalogue
of the Porismouth Papers, 1888). Newton thus ascertained the law of
gravity by considering the planets as moving in circles under an
attraction towards the Sun, probably somewhat as follows: If a planet
uniformly describe a circle of radius r with velocity v in a period T,
its centripetal acceleration f'is v?/r (Huygens' formula, but discovered
independently by Newton in 1666). We have:

o7 i e et e T T T (1)
and, from Kepler's Third Law:
T'f*=constant . . . . . . (3)

From (2) and (3) v* varies as 1/r, whence, and from (1), f is pro-
portional to 1/r%. Newton made the tentative assumption that this
inverse square law governed also the acceleration of bodies under
the attraction of the Earth, so that the distances through which the
Moon and a particle at the Earth's surface respectively fall towards
the centre of the Earth in one second should be as the square of the
distance of the particle from the Earth's centre to the square of the
distance of the Moon from the Earth's centre. This calculation
involves merely a knowledge of the ratio of the Moon's distance
to the Earth’s radius—a ratio known to Newton with an accuracy
sufficient for his purpose. But the next stage in the calculation, the
determination of the distance actually fallen through by the Moon
towards the Earth's centre in one second, requires a knowledge
of the radius of the Earth.

According to Pemberton’s and Whiston's accounts of the matter,
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which have been almost universally followed, Newton, being
“absent from books,” substituted a value of the radius derived
from the crude estimate that one degree of latitude measures sixty
miles on the Earth’s surface, which was the value commonly assumed
by seamen at that time. This would have led to a serious discr

{of the order of 15 per cent) between the two values of the Moon's
acceleration as determined, on the one hand, from its period and
the supposed size of its orbit, and, on the other, from the force of
gravity at the Moon’s distance, as deduced from the inverse square
law. According to Whiston this discrepancy in the calculations led
Newton to suspect that perhaps a Cartesian vortex might share with
gravity the task of keeping the Moon in its orbit. It is further main-
tained that it was this failure to make out a clear case for his surmise
that led Newton to lay aside his speculations on gravitation until
recalled to the subject by Hooke in 1679. In the meantime an
improved estimate of the Earth's radius had been obtained by
Picard and had become known, and it is supposed that Newton, upon
substituting this value in his calculations, obtained a satisfactory
agreement, and was thus led to resume his researches in this field.

It must be borne in mind, however, that Newton nowhere states
what value of the Earth’s radius he originally assumed; that on
his own account he found the results of his two critical calculations
“answer pretty nearly”; and that he could not in any case have
locked for exact agreement, seeing that he had treated the Moon's
orbit as a circle uniformly described. Moreover, several fairly close
estimates of the Earth’s radius (e.g. that of Gunter) were current in
1666, and were accessible to Newton, if not at Woolsthorpe, at least
after his return to Cambridge.

John Couch Adams and J. W. L. Glaisher and, more recently,
Professor Cajori, were accordingly inclined to attribute Newton's
delay in publishing his calculations to the difficulty of defining the
¢ffective distance between the attracting Earth and a small body near
its surface. Should this distance be taken as the height of the body
above the ground, or its distance from the Earth’s centre, or from
some other point? Newton must have measured his distances pro-
visionally from the centre of the Earth, but it was not until 1685
that he was able to prove that the Earth attracts external bodies
as if it were a massive particle concentrated at its own centre (see
F. Cajori’s paper on “Newton's Twenty Years’ Delay in Announcing
the Law of Gravitation.” in Sir [saac Newton, 17271927, London,
1g28).

Somewhere about 1677 Newton had a discussion on gravitation
with Wren and Donne, apparently with special reference to the
inverse square law. He was recalled to the subject at the end of
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1679 by a letter from Hooke urging him to resume his former inter-
course with the Royal Society, and asking his opinion concerning
Hooke’s proposal for “compounding the celestial motions of the
planets of a direct motion by the tangent and an attractive motion
towards the central body.” In his reply Newton stated that he had
for some years been “‘endeavouring to bend myself from philosophy
to other studies in so much that I have long grutched the time spent
in that study unless it be perhaps at idle hours sometimes for a
diversion.” However, he threw out a suggestion for demonstrating
the Earth’s diurnal rotation on its axis, which was that a body
falling from a height should suffer a deflection from the vertical
towards the east. Hooke, writing to Newton early in 1680, claimed
to have performed this experiment successfully; and he now pro-
posed to Newton the problem of determining what path would be
followed by a particle moving in the neighbourhood of a centre of
attractive force which varied according to the inverse square law.
Newton apparently did not reply to this letter, but was stimulated
to renew his old calculations which he seems at this time to have
refined by the substitution of Picard’s improved value of the Earth’s
radius.

It was at this juncture, too, that, according to his own account,
he solved Hookes problem by showing that the required orbit
under an inverse square law of force was an ellipse with the attracting
body in one focus. The elliptic orbits of the planets thus received
a rational explanation; and Newton went on to prove that, con-
versely, an elliptic orbit described about a centre of force in one
focus mecessarily implies an inverse square law of force. He also
showed that the law of equable description of areas by the radius
vector (of which Kepler’s Second Law is a particular case) must hold
good of any central orbit, whatever the law of force.

But having obtained these important results, Newton, as he wrote
to Halley in 1686, “threw the calculations by, being upon other
studies; and so it rested for about five years.” Towards the end of
this period, however, in January 1684, Halley, who, like Newton,
had deduced the inverse square law from Kepler's Third Law, but
had been unable to proceed farther, had a conversation on the
subject with Wren and Hooke, Wren, too, had got as far as deducing
the inverse square law; but Hooke claimed to have arrived at a
complete explanation of the planetary motions, based on the law,
Wren offered a prize to whichever of his two friends should provide
such an explanation within two months. Halley failed to do 50;
Hooke made an excuse for not putting his alleged explanation
forward just then, and it was never forthcoming.

The following August Halley, while on a visit to Cambridge,
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learned from Newton that he had succeeded in solving the problem.
Newton had mislaid his papers, but he reproduced the calculations
from memory, and sent them, together with the results of further
researches, to Halley in November 1684. Halley visited Cambridge
again almost immediately, and examined the manuscript of Newton’s
recent investigations, which he was using as the basis of his lectures
for that year. He pressed Newton to continue these researches, and
made him promise to send the results to the Royal Society, so that
they could be registered and their priority established. Halley and
Paget were appointed by the Society “to put Mr. Newton in mind
of his promise”; and in the following February Newton sent an
instalment of his propositions on motion to the Society. Writing to
his friend Aston about this time, Newton complained that the
work was occupying “a greater part of my time than I expected,
and a great deal of it to no purpose.” Early in 1685, however,
Newton succeeded in proving the important theorem that a spherical
body whose density is equal at all points equidistant from its centre,
attracts an external particle as if the whole mass of the body were
concentrated at its centre. Newton could now feel completely
Justified in treating the various bodies of the solar system as if
they were massive particles; and from this time on he devoted
himself tirelessly to working out the consequences of his fundamental
laws and propositions, until the work was finished. The first book
of the future treatise was probably completed about Easter 1685,
and the second and third books were ready a little over a year
later. On Newton’s own estimate he spent less than eighteen months
over the work, and carried on researches in chemistry meanwhile.

It appears to have been the original intention to publish the
results of Newton’s researches in the Philosophical Transactions, but
after examining the earlier sections the Royal Society resolved to print
the work in book form at its own expense. The Society, however,
suffered at this period from chronic impecuniosity; and it lacked
sufficient funds to publish the book. Halley therefore undertook to
do so at his own expense, although he himself was in financial
difficulties at the time. Halley must also be given credit, not only
for stimulating Newton to pursue his researches, and to carry them
to completion, but also for constantly assisting in the preparation
of the work by ccllecting necessary astronomical data, correcting
proofs, pointing out obscurities in the text, and arranging for its
printing and illustration. Moreover, he made the importance of the
new book known by a descriptive review in the Philosophical Trans-
actions (No. 186).

The appearance of the book was retarded, not only by delay on
the part of the printers, but by the necessity of meeting Hooke's
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claim to have been the original discoverer of the inverse square
law and the prime mover in the whole of Newton’s series of dis-
coveries. A compromise was reached by inserting a statement that
Hooke had been among those who independently discovered the
law of the inverse square, So all difficulties were finally overcome,
and the first edition of Newton’s great work appeared, in Latin,
under the title of Philosophiae Naturalis Principia Mathematica, in
July 1687. Later editions of the Principia brought out during Newton's
lifetime were those of 1713 and 1726 (see W. W. Rouse Ball, An
Essay on Newton's Principia, London, 18g3).

NewTon's “Privcipia®

The Principia is made up of three books, together with important
introductory matter. The first of these books treats generally of the
unresisted motion of particles and bodies under specified laws of
force, and the second of motion in a resisting medium and of
hydromechanics generally, while the third applies the results
obtained to elucidate the chief phenomena of the solar system.
The fundamental importance and comprehensive scope of the
FPrincipia may be realized from a brief survey of its principal contents.

The work opens with definitions of the principal concepts of
mechanics, e.g. mass (the product of a body’s volume into its density,
and measured by its weight); momentum or guantity of motion (the
product of mass into velocity) ; and force (measured by the rate of
change of momentum which it produces)—concepts which Newton
was the first to employ with precision, though his definitions of them
have not all escaped criticism. The definition of “mass” is a tautology,
for “density” is defined as mass per unit volume. “Velocity” and
“acceleration” without qualifications imply absolute space and
time, which Newton, accordingly, accepts explicitly. In a scholium
which follows these definitions he postulates the existence of “abso-
lute, true, and mathematical time” which “flows equably without
regard to anything external”; “absolute space” which “remains
always similar and immovable” ; and “absolute motion” which is
“the translation of a body from one absolute place into another,”
The abandonment of these concepts of an absolute and independent
space and time constitutes the fundamental break between New-
tonian and twentieth-century physics. Even Newton who, as we shall
see, adopted the centre of gravity of the solar system as a point fixed
in absolute space, felt the difficulty of distinguishing this space from
other spaces in uniform motion relative to it. “It is indeed extremely
difficult to discover and distinguish effectively the true motion of
particular bodies from the apparent; because the parts of that
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immovable space in which those motions are performed do by no
means come under the observation of our senses.”

We come next to Newton’s well-known Axioms or Laws of
Motion ;

1. Every body perseveres in its state of rest, or of uniform motion
in a straight line, unless it is compelled to change that state
by impressed forces;

2. Change of motion (i.e. rate of change of momentum) is pro-
portional to the impressed force and takes place in the direc-
tion in which that force is impressed ;

3. To every action there is always opposed an equal reaction; or
the mutual actions of two bodies upon eac”. other are always

equal and opposite.

The first two Laws are direct deductions from the results obtained
by Galilei, to whom the credit for them rightly belongs; and the
first Law had been clearly enunciated by Descartes (see eg. Le
Monde, §7). But the principle expressed in the third Law (which is
the only physical law of the three), though assumed in the experiments
of Wallis, Wren, and Huygens on impact, does not appear to have
been clearly formulated by anyone prior to Newton. A few typical
experiments intended to illustrate rather than establish the truth of
these Laws are briefly described in a scholium. From the Laws of
Motion certain important corollaries follow, e.g. that the momentum
of a system of bodies in any direction, and the motion of its centre
of gravity (mass centre) are unaffected by the mutual reactions of
the bodies.

Book I opens with an elementary account of the principles of
fluxions as applied to determine the ratios of evanescent quantities,
though without any use of Newton’s characteristic notation of dotted
letters, which he had himself employed from his earliest experiments
with this method in 1665. There follows a numerous series of
theorems and problems on central orbits, and on the relation of
the form of the orbit to the law of force under which it is described.
The most important of these (equable description of areas in a
central orbit, I, 1; and the law of force in an ellipse described about
the focus, I, 11) were the results from which Newton started, as has
already been indicated. Of particular importance from the astrono-
mical point of view are Newton’s approximate solution of “Kepler's
Problem™ of finding the position of a body in an inverse square
elliptic orbit at any given time after its passage through an apse,
and his investigation of revolving orbits. Having dealt with the motion
of particles under attractions directed towards immovable centres,
“though very probably there is no such thing existent in nature,”
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Newton proceeds to consider the motion of particles under their
mutual attractions. He shows that two mutually attracting bodies
describe similar orbits about their common centre of gravity and
about each other (I, 57). The particular case is considered of the
motion of three mutually attracting bodies under such conditions
as those obtaining in the Earth-Moon-Sun system ; and it is shown
that the disturbing action of the body corresponding to the Sun
produces, in the orbit of that representing the Moon, just such
inequalities and peculiarities as had, in fact, already been detected
in the motion of the Moon. The problem is generalized to give results
of subsequent use in the explanation of precession and the tides.
The question of how the attraction of an extended body depends
upon its shape arises at this point, and is dealt with in detail in two
sections, treating respectively of the attractions of spherical and of
certain non-spherical bodies. The former of these contains Newton’s
clegant theorems that, under an inverse square law, the force on a
particle anywhere inside a homogeneous spherical shell is zero
(1, 70), while an external particle is attracted as if the material of
the shell were concentrated at its centre (I, 71). This leads imme-
diately to the theorems on the attraction of a homogeneous solid
sphere upon an external particle (I, 74) or upon another such
sphere (I, 75), and on the revolution of such spheres about each
other in conical paths. Book 1 concludes with propositions on the
passage of a corpuscle across the interspace separating two media,
one of which attracts the corpuscle. These propositions have a direct
bearing upon Newton’s theory of the nature of light, and afford
an explanation in terms of that theory of the phenomena of refraction
and diffraction.

The second Book deals in the first place with tne motion of bodies
in a medium which offers resistance proportional to the velocity,
or to the square of the velocity, of the moving bodies, either with
or without interference from gravity, or from central forces. The
properties of fluids, whether incompressible or gascous, and their
pressure on immersed solids, with obvious applications to the case of
the atmasphere, are next taken up. A section on the motion of pen-
dulums in resisting media embodies Newton's experimentally deter-
mined result that the masses of pendulum bobs vary as their weights.
Newton attempts also, though with limited success, to deal with
hydrodynamical problems such as that of finding the resistance to
the motion of a sphere, and of more complicated figures, through a
fluid. A section is devoted to wave-motion in elastic fluids, the
velocity of propagation being calculated for fluids of given elasticity
and density. Newton attempted to apply this result in order to caley-
late the velocity of sound in air, but he recognized that there was a
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discrepancy between the calculated and the observed values of this
quantity, which he attributed (erroncously) to the particles having
a finite size. The second Book concludes with an account of viscosity,
which leads to a refutation of Descartes’ theory that the planets
are carried round the Sun by the motion of a vortex in a fluid filling
all space—a theory which was almost universally accepted in the
time of Newton’s youth, Newton showed that a vortex could not
impart to a planet a motion in accordance with the several Laws of
Kepler without the velocity of its parts simultaneously obeying
several mutually contradictory laws.

Newton is careful to point out that the several physical assump-
tions made in various parts of the first and second Bocks (e.g. those
relating to the corpuscular nature of light, the law of resistance of
fluids, the repulsive forces between the particles of an elastic fluid,
etc.) must be taken as leaving open the question of the true physical
nature of these things,

Among the astronomical applications of the third Book the
following results are particularly worthy of note.

Newton begins by setting forth the evidence taat the bodies of
the solar system move in accordance with the Copernican theory
and with the Laws of Kepler, and in orbits which are determined
by mutual gravitation. He lays it down as an hypothesis that the
centre of the solar system is fixed ; but he recognizes that this centre
should be identified with the centre of gravity of the solar system,
and not with the Sun. For, under the attractions of the planets, the
Sun itself must be in motion relatively to this point, though never
receding far from it. The most considerable attraction exerted upon
the Sun is that due to Jupiter, the most massive of the planets; and
by reference to this attraction Newton was able to account for a
discrepancy in Kepler's Third Law as applied to this planet. Newton
had devised a simple method of comparing the masses of any of the
planets which possess satellites with the mass of the Sun, from a
knowledge of the periods of the planet and satellite, and of the
radii of their respective orbits. The Sun’s pull upon the planet, and
the planet’s pull upon its satellite (as given by Huygens’ formula)
enable the attractions of these two bodies (and hence their masses)
to be compared.

It had been discovered by Richer in 1672, and by Halley five
years later, and afterwards by a number of other observers, that the
force of gravity is less intense near the Equator than in higher
latitudes, so that pendulum clocks tend to go slower there. This
discovery suggested that the Earth might not be a perfect sphere,
but perhaps a spheroid flattened at the poles—a surmise favoured
by the noticeable flattening of Jupiter. Newton assumed provisionally
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that the shape of the Earth might correspond to a state of equili-
brium between gravitational cohesion and the centrifugal tendency
set up by the Earth’s rotation. He seeks in the third Book of the
Principia (111, 19) to calculate the Earth’s ellipticity on this assump-
tion. He considers an ideal canal of fluid passing from one of the
poles to the centre of the Earth, and another passing from the centre
to a point on the Equator, He finds in what proportion the lengths
of the two canals should stand to each other in order that the two
columns of fluid should be in equilibrium under these opposing
pressures. The weight of the Equatorial column is partly neutralized
by a centrifugal tendency, and it is hence longer than the polar
column, the calculated difference in the lengths of the two columns
enabling the ellipticity of the Earth to be estimated. The calcula-
tion was a difficult one, and
Newton's numerical result was
not very accurate. It pave
about half the correct ellip-
ticity, owing to his having
neglected the self-attraction
of the Equatorial bulge. It
assumed that the Earth is com-

: .. . posed of homogencous shells
g;ﬁf;ﬁmﬁ:rgﬁpm of matter, which is apparently
of Brass a, when whirled, looks like s 1Ot true. But the general con-

Globe bulging at the Equator clusion that the Earth bulges

measurably in the Equatorial

region was a valuable result later confirmed by direct measure-
ments (see Illustr. gg).

The discovery that the Earth is flattened at the poles enabled
Newton to account for the precession of the equinoxes. This pheno-
menon, first clearly recognized by Hipparchus (150 B.C.}, could
be represented by supposing the Earth’s axis of rotation to describe
a cone slowly in space. Newton showed that, since the Earth is not
exactly spherical, the attractive force of the Moon has a tendency
to turn the Earth so as to bring the plane of its Equator into coinci-
dence with that of the Moon’s orbit. This effect, combined with
the Earth’s rotation, imparts to the axis just such a conical motion
as that required by observation. A similar effect due to the Sun
is combined with that due to the Moon : and Newton predicted that
there would be minute fluctuations in the precession, of the type
detected, some fifty years later, by Bradley.

By reference to gravitational principles Newton was further able
to give an explanation of the more familiar tidal phenomena, but
an adequate treatment of this complex problem was beyond his
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reach. He recognized, however, that the tide-raising force of the
Moon is more considerable than that of the Sun, the highest tides
occurring at new and full Moon, when the two bodies reinforce each
other’s attraction; and the lowest tides occur at quadrature, when
the Sun and Moon act against each other (see Illustr. 101). By
comparing the respective heights of the tides under these two different
circumstances, Newton sought to compare the mass of the Moon with
that of the Sun, and hence with that of the Earth, but he fell into
serious inaccuracy in consequence of the many difficulties incident
to this method.

In the third Book, the lunar inequalities, already touched upon,
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Mustr. 100, —Diagram to Ilustrate the Conical Motion of the Earth's Axis

as we have seen, in the first Book, receive more detailed numerical
treatment in terms of the theory of gravitation. The fact that the
Moon, librations apart, always presents the same face to us is re-
ferred to the tide-raising force exerted by the Earth upon the Moon
and controlling its rate of rotation.

An important section of the Principia, in view of the development
which it afterwards received from Halley, was that devoted to
comets. These bodies, if they move under the gravitational attrac-
tion of the Sun, must describe conics with the Sun in one focus,
Newton showed that the observed motions of the comet of 1680,
and of a number of others, were indeed consistent with their moving
in parabolas or elongated ellipses—it was impossible to say which
from the limited extent of its orbit over which one of these bodies
could be followed. Thus comets, which a century before had been
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regarded as transient and capricious atmospheric phenomena, were
brought under the law of universal gravitation.

In the closing pages of the second edition of the Principia Newton
discusses the nature of the power of gravity by reference to which
he has explained the phenomena of the solar system with such
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Hlustr. 101.—The Tides and Lunar and Solar Gravitation

signal success. He holds that this power “must proceed from a cause
that penetrates to the very centres of the Sun and planets, without
suffering the least diminution of its force ; that operates not accord-
ing to the quantity of the surfaces of the particles upon which it
acts (as mechanical causes use to do), but according to the quantity
of the solid matter which they contain, and propagates its virtue
on all sides to immense distances, decreasing always in the duplicate
proportion of the distances. . . . But hitherto 1 have not been
able to discover the cause of those properties of gravity from pheno-
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mena,and I frame no hypotheses; for whatever is not deduced from the
phenomena is to be called an hypothesis; and hypotheses, whether
metaphysical or physical, whether of occult qualities or mechanical,
have no place in experimental philosophy.” In his closing words,
however, he hints at the possibility of accounting for gravity, elec-
trical attractions, etc., by reference to some all-pervading medium.

The publication of the Principia did not mark the end of Newton's
services to dynamical astronomy, for under Halley’s persuasion he
continued his efforts to improve his lunar theory, with the aid of
observations made by Flamsteed at Greenwich.

Newton's greatest contributions to astronomy consisted in his
establishment of theoretical mechanics and his formulation of the
principle of universal gravitation. But his researches in optics,
which are described in another part of this volume, also bore upon
astronomy in at least two ways. In the first place, his discovery of
the compasite nature of white light led to his discovery of the real
defect of the refracting telescopes of that time, namely, their chro-
matic aberration. This, as has already been explained, prompted
him to construct reflecting telescopes. In the second place, by his
discovery of the composite nature of white light he laid the founda-
tions of modern spectroscopy.

Newton's Principia is commonly described as the greatest work in
the history of science, Certainly no other scientific masterpiece has
exercised a greater influence upon contemporary and subsequent
thought. For more than two hundred years it formed the basis of
all astronomical and cosmological thought, It was a stupendous
achievement to show in detail how the same principle of gravita-
tion and the same laws of motion apply to the smallest particles of
terrestrial matter and to the largest celestial bodies, to phenomena
of obvious regularity, and also to such seemingly irregular happen-
ings as the tidal movements of water and the fiery rush of comets.
Small wonder that the phenomenal success of Newtonian mechanics
so impressed even workers in such vastly different fields as those of
psychology, economics, and sociology that they attempted to follow
mechanical or quasi-mechanical models in the solution of their
several problems. But with the advent of Einstein and Relativity
Newtonian mechanics has apparently received a check. There is
no finality in science. But, on the other hand, if great scientific
achievements are never final, they are also never futile. In the view
of some of those who are most competent to judge, the new methods
have not come to destroy but to supplement and to fulfil the great
physical synthesis achieved by Newton.

(See L. T. More, fsaac Newton, 1934 ; Sir fsaac Newlon, 17271927,
History of Science Society, 1928.) ; i



CHAPTER VIII

ASTRONOMERS AND OBSERVATORIES IN THE AGE
OF NEWTON

In order to complete the story of the progress of astronomy in the
age of Newton it is necessary to give an account of his chief con-
temporaries and of the work done at the Paris and Greenwich
Observatories, with one or other of which most of them were
associated in some way. Of the astronomers to be dealt with in this
chapter, Huygens, Picard, Auzout, and Cassini were connected
with the Paris Observatory. So was Rémer to some extent, though
most of his work was done at Copenhagen, Flamsteed and Halley
were intimately connected with the Greenwich Observatory, Heve-

lius had his own observatory in Danzig (see Illustr. 117, p. 181).

Huycens

Christian Huygens was born April 14, 1629, at The Hague, the
son of Constantijn Huygens, a distinguished poet and diplomatist.
He studied at Leiden and Breda, and early began to make valuable
contributions to mathematics, applied mechanics, astronomy, and
optics. He travelled considerably, and visited England on several
occasions. He was made a member of the Royal Society; and in
1666 he accepted an invitation to Paris to become a member of
the newly formed Académie des Sciences, remaining there until 1681,
when he returned to Holland on account of ill-health. The revocation
of the Edict of Nantes in 1685 led him to remain in Holland, where
he continued his researches until his death on June 8, 1695. Huygens
learned correspondence was very extensive, and fills ten volumes
of the complete edition of his works now in course of preparation,
Newton expressed great admiration for the genius of his contem-
porary, whom he called Summus Hugenius, and from whose works
he derived much inspiration; and Huygens, though nearly sixty
when he read the Principia, immediately embraced its doctrines,

Reference has already been made to some of Huygens® most
important contributions to astronomy, namely, his successful appli-
cation of the pendulum to regulate clocks, and certain improvements
in the telescope. These improvements enabled him to make several
interesting new discoveries.

While he was still in Holland, Huygens, working with his elder
brother, had succeeded in figuring and polishing telescope lenses
with an accuracy not before attained 5 and he was rewarded by the
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solution of a long-standing astronomical mystery. Galilei, in 1610,
had observed Saturn through his telescope and had noticed two
remarkable appendages to the planet. He had found that they
varied in an obscure manner with lapse of time, and disappeared
occasionally. Since then they had been studied by several astrono-
mers without their true significance being understood, though Hevel
showed that the changes which they underwent occurred periodi-
cally. Huygens, upon turning his improved telescope on the planet,
in 1655, recognized that the peculiar appearance of Saturn was
due to its being encircled by a thin plane ring, inclined to the
ecliptic (Illustr. roz).

Ilustr. 102.—The Rings of Saturn

In the same year he discovered the first of the numerous satellites
of the same planet. He announced these discoveries in the form of
anagrams in the first instance ; but a few years later, having studied
the appearance of the planet from many aspects, he published his
book, Systema Saturnium (165g), in which he describes his discoveries,
defines the position of the ring, and explains the phenomena of its
appearance and disappearance. In the course of these observations
Huygens employed a micrometer, which we shall describe along with
those of his colleagues of the Paris Observatory, He was also the
inventor of the telescopic eyepiece which bears his name, and which
consists of two convex lenses whose focal lengths and distance apart
are chosen so as to reduce the defects of the image to a minimum.

Among the results of importance to astronomy contained in the
Horologium Oscillatorium were the familiar formula connecting the
period of vibration of a simple pendulum with jts length and the
acceleration of gravity; and the equally important expression for
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the centripetal force necessary to maintain a body in uniform
circular motion—a result obtained independently by Newton.
Huygens, while at Paris, determined the length of a simple pendulum
whose period of vibration was one second, and he applied his
pendulum formula to deduce a more accurate value for g, the
acceleration of gravity, than could be obtained by direct measure-
ments of this quantity. He obtained for g/2, the distance of free fall
of a body from rest in one second, the value 1 5 Paris feet, 1 inch,
approximately ; and he proposed the length of the seconds pendulum
as a unit of length, but without success. His researches on rotating
bodies led Huygens to anticipate the flattening of the Earth and
the falling off in gravity with decrease of latitude, which were
subsequently established.

Besides accurately estimating, from the length of the seconds
pendulum, the gravitational acceleration of falling bodies, Huygens
further sought to give a mechanical explanation of gravity, as he
had done for light. His speculations on this problem are to be found
in his Discours de la cause de la pesanteur, which appeared in 16go as
a supplement to his treatise on light. Huygens’ point of view was
that gravity should not be attributed to a quality or propensity of
bodies, but should be explained, like every other natural process,
in terms of motion. He acknowledges that his hypothesis is closely
related to that of Descartes, who had tried to conceive gravity as
due to the motion of a material vortex surrounding the Earth,
Gravity, says Huygens, operates in so mysterious a manner that
the senses are unable to discover anything about its nature, He
points out that, while its operations were previously ascribed to the
inherent qualities of bodies, this amounted merely to introducing
obscure principles without explaining the causes. Descartes, on the
other hand, had recognized that physical processes should be
referred to concepts which do not transcend our power of compre-
hension; and for Huygens, as for Descartes, such concepts were
those of matter, devoid of qualities, and its motion.

In these inquiries Huygens started out from the following experi-
ment. He covered the bottom of a cylindrical vessel with small
fragments of some solid substance (e.g. sealing-wax). He then partly
filled the vessel with water and whirled it about its axis by means
of a revolving table, whereupon the sealing-wax travelled out to
the sides of the vessel. The table and vessel being suddenly brought
to a standstill, the water continued to rotate for some little time,
but it was observed that the bits of sealing-wax, being checked by
their contact with the bottom of the vessel, were driven in spiral
paths towards its centre. Huygens supposed that, just as the water
rotated in the vessel, so an aether, which must be regarded as
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incomparably more fluid than water, must rotate about the Earth.
Any gross bodies situated in this acther will not, as the experiment
shows, share its rapid motion, but will be thrust towards the centre
of that motion. Gravity is therefore “the action of the aether which
circulates about the centre of the Earth striving to travel away
from the centre and to force those bodies which do not share its
motion to take its place.” Huygens even ventured to estimate the
rate at which this circulation of the aether must take place. Several
more recent attempts to furnish mechanical explanations of gravity
are based in the last resort upon the notions here developed by
Huygens. (See A. E. Bell, Christian Huygens, London, 1047.)

Huygens’ wave-theory of light, which had many astronomical
applications, will be dealt with in a later chapter.

THE Parts OsservaTory: Proarp, Auvzour, Cassin

The Paris Observatory was, as we have seen, an offshoot of the
Académie des Sciences. The foundations were laid in 1667, and the
building was completed in 1672. It was built with lofty windows
and a flat roof; but the design soon proved unsuited to the needs
of the observers, whose methods of work were rapidly developing
along new lines. The building was used, not only for astronomical
purposes, but also for physical experiments of all descriptions, the
well of the staircase, which extended from roof to cellar, affording
excellent opportunities for studying the behaviour of falling bodies.

The first astronomers who worked here included Huygens, Jean
Picard (1620-82), Adrien Auzout (1 1691), and Giovanni Domenico
Cassini (1625-1712). Their most notable services to astronomy lay
in the increased refinement which they introduced into the Processes
of observation by the application of the telescope to the older
instruments of precision, and by the use of the pendulum clock,

At the time when the Paris Observatory was being established
many astronomers were endeavouring to increase the power, and
improve the quality, of their telescopes by using object-glasses of
great focal length. This tendency led to the construction of instru-
ments of enormous size, and means had to be devised to obviate
the flexure occurring in such long tubes. One way was to dispense
with the tube altogether, as in the aerial telescope devised by Huygens
(Illustr. 41). A telescope in which the object-glass and the eyepiece
were in separate pieces was independently introduced by Cassini.
The Academicians, however, also had several instruments in which
the object-glass and eyepiece were fixed to the ends of a yard-arm
which was slung by cords and pulleys from a mast on the terrace
of the Observatory. This mast was not strong enough for the larger
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telescopes, and a disused wooden water-tower, 120 feet in height,
was transferred from Marly, and was used until long-focus lenses
went out of fashion.

The evolution of the telescope as an instrument of precision down
to the time of Picard is worth consideration.

The fundamental operation in all precise astronomy is that of
accurately measuring the angle subtended at the observer’s eye by
two given points on the celestial sphere. Hence the fundamental
instrument of precise astronomy has always consisted essentially of
a circle or arc graduated in angle, and traversed by a radial index
carrying sights and pivoted at the centre of the circle. The observer
makes the plane of the circle coincide with the plane determined
by his eye and the two points whose separation is required; the
index is then successively directed to the two points, and the
required angle is read off the graduated scale. Now the accuracy
with which this operation can be performed is restricted, in the
last resort, by the limited resolving power of the human cye. If
the angle to be measured is less than about 2', the two points
appear as one and the same point, so that all naked-eye determina-
tions of celestial angles are necessarily subject to an uncertainty of
about that order.

The invention of the telescope early in the seventeenth century,
and more especially the invention of the “Keplerian™ or “astro-
nomical” telescope (which was first used by Scheiner about 1618,
and which had a common focus of object-glass and eyepiece in
which wires could be placed in the same focal plane as the image
of a distant object), afforded a means of magnifying the angles
under which the eye sees distant objects, and, therefore, of reducing
the proportional uncertainty in its estimates of those angles. The
telescope, however, was not systematically used in precise astronomy
until about fifty years after its invention. During that period its
riumphs were restricted almost entirely to the field of descriptive
astronomy, and necessarily so.

When at length the telescope was applied to precise work, it could
be used in either of two ways.

(1) It could be attached as the radial index of the graduated
arc. For this purpose it was necessary to equip the telescope in such
a way that it could define a precise direction in space, and this
was usually effected by fixing in the focal plane of the object-glass
a pair of hairs intersecting at right angles. These cross-hairs, being
then in the same plane as the images of the stars, etc., formed by
the object-glass, were simultaneously in focus with those images
when the eyepiece was properly adjusted. The line of collimation
of the telescope, i.e. the line joining the cross to the optical centre
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of the object-glass, played the part of the line of sights in the
primitive instrument ; while, besides the magnification of the angles
to be measured, there was the additional advantage that the images
and the cross-hairs could be simultaneously viewed with the same
adjustment of the eye. This had not been possible with the “open
sights,”” of Tycho Brahe and his successors, in which it was necessary
to focus the eye alternately on the near sights and the distant star.
This application of the telescope was made by Picard in 1668. (Sec
C. Wolf, Histoire de I'Observatoire de Paris de sa_fondation & 1793, p. 136,
and Le Monnier, Histpire Céleste, Paris, 1741, pp. 1, 2, 11, 31.)

(2) The telescope could be used, without the need of an external
graduated circle, to measure the small angular separations of objects
simultaneously visible in the field of view of the instrument, For
this purpose it had to be fitted with a micromefer—a mechanism for
measuring such small angles. This, too, was perfected at the Paris
Observatory.

MICROMETERS

Both these applications of the telescope seem, however, to have
been anticipated by William Gascoigne about 1640. They are
described in letters from Gascoigne to Oughtred in that and the
following year (S. P. Rigaud, Correspondence of Scientific Men of the
Seventeenth Century, etc., Oxford, 1841, 1862, Letters 19 and 20):

“I have either found out, or stumbled on . . . a most certain
and easy way, whereby the distance between any the least stars,
visible only by a perspective glass, may be readily given, I suppose
to a second ; affording the diminutions and augmentations of the
planets strangely precise. . , ."”

Gascoigne seems to have discovered the principle accidentally
“when it pleased the All Disposer, at whose direction a spider’s
line drawn in an opened case could first give me by its perfect
apparition, when [ was with two convexes [presumably a convex
object-glass and a convex eyepiece] trying experiments about the
Sun, the unexpected knowledge.”

Gascoigne's letters also clearly describe the application of the
telescope to a graduated quadrant.

Gascoigne fell as a Royalist at the battle of Marston Moor, in
1644, and his inventions were forgotten for the time being, How-
ever, about twenty years later, a letter from Auzout to Oldenburg
was published in the Philosophical Transactions (Vol. 1, No. 21)
claiming that the micrometric method which Auzout and Picard
had introduced, and which is described below, was giving the
diameters of the Sun, Moon, and planets correct to a few seconds,
And this letter prompted Richard Towneley to write to Dr. Croune
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stating that, even before the time of the Civil War, Gascoigne (some
of whose papers had fallen into Towneley's hands) had devised an
instrument as sensitive as that of the French astronomers, and had
used it for some years. “The very Instrument he first made I have

Illustr, 106.—Gascoigne’s Micrometer

now by me,” wrote Towneley, “and two others more perfected by
him.” Towneley put Gascoigne’s micrometer into working order,
and he used it in observations on the *Circum-jovialists” ( Jupiter’s
satellites).

A description of Towneley's micrometer, with illustrations, was
prepared by Hooke and published in the Philosophical Transactions
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(1667, Vol. 11, No. 2g). A general view of the instrument, with the
cover removed, is shown in Illustr. 106 (1), where aaa is an oblong
box of brass about 6 inches in length, to one end of which is screwed
a brass disc bbb whose circumference is divided into 100 equal
parts. A carefully constructed screw extends the whole length of
the box and is so held in position at each end that it can be turned
by the handle mm without any unsteadiness of motion. The third
of the screw nearest the plate has twice as fine a thread as the
remaining two-thirds. The coarser portion of the screw works in a
socket f fixed to a long bar g to which is fastened the sight A,
which can thus be moved, by turning the screw, nearer to or farther
from the fixed sight {. The reading of an index [ against a scale
on the bar g, of which each division corresponds to one turn of the
screw, enables the distance apart of the sights & and ¢ to be read
off to the nearest whole turn, while the index ¢ on the brass plate
shows additional hundredths of a revolution. To the socket g, in
which the finer portion of the screw turns, is fixed the plate ppp
(Illustr. 106, 2) which is also attached to the telescope by the
screws rr. Turning the handle consequently causes the micrometer
to move relatively to the telescope at half the speed of the moving
sight and in the opposite direction, so that points midway between
the movable sights may always lie upon the axis of the telescope.
Mlustr. 106 (3) shows how hairs {, v, fixed in suitable frames r, 5,
may be used for sighting purposes instead of the edges of the
sights h and i. Illustr. 106 (4) shows the micrometer in position on
the telescope, and Illustr. 106 (5) shows the rest or adjustable support
of the telescope.

Another type of micrometer was independently invented by
Huygens, and was described by him in his Systema Saturnium. He
measured the angular diameters of planets by slipping brass plates
of various breadths across the focal plane, and noting the breadth
of plate required to hide the planet, from which its angular diameter
could ultimately be calculated.

Various other types of micrometer were invented at this period,
but the type which in principle has survived to our own day was
one similar to Gascoigne’s but independently introduced by Auzout
and Picard about 1666,

The micrometer of Auzout and Picard consisted essentially of
two frames LMNO and RSTV, of which the latter could be moved
to and fro in grooves cut in the former. This was done by turning
the screw PQ to which was attached a pointer moving over the
circle W which was graduated to show sixtieths of a complete turn.
Each frame carried a system of parallel hairs YY fixed at equal
distances apart. The image to be measured was comprised between
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a convenient pair of hairs on the two frames, and the separation
of these two hairs was measured in whole turns and a fraction of
a turn of the screw. These arbitrary units could be converted into
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Hlustr. 107.—The Micrometer of Auzout and Picard

angular measure when the instrument had been calibrated. The
frames A and B, in which strips of metal took the place of the hairs,
were intended fur alternative use instead of those with hairs, ami
were placed in the positions TVON and RSVT respectively. C and
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D were simple forms of frames to which hairs might be attached
as desired, and which might then be inserted at the common focus
of eyepiece and object-glass, while E was made up of metal strips
of various known thicknesses, The micrometer was slid into position
at the common focus of the telescope through the aperture K of
the iron or copper tube ABCD, which was inserted in the tube of
the telescope and kept from falling out by means of the ring EF,
The eyepiece was inserted at CD. (See A. Auzout, Manidre exacte
pour prendre le Diaméire des Planéles, etc., in Histoire de I'Académie
Royale des Sciences depuis 1666 jusqu’d 1699, Paris, 1733, etc., Tom. VII,
pp. 118-130.)

The turns and fractions of a turn of the micrometer screw could
be converted into angular measurements after the instrument had
been calibrated. This was effected (as in the modern filar micro-
meter) by separating the hairs through a whole number of turns,
setting them perpendicular to the Equator and noting by the clock
the time taken by the image of a star of known declination to drift
across the field from one hair to the other.

The pendulum clock, used in this calibration, found its principal
application in enabling the times at which selected stars crossed
the meridian to be accurately noted. The interval between the
transits of two stars measures their difference of right ascension;
and upon Picard’s procedure is based the standard method of
determining, on the one hand, the absolute right ascensions of stars,
and, on the other, the local sidereal time of the place of observation.

Olaus Rémer, in a memorandum written about 1676 and quoted
by his pupil Horrebow (Basis Astronomiae, Havniae, 1735, Chap. XIII),
relates how, in 1672, the year in which he came to France with
Picard, he designed and constructed a micrometer. He claims to
have invented this instrument without previous knowledge of the
one already introduced by Picard and Auzout, and it was soon
admitted to be the best instrument of its kind so far constructed.
By 1676 both Picard and Romer were using such micrometers in
the Paris Observatory. The instrument, as described by Rémer
(loc. eit.), consisted essentially of three rectangular frames B, C,
and D, made of brass (see lllustr. 108). The frame B had two hori-
zontal bars L, L, in which three pairs of grooves were sunk. It had
also three fixed cross-pieces, and a sliding stop F moved by a fine
screw H which passed through the outermost of the cross-pieces,
and had a blunt end. To the central cross-piece was attached an
M-shaped spring I pressing the movable stop F against the end
of the screw, so that F moved steadily as the screw was turned,
and inaccuracies due to the wearing of the screw were minimized,
which was one of the principal merits of this instrument, The
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Ilustr, 108.—Ramer's Micrometer
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frame C carried a thread Q and a metal strip P, for alternative
use, and had a tongue E which was inserted in the oblong mortice
shown in F and was secured by the screw G, so that C slid back-
wards and forwards in the exterior grooves on the sides of L, L, as
the screw H was turned. The frame D, which fitted into the interior
grooves on L, L, carried a number of threads equidistant from each
other by an amount equivalent to ten turns of the screw (or at
other convenient distances), and the sides L, L, were graduated to
serve as a check on the screw. The three frames B, C, and D are
shown fitted together in the figure A, and, in section, in the top
lefi-hand corner of the diagram. KK is part of the telescope which
fits into the third pair of grooves and thus grips the micrometer.
Round the outer edge of the socket of the screw is a circle graduated
into ten equal parts for measuring tenths of a turn of the screw,
smaller divisions being judged by the eye. The instrument was
mounted with its threads in the focal plane of the telescope, and
the screw was turned until the distance between the movable
thread and one of the fixed ones exactly coincided with the diameter
of a planet (or other small arc to be measured). The angular
diameter of the planet was calculated from the measured separation
of the two threads (expressed in turns of a screw, whose equivalent
in linear units had to be known) combined with the focal length
of the telescope; or else the instrument could be calibrated, as is
now the practice, by measuring with it the distance between the
images of two distant points subtending a known angle at the
observer. Horrebow later used such an instrument at Copenhagen
until it was destroyed, with the rest of Rémer’s instruments, by the
great fire of 1528,

(See J. A. Repsold, Jur Gesch. d. astron. Messwerkzeuge, 1908.)
PICARD

Picard obtained an improved value for the length of a degree
of latitude on the Earth’s surface in the neighbourhood of Paris,
For this purpose he measured (166g—70) an arc extending from a
point near Amiens to a point near Paris, and astronomically deter-
mined the difference of latitude at its extremities. To increase the
accuracy of the survey, he connected the arc to be measured with
a carefully determined base-line by triangulation—a method first
proposed and practised by the Dutch mathematician Willebrord
Snell in 1615-17 (Eratosthenes Batavus, Leiden, 1617). The publi-
cation of Picard’s results, in 1671, may have been one of the factors
which stimulated Newton to proceed with his researches on gravi-
tation. (Picard’s researches are described in his Ouwvrages de Maths-
matique, La Haye, 1731.)
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CASSINT

Picard’s influence on the work undertaken at the Paris Obser-
vatory gradually declined with the rise of the Italian Cassini, who,
soon after his arrival in 1669, became virtually the Director of the
Observatory. As, however, he never held that title officially (see
C. Wolf, Histoire de I'Observatoire de Paris, Paris, 1902, chap. xiii),
conditions at Paris in the early years were rather different from
those obtaining at Greenwich. There was no central authority and
no fixed programme of work; each observer worked at what he
pleased, and very often at his own home, as the Observatory was
rather out of the way ; hence the Parisian contribution to astronomy
was not so solid as that of Greenwich, until the reorganization of
the Observatory of Paris after the Revolution.

While still in Italy, where he was a highly placed civil engineer,
Cassini made a name as an astronomer by his measurement of the
periodic rotations of the planets Mars and Jupiter, and by his
construction of tables defining the motions of Jupiter’s satellites.
At Paris he continued his observations, which were rewarded by
his discovery of four satellites of Saturn additional to that found
by Huygens—two of them by means of a tubeless telescope of the
aerial type. He also observed that Saturn’s ring is divided into two
concentric portions by a cleavage still known as the *Cassini
Division" (see the division between the outer and inner rings in
Hlustr. 102, p. 163); and he correctly suggested that the ring is
composed of an assemblage of small satellites to the planet. He
was also among the earliest to note the white polar caps of the
planet Mars, and to compare them with the ice-covered polar
regions of the Earth.

Cassini was one of the astronomers who collaborated with Jean
Richer in the determination of the parallax, or distance, of Mars,
at the opposition of 1672. Richer’s observations of Mars from
Cayenne, when compared with those of his colleagues at Paris, gave
the alteration in the apparent direction of the planet consequent
upon a displacement of the observer from Paris to Cayenne. The
determination of the planet’s distance thus resulted from the
solution of a triangle whose base and base-angles were known.
From the combined observations Cassini was able to deduce the
distance of the planet and hence that of the Sun, which was the
real objective. He estimated the Sun’s parallax as being of the
order g*-5, which corresponds to a distance of about 87,000,000
miles. This estimate compares well with the modern value (based
on the 1go1 opposition of Eros) of 8"-8, corresponding to a mean
distance of 92,800,000 miles; and it was a great improvement on
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the gross under-estimate of the Sun’s distance which had come
down from Alexandrian times to the seventeenth century. (The
Richer—Cassini determination of the Sun’s parallax is reported in
Cassini's Divers Ouvrages d’ Astronomie, La Haye, 1731, pp. 129 fI.)

Cassini joined in the prevailing search for annual stellar parallax,
which=was to be expected on the Copernican hypothesis; but his
methods were not sufficiently refined, and the errors due to atmo-
spheric refraction were too large and too uncertain for his observa-
tions to be of any value for this purpose.

Towards the end of his life, Cassini became involved in the
controversies concerning the shape of the Earth which arose out
of the discovery, by Richer and Halley, of the shortening of the
seconds pendulum near the Equator. Newton had rightly surmised
that the Earth is flattened at the poles and bulges at the Equator,
having the form of an oblate spheroid, as was noticeably the case
with the rapidly rotating Jupiter. Cassini, however, maintained the
view that the Earth is flattened at the Eguator, the polar radius
being greater than the Equatorial radius. This view received
apparent support from several measurements of the lengths of
meridian ares carried out in France under Cassini’s auspices; and
it was not until the middle of the eighteenth century that the
question was settled. French scientific expeditions were then sent
to Peru and Lapland for the purpose of measuring meridian arcs,
and the results then and since obtained concerning the shape of
the meridians have borne out Newton’s surmise as against Cassini’s.
The analogous but more difficult problem of ascertaining the precise
shape of the Equator is still exercising geodesists.

The Cassini family enjoyed a long association with the Paris
Observatory, G. D. Cassini’s son, grandson, and great-grandson
successively controlling the destinies of the institution down to the
time of the French Revolution.

Cassini’s table of Jupiter's satellites, already mentioned, was
intended to serve for the accurate determination of longitudes by
a method suggested by Galilei. The instant of the eclipse of one
of these bodies could be predicted, with the aid of the tables, in
the standard time of some prime meridian; the observer in some
remote part of the world then noted the local time of the eclipse,
and the difference between the standard time and the local time
of the phenomenon measured the longitude of the observer from
the prime meridian. It was partly in order, by this method, to
measure the longitudes of important places throughout the world
that the Academy of Sciences had fitted out a number of expedi-
tions. Two of these have already been mentioned—that of Picard
to Uraniborg in 1671, and that of Richer to Cayenne in 1672,
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ROMER

Picard’s astronomical expedition to Uraniborg, in 1671, was
indirectly the means of introducing Olaus Rémer (1644-1710) to
the Academy of Sciences at Paris. During his stay there, Rémer
was initiated into the observational fechnigue of Picard and his
colleagues, and after his return to Denmark he made an important
contribution to astronomy by the invention of the transit-circle—of
which, however, he may have obtained an inkling from some of
Picard’s instruments.

R &mer observed at first from the Round Tower at Copenhagen,
which King Christian IV had built in 1637 as an obsérvatory for
Longomoentanus, formerly Tycho Brahe’s assistant. But later Rémer
observed in his own house, where he set up his transit instrament
about 16g0. This instrument consisted essentially of a small telescope
turning in the meridian about a horizontal axis lying due east and
west, and having, in the common focus of object-glass and eyepiece,
a web of horizontal and vertical wires. These wires were illuminated
by means of a lamp, a lens, and a reflector, which directed a beam
of light on to them through a hole in the side of the telescope. The
instant of transit across each upright wire was recorded with the
aid of a clock audibly ticking out seconds, and the time of transit
across the meridian could thus be calculated. Errors of the instru-
ment were deduced from suitable combinations of observations as
in a modern observatory. With this instrument differences in the
right ascensions of stars could be easily and accurately ascertained.
The corresponding declinations were read off through a microscope
carried round by an index perpendicular to the axis of the instru-
ment, and travelling over a graduated circle (see Hlustr. 111).

The superiority of Rémer's method of observing lay in the
avoidance of cumbrous instruments for measuring celestial angles.
Such instruments were expensive; it required much gear and
expenditure of time, and several assistants to work them, and the
results immediately obtained were not the right ascensions and
declinations required ; these could be deduced from the observations
only after much tedious calculation.

Rémer’s instruments, and almost all the records of his observa-
tions, were destroyed in the great fire which devastated Copenhagen
in October 1728. His instruments and methods, however, were
minutely described from memory, and with the aid of Romer’s
manuscript memoranda, by his devoted pupil Peder Horrebow in
his book Basis Astronomiae, Havniae, 1735, from which the above
particulars are derived,

(See E. Philipsen, Olaus Rémer, Christiania, 1860.)
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Tae GreenwicH OpservaTorY : FLAMSTEED

The early history of Greenwich Observatory is closely bound up
with the life-story of John Flamsteed, the first astronomer to hold
office there. Had it not been for Flamsteed's enterprise it is doubtful
whether the Observatory would have been founded when it was,
or would have achieved so much even if it had been.

John Flamsteed was born on August 19, 1646, near Derby. 1lI-
health interfered with his schooling and threw him much on to his
own resources, and he devoted much of his youth to the private
study of mathematics and astronomy. An ephemeris for the year
1670 which he prepared and sent to the Royal Society won him
the friendship of the Secretary, Henry Oldenburg, whom he visited
later in that year. While in London he was taken by John Collins
to the Tower to see Sir Jonas Moore, the Surveyor of the Ordnance
and later a distinguished mathematical member of the Royal
Society. Moore gave Flamsteed a micrometer of Towneley's, and
furnished him with lenses with which he shortly afterwards con-
structed a telescope and set up a little observatory at Derby, Here
he concentrated on micrometric observations, leading to improve-
ments in lunar theory on the lines of Horrocks' work. Flamsteed in
return presented a pair of “weather-glasses” (thermometer and
barometer) to Moore, who himself made a similar pair for Charles I1,
to whom he often talked of the young astronomer. Soon afterwards
Flamsteed went to Cambridge University, where he made the
acquaintance of Newton and Barrow; and having obtained the
M.A. degree, he took Orders with a view to a career in the Church.
In 1675, however, Moore summoned him to London to take charge
of an observatory which he meant shortly to found at Chelsea
College, then the property of the Royal Society. Meanwhile he got
Flamsteed made a member of a Commission, which included
Brouncker, Wren, and Hooke, besides Moore himself, and which
had been appointed to consider a proposal made by a French
nobleman, Le Sieur de St. Pierre, for obtaining longitude at sea
by a method involving the precise determination of the Moon's
place among the stars. Flamsteed pointed out that this method was
not, even in theory, the best available, and that in practice it was
out of the question, owing to the uncertainty of the contemporary
lunar tables and star catalogues. His objections were reported to
Charles 11, who “said, with some vehemence, “He must have them
[star-places and Moon’s motion] anew observed, examined, and
corrected, for the use of his seamen.” . . . And when he was asked
Who could, or who should, do it? ‘The person (says he) that
informs you of them' ™ (Baily, p. 38). In March 1675 Moore gave
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Flamsteed a warrant from the King appointing him “Our Astro-
nomical Observator” at a salary of £100 per annum, Moore’s project
of an observatory at Chelsea was brought forward ; Hyde Park was
also mentioned as a possible site, but finally Wren's suggestion
Greenwich Hill was agreed to. Charles signed a warrant establishing
Greenwich Observatory on June 12/22, 1675. The foundations were
laid in August, and by July of the following year Flamsteed was
installed.

Before he could begin serious work, however, Flamsteed had to
furnish his new observatory with instruments. He already
a small quadrant, and a sextant which he had had made at the
Tower, and Moore gave him two clocks; but in order to complete
the equipment of the Observatory he had to expend both money
and labour without obtaining the recompense to which he was
entitled. His instruments were mostly of the type in use at the Paris
Observatory and elsewhere at this period, consisting of graduated
arcs traversed by telescopic sights. Upon the graduation and cali-
bration of the scales and micrometer-screws, which were to serve
for the measurement of celestial angles, Flamsteed bestowed much
ingenuity and labour, often assisted only by * an ill workman, who
respected nothing but the getting of wages by his work.” Flam-
steed’s finest instrument was a mural arc of 140 degrees which he
constructed with the aid of his friend Abraham Sharp at a cost
of £120, and which was completed, in 1689, after more than a
year's work.

The principal fruit of Flamsteed’s years of labour at Greenwich
was the construction of a star-catalogue which superseded all previous
ones both by its accuracy and by the number of stars which it
contained. It marks an important stage in the development of
modern precise astronomy. Flamsteed’s round of work also included
the frequent observation of the Sun, Moon, and planets, and the
correction of their tables. He was fertile in inventing fresh methods
of observation, such as the procedure, which still bears his name,
for determining the vernal equinoctial point—the origin of gradua-
tions on the ecliptic and the Equator. In constructing his catalogue,
Flamsteed generally proceeded by measuring the angular separations
of pairs of stars by means of his sextant, thus gradually building
up a network of such “intermutual distances” all over the visible
heavens. The places of the stars included in this survey were then
connected by calculation with the places of certain selected funda-
mental stars. The absolute co-ordinates of the latter (and thus
ultimately of all the rest) were determined with the aid of the mural
arc and a pendulum clock whick enabled the times and altitudes
of their meridian transits to be ascertained. The mural arc and
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clock were also frequently used to determine star-places directly, in
accordance with the practice of Rémer, the two methods serving
as a check on each other. In this way a catalogue of nearly three
thousand star-places was built up.

The forty-five years which Flamsteed spent at Greenwich were
darkened by ill-health and shortage of money; and he became
involved in a long and painful dispute with Newton and Halley
over the publication of his results. The point of this dispute was,
briefly, that Flamsteed was anxious not to publish his catalogue
until he had carried it to the highest possible degree of perfection.
He supposed that, as he had spent some £2,000 of his own money
on the work without any Government repayment except his salary,
he had some right to publish his observations at his own time. On
the other hand, Newton, who was latterly one of the Visitors of
the Observatory, seems to have taken the view that Flamsteed was
a Government official whose observations were national property
and should be published with expedition for the common benefit.
Newton was also anxious to establish his theory of Universal Gravi-
tation before he died, by showing its conformity with the most
accurate observations available. Flamsteed, however, showed litile
interest in Newton’s theoretical researches, and he accused Newton
of not making proper acknowledgment of the lunar observations
with which he kept supplying him, and which Newton used for
the correction of his lunar theory, Flamsteed seems also to have
had a particularly strong dislike of Halley. This was probably due,
in the first instance, to the freedom of Halley’s theological views;
but the quarrel was aggravated by the publication, in 1712, under
the editorship of Halley, and without the concurrence of Flamsteed,
of an edition of the Greenwich observations in a curtailed and
mutilated form which seriously diminished their scientific value.
Even the portions printed did not represent Flamsteed’s latest and
best work, but were largely earlier observations which had been
communicated to Newton merely as a guarantee that Flamsteed
would complete his catalogue in due course.

Flamsteed resolved to reprint his observations and catalogue in his
own way and at his own expense. He managed to buy up three hun-
dred of the original four hundred copies of the 1712 edition. From
these he scparated the pages giving his carly sextant observations
which he had himself prepared for press, and he incorporated these
in his new edition, to form the bulk of the first volume. OFf the
remaining portions of Halley’s edition he made a bonfire, He died
(December 31, 1719 O.5.), however, before he could finish preparing
his later observations and star-places for the press; but this task was
completed by his friends Crosthwait and Sharp, and the Historia
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Coelestis Britannica was finally published in three volumes in 1725,

Important memoranda and correspondence of Flamsteed con-
taining much autobiographical material were first examined and
printed by Francis Baily (An Account of the Rev. John Flamsteed, etc.,
London, 1835). Baily recalculated Flamsteed’s star-places from his
observations, and from his edition of Flamsteed's papers the fore-
going particulars are largely derived. (Baily’s account of the disputes
shows a certain hostility to Newton and Halley; for a concise
statement of their case, sec Whewell’s pamphlet, Newton and Flam-
steed, Cambridge, 1836.)

(See E. W. Maunder, The Royal Observatory, Greemwich, 1900.)

HALLEY AND HEVELIUS

Edmond Halley was born in London on November 8, 1656, As
a schoolboy, and later as a student at Oxford, he studied astronomy,
and observed the heavens on his own account. At the age of nineteen
he contributed a paper to the Royal Society suggesting a method
more direct than those in use for determining the elements of a
planetary orbit. This paper revealed his remarkable command of
geometry; but it was chiefly of importance because it reverted to
Kepler’s Second Law and rejected the alternative hypothesis, which
was then finding favour, that a planet revolves uniformly about the
vacant focus of its elliptic orbit.

Halley's early observations of the planets, made with crude,
home-made instruments, had revealed to him certain diser i
betwen the true places of Jupiter and Saturn and those predicted
in the current tables. Like Tycho Brahe a century before, Halley
was anxious to reform the planetary tables; but he, too, recognized
that such an attempt would be a waste of time without a more
correct catalogue of the fixed stars. It was no use his competing
with observers like Flamsteed and Hevelius on their own ground.
He therefore resolved to supplement their work by cataloguing the
stars of the southern celestial hemisphere, which could not be
observed from Greenwich or Danzig, and whose places were known
only through the crude observations of sailors, Halley fixed on
St. Helena, which was then the most southerly of British dominions,
as the site of his temporary observatory. His father undertook to
meet the cost of the expedition, while Sir Joseph Williamson, the
President of the Royal Society, and Sir Jonas Moore, the patron of
Flamsteed, brought the scheme to the notice of Charles II. The
King commended Halley to the East India Company, who were
then in control of St. Helena, and who offered him a passage to
the island when the fleet sailed. Equipped with the necessary
instruments, Halley arrived at St, Helena early in 1677, and
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pitched his camp on one of the northern spurs of Diana’s Peak, a
central mountain which dominates the island. Here he remained
observing for nearly eighteen months. Bad weather seriously ham-
pered his observations, but by working without intermission upon
every opportunity he succeeded in determining nearly 350 star-
places before the time came for his return in 1678. He filled up
the time when he could not observe with investigations of physical
and meteorological phenomena, and was impressed by the un-
familiar forms of life that met his eye.

Halley’s procedure in the construction of his catalogue, which
he published in 1679, was to measure, by means of a telescopic
sextant (that is, a telescope traversing a graduated arc of 6o degrees,
not a “nautical sextant”} which he took with him, the angular
distances of each unknown star from at least two stars whose places
were known from Tycho Brahe's catalogue. The required celestial
longitude and latitude were then obtained by calculation, Halley
himself reducing the observations. He enhanced the value of his
catalogue by including the actual data from which the co-ordinates
were deduced. This he did in order that the accuracy of his calcu-
lations could be checked, and in order that all his southern star-
places could be recalculated when Flamsteed's and Hevelius’ cata-
logues, with their improved values for the fundamental stars, should
have appeared. Halley's results could thus be rediscussed by Sharp
(who amalgamated most of his star-places with those of Flamsteed
and published them in the Historia Coelestis), and, in more recent
times, by Baily (Mem. R.A.S., Vol. XIII, 1843). Halley retained
the traditional constellation names, but introduced one new group
(which has not survived), viz. Robur Caroli, in honour of his royal
patron and of the oak which preserved him. It is noteworthy that
Halley’s star-catalogue was the first to be based on telescopic
observations.

Immediately after his return to England, Halley was elected a
Fellow of the Royal Society. He kept up a lifelong connection with
the Society, becoming its Secretary in 1713; and he also undertook
for some years the editorship of the Philosophical Transactions, in
which some eighty of his papers are to be found, extending over a
period of more than sixty years.

‘Thc first duty which the Royal Society laid upon Halley brought
him into contact with a much older astronomer, Johann Hevel
(1611-87), called Hevelius, of Danzig. This brilliant but opinionated
observer made skilful use of the telescope for examining the Moon,
plan:_ts, and comets. The books in which his observations are
described and depicted arc among the finest products of seventeenth-
century descriptive astronomy. But when it came to the precise



ASTRONOMERS AND OBSERVATORIES IN AGE OF NEWTON 183

measurements involved in constructing his star-catalogue, which
included about 1,500 stars, Hevelius (as has already been men-
tioned) maintained the superiority of open sights as against the
telescopic sights which were then being almost universally adopted.
His obduracy on this point led to a long and sometimes acrimonious
discussion with Hooke, the champion of the telescopic sight. Hooke
impugned the accuracy of Hevelius, who thereupon appealed to
the Royal Society to send someone to judge at first hand of the
quality of his work. Halley was chosen. He arrived at Danzig in
May 1679 with a telescopic quadrant, and the two men observed
in friendly rivalry for two months. Halley testified to Hevelius® great
skill, and to the precision of his instruments (all of which were
destroyed in a fire about two months later). But neither astronomer
altered his convictions, and we find all Hevelius' objections to
telescopic sights reiterated in his last, posthumous book.

In the course of a tour on the Continent, begun in 1680, Halley
visited the Paris Observatory, and observed the great comet of that
year with Cassini. In the years immediately following his return he
was closely in touch with Newton, encouraging his researches in
mechanics, smoothing over difficulties in the way of their publica-
tion, correcting the proofs of the Principia, and even meeting the
cost of its production out of his own pocket. After a short spell of
duty at the Mint at Chester (16g6-8), Halley was placed in command
of a warship and sent on an expedition “to improve the knowledge
of the Longitude and variations of the Compasse” in the Atlantic
Ocean, and to search for unknown land to the south. After many
months spent at sea, Halley was made Savilian Professor of
Geometry at Oxford, in 1703, and was then immersed for years in
studying Arabic and editing ancient mathematical texts, To this period
also belongs his edition (1712) of Flamsteed's observations, to which
reference has already been made. Upon Flamsteed's death, Halley
succeeded him as Astronomer Royal, an appointment he held from
the beginning of 1720 until his own death on January 14, 1742.

Halley found that Greenwich Observatory had been stripped of
nearly all its instruments by the executors of Flamsteed, He obtained
a grant of £500 from the Government for new equipment, but it
was late in 1921 before he got properly started. In that year he
introduced the first transit instrument which had been seen at
Greenwich Observatory. The telescope was of Hooke's construction,
and still hangs on the wall of the transit-house. Later he added a
large iron quadrant constructed by Graham. At Greenwich, Halley
devoted his attention almost exclusively to lunar observations for
the correction of the tables, in the hope that these might provide a
means of determining longitude at sea. With this object he made almost
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daily observations of the Moon throughout a sarotic period of about
eighteen years, the results of which first appeared in 1749. Halley's
day-to-day observations at Greenwich have, however, never been
reduced and published. They were examined by Francis Baily (Mem.
R.AS., Vol. VIII, 1835), who was led to form rather a low opinion
of the conditions at Greenwich during Halley’s term of office there,

As an astronomer Halley is best known for his connection with
the comet which bears his name. We have seen that Newton, in
his Principia, showed that the observed motion of the comet of 1680
could be attributed to its having moved in a parabola under the
gravitational attraction of the Sun. Newton’s methods for deter-
mining the orbits of comets were later applied successfully to a
number of these bodies whose movements had been sufficiently well
recorded. In this work Halley took an important part. He deter-
mined the elements of the orbits of twenty-four comets whose
appearances dated from 1337 to 1698. His results appeared in the
FPhilosophical Transactions for 1705. Newton had thought that some
comets at least might move in clongated ellipses about the Sun, in
which case they should show periodic returns to perihelion. Halley
noticed a close similarity among the orbital elements of the comets
of 1531, 1607, and 1682 ; and he suspected that here was a case of
a single comet describing a closed orbit with a period of about
seventy-five years (see Illustr, 118). He attributed slight discrepancies
in the elements and in the intervals between successive appearances
to the disturbing action of Jupiter upon the comet; and he pre-
dicted the return of the comet about 1758. It duly appeared at the
close of that year (sixteen years after Halley's death), and has made
subsequent returns in 1835 and 1g10. Its appearances previous
to the three considered by Halley have been partially traced back
to dates before the Christian era by Hind, and by Cowell and
Crommelin.

While at 5t. Helena, in 1677, Halley observed a transit of Mercury
across the Sun’s disc. From the duration of the transit, which he
measured as carefully as possible, he arrived, by a complicated
calculation, at an inaccurate estimate of the Sun’s parallax, It
occurred to him, however, that more precise results might be
obtained from concerted observations of a transit of Venus, which
approaches nearer to the Earth than Mercury. An ephemeris of
such phenomena which he published in 1691 showed that the next
transit of Venus was due in May 1761. Although aware that he
could not expect to live until then, Halley carefully outlined, in 1716,
a plan of campaign for taking full advantage of the phenomenon,
His method involved measuring the durations of the transit as
viewed from at least two stations differing in latitude by a known
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amount. From this information, combined with a knowledge of the
rate of synodic motion of Venus, and of the ratio of the distances
of Venus and the Earth from the Sun, he showed that the latter
distance, and hence the scale of the solar system, could be ascer-
tained. The transits of 1761 and 1769 were accordingly observed
from a number of widely scattered stations. Owing to uncertainty
in the instants of contact of the planet with the Sun’s limb, the
method proved less sensitive than Halley had anticipated. However,
the values of the parallax deduced from its application mostly
agreed to within a fraction of a second of arc with the value now
accepted. This was remarkable, considering that Halley's method
required clear weather at both stations, at the beginning and at the
end of the transit. Such conditions are rarely realized. Hence
preference was soon given to another method, which only requires
observation either at the beginning or at the end. This method
was introduced by J. N. Delisle (1688~1768), a French astronomer,
who was highly esteemed by Newton and Halley, and was elected
a foreign member of the Royal Society.

The procedure which Halley proposed for determining the
distance of the Earth from the Sun may be understood by reference
to Ilustr. 119. At a transit, the planet V appears to an observer on
the Earth T to describe a chord of the Sun’s disc 5. The apparent
position and length of this chord, and hence the time taken to
traverse it, vary according to the position of the observer on the
Earth. Let a, b, be the positions of two observers stationed in widely
different latitudes, and gh, ¢f, he apparent paths of Venus across
the Sun as seen from a, &, respectively. If the durations of the transit
at the two stations be measured, and the rate of synodic motion of
Venus at the time (i.e. its angular motion relative to the line joining
Earth and Sun) be calculated from the theory of the planet, then
the chords ¢f, gh, can be expressed in angular measure. Hence, and
from a knowledge of the Sun’s angular diameter, the separation ¢d
of these two chords can also be expressed in amgular measure. But
¢d can be expressed also in lincar measure. For cd:ab = SV: VT,
and this latter ratio is known from Kepler's Third Law to be about
2:6, so that ed = 2-6 . ab, while the distance sb is obtained from
geodetic data. The knowledge of ed in bath angular and linear units
gives the Sun’s distance from the Earth, though in practice addi-
tional complicating factors have to be allowed for.

Halley drew attention to changes in the mean rates of motion
of Jupiter and Saturn, previously sm:pn:tcd by Horrocks, and
becoming a.pprmablc with lapse of time; and he S\mpwlcd the
existence of a minute secular acceleration nf the Moon, which was
later established and explained.
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A total eclipse of the Sun, which occurred in 1715, afforded
Halley an opportunity of observing and describing the appearance
of the Sun’s corona, which he supposed might be the Moon's
atmosphere. He seems also on this occasion to have caught a glimpse
of the chromosphere. Halley applied the method of fluxions to
determine, by a now familiar method, at what elongation from the
Sun Venus has its maximum brightness. He also made some advance
towards a modern explanation of meteors, which he found it hard
to attribute in all cases to the ignition of atmospheric vapours.

While preparing his star-catalogue of 1679, Halley found the
brightness of several stars to be less than that recorded by Ptolemy,
or even by an early seventeenth-century observer, Bayer. Other
stars seemed altogether to have disappeared. This seemed to point
to “mutability” in the heavenly bodies, which was further suggested

Mlustr. 119.—Halley's Method of Determining the Distance of
the Earth from the Sun

by the remarkable series of “new stars” discovered during the
sixteenth and seventeenth centuries. Several of these showed periodic
fluctuations in brightness, such as were detected in the sixteen-
eighties by Kirch in one of the stars of Cygnus, Halley, in 1715,
confirmed the regularity of the light-fluctuations of Kirch’s star,
and prepared a synopsis of the chief new and variable stars which
had been observed down to that date. Two years later he made
the important discovery of proper motion in three bright stars,
Aldebaran, Sirius, and Arcturus. These showed changes of latitude
which could not be attributed to the slow alteration in the plane of
the ecliptic ; and Halley's surmise that they were in motion relatively
to their neighbours was confirmed and extended to other stars during
the eighteenth century. Halley was a precursor of Herschel in the
study of “nebulae,” which began 1o be discovered in the seventeenth
century. Star-clusters, of which Halley himself discovered two, were
at that time, and long afterwards, classed among nebulae. Halley
supposed that such objects are composed of a diffuse, self-luminous
medium, and he had some notion of their enormous extent.

Halley’s numerous researches in pure physics and geophysics are
described elsewhere.

(See E. F. MacPike, Correspondence and Papers of Edmond Halley,
Oxford, 1932, and Hevelius Flamsteed and Halley: Three Contemporary
FPhilosophers and their Mutual Relations, London, 1938.)



CHAPTER 1X

MATHEMATICS

ANTECEDENTS

The twelfth century saw the earliest considerable infiltrations cf
Graeco-Arabic mathematical learning into Western Christendom.
These chiefly took the form of translations, by Christian or Jewish
scholars, of such textbooks as were current in the Moorish schools
of Spain. Of these books the most important was the Elements of
Euclid, which was translated from Arabic into Latin by the English
monk Adelhard of Bath about 1120, and which soon established
itself as a standard textbook at the mediaeval Universities. Another
important feature of this period was the gradual introduction into
Western Europe of the so-called Arabic numeral system, with its
symbols for the first nine numbers and for zero. This system took
root slowly at first, but became firmly established, at least for
scientific purposes, before the end of the fourteenth century,

During the thirteenth century the mathematical knowledge thus
derived from the Arabs was expounded, with original developments,
in several Latin works, which helped to lay the foundations for the
later, independent growth of Algebra in Europe. The first of these
was the Liber Abaci (1202) of Leonardo of Pisa, a widely read and
travelled Italian. In his book Leonardo solves simple and quadratic
equations, and sums clementary series by methods which he derived
from Arabic authorities, and which he illustrates by numerous
examples. He was one of the earliest advocates of the use of Arabic
numerals, and his work long exercised an important influence.
Contemporary with Leonardo was Jordanus Nemorarius, 2 German
Dominican monk who wrote both on geometry and on algebra,
He appears to have been one of the first to denote algebraic quan-
tities, known and unknown, by arbitrary letters of the alphabet,
instead of by initials or other abbreviations of words. There is some
trace of this practice in the work of Leonardo of Pisa, but it did
not become general until several centuries later. Roger Bacon also
belongs to this period. He made little if any technical contribution
to mathematics, but he realized, almost alone among his contem-
poraries, what a powerful instrument mathematics could be for the
study of nature.

The fourteenth and fifteenth centuries were relatively barren from
the point of view of progress in mathematics, but the fificenth
century saw the invention of printing and the recovery of many
ancient mathematical classics in the original Greek. One of the
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carliest European scholars to be inspired by these original texts was
the astronomer Regiomontanus, whose treatise, De Triangulis, is a
landmark in the modern development of trigonometry. This work
was written in the middle of the fifteenth century but was not
published until 1533. Trigonometry was one of the few branches of
mathematics which had received substantial development at the
hands of the Hindus and Arabs. In tabulating the chords corre-
sponding to various angles in a circle of given radius, they had
substituted, for the simple chord of the Alexandrians, the half-chord
of twice the angle, which is equivalent to the modern sine. They
had also introduced, in principle, the cosine and tangent. Regio-
montanus systematically summed up the work of both the Greek
and Arab pioneers in plane and spherical trigonometry. His own
special contribution was the application, to the solution of special
triangles, of algebraic methods of reasoning derived from Diophantus,
though without the use of abbreviations.

The shortening of the solutions of algebraic problems made
possible by the use of abbreviations for the unknown quantity and
its powers and for the words plus, minus, etc., was exemplified in
the work of the Italian Friar Luca Pacioli, who lived in the latter
part of the fifteenth century, and whose Summa appeared in 1494.
Pacioli, however, did not reach the stage, represented by modern
algebra, where symbolic statements take the place of sentences of
ordinary prose. His theoretical work, moreover, represented little
improvement upon that of Leonardo of Pisa.

The next advance in algebra was due to Michael Stifel (1486~
1567), a Lutheran clergyman who revived Jordanus® practice of
denoting unknown quantities by arbitrary letters of the alphabet.
He represented the unknown and its successive powers by the
current symbols R for res or radix (x), Z for zensus (%), C for cubus (=%,
etc. Stifel also occasionally represented powers by repeating the
unknown the requisite number of times, e.g. writing it twice for a
square, three times for a cube, and so on—a practice revived by
Harriot at the beginning of the seventeenth century.

VIETA

The most important advance, however, in the development of
algebra into an independent language, based upon an international
shorthand, was the introduction, by the French mathematician
Vieta, of the use of general symbols for quantities and operations,
in place of mere abbreviations of the words for these things. Francois
Viéte (1540-1603), generally known by his latinized name of
Franciscus Vieta, was a lawyer who rose to high official rank under
King Henry IV of France, but found time for important mathe-
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matical researches, and was recognized as the most brilliant French
mathematician of his time. He put his genius to practical account
during the war between France and Spain by deciphering inter-
cepted enemy despatches. Vieta's chief treatise on algebra, In Artem
Analyticam Isagoge (Tours, 1591), was the means of establishing a
number of improvements, some of which had been anticipated by
carlier writers but had not taken root. Besides denoting the algebraic
quantities by arbitrary letters (unknowns by vowels, given quan-
tities by consonants), Vieta represented successive powers of a
quantity (squares, cubes, etc.) not by using new letters, but by
adding the words guadratus, cubus, etc. He thus economized in the
number of symbols used, and saved the reader much bewilderment.

Vieta also applied algebra to trigonometry. The trigonometrical
terms fangent and secant were being introduced at about this period,
and most of the recognized abbreviations for the trigoncmetrical
terms were coming into use, although with many variants. Vieta
showed how the trigonometrical ratios could be transformed and
related to one another in a variety of ways, by algebraic processes.
He was thus the founder of the branch of trigonometry sometimes
known as gomiometry. For instance, he devised formulae giving
sin Az and cos az in terms of sin a and cos a. Vieta succeeded in
expressing « in the form of an infinite product, and he calculated
its value to ten places of decimals.

Vieta's work on the theory of equations is mostly contained in
his De Numerosa Potestatum Resolutione (Paris, 1600) and in his posthu-
mously published De Aequationum Recognitione et Emendatione (1615).
In this domain he gave rules for approximating to roots of equations
which could not be directly solved, but he was still of the opinion
that the solutions of an equation were represented only by its
positive roots.

TARTAGLIA

An important achievement of sixteenth-century algebra was the
solution of equations involving the cube of the unknown quantity.
The ancients were acquainted with geometrical problems analogous
to that of solving cubic equations, e.g. the classic problems of
duplicating the cube, of trisecting the angle, and of dividing the
sphere in a given proportion by means of an intersecting plane.
One cubic equation is considered in the Arithmetica of Diophantus,
and some of the Arabs gave approximate geometrical solutions of
such equations. But the algebraic treatment of the problem dates
from the beginning of the sixteenth century, when rules were found
for solving certain types of cubic equations. The discovery of the
most comprehensive of these rules is now usually attributed to the
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Italian, Niccolo Tartaglia (1500-57), who may or may not have
originated it, but who employed it to his own advantage in a contest
which he waged with a rival mathematician. But Tartaglia's solution
became generally known in 1545 through Girolamo Cardan of
Milan (1501-76), who is said to have learned the method from
Tartaglia in confidence, which he subsequently betrayed.

Much of Tartaglia’s other writings deal with contemporary
methods in commercial arithmetic, e.g. methods of calculating the
interest due on sums of money. Such calculations were known even
in ancient times, and compound interest reckonings were known
among the Indians and the mediaeval Italian merchants. Stevin,
however, was the first to publish tables for the calculation of interest,
simple and compound.

A method of solving equations of the fourth degree, depending
upon Tartaglia’s solution of the cubic, was discovered by Ferrari,
a pupil of Cardan, Attempts to solve algebraically equations of the
fifth and of higher degrees continued until early in the nineteenth
century, when this problem was shown by Abel to be generally
insoluble.

Cardan’s chief original contributions to algebra also related to
the theory of equations. He paid attention to negative and imaginary
roots of equations. He also anticipated certain relations between
the roots and the coefficients of equations more clearly formulated
later; and he did some pioneer work on probability.

GIRARD

It was not until the seventeenth century, however, that negative
roots won complete recognition as real solutions. The law that, in
general, the roots of a given equation are equal in number to its
degree (the highest power of the unknown quantity occurring in it)
was deduced by the Lorraine mathematician, Albert Girard (1595~
1632), from the connections which he recognized between the roots
of an equation and its coefficients. These connections follow from
the fact that if f{x) = o is an equation of the nth degree, whose
roots are a,, ay, ay . . . 4, and in which the coefficient of #* is
unity, then

fx)=(x—a)(x—a) (x—ay) ... (x—a)

The results of Girard's researches appeared in his Incention Nouvelle
en P'Algébre (Amsterdam, 162g). They immediately justified the
existence of imaginary and negative roots, which had hitherto been
neglected, but which Girard found it necessary to include with the
other roots in order to bring their total number up to the degree
of the equation, and so to satisfy his law. Girard noted that negative
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roots of equations could conveniently be represented geometrically
as segments of straight lines set off in the sense opposite to that in
which segments corresponding to positive roots were set off. This
idea was afterwards applied by Descartes to a whole series of
problems. Girard also studied the propertics of spherical triangles,
and he arrived at the simple formula, which bears his name, giving
the area of such a triangle. This formula shortly afterwards received
a more rigorous proof from Cavalieri.

Vieta's results were systematized and further developed on
analytical lines by Thomas Harriot (1560-1621) in his posthumous
Artis Analyticae Praxis (London, 1631). The Clavis Mathematicae,
published in the same year (at first under a different title) by
William Oughtred (1575-1660), the inventor of the slide-rule,
became a standard textbook in which Newton made his first
acquaintance with mathematics.

MATHEMATICAL SymBOLS

Most of the operational and other symbols now used in elementary
arithmetic and algebra date from the sixteenth and seventeenth
centuries. A considerable variety prevailed at first in such sym-
bolism, and many other signs which have not survived were employed
by individual mathematicians of the period.

The signs for addition (+) and for subtraction (—) are found as
commercial symbols in a work on arithmetic by Johannes Widman
published as early as 1489; but more than half a century elapsed
before they were used as operational symbols by Stifel and others,
and they did not come into general use until the beginning of the
seventeenth century. The sign of equality (=) was suggested in
1557 by Robert Recorde in his Whetstone of Witte (the first English
book to contain the + and — signs) ; it was possibly already known
at that date, but did not become firmly established for another
century. The symbol for multiplication (%) was introduced in 1691
by Oughtred, whose Clavis Mathematicae was extremely rich in
symbols. The use of a dot as a symbol of multiplication is due 1o
Leibniz. The symbol for division (<) was first printed in 1659 in
a work by a Swiss mathematician, J. H. Rahn. The symbols for
“greater than” (>) and *less than” (<) were introduced carly
in the seventeenth century by Harriot. A radical sign, with
numbers affixed to denote which root was to he taken, seems to
have made its first appearance in 1484, in the manuscript of a
French physician, Chuquet, who also had a notation for negative
indices. But the radical first became gencrally known through its
use by Rudolff early in the sixteenth century. The divers methods
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of indicating powers of algebraic quantities were finally developed
into the modern index notation (for positive integral powers) by
Descartes in 1637. This notation was extended to represent roots
and the reciprocals of powers by Wallis and Newton, who showed
how fractional and negative indices could be used for this purpose.
The use of fractional powers, however, had been anticipated to
some extent by the fourteenth-century Nicole Oresme (who devised
a special notation for them) and by Simon Stevin.

Stevin also rendered a valuable service to arithmetic alike for
everyday and for scientific purposes, by suggesting, in 1585, a
notation for decimal fractions, which he preferred to the customary
sexagesimal fractions. He drew attention to the value of decimal
notations and methods of calculation, and he urged the Government
to introduce decimal coinage and weights and measures—a wish
which was first realized two hundred years later by the men of
the French Revolution. Stevin’s method of writing decimal frac-
tions, however, was rather inconvenient. He subjoined to each
figure an index showing the place which it occupied to the right
of the unit’s place. For instance, he would have written the decimal
fraction o- 346q in the form

EHORENOREORNO)
Stevin had an alternative notation in which this fraction would
appear as 3’ 4 6" 9""". About the beginning of the seventeenth
century, however, following a proposal of Vieta's, the modern
Continental method arose of writing decimals with a comma
prefixed. The use of the point occurs in a work of Napier’s which
appeared in 1617, but a variety of notations long persisted.

Many of the pictographic geometrical symbols now in use (e.g.
©, A, [, etc.) are of ancient origin, but were revived and
increased considerably during the early seventeenth century, espe-
cially by Hérigone and Oughtred.

The symbol = for the ratio of the circumference of a circle to
its diameter seems to have been first employed by William Jones
in 1706, but it was not widely used until the latter half of the
eighteenth century. (See F. Cajori, A History of Mathematical Nota-
tions, Vol. 1, Chicago, 1928.)

LocArITHMS

An extremely important advance in the art of calculation was made
early in the seventeenth century with the invention of logarithms,
whereby multiplication and division were reduced to addition and
subtraction, and the extraction of roots to simple division. The idea
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underlying this aid to calculation seems to have occurred inde-
pendently to at least two mathematicians of the period—to John
Napier, Baron of Merchiston, a Scottish nobleman and theologian,
and to Joost Biirgi, the Swiss astronomer, Kepler’s friend.

NAPIER

John Napier (1550-1617) made his invention known in his
Mirifici Logarithmorum Canonis Descriptio (1614), which contained his
table with rules for its use, but no account of the method of its
construction, This was first explained in Napier’s posthumous book,
Mirifici Logarithmorum Canonis Constructio (1619), which, however,
was actually written at an earlier date than the Descriptio.

Napier had to arrive at his conception of logarithms without the
mental aid of the index notation, which nowadays affords the easiest

A '; - -
141

Ch 2 .
7 &
Illustr. 120,—Napier's Conception of Logarithms

approach to them. He considered a point P moving along a straight
line such as AB (107 units in length) with a velocity proportional
at each point P; to the remaining distance P,B, while another
point, O, was supposed to move along an unlimited line CD with
a uniform velocity equal to that of the first point when it was at A
(Illustr. 120). Supposing the points tostart from A, C, simultaneously,
then the logarithm of the number measured by P,B was defined as
measured by CQ) ,. g

In the absence of anything like our logarithmic series, Napier
had to approximate to the value of each logarithm which he
required by evaluating certain limits within which it must lie.
This he effected by means of two formulae and of auxiliary tables
constructed for the purpose, from which the required number was
obtained by interpolation.

Napier intended his logarithms to serve primarily for the solution
of plane and spherical triangles. Hence his tables were constructed
to show the logarithms of the natural sines of angles from o° 10
go® for every minute of arc. Logarithmic cosines and tangents
could also be read off from them. Napier took the sine of go® as
107, so that his table covered the numbers between o and 107,
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These numbers, however, were not the natural numbers, but the
sines of angles which increased by regular increments. Again,
these original logarithms were not the same as those now called
“Napierian” or “natural” logarithms. For in Napier’s system the
logarithm of 10, i.e. of sin go°, is o, and as the number decreases
in geometrical progression towards zero its logarithm increases in
arithmetical progression towards infinity.

The practical value of logarithms was immediately recognized
by Napier's friend Henry Briggs (1561-1631), the Gresham Professor
of Geometry, who had much to do with the subsequent develop-
ment and rapid spread of Napier’s invention. Napier and Briggs
both came to see the advantage of a system in which log 1 = o,
and in which the logarithms increase with the numbers. Tables
based on this principle were calculated by Briggs, whose Arithmefica
Logarithmica (1624) gave the common logarithms, to 14 decimal
places, of 30,000 numbers. This collection was supplemented, to
cover all numbers from 1 to 100,000, by the Dutch mathematician
Adrian Vlacq in 1628.

John Napier also made some contributions to spherical trigono-
metry, including a useful mnemonic, the *“rule of circular parts,”
for the formulae of the right-angled spherical triangle. (See E. W.
Hobson's Jokn Napier, Cambridge, 1914.)

BURGE

Joost Burgi (1552-1632) introduced a crude table of antilogarithms,
i.e. of numbers whose logarithms formed a series of natural numbers.
This system was in all probability independent of Napier's, though
first published six years later (1620); but it was definitely inferior,
and soon suffered eclipse. Kepler expressed high admiration for
Napier, but he constructed tables on lines of his own, which he
published in 1624~5, and later included in his Rudolphine Tables.

The laborious early methods of calculating logarithms were
superseded later in the seventeenth century by the use of loga-
rithmic series depending upon the recognition of the logarithm as
an index. Such a series enables a logarithm to be obtained to any
required degree of accuracy by the summation of a sufficient
number of terms in a convergent series. The important series for
log (1 + x) was first stated generally by Wallis, who obtained
modified forms of it having the practical advantage of more rapid
convergence.
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AnaryTicar GEOMETRY
DESCARTES

Descartes” treatise, La Géoméirie, first appeared as one of the
appendices to his Discours de la Méthode (1637). (See facsimile edition
with annotated English translation by David E. Smith and Marcia
L. Latham, Chicago and London, 1g25.) It is divided into three
books, of which the first two are devoted to analytical geometry,
while the third deals mainly with the theory of equations. The
book was written intentionally in a somewhat obscure style, much
of the analysis and many implications of the results obtained being
omitted “so as to leave to posterity the pleasure of discovering
them."”

Descartes begins by establishing analogies between ruler-and-
compass constructions in geometry and the standard processes of
arithmetic; and he points out the advantages of introducing alge-
braic ideas and notation into geometry. Thus he denotes segments
of straight lines by letters. He also forms products and powers of
such letters, or of combinations of them, without attempting to
interpret them geometrically (as areas or volumes), and is thus able
to use quantities like a4, 4%, 4* . . ., which correspond to no known
geometrical forms, and which without this provision would have
been unintelligible. In order to denote such powers he employs
the system of writing indices which we use to-day, except that he
uses aa or a* indifferently. He usually makes use of the letters
a, b, ¢ . . . to denote known or constant segments of lines, and
%, ¥, £ for unknown or variable segments.

For the solution of geometrical problems Descartes recommends
the analytical method (already familiar to the Greeks and formulated
by Pappus) of supposing the problem solved and then writing down
all the implicit relations which must hold between the lengths of
the various lines involved in the construction. Each of these relations
is represented by an equation; and the solution of the problem
then depends upon the solution of all these simultaneous equations.
For the problem to be determinate, the number of equations con-
necting the unknown lines must equal the number of such lines
involved in the problem.

Descartes applies his method to a problem enunciated by Pappus,
which had exercised the classical geometers, who could solve only
particular cases of it. In its general form it runs: Given a number
of fixed straight lines and an equal number of variable lines each
making a given angle with one of the fixed lines and all passing
through one point, it is required to find the locus upon which that
point must lie so as to make the product of the lengths of some of
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the variable lines multiplied together stand in a certain ratio to
the product of the remaining variable lines. Descartes shows that
it is possible to express all the variable lengths involved in this
problem in terms of two variable lengths (which he calls x and y)
and of constant, known data of the problem. The constant ratio
of the two products can thus be expressed as an equation in x and y
and their powers and products. When one of these quantities is
known, the other becomes determined; and the equation as it
stands is the analytical counterpart of the required locus. “If we
take successively an infinite number of different values for the
line y, we obtain an infinite number of values for the line x, and
therefore an infinity of different points by means of which the
required curve can be drawn.”

We have here the germ of co-ordinate geometry, in which the
position of a point in a plane is defined by its distances, * and y,
from two fixed axes, and in which a given relation between x and y
corresponds to a definite geometrical locus upon which the point
must lie, and vice versa. It is this conception which marks Descartes'
essential contribution to geometry ; the mere application of algebra
to geometry was no novelty, but goes back to many centuries before.
The modern use of arbitrary co-ordinate axes upon which the
abscissa and ordinate of a point are set off from a common origin
does not, however, occur in Descartes’ book. For purposes of
reference he makes use of any convenient line in the figure. The
modern system of using two axes in plane problems was introduced
in the eighteenth century, when the terms “‘abscissa™ and “ordinate™
also came into use.

The degree of the equation arising from any particular case of
Pappus’ Problem cannot exceed the number of lines multiplied
together on either side of the equation. Descartes shows that when
three or four lines are involved, the required locus is a conic, but
that for increasing numbers of lines it is represented by curves of
ever higher degree. In Book II he proceeds to discuss these curves
and the possibility of generating them artificially.

The classical geometers generally excluded from consideration
curves requiring for their construction mechanical devices other
than the ruler and compass, though they admitted the conic sections.
Descartes, however, insists that any curve is a proper object of
geometrical investigation provided its mode of generation can be
clearly conceived, since, in geometry, exactness of reasoning is all
that matters. If all “mechanical” curves are to be excluded, there
is no justification for retaining the straight line and circle, since
even these require a ruler and a pair of compasses for their con-
struction. Descartes, therefore, includes in his survey all curves
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determined by the intersection of two moving lines whose rates of
motion have a definite, known relation to each other. These are
the “geometric” curves whose properties can be defined in each
case by a single algebraic equation in two wvariables. He still
excludes, however, curves generated by independent motions whose
relations cannot be exactly specified—a class which includes many
of the special curves (e.g. the spiral and quadratrix) of the Greeks.

Geometric curves are grouped by Descartes in successive classes
according as their equations are of the second degree (his first
class), of the third cr fourth degrees (second class), of the fifth or
sixth (third class), and so on.

Descartes describes a mechanical device in which two straight
edges slide over each other and generate an hyperbola as the locus
of their point of intersection. By substituting this hyperbola, or any
other curve of his first class, for one of the straight edges, Descartes
proposed to obtain a curve of the second class as the locus of inter-
sections, and, by the similar employment of this curve, a third-
class curve, and so on. Reverting to Pappus’ Problem, Descartes
shows how the class of the required locus depends upon the number
of variable lines involved, and he investigates the conditions under
which, in the simplest case, the several types of conics appear. This
section constitutes an almost complete treatment of the clements
of the analytical geometry of conics.

Descartes next shows how to define the direction of the normal
(and hence of the tangent) at any given point on a curve whose
equation is known. His method is to find a circle which just touches
the curve at the given point without cutting it, its equation having
only one pair of roots in common with that of the curve, The centre
of this circle lies on the required normal and defines its direction,

Descartes concludes his second book with an account of certain
curves, since called “Cartesian Ovals,” which have important
optical properties. They generate, by revolution, reflecting or
refracting surfaces which make rays of light, emanating from a
point source, all pass through a real or virtual point image.

Among the results in the theory of equations contained in the
third book is that still known as “Descartes’ Rule of Signs.” As
formulated by Descartes, this states that an equation, written in
the zero form (that is, with all terms on one side), can have as
many “‘true” (ie. real, positive) roots as its successive terms show
changes of sign from + to —, or from — to -+, and can have as
many “false” (by which Descartes means real, negative) roots as
the number of times two 4+ or two — signs occur in successive
terms. This result had been partially anticipated by Cardan; its
limitations were understood after the establishment of the notion
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of imaginary roots (which Descartes himself was among the first
so to designate). It is explained also how the roots may have their
signs reversed, or may be increased, diminished, multiplied, or
divided by a given number, by appropriate transformations of the
original equation. The book concludes with rules for the graphical
solution of cubic and bigquadratic equations by the intersection of
circles with a parabola, and with suggestions for using curves of
higher classes for the solution of equations of higher degree.

DESARGUES

Conceptions of great value for the future development of pure
geometry were introduced by the French mathematician, Desargues,
almost simultaneously with Descartes’ publication of his discoveries
in analytical geometry.

Girard Desargues was born at Lyons in 1593. He spent much
of his early life in Paris, where he made the acquaintance, and won
the esteem, of Descartes and of many other men who later helped
to form the French Academies. An architect by profession, Desargues
saw service as a military engineer at the sicge of La Rochelle. He
subsequently wrote several technical books on perspective and
stone-cutting, but his masterpiece was his Bromllon project d'une
alteinte aux éoénemens des rencontres d'un cone avec un plan, etc. (Paris,
163g).

%?:sarguts regarded a cone or a cylinder as generated by an
infinite straight line passing through a fixed point and moving
round the circumference of a circle. He obtained the various types
of conic sections by cutting such a cone or cylinder by a plane in
various ways, and he showed how to derive the properties of the
conic sections, as a class, from the simpler properties of the circle
forming the base of the cone. Among other points to be noted in
this work are Desargues’ conception of parallel straight lines as lines
meeting at a point infinitely distant, and of parallel planes as planes
meeting in a line at infinity; his theory of the involution of sets of
points on a line, subsequently extended by Chasles; the principle
of the pole-and-polar relation of points and lines with regard to
conics, and its extension to solid geometry; and many other
important results.

Desargues’ writings, like those of Descartes, are somewhat obscure,
and his nomenclature is original and complicated. Many of his
results are given without proof or elaboration, and his ideas have
partly to be extracted from the works of his pupil, Abraham Bosse,
to which Desargues made many avowed contributions, besides
inspiring the whole treatment. Desargues’ methods at first aroused
much bitter criticism from men not of the first rank. On the other
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hand, they were appreciated and further applied by Pascal; but
after the deaths of both Pascal and Desargues, in 1662, the latter
was soon forgotten, and his book became unprocurable, The methods
of Descartes, later supplemented by the calculus, were more appro-
priate than those of Desargues in dealing with the problems in
physics and astronomy which were receiving most attention at that
period. Hence Desargues had to wait for full recognition until the
nineteenth century, when his ideas formed the basis for the rapid
development of projective geometry in the hands of Poncelet,
Chasles, and Steiner. (See (Euvres de Desargues . . . réunies ef analysées
par M. Poudra, Paris, 1864.)

FERMAT

The credit for the establishment of analytical geometry must be
shared by Descartes’ contemporary, Pierre de Fermat (1601-65),
one of the greatest of French mathematicians, Fermat devoted his
main energies to official duties at Toulouse, but occupied his lgisure
with mathematical researches. Ten years before the appearance
of Descartes’ book, Fermat was already experimenting with the
application of algebra to geometry. He appears independently to
have hit upon the fundamental idea of representing a curve by
means of an equation from which its characteristic properties could
be derived. Like Descartes, he took the geometry of the ancients as
his starting-point, and he laboured (though in vain) to restore the
Porisms of Euclid, which survives only in extracts made by Pappus.

Fermat's fundamentally important work on analytical geometry,
Ad locos planos et solidos isagoge, was both clearer and more exhaustive
than the work of Descartes. Equations, he says, can be conveniently
represented by drawing two straight lines making with each other
a given angle (which is most suitably taken as a right angle), and
by setting off from their point of intersection, taken as origin,
distances respectively proportional to the variables of the equation.
Fermat calls the origin N, and he denotes the distances set off
therefrom in perpendicular directions by A and E (corresponding
to our x and y). Constant quantities are expressed by means of the
letters B, D, G. The equation of a straight line passing through the
origin occurs for the first time in Fermat’s work in the form
D.A=B.E (cp. ax = by). He writes the equation of a parabola
A'=D.E (cp. x*=ay), and that of a circle B* — A2 — E2
(cp. r* — x* = »*), and so on.

It is difficult to pronounce upon Fermat’s claim to priority over
Descartes in the invention of analytical geometry. Fermat published
very little, and most of his discoveries were announced in letters
to Parisian mathematicians—particularly to Mersenne, His works,
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and much of his correspondence, were not published until after his
death (Opera Varia, Toulouse, 1670—9; see also the modern edition
by Tannery and Henry, 18g1-6).

Fermat was one of the first mathematicians to find a general
method of solving questions on maxima and minima. He employed
a principle which is of fundamental importance in algebra and
analytical geometry, and in their application to physics. The earliest
known problem of this nature occurs in the Elements of Euclid
(VI, 27). Though expressed in geometrical terms, it is equivalent
to finding the greatest possible value of the product x(a — x). It is

: . a
shown that the product is a maximum when x = =t It was also

known to the ancients that the circle has the greatest area of all
plane figures with a given perimeter, and that the sphere has the
greatest volume of all solids with a

given surface. Several mathematicians M

of the fifteenth and sixteenth centuries

investigated isolated problems of this

nature, but the effective treatment of 3 B

them dates from the work of Kepler,
Cavalieri, and Fermat in the seven-

teenth century.

Kepler had noticed incidentally -4
that a wvariable quantity, as it [Dllustr. 121.—A Variable Quan-
approaches a maximum, shows but tity at its Maximum

little change in value. For instance,

if PM (Ilustr. 121) be the greatest ordinate of the curve AMB, its
length shows no perceptible alteration for infinitesimal displace-
ments parallel to itself in either direction. Kepler clearly grasped
this principle, though he was unable to prove it.

Fermat’s method, which he was already using in 1629, is sub-
stantially that applied to-day to elementary problems of this type.
In the expression whose values are to be investigated he substitutes
for the independent variable, say x, the new value (x— E), or
(x + E), where E is a vanishingly small quantity. He then equates
the new value of the expression to the former value, thereby deter-
mining the value of x as that which makes the expression a maximum
or minimum. After reduction and division by E, E is made equal
to zero, and the solution of the resulting equation gives the required
value or values of x. An example of Fermat’s, in modern notation,
will help to make the matter clear. Required to find the value of x
which makes x*(a — x) a maximum. The solution runs

xMa—x) = (x+ E)a— (x+ E)}
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which reduces to

2ax — 3x* + E(a —3x—E) =0
Putting E = o,

2ax — 3x* =0, and x = L:Bf is obtained as the value of x

which actually makes the expression a maximum. Fermat’s method,
however, afforded no criterion for distinguishing between maxima,
minima, and points of inflection at which the tangent is horizontal.
A general method of distinguishing between these was first afforded
by the calculus,

Fermat made many applications of this method to particular
problems in what we should call differential geometry. His important
physical application of it to the problem of the refraction of a ray
of light at the boundary of two different media is described elsewhere.

Another side of Fermat's mathematical genius was revealed by
his researches in the theory of numbers, the modern development
of which practically began with him. He discovered numerous
important theorems in this field, some of which bear his name;
but he often omitted to give their proofs, and in certain cases these
have never been supplied. An instance of this, and an example of
the kind of results which he obtained, is afforded by his theorem
that the equation

S+ =2

cannot be satisfied by integral values of x, y, and 7 when n is an
integer greater than 2—a general proof of which has not yet been
discovered.

Fermat and his contemporary, Pascal, were also practically the
founders of the mathematical theory of probability, and of the
closely related theory of combinations.

InFmvrTesmiars, Fruxions, axp THE CaLcurus

From the beginning of the seventeenth century progress began to
be made in establishing a mathematical method of treating infini-
tesimal quantities. The elaboration of this method into one of the
most powerful instruments of scientific investigation by the invention
of the infinitesimal calculus was reserved for Newton and Leibniz.
First among the pioneers in this field, however, must be placed
Kepler and Cavalieri, an Italian disciple of Galilei.

The ancients, and particularly Archimedes, had already recog-
nized that many geometrical problems could not be solved with
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the aid of elementary mathematics. This had led to the employment
of a process known as the “method of exhaustion" for the mensura-
tion of curved figures. In order to estimate the length of a closed
curve, or the area which it contained, a polygon was inscribed to
the curve, and another polygon circumscribed to it. The perimeters
and the areas of these rectilinear figures could be ascertained, and
hence those of the curve, which lay between them, were known to
lie within certain limits. By increasing the number of sides of the
polygons these limits of uncertainty could be correspondingly
narrowed, and approximate values of the perimeter or area of the
curve were thus obtained. The volumes of curved solids could
similarly be measured with the aid of inscribed and circumscribed
rectilinear solids of suitable form. By such roundabout methods the
Greek mathematicians had obtained the perimeters, areas, and
volumes of several types of curved figures.

KEPLER

The progress of astronomy and of physics in the seventeenth
century, however, was dependent upon the development of a general
method for the measurement of curves and of solids generated by
the motion of curves. It was of the utmost importance to Kepler,
for instance, in the calculations of his De motibus stellae Martis, to
be able to take the expression w={a + b) as a sufficiently close
approximation to the perimeter of an ellipse whose major and
minor axes, a and b, differ only slightly. Many important results
which would now be expressed as definite integrals of trigono-
metrical functions occur incidentally and implicitly in Kepler's
astronomical writings. Kepler, however, dealt more systematically
with the determination of the volumes of solids of revolution in his
Nova Stercometria doliorum vimarierum (Linz, 1615). (For a German
edition of this book, see Ostwald's Klassiker, Bd. 165.)

Kepler was originally led to make the calculations set forth in
the book by a desire to improve upon the crude methods then in
use for estimating the contents of wine-casks and other vessels.
While buying wine he noticed that the vintners determined the
contents of the casks by passing a measuring-rod through the bung-
hole as far as the opposite staves without taking account of the
curvature of the latter. By rotating the longitudinal section of the
cask about its axis, a body equal in volume to the cask would be
formed. Kepler's plan was to divide up such solids of rotation into
an infinite number of elementary parts, and to sum these; and in
his Stereometria he applies this method to some ninety special cases,
Kepler regarded infinitely small arcs as straight lines, infinitely
narrow planes as lines, and infinitely thin bodies as planes. His
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conception of infinitely small magnitudes was one which the ancients
had in general avoided, but which a little later formed the basis
of Cavalieri's method.

As one example of Kepler's argument we take his approximate
quadrature of the circle, which may be compared with that of
Archimedes. He regards the circumference as made up of an infinite
number of segments of straight lines each of which is the base of
an isoceles triangle having its vertex at the centre of the circle.
If now all these bases, whose sum equals the circumference, be
placed side by side in a straight line whose distance from the centre
equals the radius, and be all joined to the centre, a triangle will
be obtained made up of an infinite number of small triangles and
equal in area to the circle. In a similar manner the content of a

Illustr. 122.—Kepler's Cubature of the Anchor-Ring

sphere is calculated by regarding it as divisible into an infinite
number of cones having a common vertex at the centre.

One of the most instructive examples of Kepler's procedure is
his cubature of the anchor-ring (Illustr, 122). This was first divided
into an infinite number of discs by planes through the axis A.
These discs are not uniformly thick, but are thinner in the parts
towards A and thicker in the opposite parts. These inequalities
cancel each other out, however, and the volume of the ring is equal
to that of a cylinder whose base equals the cross-section of the ring
and whose height equals the circumference of the circle described
by the centre F of this cross-section, supposing it to rotate about
the axis A.

Kepler leads off with the few solids of revolution treated by the
ancients, but he goes on to consider a multitude of new figures—
ninety-two in all—many of them generated by the revolution of
conic sections about their diameters, chords, or tangents, or about
exterior lines, as axes. Many of the bodies so generated Kepler
names after fruits. His “apple,” shown in Illustr. 123, was produced
by the rotation, about its chord, of a circular segment larger than
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a semicircle. The similar rotation of the smaller segment gave rise
to a “gourd” (cifrium, not citreum, a citron).

The rigour of Kepler's demonstrations did not attain to that
of Euclid or of Archimedes. For this a further development was
necessary of the methods of handling infinitesimal quantities. In
many cases Kepler had to be satisfied with conclusions of merely
probable correctness, and in others he missed the correct solution
altogether.

In his Stereometria, Kepler also investigated what form a vessel
should have in order to hold as much as possible while requiring

Ve
Tlustr. 125.—Kepler's “Apple”

for its construction as little material as possible. Such isoperimetrical
problems, as they are called, were known to the ancients, and they
came into prominence again in the eighteenth century, when they
played an important part in the development of higher mathe-
matical analysis. As an example of Kepler's researches in this
realm may be mentioned his proposition that the cube is the
greatest parallelopiped which can be inscribed in a sphere. Kepler's
reference to the important criterion for the maxima (and minima)
of a variable, viz. that the variable remains practically stationary
in value in the immediate neighbourhood of a maximum, is dis-
cussed elsewhere, as is also his work on logarithms.

Of some significance was Kepler's recognition (in his Ad Vitel-
lionem paralipomena) of the continuity of the several types of conic
sections, whereby we may pass by an unbroken transition from the
circle through the ellipse, parabola, and hyperbola to the line-pair.
He introduced the term focus into this branch of geometry.
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CAVALIERI

The next stage in the development of new methods foreshadowing
the integral calculus is represented by the work of Bonaventura
Cavalieri (1508-1647), a Jesuit professor of mathematics at Bologna.
In his Geometria indivisibilibus continworum nova quadam ralione promola
(1635; final edition 1653), Cavalieri, who had studied Kepler's
Stereometria, explains the method of indivisibles (which he had invented
some ten years before), but without making clear what his indi-
visibles precisely were. His procedure gave the impression that he
regarded a line as composed of an infinite number of successive
points, a surface as made up of an infinite number of lines, and a
solid of an infinite number of surfaces, such points, lines, and
surfaces being the indivisibles in question. This led to much mis-
understanding, and criticism of Cavalieri. For the elements into
which volumes, areas, or lines are resolved by continual subdivision
must themselves be volumes, areas, or lines respectively. Cavalieri
was probably well aware of this, and used his indivisibles simply
as a calculating device. He proceeded to find the ratio of a required
arca to a known area by di *ling them both up by equally spaced
parallel lines, indefinitely close together. These lines were summed
for cach figure, and the ratio of their sums ascertained when the
number of lines became indefinitely great. This ratio was equivalent
to that of the areas; and when it was known, and also the area of
one of the figures, that of the other figure could be obtained.

For example, draw a rectangle with the same base and height as
a given triangle, and draw across both figures a number of equally
spaced lines parallel to the base. The sum of the lines intercepted
in the triangle is easily shown to be half that of the intercepts in
the whole rectangle, whence Cavalieri concludes that the surfaces
also stand in the ratio of 1: 2. By a similar process it was proved
that the area of an ellipse is to that of a circle whose diameter is
equal to one axis of the ellipse, as the other axis of the ellipse is 1o
the diameter of the circle.

In applying his methods to the mensuration of solid bodies,
Cavalieri employed equally spaced parallel planes in place of lines
to divide the bodies. If such planes cut two bodies in surfaces whose
areas stand to each other in a certain proportion throughout, then
the volumes of the bodies will be in the same proportion—a theorem
which still bears the name of Cavalieri.

As compared with the methods of Kepler, who set himself definite
problems, Cavalieri’s methods possessed the advantage of greater
generality and more abstract treatment. Despite the opposition
which both men encountered, the conception of infinitesimals which
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they introduced was the most valuable idea which has ever enriched
mathematics. Its fruitfulness was first fully revealed after the inven-
tion of analytical geometry, from whose combination with the
conception of infinitesimals the differential and integral calculus
emerged.

GULDINUS

Among the men of science who opposed Kepler and Cavalieri
was Paul Guldin or Guldinus (1577-1643). His voluminous book,
Centrobaryca (Vienna, 1635-42), deals mainly with the determination
of the centres of gravity of curves, surfaces, and solids, which he
worked out more thoroughly than had yet been done. He also
calculated the volumes of a number of solids of revolution. For this
purpose he employed a theorem which he resuscitated from the
work of Pappus, and which states that the volume of a solid generated
by the revolution of a plane figure about an axis in its plane equals
the area of that figure multiplied by the arc described by its
centroid. This theorem and a related one which enables the surface
of a solid of revolution to be evaluated, are now called indifferently
after Pappus or Guldin.

Guldin did not succeed in giving a satisfactory proof of this
theorem, but rather inferred its truth from the fact that, with its
aid, the same conclusions could be reached as by other, more
rigorous but longer, methods. Many of Guldin’s examples were the
same as those which Kepler had worked out. But while Kepler's
method (which Guldin opposed as unscientific) contained the germ
of higher mathematics, Guldin’s procedure remained without appre-
ciable influence upon the further development of the science. In
fact, it was found that, in many cases, the quadrature of the plane
figure and the determination of its centroid were much more
difficult than the direct cubature of the solid of revolution which
it generates. Accordingly the theorems are now most commonly
used to determine the centroid of a plane figure when its area and
the volume of the solid which it generates are already known.

ROBERVAL

Some of the supposed logical objections to Cavalieri’s indivisibles
were removed by the French mathematician, Giles Persone de
Roberval (1602-75), who claimed to have invented the method
independently. He regarded lines as made up of clementary lines,
areas as made up of elementary areas, and solids of elementary
solids. He succeeded in finding by the method of indivisibles the
areas of a number of curves—in particular, of the cycloid.

Roberval tried to make use of kinematic ideas in the solution of
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geometrical problems. Thus he regarded certain types of curves
{e.g. the parabola) as traced out by a point whose motion, at each
instant, was compounded of two simple motions. He sought to
construct the tangent to such a curve at any given point by analysing
the motion of the generating point into its component motions, and
applying the parallelogram of velocities to obtain the tangent.

PASCAL

Blaise Pascal (1623-62), a friend and contemporary of Fermat,
also worked with the method of indivisibles, which he modified in
the same way as Roberval. Pascal showed precocious mathematical
genius, but his activities in this direction were checked by religious
scruples and cut short by his early death. Nevertheless, he made
notable advances in several different branches of mathematics and
physics.

At the age of only sixteen Pascal wrote an essay on conic sections,
now mostly lost. In it he employed the geometrical methods of
Desargues, and stated the theorem, still known as Pascal’s Theorem,
on a remarkable property of a hexagon inscribed in a conic. Late
in his life, when he had abandoned mathematics for some years,
Pascal returned to it for a briefspace in order to study the properties
of the cycloid—the curve traced out by a point on the circum-
ference of a circle which rolls along a fixed straight line without
slipping. The area of the cycioid had already been found by
Roberval and by Torricelli independently of each other, while
Fermat and Descartes had solved the problem of drawing tangents
to it. Pascal took up some difficult problems on the mensuration
of the solids generated by rotating a cycloid about special lines in
its plane and on the centres of gravity of such solids. He is said to
have solved them within a week, employing the method of indi-
visibles, which enabled him to arrive at results equivalent to certain
fundamental trigonometrical integrals.

WALLIS

The synthesis of the methods of Cavalieri with analytical geometry
and more advanced algebraic analysis was the chiel contribution
to the development of seventeenth-century mathematics made by
John Wallis (1616-1703) in his Arithmetica Infinitorum (Oxford, 1655).
As a mathematician and divine, Wallis was one of the most dis-
tirguished men of the generation which was responsible for the
foundation of the Royal Society. He occupied a position inter-
mediate between Descartes and Newton, and was a close friend

of the latter.
Wallis' method of effecting the quadrature of a curve was to
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divide it by parallel ordinates into strips which were approximately
parallelograms, to sum these, and to find the value which the sum
approached when the number of strips was indefinitely increased.
Wallis applied this method in particular to curves whose equations
were of the general form y = x™. While previous investigators had
confined themselves to cases where m was a positive integer, Wallis
recognized the significance of negative and fractional values of m,
and he studied the results obtained when such values were assumed
(so far as he could interpret them). These investigations led Wallis
to attempt the quadrature of the circle. His methods readily gave
him the areas enclosed by the axes of co-ordinates, and the curve
3= (1 — x%)™, so long as m was a positive integer. Putting m = §,
the equation of the circle was obtained: y=4/(1 — x%), or
x? 4+ y* = 1; and the enclosed area was now that of a quadrant.
Wallis saw that if this could be evaluated it would immediately
yield an expression for the area of the circle, or for #. He formed
the series corresponding tom=o0, 1, 2, 3, . . ., and tried to find,
by interpolation, the expression which would correspond to m = {.
By an indirect method he succeeded in expressing = in the form
of an infinite product which Lord Brouncker transformed into an
endless continued fraction. Also Wallis’ attempt led Newton some
ten years later to follow up the matter and to discover the binomial
theorem.

To Wallis is due the first general statement of the logarithmic
series. He was also the first to apply Cartesian methods systematically
to the geometry of conics.

BARROW

The immediate forerunner of Newton was Isaac Barrow (1630-77),
his teacher and predecessor in the Lucasian Chair at Cambridge.
In his Lectiones opticac et geometricae (166g), Barrow suggested a
method for drawing a tangent at a given point on a curve, which
may have influenced Newton in his invention of fluxions., From
the equation of the curve Barrow calculated the slope of the chord
joining the given point to a second point on the curve close to the
first, and he found the value which this slope assumed when the
difference in the co-ordinates of the two points became vanishingly
small. This was the slope of the required tangent, which could
accordingly be drawn.

NEWTON

Newton’s numerous contributions to pure mathematics are
overshadowed in importance by his invention of fluxions, which
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constitute one of the two chief tributaries from which the modern
differential and integral calculus is derived.

The invention of fluxions, like the discovery of universal gravi-
tation, seems to have originated from some mathematical experi-
ments which Newton tried during his temporary retirement from
Cambridge in the plague years of 1665 and 1666. Several of Newton's
manuscript notes relating to these early attempts have survived
(see S. P. Rigaud, Historical Essay on the First Publication of Newlon's
“Principia,” Oxford, 1838, Appendix, pp. 20-24). The solution of
a problem dated November 13, 1665, may serve to illustrate his
methods and the type of problem with which they were devised
to deal. The problem runs:

“An equation being given expressing the relation of two or more
lines x, y, z, etc., described in the same time by two or more moving
bodies A, B, C, etc., to find the relation of their velocities pog, et

Newton assumes that the “infinitely little lines” which the bodies
describe each moment are proportional to their velocities while they
are describing them. Hence if the body A, with velocity p, describes
“the infinitely little line O in one moment,” the body B, moving

with velocity g, will meanwhile describe the line {-ﬂ, and so on.

Hence the length of the line x described by A becomes x + O,
O

 becomes y + f, etc. These new quantities must satisfy the same

given equation as x, y, etc., and upon substituting them in that
equation the required relation between the velocities is found,
Newton considers as an example the equation

x4+ ax2—y'=g¢o

involving the two variables x and »; and his procedure, expressed

in modern index notation, is essentially as follows:
Substitution of the new values for v and y gives

s
rx+rD+x’+‘z:D+0’—)‘—?q—o‘!—-q-£=o

Subtract the original equation

-+ xt—yt=0p
and there remains

rO + 210 + 0 — Y _ ¢°0* _
p P

Dividing by O,

r+ax40—-2_29 _

A

|
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“Also those terms in which O is, are infinitely less than those in
which it is not. Therefore, blotting them out, there rests

r+-2x-—%’=o. or pr+ 2px = 2q,"

which is the required relation between the velocities p and 4.

Newton applied his method in drawing the tangent to a curve
(thus systematizing Barrow’s construction), and in determining the
radius of curvature at any point on the curve.

These carly exercises already illustrate Newton's fundamental
conception of mathematical quantities as being generated by a
continuous motion analogous to that of a point tracing out a line
with a definite velocity. This idea was developed in Newton's
successive writings upon the subject, and was explained, and applied
to problems, in terms of a definite nomenclature and notation.
“Lines are described, and thereby generated, not by the apposition
of parts, but by the continued motion of points; superficies by the
motion of lines; solids by the motion of superficies; angles by the
rotation of the sides; portions of time by continual flux; and so in
other quantities. . . . Therefore, considering that quantities, which
increase in equal times, and by increasing are generated, become
greater or less according to the greater or less velocity with which
they increase or are generated ; I sought a method of determining
quantities from the velocities of the motions or increments with
which they are generated ; and calling these velocities of the motions
or increments Fluxions, and the generated quantities Fluents, I fell
by degrees upon the Method of Fluxions . . . in the years 1665
and 1666" (Quadratura Curvarum, 1704). Newton denoted the fluxion
of any fluent quantity x by the symbol . Unless the rate of genera-
tion of the fluent be uniform, its fluxion has a finite fluxion of its
own, which Newton denoted by ¥ and so on. Newton further
defined the moments of quantities as “their indefinitely small parts,
by the accession of which, in infinitely small portions of time, they
are continually increased.”” He denoted these quantities, in his
notation, by the symbols Oz, Oy, etc., where x, y are the fluxions
of x and y, and O is “an infinitely small quantity” of time or of
some other equably increasing fluent. Newton's use of the above
notation of “pricked letters” goes right back to his jottings of 1665,
but he allowed many years to pass before publishing any formal
or complete account of his new methods and their characteristic
notation.

He first communicated a sketch of his method, with geometrical
applications, to Barrow in 1669, but it was not until 1511 that
this tract was published. He also referred to his method, with an
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application to the theory of equations, in a letter to Collins
(December 10, 1672) which later figured prominently in the con-
troversy with Leibniz. He worked out his ideas on fluxions more
fully in a manuscript, Methodus Fluxionum, written in 1671, This
first appeared posthumously sixty-five years later in an English
translation (Method of Fluxions, 1736), though the substance of the
manuscript was meanwhile given in the De Quadratura Curvarum,
which formed an appendix to the Opticks of 1704.

From the beginning Newton recognized two types of fluxional
problems inverse to each other: (1) “the relation of the fluents
being given, to find the relation of their fluxions,” and (2) the
relation between the fluxions being given, to find the relation
between the original fluents. The first problem (1) is illustrated by
the simple example given above and corresponds to differentiation.
The second problem (2) arose in connection with processes corre-
sponding to integration and the solution of differential equations.
Already in 1666, Newton was experimenting with the inverse
process of constructing fluents from their fluxions, and of ascer-
taining the area of a given curve, regarded as the quantity whose
fluxion was the ordinate. When he wrote his Method of Fluxions
Newton seems to have been already familiar with processes analo-
gous to partial differentiation and partial integration.

In the first section of Book I of the Principia (1687) Newton
explained the elements of his theory of prime and ultimate ratios,
i.e. of the limiting values of the ratios of two nascent or evanescent
quantities, which forms the logical basis of the differential calculus.
“By the ultimate ratio of vanishing quantities,”” he writes, “is to
be understood the ratio of the quantities, not before they vanish,
nor after they vanish, but with which they vanish. Similarly the
prime ratio of nascent quantities is the ratio with which they begin
their existence. . . . The ultimate ratios with which quantities vanish
are not really the ratios of ultimate quantities, but the limits to
which the ratios of quantities diminishing without limit perpetually
approach.” By means of this notion of a limit Newton was already
secking to escape, though not entirely successfully, from the diffi-
culties involved in the use of infinitesimals, to which he rightly
felt an objection. The fluxionary notation nowhere appears in the
Principia, the methods of proof employed being those of pure
geometry, which had undergone but little alteration since Alex-
andrian times. This was partly in deference to the opinions of con-
temporary mathematicians, few of whom would have followed
analytical, and still fewer fluxionary, methods of proof with much
casc or conviction. There can be little doubt, however, that Newton
arrived at many of his results with the aid of fluxionary methods,
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which were especially suited to the type of problems with which
he had to deal. It was in the Principia, moreover, that the properties
of fluents were first openly discussed, and the word for fluxions
{ fluxiones), in the special sense, was first printed.

The earliest printed account of Newton's invention which em-
ployed the notation of “pricked letters” was that which he con-
tributed to the Latin edition of Wallis' Algebra (16g3). This is
written in the third person; the earliest printed account to appear
under Newton's own name was that given in his Quadralura curvarum
(1704), which marks his greatest freecdom from the use of infini-
tesimal quantities, of which he had made free use in his earlier
manuscripts. He here insists that “there is no necessity of intro-
ducing figures infinitely small into geometry,” for the fluxions of
variable quantities are generally finite—a point the neglect of
which led to much misunderstanding and confusion among eigh-
teenth-century wiiters on the subject.

One of the unfortunate consequences of Newton's delay in giving
his method of fluxions proper publication was the subsequent
controversy with Leibniz concerning the latter’s claim to be regarded
as an independent inventor of the calculus.

Newton’s discovery of the Binomial Theorem also belongs roughly
to the early period of his retirement from Cambridge. He enunciated
the formula, explained his methods of deriving it, and applied it
geometrically, in two letters which he wrote, in 1676, to Oldenburg
for the information of Leibniz. He appears to have arrived at the
theorem by considering Wallis’ unsolved problem of evaluating the
area of the quadrant lying under the curve of y = (1 — x*)¥ taken
between the values x = 0 and x = 1. He studied the quadrature
of curves having equations of the form y = (1 — x*", where m had
the successive integral values o, 1, 2, 3, . . . He found regularities
in the resulting series which enabled him to obtain, by interpolation,
the form assumed by the series when m was §, and he eventually
arrived at a general expression for the expansion of any power of
a binomial. He was thus able to express = in the form of an infinite
series (as Wallis had sought to do), and he was able to extend
Wallis’ method to the quadrature and rectification of any curve
whose ordinate was represented by a rational power of a binomial
involving the abscissa x, since this could now be developed as an
infinite series of terms in ascending powers of x to each of which
Wallis’ method could be applied. His partially completed researches
in this direction were published in 1704.

In the first of his two letters to Oldenburg of 1676, Newton
showed how to express an angle in the form of an infinite series
of ascending powers of its sine, which he then reversed into another
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infinite series giving the sine in terms of the angle. He also alluded
in the second letter to his method of fluxions, but the only vital
portions were concealed in anagrams from which Leibniz, for
whose information he was writing, could have gleaned nothing.
A letter from Leibniz in the following year, however, showed that
he had already developed his own form of the calculus, with its
characteristic notation dx, dy, for increments in the co-ordinates of
points on the curve,

As Lucasian Professor, Newton gave annual courses of lectures
mainly embodying the results of his own researches. The contents
of his early optical lectures are treated elsewhere; later he turned
to algebra, and particularly the theory of equations, to which he
made many contributions of a technical character. Chief of these
were an important method (partly anticipated by Vieta) for
approximating to the roots of numerical equations, and an expres-
sion for the sum of any given positive integral powers of the roots
of an equation in terms of its coefficients. Much of Newton's work
in algebra was later published in his Arithmetica Universalis (1707).
As appendices to the first edition of the Opticks (1704) Newton
added two mathematical tracts, Enumeratio Linearum Tertii Ordinis
and De Quadratura Curvarum. Of these, the former applies analytical
geometry to investigate the properties of cubic curves, but it con-
tains much of general importance in the study of higher plane
curves, The latter tract explains Newton’s method of evaluating the
areas and perimeters of curves by the extension of Wallis' method.

LEIBNIZ

The German philosopher, Gottfried Wilhelm Leibniz (1646-1 716),
has a place in the history of mathematics as being probably an
independent inventor of the infinitesimal calculus, and certainly the
originator of the notation now almost universally employed in that
branch of mathematics. His claims, moreover, gave rise to a con-
troversy which influenced the course of development of mathematics
in Europe for more than a century.

Leibniz appears to have been led to the serious study of mathe-
matics, in the first instance, by his meeting with Huygens while
on a political mission to Paris in 1672. In the following year he
spent some time in London, where he became acquainted with
Oldenburg and the Royal Society. At this period Leibniz’ researches
in higher mathematics dealt chiefly with the quadrature of the
circle, and of other curves, in terms of infinite series. He was led
on, however, to consider general methods of summing the elements
of which curves are composed, and in 1674, according to his subse-
quent claim, he invented the differential and integral calculus,
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Manuscript notebooks of Leibniz, dated 1675-6, contain tentative
experiments foreshadowing the processes of the differentiation and
integration of the simplest expressions. Leibniz' ideas show a slow
development, his characteristic notation, however, appearing almost
from the first.

In 1677 Leibniz communicated his methods of drawing tangents
to curves, and of solving inverse problems corresponding to inte-
gration, in a letter to Oldenburg. This was sent in reply to the
second of the two letters in which Newton, in 1676, had enunciated
the binomial theorem and had formulated (under cover of anagrams)
the problem of finding fluxions from equations between fluents.
Newton later made due acknowledgment of Leibniz' achievements
in this field. In the first edition of the Principia (1687) he inserted a
passage which may be rendered: “In letters which passed between
me and that most excellent geometer, G. W, Leibniz, ten years ago,
when I signified that 1 knew a method of determining maxima
and minima, of drawing tangents and the like, and when I con-
cealed it in transposed letters . . . that most distinguished man
wrote back that he had also fallen upon a methcd of the same
kind, and communicated his method, which hardly differed
from mine, except in his forms of words and symbols.” This
sentence was retained in the second edition of the Principia of 1713,
but the reference to Leibniz was suppressed in the third edition
of 1726.

Meanwhile Leibniz had formally published particulars of his
calculus in contributions to the Acta Eruditorum. A paper of his
which appeared in 1684 laid down the principles of the differential
calculus. He characterized its main problem as that of calculating
the increment in the value of an expression consequent upon an
infinitesimal increment in the variable upon which the value of
the expression depends. Such an increment he called the “differ-
ence.” He denoted it by the addition of the letter 4, which in his
notebooks he at first wrote in the denominator, but subsequently
prefixed to the expression to be differentiated, as in the modern
practice. Leibniz’ symbol for the difference dx or dy was an
improvement upon the arbitrary letters previously used, e.g. by
Fermat, to denote small increments in a variable quantity. Whether,
however, such differences were to be regarded as finite or infini-
tesimal in all cases was not made quite clear. Leibniz later employed
a special notation for partial differentiation. In a second paper,
appearing in 1686, Leibniz dealt chiefly with the integral calculus,
in which the problem is the inverse one of determining the form
of an expression, being given its difference. He recognized from the
first the closc connection between this process and that of the
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quadrature or cubature of figures. In his notebooks Leibniz began
by denoting the sum of successive elements of a quantity by pre-
fixing the word emnia (abbreviated omn), but he subsequently (1675)
wrote for this the symbol [ (a long s—the initial letter of stmma).
This symbol first appeared in print in 1686, The term caleulus
integralis was suggested to Leibniz by Johann Bernoulli. Leibniz
soon gained command of methods of differentiating sums and
differences, products and quotients, and powers and roots of simple
quantities (though with occasional misapprehensions), and he eave
rules for determining maxima and minima.

Following Newton’s acknowledgment to Leibniz in 1687, it was
long assumed that the two men were independent inventors of their
respective systems. In 16gg, however, the Swiss mathematician,
Fatio de Duillier, in a paper communicated to the Royal Society,
suggested that Leibniz had obtained his ideas from Newton; but
the Royal Society dissociated itself from this charge, though Newton
did not appear in the controversy at this point. In 1705 Leibniz,
in an anonymous review of Newton’s Opficks and its mathematical
appendices, which he wrote for the Acta Eruditorum, insinuated that
Newton’s fluxions were an adaptation of Leibniz’ differences. This
charge of plagiarism was hurled back at Leibniz in 1708 by John
Keill, a lecturer on experimental physics at Oxford, and later
Savilian Professor of Astronomy there. In response to Leibniz’
appeal against this accusation, the Royal Society in 1712 appointed
a committee (mainly composed of friends of Newton), which exam-
ined the documents bearing upon the controversy and published a
report (Commercium Epistolicum, 1712). This report, however, merely
asserted the priority of Newton against charges of plagiarism from
Leibniz: it did not pronounce upon Leibniz’ originality or upon
the truth of Keill's charges. Moreover, it was hostile in tone to
Leibniz, whose interests had not been properly represented on the
committee. Further, the committee based its judgment upon the
assumption that Leibniz had seen, in 1676, a certain document
which might have given him valuable clues, whereas it was estah-
lished by De Morgan in 1852 tha: he never received this document
at all, but only a copy of it from which the vital portion was
omitted. When Leibniz complained to the Royal Society of being
unfairly treated, the Society disclaimed responsibility for the com-
mittee's report. Later, however, the matter was considered by a
meeting at the Royal Society at which the foreign ambassadors
were present, At the suggestion of one of these, Newton started
personal negotiations with Leibniz. But Leibniz died before any
conclusion was reached, and the controversy continued to rage for

many years.
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If Leibniz, contrary to his own consistent assertions, really derived
the ideas underlying his calculus from Newton, it must have been
not later than 165 and presumably from some of Newton’s early
manuscripts on fluxions (if he was capable of understanding them],
since he could have made nothing of Newton's anagrams, and there
is no reason to think that he obtained any information of value
during his visit to London in 1673. That Leibniz had access to
such sources has never been established ; but the possibility cannot
be ruled out, and hence the controversy is, strictly, indeterminate,
since most authorities hold that Leibniz® own testimony is not above
suspicion. Yet the balance of opinion has steadily swung in Leibniz’
favour, especially since the strong and reasoned advocacy of his
case by De Morgan.

Leibniz’ valuable invention of the differential and integral nota-
tion has never been contested, and De Morgan even thought that
Newton derived from Leibniz “the idea of the permanent use of
an organized mode of mathematical expression,” in place of the
occasional use of dots, and so was stimulated to systematize and to
publish his own notation. Leibniz always attached great importance
to the question of mathematical notation. He was deliberate in his
introduction of new symbols, and discussed their value with con-
temporary mathematicians before adopting and publishing them.
He attributed his discoveries to his use of improved notations, and
most of his innovations have survived. Leibniz’ differential notation
was used in a book by John Craig, published in London as early
as 1685 —eight years before Newton's notation was printed. Generally
speaking, however, Newton’s notation was adhered to by English
mathematicians throughout the eighteenth century, and is still
cxtensively used by English writers on mechanics, while that of
Leibniz was mainly, but by no means exclusively, employed by the
French and German mathematicians. This created something of
a barrier between English and Continental mathematics which,
while it lasted, was injurious to both, but especially to the English
school.

In his successive contributions to the Acta Eruditorum, from 1684
onwards, Leibniz worked out the principles and processes of
clementary differentiation and integration, with geometrical and
mechanical applications. In differential geometry he established
the theory of envelopes. He also touched on other branches of
mathematics, anticipating in his correspondence the use of defer-
munants for the abbreviation of certain algebraic expressions, and
devising a special notation to represent these quantities. Leibniz’
contributions to mechanics are of less importance and of uneven
value,
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CHAPTER X

MECHANICS

STEVINUS

The first investigator to concern himself seriously with hydro-
mechanical problems after the Renaissance was Simon Stevin, or
Stevinus, of Bruges (1548-1620), a Flemish engineer and inventor
who rose to high rank in the Dutch Army. Stevin and Galilei were
almost contemporaries, but they carried on their researches inde-
pendently. The results at which they arrived, however, supple-
mented each other in a remarkable manner, and together form
much of the foundations of modern Mechanics. Stevin gave an
account of his methods and discoveries in Mechanics in a book
written in Flemish (De Beghinselen der Weeghconst) which appeared
in 1586. His mathematical works were collected and published in
Latin by Snell as Hypomnemata Mathematica (Leiden, 1605-8), and
they appeared after his death in a French translation, Les guores
mathématiques de Simon Stevin (Leiden, 1634).

Stevin made valuable contributions to the statics alike of solid
bodies and of fluids. The germ of the principle of virtual displace-
ments or velocities is found in his work, though he did not extend
it to the case of liquids as Galilei did. Thus in investigating the
properties of pulleys, both single and combined into tackles, he
found that any such system remained in equilibrium when the
product of each of the weights supported, into the distance through
which it was moved by any given displacement of the system (or,
what came to the same thing, into its velocity), was the same
throughout the system.

Stevin arrived, by an onginal process of thought, at the con-
ditions for equilibrium which hold for the inclined plane, and,
ultimately, at the law of the parallelogram of forces. He intuitively
apprehended rather than proved the truth of these results, which
he deduced as follows. He considers an upright triangle, or a prism
of triangular section, ABC (Illustr. 128), whose base AC is horizontal,
and around which is slung a closed chain composed of equal and
equally spaced masses P, Q, R, D . . . which can be slid without
friction over the inclined sides of the prism. Such a chain must
necessarily be in equilibrium, for otherwise it would be in a state
of perpetual motion, which Stevinus assumes to be impossible.
Further, this equilibrium cannot be disturbed by removing the
equally heavy and symmetrical portions SL, VK, of the chain
situated below the base. But in that case the shorter portion of the
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chain, resting on BC, must hold in equilibrium the longer portion
resting on AB. But the weights of these portions are obviously as
their lengths, i.e. as BC, AB. It follows, therefore, that two masses
on the inclined planes AB, BC, connected by a string lying along
both the planes, will remain in equilibrium if they are proportional
to the lengths of these planes. If BC is perpendicular to AB, the law
of the inclined plane takes the simpler form that the mass on BC
must stand to the mass on BA in the same proportion as does the
height of the plane to its horizontal length. Stevin himself was so
astonished at the result of his investigation that he exclaimed:
“Wonder en is gheen Wonder"' (A wonder, and yet it is no wonder).

-

Mustr, 128.—Equilibrium on  Illustr, 129.—Experimental Demonstration of
an Inclined Plane the Hydrostatic Paradox

By considering a body as supported on an inclined plane by
two strings respectively parallel and perpendicular to the plane,
Stevin arrived at the law of the parallelogram, or at least of the
rectangle, of forces, in its restricted application to statical problems.

Among Stevin's greatest achievements was his discovery of some
of the most important laws of hydrostatics. For example, he gave
an experimental demonstration of the so-called “hydrostatic
paradox,” ie. of the law that the force exerted by a liquid on the
bottom of a vessel containing it depends only upon the size of the
surface under pressure and the height of the column of liquid above
it, and not upon the shape of the vessel. Stevin demonstrated this
property by means of the experiment represented in Illustr. 12g. A
vessel ABCD is filled with water and has at the bottom a round
opening EF covered by a wooden disc GH, A second vessel IRL of
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the same height as the first and also filled with water has an opening
of equal size in the bottom which is also covered by a wooden disc
OP of the same weight as GH. It is found in the experiment that
the discs GH, OP do not rise to the surface but remain pressed
against the openings, and that in fact they are subject to equal
pressures. This is proved by showing that these pressures are counter-
poised, and that the discs are just raised, by the weights S, T, which
are equal to cach other and to the weight of the column of water
ERQF over the disc GH. Stevin observes that in this manner one
pound of water in a narrow tube could easily exert a pressure of
one hundred thousand pounds’ weight upon a plug in a wide vessel.
It was upon this principle that the invention of the hydraulic press
was later based.
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[llustr. 130.—The Upward Pressure Ilustr. 131.—The Total
of Liquids Pressure exerted by

Liquids

Stevin demonstrated the upward pressure in liquids by placing
a metal plate G (Illustr. 150) against one of the two open ends of a
tube EF, and then plunging the end so closed into a vessel of water
ABCD. It was observed that the plate did not fall off but remained
pressed against the tube by the upward pressure of the liquid. Both
the experiments just described are still shown to students of physics.

Stevin implicitly assumed the principle, later formulated by
Pascal, that the pressure at any point in a liquid is the same in all
directions. In order to compute the total pressure exerted upon a
portion of the side of a vessel filled with water, Stevin proceeds by
dividing up this portion by horizontal lines into a series of little
parallel rectangular strips g, g,, etc. (Illustr. 131). The strip g is
under a pressure greater than that due to a prism of water of base
g and height A, but less than that due to a prism of base g and height
h,. Similar limits can be set to the values of the pressure on the
other strips. By summing the upper limits Stevin obtained a value
for the total pressure which is too large, and by summing the lower
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limits, a value which is too small. As the strips are made narrower
the two sums approximate from opposite sides to the same value,
which is that of the required total pressure.

Finally Stevin investigated the conditions for the equilibrium of
floating bodies. He found that the centre of gravity of such a body
must lie in the same vertical line as that of the displaced liquid
(centre of buoyancy). He supposed that, for stability, the centre
of gravity of the body must lie below that of the displaced liquid,
and that the lower it lay below the latter the greater would be the
degree of stability. This latter statement, however, is not quite
correct, for it is the position of the centre of gravity of the body
in relation to a third point, the metacentre (that is, the point through
which the resultant upward pressure of the fluid passes) which is
now known to determine the stability.

For the most part Stevin confined himself, as we have seen, to
statical problems, but in his book of 1586 he incidentally describes
an experiment on falling bodies performed by himself and his friend
Grotius. Two balls of lead, one ten times the weight of the other,
were dropped simultaneously from a height of about 30 feet on to
a plank. It was noted that they appeared to reach the latter simul-
tancously. This was the first experimental refutation of Aristotle’s
dynamical ideas (see M. Steichen: Mémoire sur la vic et les travaux de
Simon Stevin, Bruxelles, 1846, P- 25).

Stevin’s contributions to the introduction of decimals are described

elsewhere.

TORRICELLI

Several of Galilei’s disciples extended their researches to include
the mechanics of liquids and gases. Their leader in this field was
Torricelli, the greatest of them all,

Evangelista Torricelli was born in 1608 at Faenza, of a distin-
guished family. He went to Rome at the age of twenty and studied
there under Castelli, the close friend of Galilei and propagator of
his ideas. Torricelli was stimulated by Galilei's Discorsi of 1638 to
write for himself on mechanics with the object of proving some of
the Galilean laws of motion. His book was the means of attaching
him to Galilei, under whose direction he worked until the old
man's death. Torricelli was the natural heir 1o the position and
the authority of Galilei, in whose spirit he continued 0 work at
Florence until his own early death in 1647,

Torricelli supplemented the dynamics of solid bodies, established
by Galilei, by creating the dynamics of liquids. His fundamental
work in hydrodynamics is to be found in his Opera Geometrica
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{Florence, 1644), in the section entitled De motu gravium naturaliter
descendentivm. He here proves that a jet issuing from a hole in the
side of & vessel full of water follows a parabolic path. He further
shows that its velocity of efflux (and hence also the quantity escaping
in unit time) is proportional to the velocity acquired by a body
falling freely from the level of the water-surface to the level of the
hole, and hence proportional to the square root of the height of
the column of water above the hole. The exact relation between
the velocity of efflux and head of pressure was formulated later
by Johann and Daniel Bernoulli. The time required to empty such
a vessel depends upon the velocity of efflux at each instant, and it
follows from the above law that the times in which similar vessels
are emptied through holes of equal size are as the square roots
of the heights of the water columns above the holes. If the hole
is situated in the horizontal bottom of the vessel, it follows, according
to Torricelli, that the quantities of water escaping in successive equal
intervals of time fall off in proportion to successive odd numbers.
For example, if the time necessary completely to empty the vessel
is 6 seconds, and the quantity flowing out in the last second be
represented by 1, then the quantities flowing out in the 5th, 4th,
grd . . . seconds will be represented by 3,5 7. . . .

Torricelli describes also how fountains rise nearly to the levels
of their respective heads, and he attributes the slight differences in
level partly to air-resistance and partly to the weight of the super-
incumbent column pressing down on the water issuing from the jet.

Some advances in the dynamics of solid bodies were also made
by Torricelli. He seems to have been acquainted with the principle
that a connected system of weights at rest will start moving under
gravity only if the motion results in the descent of the centre of
gravity of the sysiem. Torricelli made a special study of the motion
of projectiles. He showed that the trajectories of all projectiles dis-
charged with equal velocities from a given point are enveloped by
a paraboloid; and further, that with a given initial velocity, the
range corresponding to any given elevation of (45° 4+ a) equals
that for an elevation of (45° — a).

Torricelli’s important researches in pneumatics are described in
connection with the history of the barometer.

PASCAL

An important landmark in the development of mechanics during
the seventeenth century was the publication of Blaise Pascals
Traitez de I'équilibre des ligueurs et de la pesanteur de la masse de Pair
(Paris, 1663). This book consists of two separate treatises, dealing
respectively with hydrostatics and pneumatics, and some concluding
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reflections. It was completed in 1653, but first appeared after Pascal’s
death. It marked an advance on the work of Stevin and Galilei, and
it is remarkable alike for the clarity of its style and for the convincing
experiments which it describes.

Pascal based his investigations in hydrostatics upon the principle
that the pressure at any point in a fluid is the same in all directions.
He further followed the precedent of Galilei in applying the prin-
ciple of virtual velocities or displacements to hydrostatics, but with
an important development. He considered every portion of fluid
imprisoned in a containing vessel as a machine in which the forces
acting are brought into equilibrium in accordance with certain
definite relations, as in the case of the lever and the other simple
machines. We may, for example, consider with Pascal two com-
municating cylinders of different cross-sectional areas, containing a
fluid and closed by pistons. If the pistons are loaded with weights
proportionate to their areas, equilibrium is maintained. Pascal
regards such a system as a machine analogous to a lever with unequal
arms. He recognizes that in both cases equilibrium involves the
same relation between the forces acting and the motions correspond-
ing to any hypothetical displacement of the system. “[It is surprising
to find,” he writes, “in this new machine that invariable regularity
which occurs in all the old ones, such as the lever, the pulley, the
endless screw, etc., namely, the distances vary [inversely] as the
forces (le chemin est augmenté en mesme proportion que la force). . . .
This can be taken as the true reason for this effect, for it is clear
that it is the same thing to move a hundred pounds of water through
one inch as to move one pound of water through a hundred inches.
And thus when a pound of water is in such adjustment with a
hundred pounds of water that the hundred pounds cannot move
itself an inch without moving the pound through a hundred inches,
they must remain in equilibrium, one pound having as much power
(force) to move a hundred pounds through one inch as a hundred
pounds have to move one pound through a hundred inches.” This
passage anticipates the Principle of Virtual Work, and reveals
Pascal’s underlying assumptions.

Pascal proceeds to the more general result that a fluid contained
in a vessel in whose sides are openings stopped with pistons is in
equilibrium when the forces on these pistons are proportional to
their areas.

Some of Pascal's most important contributions to pneumatics
belong to an account of the invention of the barometer. He attri-
buted the behaviour of this instrument to atmospheric pressure, as
against the alleged horror vecui, and in 1648 he published in a tract
the results of the experiments which he had devised to establish
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this view. He returns to this subject in the pneumatical sections of
his larger work, where he explains how many familiar phenomena
must be conceived as the effects of atmospheric pressure. To this
agency are ascribed the phenomena of suction, cupping, pumping,
siphoning, breathing, etc., and, erroneously, of the adhesion between
polished plates.

One of the most important advances made by Pascal was his
recognition of the correspondence between phenomena produced
by atmospheric pressure and phenomena due to the pressure
exerted by a liquid. As an example of this principle and of the
kind of experimental demonstrations given by Pascal, we may
describe his apparatus for operating a siphon by the pressure of
water, He took a bifurcated tube abe
(Illustr. 132), open at its three ends, and
having the limb b longer than the limba;
and he dipped these limbs into cups of
mercury d, ¢, at different levels. The
apparatus was immersed in a vessel of
water, and upon its being lowered to a
sufficient depth the mercury rose in the
two branches until the columns flowed
together, whereupon mercury flowed from
the ]ﬁghcr cup d to the lower cup ¢. The R e e )
water served by its pressure upon the iy, 132.—Siphon Oper-
external mercury surfaces to maintain the  ated Ly the Pressure of
mercury at a sufficient level in the tube Water
for the flow to take place, and so played
a part similar to that of the air in an ordinary siphon. That the
effect was not due to horror vacui was clear, since the air was free
to fill the portions of the tube unoccupied by mercury.

HUYGENS

Huygens did not restrict his investigations on pendular motion
to the case of the simple pendulum, in which a particle is supposed
to swing at the end of a flexible weightless thread. Soon after Galilei’s
researches had become known in northern Europe, Mersenne raised
the question, according to what laws did extended bodies of arbitrary
shape vibrate if free to turn under gravity about fixed axes. Several
keen mathematicians, including Descartes and Huygens (who was
then only seventeen years of age), took up the problem. For the
time being it defied solution, but Descartes introduced the notion
of a “centre of agitation” in any compound pendulum (analogous
to a centre of gravity), whose distance from the point of suspension
determined the period of vibration of the pendulum. Huygens gave
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a clear definition of this point (which he termed the “centre of
oscillation™) and a general method of determining its position for a
given pendulum, in his Horologium Oscillatorium (1673) twenty-seven
years after the problem had been first propounded.

Only the first and last of the five parts into which this book is
divided are primarily concerned with clocks. The second part
treats of the motions of particles under gravity when allowed to
fall freely or when constrained to move along smooth planes or
curves, and it culminates in a proof of the tautochronous property
of the cycloid; while in the third part the theory of the evolutes of
curves is established. These subjects are investigated for the sake
of their application to the construction of strictly isochronous
pendulums. Huygens devotes the fourth part of his book, however,
to the solution of the problem of the physical or compound pendu-
lum, which is without question his greatest achievement in theoretical
mechanics.

Huygens defines the centre of oscillation of any given figure,
with regard to a given axis of suspension, as the point on the axis of
the figure whose distance from the axis of suspension equals the
length of the simple pendulum whose period equals that of the
given figure. The entire mass of the swinging body can thus be
regarded as concentrated into a particle situated at this point, just
as that of a body at rest can be regarded as concentrated at its centre
of gravity.

The simplest form of the problem of finding a centre of oscilla-
tion is represented in Illustr, 133. Two particles a and 6 are suspended
rigidly from o in the line oba, and it is required to find the length ox
of the equivalent simple pendulum which has the same period as
the combination of 2 and b. The particle a retards the particle 5,
while & accelerates a, so that b vibrates more slowly and ¢ more
rapidly than each would, if separately suspended. Hence the required
point x must lic somewhere between a and 5.

The most general form of this problem is that of compounding
the motions of the infinite number of rigidly connected particles
which together make up a physical pendulum. Thus, in Illustr, 134,
given that B, C, D . . . are a series of rigidly connected particles
having masses m,, my, my . . ., and situated at distances a,, a,
@y . . . from the axis A, about which the system swings; it is
required to find the centre of oscillation O, or the length AQ
(= z, say) of the equivalent simple pendulum.

Huygens’ solution is based primarily upon a mechamecal principle
which he was the first to formulate, and which proved to be of
the greatest consequence both in this and in subsequent applications.
He formulated it in the words: “If any masses begin to move under
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the force of their own gravity, their common centre of gravity cannot
rise higher than it was when the motion began.” He lays it down as
experimentally established that the centre of gravity of 2 pendulum
would describe equal arcs as it alternately falls and rises, if all
resistance due to air and other factors were eliminated. Huygens
further makes use of the fact, known from the laws of falling bodies,
that the height to which any given particle of the pendulum rises
above its lowest level is proportional to the square of the velocity
which it acquires in falling to that level. Again, the velocities of the
particles are proportional to their respective distances from the axis
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Ilustr. 133.—Centre of Miustr. 134.—Centre of Oscilla-
Oscillation tion (General Form)

of suspension. With the aid of these considerations, Huygens arrives
at a general solution of his problem in which the required distance
AO (= z) is given by the sum of the products of the masses of the
particles into the squares of their respective distances from the axis
of suspension, divided by the sum of the products of the masses into
their respective simple distances. That is:

_ mua,® + mea,t + T e
Comya, + maay + mgay + ..
_ Z(ma?),

- L(ma)

" or, more shortly,

When Euler had introduced the expression “moment of inertia™
for the quantity ¥(ma?), Huygens' Law could be expressed, as it
is now, by saying that the distance of the centre of oscillation of a
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compound pendulum from the axis of suspension is obtained by
dividing the moment of inertia of the pendulum about that axis
by its statical moment about the same axis.

Huygens goes on to apply this fundamental result to ascertain
the centres of oscillation of several geometrical figures, including
the circle, rectangle, parabolic segment, cone, sphere, etc. He
shows that the vibrations of a pendulum about parallel axes equi-
distant from the centre of gravity are isochronous; and also that
the period is not altered when the pendulum is suspended by a new
axis through its centre of oscillation parallel to the old one, in which
case the old point of suspension becomes the new centre of oscilla-
tion. Hence to Huygens must be attributed the idea underlying
the reversible pendulum which, during the nineteenth century
played so important a part in the more precise estimation of the
length o. the seconds pendulum.

Huygens made several applications of his principle that the centre
of gravity of an isolated system of bodies moving under gravity
cannot rise above its initial level. He employed it to disprove the
possibility of a perpetual motion, in which force would be generated
without any corresponding expenditure. Such a generation of force
out of nothing could take place only if the mass concerned rose
higher than the point from which it previously fell. While, however,
Huygens concluded from his principle that it would be impossible
to maintain perpetual motion by purely “mechanical® means, he
still considered it might be possible to achieve perpetual motion
with the aid of other physical forces, e.g. by employing a magnet.
On the other hand Mersenne, as early as 1644, denied that a per-
petual motion was possible at all, and he likened the efforts to
construct one to the search for the Philosophers’ Stone. Huygens’
principle was later erected by Johann Bernoulli into a general law
of nature, and it was called the “*Principle of the Conservation of
vis viva.'” By the ois viva of a particle is meant the product of its mass
into the square of its velocity (mz?) ; the expression is due to Leibniz,
who was already reflecting upon the total quantity of force present in
the Universe.

At the conclusion of his book on the pendulum clock Huygens
gives his fundamental propositions on the so-called “centrifugal
force.”” Here also it is an extension of Galilei’s doctrine of pendular
motion which is involved.

In order to constrain a body, initially moving uniformly in a
straight line, to move uniformly in a circle, it is necessary to exert
upon it a pull directed radially towards the centre of the circle—say
by means of the tension in a string joining it to the centre. The
equal and opposite reaction of the body is represented by a pull
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directed radially outward from the centre. This is the centrifugal
force; and Huygens proves that it varies directly as the square of
the velocity of the body, and inversely as the radius of the circle.

Already in 1669 Huygens had communicated this and a number
of other results to Oldenburg in the form of anagrams, and he
dealt with the subject in greater detail in his Tractatus de vi centrifuga.
which was published posthumously in 1703. (It has been edited in
German in Ostwald's Klassiker, No. 138.) Before this date Newton
had dealt with the theory of centrifugal force from a much more
general standpoint. He must have discovered independently
Huygens’ formula for motion in a circle, but from this restricted
case he extended his investigation of such problems to include
the elliptical motions of the planets. Most of the propositions in
Huygens’ tract had already been enunciated without proof in his
Horologium Oscillatorium. The most important of them are the
following :—

“If equal bodies revolve uniformly in equal circles (or in the same
circle) with unequal velocities, the centrifugal forces are as the
squares of the velocities” (Prop. II);

“If equal bodies revolve with equal velocities in unequal circles.
the centrifugal forces are inversely as the diameters, so that the said
force is greater in the smaller circle” (Prop. III).

Huygens' results may be expressed in modern notation by the

relations
mp?
P= —r— mirw?

where P is the centrifugal force, m the mass, v the linear velocity,
and w the angular velocity of the particle, and r the radius of the
circle,

In the course of his tract Huygens investigates how great the
velocity of a body in a given circular path must be in order that
the centrifugal force may overcome gravity. He further discusses
the centrifugal force arising from pendular motion, and finds, for
example, that a simple pendulum whose bob swings through a
complete quadrant on each side will, as it passes through its lowest
point, exert a tension upon the string three times as great as when
it hangs at rest.

He finally considers in detail the case of the conical pendulum
in which a particle at one end of a string uniformly describes a
horizontal circle while the other end of the string remains fixed. He
finds that, for two such pendulums (Illustr. 135) with equal masses,
and of the same height, AD, but of unequal lengths, the tensions
in the strings are proportional to their lengths (Prop. XV). Proofs
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of the other principal properties of the conical pendulum are also
to be found in this portion of the work (Props. VIII-XIV).
Among the experiments on centrifugal force which Huygens
performed, the following are particularly remarkable. He placed
some wooden balls in a vessel full of water and then set the vessel
in rotation about its axis. The balls immediately moved towards
the axis, thus proving that the centrifugal force of revolving bodies
depends upon their specific gravities. Nowadays this experiment is
performed by placing wooden balls in the tubes RR of the apparatus
shown in Illustr. 136, which is rotated about the axis AA. If the
tubes contain air, the balls move out from the axis and, when the
rotation is sufficiently rapid, they move upwards. If, however, the
tubes are completely filled with water, the wooden balls, being
specifically lighter, move towards the axis. This descent of wooden
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balls in tubes filled with water at first causes surprise ; but a familiar
technical use is made of this effect in machines for separating the
watery constituents of milk from the specifically lighter cream which
it contains. Huygens made the results of a somewhat similar experi-
ment the basis for his theory of gravitation. On another occasion
he tried the effect of a centrifugal force on a clay sphere which he
set in rapid rotation about a diameter. He knew that every particle
of a rotating body not lying in the axis of rotation is subject to a
centrifugal force which increases with its distance from the axis,
He concluded that if the particles were not rigidly connected —for
example, if the body was made of a plastic material—deformations
should appear. He found, in fact, that his rotating clay sphere
assumed the form of a spheroid flattened at the poles. From this
experiment and the reflections to which it gave rise, Huygens was
able to interpret the flattening of Jupiter which he had observed
and which appeared to him as the surest indication that the planet,
like the Earth, rotates on an axis. He further concluded that the
notion of the spherical figure of the Earth, underlying all previous
attempts to measure the length of a degree on its surface, was
presumably incorrect. For if the Earth rotates and is not an )abm.
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lutely rigid body, it too must depart from a spherical form. Huygens
made calculations which pointed to a value of 1 : 587 for the Earth’s
ellipticity, and this, with the more refined calculations of Newton,
helped to focus the attention of astronomers upon the problem of the
figure of the Earth.

Huygens was led to anticipate certain restricted forms of the law of
the conservation of vis viva, not only by his above-mentioned in-
vestigation of the motion of pendulums, but more particularly by
some researches which he and several contemporary physicists carried
out on the impact of bodies,

ImpPacT

During the first half of the seventeenth century there was nothing
like a general theory of impact, though some particular cases of
the collision of elastic bodies were correctly treated by Marcus Marci
in 1639, and Galilei discussed the nature of impulsive forces, which he
contrasted with static pressures. Galilei had intended to deal with
the problem of impact in his Discorsi of 1638. This section of the
book is incomplete, but it seems certain that Galilei arrived at no
general conclusions on the subject. Descartes, in his Principia of 1644,
formulates eight laws of impact, but these are largely incorrect,
containing such statements as the following : If a body C is greater
than a body B and is at rest, then with whatever speed B approaches
C it can never move C, whose resistance is greater the greater the
speed of B. B rebounds towards the point whence it came (11, § 4g).
Descartes, moreover, failed to distinguish clearly between elastic
and inelastic bodies. A few further particular cases of the problem
were studied by Borelli.

In 1668, however, the recently established Royal Society set
certain of its members the problem of investigating the laws of
impact so as to make good this deficiency in the principles of
mechanics. In response to the Society’s invitation, Wallis, Wren,
and Huygens shortly afterwards sent in papers dealing, each in his
own way, with the problem before them.

WALLIS

The first to lay his results before the Society was Wallis, whose
paper was read on November 26, 1668, and was subsequently
published in the Philosophical Transactions {(Vol. III, No. 43, 4
Summary Account given by Dr. Jokn Wallis of the General Laws of
Motion). Wallis considers primarily the impact of inelastic bodies
travelling in the straight line joining their centres of gravity, though
he also makes some provision in his paper for cases of oblique
impact, and subsequently (1671) published results on elastic impact.
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In deriving his formulae Wallis employs the conception of quantity
of motion already occurring in the writings of Descartes. He
regards the force (zis) moving a given body as proportional jointly
to the weight (pondus) and to the speed (celeritas) of that body. If
we call the masses of the impinging bodies m and m,, their respective
velocities before impact v and »,, and the common velocity of the
masses after impact u, the equation at which Wallis arrived may be
expressed in the form

_mp 4 myo,

. m4m,

when the bodies are initially moving in the same direction, and the
form

s my — myty

o m -+ my

when they are initially moving in opposite directions.
WREN

A second, slighter, contribution to the problem proposed by the
Royal Society was made by one of its founder-members, Dr. (later
Sir) Christopher Wren, celebrated as the architect of St. Paul’s
Cathedral and of numerous other public buildings of this period.
By experiments with suspended bodies made in collaboration with
Rooke, Wren discovered the empirical laws of impact for elastic
bodies without, however, being able to derive them theoretically.
Wren's results were submitted to the Society on December 17,
1668 (see Phil. Trans., 111, No. 43). A little later (January 4, 166g)
Oldenburg received from Huygens an account of the laws of central
elastic impact without theoretical proofs (see Phil. Trans., IV,
No. 46). The results obtained by Wren and Huygens, although
very similar, were arrived at independently. Huygens, who noticed
that the motion of the centre of gravity of impinging bodies was
unaffected by their impact, also communicated his resulis to the
Paris Academy about the same time. He seems, judging from some
of his correspondence, to have arrived at them at least as early as
1656 (see Felix Hausdorff in Ostwald's Klassiker, No. 138).

riments on impact more systematic than those of Wren were
carried out by Mariotte and described by him in his Traitd de [a
percussion ou choe des corps (Paris, 1677).

HUYGENS
Huygens dealt with the subject of impact in greater detail (giving
proofs of his propositions) in his Tractatus de motu corporum ex per-
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cussione, which was published in 1703, eight years after his death
(for a German edition, see Ostwald’s Klassiker, No. 138, Pt. I).

This book, which is of fundamental importance on the subject,
consists of five hypotheses and thirteen propositions. The first
hypothesis is Newton’s First Law. The second implicitly postulates
perfect elasticity of impact, although Huygens nowhere uses the
expression. It contains the sentence: “If two equal bodies with
equal velocities impinge upon each other directly, and from opposite
directions, each recoils with the same velocity with which it came.”
Next comes Huygens' own important axiom on relative motion,
according to which the motion of bodies, and the equality or in-
equality of their velocities, must be conceived relatively, i.e. with
regard to other bodies considered as at rest, even though they may
be affected by a further motion common to the whole system. By
way of example Huygens explains the case in which a passenger
on a moving ship makes two equal spheres collide with each other
with equal velocities (relative to the ship) in the direction of the
ship’s course. The spheres will appear to him to rebound from
each other with equal velocities. To a spectator standing on the
shore, however, supposing the velocities of the spheres to be equal
to that of the ship, one sphere must appear motionless after the
impact while the other recoils with a velocity twice as great as that
which the passenger originally imparted to it.

All the propositions in Huygens’ tract relate to central impact,
but as the proportions of the masses and velocities of the impinging
bodies are altered, a variety of particular cases arises for considera-
tion. Among the most noteworthy of these cases is the following:
“If upon a body at rest another body equal to it impinges, the latter
will come to rest after impact, while the body initially at rest will
acquire the velocity of the impinging body” (Prop. I). This proposi-
tion is a particular case of the following: “If two equal bodies collide
with unequal velocities, they will move after impact with inter-
changed velocities” (Prop. 1I). This proposition, and more especially
the celebrated Proposition XI, are expressions of the comprehensive
principle that the total energy of motion of perfectly elastic bodies
is unaltered by impact. The eleventh propesition runs: “In the
mutual impact of two bodies the sum of the products of the masses
into the squares of the respective velocities is the same before and
after impact.” It was this product of the body's mass into the square
of its velocity which was called, following Leibniz, vis viva, and so,
in this law of Huygens, already formulated in his paper on impact
in 1669, the principle of the conservation of vis viva, the most com-
prehensive principle of Mechanics, found partial expression for the
first time. Its full significance could only be realized later when
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heat had come to be recognized as a particular form of motion (or
energy). A declaration of the universal validity of such a law is
already found in the words of Leibniz, who wrote: “The universe
is a system of bodies which do not communicate with other bodies.
Therefore there remains in it always the same force” (Mathematische
Schriften, Halle, 1860, 11 Abt., Bd. II, p. 434). Leibniz elsewhere
remarks that any force absorbed by the smallest particles upon
impact is not lost to the universe,

MARIOTTE

Among the friends and contemporaries of Huygens was the
French priest, Edmé Mariotte (?1620-84). He was one of the
carliest members of the Académie des Sciences (which he joined in the
year of its foundation, 1666), and he made contributions to several
branches of science, including mechanics, optics, heat, and
meteorology.

Mariotte advanced hydromechanics by his Traité du mouvement
des eaux ¢t des autres corps fluides (1686). This deals with the equili-
brium of liquids and floating bodies, and in particular with the
efffux of liquids from vessels, and with the resulting friction, by refer-
ence to which Mariotte explained many discrepancies between
theory and experiment. In this book he describes the familiar
apparatus still known as “Mariotte’s Bottle” which enables the
pressure under which a liquid flows out of an orifice to be kept
constant for an appreciable time. He gives the earliest rules for
comparing the strength of the walls of cylindrical tubes exposed to
internal pressure. He discusses the motion of water in such tubes,
the impact of fluids, the heights to which fountains rise, and many
other questions of equal scientific and technical importance.
Mariotte appears to have been stimulated to undertake these re-
searches in hydrostatics and hydrodynamics by the magnificent
waterworks at Versailles,

Mariotte also occupied himself with the mechanics of solid
bodies, and devoted the greater part of his Traité de la percussion
ou choc des corps (Paris, 1677) to the laws of impact, which he had
experimentally investigated by means of an apparatus specially
contrived for the purpose. This consisted of two balls, made of
soft clay or of ivory, according to the type of impact desired, which
were suspended from a wooden framework by threads, so as to
be in horizontal contact. These balls could be drawn aside over
graduated arcs and allowed to impinge upon each other at velocities
which could be controlled and calculated according to the initial
deflections, the motion after impact being studied. With this
apparatus Mariotte was able to demonstrate the elementary laws
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of impact, including that of the conservation of “quantity of
movement” (jointly depending upon the weights and the velocities
of the impinging bodies). Mariotte further describes experiments
with a sort of ballistic pendulum, in which a small suspended cannon
was made to discharge a suspended cylinder, the subsequent speeds
of the cannon and the cylinder in opposite directions (known from
the heights to which they rose) being shown to be inversely as their
weights. Other sections of the work are devoted to the impact of
fluids upon solid bodies and to the stroke of “thunderbolts.” (See
P- 243 infra.)

NEWTON

Newton summed up the results of earlier work on impact in the
introductory Scholium to Book I of his Principia. He makes allow-
ance for the fact that no body in nature is perfectly elastic, so that
the relative velocities of impinging bodies are diminished (as well
as reversed) by their impact, in a definite proportion, depending
upon the substance of which they are composed. Newton himself
experimentally determined this proportion (often called the coefficient
of restitution) for wood, cork, stecl, and glass,

PrEUMATICS

The sections on the thermometer, barometer, and air-pump in
Chapter V have already dealt generally with the study of the
physical properties of air. The story of the study of its chemical
properties will be told in Chapter XV. In the present section it is
proposed to give an account of the discovery and establishment of
what is variously known as Boyle's Law, Mariotte’s Law, or Boyle-
Mariotte Law, namely the law that, at constant temperature, the
pressure of a gas multiplied by its volume (po) is constant. The credit
for the discovery may be divided between Boyle, Hooke, and
Towneley—Boyle receiving the lion’s share. Mariotte did little
more than repeat a few of Boyle’s experiments, and advertise, on
the Continent, the importance of the discovery.

BOYLE'S LAW

His experiments with the air-pump (or “‘new pneumatical engine”)
suggested to Boyle that the air has a “spring.” He supposed that the
air contains parts which can be bent or compressed either by the
weight of the superincumbent layers of the atmosphere or by other
kinds of pressure; and that the compressed air can recover its
previous dimensions when the said pressure is removed. His ideas
and experiments on the subject are fully reported in his New Experi-
ments Physico-Mechanicall Touching the Spring of the Air and its Effects,
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Made for the most part in a New Preumatical Engine (Oxford, 1660).
His idea of the “spring™ of the air is explained by him as follows:

“This notion may perhaps be somewhat further explained by
conceiving the Air near the Earth to be such a heap of little Bodies,
lying one upon another, as may be resembled to a Fleece of Wooll.
For this (to omit other likenesses betwixt them) consists of many
slender and flexible Hairs; each of which may indeed, like a little
Spring, be easily bent or rouled up; but will also, like a Spring, be
still endeavouring to stretch itself out again. For though both these
Haires and the Aerial Corpuscles to which we liken them, do easily
yield to external pressures; yet each of them (by virtue of its struc-
ture) is endow’d with a Power or Principle of self-Dilatation™ (ap. cil.,
p. 23; Works, ed. 1772, Vol. 1, p. 11).

Boyle was aware that Descartes had offered a different explana-
tion, but he found his own easier, although he was not willing to
decide between them. Moreover, his purpose (he said) was to demon-
strate, not to explain, the “Spring" of the air; and most of his
experiments were directed to this end.

In one of these experiments Boyle took a partially inflated lamb’s
bladder, securely tied at the neck, and placed it in the receiver
of his air-pump. As evacuation proceeded the bladder swelled as
if it had been blown out; whereas, when air was readmitted into
the receiver the bladder grew flaccid again. To prove that this
phenomenon was due to the “spring” of the enclosed air, Boyle
showed that two other bladders, from one of which all the air had
been pressed out and which had been securely tied at the neck
and the other of which contained about one-fifth of the air formerly
contained in the first bladder and was not tied at the neck, did not
exhibit the phenomenon. Other tied bladders were shown to burst
when the receiver was sufficiently evacuated. These results showed
that the air possessed a “spring.”

But it was Experiment 17 that Boyle considered “the principal
fruit” of his “Engine.” He knew that in the Torricellian experi-
ment the mercury in a closed tube remained at a height of 27 digits
above the level of the mercury in which the tube was inverted;
and he thought that if it was the case that the mercury remained
at this height solely because “at that altitude the Mercurial Cylinder
in the Tube is in an Aequilibrium with the Cylinder of Air, suppos’d
to reach from the adjacent Mercury to the top of the Atmosphere”
(op. cit., p. 106; Warks, ed. 1772, Vol. 1, p. 33), then, if the experi-
ment could be tried so as to exclude the atmosphere, the mercury
in the tube would fall to the same level as that of the mercury in
the open vessel in which the tube was inverted, since there would
be no air pressure to resist the weight of the mercury in the tube.
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If the experiment could be tried in his “Engine,” he expected that
the mercury would fall in proportion to the exhaustion of the air.
Accordingly, a glass tube closed at one end and well filled with
mercury, was inverted over a vessel containing mercury and then
placed in the receiver of the air-pump. The upper end of the tube
passed through a hole in the cover of the receiver made air-tight
by a cement. As soon as pumping began the mercury fell as pre-
dicted, the extent of successive falls diminishing with each stroke
of the pump. The inner column of mercury, however, could not
be brought down completely to the level of the outer mercury, but
remained an inch higher. This difference Boyle attributed to the
inward leakage of air. The evidence convinced Boyle that the
standing of the column of mercury in a closed tube at a determinate
height was due to the equilibrium between the pressure of the mer-
cury and that of the external air. The experiment was repeated in
the presence of “those excellent and deservedly Famous Mathematic
Professors, Dr. Wallis, Dr. Ward, and Mr. Wren . . . and 'twas
by their guess, that the top of the Quick-silver in the Tube was
defin’d to be brought within an Inch of the surface of that in the
Vessel” (op. cit., pp. 111, 112; Works, ed. 1772, Vol. I, p. 34). Boyle
also found that, by compressing more air into the receiver by means
of the pump, the mercury “would ascend much above the wonted
height of 27 digits, and immediately upon the letting out of that
Air would fall again to the height it rested at before™ {op. cil., p. 119;
Works, ed. 1772, Vol. 1, p. 36).

In another experiment Boyle attempted to weigh air. A glass
bulb “about the bigness of a small Hen-egge” was blown and
sealed off “with as little rarefaction as might be.” It was fastened
to one of the scales of Boyle’s “exact pair of Ballances,” and was
counterpoised with a piece of lead. The whole was then put in the
receiver which was thereupon evacuated. The pan containing the
bulb was depressed, its depression increasing as evacuation pro-
ceeded. On admitting air, the former equilibrium was restored. At
this stage a weight of three-quarters of a grain was added to the
pan containing the lead, and the experiment was repeated. At
length the beam became horizontal, as evacuation was continued ;
but this position could not be attained when a further quarter of a
grain was added to the lead. Boyle estimated that the weight of the
air in the bulb was “above a grain,” recognizing that evacuation
was not complete. He repeated the experiment with the bulb
unsealed and found that in these circumstances it did not outweigh
the lead when evacuation was carried out—“so that by the help
of our Engine we can weigh the Aire, as we weigh other Bodies, in
its natural or ordinary consistence without at all condensing it”
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(op. cit., p. 275; Works, ed. 1772, Vol. I, p. 82). Unfortunately,
when the bulb was being filled with water to determine its volume,
it broke, and Boyle had no other at hand.

Another attempt was made to weigh the air. Boyle heated an
aeolipile as hot as possible, closed its orifice with wax, allowed it to
cool, and then weighed it. The wax was then perforated with a
needle, the air rushed in, and the apparatus was reweighed. The
difference in weight was 11 grains; and Boyle admitted that some
air must have remained in the heated apparatus. The aeolipile was
found to hold 21} ounces of water, so that “the proportion in gravity
of Air to Water of the same bulk will be as one to 938" (op. ci.,
P- 200; Works, ed. 1772, Vol. 1, p. 86). Ricciolus had estimated it
as I 10 10,000; and Galilei had computed it as 1 to 400.

Now Boyle in his Experiment 17 had noticed that the mercury
column in the tube fell with each stroke of the pump until it was
nearly at the same level as the external mercury, and he had hoped
“from the descent of the Quick-silver in the Tube upon the first
suck, to derive this advantage ; that I should thence be enabled to
give a nearer guess at the proportion of force betwixt the pressure
of the Air (according to its various states, as to Density and Rare-
faction) and the gravity of Quick-silver, than hitherto hath been
done™ (op. cit., p. 115; Works, ed. 1772, Vol. 1, p. 35). The capacities
of the receiver and of the cylinder could be determined, but there
were “difficulties that require more skill in Mathematicks than I
pretend to” (op. cit., p. 117; Works, ed. 1772, Vol. 1, p. g6}, and
Boyle merely hinted at the possibilities of a valuable discovery. Tt
is to be noted, however, that he had suggested this at least as early
as December 1659, when his book went to press.

In 1661 Franciscus Linus attacked Boyle's views, as expressed in
the New Experiments of 1660, in his De corporum inseparabilitate. While
admitting that the air possessed both “spring” and weight, Linus
argued that the “spring” of the air was not great enough to sustain
the column of mercury in the Torricellian experiment. He proposed
instead to explain the phenomena in this and other vacuum experi-
ments by means of a “Funiculus,” an extremely thin substance
which, when forcibly distended, violently attracted all neighbouring
bodies. This, according to Linus, is the real support of the mercury
in a Torricellian tube, and exercises the pull that is felt when the
top of such a tube is closed by the finger.

Boyle criticized this theory as “partly precarious, partly unin-
telligible, and partly insufficient, and besides needless,” in the
second edition of his book. This new volume appeared under the
title New Experiments Physico-Mechanicall, Touching the Spring of the Air,
Whereunto is added A Defence of the Author's Explication of the Experi-
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ments Against the Objections of Franciscus Linus and Thomas Hobbes
(Oxford, 1662; Works, ed. 1772, Vol. I). And it was in this Defence
that Boyle first published the hypothesis since known as “Boyle's
Law.”

Before proceeding to describe Boyle’s derivation of this law,
some comment is necessary on the history of the idea. Boyle himself
stated that Richard Towneley, as a result of reading the first edition
of the New Experiments, and, in all probability, Experiment 17 in
particular, had suggested the hypothesis “that supposes the pressures
and expansions to be in reciprocal proportion.” Boyle also stated
that, when he first reported this suggestion to a certain person
(Hooke, no doubt, to judge from the context, and other evidence),
the latter informed him that he had already in 1660 carried out
experiments on rarefaction that agreed with such an hypothesis.
Boyle adds that Lord Brouncker had made similar experiments
about the same time. In 1665 Hooke published an account of his
experiments in his Micro a (pp. 222-7), where he concluded
that “the Elater of the Air is reciprocal to its extension, or at least very
neer,” on the evidence of experiments which he had made, or re-
peated, after Boyle had told him about Towneley's Hypothesis. The
Register Book of the Royal Society indicates that Boyle gave an
account of his experimental verification of this hypothesis at a
meeting of the Society held on September 11, 1661,

Boyle's experiment was described by its author as follows: “We
took then a long glass tube which by a dexterous hand and the help
of a lamp was in such a manner crooked at the bottom that the
part turned up was almost parallel to the rest of the tube, and the
orifice of this shorter leg of the siphon (if I may so call the whole
instrument) being hermetically sealed the length of it was divided
into inches (each of which was subdivided into eight parts) by a
straight list of paper, which containing those divisions was carefully
pasted all along it: then putting in as much quicksilver as served
to fill the arch or bended part of the siphon, that the mercury
standing in a level might reach in the one leg to the bottom of the
divided paper and just to the same height or horizontal line in the
other, we took care, by frequently inclining the tube, so that the air
might freely pass from one leg into the other by the sides of the
mercury (we took, I say, care), that the air at last included in
the shorter cylinder should be of the same laxity with the rest of the
air about it. This done, we began to pour quicksilver into the longer
leg of the siphon which by its weight pressing up that in the shorter
leg did by degrees streighten the included air; and continuing
this pouring in of quicksilver till the air in the shorter leg was by
condensation reduced to take up but half the space it possessed (I
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say possessed, not filled) before; we cast our eyes upon the longer
leg of the glass, on which was likewise pasted a list of paper carefully
divided into inches and parts, and we observed not without delight
and satisfaction that the quicksilver in that longer part of the tube
was 29 inches higher than the other. Now that this observation
does both very well agree with and confirm our hypothesis, will
be easily discerned by him, that takes notice that we teach, and
Monsieur Pascall and our English friends’ experiments prove, that
the greater the weight is that leans upon the air, the more forcible
is its endeavour of dilatation, and consequently its power of resis-
tance (as other springs are stronger when bent by greater weights).
For this being considered, it will appear to agree rarely-well with
the hypothesis, that as according to it the Air in that degree of
density and correspondent measure of resistance to which the
weight of the incumbent atmosphere had brought it, was able
to counterbalance and resist the pressure of a mercurial cylinder
of about 29 inches, as we are taught by the Torricellian experiment :
so here the same air being brought to a degree of density about
twice as great as that it had before, obtains a spring twice as strong
as formerly. As may appear by its being able to sustain or resist
a cylinder of 2g inches in the longer tube, together with the weight
of the atmospherical cylinder, that lean’d upon those 2g inches of
mercury, and, as we just now inferred from the Torricellian ex-
periment, was equivalent to them” (Defence, pp. 58, 59; Works,
ed. 1772, Vol. 1, pp. 156, 157).

The tube in which these experiments were performed was broken,
so Boyle obtained another and longer tube of the same shape. It
was in fact 5o long that he could not use it in a room, and had to
suspend it from a staircase by means of strings. The mercury was
poured in by one person on the stairs at the direction of another at
the foot, who observed the shrinkage of the air. Numerous readings
were taken, and Boyle tabulated his results as shown in the accom-
panying “Table of the Condensation of the Air” (taken from
Defence, p. 60; Works, ed. 1772, I, p. 158). It will be observed (see
Columns D and E) that Boyle compared the results experimentally
obtained with those calculated by “the hypothesis that supposes
the pressures and expansions to be in reciprocal proportion” ; and
that his range of pressures was from 1 to 4 atmospheres. Within
the limits of the experimental error to be expected, the observed
and the calculated values agreed very well.

In a further series of experiments Boyle tested the hypothesis
for pressures below atmospheric. He took a narrow glass tube
open at both ends, pasted on it “a list of paper divided into inches
and half-quarters,” pushed the tube down into the mercury until
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all but an inch of the tube was submerged, and then closed the end
by melting sealing-wax over it. The tube was then allowed to cool,
and was gradually raised from the mercury, the length of the
column of air and the height of the column of mercury being noted
at various positions, until the air was dilated to a length of 32 inches.
A Torricellian glass showed that the barometric height at the
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time of the experiment was 29§ inches. The experimental values
were compared with those calculated according to the “hypo-
thesis” and were found to be in good agreement with them. Boyle
tabulated his results as shown in the table on page 242 (taken from
Defence, p. 64; Works, ed. 1772, 1, p. 160).

Returning to the work described by Hooke in his Micrographia
it appears that Hooke had, in 1660, made similar experiments on
the rarefaction of air, measuring the pressures of a column of air
in expanding from an atmospheric pressure of 30 inches of mercury
down to 3 inches. He did not apply these results to test any hypo-
thesis, not being aware of Towneley’s idea at that time. On August 2,
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1661, after being informed of Towneley’s hypothesis, he repeated
these experiments and carried out others for pressures above
atmospheric, working up to a pressure of two atmospheres in an
apparatus similar to Boyles. His results agreed with the hypothesis
within the limits of experimental error, and, as indicated above,
he concluded that the “Elater of the Air is reciprocal to its exten-
sion, or at least very near.” However, Boyle may fairly be credited
with the discovery (although he did not announce his results to the
Royal Society until September 11th of that year), since he informed
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Hooke of Towneley’s hypothesis—and Hooke probably worked with
Boyle’s apparatus. In the absence of any real knowledge at the
time of a variety of gases, neither Boyle nor Hooke realized the
importance of the discovery. “Boyle’s Law” is, however, very
properly, the name by which this generalization is known,

The rival claims of Mariotte to have the law called by his name,
whether solely or in conjunction with that of Boyle, rest on slender
grounds. The relevant considerations are the following. In his
Essay de la nature de Pair (1679) he contended that air must have
weight, and adduced as evidence the fact that the mercury in a
barometer rose 3 inches when the barometer was immersed in
3% feet of water. He argued that as this increase can only be due
to the weight of the water on the exposed surface of the ';ncrcury,
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the column of mercury in the tube must have been maintained
at its previous height by the weight of the atmosphere. He asserted
that air must have a veriu de ressori (obviously Boyle’s “spring”
and Hooke’s “elater”) so that it could be compressed or expanded ;
and he thought that the air near the surface of the Earth is com-
pressed by the air above it, whereas the air in the highest region
of the atmosphere must have unrestricted freedom of expansion
(la liberté entiére de se dilater). He formulated the law that air is
compressed in proportion to the weight that is acting upon it (Pair
s¢ condense d proportion des poids dont il est chargé). He experimented
with pressures below atmospheric by means of apparatus which
was just like Boyle’s. The only figures he gave were those for such
simple cases as when the volume of air was doubled or was increased
by a third ; he said that he had also tried other cases, but gave no
figures. His experiments with pressures greater than atmospheric
were likewise made with apparatus just like Boyle’s; and again he
mentioned but few numerical results. There is every reason to
suppose that Mariotte was familiar with the work of Boyle, who had
published his detailed results seventeen years earlier. And among
his contemporaries Mariotte was not beyond suspicion of exploiting
the work of others. Newton, for example, paid him the ambiguous
compliment of remarking on his having considered it worth while
to write a whole volume (namely, Traité de la percussion, etc.) on
the substance of a few pendulum experiments which Wren had
made before the Royal Society, and which were published in the
Philosophical Transactions (Principia, 1687, p. 20—Axiomata, Corol. VI,
Schol.). The seventeenth century, as will be pointed out again in
connection with Mayow's relation to Boyle and Lower, had chari-
table views on what would now be condemned as plagiarism. And
it would not be altogether fair to charge Mariotte with it. But that
is not a sufficient reason for crediting him with Boyle’s discovery,
even if Mariotte may be credited with a realization of the impor-
tance of Boyle's Law and with the promotion of its recognition on
the Continent. If any other name deserves to be associated with
that of Boyle in connection with this law it is the names of Towneley
and Hooke, not that of Mariotte (see W. 5. James in Science Progress,
1928, 23, pp. 26gfT.).

(See E. Mach, The Science of Mechanics, tr. by T. J. McCormack,
5th edition, 1942.)



CHAPFPTER X1

PHYSICS

I. LIGHT

Tue modern history of the science of Optics may be taken as
beginning with the fundamental researches of Kepler, or with the
accurate formulation of the law of refraction, early in the seven-
teenth century. In order, however, to realize the state of the science
at the beginning of the modern period, and to understand how
some of its fundamental concepts originated, it is desirable to
begin with a rapid survey of previous work in this field.

ANTECEDENTS

The Greeks were the first to subject the phenomena of light
to mathematical treatment, and Euclid in his Optics summed up
what was known or surmised about the subject up to his time. It
was known that the rays of light, which intervene between the eye
and the object observed, are straight lines, and that, in reflection
from a plane mirror, the angles of incidence and reflection are equal.
The phenomenon of refraction was also recognized, and was studied
by Ptolemy in one of the few recorded experimental investigations
of the ancient world. He stated that the angle of incidence is pro-
portional to the angle of refraction for a given pair of media, though
his refraction tables do not agree with this simple relation.

According to most ancient theories vision was due to something
emanating from the eye and falling upon the object seen, or mingling
with another emanation proceeding from it. On the other hand,
the Epicureans seem to have taught that vision is caused by a
succession of thin films which are emitted from the surface of an
object and which enter our eyes, giving us a continuous impression
of that object. In contrast with these conceptions of light as a sub-
stance, Aristotle held that it is a quality of the medium intervening
between the eye and the object. The conflict between these two
types of explanation has continued down to the present day.

The greatest of the mediaeval opticians was the Arab Ibn al-
Haitham or Alhazen (eleventh century), whose book remained
a standard authority down to the seventeenth century. He taught
that light spreads out spherically from each point on a visible
object, and he determined refractive indices experimentally, recog-
nizing that Ptolemy’s crude law of refraction holds only for small
angles. Alhazen investigated many particular cases of reflection and
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refraction, and drew attention to the light-ray’s property of retracing
its path when reversed. His account of the structure and functions
of the eye was first superseded in the seventeenth century. Mediaeval
European opticians, from Vitellio and Roger Bacon in the thirteenth
century to Maurolycus and Porta in the sixteenth, mainly concerned
themselves with the discussion of minor problems in connection
with which we shall have later occasion to mention some of them.
Knowledge of optical phenomena throughout this period was very
limited, and there was no satisfactory theory of colours, which were
generally attributed to the mixture of light and darkness in various
proportions,

KEPLER

At the threshold of the modern period stands Johann Kepler,
the astronomer, whose principal contributions to optics dealt with
refraction, the properties of lenses, and the theory of vision. Kepler
set forth the results of his optical researches in two books, Ad Vitel-
lionem Paralipomena (Frankfurt, 1604), which treats of the whole
science of light, and Dioptrice (Augsburg, 1611), which is concerned
primarily with refraction. The fundamental researches contained in
these books mark a notable advance on the achievements of Kepler's
predecessors in this field.

In the earlier of these works Kepler clearly formulated for the
first time, though only by an appeal to intuition, the fundamental
law of photometry, namely that the intensity of the light emanating
from a point-source varies, with increase of distance of the illu-
minated object from the source, in inverse proportion to the surface
of a sphere having that distance as radius; in other words, it varies
inversely as the square of the distance from the source (Paralipomena,
I; g). In the same work Kepler maintained that light is capable
of being propagated into illimitable space (ibid., I, 3), and that it
requires no time for its propagation, since, being immaterial, it
offers no resistance to the moving force, which, in accordance with
Aristotelian mechanics, therefore gives it an infinite velocity
(ibid., 1, 5). He was unable to account satisfactorily for colours,
which he supposed to arise from different degrees of transparency
and density of the coloured substance (ibid., I, 15); and he sub-
scribed to the erroneous opinion that refraction takes place at the
boundary of two media because of the greater resistance and pro-
portionately greater refracting power of the denser medium (ibid.,
I, 20). Very soon after the publication of this book, however,
Kepler's attention was drawn by Harriot to the fact that oil, though
less dense than water, refracts light much more strongly. Kepler
also concerned himself with the problem, previgusly discussed by
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Maurolycus, of explaining why, when sunlight is admitted through
a small opening into a dark room, the image formed on a screen is
always round, whatever the shape of the opening. He arrived at
the correct explanation through a geometrical construction
(thid., 1I). Taking a book, he placed between it and the wall a
screen in which was an angular aperture. He attached a thread
to one corner of the book, passed it through the aperture, and,
keeping it in a straight line, drew it along the edge of the aperture,
tracing on the wall with a piece of chalk attached to the other end
of the thread a figure similar to that of the aperture. He repeated
the process with the thread attached successively to other points of
the book, and obtained a number of partially overlapping outlines
of the aperture which all lay within a single outline, having the
shape of the book. Taking the book to represent a luminous body,
and the thread the limiting rays of light, Kepler was thus able to
clear up this ancient problem. Explaining how we are able to judge
the distance of an object, Kepler maintained that we unconsciously
solve the triangle whose base is the distance between our eyes and
whose sides are the lines of sight drawn from each eye to the object
(ibid., 111, 8). He devotes separate sections of his Paralipomena to
refraction—especially astronomical refraction, for which he drew
up a table—and to the theory of vision. These branches of optics,
however, were taken up again by Kepler in his Dioptrice, and we shall
confine our attention to this later presentation of them.

The invention of the telescope in 160g stimulated Kepler to
occupy himsell afresh with optics, and to furnish a geometrical
explanation of this instrument. The Dioptrice was the result of his
meditations, supported by only moderate experimental resources.
It was especially through this book that Kepler became the founder
of modern optics, to which he stands in the same relation as Galilei
to mechanics and Gilbert to the science of magnetism and electricity.

In judging Kepler's work on refraction, it must be remembered
that, in his time, the ratio of the angle of incidence to the angle of
refraction was commonly assumed to be constant, Kepler took as his
fundamental experimental law the rule that rays of light, upon pass-
ing from a rarer to a denser medium, are bent towards the normal
drawn to the surface of separation of the two media at the point of
incidence (Dioptrice, I1). His apparatus for measuring refraction is
shown in Illustr. 137.

Rays of sunlight L, M, N, cast the shadow of ihe straight edge
CBD of an upright screen upon the horizontal base of the apparatus.
Some of these rays are unrefracted and cast the shadow HK, while
others pass through a cube of the transparent substance under
investigation and cast the shadow 1G. From the height BE of the
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screen, and the lengths EH, EG of the shadows formed in the two
cases, the ratio of the angles of incidence and refraction at the
surface of the cube can casily be deduced (ibid., IV). In the course
of his researches Kepler discovered the total internal reflection of a
ray of light travelling in glass and incident upon the surface of
separation between glass and air at an angle exceeding 42 degrees
(tbid., XIII). Despite numerous measurements of angles of incidence
and the corresponding angles of refraction, Kepler could find no
regular relation between the two quantities, though he showed that
angles of incidence less than g0 degrees bore an approximately
constant ratio to the corresponding angles of refraction (ibid., VII},

Ilustr. 137.—The Determination of the Angle of
Refraction of Light

for a given pair of media, this ratio being about § to 2, for glass or
rock-crystal (ibid., VIII). But this ratio, he showed, did not hold
good for larger angles of incidence. Kepler's attempts to find a
general trigonometrical expression for the ratio, though on the
right lines, were unsuccessful.

Although thus ignorant both of the general law of refraction and
of the relation connecting conjugate points of a lens (first obtained
by Halley), Kepler was nevertheless able to give an approximate
theory of the action of lenses and lens-systems. Taking the ratio of
refraction as g :2, and considering only rays incident at small
angles, he depicted the course of such rays through various types
of lenses or lens-combinations, and obtained results by reasoning
from the geometrical properties of the diagrams. His usual pro-
cedure was to consider two cones of rays, having the lens as their
common base, whose vertices respectively coincided with a point
of the object and the corresponding point of the image. Three such
pencils of rays are shown in Illustr. 138.
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The points F, D of the image respectively correspond to the
points E, C of the object, so that the law that a convex lens pives
inverted images is immediately evident (ibid., XLV). This method
of construction by means of pencils consisting of innumerable
Tays was an innovation due to Kepler, his predecessors having
always traced the course of single rays. The new method enabled
him to ascertain the positions and sizes of images much more

correctly. Thus he discovered, for instance,
£ thatan object placed on the axis of a biconvex
lens and distant from it by twice the focal
length gives rise to an image equal in size and
at an equal distance on the opposite side
of the lens (ibid., XLIX). Among practical
applications, the “bull's-eye” lantern with lens
and reflector is described (ibid., LIII).

Kepler was aware of the complications now
classed as “‘spherical aberration,” and already
described by Roger Bacon in connection with
reflection at concave mirrors, and by Mauro-
lycus in connection with refraction through
a glass sphere. Kepler, however, suggested
remedying this defect by giving lenses a hyper-
bolic instead of a circular section, believing,
with the anatomists of his time, that the lens
of the eye was hyperboloidal on its reverse
side, thus giving us sharp images unaffected
by spherical aberration (Paralip. V, 1; Diopt,
F LX). Progress along the lines of Kepler's work
Illustr. 138.—Kepler's in geometrical optics was made by Cavalieri
Account of the Action who, in 1647, proved the correct relation

of Lensca between the focal length of any thin lens and

the radii of curvature of its surfaces (Exercitg-

tiones Geomeiricae Sex, 1647, p. 462), and by Barrow who, in 1674,

found by a geometrical method the image formed by a thick lens

upon which an axial pencil falls (Lectiones Opticae et Geometricae,

1674, pp. gb-102). Such cumbrous geometrical investigations

involving the separate consideration of numerous particular cases,

were eventually superseded by the analytical methods of Descartes,

which Halley, in 1693, successfully applied to the problem of finding
the general formula of the thick lens (Phil. Trans., No. 205),

The theory of vision accepted in Kepler's time was largely based
upon the ideas of Alhazen, and was unsound. Kepler devoted
several years to the study of vision, and was able to give a
more satisfactory account of the functions of the eye than his pre-

<
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decessors (Paralip. V). He explained the retina as the part of the eye
which receives the image formed by the crystalline lens (Diopf. LX)
and he was of opinion that if the opaque outer tunics of the eye were
removed, an inverted, diminished image of any object in the field
of view would be seen (Paralip. V, 2). He seems to have based this
surmise (later confirmed experimentally by Scheiner and others)
on Porta’s experiments with the camera obscura, the similarity of
which to the eye had, however, previously been pointed out by
Leonardo da Vinci.

Porta and Maurolycus had supposed that, from each point on a
luminous body in the field of view, a ray of light enters the eye
through the pupil. Porta regarded the lens as the perceptive organ
upon which the image is formed, the posterior wall of the eye
serving as a concave mirror from which light is reflected towards
the centre. Kepler, however, more correctly supposed that from
the several points of the object cones of rays diverge whose common
base is the pupil. These are refracted by the crystalline lens to form
converging cones (¢p. Illustr. 104), whose vertices lie on the retina,
which plays the part of the screen in a camera obscura. Kepler’s theory
of the activity of the retina shows remarkable accordance with the
most recent ideas, “Sight,” he writes, “is the sensation of a stimula-
tion of the retina” (Diopt. LX). A substantial change occurs in the
retina when light falls upon it, for it contains an extremely subtle
material, spiritus visivus, which is decomposed by the light collected
by the lens, just as a combustible substance is altered by the applica-
tion of a burning-glass. The image thus formed is of some duration,
as Kepler proves by adducing the after-images which are seen upon
closing the eyes or turning them away after looking at a bright
object (ibid.). These speculations later received a measure of con-
firmation through the discovery of the chemically transformable
“visual purple.” Kepler rightly remarked that the formation of an
image upon the retina does not of itself constitute the entire act of
vision, but that the image must be transmitted “by a spiritual
current” to the seat of the faculty of sight in the brain (ibid.). He
explains the fact that our two eyes give us the perception of only one
image on the ground that the two retinas are similarly stimulated
(Diopt. LXXII). He also discussed the question why we see objecis
erect although their images formed on the retina are inverted, but he
could not find a satisfactory answer. However, he correctly explained
short-sightedness and long-sightedness as respectively arising when
the cones of rays, coming from the several points of the object and
suffering refraction in the crystalline lens, come to a focus before
reaching the retina, or reach the retina before coming to a focus
(ibid., LXIV). In either case points of the object transform into
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objects around him with the aid of his stick. Light, he holds, is an
action or pressure which is transmitted by the luminous body to
our eyes through the intervening medium, just as the motion or
resistance of an object is communicated through the blind man's
stick to his hand. Colours he attributed to the different rates of
rotation of the particles of the luminiferous medium. The analogy
tended to confirm Descartes in his belief that light is propa-
gated “in an instant.” This conception of the nature of light is
more fully worked out in Descartes’ other books, Le Monde (1664,
but written about 1630) and Principia Philosophiae (1644). The
most important sources of light in his system are the fiery cores of
the vortices. These cores are the Sun and stars, whose outward
pressures, besides illuminating the planets, maintain their respec-
tive vortices in existence against the outward pressures of neigh-
bouring ones.

In attempting a mechanical proof of the laws of reflection and
refraction, Descartes assumed that light, being of the nature of a
thrust, or tendency to motion, may be expected to obey the same
mechanical laws as a body actually in motion, e.g. a ball projected
from a tennis-racket. He argued that when such a ball is reflected
from a hard, even surface, the resolute (or part) of its velocity parallel
to the surface is practically unaffected, while the resolute perpen-
dicular to it is reversed by the impact (Diopt. 11). It easily follows
that the angle of incidence must equal the angle of reflection. To
represent refraction from a denser to a rarer medium, Descartes
supposed the ball to be hit through a thin cloth so that the per-
pendicular resolute (or part) of the velocity was reduced in a certain
proportion while the horizontal resolute was unchanged (ibid.). In the
case of refraction from a rarer to a denser medium, the ball was sup-
posed to receive a further impulse at the point of incidence, causing
1t to travel on with an increased velocity. These analogies involve the
supposition that light travels more *easily” and rapidly in a denser
medium than in a rarer, for which Descartes furnished a mechanical
reason. Light, he argues, consists of a motion in a medium, and is
therefore deadened more easily by impinging on the soft and loosely
Joined particles of air than on the harder and more firmly con-
nected particles of water or glass, just as a ball rolls less casily on a
carpet than on a bare table. The above considerations immediately
led to the law of refraction, which Descartes enunciated in the
fuIIowing form:

. Let ABI represent a ray refracted at B (Illustr. 140) upon passing
nto a different medium. Draw a circle of arbitrary radius about
B in the plane of incidence of the ray, intersecting the ray in A and I,
Draw perpendiculars AH, IG to the normal through B. Then the
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ratio AH : IG is constant, for the two media, whatever the angle
of incidence of AB (ibid.).

The remainder of the Dioptrique deals with the anatomy of the
eye and with vision, in accordance with Descartes’ general theory
of the physiology of the senses, It describes how to demonstrate
experimentally with a bull’s eye the formation of retinal images,
and how to illustrate the accommodation of the eye by applying
pressure to the lens (Discours V). Describing the use of lenses as aids
to vision, Descartes advocated making them with elliptic or hyper-
bolic instead of circular sections (Discours VIII), s0 as to eliminate
their defects; and he described
machinery for grinding them (Dis-
cours X).

Descartes’ contributions to the
theory of the rainbow, in Les Météores,
will be mentioned in connection
with Newton's improvement of that
theory.

Descartes” proofs of the laws of
optics, sketched above, are uncon-
vincing, especially as they involve
the comparison of an instan-
Miustr. 140.—Descartes’ Law of taneously propagated pressure with

Refraction a body moving at a finite and

variable velocity. His supposition

that light increases its velocity upon passing into a denser medium
met with much opposition from contemporary physicists.

FERMAT

Among Descartes’ critics was the mathematician Fermat, who
proved Snell’s Law in a very different manner by applying to the
problem of refraction his general method for determining the
maximum and minimum values of a variable quantity (Huygens’
Traité de la Lumiére, Chap. III end). This method was based upon
the principle that the value of a quantity, when near a maximum
or minimum, is not sensibly altered by small changes in the quanti-
ties upon which that value depends.

The ancients had explained the rectilinear propagation of light
teleologically, supposing that light travels in straight lines so as to
reach an object by the shortest possible path or in the least possible
time. Hero of Alexandriz had further shown in his Calopirica, that
the law of reflection illustrates the same principle. He pointed out
that a ray passing from a given point A to a given point B
(Illustr. 141) with an intermediate reflection at any point C of a
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given surface, has a minimum distance to go when ACD = BCD,
CD being normal to the surface. It is easy to prove that any other
path (e.g. AC,B) would be longer.

Fermat assumed tentatively that the path of a ray passing between
two given points A and B in two different media (Illustr. 142)
and undergoing refraction at some point C, would correspond to a
minimum of some sort. The distance AC 4 CB was obviously not a
minimum, but by merely assuming the total resistance encoun-
tered, or the fime required, in traversing ACB to be minimal, and
the respective velocities », and p; in the first and second media
to be constant but different, Fermat was able by his method to

G <
Hlustr, 141.—Rays of Light take the  Illustr, 142.—The Refraction of Light
Shortest Paths and the Principle of Least Time

deduce Snell’s Law, with the further result thatsina :sin f = r, : 1.
The greater velocity is here associated with the rarer medium, in
conflict with the result of Descartes’ investigation and with emission
theories generally, but in agreement with the later result of Foucault’s
crucial experiment in the nincteenth century.

Snell's Law, regarded as the result of experiment, in its turn
tended to justify Fermat’s belief in a general principle of Least
Action characterizing the processes of Nature. Further attempts
on the same lines to account for the fundamental laws of optics
were made later by Leibniz and Maupertuis, who assumed that
light travelled so as to make one quantity or another a minimum.

From these purely mathematical derivations of Snell's Law we
turn to the more important attempts of the seventeenth century to
provide physical explanations of the law in terms of various hypo-
theses as to the nature of light. These hypotheses had to take account
of an increasing number of light-phenomena which were discovered
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during the seventeenth century, and hence became gradually more
complicated. Two principal types of hypotheses arose, according
as light was conceived as a wave-motion in an all-pervading medium
(on the analogy of water-waves) or as made up of particles emitted
by luminous bodies (on the analogy of projectiles). The two types
of theory developed simultaneously in the latter half of the seven-
teenth century. They interacted upon each other, and have divided
the opinions of physicists down to the present day.

It is worth noting that traces of an undulatory theory of light are
to be found in the writings of Leonardo da Vinci and in the letters
of Galilei. None of the seventeenth-century advocates of the undula-
tory theory claimed it as an original idea of his own.

GRIMALDI

Among the earliest to suggest seriously that light is wave-like
or periodic in its nature was Francesco Maria Grimaldi (1618-63),
a Jesuit Professor of Mathematics at Bologna. Grimaldi was a deeply
learned man and an accomplished observer, who chose optics as his
principal field of research, and subjected it to more penetrating
investigation than any of his predecessors. He collected his optical
observations and speculations in a book which appeared shortly
after his death under the title Physico-Mathesis de lumine, coloribus, et
iride (Bologna, 1665). This work is chiefly of importance for the
account which it contains of the remarkable phenomena of diffraction
(diffractio) which appeared to contradict the law of the rectilinear
propagation of light (I, 1).

Grimaldi admitted a beam of sunlight into a dark room through
a small aperture AB in a shutter (Illustr. 143), and carefully studied
the shadow cast upon a screen CD by a small opaque body EF
placed in the beam at some distance from the aperture. He found
that the breadth MN of the shadow was greater than was to be
expected from the dimensions of the apparatus, supposing light 1o
travel past the obstacle in straight lines, and further, that the
shadow was bordered externally by coloured bands parallel 10 its
edge. With sufficiently bright illumination, similar bands appeared
inside the shadow. Grimaldi accurately described and illustrated
these effects, which became more complicated when the edge of the
obstacle contained sharp angles.

Another of Grimaldi's experiments is shown in Illustr, 144, in
which, when a cone of light was allowed to pass through two
circular apertures CD and GH, the diameter JK of the disc of
light cast on a screen was greater than the diameter NO obtained
by geometrical construction, assuming the rectilinear propagation of

light.
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These phenomena, and especially that of the coloured borders
of shadows, which was obviously not identical with the refractive

A B

C M J G HL N D
IMustr. 149.—The Diffraction of Light

.i N L M O 3
Ilustr. 144.—The Diffraction of Cones of Light

dispersion of colours (elsewhere clearly described by Grimaldi),
inclined him to regard light as a fluid capable of a wave-like motion
(I, 2). He compared the bands appearing round the shadows of
opaque objects with the circular waves formed when a stone is
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thrown into water. The idea that light consists of a fine fluid in a
state of undulation frequently recurs in Grimaldi’s explanations, this
fluid being supposed to suffer diffusion through transparent media at
an immeasurably great but not an infinite velocity.

An experiment by Grimaldi in which the partial superposition
of two spots of light appeared to lead to a diminution of illumina-
tion is sometimes regarded as an anticipation of the principle of
interference of light; but the effect was explained by Mach as of
physiological origin. Grimaldi, however, partly anticipated the
invention of the reflection grating, showing that coloured bands
could be produced by reflecting sunlight on to a screen from a
finely scratched metal plate (I, 29). It did not occur to him, however,
to attempt the composition of white light from coloured. By refer-
ence to the action of his scratched plates upon light, Grimaldi partly
explained the iridescent colours frequently occurring in the animal
kingdom, on birds' feathers, insects’ wings, etc.

Grimaldi repeatedly states that colours are not something different
from light and somechow existing in coloured bodies even without
the presence of light (I, 45). They are modifications of light pro-
duced by the fine structure of the bodies which reflect it, and
probably consisting in an alteration in the type of motion and in the
velocity of the light. As the different musical notes are produced by
different kinds of air-vibrations, so the different colours are produced
when the eye is stimulated by light oscillations whose velocities differ.
All these views were of fundamental importance for the subsequent
development of optics.

HOOKE

In 1665, the year in which Grimaldi’s book was published, there
appeared the Micrographia of Robert Hooke. Among a multitude
of other topics, he dealt in this work with the iridescent colours of
thin, transparent films, such as flakes of mica, soap-bubbles, blown
glass, mother-of-pearl, cil on water, etc. (Observation I1X: Of the
Colours observable in Muscovy Glass and other thin Bodies).

While studying the properties of mica, Hooke noticed that
rainbow hues appeared in flakes of this substance within certain
definite limits of thickness. He recognized that the colour at each
part of the flake depended upon the thickness of that part, gradua-
tions in the thickness leading to corresponding graduations in the
colours, which recurred in a regular order, as in the secondary
rainbow. He obtained similar colour-effects upon pressing two
plates of glass together with an air-film between them (Microg.,
Observation IX, p. 50). Hooke was unable to establish any definite
relation between the thickness of the film and the colour-effects
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produced, but he helped to prepare the way for Newton's more
exact investigations in this department.

Hooke’s explanation of these colour-phenomena was bound up
with his theory of light. He supposed light to be a rapid, vibratory
motion of small amplitude, of the particles of the luminous body,
and to be propagated in straight lines in all directions with an
immeasurable though not necessarily infinite velocity (“to the
greatest imaginable distance in the least imaginable time; though
I see no reason to affirm that jt must be in an instant”), through
an all-pervading, homogeneous medium, and through transparent
bodies. The vibrations spread out as a series of spherical pulses,
each sphere ordinarily cutting the light-rays at right angles. Light

Tllustr. 148.—Cglours of Thin Films

becomes coloured when the “orbicular pulse” or wave-surface
becomes obliquely inclined (for instance, by refraction) to the
direction of the light. In these circumstances one side of each of
the pulses constituting a beam moves in advance of the other side.
The primary colours are blue and red; “all the intermediate
ones . . . arise from the compgsition and dilutings of these two.”
Blue is observed where the precedent portion of the pulse adjoins
the edge of the beam (being weakened by contiguity to the dark
medium), and red is observed where the rearward portion of the
pulse adjoins the edge. Thus he held ““that Blue is an impression on
the Retina of an oblique and confused pulse of light, whose weakest
part precedes, and whose strongest follows; and that Red is an
impression, on the Retina, of an oblique and confused pulse of
light whose strongest part precedes and whose weakest follows.”
When light falls upon a thin, transparent film each pulse is reflected
partly from the front surface and partly from the back (Illustr. 148),
and thus gives rise to two reflected pulses parallel to each other but
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separated by an interval. Hooke supposed the resulting colour-
sensation to depend upon whether the reflected pulses from the
upper surface closely preceded or closely followed weaker reflected
pulses from the lower surface (Micrographia, Observation 1X).

His explanation completely ignored any sort of interference
between the pulses, such as is now invoked to explain these colours;
but it had at least the merit (which Newton’s explanation had not)
of making both reflecting surfaces play a part in producing the
phenomenon,

Hooke devised a construction for the refracted ray which was a
rather crude anticipation of that of Huygens, but which involved
Descartes’ assumption that light travels more rapidly the denser the
medium. Hooke, however, discriminated between “density in
respect of gravity” and “density in respect to the trajection of the
Ra.ys“lr

Hooke later performed some diffraction experiments on the lines
of Grimaldi’s, and in a series of lectures delivered about 1680-2,
he dealt further, although only in very general terms, with the
propertics of light, which he defined as *nothing else but a peculiar
Motion of the parts of the Luminous Body, which does affect a
fluid Body that incompasses the Luminous Body, which is perfectly
fluid, and perfectly Dense, so as not to admit of any farther Con-
densation ; but that the Parts next the Luminous Body being moved,
the whole Expansum of that fluid is moved likewise” (Posthumous
Works, published by R. Waller, 1705, p. 113).

Hooke regarded the velocity of light as too great for experimental
determination. Down to the seventeenth century it had usually
been regarded as infinite, and Kepler, and perhaps also Descartes,
scem to have held this view. Descartes, as we have seen, believed
that light was not a moving substance, nor a motion at all, but a
tendency to motion, or a thrust exerted by the luminous body; and
he supposed that this thrust, being incorporeal, required no time
for its propagation. He was the first, however, to attempt to decide
the matter on astronomical evidence. He pointed out that if light
took an appreciable time to travel from the Earth to the Moon, the
latter would not appear to us to be dircctly opposite to the Sun
when totally eclipsed, but would appear displaced from that
position. But observation shows no such displacement. Huygens,
however, pointed out that if the velocity of light were considerable,
the displacement would be lost among the errors of observation, so
that Descartes’ argument, while proof that the velocity was high,
was no proof that it was infinite. Galilei and, following him, the
Florentine Academicians had attempted unsuccessfully to ascertain
the velocity of light by means of reciprocal terrestrial light signals,
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The various interpretations of the law of refraction as due to
differences in the velocity of light in different media, however, sug-
gested that these velocities must be finite. This principle was first
cstablished, and a fair estimate of the velocity obtained, by the
labours of Olaus Rémer, Picard’s Danish colleague at the Paris
Observatory.

ROMER

While at Paris, about 1672-6, R émer observed a series of eclipses
of the innermost of the satellites of Jupiter, which completes a
revolution round the planet in about forty-two
and a half hours, and is eclipsed in its shadow-
cone once in each revolution (Histoire de
U'Académie Royale des Sciences, 1666—99, Paris,
1733, anno 1676). Let A be the Sun ([llustr.
149), BCDE the Earth’s orbit, F Jupiter, and
GN the orbit of the satellite. Then Romer
noticed that the satellite’s period seemed
longer, and eclipses succeeded one another
more slowly, when the Earth was receding
from the planet in the portion BC of its orbit,
than when it was approaching it along DE.
He explained this effect by supposing that
light has a finite velocity. He deduced from
his data that it would take about eleven
minutes to traverse a radius of the Earth's
orbit, and that the velocity of light must be
about 48,000 leagues (approximately 193,120 2
km., or 120,000 miles) per second. The view
that light travels with a finite velocity was [llustr. 149.—Rémer's
rejected by many of Rémer’s contemporaries, Determination of the
especially by the Cartesians, who continued ~ Velecity of Light
to belicve in the infinite velocity of light.

Rémer’s hypothesis was finally verified by Bradley’s discovery of
aberration (1726).

Rémer’s estimate of eleven minutes as the time it would take
light to traverse a radius of the Earth’s orbit was modified by
several of his contemporaries, and is now put at about eight minutes
and twenty seconds. The corresponding value for the velocity of
light in terms of terrestrial units was long subject to uncertainties
arising from imperfections in the methods of observation, and from
doubts as to the true size of the Earth’s orbit. It is now usually
estimated at about 299,778 km. per second in air and 29g,796 km.
per second in pacuo.
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HUYGENS

Romer's discovery established that the propagation of light is a
process taking place at a finite rate. The phenomena both of ordinary
and of double refraction suggested that the rate of this process
varies according to conditions. Diffraction and iridescence pheno-
mena suggested that the process is an undulatory motion. These
ideas were all taken up by Huygens and elaborated into a theory
which, although based on only a few underlying assumptions, suc-
ceeded in explaining and correlating most of the optical phenomena
then known. Huygens’ theory was worked
out during his years of residence in
France; it was communicated to the
Académie des Sciences in 1678, and published,
with additions, under the title Traité de la
Lumiére, in 16go.

Huygens (Traité, Chapter I) conceives
the minute particles composing a lumi-
nous body as communicating impulses
to the neighbouring particles of an all-
pervading medium. These impulses (un-
like those of sound) come from each
individual particle of the body, and occur
at irregular intervals, The medium, again,
through which light travels is not the air
(since light can pass through a vacuum),
| but it is an aether made up of small, hard,
Tlustr. 150.—The Propa- el;uli_c particles each of which transmits

gation of Light any impulses which it receives to all the
particles in contact with it, but does not
itself suffer any permanent displacement. In this way ecach excited
particle becomes the centre of 2 spherical wavelet. From his researches
on the impact of elastic balls, Huygens had learned that such an
assemblage of particles, though not themselyes in motion, could
simultaneously propagate impulses travelling in all directions, so
that beams of light could cross each other without any mutual
interference. From these considerations it followed that each of
the particles A, B, C of a luminous body, eg. a candle-flame
(Illustr. 150), sends out its own set of concentric spherical wavelets,

If now a wave from a point-source A (Illustr. 151) reaches the
position BG at any given instant, each of the particles 4665 in the
wave-front immediately sends out a spherical wavelet. These wavelets
are too weak to give any sensible effect except in the region where
they reinforce one another, that 15, in the surface CE which touches
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them all when the time necessary for traversing BC has elapsed.
CE is then the new wave-front. If BG is an aperture in a screen,
then, at points outside the cone ACE, the wavelets from BG will not
all arrive together so as to produce an appreciable joint effect, but
will straggle in one after the other, having had different distances to
come, and will thus produce no sensible effect. Shadows, and the
rectilinear propagation of light, are thus accounted for; but Huygens
ignored the wave which, on this view, should be propagated back
towards the source, and also the serious weakening which a ray
would suffer through the lateral dissipation of the impulses.
Huygens’ Principle that each point on a wave-front acts as the

A

Ilustr, 151.—Spherical Wavelets of Light

centre of an clementary wavelet, leads immediately to his con-
structions for the reflection (Illustr. 152) and ordinary refraction
(Traité, Chapters II and III) of beams of light, on the assumption
that light travels less rapidly in a transparent material medium
than in a vacuum. Huygens explains the passage of light through
transparent solids by supposing the aether to fill the pores between
the solid particles. Light-waves are propagated through this aether,
but rather less rapidly than in free space, through having to make
détours round the particles. In double refraction, however, the
extraordinary wave is propagated through both the aethereal and
the material particles. Opaque substances are those which contain
soft particles which damp the aetheric vibrations,

In 1670, while Huygens was in Paris, Erasmus Bartholinus, a
Danish scientist, announced his discovery of double refraction in
Iceland spar or calcite (Experimenta crystalli Islandici, Hafniae, 1670).
Small objects observed through crystals of this substance appear
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double, two refracted rays being formed, one of which, the ordinary
ray, obeys Snell’s Law, while the other, the extraordinary ray, does not.

Huygens devotes the longest and most vital section of his Traité
(Chapter V) to a discussion of this remarkable phenomenon, which
appeared to upset his explanation of ordinary refraction. His treat-
ment of the problem forms an unsurpassed model of the co-operation
of experimental investigation and penetrating analysis. The result
was that he found it possible to account for most of the peculiarities

Illustr. 152.—Huygens’
Construction for the
Reflection of Light

of double refraction and ordinary refraction on the same general
hypothesis, which thus received further confirmation.

Huygens repeated Bartholinus® observations of calcite with in-
creased accuracy, and himself discovered a less pronounced double
refraction in rock-crystal, By careful observation he found that,
while it was possible to attribute the ordinary ray in calcite to the
propagation of a spherical wave through the crystal, yet in order
to account for the behaviour of the extraordinary ray, it was neces-
sary to imagine that the light spreads out so that the wave-front
is an ellipsoid of revolution. The minor axis of this ellipsoid {which
is the axis of revolution) was found to be parallel to the optic axis
of the crystal, the velocity along the axis being the same for both
rays. That is to say, supposing light to travel out in all directions
from mny point inside a calcite crystal, the wave-front has the form
of a double surface made up of a sphere and an ellipsoid. These
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touch each other at the extremities of the minor axis of the latter,
the radius of the sphere being to the major axis of the cllipsoid as
8 : 9. Huygens shows how to construct the direction of the extra-
ordinary ray graphically by a method analogous to that already
applied to ordinary refraction, but more complicated.

Huygens tried to connect the spheroidal shape of the extraordinary
wave with the fine structure of the crystal. He supposed that the
geometrically regular shapes of crystals must depend upon the
shape and arrangement of the ultimate particles of which they are
composed. He thus tried to explain the cleavage of Iceland spar,
and the propagation of ellipsoidal waves therein, by supposing
the crystal to be regularly built up of minute ellipsoidal particles

Tilustr. 153.—The Cleavage of Iceland Hlustr. 154—A Ray of Light
Spar passing through Two Crystals
having their
Sides Parallel

having definite orientations in regard to the optic axis of the crystal
(Mlustr. 153).

Huygens' theory of double refraction, however, was unable to
account for certain further phenomena which he discovered upon
passing a ray of light through two crystals in succession. He found
that when the two crystals were placed with their corresponding
sides parallel (Illustr. 154) and a ray was passed through the first,
the resulting two rays did not undergo any further duplication in
the second, but the ordinary ray of the first underwent an ordinary
refraction in the second, and the extraordinary ray of the first
underwent an extraordinary refraction in the second. At first
Huygens thought that each ray in passing through the first crystal
had lost the power of propagating the other kind of undulation in
the second. But he found that when the two crystals were placed
with their principal sections at right angles (Illustr. 155) the ordinary
ray of the first became the extraordinary ray of the second, and the
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extraordinary ray of the first became the ordinary ray of the second.
Moreover, for other relative orientations of the two crystals, each
ray emerging from the first was found to be duplicated by the
second, so that four rays in all resulted. Their relative intensities
depended in a regular manner upon the relative orientations of the
two principal sections, but their joint intensity did not exceed that
of the incident ray.

Huygens was obliged to leave this enigma unsolved. “Pour
dire comment cela se fait,” he writes, “je n’ai rien trouvé
jusqu'ici qui me satisfasse.” The matter remained a mystery until
longitudinal light-waves were abandoned
in favour of transverse, in the nine-
teenth century. Huygens' failure at this
point, and the fact that he did not take
into account colours and what we now call
interference phenomena, told against his
theory, and in favour of the rival views
of Newton.

Some of Huygens' ideas on light, perhaps
r:vEn the germ of his constructions for the

reflected and refracted rays, may have
f:;"':;“;gh_ﬁ,ﬂltgmp“; been suggested to him by the manuscript
placed with their Principal ©f the Jesuit Pardies, which Huygens
Sections at Right Angles  admits having examined. Pardies’ optical
: work was not published, but some of his
ideas seem to have been incorporated by Ango, another Jesuit, in
his own Optigue, published in 1682.

NEWTON

Newton became interested in optical problems while he was still
an undergraduate, when he made attempts to construct telescopes
and to eliminate their defects. In the hope of finding some means
of getting rid of the chromatic aberration, which produces coloured
edges round the images formed by a refracting telescope, he deter-
mined to make a study of the phenomena of colours. He bought
a prism for this purpose in 1666, but his experiments were interrupted
for two years by the Plague, and it was not until 1672 that he pub-
lished an account of them in the Philosophical Transactions—his first
scientific paper.

This account took the form of a letter to Oldenburg, in which
Newton related how “having darkened my chamber, and made a
small hole in my window-shuts, to let in a convenient quantity of
the Sun's light, I placed my prism at his entrance, that it might be
thereby refracted to the opposite wall, It was at first a very pleasing
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diversion to view the vivid and intense colours produced thereby;
but after a while applying myself to consider them more circum-
spectly, I was surprised to see them in an oblong form; which,
according to the received laws of refraction, I expected would have
been circular” (Phil. Trans., No. 8o). See Illustr. 156.

Illustr. 156.—The Spectrum of Light

Setting his prism at the position of minimum deviation, Newton
found that the length of the spectrum was about five times that of
the spot of light thrown by the beam when unrefracted. He thought
of various explanations, as that the light might be scattered by
irregularities in the glass; but a second, inverted prism completely
neutralized the effect of the first. The rays, he thought, might
follow curved paths after refraction, but this was found not to be so.
Newton finally isolated the several colours in succession, and upon
refracting each beam with a second prism (Illustr. 157), he found

HY
M

Illustr, 157.—The Varying Refractions of the Several Colours

that the several colours showed unequal amounts of refraction.
This experiment Newton, in Baconian phrase, called his experimentum
crucis (crucial experiment). He later supplemented it by another
experiment in which light, after suffering refraction at one prism so
as to form an upright band on the wall, was passed through a second
prism with its axis perpendicular to that of the first. The breadth
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of the resulting band of colours was not increased by the second
refraction, but the spectrum became oblique, the colours which
suffered the greater refraction at the first prism suffering the
greater refraction at the second. He concluded that sunlight, and
white light generally, is composed of rays of every colour, such
colours being “original and connate properties” of the light, not
manufactured by the prism. “To the same degree of refrangibility
ever belongs the same colour, and to the same colour ever belongs
the same degree of refrangibility.” Newton, although never given
to pushing his own discoveries, described this one, in another letter
to Oldenburg, as “the oddest if not the most considerable detection
which hath hitherto been made in the operations of nature.”

Newton’s paper awakened much controversy with Hooke, Pardies,
Linus, Lucas, and other contemporary physicists whose objections,
with Newton's answers, are to be found in the Philosophical Trans-
actions for several years following 1672. As a result of these discussions,
Newton’s ideas on the nature of light gradually crystallized, and were
brought into some relation with those of Hooke, who was his prin-
cipal critic. The main difference between Newton and Hooke was
this. Newton regarded colours as constituents of white light, while
Hooke regarded them as produced by the modification undergone
by white light when the light-pulse was made oblique to the light-
rays, as he supposed happened in refraction. When he was replying
to some of Hooke’s objections in 1672 (Phil. Trans., No. 88), Newton
submitted that, on such a theory of light as Hooke’s, and assuming
the acther-vibrations to be periodic, these might be of various sizes,
and “if by any means those of unequal bignesses be separated from
one another, the largest beget a sensation of a Red colour, the
least or shortest of a deep Violet, and the intermediate ones, of
intermediate colours.” He likenced the relation between the size
of aether-vibrations and the resulting colour to that between the
size of air-vibrations and the resulting note.

At first Newton was inclined to explain light by a combination
of an emission-theory and a wave-theory. In his reply to Hooke, in
1672, he wrote: “Assuming the rays of light to be small bodies,
emitted every way from shining substances, those, when they
impinge on any refracting or reflecting superficies, must as neces-
sarily excite vibrations in the aether, as stones do in water when
thrown into it"” (Phil. Trans., No. B8).

In 1675 Newton further developed his views on the elastic acther
in which he supposed these vibrations to occur (in his “Hypothesis”
communicated to the Royal Society : Brewster's Memoirs, etc., Vol. I,
App. 1I). He rejected a purely undulatory theory of light, however,
as he could not reconcile it with the rectilinear propagation of light.
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His aether was largely intended to provide an explanation of
gravitational attraction. Professor E. T. Whittaker, however, points
out (in the Preface to his edition of Newton's Opticks) that when
this explanation was shortly afterwards superseded by the descriptive
inverse square law of universal gravitation, Newton lost much of
his interest in aether theories, especially as it was difficult to reconcile
the existence of an aethereal medium with the apparently unresisted
motions of the planets. The discovery of polarization, again, seemed
explicable only by comparing light to some form of corpuscle. Newton
thus tended more and more towards a corpuscular hypothesis, rele-
gating discussions on the aether to the more speculative sections of
the Principia, and to the Queries of the Opticks.

Hlustr. 158.—The Sine-Law of Refraction True for each Colour

Newton gave an account of his more important results in optics,
together with much elementary matter, in some lectures at Cam-
bridge, which were published in 1728. A comprehensive and more
readable account of his work is to be found in his Opticks of 1704
(enlarged edition, 1717, with additions, 1718; edited in 1931 by
E. T. Whittaker, F.R.S.). Newton begins this treatise with the
words, “My Design in this Book is not to explain the Properties of
Light by Hypotheses, but to propose and prove them by Reason
and Experiments.” In practice, however, he frequently relies im-
plicitly upon the corpuscular hypothesis as an aid to explanation.

Book 1 of the Opticks contains Newton's fundamental experi-
ments on the spectrum : its formation, the measurement of its length,
and the connection between colour and refrangibility. This latter
result is further confirmed by a number of subsidiary experiments.
Newton next describes how he obtained a pure spectrum with the
aid of a lens placed before a prism, and how he showed that the
sine law of refraction is true for cach colour individually (Illustr, 158).
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Newton wished to obtain a spectrum in which the succssive
coloured images of the hole in the shutter formed on the screen by
the prism should be as little as possible superimposed upon one
another. Each colour would then be seen unmixed with its neigh-
bours. In order to produce such a “‘pure” spectrum, he brought the
light diverging from the aperture F (Illustr. 158) to a focus on the
screen at I by means of the lens MN, and then placed the prism
behind the lens in the converging beam. A sharp image of the aper-
ture in each colour was now formed at pt. By diminishing the size
of the aperture the purity was increased, but the breadth of the
spectrum was seriously reduced. A spectrum at once pure and
broad was, however, obtained by using in place of a circular
aperture, a slit parallel to the refracting edge of the prism. Newton
also experimented with a triangular slit, obtaining a spectrum one
side of which was bright and impure while the other side was faint
and pure.

Newton was now able to explain chromatic aberration in tele-
scopes. It arises because the object-glass focuses the different
coloured constituents of an incident beam of light at different
points on its axis, The eye-lens can only be focused upon one of
these at a time, so that the other rays give rise to coloured bands.
Newton supposed that the dispersion of a prism or lens is proportional
to the deviation which it produces. He therefore concluded that the
dispersion could not be corrected, that is, the lens could not be
achromatized, without ceasing to be a lens. His despair of eliminating
chromatic aberration led him to give up refracting telescopes
altogether in favour of reflecting ones, which he was probably the
first to construct. Those who preferred refracting telescopes sought
to make good their defects by constructing object-glasses of great
focal length. Telescopes thus gradually increased in size. The
difficulty of constructing sufficiently rigid tubes of such length was
sometimes got over (as has already been explained) by dispensing
with the tube altogether, as in the ““aerial telescope” of Huygens.

Newton further devised a number of experiments to demonstrate
the recombination of the spectral colours to form white light. One
of these is shown in Illustr. 159. The prism ABC was made to cast
a spectrum pgrsi on the lens MN which, in turn, focused the
coloured rays on the point X, where a second prism DEG parallel
to the first neutralized the effect of the first prism and the lens and
sent a parallel beam of white light towards Y. This beam behaved
like ordinary sunlight, and could be refracted again by a third
prism IHK to form a spectrum PQRST. Upon intercepting any of
the colours g, ¢, r, 5, ¢ at the lens, the corresponding colour was
found to disappear from the spectrum PQRST. This proved that
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the coloured constituents forming the ray XY were identical with
those into which the ray was resolved. The colours were thus shown
not to be due merely to a modification of the light consequent upon
refraction, but to a separation and recombination of rays each
possessing a certain colour.

Newton used the same apparatus to examine the cause of the
colours of bodies. He placed various bodies in the beam XY and
found that they appeared in the same colours as when viewed by
daylight, but that these colours arose from the corresponding
coloured constituents of the beam. For instance, cinnabar placed in
the beam appeared red as in daylight; upon stopping out the blue
and green rays at the lens, the redness became more pronounced,
but upon stopping out the red rays it no longer appeared red, but

Hlustr, 159.—Reunion of the Colours of the Spectrum to form White Light

a dull yellow or green, according to the rays which were allowed to
fall upon it. From these experiments Newton concluded that the
colours of bodies arise from the fact that the various kinds of light
incident upon them are reflected in different proportions from the
surfaces of different bodies, according to the varying thickness of
the films of which, he supposed, their surfaces were composed.
Newton’s theory of colours marked a great advance on the Aristo-
telian doctrine that these arise from the mixture of light and darkness
in various proportions, which was held even in the seventeenth
century, and was then scarcely improved upon by the crude views
of Isaac Barrow, Newton's teacher.

An interesting by-product of Newton's investigations of colour-
phenomena was his explanation of the rainbow. It had been recog-
nized as early as the beginning of the fourteenth century by
Theodoric of Saxony, that rainbows, both primary and secondary,
are due to multiple refraction and reflection of sunlight in rain-
drops. This explanation became known to a wider circle three
centuries later through Antonio de Dominis. Descartes tabulated
the deviation of a ray in passing through a drop against its angle of
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incidence on the surface, and showed from his table that, for a
certain angle of incidence, this deviation was a minimum. Hence
sunbeams incident on the drops at about this angle emerge as
approximately parallel beams, and have an appreciable effect upon
the eye. On this principle Descartes could explain the circular form
and constant angular radius of the rainbow, and why it is always
exactly opposite to the Sun, though his explanation of the colours
was worthless. In this respect, however, Descartes” work was supple-
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llustr. 160.—Formation of the Rainbow

mented by Newton, who showed that each colour produces its own
bow, partially overlapping the neighbouring ones (see Illustr. 160).
The second book of the Opticks deals with the colours of thin
films. The central topic is the familiar phenomenon known as
“Newton’s Rings,” which he originally produced by pressing the
flat side of a plano-convex lens against a double convex lens of great
focal length. He found the thicknesses of the air film corresponding
to the dark rings to be as 0, 2, 4, 6 . . . and those corresponding
to the most vivid portions of the bright rings tobe as 1, 9,5, 7. . . .
He explains the phenomenon in terms of the corpuscular hypothesis
with the aid of an ad hee hypothesis of “fits” of casy transmission
and reflection: “. . . the Rays of Light, by impinging on any
refracting or reflecting Surface, excite vibrations in the . . .
Medium . . . the vibrations thus excited are propagated . , . and
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move faster than the Rays so as to overtake them; and . . . when
any Ray is in that part of the vibration which conspires with its
Motion, it easily breaks through a refracting Surface, but when it
is in the contrary part of the vibration which impedes its Motion,
it is easily reflected. . . .” In this manner Newton took account
of the obvious periodicity involved in the properties of the rings.
Since, however, he supposed that any light reflected from the upper
surface had nothing to do with the phenomenon, his explanation
was actually inferior to Hooke’s. Newton similarly invoked “fits” in
order to explain why light incident upon a transparent body is
partly reflected and partly refracted. He also tried to establish an
analogy between the colours of thin transparent films and the
permanent colours of bodies whose ultimate particles, he supposed,
were transparent flakes of definite thicknesses.

The third and last Book deals with the diffraction phenomena of
Grimaldi, which Newton produced for himself under many different
conditions, and which he attributed to an “inflexion™ of the rays
passing close to the diffracting edge. The Book closes (in the later
editions) with thirty-one Queries suggesting various hypotheses to
explain light phenomena and gravitation, and pointing out further
lines of inquiry.

Among his Queries Newton included some speculations on
double refraction. He took the first step towards explaining the
curious phenomena observed by Huygens upon passing a ray
through two calcites whose principal sections were variously inclined
to each other, Newton suggested that “‘every Ray of Light has . . .
two opposite Sides, originally endued with a Property on which
the unusual Refraction depends, and the other two opposite Sides
not endued with that Property” (Query 26). He supposed that the
particles of the crystal must have a similar duality, and he likened
the two conditions in the rays and the particles to magnetic polarity.
This analogy led to the idea of the “polarization” of light. It told
against the undulatory theory, however, since only longitudinal
waves were thought admissible, and these could not have different
properties in different directions perpendicular to their line of
propagation.

MARIOTTE

Mariotte devoted one of his physical essays, Traitd de la nature des
couleurs (1686), to the phenomena of light, in which he describes
experiments with the prism, and criticizes Newton’s theory of colour
and Descartes’ mechanical explanation of light. He made a notable
contribution to atmospheric optics with his explanation of the halos
which are occasionally visible round the Sun and Moon, as well as



a7z HISTORY OF SCIENCE, TECHNOLOGY, AND PHILOSOPHY

of mock-suns and mock-moons. His theory of the production of the
halos of 23 degrees radius was based upon some suggestions of
Descartes and, so far as it goes, is essentially that accepted to-day.
He explained the phenomenon on the assumption that, in the upper
regions of the atmosphere, minute prismatic crystals of ice are
sometimes formed and float suspended. Rays of light falling on these
suffer a twofold refraction, and the light forming the halo is com-
posed of rays which pass through the crystals at minimum deviation.
The method of proof is somewhat similar to that employed by
Descartes in his explanation of the rainbow. The ice-needles are
orientated in every possible manner, but there must always be a
sufficient number whose axes are perpendicular to the line joining
the observer’s eye to the Sun or to the Moon. For this position of
the needles, calculation gives the observed angular radius of
23 degrees for the resulting halo,

In optics Mariotte made the remarkable discovery of the “blind
spot” in the eye, which he announced to the Academy in 1666.
He describes how he had frequently observed in dissecting human
and animal-eyes that the optic nerve does not enter the eyeball
exactly opposite to the pupil, but in man rather higher, and more
towards the nose. In order to observe what happened when light
fell exactly on the optic nerve, Mariotte fastened a small white
paper disc to a dark screen about level with his eyes. He then
fastened a second disc, approximately four inches in diameter, about
two feet from the first, to the right but somewhat lower. He fixed his
right eye upon the first disc and closed his left eye. Upon gradually
moving back from the screen he found that, at a distance of about
nine feet the second disc vanished from his sight, though objects all
round it remained visible, and a slight displacement of the eye
brought it into view again. He obtained the same effect upon altering
his distance from the screen, and the distance apart of the discs, in
the same proportion, and again when he used dark discs on a white
ground, and again upon performing a corresponding experiment
with his left cye. He thus convinced himself that the phi‘.‘nnm:nnn
is due to a defect of the optic nerve, which is insensitive to light
at the point where it enters the retina. Mariotte's experiment
created a considerable sensation, and it was rl:'_pcatcd succcﬁ;[’u];l}- in
1668 at a meeting of the Roval Society of London. The discovery led
Mariotte, however, to the false conclusion that it is not the retina
but the underlying choroid which is the seat of vision.

TSCHIRNHAUS

Ehrenfricd Walter von Tschirmhaus (1651-1708), a German
nobleman, friend of Leibniz and Spinoza and foreign member of
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the French Académie des Sciences, belonged to the class of rich scientific
amateurs which included also Hevelius and von Guericke. He spent
much of his wealth upon the manufacture of physical, and especially
of optical, apparatus. Some of his concave mirrors of copper, the
largest of which is still preserved as a curiosity, had a diameter of
about three yards and a focal length of about two yards. They were
capable of melting a dollar-piece within five minutes, though it was
noticed that they produced no appreciable heating effect when used
to focus moonlight. Tschirnhaus’ lenses ranged up to 8o cm. in
diameter. One of these found its way to Florence, where it was
employed, in 1695, in experiments on the inflammability of diamond.
It melted porcelain and pumice-stone placed at its focus, and within
half an hour burned a diamond weighing

140 grains. Tschirnhaus was led by his A

experiments with burning mirrors to under-
take theoretical investigations in optics, and r
he was one of the pioneers in the study of
the caustics arising in connection with the *®
reflection of light at such mirrors.

It had been known to Roger Bacon that
rays of light from a point object do not all
pass through a single point after reflection € B L
fr;:m a concave mirror. The corresponding fjl.l;mcm 16:.I_—I'1'h-,- Caus-
phenomenon in the refraction of light through urve of Intersection
a lens had been pointed out by Maurolycus of Reflected Rays
and had been studied by Barrow. The rays
reflected from a concave mirror are actually enveloped by a surface
to which they are all tangents, and it was the curves obtained by
cutting such surfaces by planes through their axes of symmetry,
whose geometrical properties were studied by Tschirnhaus and
his contemporaries. One branch of such a curve, arising from
the reflection of a parallel beam at the mirror AFE, is shown in
Dlustr, 161,

The ray DF of the beam is reflected in the direction FG.
r‘h_nmhcr ray adjacent to DF gives rise to a reflected ray very
slightly inclined to FG and intersecting it in G. The caustic curve
EGB is the locus of such points of intersection of consecutive
reflected rays.

Huygens was probably the first correctly to ascertain the pro-
perties of such a caustic formed by a parallel beam falling upon a
concave mirror (Traité de la Lumiére, Chapter VI). Before his book
was published, however, Tschirnhaus published a paper (Acta
Erudit., 1682) giving a construction for such a caustic, though he
later revised his work after de la Hire had drawn his attention to an
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error in the calctlation. Among the results obtained by Tschirnhaus
was the relation
length of arc EG = DF + FG.

More substantial contributions to the theory both of calacaustics
(formed by reflection) and of diacausties (formed by refraction) were
made at the close of the seventeenth century by Johann and Jakob
Bernoulli (who introduced these terms), and by the Marquis de
I'Hépital.

(See E. Mach, The Principles of Physical Optics, tr. by J. S. Anderson
and A. F. A. Young, 1926; E. T. Whittaker, A History of the Theories
of Aether and Electricity, 1910; Michael Roberts and E. R. Thomas,
Newion and the Origin of Colours, London, 1934.)

(On Physics generally, see F. Cajori, History of Physies, 2nd ed.,
New York, 1929; E. Gerland, Geschichte der Physik, Munich, 1913;
J. C. Poggendorff, Geschichte der Physik, Leipzig, 1879; F. Rosen-
berger, Geschichte der Physik, Braunschweig, 1882-1890; W. F. Magie,
A Source Book in Physics, New York and London, 1935.)

(For Huygens, see also Qeures Compléles, La Haye, 1888, etc,,
20 vols.; Treatise on Light, trans. S. P. Thompson, London, 1912;
A. E. Bell, Christian Huygens, London, 1947.)



CHAPTER XI1
PHYSICS

II. HEAT Il SOUND

II. HEAT

THE more obvious phenomena of heat—combustion, evaporation,
melting, freezing, etc.—were of course familiar from early times,
and the legend of Prometheus bears witness to the great importance
which the ancients attached to fire. Even the leading conceptions
concerning the nature of heat are pretty old. There was the so-called
Aristotelian, but really pre-Platonic, conception of fire as one of
the four material elements, and the Platonic view that heat is a
kind of motion. But throughout the centuries—in fact up to the time
of Robert Hooke—little or no distinction was made between heat,
fire, and flame. Even Robert Boyle did not discriminate between
them. Hence part of the story of the study of the phenomena of heat
is given in the chapter on the beginnings of modern chemistry
(Chapter XV).

FIRE ATOMS VERSUS MOLECULAR MOTION

At the beginning of the modern period we find Pierre Gassendi
upholding the view that heat consists of special kinds of atoms,
whereas Francis Bacon advocated the view that heat is a kind of
motion. Bacon based his view on empirical evidence in accordance
with the methods of induction explained in his Novum Organum (1620).
There is a modern ring about some of his phrases, but his views on
heat were not really very clear, as may be seen from the following
passage.

“When 1 say of motion that it is the genus of which heat is a
species, I would be understood to mean, not that heat generates
motion, or that motion generates heat (though both are true in
certain cases), but that heat itself, its essence and quiddity [quality],
is motion and nothing else. . . . Heat is a motion of expansion,
not uniformly of the whole body together, but in the smaller parts
of it, and at the same time checked, repelled, and beaten back, so
that the body acquires a motion alternative, perpetually quivering,
striving, and irritated by repercussion, whence spring the fury of fire
and heat" (Notum Organum, Book II, § xxi).

'!'hc experimental study of heat was taken in hand by Boyle.
It is noteworthy, in view of the subsequent researches by Count
Rumford, that among the experimental evidence adduced by



276 HISTORY OF SCIENCE, TECHNOLOGY, AND FHILOSOPHY

Boyle, in support of the view that heat is the rapid agitation of
the parts of a substance, was the heat generated during the boring
of guns. This view is brought out clearly in the following passage
from Boyle: “And it will be convenient to begin with an instance
or two of the production of heat, wherein there appears not to
intervene any thing in the part of the agent or patient, but local
motion, and the natural effects of it. And as to this sort of experi-
ments, a little attention and reflection may make some familiar
phenomenon apposite to our present purpose. When, for example, a
smith does hastily hammer a nail, or such like piece of iron, the
hammered metal will grow exceedingly hot, and yet there appears
not anything to make it so, save the forcible motion of the hammer,
which impresses a vehement, and variously determined agitation
of the small parts of the iron; which being a cold body before, by
that superinduced commotion of its small parts, becomes in divers
senses hot ; first, in a more lax acceptation of the word in reference
to some other bodies, in respect of whom it was cold before, and
then sensibly hot; because this newly gained agitation, surpasses
that of the parts of our fingers. And in this instance, it is not to be
overlooked, that oftentimes neither the hammer, by which, nor
the anvil, on which a cold piece of iron is forged (for all iron does
not require precedent ignition to make it obey the hammer), con-
tinue cold, after the operation is ended; which shews, that the
heat acquired by the forged piece of iron was not communicated
by the hammer or anvil as heat, but produced in it by motion, which
was great enough to put so small a body, as the piece of iron, into a
strong and confused motion of its parts, without being able to have
the like operation upon so much greater masses of metal, as the
hammer and the anvil; though, if the percussions were often and
nimbly renewed, and the hammer were but small, this also might
be heated (though not so soon, nor so much, as the iron;), by which
one may also take notice, that it is not necessary a body should be
itself hot, to be calorifick. And now I speak of striking an iron with
a hammer, I am put in mind of an cbservation, that seems to
contradict, but does indeed confirm our theory; namely, that if a
somewhat large nail be driven by a hammer into a plank, or piece
of wood, it will receive divers strokes on the head before it grows
hot; but when it is driven to the head, so that it can go no further,
a few strokes will suffice to give it a considerable heat ; for whilst, at
every blow of the hammer, the nail enters further and further into
the wood, the motion, that is produced, is chicfly progressive, and
is of the whole nail tending one way; whereas, when that motion
is stopped, then the impulse given by the stroke, being unable
cither to drive the nail further on, or destroy its intireness, must be
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spent in making a various vehement and intestine commotion of the
parts among themselves, and in such an one we formerly observed
the nature of heat to consist” (Of the Mechanical Origin of Heat and
Cold, 1675, Section 11, Experiment VI, pp. 50-62; Works, ed.
Birch, 1772, Vol. IV, pp. 249-50).

Yet alongside of the oft-repeated view that ““heat seems principally
to consist in that mechanical property of matter called motion,”
Boyle also spoke repeatedly of “atoms of fire,” and attributed the
gain in weight on the part of a metal when calcined to its absorption
of such atoms of fire during calcination. He was never really inclined
to regard cold also as something positive and consisting of *‘peculiar
frigorific agents,” presumably analogous to the atoms of heat. And
when he froze a weighed quantity of water and could observe no
change of weight in the resulting ice, he concluded that the search
for frigorific particles was futile.

The failure to discriminate between combustion and other forms
of heat naturally induced some people to extend to all forms of
heat what they believed to be true of combustion. Boyle examined
experimentally the view that air is necessary to the production of
heat, and arrived at an adverse verdict. He says: “For the sake of
those that think the attrition of contiguous air is necessary to the
production of manifest heat, I thought, among other things, of the
following experiment, and made trial of it. We took some hard black
pitch, and having, in a bason, porringer, or some such vessel, placed
it a convenient distance under water, we cast on it, with a good
burning-glass, the sun-beams, in such a manner, that, notwith-
standing the refraction, that they suffered in the passage through
the interposed water, the focus fell upon the pitch; wherein it
would produce sometimes bubbles, sometimes smoak, and quickly
communicated a degree of heat capable to make pitch melt, if not
also to boil” (Of the Mechanical Origin of Heat and Cold, 1675, Sec-
tion 11, Experiment IX, pp. 66—7; Works, ed. Birch, 1772, Vol. IV,
p- 251).

He also showed that a picce of red-hot iron placed in the receiver
underwent no manifest change when the air was evacuated, and
the sides of the receiver were hot even then (New Experiments Physico-
Mechanical, 1660, pp. 8o-2; Works, Vol. 1, p. 28); that when two
closely fitting pieces of brass, one concave and the other convex,
placed in an exhausted receiver, were made to rub against each
other, by means of suitable revolving apparatus fixed outside the
receiver, they became very hot; and that lime slaked in a vacuum
produced heat in the same way as when slaked in the air (4 Con-
tinuation of New Experiments Physico-Mechanical, 1669, pp. 154-8;
Works, ed. 1772, Vol. 111, pp. 265-7)-
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The solution of some of the problems of heat was carried a stage
further by Robert Hooke. He made experiments like those of
Boyle, examined sparks under the microscope, and arrived at more
consistent conclusions than Boyle had done. According to Hooke
heat is “‘a property of a body arising from the motion or agitation
of its parts.” And he distinguished mere heat from fire and flame,
which he described as the effects produced by the action of air on
heated bodies. He ridiculed, with considerable gusto, the idea of
fire atoms coursing through the pores of hot bodies. “We need not
trouble ourselves to find out what kind of pores they are, both in
flint. and steel, that contain the atoms of fire, nor how these atoms
come to be hindered from running all out when a passage in their
pores is made by the concussion; nor need we trouble ourselves to
examine by what Prometheus the element of fire came to be fetched
down from above the regions of air, in what cells or boxes it is kept,
and what Epimetheus lets it go; nor to consider what it is that causes
so great a conflux of the atomical particles of fire, which are said
to fly to a laming body like vultures or eagles to a putrefying carcase
and there to make a very great pudder” (Micrographia, Observa-
tion VIII, p. 46). Heat, then, “being nothing else but a very brisk
and vehement agitation of the parts of a body,” and since, according
to Hooke, “the parts of all bodies though never so solid do yet
vibrate,” it follows that “all bodies have some degree of heat in
them,” and nothing is “perfectly cold.” In this way Hooke rejected
the conception of cold as something positive, and denied the exis-
tence of frigorific particles as well as the existence of fire atoms.

THERMAL CAPACITY

The conception of “thermal capacity” (in the sense of specific
heat) appears to have originated with the Accademia del Cimento.
Some of its members conducted a variety of experiments on the
conduction of heat and the associated phenomenon, thermal
capacity. They made a mercury thermometer and a water thermo-
meter of the same size as their ordinary alcohol thermometers,
Placing the thermometers in liquids of various temperatures they
noticed that the mercury thermometer changed its level more
quickly than did the water thermometer, although of course the
actual extent of the change in the column of mercury was much
less than that in the column of water. (Compare Halley's similar
experiment described in Chapter V.) They also made experiments
by pouring equal amounts of different liquids, which had been
heated to the same temperature, upon ice. They found that the
quantity of ice melted by each liquid was different, in spite of the
fact that the liquids were all of the same temperature. But the
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problems of specific heat, thus attempted by the Accademia del
Cimento, had to wait for their solution till Joseph Black took them
in hand.

RADIATION OF HEAT AND COLD

Although for long centuries men had known the use of burning
mirrors and lenses for bringing the Sun’s rays to a focus at which
combustibles could then be ignited, Francis Bacon (Novum Organum,
Book 11, § xii) first suggested burning-glasses for focusing invisible
heat rays: “Let a burning-glass be tried with a heat that does not
emit rays or light, such as the heat of iron or stone which has been
heated but not ignited, or the heat of boiling water, and the like;
and observe whether there ensue an increase of the heat, as in the
case of the Sun’s rays.” In his De Dignitate et Augmentis Scientiarum
(1623, Lib. V, Cap. 11), he wondered whether cold also could be
concentrated, like heat, by means of a mirror. But Baptista Porta
(Magia Naturalis, 1589, p. 264) had already shown that a concave
glass (mirror) reflected heat, light, cold, and sound. He noted that
the heat and light of a candle set before a mirror became sensible
to the eye when placed at the conjugate focus, “but this is more
wonderful, that, as heat, so cold should be reflected: if you put
snow in that place, if it come to the eye . . . it will presently feel
the cold.”

The Accademia del Cimento first demonstrated clearly the
reflection of cold (Essays of Natural Experiments, etc., trans. R. Waller,
1684, p. 103), by placing 500 Ib. of ice before a concave mirror and
putting a sensitive 400° thermometer at the focus. The liquid in
the thermometer fell immediately; but the ice was near the thermo-
meter, and, to test whether “the direct or reflected rays of cold
were more efficacious,” they covered the mirror and found that the
thermometer liquid rose. This seemed definite proof, but they
wrote, “for all this, we dare not be positive; but there might be
some other cause thereof besides the want of reflection from the
glass; since we were deficient in making all the trials necessary to
clear the experiment.”

Mariotte about this time (1679) discovered another remarkable
ﬁ_l:t concerning the difference between the radiant heat and the
light in the rays from a fire (Histoire de I' Académic Royale des Sciences
depuis son Etablissement en 1666 jusgw’d 1686, Paris, 1773, Vol. I,
PP. 303, 344). He showed that, whereas the heat from the Sun is
not separated from the light in passing through transparent bodies,
the opposite is true in the case of the rays from a fire. He put a
concave metal mirror before a fire. At its focus the hand could not
long endure the heat; but, when a glass plate was placed over the
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mirror the light at the focus was undiminished, or nearly so,
whereas no heat could now be felt. This was shown to the Académie
in 1682. But, writing of it in 1686 (Traité de la nature des couleurs—
(Eurres, ed. 1740, Vol. I, p. 288), he scems to have realized that the
hand was rather insensitive as a means of detecting this heat, and
said that, in the transmission of the rays of the fire through the
glass, the heat either does not pass through at all, or passes through
only in a very small degree. This was the first proof that the radiant
heat of a fire could be separated from the light. In this work Mariotte
showed also that the original heating effect of the Sun’s rays at the
focus fell to four-fifths when the mirror was covered with the glass,
and that this loss was of the same order as that suffered by the light
in reflection at the glass surfaces in traversing it twice.

Hooke confirmed this (Birch, History of the Royal Society of London,
1757, IV, p. 137) in 1682, proving to the Royal Society that the
heat of a fire was not propagated through glass in the same way as
the heat of the Sun. He focused the heat of a fire with a concave
metal mirror and placed a glass plate between the fire and the
mirror; the light passed through almost undiminished, but there
was practically no heat in the focus of the mirror. (Hooke probably
used his hand to detect the heat, as Mariotte had done.)

Mariotte also performed a celebrated experiment in which
gunpowder was ignited by means of a lens made of ice. He obtained
clear ice from pure water which had been boiled for half an hour
so as to expel all air, and which was then frozen in the form of a
plate several inches thick, free from bubbles and transparent. He
placed a portion of this ice plate in a small spherically concave
vessel which he brought near to a fire. He allowed it to go on
melting, while repeatedly turning it over, until it had assumed, on
both sides, the spherical forin of the vessel. He then seized the
piece of ice by the edges with his gloved hand and brought it into
the sunlight, where he soon managed by its means to ignite
some gunpowder placed at its focus ( Traité de la nature des conlenrs—
(Eupres, ed. 1740, Vol. I1, pp. 6oy f.).

Influenced by such or similar observations Newton leaned
towards a theory of heat radiation by means of the vibrations of a
medium much more subtle than air, existing even where there is
no air, and possibly spread through the whole immensity of celestial
space in virtue of its great elastic force. Newton did not definitely
embrace this view; rather he suggested it in the queries contained
in the second edition of his Opticks (1717). Curiously enough, it was
Newton’s own rejection of the imponderable aether, in 1702, that
hindered the proper consideration of his suggestion relating to the
manner of heat radiation. The result was that for a long time the
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dominant tendency was to regard heat as a material substance.
This was natural. In an age in which the phlogiston theory flourished
caloric theories were more or less inevitable. But the history of all
this must be held over for a later chapter.

(See E. Mach, Prinzipien der Warmelehre, Leipzig, 1923.)

II1. SOUND

The phenomena of sound engaged the attention of many people
from early times. Their interest was mainly directed to music,
though Pythagoras, Aristotle, Vitruvius, and possibly others in
ancient and mediaeval times also made a purely scientific study
of the physics of these phenomena. The modern study of this branch
of physics dates from Galilei and his contemporaries. The story is
somewhat tangled and scrappy. For the sake of simplicity the account
here given is divided into sections dealing with the main problems
of sound, namely, the determination of the conditions affecting the
pitch of notes, the velocity of sounds, the medium of their trans-
mission, and the conditions affecting the intensity of sounds. As these
problems are not entirely disconnected a slight amount of over-
lapping is inevitable.

Tue Prrcr oF Sounps

Galilei’s discoveries relating to the laws of the oscillations of the
pendulum led him to direct his attention to the vibrations of strings,
and especially to the phenomenon of so-called sympathetic vibra-
tion, which was popularly explained as due to some kind of sympathy
on the part of other strings with the vibrating string. First of all
Galilei showed the dependence of the pitch of a note upon the
rate of vibration, that is upon the number of vibrations occurring
in a given time. He did this by means of the following experiment.
He moved a sharp piece of iron across a plate of brass. Whenever
a distinct note was thus produced, he noticed a number of fine
lines (scratches) on the plate at equal distances from one another.
When, by means of a quick movement, he produced a high note,
then the lines were close together ; when the note was lower the lines
were farther apart. Evidently the closeness and number of the lines
corresponded to the greater or smaller number of vibrations of the
iron, for the vibrating of the iron could be distinctly felt by the
hand that held it. Galilei next utilized the number of lines, which
‘f\ppcared in a unit of time, whenever a certain note was produced,
in order to study the phenomena of sound quantitatively. He
produced, for instance, two notes by successively stroking the brass
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plate more rapidly and less rapidly, and when he obtained two
consonant notes which in Music are said to constitute the “fifth,” he
counted the lines on the brass plate and measured their mutual dis-
tances, and discovered that there were forty-five lines (and there-
fore vibrations) for the higher note to thirty lines (and therefore
vibrations) for the lower note. Experiments on the relation of notes
to the strings producing them were, of course, very old. Pythagoras
(sixth century p.c.) had already instituted such experiments. But
the relation hitherto studied had been solely that between the pitch
of a note and the length of the string. Galilei first drew attention
to the rate of vibrations (or frequency) as the really important factor
in determining the pitch of a note produced by a sounding body.
By simple experiments like the above Galilei discovered that the
rates of vibration for the fundamental note, the fourth, the fifth, and
the octave above it are in the proportion of 1 : 4/3 : g/2 : 2, that is,
as 6 : 8 : g : 12. Another interesting experiment in connection with
the pitch of notes consisted in a demonstration of stationary water-
wavelets which varied in height and in number according to the
note produced on the glass vessel containing the water. Galilei,
namely, partly filled a glass vessel with water, and produced notes
by suitably stroking the glass. Wavelets appeared on the surface
of the water, and remained stationary so long as the same note
lasted. When the note was suddenly made an octave higher, then
each wavelet divided into two wavelets. (For references, see Chap-
ter I11.)

Largely under the influence of Galilei the study of sound was
taken up by Mersenne, to whom we owe some of our information
concerning Galilei’s work in acoustics,. Mersenne carried out
numerous experiments in order to determine the correlation between
the pitch of a note and the length, thickness, and tension of a string
of given material on which the note is produced. Using n and »’ for
the pitch of two different notes (or their rates of vibration), [ and /'
for different lengths of the same kind of string, 4 and 4" for diferent
diameters of the strings, p and p’ for different weights stretching
the strings, and ¢ and ¢’ for different weights of the strings them-
selves, Mersenne submitted the following equations :—

(1) When the strings are of equal length and diameter, but
stretched by unequal weights, then n/n’ = \/p/\/p’.

(2) When the strings are equally long and equally stretched, but
arc of different weights, then a/n’ = 1,-".?;1,5?-

(3) When the strings are of equal diameter and tension, but of
different lengths, then afn’ = I'[L
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(4) When strings composed of the same material are of equal
length and tension, but of different diameters, then
afn’ = d'[d.

Mersenne also experimented with strings made of various metals—
gold, silver, copper, brass, and iron—and found that with strings
of the same length, thickness, and tension, the pitch of the note
varied inversely with the specific gravity of the metal (Harmonie
Universelle, 1636).

The seemingly disconnected formulae of Mersenne were brought
together under one comprehensive equation by Brook Taylor
(1685-1731), an English mathematician whose relation to Mersenne
may to some extent be compared with that of Newton to Kepler.
Using L for the length of the string, N for its weight (pondus), P for
the weight stretching it, and D for the length of the scconds pendu-
lum, Brook Taylor’s formula gives the frequency of vibration of the

string as 3— ;—?‘, where 3=- the circumference of a circle divided
by its diameter = w. This is equivalent to the modern formula

T ,l;\/z (Phil. Trans., 1713, Vol. XXVIII, pp. 26-32). This

equation incidentally suppliea an excellent method of determining
absolutely the pitch of a note produced by a string of known length,
weight, and tension. But Taylor did not think of this application,
though Euler did so afterwards (1739). Long before this, however,
John Shore had invented the tuning fork, giving a single pure
musical tone of constant pitch (1711).

SvmpaTHETIC ViBrATION, OveErTONEs, ETC.

The study of sympathetic vibrations, which had stimulated Galilei’s
interest in the physics of sound, made some progress iu the course ol
the seventeenth century, and was completed in the course of the
cighteenth century. Intimately connected with it was the discovery
or rather the explanation of overtones or harmonics, and the dis-
covery of longitudinal vibrations in solids as distinct from transverse
vibrations, which were the only ones known to the earlier
investigators,

_ Mersenne discovered that a vibrating string produces overtones
in addition to the fundamental note. The fundamental tone is, of
course, obvious when a string vibrates freely, but when this tone
becomes weaker after a while it is comparatively casy to perceive
certain other tones which continue a little longer than the funda-
mental note. In this way Mersenne heard the twelfth and the
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seventeenth notes above the fundamental. When Mersenne com-
municated his discovery to Descartes the latter suggested that the
harmonics or overtones might be due to the fact that the parts of a
vibrating string vibrate each on its own account. This idea was put
to an experimental test, about the year 1673, by William Noble, of
Merton College, Oxford, and Thomas Pigot, of Wadham College,
Oxford, apparently quite independently of Descartes and each
other. These experiments were

A €  first reported by John Wallis in
the Philosophical Transactions, April

a 5 g 1677 (Vol. XII, pp. 83g—42).
Wallis begins by referring to the
then already well-known fact that
if a stretched viol or lute string is
plucked or bowed, then another
string on the same instrument, or
" b 3 - near at hand, if in unison with the
first, or if it stands in some simple

relation of consonance to it,

A € vibrates of its own accord. (Wallis
adds, in a postscript, that a string

A will respond in this way not only
to another string, but also to

a consonant note on a wind-
instrument, such as the organ).

A = @ The new discovery of Noble and
Pigot was that “not the whole of

- - t thatother string doth thus tremble,
3 but the several parts severally,

IMustr, 162—Overtones (1) according as they are Unisons

to the whole or the parts of that

string which is so struck.”” The method of Noble and Pigot may be
readily explained with the aid of the above diagram. Let AC
and ag [Ilustr. 125] represent two neighbouring strings, such
that the fundamental note produced by the vibration of AC is
the first octave to that of ag, and therefore AC is in unison with each
half of ag. Now if, while ag is open, AC is struck, the two halves
of ag, namely ab and bg, will both tremble, but not the middle point
b. This can easily be observed if a little bit of paper (called a “rider dd
be lightly wrapped about the string ag, and moved gradually from
one end of the string to the other. The bit of paper will be found
to rest at b. Similarly if the string AD, whose note is the twelfth
above that of the string ad, be struck, ad will vibrate in three equal
parts, ab, bg, gd, while the points 5, g remain at rest, Again, if AE

A |
@
et
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be the double octave to ae, the latter will vibrate in four parts, ab, b,
gd, de, the points b, g, d rémaining at rest. And so on. If, however,
AG be a fifth to at, so that each half of AG is in unison with each
third of at, then, when AG is struck, each part ag, ge, ef will vibrate
separately ; and when at is struck each part of AG, namely AD, DG,
will vibrate. The like will hold in less concords, but the less remark-
ably as the number of divisions increases.

Wallis verified these results for himself, and noticed that a string
plucked at any point which divided the string in simple ratios (half,
third, etc.), did not produce such a clear sound as when plucked
elsewhere. In the latter case, he thought, the clearness must be due
to the simultaneous vibrations of the several unison parts; whereas
when struck at the points of division the incongruity must result
from the disturbance of the points
which should be at rest. i et S 1

The discoveries of Noble and  *
Pigot were also made indepen- e :
dently later by Joseph Sauveur B < S
(1653-1716), and further de-
veloped by him (1700). His
experiments were partly the :
same as those of his two pre- €= =
decessors and partly by means Ilustr, 163.—Overtones (2)
of a monochord on which he
produced the overtones in an easily apprehensible form by lightly
touching the vibrating string at the several points of rest (b, g, 4, in
the above diagrams), or nodes, as he called them.

Sauveur showed that a string may oscillate along its whole
length, as in AA [Tllustr. 163 (1)], or the oscillations may take place
along parts of the string and in opposite directions, as in BB
[Tllustr. 165 (II)], and separated by nodes a, g, that is by points
where the string is at rest. In the first case (AA) the string produces
its fundamental, in the second case (BB) it produces overtones or
harmonics. Lastly, it is possible for the two types of vibration to take
place simultaneously, as in CC [Illustr. 163 (III)]. This, in fact, is
the usual type, where no special steps are taken to prevent either
of the two types of transverse oscillation or vibration (Mém. de I Acad.
des Sciences, Paris, 1701, pp. 347 £.).

Tue VELoCITY OF SoUND

Of the various problems relating to acoustics that of the velocity
of sound attracted the greatest amount of attention during the
seventeenth century. The first experiments in this connection appear
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to have been made by Pierre Gassendi (1592-1655). He was led
to this problem by the study of the pitch of sounds. According to
the Aristotelian view high notes are transmitted through the air
more rapidly than are low notes. Gassendi’s experiment showed
the inaccuracy of this view. A cannon and a musket were fired
towards suitably distant points, and measurements were made of
the time which elapsed between the moment when suitably placed
observers saw the flash and the moment when they heard the
explosion. The velocity of the sound was obtained by dividing the
distance between the cannon (or the musket) and the observer
by the time-interval between the perception of the flash and of the
explosion. The velocity appeared to be the same in both cases,
namely, 1,473 Paris feet per second. The result was much too high.
Mersenne repeated the experiment, and obtained a somewhat better
result, namely 1,380 feet per second. About twenty years later,
in 1656, Borelli and Viviani made similar experiments and obtained
a still lower velocity, namely 1,077 feet per second. Other values
obtained in the course of the seventeenth and early part of the
cighteenth century were as follows: Robert Boyle, 1,126 Paris feet
per second; Cassini, Huygens, Picard, and Rémer, 1,097; Flam-
steed and Halley, 1,071. Newton took up the problem, not experi-
mentally, but from the standpoint of mechanics or mathematical
physics, and arrived at the following equation correlating the
velocity of sound in air (v) with the elasticity (¢) and the density (d)
of the air: p=4/¢/d (Principia, Book 11, §8). For moderate tem-
peratures the velocity, according to this formula, should be go6 Paris
feet per second, which is too low. The formula, as was subsequently
shown by Lagrange, assumed that the elasticity of the air is simply
proportional to its pressure, and failed to take into account changes
in the elasticity of the air due to the changes in heat caused by the
very propagation of sound through the air. The equation was later
modified by Laplace by inserting this correction (Amn. de Chimie,
1816, and Mécanique Céleste, Book XII). In 1798 a commission
appointed by the Paris Academy of Sciences to determine the
velocity of sound through the air obtained the value 1,038 Paris
feet per second (Mém. de PAcad. des Sciences, 1738). In most of these
experiments on the velocity of sound little or no attention was paid
to the influence of such factors as variations of temperature and
direction of wind. Other experimenters, however, did make a special
study of these factors, though their efforts were not particularly
successful.

Gassendi's observations led him to the negative result that the
direction of the wind does not affect the velocity of sound, which
is the same whether the wind blows in the same direction as the
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sound travels or in the opposite direction. He was mistaken. So
were Borelli and Viviani, who arrived at the same negative result.
William Derham (1657-1735), however, corrected this error in
1705, when he found that the direction of the wind does influence
the velocity of sound (Phil. Trans., 1708, Vol. XXVI, pp. 1-35)-

A careful study of the influence of variations of temperature
on the velocity of sound was apparently not undertaken until
1740, when Bianconi carried out some experiments for the purpose
at Bologna. Cannons were fired at Bologna and observed at St
Urbano, thirty miles distant, and the time-interval between the
perception of the flash and of the detonation was measured by means
of a pendulum. Bianconi found that in summer, at a temperaturc
of 28° R. there were seventy-six oscillations of the pendulum between
the observation of the flash and of the detonation; but in winter, at
a temperature of — 1-2° R., there were seventy-nine oscillations of
the pendulum in the interval between the perception of the flash
and of the detonation. He concluded that an increase in temperature
increases the velocity of sound (Della diversa velocitd del suono, 1746).
In the same year also La Condamine studied the velocity of sound at
Quito and found it to be 339 metres per second. In 1744 he made
similar observations at Cayenne, where the temperature was much
higher than at Quito, and found the velocity to be 357 metres per
second, thus confirming Bianconi’s general conclusion.

At least one way in which a knowledge of the velocity of sound
might be put to practical use was suggested by Derham. He pointed
out that once we know the velocity of sound we can estimate the
distance of a storm area by noting the time interval between our
perception of the flash of the lightning and our perception of the
clap of the thunder (Phil. Trans., 1708, Vol. XXVI, No. g13).

Derham also attempted to determine the influence of variations
of temperature, of the direction of the wind, and of the moisture of
the atmosphere on the intensity of sounds. But his results were
rather vague. In general he found that sounds arc weaker in summer
than in winter; that they are stronger and harsher when there are
casterly or northerly winds than when there are westerly winds;
and that the sound of fircarms is not weakencd in wet weather, but
is sometimes only barely audible in fine dry weather (ibid.).

Tue Mepium oF SousD

?‘mm the days of Aristotle, possibly earlier, it was believed that air
is the usual medium through which sounds are propagated. The
belief was generally accepted at the beginning of the modern
period, though some thinkers regarded certain parts of the air,
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rather than the air in its entirety, as the medium concerned. Thus
Gassendi, for example, allocated this function to special atoms, while
Derham considered it an open question whether it was air itself or
certain aethereal or even material particles in it that conveyed sounds,
Mairan (1719) even went so far as to suggest that sounds of different
pitch are severally conveyed by air-particles of corresponding
clasticity, otherwise he could not understand how the same mass
of air can transmit at the same time so many sounds of different
pitch (Mém. de I'Acad. des Sciences, 1737). In any case, the whole
question of the function of the air in connection with the transmission
of sound could only be a matter of
speculation until the invention of the
air-pump. With the coming of this
instrument experiments could be, and
were, instituted.

Guericke, the inventor of the air-
pump, was naturally the first to carry
out experiments concerning the relation
of air to our perception of sounds. In
the receiver of his air-pump he sus-
pended, by means of a thread, a bell
with a clock-work arrangement to make
it strike. He noted that as the air was
being exhausted from the receiver, the
sound of the bell became weaker and

i , weaker. Similar experiments were

Tlustr. 164.—Air as the carried out by Boyle, and after him by

Medium of Sound Papin, Beginning with an evacuated

receiver containing a bell or a whistle

the sound of which was inaudible at first, air was admitted into

the receiver very gradually by means of a tube, or through the

aperture of the whistle, and the sound became more and more
audible (see Illustr. 164).

In 1705 Hauksbee repeated these experiments with an ingenious
improvement. A small sphere containing air and a bell was placed
inside a larger sphere. The inner sphere communicated with the
outer air by means of an open tube. The space between the two
spheres was evacuated by means of an air-pump. When the com-
municating tube was closed the sound of the bell was barely heard ;
but when the tube was open the bell was heard clearly. In another
experiment he placed a bell in a glass flask containing air at atmo-
spheric pressure. The sound of the bell could then be heard dis-
tinctly up to a distance of about thirty yards. When the ajr in the
flask was compressed to two atmospheres, the bell was heard dis-
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tinctly up to a distance of about sixty yards. And when the air in
the flask was compressed to three atmospheres, the bell could be
heard distinctly up to a distance of about ninety yards (Phil. Trans.,
Vol. XXIV, No. 297). Priestley and Perolle showed subsequently
that other gases than air can serve as media for the transmission of
sound.

Guericke, who was the first to prove experimentally the propaga-
tion of sound through air, also discovered that sounds are transmitted
likewise through water and even through solids. His evidence relating
to water as a medium of sound was not conclusive. He relied on the
fact that fish can be taught to come to be fed at the sound of a bell.
The question whether such fish are lured by sound or sight is still
under dispute., Hauksbee's experiments furnished better evidence
of the propagation of sound through water. A glass flask containing
air and a bell was lowered into water by a string. When the bell
sounded it could be heard very clearly, though the sound seemed
more harsh and rough than usual. Still better evidence was supplied
by Arderon in 1748. With the help of divers he ascertained that
all kinds of sounds could be heard under the water. No attempt
seems to have been made up to that time to determine the velocity
of sound through water. The case of solid media was no better.
Hooke had, indeed, tried some experiments with long taut strings;
but he arrived at the erroneous conclusion that the transmission of
sound through solids is instantaneous.

(See books on Physics on p. 274.)



CHAPTER XIII
PHYSICS
IV. MAGNETISM AND ELECTRICITY

ANTECEDENTS

A magnetic oxide of iron occurs in a natural state in various
parts of the world, and numerous references to the properties of
lodestones are to be found in Greek and Latin literature. From
these notices it is evident that the ancients were familiar with the
lodestone’s power of attracting or repelling pieces of iron, and of
communicating to them properties similar to its own. The Chinese
arc said further to have
been acquainted from an
early date with the mag-
net's property of pointing
north and south when
freely suspended ; but this
important application was
apparently unknown in
the West, until the twelfth
century, when references
to the mariner's compass
as a novel instrument of
navigation begin to appear
in European literature, Tt
is uncertain whether the instrument was introduced from the East
by the Arabs or by European sailors, or whether it was indepen-
dently discovered. Writers of the thirteenth and succeeding
centuries showed considerable interest in the properties of the
compass-needle, which they variously supposed to point to the
Great Bear, to the Pole Star, to some mysterious mountain, and
so forth. Early forms of the instrument were mainly water-
compasses in which a magnetized piece of iron was floated on
wood in a vessel of water, the direction in which it set being
noted. Sometimes a magnetized iron float was used. Later came
the pivoted needle, and the compass-card—a light disc surmounting
the needle and divided into thirty-two equal “points,” the true
north being denoted by a fleur-de-lys. These instruments were
enclosed in wooden bowls covered with glass, and were 50 mounted
as to be practically unaffected by the ship’s motion.

The earliest known account of a careful experimental investiga-

llustr. 165.—A Compass Card
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tion of the properties of the lodestone is found in the manuscript
Epistola de magnete of the Picard Petrus Peregrinus, dated 1269
(English translation, Epistle Concerning the Magnet, by Silvanus P.
Thompson, London, 1go2). Peregrinus experimented with a globular
lodestone; he located the two poles where the magnetic virtue is
especially strong, and recognized their distinctive norih-secking and
south-secking tendencies ; he showed that like poles repel, and unlike
poles attract, each other, that the polarity of a stone can be reversed
by forcing two like poles together, and that the result of breaking
a lodestone is to form two magnets instead of one. He saw an
analogy between the influence of the globular lodestone upon an
exploratory needle, held near it, and the supposed influence of the
celestial sphere upon the compass-needle—a step towards the more
valuable analogy of Gilbert,

During the fifteenth century it was discovered (when and by
whom is uncertain) that the compass-needle does not, in general,
point due north, but is inclined to the astronomical meridian at a
small angle which (as Columbus discovered on his voyage of 1492)
varies from place to place and occasionally vanishes. This magnetic
declination, or variation of the compass, was measured by sailors in
various parts of the world during the sixteenth century. Many of
the early determinations must have been very crude, and were
often obtained merely by looking towards the Pole Star along a
compass-needle and noting the deviation. Gilbert, in his De magnele
(IV, 12), describes several more refined contemporary methods of
determining the variation. In one of these an instrument was
employed consisting of a compass-needle for giving the magnetic
meridian and an upright style for casting a shadow whose length
and direction enabled the Sun’s altitude and azimuth from the
magnetic meridian at any instant to be ascertained. Two such azimuths
were taken when the Sun was at equal altitudes before and after
noon, and hence equidistant from the geographical meridian. Half
the difference of the azimuths in the two cases then gave the
variation of the compass. In another instrument, more particularly
for use at sea, the angular distance of the rising point of the Sun,
or of a known star, from the magnetic north was measured and
compared with the computed distance from the true north, the
variation being immediately deduced.

These measurements had a direct practical motive, as it was
clearly desirable for the seaman to know, and allow for, the varia-
tion in whatever part of the world he might happen to be. But they
were also pursued in the hope that they might afford a solution
of the problem of determining longitude at sea, which continued
1o perplex navigators down to the eighteenth century. The position
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of the observer on the Earth is ordinarily defined by reference to
the meridians of longitude and the parallels of latitude; but any
other two intersecting systems of curves would serve the purpose.
Suppose now that the magnetic declination varied over the Earth’s
surface in such a manner that the lines drawn through sets of
points where it had equal values (isogonics) formed on the map a
family of closed curves intersecting the parallels of latitude. Then
an observer, by determining the magnetic declination and the lati-
tude, could, in general, define his position as the intersection of
two loci (viz. an isogonic and a parallel of latitude), and could
thus ascertain his longitude indirectly. It was hoped at first that
the isogonics would form a regular pattern which a few scattered
observations would suffice to reveal, and several charts were con-
structed on these lines. But the magnetic exploration of the sixteenth
century showed that the distribution was irregular, and a reason
for this was assigned by Gilbert. About 1620 an attempt was made
by a Milanese Jesuit, Borri, to base an isogonic chart of the Atlantic
and Indian Oceans upon observation, by joining all the places
which had given variations by a series of curves (see A. Kircher,
Magnes, 1641, p. 503). But soon after this it was discovered that
even such a chart could not be of permanent value, since the
variation was everywhere slowly changing with lapse of time.

Further attempts were made later in the seventeenth century, as
we shall see, to determine longitude by means of another variable
magnetic element—the dip or inclination to the horizontal of a
magnetized needle freely suspended at its centre of gravity. This
phenomenon appears to have been discovered in 1544 by Georg
Hartmann, a German clergyman, but his observation was inexact,
and his account of it long remained inaccessible (see Hellmann's
Neudrucke, No. 10). Hence the phenomenon first became generally
known through its independent discoverer, Robert Norman, a
Wapping compass-maker, who measured the dip in London in 1576
with a dipping-needle of his own manufacture, and gave it as
71° 50’. Norman's book, The newe Atiractive (1581), was the first
printed book entirely devoted to terrestrial magnetism. It contained
a suggestion that the “poynt Respective” towards which the needle
turned lay within the Earth, and might be found by observing the
directions of the needle at various places: these directions would
all meet at the required point. This important notion that the
centre of attraction of the needle was situated in the Earth, and
not in the heavens or in some fabulous mountain, seems also to
have been taught by Gerhard Mercator, and was an important
step towards the synthesis of Gilbert.



Ilustr. 166
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Queen Elizabeth watching Gilbert's Experiments
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GieerT oF COLCHESTER

The modern development of the sciences of magnetism and elec-
tricity owes very much to the work of William Gilbert, the greatest
English experimentalist of his time. Gilbert was born at Colchester
in 1540 (according to some authorities, in 1544), and lived from
1573 in London, where he practised as a doctor. He became physician
to Queen Elizabeth, and died in the year of her death (1603).
Gilbert set forth the results of seventeen years’ research in his
great book, D¢ magnete, magneticisque corporibus, et de magno magnele
tellure; Physiologia Nova (London, 1600)—On the Magnet, Magnetic
Bodies Also, and on the Great Magnet the Earth, a new Physiology (English
version by Silvanus P. Thompson, London, 1g900). This work deals
primarily with magnetism, only one
chapter being devoted to electricity. ks
It is characterized almost throughout
by its reliance upon the results of ex-

periment, in accordance with the teach-

ings of Francis Bacon, and in contrast +—s A
to the practice of Porta and of other

earlier writers of works on the subject. z

Gilbert begins his work by reviewing
previous works on the subject and Globul
refuting the old wives’ tales which m:lmt; I{ia.; Terrella) u:':;d&
they relate of alleged miraculous and Versoria
curative properties of the lodestone (as,
for instance, that a lodestone loses its virtue when smeared with
garlic, but regains it when bathed in goat's blood, and so forth).
He next describes the occurrence and appearance of the lodestone
in its several species. He shows how to determine its poles, using
for this purpose a powerful globular lodestone of convenient size
and a short piece of iron wire, or a tersorium consisting of a minute
compass-needle on a pivot. The wire, or the versorium, was laid upon
the surface of the globular stone, and the direction in which it set
itself was marked on the stone by a chalk line which was produced
to form a great circle. The wire was then placed at another point
and another great circle obtained, and so on. All these circles were
found to pass approximately through two diametrically opposite
points on the stone: these were the two magnetic poles (A and B
in Illustr. 168), whose properties form the principal topic of Book 1
of the De magnete. Although many of the topics here discussed had
been familiar to Gilbert’s predecessors, they had never before been
set out in such clear scientific language.

In order to investigate the effect of dividing a magnetic body,
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Gilbert took an elongated lodestone AD (Illustr. 16g) having its
north pole at A and its south pole at D, and cut it into two equal

Mlustr. 169.—An Elongated Lode-
stone Divided in Halves

parts, Upon allowing the parts to
float in wooden vessels upon water,
he found that, while A and D re-
tained their original polarities, & new
south pole had appeared at B and
a new north pole at C, so that there
were now two magnets in place of
one. Discussing the behaviour of such
floating magnets, Gilbert notes that
the Earth orientates the magnet,
but does not displace it as a whole

(as had already been recognized by Norman). Gilbert increased
the effectiveness of his lodestones by “arming” them with steel

caps (Illustr. 170). He found that the maximum load of iron which

a given stone would carry was thus increased
from 4 to 12 ounces, while it was possible
to form chains of lodestones, as shown in
Hlustr, 170.

At any point on the great circle equidistant
from the two poles of a globular lodestone
(magnetic equator) the needle of the versorium
was found to lie parallel to the surface of
the stone, while at the poles it set itself per-
pendicular to the surface. Further, upon
moving the needle about over the stone,
Gilbert found that its inclination to the surface
varied according to its distance from the
poles in a manner which recalled the be-
haviour of the dipping-needle in different
terrestrial latitudes (see Illustr. 171). He was
thus led to conceive the Earth as a huge
spherical lodestone of which the globular
stone of his cxperiments was a miniature
(and thence called a terrella, a miniature
Earth). From the behaviour of the needle
near the pole of the terrella, Gilbert concluded
that the dip in the northern regions of
the Earth would be greater than in London.

Mlustr. t70.—“Armed™
Lodestones

This surmise was later confirmed by Hudson during a voyage
of exploration in the Arctic regions of America, Hudson found,
in fact, in 1608, that even in latitude 75° N. the dipping-needle
assumed an almost vertical position. This result did not quite
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correspond to the ideas of Gilbert, who supposed the magnetic
and geographical poles to coincide, but it has been borne out by
subsequent magnetic surveys.

The analogy between the Earth and his ferrella led Gilbert to a
mistaken explanation of the phenomenon of magnetic declination,
or variation of the compass, which he develops in Book IV. Using
an uncvenly shaped ferrells, he found that the direction of the
versorium was affected by the projections and depressions on the
surface. He accordingly supposed that, while the magnetic and
geographical poles of the Earth coincide, the variation of the
compass arises from the local
irrcgularities of the Earth’s
surface, the needle being de-
flected towards continental
masses and away from marine
basins, since water is non-
magnetic. Diversities in the
composition of the Earth in
different regions (e.g. the pres-
ence of magnetic iron deposits)
also play their part, he sup-
posed, in disturbing the needle.
This explanation led Gilbert to
suppose that the variation at
any one place on the Earth  qyur 171.—The Reaction of Small
would remain constant to all Magnets to a Terrella
time, in the absence of any
great geographical changes; and he gives a rough survey of the
variation in the known parts of the world as it had been recorded
by sailors, chiefly Portuguese. These scanty data tended to bear out
his hypothesis, which, however, was overthrown when fuller informa-
tion was obtained. In the meantime his work scrved to dispel the
notion that the variation is simply related to the longitude.

Turning next, in Book V, to the phenomenon of dip, Gilbert
studies in greater detail the manner in which this quantity varics
in relation to magnetic latitude on the terrella, gives rules for deter-
mining latitude from observations of the dip, and describes an
improved form of dipping-needle.

Gilbert supposed that, just as a magnet is surrounded by a sort
of atmosphere through which its power is diffused, so the Earth's
magnetic virtue may be imagined to extend into the surrounding
space. “From about a magnetical body the virtue magnetical is
poured out on every side around in an orbe™ (II, 7). He was
easily led on to the idea that the heavenly bodies (and the Sun
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and Moon in particular) are, like the Earth, endowed with mag-
netism. This notion was later taken up by Kepler and developed
with a view to explaining the motions of the planets. In his con-
cluding (sixth) book, Gilbert argues in favour of the Copernican
hypothesis of the solar system. He justifies the Earth’s motion on
teleological grounds, and attributes it rather vaguely to magnetic
virtue. “In order that the Earth may not perish in various ways,
and be brought to confusion, she turns herself about by magnetic
and primary virtue” (VI, 4). This portion of the book is mainly
scholastic in tone.

Gilbert’s theory of the nature of magnetism may best be con-
sidered in antithesis to his views on the cause of electrical
attractions.

Up to the time of Gilbert, knowledge of electrical phenomena
(which were of less immediate practical utility than magnetic) had
scarcely progressed beyond the few facts described by classical
writers; and there had been much confusion between magnetic
and electrical effects. It was known that amber, and perhaps one
or two other substances, when rubbed, acquire the power of
attracting light hodies. Naturalists knew about the torpedo-fish,
described by Aristotle, which stupefies its prey by the clectric
shocks which it administers. Sailors were acquainted with the
“St. Elmo’s Fire,” and, of course, lightning was familiar and was
the subject of much superstition. These several electrical manifesta-
tions were not definitely co-ordinated until the eighteenth century.
It fell to Gilbert, however, to show that the property of amber is
shared by numerous other substances, and so to establish the science
of frictional electricity.

In one of the chapters of his book (II, 2) Gilbert describes his
experiments on electrical attraction. He made himself a versorium,
or electroscope, consisting of a metal pointer three or four digits
long, turning easily about its centre upon a pointed support. He
took each of the substances under investigation one by one and,
having rubbed it, brought it up to the versorium and noted if the
nearer end of the latter were attracted towards the substance. He
found that many other substances besides amber produced a deflec-
tion of the pointer, and, in most cases, attracted all manner of other
bodies. These attracting substances, or “electrics,” included gems
(such as diamond and sapphire), glass, sulphur, spar, crystals, resin,
etc., as well as certain liquids. The metals were a notable exception,
and formed the principal item in Gilbert's list of “non-electrics.”
Gilbert noticed that his experiments succeeded best when the air
was dry. He thought that substances were attractive or non-
attractive according as they were predominantly aqueous or earthy
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in their composition ; but we know now that conducting substances,
such as metals, must necessarily have given negative results when
examined by Gilbert's method, since, when held in the hand and
rubbed, they must have lost their charge as fast as it was excited.
As his versorium was never insulated and charged, Gilbert missed
discovering electrical repulsion.

Gilbert clearly discriminated for the first time between electrical
and magnetic attractions, though the distinction which he drew
between the agencies respectively at work was somewhat vague and
metaphysical. “Electrical motions become strong from matter, but
magnetic from form chiefly. . . . Electrical motion is a motion of
aggregation of matter ; magnetical motion is one of disposition and
conformation. The globe of the Earth is aggregated and coheres
by itself electrically. The globe of the Earth is directed and turned
magnetically” (II, 2). Thus electricity binds the particles of a
body together, while magnetism gives the body a determinate
shape and a tendency to rotate about an axis having a definite
orientation,

Gilbert’s explanations of electrical and magnetic attractions were
conceived on traditional lines. He supposed that amber and other
electrics, when excited, exhaled subtle effuma which united any
light body in the vicinity with the excited substance, thus making
one body“out of two, so that they moved towards each other as
parts of a whole. “All electrical attraction occurs through an
intervening humour” (or fluid). According to Gilbert, the air plays
an analogous part in determining the fall of heavy bodies towards
the centre of the Earth. This conception of ¢fffluria as carriers of
electrical effects was retained and developed into a scientific theory
by the physicists of the eighteenth century, who occupied themselves
especially with the study of frictional electricity. On the other hand,
Gilbert did not attempt a physical explanation of magnetic pheno-
mena, but likened magnetism to a soul. He considered that the
lodestone, together with the Earth as a whole and the heavenly
bodies, is endowed with life (V, 12). Magnets emit no efffuria and
exert no violence upon one another, but move towards one another
spontaneously.

This explanation enabled Gilbert in some measure to surmount
the difficulty, already presenting itself, of explaining the mutual
actions of bodies separated from one another by empty space. Here
again Gilbert was followed by Kepler. The lack of clear theoretical
conceptions, however, does not impair the value of experimental
results such as we owe in abundance to Gilbert.
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BARLOW

A younger contemporary of Gilbert was William Barlow or
Barlowe (d. 1625), who became Archdeacon of Salisbury. Barlow
devoted much attention to investigations in magnetism, and he was
the author of a work on the subject, Magneticall Advertisements
(London, 1613, 1616, 1618). He introduced improved methods of
magnetizing and of suspending compass-needles, and he distin-
guished between the magnetic properties of iron and steel. Barlow
corresponded with Gilbert, but the relation of the two men in
respect of their discoverics is somewhat obscure.,

From 1600 to the early years of the nineteenth century magnetic
and electrical science developed along separate lines; and we shall
first consider the growth of knowledge and theory concerning
magnetism.

MacneTEM 1. THE SEVENTEENTH CENTURY

KIRCHER AND CABEO ;

Of less account than Gilbert’s book is the voluminous work entitled
Magnes, sive de arte magnetica (Rome, 1641), by the learned German
Jesuit, Athanasius Kircher (1601-80). He was a professor at Wiirtz-
burg, and ranks with Porta, Schwenter, and other men even less
inspired with the modern spirit of inquiry. He was not a physicist
such as Gilbert and Galilei, but describes scientific marvels and
popular toys at great length. These include a species of telegraphy
with the aid of magnetic needles. It is worth noting, however, that
he sought to define the strength of a magnet by means of the
balance. The magnet was suspended from one pan of the balance
and was counterpoised by weights placed in the other. A piece of
iron was then brought into contact with the magnet and the
additional counterpoise necessary to break this contact was noted.
Much of Kircher's book is taken up by his schemes for healing
diseases and wounds with the aid of magnetism. This mediaeval
form of therapy had been the principal theme of van Helmont's
De Magnetica of 1621. Kircher attributed many phenomena of the
animal world, such as the flight of birds, to magnetic agency, and
he devotes a separate section of his book to the “magnetism” of
love. The work concludes with the reflection that God is all Nature's
magnet (lolius naturae magnes).

Another book on magnetism by a learned Jesuit of the same
period is the Philosophia Magnetica (Ferrara, 162q) of Niccolo Cabeo,
or Cabeus, who gave much attention to cases of magnetization of
iron such as are now attributed to the inductive action of the
Earth's field.
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DESCARTES

Theories of the nature of magnetism current during the first half
of the seventeenth century were vague and mystical, and generally
attributed intelligence to the magnet, The first scientific theory of
magnetism was that put forward by Descartes in his Principia
Philosophiae (1644). This theory formed part of his general system
of vortices described elsewhere.

Descartes explains how, from each pole of a cosmic vortex, there
must stream in towards the centre large particles shaped like screws
whose threads turn in opposite ways according as a particle comes
from one pole of the vortex or from the other. The particles from
one pole enter the central star of the vortex and pass through it
by pores shaped like the nuts of screws, turned in the sense necessary
to give a free onward passage to the particles as they rotate with
the vortex. Arrived at the opposite surface of a star, the stream of
particles meets another stream coming from the opposite pole,
whereupon they pass externally round the star. As many as possible
re-enter the star and repeat the circuit, while the remainder are
shed abroad. The particles coming from the other pole behave in
a similar manner, so that the star is the centre of two contrary
circulations of particles. This state of affairs persists, to some extent,
even when the star has dege .erated into a planet (the Earth, for
instance). The only portion of the planet, however, in which the
pores remain open is the massive interior layer, which is largely
composed of lodestone or iron. Lodestones thus allow the particles
to pass through them with the least interference of any substance,
and they are orientated into the most advantageous positions for
this purpose by the momentum of the streams of particles. Each
lodestone, moreover, becomes the centre of a miniature circulation
of particles whose course can be mapped out with the aid of iron
filings. These particles tend also to enter any adjacent lodestone,
and so, by driving away the air between them, to make the two
stones move together. The two kinds of pores in iron, unlike those
in lodestones, can casily be made to interchange their properties.
the polarity of an iron magnet being thus readily reversible.

On these lines Descartes succeeded in explaining practically all
the magnetic phenomena known in his time, and his theory, though
full of arbitrary assumptions, was mechanically intelligible, and in
some sense anticipated the modern conception of magnetic induction.

Descartes’ ideas were taken up and expounded by his disciple
Jacques Rohault (1671). They were extended to cover electrical
phenomena, and continued to hold the field, with certain modifi-
cations, throughout the seventeenth century and the greater part
of the eighteenth. It was, in fact, in this branch of science (which
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was largely neglected by Newton) that Descartes’ authority lasted
longest.

NEWTON

No serious attempt was made during the seventeenth century to
ascertain the quantitative laws of magnetic force, which were not
elucidated until the close of the eighteenth century. Newton, how-
ever, in his Principia (111, 6), mentions some rough observations
which led him to the conclusion that the force of a magnet varied
nearly as the inverse cube of the distance.

TerrEsTRIAL MAGNETISM

We turn next to the development of terrestrial magnetics in the
seventeenth century,

COMPASS VARIATIONS

The first important advance upon Gilbert’s work was the discovery
that the variation of the compass at any place generally changes
in course of time. Even in the sixteenth century the necessity for
taking account of such changes seems to have been recognized by
the Flemish compass-makers. For there is some evidence that, in
the construction of their instruments, they allowed for a variation
of 11}° E. at the end of the fifteenth century, and for a variation
of 6° E. at the end of the sixteenth century (see N. H. de V. Heath-
cote’s article in Science Progress, No. 105, July 1932). The first
explicit admission of the existence of such changes, however, was
the result of a series of determinations of the variation in London.
William Borough measured this quantity at Limehouse in 1580.
Gunter, observing at the same place in 1622, obtained a result
5 degrees less than that of Borough, but does not seem to have
drawn any conclusion. A similar diminution was noticed at White-
hall, which led Henry Gellibrand (1597-1637) and some friends,
in 1634, to repeat Gunter's observation with his original compass-
needle. The result showed a further diminution, and Gellibrand
concluded that “the variation is accompanied with a varjation”
(see H. Gellibrand, A Discourse Mathematical on the Variation of the
Magneticall Needle, together with Its admirable Diminution lately discovered,
London, 1635; edited by G. Hellmann in his Neudrucke, No. g).
Gellibrand, however, adhered to Gilbert’s explanation of the varia-
tion as due to the Earth’s surface irregularities. This view was soon
afterwards abandoned under the influence of Descartes’ teachings.
Descartes explained the variation of the compass as due to the
disturbing action of magnetic iron deposits in the neighbourhood
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of the needle. Changes in the variation he attributed to the transport
of iron from place to place and to the corruption of old iron deposits
and the formation of new ones.

Diurnal and seasonal fluctuations in the variation of the compass
were discovered during the eighteenth century.

Further cbservation cast doubt upon Gilbert's assumption that
the Earth's magnetic poles coincided with its geographical poles,
for it was found that the isoclinics (lines through places having
equal dips) intersected the parallels of latitude. The question arose
whether the isoclinics might not be sufficiently regular and permanent
to serve for the determination of longitude in accordance with the
principle already explained in connection with isogonics.

Henry Bond, a London “Teacher of Navigation,” worked out a
method on these lines in his book The Longitude Found (1676). He
conveniently assumed that there were two magnetic poles, distinct
from the geographical poles and situated at diametrically opposite
points of a magnetic sphere closely surrounding the Earth, The
dip at any place depended merely upon the distance from these
poles, so that the isoclinics were small circles of the sphere, con-
stantly inclined to the parallels of latitude. In order to account
for the secular changes in the magnetic elements, Bond simply
assumed that the magnetic poles fell behind the Earth somewhat
in its diurnal motion, and so slowly described circles about the
geographical poles. Bond regarded his system as divinely inspired,
and treated any criticism as blasphemy. Nevertheless, it was severely
handled by one Peter Blackborrow, who, in his counterblast, The
Longitude not Found (1678), attacked Bond’s arbitrary and fictitious
assumptions. Bond drew up a table on the basis of his theory, pre-
dicting the values of the variation in London during the succeeding
half-century, but this proved of little value. His work is of interest,
however, for its influence upon Halley’s speculations on terrestrial
magnetism.,

HALLEY

Halley showed but little interest in questions on the nature of
magnetism, but sought to construct an hypothetical model which
should account for the observed values of the variation of the
compass and for the slow changes therein.

In the first of his two principal papers on the subject (Phil. Trans.,
1683), Halley drew up a synopsis of the more recent and trust-
worthy determinations of the variations in different parts of the
world, giving the date when each was made. These data enabled
him to prove the insufficiency of Bond’s theory. He further pointed
out that the variation, in general, changes slowly and continuously
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as we traverse the Earth’s surface, the needle being deflected the
same way over huge tracts of land o1 sea. This told against Descartes’
theory that variation arises from masses of magnetic material in
the immediate neighbourhood of the observer; though Halley
admitted that local disturbances of the compass might arise in this
way. But the data told equally against Gilbert’s theory, for on the
coast of Brazil the needle was deflected eastward, away from the
continent and towards the ocean. Halley’s paper accordingly con-
cludes with a new hypothesis—that the Earth is a magnet with
four poles, two in each hemisphere, and that these are in slow
relative motion, as required to account for slow changes in the
magnetic elements,

On such a view it was no longer possible to regard the Earth as
an ordinary magnet, and in a later paper (Phil. Trans., 16g2)
Halley put forward the hypothesis that the Earth was made up of
an outer magnetic shell with two poles, and an inner magnetic
nucleus, concentric with the shell and possessing two poles of its
own. He supposed that the two magnetic axes were inclined to
cach other and to the Earth’s axis of rotation, and that the space
between the shell and the nucleus was filled with a fluid medium
which he thought might be luminous so as to permit of life in the
interior of the Earth. Relative motions of the poles were easily
accounted for by supposing the shell and the nucleus to have
slightly different periods of diurnal rotation. If this simple scheme
were insufficient, it might be convenient to regard the Earth as a
nest of concentric magnetic shells with independent axes and
differing periods of rotation—a system which recalls the planetary
spheres of Eudoxus, and foreshadows the modern Fourier series.

Halley appealed to sailors and others to record and send in as
many observations as possible of the variation in different parts of
the world in order that a complete theory might be framed. He was
himself destined in large measure to supply this need, for in the
course of his later voyages of exploration in the Atlantic (16g8-
1700) he collected many magnetic data. These he embodied in a
chart, or, as appears from the researches of L. A. Bauer, in two
different charts published between 1701 and 1705 (Terrestrial
Magnetism, Vols. I and XVIII). They were constructed on Mer-
cator’s projection, then rather a novelty, and showed how the lines
of equal variation were found to be distributed over the ocean for
the year 1700. A number of revised editions of Halley’s world-chart
appeared during the cighteenth century, as well as other charis by
independent investigators.

Halley was the first to recognize that there is a connection
between the aurora borealis and the Earth’s magnetism. He sug-
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gested, following Descartes, that the Earth must be the centre of
circulating magnetic ¢ffuvia entering it at one pole and leaving it
at the other. These ¢ffuria, he supposed, might, under certain
unknown conditions, become luminous, as electrified bodies some-
times do in the dark. He was inclined to identify these luminous
efffuria with the fluid medium enclosed in the Earth between the
magnetic shell and nucleus, which he thought might escape through
pores in the Earth's crust. The prevalence of auroral displays in
the extreme north might then, he thought, be referred to the
comparative thinness of the crust in those regions consequent upon
the Earth’s oblate form.

ELecTRICITY 1IN THE SEVENTEENTH CENTURY

In electrical science little important advance was made on the
work of Gilbert during the seventeenth century, in comparison
with the rapid development of the subject during the eighteenth
century. Gilbert’s experiments were repeated from time to time,
a number of additions being made to his list of electric substances;
and a few isolated electrical phenomena were examined and
described.

The Accademia del Cimento arranged electrical substances in the
order of their attracting power when rubbed, amber heading the
list. They noticed, moreover, that excited amber loses its charge
when held near a flame; and they made a number of other minor
discoveries. Newton, about 1675, performed an experiment with a
piece of glass which he supported on a brass ring just above the
level of the table. In the interspace of about an eighth of an inch
between the table and the glass some fragments of paper were
confined. Upon rubbing the glass vigorously, Newton noticed that
the paper was set in agitated motion, being frequently attracted to
the surface of the glass opposite to that which had been rubbed, and
as often repelled. This experiment was repeated by the members
of the Royal Society under Newton's instructions. In 1675, again,
Jean Picard, the French astronomer, observed a luminous appear-
ance in the vacuum of a barometer which he was carrying away
from the Observatory at Paris—a phenomenon which later formed
the starting-point of Hauksbee’s electrical researches.

Perhaps the most significant discovery of the century following
Gilbert was that of electrical repulsion. This cffect scems first to
have been noticed incidentally by Cabeus, who, in his Philosophia
Magnetica (1629), describes how filings attracted by excited amber
sometimes recoiled to a distance of several inches after making
contact (gp. cit., I, 21). This phenomenon was first clearly recog-
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nized and described, however, by Otto von Guericke, the inventor
of the air-pump, who also constructed the earliest mechanical
contrivance for generating electrical charges.

GUERICKE

Guericke describes his frictional electrical machine with his other
experiments, in Book IV of his Experimenta Nova (ut vocantur) Magde-
burgica de Vacuo Spatio (1672), from which Illustr. 152 is taken.
Guericke filled a glass globe, as large as a child’s head, with molten

IMlustr. 172.—Guericke's Electrical Machine

sulphur. When this had cooled, he broke the glass and mounted
the sulphur sphere so obtained on an iron axle which rested on
two supports, so that the sphere could be set in rotation. The dry
hand was then applied to the sulphur and served as a rubber, but
there was no conductor. The excited sphere attracted paper,
feathers, and other light objects, and carried them round with it—
a process to which Guericke likened the similar action of the Earth
upon objects upon its surface. Drops of water brought into the
neighbourhood of the sphere were agitated, while luminosity and a
crackling sound were noticed when the finger was brought near.

It was while working with this machine that Guericke noticed
the repulsion of similarly electrified bodies. He observed that a
body which had been first attracted and then repelled from the
sulphur sphere was attracted by other bodies, and that it was
again attracted to the sulphur afier having come into contact with
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the finger or with the ground, or after having been brought near
a flame. Thus a feather placed between the electrified sphere and
the floor jumped up and down from one to the other. Guericke also
proved that an electric charge could travel to the extremity of a
linen thread, and he further noticed that bodies became electrified
even when merely brought near to the rubbed sulphur sphere. He
was thus a pioneer in the discovery of electrical conduction and
induction. Unfortunately, Guericke’s work in this field did not
attract the popular attention which his pneumatic experiments
received, and even those who ought to have appreciated his dis-
coveries allowed them to be forgotten.

Guericke's book, however, inspired Robert Boyle to perform a
number of experiments in electricity and magnetism, though he
did not reach any results of major importance. Boyle speculated
extensively about the nature of electricity. Theories on this subject
current in the seventeenth century usually attributed electrical
effects to the action of ¢ffuria or Cartesian vortices. Boyle, for
instance, supposed a glutinous efluvium to emanate from a charged
body and to return thither carrying light objects along with it.

(See P. F. Mottelay, Bibliographical History of Electricity and Mag-
netism, 1922; E. Hoppe, Geschichte der Elektrizitdt, Leipzig, 1884;
also the list of books on p. 274.)



CHAPTER XIV

METEOROLOGY

Tae development of Physics and Mechanics in the seventeenth
century led to a radical transformation of Meteorology. The rise
of inductive methods of studying natural phenomena, and the
invention of the thermometer, barometer, and other meteorological
instruments, opened the way towards an exact study of the atmo-
sphere in place of the astrological predictions or mere weather-lore
which had been accepted as the basis for forecasts in the Middle
Ages. Aristotle’s Meteorologica, which had been a standard textbook
at the Universities, yielded place to such works as Descartes’
Météores (1637), which, though based upon an almost equally
fictitious scheme of the universe, nevertheless did much to establish
meteorology as a branch of physics.

METEOROLOGICAL INSTRUMENTS

Like other branches of science, meteorology depended for its
progress to a large extent on the invention of suitable instruments
for the measurement and record of the phenomena with which it
is concerned. The most important meteorological instruments are
undoubtedly the thermometer and the barometer. These instru-
ments, however, are of such wide importance in physical science
that they have already been dealt with in the chapter on Scientific
Instruments (Chapter V). Here we shall confine ourselves to the
description of the other instruments which are more specifically
devised for the study of the conditions of the weather. These instru-
ments include the hygroscope, the wind-gauge, the rain-gauge, and
the weather-clock.

HYGROSCOPES

The seventeenth century saw the invention of numerous hygro-
scopes embodying most of the principles upon which such instru-
ments can be constructed. The earliest hygrometer appears to have
been made by the Accademia del Cimento, which, as we have
already seen, also busied itself with the improvement of ther-
mometers. This hygrometer consisted of a hollow cone of cork with
an outer cover of tin. To the bottom of the cork cone a glass cone
was attched (Illustr, 173). When the instrument was filled with ice,
the moisture from the air was deposited on the glass cone, and ran
into the measuring vessel. By comparing the quantities of water
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condensed, in a fixed period, the relative humidities of different
places, or of the =.ae place at different times, could be determined.
In another hygrometer, described by Amontons in 1688, and later
perfected by Deluc, the contraction or expansion of a small sphere
of wood or leather, consequent upon changes in the humidity of
the air, caused the rise or fall of a fluid in a tube issuing from it.
Molyneux made a simple hygro-
scope by suspending from a
whipcord a metal ball having
a horizontal pointer which
traversed a graduated scale as
the cord wound and unwound
with variations in the humidity,
thus working on a similar prin-
ciple to the popular “weather-
house” or “Jocky and Jenny™ of
to-day.

Hooke constructed a hygro-
scope out of the beard of a wild
oat (Micrographia, Observation
XXVII, p. 147, and Sprat's
History of the Royal Soctety, p. 173).
The “beard™ is the bristle grow-
ing out of the husk covering the
grain of the wild cat. It was
noted that when the grain was
ripe, this bristle was bent at one
end through nearly a right angle,
and that if it was then wetted
the bent end would gradually
tum round in relation to the
rest of the bristle. Hooke, in his  Illustr. 173.—Hygroscope made by the
Method for making a History of the Accademia del Cimento
Weather (Sprat, op. ait., p. 173),
attributes to Emanuel Magnan the use of this property in the con-
struction of a hygroscope for mcasuring the moisture of the air.
Hooke suggests making the instrument in the form of a box with
an ivory lid and basket-work sides, or preferably of an ivory plate
merely supported on pillars. In this way the air would have free
access to the beard, one end of which was fixed at C (Illustr. 174)
to the base of the apparatus, while the other end passed up through
the ivory plate and carried a light pointer fg attached to the beard
at ¢, and travelling over a graduated dial. To increase the sensitive-
ness of the apparatus, a number of beards could be used, attached
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end to end. The pointer indicated changes in the humidity of the
air by moving gradually over the scale as the bent end of the beard
moved round. In order that account might be taken of complete
revolutions of the pointer, Hooke suggested that a pin be attached
to the lower side of the pointer, and that a light toothed wheel
be mounted on the upper plate in such a way that the pin would
move this wheel a tooth forward or backward every time the pointer
passed over it. Hooke found this instrument very sensitive. The
pointer turned through a whole revolution when the beard was
breathed on, and responded readily to the heat of the fire or of
the Sun. Hooke found fibres of gut less satisfactory, but the beard
of Geranium moschatum proved superior even to wild oat, and later
he substituted the “cod of
a vetch” (Gunther, Early
Science in Oxford, VI, p.
26q).

An ingenious form of
hygroscope was described
by a Dublin correspon-
dent in a letter to Olden-
burg (1676, Phil, Trans.,
Vol. XI, No. 127). It con-
sisted of two boards A, B

Hllustr. 174.—Hooke's Hygrometer (see Illustr. 175) of deal
or poplar, about two feet
long and a foot wide, placed side by side with a little space
between them, and fastened at the four outer corners, a, a, a, a,
to two oak ledges C, C, two inches wide, and long enough to
reach beyond the sides of A,B. Assuming that the boards
would not shrink more than a quarter of an inch even in the
driest weather, a tongue of brass D, two or three inches long
and a quarter of an inch wide, was fastened to the board A. The
brass D had four equally spaced teeth, d 4, near the free end which
overlapped the board B, on which a pinion-wheel was mounted,
by means of the fitting E, so that its teeth engaged those on the
brass tongue. As the boards swelled or shrank with changes in the
humidity of the atmosphere, the teeth dd turned the pinion-wheel,
whose axle F carried a pointer GG round a circular scale, arbitrarily
graduated to record “degrees of the drought or moisture of the
air.” With a possible shrinkage of about a fifth of an inch the
Pﬂintcr would move ten to t'ﬂ‘tﬂlf dtg'[‘tﬂ. i|‘| an hgur or two. "rhc
inventor claimed that this hygroscope recorded rapidly the hygro-
scopic changes in the atmosphere, and was superior to those made
with cat-beards,
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The Dublin hygroscope, and several others, utilized the change
of form which bodies undergo in moist air as an index to hygro-

Illustr. 175.—A Dublin Hygroscope

scopic changes. But there were also other hygroscopes invented
which were based on the changes in weight of various substances
when they absorbed moisture from the air. Thus Gould, for instance,

Illustr. 176.—Hooke's Wind-Gauge

in 1683, suggested that
the increase in weight of
sulphuric acid, when ex-
posed to the atmosphere,
might be used to measure
the amount of atmospheric
moisture.

WIND-GAUGE

Hooke constructed an
instrument for measuring
the strength as well as the
direction of the wind. In
this instrument (see Illustr.
176) a plate swung freely
by an arm which moved
over a graduated scale as
the plate was blown aside
by the wind. The stronger
the wind the higher was
the plate blown along the

scale, which thus registered the strength of the wind. In principle
this wind-gauge was essentially like the drogue used in a modern
aerodrome.
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RAIN-GAUGE
Rain gauges appear to have been in use in Korea as early as
the fifteenth century. The earliest English instrument for measuring
the rainfall was designed by Sir Christopher Wren about 1662,
About 1677 Richard Towneley invented another rain-gauge, con-
sisting of a funnel, 12 inches in diameter, soldered to a pipe which
carried the water into a
vessel in which it could
be weighed. About 1695
Hooke designed another
such instrument, which
was in actual use at Gres-
ham College in that year.
It consisted of a glass
funnel, about 11-4 inchesin
diameter (see Illustr, 177),
mounted on a wooden
frame, and leading into
a larger flask, which had a
narrow neck, 2oinches long
and one-fifth of an inch in
diameter, so as to minimize
evaporation. The flask, or
“large bolt head,” was
capable of holding more
than two gallons. Two
stays, or pack-threads,
strained by pins, held the
funnel steady against the
: wind. The water collected
j was weighed (Phl. Trans.,
Hlustr, 177.—Hooke’s Rain-Gauge 1697, Vol. XIX, p. 357)-
Theearliest approximation
to the rain-gauges now in use was made in 1722 by Horsley, who
used a funnel 30 inches wide, and collected the water in a cylindrical

measuring glass 10 inches deep and 3 inches in diameter,

- ?.nlﬂ'r'" i
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WEATHER-CLOCK

From 1664 onwards there are repeated records of the Royal
Society'’s having given instructions to Hooke to construct a weather-
clock, of which it was understood that he had the design. This
was a development of some carly attempts by Wren to construct
such an instrument (Gunther, Early Science in Oxford, VI, p. 16z2).
It was not until December 5 1678, however, that Hooke produced
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part of the instrument, which was intended to measure and record
the direction and strength of the wind, the temperature, pressure,
and humidity of the atmosphere, and the rainfall. In the following
January the President and a number of Fellows of the Society
inspected and approved his work on the instrument, and nearly a
year later (December 1679) Hooke gave a brief description of the

Illustr. 178.—Hooke's Weather-Clock

instrument, shown in Illustr. 178 (see W. Derham, Philosophical
Experiments and Observations of Hooke, 1726, p. 41; and Gunther,
op. cit., VII, p. 519f). It consisted of two parts: (1) a strong
pendulum-clock which, besides showing the time, turned a cylinder
upon which paper was rolled, and operated a mechanism for
making punches therein once every quarter of an hour; (2) instru-
ments for measuring the phenomena enumerated above. These
instruments (barometer, thermometer, hygroscope, rain-bucket,
wind-vane, and wind-mill, whose revolutions were counted) moved
punches, whose positions were periodically marked on a paper roll
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which was slowly wound on a cylinder. The mechanism, of which
no detailed account seems to have been forthcoming, was sufficiently
complicated, and it is not surprising that the instrument was soon
reported to be in need of repairs.

Hooke also drew up “the Form of a Scheme” for recording the
phenomena of the weather in an orderly way. The Table on P- 313
(Phil. Trans., 1667, No. 24, p. 445; and Sprat's History of the Royal
Society, 1667, p. 179) was intended to serve as a model weather

report.

MEeTEOROLOGICAL OBSERVATIONS AND THEORIES

RECORDS

A number of records of continuous meteorological observations
have come down from the seventeenth century. The value of simul-
taneous observations at several different places was soon recognized.
As early as 1637 the Landgraf Hermann of Hesse described and
compared some weather observations which he had had taken
simultancously in Hesse and Pomerania. And the earliest meteoro-
logical observations with instruments, of which record remains, were
made in concert at Paris, Clermont-Ferrand, and Stockholm,
between 1649 and 1651.

The first attempt at establishing an international meteorological
organization on a large scale was made by the Grand Duke Fer-
dinand II of Tuscany, the patron of the Accademia del Cimento.
He had instruments (chiefly thermometers and hygrometers) con-
structed and sent abroad to chosen observers (many of them Jesuit
priests) living at Paris, Warsaw, Innsbruck, and other places. Their
observations, which included pressure, temperature, humidity, and
wind direction, were entered on forms, and subsequently sent in
for comparison with others made at Florence, Pisa, Bologna, etc.
This activity ceased, however, with the closing of the Accademia in
1667. A subsequent scheme for founding such an organization in
Germany resulted, in 1780, in the Societas Meteorologica Palatina,

In the meantime, observations of barometric pressure and weather
conditions were made at Hanover, in 1678, and at Kiel, from 1679
to 1714, at the instigation of Leibniz. The observations were intended
to test the capacity of the barometer for foretelling the weather,
and also partly for the sake of Mariotte, who wished to compare
observations taken throughout France with others made simul-
taneously in Germany. The barometers used by the German
observers were of Hooke's type (wheel-barometers), and their
scales were inscribed with weather indications. Mariotte’s own
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special services to meteorology lay chiefly in the quantitative study
of rainfall and its comparison with river drainage.

Johann Kanold of Breslau collected periodic observations from
all over Germany and from other Places, including London, and
published them in a quarterly journal (Breslauer Sammlung) between
1717 and 1726. The value of these observations was impaired, how-
ever, through the instruments employed not being standardized.

James Jurin, Secretary of the Royal Society, inserted in the
Philosophical Transactions for 1723 (Vol. XXXII, No. 379) an invi-
tation for meteorological observations to be sent in annually to the
Society. Instructions were included as to the manner in which such
observations should be made, and thereafter an increasing number
of correspondents sent in observations as directed. (See G. Hellmann,
Beitrdge zur Geschichte der Meteorologie, Berlin, 1914, ctc.)

HEIGHT OF THE ATMOSPHERE

Boyle's formulation of the law connecting the volume and pressure
of a quantity of gas gave rise to a series of attempts to ascertain
to what height the atmosphere extends above the Earth’s surface,
and how atmospheric pressure varies with the altitude.

Hooke, who had much to do with the experimental establishment
of Boyle's Law, discussed the problem in his Micrographia (1665).
He considers a vertical column of the atmosphere and divides it
into 1,000 layers all containing equal quantities of air. He calculates
from the density of the air at ground level that each of these layers
must exert the same pressure as a 35-foot layer of air having that
density, in order that the barometer should stand at its normal
height. From Boyle’s Law he calculates the thickness of each laver
in order of ascent from the Earth up to the gggth layer. He does
not, however, attempt to sum these thicknesses, and he recognizes
that the r,000th layer must be of infinite thickness. “Since we
cannot yet find the plus ultra, beyond which the Air will not expand
itself, we cannot determine the height of the Air" (ap. cit., p. 228).
Hooke mentions having found the pressure at the top of 5t. Paul's
steeple sensibly lighter than at the foor,

Mariotte, in his Discours de la nature de Uair, divides the height of
the atmosphere into 4,032 parts corresponding to as many layers
of equal weights, each of them represented by one-twelfih of a line
of the normal barometric height of 28 inches. From experiments
of his own he concludes that the thickness of the lowest of these
layers is 5 feet. Hence, he argues, the thickness of the 2,016th layer
above the Earth (under half the pressure at ground level) will be
10 feet. Mariotte knew that the inlcn'cn.ing lavers would increase
in geometrical progression, but he assumes for simplicity that their
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average thickness is the arithmetic mean of 5 feet and 10 feet—
i.e. 74 feet—giving the height of the lower half of the atmosphere
as 7} % 2,016, or 15,120 feet. He similarly calculated the thickness
of half the superior half of the atmosphere, again obtaining 15,120
feet. This process can, of course, be carried on indefinitely. Twelve
successive applications of it give a height of about 35 miles. Mariotte
adopted this as a lower limit to the height of the atmosphere, as

q
E| 1
E
E
E == c
Fi .] 15 a9 J u
T

A 0 TL L. 4 B
Tiustr. 18Bo.—Height and Pressure of the Atmosphere

he had no evidence that air could be expanded beyond the degree
of rarefaction which it would have at this altitude.

Halley dealt more successfully with this problem in 1686 in a
contribution to the Philosophical Transactions (Vol. XVI, No. 181).
The basis of his method is the analogy between Boyle’s Law con-
necting the pressure and the “expansion,” or volume, of a quantity
of gas, and the law connecting the co-ordinates of a point upon an
hyperbola referred to its asymptotes. In the gas-law, volume varies
inversely as pressure; and in the rectangular hyperbola RHDC
(Hlustr. 180) the ordinate varies inversely as the abscissa, i.e.
AO: AN :: NH : Ol. Hence, if AO, AN, AM represent pressures
of a given quantity of air on a certain scale, OI, NH, and MF will
represent the corresponding volumes on a certain scale. Halley
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shows, from the properties of the curve, that the difference between
the altitudes to which correspond respectively the pressures AM
and AL is proportional to the area MFDL bounded by the pressure-
axis, the curve, and the ordinates through M and L. He further

proves that
[arca MFDL:I H I[mﬂ. NHFM} = log m . Iﬂg’ m-

Since the same areas included under the curve are thus propor-
tional both to differences of altitude and to the natural logarithms
of the ratios of the pressures at the different altitudes, Halley was
able to deduce a relation of the form

H=Alog, @

which connects the pressure & at height H with the pressure B at
ground level, though without regard to temperature, A is a constant
calculated from the normal density of the air at ground level, and
containing the modulus for converting natural logarithms into
common ones. From this formula Halley was able, with the aid
of a common logarithm table, to tabulate height against pressure,
and pressure against height, and so to obtain a rough estimate of
the extent of the Earth’s atmosphere. He supposed this not to
exceed 45 miles, assuming that air cannot be rarefied to much
3,000 times its volume at ground level. This was in fair
agreement with estimates based on the duration of twilight,

WINDS

When once atmospheric pressure had been recognized as the cause
of numerous physical phenomena, it became usual to attribute
movements of the atmosphere to disturbances of the equilibrium
governing this pressure. Torricelli appears to have been the first
to attempt to explain air-currents on this physical principle. In one
of his Lezioni Accademiche (Florence, 1715), he assumes that between
regions of more rarefied air and other regions of denser air equali-
zation takes place by means of a current which we perceive as a
wind. He takes as an example of this equalization the cold wind
which blows out through the doors of large churches on warm
spring days—a phenomenon which occurs with especial frequency
in Italy. “The air in large buildings,” so his explanation runs, “is
at this time appreciably cooler and heavier than the air in their
neighbourhood. Therefore it flows out at the doors, as water would
do if it had been confined in a building and then an opening had
been suddenly made in the side” (Torricelli, op. ¢il., p. 50).
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At the instigation of Mariotte, simultaneous barometric obser-
vations were made at Paris, Dijon, Loches, and other places in
France; and he tried to procure similar data from Germany for
purposes of comparison. In his Discours de la nature de I'air he tries
to correlate the indications of the barometer with the weather
and the direction of the wind, and to explain the correlation with
the aid of the rather crude mechanical hypotheses customary at
that time.

Halley took considerable interest in contemporary attempts to
establish a connection between the heights of mountains and the
differences of pressure at their summits and bases. In 1697 he
visited Snowdon to make barometric observations there on his own
account. About ten years later Johann Jakob Scheuchzer used a
barometer to determine the unknown heights of mountains in the
Alps, his results being reduced in accordance with Halley’s formula
(see F. Cajori, History of Determinations of the Heights of Mountains,
in fsis, Vol. XII).

Halley concludes his paper with speculations, similar to those of
Mariotte, on the connection between wind, weather, and barometric
pressure. Most of the speculations of the period on this subject were
of little value, the relation of winds to the pressure-distribution being
misunderstood. Thus Halley supposed high barometric pressure to
be due to an accumulation of air set up by the confluence of two
contrary winds, while low pressure is due to the partial exhaustion
consequent upon the divergence of two air-currents. Rain goes with
low pressure; and fair weather with cold, dense winds from north
or east. This is because aqueous vapour falls as rain as soon as the
lower layers of the atmosphere cease to be sufficiently dense to sup-
port it, on the Archimedean principle.

Having assigned to winds such an important réle in determining
weather conditions, it was natural that Halley should go on to
inquire into their distribution and causation. Accordingly, his next
contribution to the Philosophical Transactions, a paper on “Trade-
Winds and Monsoons” (Vol. X VI, No. 183), presents a survey of
the winds prevailing in the three great oceans, and is illustrated by
a wind-chart, The survey marked an advance on that of Varenius
(Geographia Generalis, Amstelodami, 1650), then accepted as the best;
while the chart was actually the first meteorological chart to be
produced. The essential features of the tropical wind-belt—the
equatorial calms and the north-easterly and south-easterly trade-
winds—are correctly described and depicted; while the seasonal
fluctuations consequent upon the periodic changes in the Sun's
declination are also noted in the text. Halley’s account of Atlantic
conditions is full, and rich in personal reminiscence. Of the Indian
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Ocean he naturally knew less; and for the Pacific he was mainly
dependent upon the vague reports of Spanish sailors,

Halley’s theory of trade-winds owed something to previous
seventeenth-century writers on the subject, and pointed the way
to the accepted explanation provided by George Hadley in the
cighteenth century. Halley attributes these phenomena to “the
Action of the Sun’s Beams upon the Air and Water, as he passes
every day over the Oceans, considered together with the Nature
of the Soyl, and Situation of the adjoyning Continents: I say
therefore, first, that according to the Laws of Staticks, the Air,
which is less rarified or expanded by heat, and consequently more
ponderous, must have a Motion towards those parts thereof, which
are more rarified, and less ponderous, to bring it to an Aequili-
brium; and secondly, that the presence of the Sun continually
shifting to the Westwards, that part towards which the Air tends,
by reason of the Rarifaction made by his greatest Meridian Heat,
is with him carried Westward, and consequently the tendency of
the whole Body of the lower Air is that way, Thus a general Easterly
Wind is formed, which being impressed upon all the Air of a vast
Ocean, the parts impel one the other, and so keep moving till the
next return of the Sun whereby so much of the Motion as was lost,
is again restored, and thus the Easterly wind is made perpetual.”
That is, a trade-wind is the resultant of

(1) A convectional displacement of the air at ground level fowards
the heat-equator ; and

(2) A westward flow of air following the subsolar point aleng
the heat-equator,

This accounts for the trade-winds being generally inclined both to
the meridians and to the parallels of latitude ; while irregularities
in their distribution are to be referred to the interposition of land-
forms.

In connecting trade-winds with the heat of the Sun, Halley was
following the ideas of Francis Bacon, who tentatively attributed the
tropical briza to the expansion of the air due to solar heat (Historia
Naturalis et Experimentalis de Ventis, 1638) ; and still more the ideas
of Varenius, who supposed that the Sun, having rarefied the air in
the torrid zone, thrusts it from east 1o west as he travels in that
direction (Varenius, op. cit., Cap. XXI). Halley’s explanation,
however, marks an advance on that of Galilei, who belicved that
the Earth's surface irregularities carry the lower layers of the
atmosphere round in the daily rotation, except on the tropical
oceans, where there are no such irregularities and where the
Earth’s eastward motion is swiftest, and where, consequently, a
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perpetual east wind blows (Twe Chief Systems, Dialogue IV). But
Mariotte came nearer the modern explanation than did Halley,
when he attributed the westerly direction of the variable winds to
the fact that the Earth's surface is moving eastward more rapidly
at the equator than in higher latitudes, so that winds blowing
northward from the tropics are deflected eastwards (Zraité du
Mouvement des Eaux).

Halley recognized that every current of air is only part of a
complete circulation, so that “the North East Trade Wind below,
will be attended with a South Westerly above, and the South
Easterly with a North West Wind above.” And this principle led
him straight to his explanation of monsoons. “To the Northward
of the Indian Ocean there is every where Land within the usual
limit [of the trade-winds] of the latitude of 30°, viz. Arabia, Persia,
India, etc., which . . . are subject to unsufferable heats when the
Sun is to the North, passing nearly Vertical; but yet are temperate
enough when the Sun is removed towards the other Tropick;
because of a ridge of Mountains at some distance within the Land,
said to be frequently in Winter covered with Snow, over which
the Air, as it passes, must needs be much chilled. Hence it comes
to pass, that the Air coming according to the general Rule, out of
the N.E. in the Indian Seas, is sometimes hotter, sometimes colder,
than that which by this Circulation is returned out of the S.W.,
and by consequence, sometimes the under Current or Wind is from
the N.E., sometimes from the 5.W.” Halley thus regards monsoons
as modifications of the local trade-winds rather than as independent
convectional effects of the continents. But his explanation marks
an advance upon prevailing views.

Hooke, too, speculated on the cause of trade-winds (Posthumous
Works, 1705). He supposed that owing to the Earth’s rotation the
atmosphere exerted less pressure at the equator than in higher
latitudes, tending rather to recede into space. Hence the natural
tendency of air to move from regions of higher pressure to regions
of lower pressure would cause winds to blow at ground level towards
the equator, from which they returned poleward at a higher level,
thus maintaining a constant circulation of air.

The writings of William Dampier, the buccaneer, extended the
knowledge of the wind-distribution, but did not advance theory.

George Hadley, in his classic paper of 1735 on the trade-winds
(Phil. Trans., Vol. XXXIX, No. 437), agreed that the Sun, by
rarefying the air at the equator, was the original cause of the trade-
winds, but held that “the perpetual Motion of the Air towards lh:
West, cannot be derived merely from the Action of the Sun upon it.’
His r_xplnnatinn is that “the Air, as it moves from the Tropicks
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towards the Equator, having a less Velocity than the Parts of the
Earth it arrives at, will have a relative Motion contrary to that of
the diurnal Motion of the Earth in those Parts, which being com-
bined with the Motion towards the Equator, a north-east Wind
will be produced on this Side of the Equator, and a south-east on
the other,” the winds being due east at the equator “by reason
of the Concourse of both Currents from the North and South.”
Hadley explains the westerly winds in temperate latitudes on the
same principle. Later developments in this realm are associated with
the name of Buys-Ballot.

EVAPORATION

In 1687 Halley published the first of several papers dealing
guantitatively with the evaporation which occurs at the surfaces of
seas and lakes. The series opens with an account of an experiment
designed to measure the rate of evaporation from water at summer
heat, the numerical result being then applied to the economy of
the Mediterranean Sea, im:luding the Black Sea (Phil. Trans.,
Vol. XVI, No. 18g).

“We tuuk a Pan of [salt] Water,” Halley writes, ““about 4 inches
deep and 7% inches diameter, in which we placed a Thermometer,
and by means of a Pan of Uua.ls, we brought the Water to the same
degree of heat which is observed to be that of the Air in our hottest
Summers; the Thermometer nicely showing it. This done, we
affixed the Pan of Water, with the Thermometer in it, to one end
of the Beam of the Scales, and exactly counterpoised it with weights
in the other Scale; and by the application or removal of the Pan
of Coals, we found it very easie to maintain the Water in the same
degree of Heat precisely.”

From the dimensions of the vessel and the observed loss of weight
suffered by the water, Halley calculated that the surface was
lowered by evaporation at the rate of one-tenth of an inch in twelve
hours. Hence, assuming the Mediterranean to be maintained by
the Sun at summer heat for twelve hours a day, and so to yield
cach day one-tenth of an inch in vapour, Halley calculated its daily
loss of water, which came to 5,280,000,000 tons.

How is this loss made good? Partly from the inflow of tributary
rivers, whose contribution Halley estimates somewhat crudely as
follows: He assumes that the nine important tributaries of the
Mediterranean system each supply ten times as much water as the
Thames. Observations of the breadth, depth, and rate of flow of
the Thames at Kingston gave that river’s daily output as 20,300,000
tons, and ninety times this quantity would yet be only about one-
third of the daily loss of the Mediterranean. Part of the remaining
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two-thirds, Halley concludes, must be returned by dews at night
and the balance supplied by the strong current flowing in at
Gibraltar.

The above investigation may have been suggested to Halley by
Perrault’s and Mariotte’s numerical comparison of the output of
the Seine with the rainfall in its drainage area. (For Perrault see
Chapter XVI, pp. 316 f) In his Traité du Mouvement des Eaux,
Mariotte contends that rainfall is sufficient to maintain rivers and
streams in flow, and to prove his point he performs a calculation
which is of some interest, though his data could not now be regarded
as accurate, Observations with a rain-gauge on a roof at Dijon
showed an annual rainfall of not less than 15 inches. Mariotte
calculated that this would give a rainfall of 714,150,000,000 cubic
feet of water over the basin of the Seine. He next estimated the
cross-section of the Seine at the Pont-Royal, and also its rate of
flow, which he obtained by noting the speed of a stick floating on
the surface, and by making allowance for the slower rate of the
under layers. He arrived at 105,120,000,000 cubic feet as the Seine’s
annual outflow, or less than one-sixth of what was supplied by rain.
Hence, he argued, enough water would be available to supply the
river even if one-third of the rainfall evaporated immediately after
falling and one-half remained in the ground.

In the second paper of his series (Phil. Trans., Vol. XVII, No. 192),
Halley goes on to consider how the vapours drawn up from the sea
eventually return thither; and his theory of the origin of springs
once again recalls the ideas of Mariotte. But while the French
physicist had believed springs to be maintained solely by inter-
mittent rains, Halley ascribes them to the continual precipitation
of vapours on high mountain ridges, where the chilled air was
unable to contain so much vapour—an hypothesis suggested by the
heavy dewfall which had inconvenienced him at 5t. Helena. Upon
precipitation, the vapours ‘‘glecting down by the Crannies of the
stone; and part of the Vapour entering into the Caverns of the
Hills, the Water thereof gathers as in an Alembick into the Basons
of stone it finds, which being once filled, all the overplus of Water
that comes thither runs over by the lowest place, and breaking out
by the sides of the Hills, forms single Springs.” These springs, uniting
into rivers, bear the water once more back to the sea.

A further investigation of evaporation, carried out at Gresham
College by Hunt under Halley's instructions, is described in the
Philosophical Transactions for 16g4 (Vol. XVIII, No. 212). Its object
was to prove that Sun and wind must play an important part in
the vaporization of water exposed to their action. The rate of
evaporation from a screened and sheltered water surface at room
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temperature was found to be only a fraction of that observed in
the previously described determination of 1687, and quite inade-
quate, in Halley's opinion, to account for the measured rainfall.
The residual evaporation required to balance the rainfall was
accordingly attributed to the action of the excluded factors, namely,
the Sun's action in “agitating” the water particles and the wind’s
action in removing the vapour as it rises from the surface.

The last of this series of studies on evaporation appeared much
later, in 1715, and is of great scientific interest (Phil. Trans.,
Vol. XXIX, No. 344). The paper treats primarily of the economy
of seas and lakes which have no outlet (e.g. the Caspian Sea, the
Dead Sea, Lake Titicaca, etc.), and shows that their waters must
swell until the loss by surface evaporation just balances the inflow.
Remarking that such lakes are always salf, and that the ocean is,
in some sense, a lake with no outlet, Halley unfolds his celebrated
scheme for deducing the age of the Earth from the salinity of the
ocean,

His method depends upon the consideration that, while the
rivers are daily carrying dissolved salt to the ocean, the vapour
exhaled from the ocean consists entirely of fresh water, Hence the
salinity of the seas must be steadily increasing. (These ideas were
in marked contrast to the accepted views of Varenius according
to whom the salt in the ocean comes from submerged salt-rocks,
the inflow of rivers tending only to freshen the water.—Geographia
Generalis, 1650, Cap. XV). Now, if the salinity of the ocean could
be ascertained at two epochs separated by several centuries, and
the increase during that interval noted, then a proportion sum
would give the length of time during which the rivers must have
been contributing salt to the ocean. This method, however, is
subject to the uncertainty (which Halley recognizes) that the
oceans may have contained an original supply of salt when first
they were formed. We nowadays have to admit the even more
serious objection that the rate of supply of river salt may not have
been constant throughout the past.

Halley was aware, moreover, that he could not hope to put his
proposal into effect himself, for the increase in the sca’s salinity
must be very slow, and there were no ancient records of its value
with which to compare contemporary measurements. With his
customary foresight for future generations, he writes: “I recom-
mend it therefore to the Society, as opportunity shall offer, to
procure the Experiments to be made of the present degree of
Saltness of the Ocean, and of as many of these Lakes as can be
come at, that they may stand upon Record for the benefit of future

agﬂ-..“
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Although there were then no data for a numerical estimate, it
was clear enough that the application of this method would allot
a respectable antiquity to the Earth. Hence Halley, whose religious
opinions were already suspect, had to be on his guard against
ecclesiastical censure. He therefore represents himself as anxious to
confute the Lucretian doctrine (just then finding some favour) that
the Earth has existed for ever, by proving that its age must lie within
a finite limit. He further argues that the formation of man six or
seven thousand years ago has no bearing on the possible age of the
Earth. For man was created last of all on the sixth day; and the
“days” in question could not have been natural days, secing that
the Sun was not created until the fourth “day.”

DISTRIBUTION OF SOLAR RADIATION

While studying the part played by the daily warmth of the Sun
in maintaining the circulation of aqueous vapour, Halley, in 16g3,
devised a method of cal-
culating the proportions
in which that warmth is
shared among the various
latitudes of the Earth at
each season of the year
(Phil. Trans., Vol. XVII,
No. 203). He knew that,
apart from atmospheric
interference, any place
exposed to sunshine re-
ceives heat at a rate
directly proportional to
the sine of the Sun’s alti-
tude at the time of obser-
vation. The Sun’s altitude,
however, undergoes con- Illustr. 181.—Distribution of Solar Radiation
tinuous change, in general,
throughout the day; and Halley's method of summing its variable
heating effect is equivalent to taking a time-integral of the sines of its
altitude from rising to setting: “the time of the continuance of the
Sun’s shining being taken for a Basis, and the Sines of the Sun’s
Altitudes erected thereon as Perpendiculars, and a Curve drawn
through the Extremities of those Perpendiculars, the Area compre-
hended shall be proportionate to the Collection of the Heat of all
the Beams of the Sun in that space of time.”

To construct such a curve and to measure its area, for any given
values of the latitude and of the Sun’s declination, constituted a
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difficult problem. Halley succceeded in proving, by an involved
geometrical process, that the area required is analogous to that of
the curved surface (QBPO in Illustr. 181) intercepted between a
right section (NPOQ) and an oblique section (DPBQ) of a right
circular cylinder ABCD. Using certain theorems of Archimedes, it
is possible to evaluate this area (in terms of PQ, BC, BO, and the
arc QOP); and it provides a measure of the Sun’s heating effect
when BO is put equal to the sine of the Sun's meridian altitude
and the arc QOP equal to his diurnal arc above the horizon, for
the given values of the latitude and declination.

Halley was thus able to construct a table giving the proportion
of the diurnal heat received in every tenth degree of latitude, at
the equinox and at each solstice. Thus, taking the equinoctial heat
collected at the equator as 20,000, the heat in latitude 50° N. is
found to be 12,855 at an equinox; 22,9g91 at the summer solstice;
3,708 at the winter solstice. We also obtain the somewhat unex-
pected result that (neglecting atmospheric factors) the heat collected
at the north pole at the summer solstice appreciably exceeds the
equinoctial heat at the equator—25,055 against 20,000, That the
polar regions are actually so much colder than the equatorial
Halley attributes chiefly to the long polar night: “Under the
Equinoctial the twelve Hours absence of the Sun does very little
still the Motion impress'd by the past Action of his Rays wherein
Heat consists, before he arise again: But under the Pole the long
absence of the Sun for 6 Months wherein the extremity of Cold
does obtain, has so chill'd the Air, that it is as it were frozen, and
cannot, before the Sun has got far towards it, be any way sensible
of his presence. . . ." Halley misses the important point that polar
sunlight is dimmed by traversing a thicker absorptive layer of the
Earth’s atmosphere.

(See G. Hellmann, Beitrdge zur Geschichte der Meteorologie, Berlin,
1914, ctc.)



CHAPTER XV

CHEMISTRY

At the beginning of the modern period chemical investigation
followed three main tendencies. First, there was still prevalent the
alchemical search for the philosopher’s stone or some other means
for transmuting base metals into gold. Secondly, there was the
tendency to turn chemical knowledge to medicinal uses, This
movement, known as iatro-chemistry or medicinal chemistry, was
not altogether dissociated from the alchemists’ search for the elixir
of life and for a panacea, which were respectively to prolong life
indefinitely and serve as a cure for all its ills. Moreover, the ancients
already had made various attempts in this direction. But the
main impetus to iatro-chemistry had been given by Paracelsus
(1493~1541), and some of the ablest chemists at the dawn of the
new age were followers of Paracelsus. A third tendency was that
intimately associated with the mining industry. The practical
needs of this important industry, coupled with the great opportunities
which it afforded for close observation and experiment, had led
from early times to the accumulation of considerable knowledge
of metals and their treatment. The men engaged in this kind of
work, however, were not given to expressing their views in books,
least of all in the kind of speculative treatises which were likely
to appeal to the learned people of the time. The introduction of
printing, however, made a difference, and gradually a number of
books made their appearance in which the practical knowledge of
the miners found more or less adequate expression. This movement
found its most systematic expression in the writings of Georgius
Agricola, otherwise Bauer (1404-1555), just as the iatro-chemical
movement found its fullest expression in the writings of Johann
Baptista van Helmont (1577-1644). There was a certain amount of
rivalry between the three tendencies just indicated, and there was
no lack of strong language in their mutual criticisms, but most of
their followers shared more or less the ideas developed by the
alchemists.

IaTrRo-CHEMISTRY IN THE SEVENTEENTH CENTURY
LIBAVIUS
Among the iatro-chemists of this period Andreas Libavius,

otherwise Libau (? 1540-1616), was probably the most deserving.
He was born at Halle, in Germany, studied medicine as well as
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history and philosophy, and eventually became Director of the
Grammar School at Coburg. He is chiefly noted as the author of the
first real text-book of chemistry. It was published in 1597 under the
title Alchemia, and contains a full discussion of the chemical
theories of the time. In his account of current theories Libavius
showed considerable independence and sanity of judgment, neither
accepting new views merely because they were new nor rejecting
them merely because they were not old. In fact, he does not appear
to have held any strong convictions on chemical theory, but just
recorded the Aristotelian (or rather pre-Aristotelian) view of the
four elements theory (earth, water, air, fire), Jabir’s sulphur-
mercury theory of the composition of metals, and Paracelsus’ view
of the three principles, or elements, namely sulphur, mercury, and
salt. But Libavius was not merely a compiler or critic. He made a
number of original contributions to chemical knowledge. He dis-
covered stannic chloride (SnCl,), which was consequently long
known as spiritus fumans Libavii. He described a compound of tartar
and calcined antimony now known as tartrated antimony. The
solution, which he prepared by leading the vapours of burning
sulphur into water, he named “‘acid spirit of sulphur,” and identified
it with the acid obtained by distilling green vitriol or by heating
sulphur with agua fortis (nitric acid). He also prepared sugar-candy
(hydrated sugar crystals). He described how spirits of wine could be
obtained from grain, fruit, etc.,, by fermentation and distillation,
He gave a method for the analysis of mineral waters, namely by
evaporating the water and comparing the weight of the saline
residue with the weight of the water which had been evaporated.
He taught a simple and quick way of determining whether a water
is mineral at all, that is, whether it contains metallic, alkaline, and
carthy salts. A weighed white cloth is steeped in the water to be
tested, then allowed to dry in the sun, and weighed again. If it
has increased in weight and shows spots, then the water must have
contained fixed mineral substances. Libavius also made artificial
gems by colouring glass with metallic oxides, showed that fluor-
spar was a flux for metals and their oxides. He was also the first
to prepare ammonium sulphate, and to record the blue colour
produced in ammonia by copper.

VAN HELMONT

Johann Baptista van Helmont was born in Brussels in 1577. A
wealthy nobleman by birth, he preferred hard work in the chemical
laboratory to the splendours of Court life. He studied classics in
the University of Louvain, visited London in 1604-5, and then
devoted himself to the medical service of the poor. It was in this
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way that he came under the influence of the medicinal chemisiry
of Paracelsus, whom he greatly surpassed. Van Helmont’s greatest
service to chemistry consisted in having been the first to show
scientifically the material character of gases and their variety.
Thereby he became the forerunner of the pneumatic chemists of
the eighteenth century. The term *“gas” was actually introduced by
him. (He derived it from the Greek chaos, an expression which
Paracelsus had applied to air.) But it was not till the time of Lavoisier
that the term came into real vogue, most chemisis till then being
content to use the word “air.”

Van Helmont recognized the existence of many different gases.
This was certainly an advance on the previous tendency to regard
air as the only substance of its kind. But owing to the absence of
any means of collecting gases for suitable experimental examination
he could only classify them in a rough kind of way based mainly
on their more obvious physical properties. Thus he enumerated
the following kinds of gases: wild or unrestrainable gas, windy gas
(air), fat gas, dry or sublimed gas, smoky or endemical gas, etc. He
also observed that fat gas (obtained from the large intestine and by
the fermentation of animal excrement) is inflammable, whereas
wild gas extinguishes a flame. Moreover, he pointed out that gas
obtained from the firing of charcoal, from the fermentation of
vegetable juices, from the action of distilled vinegar on the shells
of certain fish (what would now be described as the action of acetic
acid on carbonates), from intestinal putrefaction (as in the digestion
of food), from certain mineral waters, from mines, and from certain
caverns (like the Grotto del Cane near Naples) are all the same
kind of gas, namely what he called wild or unrestrainable gas
(spiritus silvester), and which consisted mostly of what is now known
as carbon dioxide. But he cannot be regarded as the discoverer of
carbon dioxide, for he had no method of identifying it, and he
actually included under wild gas the gas obtained from the solution
of silver in agua fortis (which really yields nitric oxide), from the
burning of sulphur (which yields sulphur dioxide), ete. All that
he meant by wild gas was a gas that “cannot be constrained by
vessels, nor reduced to visible body.” In the course of his experi-
ments van Helmont noticed that his vessels were often shattered
when gas was released in them even in the cold. He had more
than a mere suspicion that the gas was the cause of the breakages,
and he even suggested that the destructive action of gunpowder
was due to the gases which it produced. (See Oriatrike, p- 106.)

_Some of van Helmont’s experiments induced him to embrace the
view that ““all salt, clay, and indeed all tangible bodies are really
and materially the product of water only, and may be reduced
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again to water by nature or art.”” One of these experiments con-
sisted in distilling some oak-wood, which yielded a colourless liquid
like water. From this he concluded that even the gas obtained from
the burning of charcoal was in the last resort really composed of
water. To confirm this hypothesis he tried the reverse experiment
of showing how water is transformed into wood. For this purpose he
carried out an historic experiment, which had been suggested, if
not actually made, by Nicolas de Cusa in the fifteenth century. This
is van Helmont's account of the experiment. “I took an earthen
vessel, and put in it two-hundred pounds of earth that had been
dried in a furnace. I moistened the earth with water and planted
therein the trunk or stem of a willow-tree weighing five pounds.
At the end of five years the tree which had grown up weighed one-
hundred-and-sixty-nine pounds and about three ounces. 1 had
moistened the earthen vessel, whenever necessary, with rain-water or
with distilled water . . . and I had covered the mouth of the vessel
with an iron plate covered with tin lest the dust flying about should
mingle with the earth [in the vessel]. . . . I computed not the
weight of the leaves that fell off in the four autumns. Eventually I
dried the earth in the vessel, and there were found the same two-
hundred pounds, less about two ounces. Therefore one-hundred-
and-sixty-four pounds of wood, bark, and roots had been formed
out of the water alone.” In further support of his views van
Helmont pointed to the fossils of shells to be found on what had
long been dry land. These regions must have been water when
the shell-fish lived in them, but had been transformed into carth
since then. Van Helmont, however, did not hold the view (usually
associated with Thales) that water is the origin of all things. He
regarded air as entirely different in character, not derivable from
water, nor convertible into it. Water, he admitted, can of course
be converted into vapour; but this is merely vapour, that is, water
the atoms of which are rarefied, and which are at once condensed
by the action of cold so as to resume their former state. (See Oriatrike,
Pp: 52, 109.)

Some of van Helmont’s conclusions, as already remarked, would
have been very different if he had the necessary apparatus for
collecting and examining gases. Yet one of his experiments nearly
placed the required apparatus within his reach, and may actually
have suggested the subsequent invention of the pneumatic trough
and its accessories. The experiment in question was described by
him in the following terms. Place a lighted candle at the bottom
of a basin; pour water into the basin to a depth of two or three
inches; cover the candle, one end of which is above the water,
with an inverted glass receiver. Presently you will see that the water
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is, as if by a kind of suction, raised in the receiver and takes the place
of the diminished air, and that the flame is extinguished. The only
conclusion he drew from this experiment was that it is possible to
create a vacuum, but that it is filled immediately by a material
substance. It did not occur to van Helmont that something might
have been taken from the air in this experiment, any more than it
had occurred to him that the tree (in the experiment described
above) might have derived something from the air in which it had
grown. It may be worth noting that similar experiments with
a candle burning in a flask inverted over water appear lo have
been made already by Philo of Byzantium (? first century), Averroes
(twelfth century), and others. Van Helmont's chief works are
Opuscula Medica (1644) and Orius Medicing (1648) (English trans.
by J. Chandler, Oriatrike, or Physick Refined, 1662). See also J. R.
Partington, “Joan Baptista van Helmont” (Annals of Science, 1936,

vol. 1, 359-384).

GLAUBER

The last of the more important iatro-chemists was Johann Rudolf
Glauber (1604-68). A native of Karlstadt, Germany, he spent
most of his life in Vienna, Salzburg, Frankfurt, Cologne, and in
Amsterdam, where he died. Perhaps his most important book is
that entitled A4 Description of the Art of Distillation. This was first
published in German in 1648. In 1651 a Latin version of it appeared
with the title New Philosophical (i.c. Scientific) Furnaces. His col-
!l:ctcd Chemical Works were published in 1658, in Latin, and in 168g
in English (translated by Christopher Packe). Glauber was an
expert metallurgist and assayer. He described in detail various
methods of distillation, the different kinds of furnaces used for
the purpose, and the divers uses to which the products distilled
might be put, In his theoretical speculations he compromised
between Paracelsus and van Helmont by accepting three principles
or elements but substituting water for mercury in the list of Para-
celsus. “The principles of vegetables,” he wrote, “‘are water, salt,
and sulphur, from which the metals also are derived.” He was,
however, essentially a practical experimenter who was more con=
cerned with the utility of chemical discoveries than with speculative
theories. His fame is popularly associated with the so-called
“Glauber’s salt,” which he himself had named “the wonderful salt.”
When he was about twenty-one he had an attack of fever while
at Vienna, He was advised to take the waters of a certain well in
Neustadt. He did so, and got rid of his fever. Later on he analysed
a sample of the water, and observed the formation of crystals very
like those produced by dissolving and crystallizing the residue
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left in the retort after the preparation of what he called “spirit of
salt” (also “muriatic acid,” or briny acid) from vitriol and common
salt. Glauber's account of the preparation of “'spirit of salt” is worth
quoting, if only in virtue of his description of the apparatus ust._‘d,
“You take common cooking salt and mix some vitriol or alum H‘ll!'l.
it. The mixture is placed on glowing coals. The issuing spirit 1s
condensed in a receiver (see Illustr. 182). Should anyone say that

D

Tlustr. 182.—Glauber's Distillation Furnace (1)

A is a Furnace containing an iron 5till connected to a Receiver, B, cutside.
C shows the external Form of the Still, and D shows what it looks like inside.

this spirit of salt is not pure because the spirit of the vitriol or
of the alum has mixed with it, I answer that it is not so. For I have
frequently put vitriol alone and alum alone into the furnace, but
no spirit issued, because the spirit of vitriol or of alum does not rise
but is burnt.” (Works, Packe’s Tr., p. 4.)

In connection with the method just described and illustrated, it
is interesting to point out that Glauber subsequently improved the
process by heating the mixture in a glass vessel, and was thus the
first to prepare “spirits of salt” in a high degree of purity.

Glauber recommended his wonderful salt as *“a splendid medicine
for internal and external use.” He advised the domestic use of spirits
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of salt as a substitute for vinegar, and said that it softens meat and
greatly improves the taste of meat and poultry, He also found that
the liquid obtained by similarly distilling a mixture of salt and
saltpetre with oil of vitriol could be used like agua regia for dis-
solving gold. Next, he discovered that by gently heating saltpetre
and oil of vitriol in a glass retort placed in a bath of sand over
a furnace, a specially pure form of agua fortis could be obtained.
In this way Glauber was probably the first chemist to be familiar
with the three mineral acids and aqua regia, which constitute the
four great reagents of inorganic
chemistry.

Glauber also gave some promin-
ence to the idea of chemical affinity
and, which is much more remarkable,
to what is now known as metathesis
or double decomposition. For in-
stance, in his account of the reaction
which occurs when corrosive sub-
limate (“sublimed mercury”) is M
heated with sulphide of antimony, he
remarks that the “corrosive spirits”

(or “spirits of salt” in this case)
forsake the sublimed mercury and
associate themselves with the anti-
mony, and thus form butter of anti-
mony, while the sulphur of the anti-
mony is joined to the quicksilver and
yields cinnabar (see Glauber’s Works,

Tllustr. 185.—Glauber's Distillation
Furnace (2)

Dis a Furnace to which are attached

Receivers, supported on a Stool,

K, and various Devices for accele-

rating Condensation. P, iron Bars
of the Furnace Grate,

translated by C. Packe, 168q, p.71.).

Glauber earned his living by the sale of secret medicinal prepara-
tions. His favourite prescriptions included a universal medicine, or
panacea, obtained by heating the calx of antimony with tartar;
a secret sal ammoniac (which was actually ammonium sulphate,
and not the chloride) prepared from oil of vitriol and spirits of
hartshorn; and solutions of gold or iron or mercury or antimony
with muriatic acid or aqua regia.

In his book called The Prosperity of Germany, Glauber showed
his interest in problems of political economy, with special reference
to the industrial and commercial aspects of chemistry. He drew
attention to the great mineral wealth of Germany, but protested
against the export of it in the form of raw materials from which
other: countries manufactured goods which they then resold to
F;Ermnnf' Among Glauber’s own contributions to the chemical
industries of his fatherland must be included not only the various



sz HISTORY OF SCIENCE, TECHNOLOGY, AND PHILOSOPHY

medicaments already mentioned, but also his discovery of a new
process for colouring artificial gems by means of gold, copper,
manganese, and other metals; his discovery that organic matter
can be dyed black by means of a solution of silver in agua _fortis (silver
nitrate}, and many other discoveries.

REY

Jean Rey, the author of Essays de Jean Rey, docteur en medecine, sur
la Recherche de la cause pour laguelle I'Estain ¢t le Plomb augmentent de
poids guand on les calcine (Bazas, 1630; reprint, Paris, 1777 ; Alembic
Club Reprints, No. 11), was one of the first to draw attention to
the réle of air in the calcination of metals. We know almost nothing
of Rey except that he lived about 1630; but in his Essays he gave
expression to an idea which long afterwards, under Lavoisier,
changed the whole face of chemistry. Rey states that the Sieur
Brun, Master Apothecary in Bergerac, had asked him for an
explanation of the fact that tin and lead increased in weight when
they were calcined. Accordingly, Rey “devoted several hours to
the question,” and allowed the Essays to “slip from his hands.” To
provide the Master Apothecary with an answer to his query, Rey
composed a preface, twenty-eight essays, and a conclusion in
“efforts to seek the truth in so arduous a question.”

First of all, Rey found that he had to depart from views generally
held, and to recognize that all things in nature were heavy. This
was opposed to the prevailing theory that earth and water, being
heavy, took up the lower regions of the world on account of that
heaviness, whereas air and fire, being light, rose upwards. To Rey
all substances were heavy, and there was nothing light in Nature;
each of the four elements occupied its place on account of its heavi-
ness ; the upward movements of air and fire being due to their dis-
placement by the heavier elements, earth and water. All moved
naturally downwards, the heaviest to the lowest place, and the least
heavy were forced to the highest place by the downward motion
of the others. In these matters, he argues, the balance has caused
deception and weights must be examined “by the reason.” “T . . .
affirm,” he wrote, “that the examination of weights which is made
by the balance differs greatly from that which is made by the
reason. The latter is only employed by the judicious; the former
can be practised by the veriest clown. The latter is always exact;
the former is seldom without deception. The latter is attached to
no circumstance of place; the former is commonly exercised only in
the air, and occasionally, with difficulty, in water. It is from this
that the error I have combated (that air is without weight) draws
an argument which may dazzle feeble eyes, though not clear-seeing
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ones. For, balancing air in air itself, and finding no weight in it,
they believed that it had none. But let them balance water (which
they believe to be heavy) in water itself, and they will find no weight
in it cither: the fact being that no element shows weight when
weighed in itself” (Essays, pp. 17, 18, Alembic ed.).

Air, therefore, according to Rey, has weight; but as his design
is to show that the increase of weight of tin and lead on calcination
is due to admixed air and as the calces of these metals are tested
by the balance and weighed in air, he seeks to show that this admixed
air is heavier than ordinary air—if it were not heavier it would
show no weight in air. He accordingly argues that air can be made
heavy by addition of heavier foreign matter, by compression, and
by separation ofits less heavy parts. With regard to this last method,
he argues that fire makes water denser by the separation of its less
heavy parts; and therefore it has the same effect on air. If air be
heated, its less heavy parts will be driven off and its heavier parts
will remain; and thus air becomes denser on heating, and will show
this increase in density when weighed on a balance in ordinary air.

Rey is now almost, but not quite, ready to give his answer. I
comprehend already,” he says, “that to elude the force of so many
reasons and experiments’” (which experiments he certainly did not
make), ““I shall be told that the examples I have brought forward
can indeed be verified in our gross and impure air, but that it would
be otherwise with pure air, if there were such in nature. And
assuredly I wish for nothing better to dispose me to a song of triumph.
For does anyone believe that I think the sieur Brun and the others
who have performed the augmentation in question, procured some
purer air, by letters of exchange, from beyond the bounds of
nature?” (op, cit., p. 34). :

After a short essay showing how, by suitable methods, air may
be made to decrease in weight, Rey gives his “Formal response to
the question, why Tin and Lead increase in weight when they are
calcined.” He says: “Now I have made the preparations, nay, laid
the foundations, for my answer to the question of the sicur Brun,
which is, that having placed two pounds six ounces of fine English
tn in an iron vessel and heated it strongly on an open furnace _fnr
the space of six hours with continual agitation and without adding
anything to it, he recovered two pounds thirteen ounces of a white
calx ; which filled him at first with amazement, and with a desire to
know whence the seven ounces of surplus had come. . . . To this
qQuestion, then, I respond and sustain proudly, resting on the foun-
dations already laid, “That this increase in weight comes from the
air, which in the vessel has been rendered denser, heavier, and in
some measure adhesive, by the vehement and long-continued heat
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of the furnace: which air mixes with the calx (frequent agitation
aiding) and becomes attached to its most minute particles: not
otherwise than water makes heavier sand which you throw into it
and agitate, by moistening it and adhering to the smallest of its
grains.” I fancy there are many who would have been alarmed by
the sole mention of this response, if I had given it at the beginning,
who will now willingly receive it, being as it were tamed and ren-
dered tractable by the evident truth of the preceding Essays"
(ap. cit., pp. 36, 37). And Rey is careful to point out that the gain
in weight covers losses due to vapours and exhalations and to the
increase in volume of the tin on calcification.

After disposing of various objections and describing how he
carried out an experiment (probably his only experiment on this
problem), at his son’s ironworks, where he calcined tin on a hot
iron ingot and found it to increase in weight, Rey states: “By a
single experiment all opinions contrary to mine are entirely de-
stroyed™ (op. eil., p. 49). This cxperiment he copied from Hamerus
Poppius, who in his Basilica Antimonii (1618) describes how he took
a weighed quantity of antimony, calcined it, by means of the Sun's
rays, with a burning mirror, on a marble slab, and found an increase
in weight. Here, says Rey, there is no question of loss of celestial
heat, consumption of aerated particles of the metal, addition of
soot or parts of the containing vessel, admixture with the vapours
or volatile salts of charcoal, or humidity. “Let now,” he adds, “all
the greatest minds in the world be fused into one mind, and Jet this
great mind strain every nerve beyond its power; let him seck dili-
gently on the Earth and in the Heavens, let him search every nook
and cranny of nature: he will only find the cause of this augmenta-
tion in the air when the Sun’s rays heat it, and render it dense and
heavy, so that it then mixes with the calx as the antimony on calcina-
tion crumbles and becomes adherent in its minutest particles. And
this confirms entirely the truth of my belief in the augmentation of
lead and tin: which can have no other cause than the admixture
of condensed air, there being no difference between the increase
of weight in these two metals and in antimony, only that in the
last case the air is condensed by the solar rays, and in the former
by the heat of the common fire” (ap. cit., p. 51).

Finally Rey says that the calx does not increase in weight in-
definitely because, as in other phenomena, such as the mixing of a
solid with a liquid, “Nature in her inscrutable wisdom has here set
limits which she never oversteps.” The calx becomes saturated with
the condensed air and it can then take up no more. And, as for
calces that do not increase in weight, they are produced from
substances that contain much exhalable matter or they suffer great
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increase of volume, and in neither of these cases is the loss of weight
made good by the addition of the condensed air. This brings Rey
to the question of lead. Sieur Brun had observed a loss of weight
in the case of lead—*‘by one ounce in the pound.” But, says Rey,
others (Cardan, Scaliger, and Cesalpinus) have observed an increase.
The explanation of the different results obtained is, according to
Rey, quite simple. “‘Some lead is more pure than others, either
because it comes so from the ores or because it has been previously
melted. Those named above have formed augmentation with the
pure lead : the sicur Brun a diminution with the other” (ibid., p. 54).

Rey’s work passed unnoticed, and it only became known when
Bayen directed attention to it, in 1775, when Lavoisier had begun to
experiment on this problem.

(See J. M. Stillman, The Story of Early Chemisiry, 1924.)

Tre Becmnmic oF CHEMICAL SciEsxce

The activities of the alchemists, metallurgists, and iatro-chemists
had certainly led to results of various kinds which could be turned
to scientific account. But the aim of these investigators was prac-
tical rather than scientific, and their experiments accordingly
were what Francis Bacon called “fructiferous™ rather than *“lumi-
niferous,” that is, directed to the production of utilities (real or
imaginary) rather than to the promotion of a scientific understand-
ing of chemical phenomena. Now, important as observation and
experiment are for science, they are not sufficient in themselves.
Science needs also illuminating ideas for the guidance and under-
standing of the facts observed. If the new age protested, and pro-
tested rightly, that ideas without adequate experimental data are
empty fancies, it was equally necessary to realize that mere experi-
mentation without adequate ideas is blind. The case is, in fact,
worse than that. No empiric is content 1o dispense with ideas
altogether; and in the absence of clear concepts, and of a sufficient
grasp of scientific method, the empiric simply indulges in wild
fancies, and ends in sheer mystification. After Galilei’s researches
had set up models of scientific investigation in mechanics it was
time for a critical scrutiny to be made of the conceptions and pre-
conceptions current among the chemists of the time, and to show
the way for the proper conduct and interpretation of chemical
experiments. This complex task was undertaken mainly by Boyle
and Hooke, who may be credited with having laid the foundations
of chemical science.

Broadly speaking, the speculative ideas current in the chemistry
of the time may be summarized as follows. The so-called Aristo-
telians, Peripatetics, or Hermetic philosophers maintained that all
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bodies were composed of the four elements, earth, water, air, fire.
On the other hand, the followers of Paracelsus, the so-called
Spagyrists or “chymists” simply, held that salt, sulphur, and
mercury were the hypostatical principles, or constituents, of all
things. Various compromises between the two lists of elements were
adopted. Some adopted both lists in their entirety; others accepted
the three “principles” of Paracelsus coupled with two out of the
other four elements (say, water and earth); yet others selected just
one or two from each list. The attempt to make shift with such a
small number of kinds of entities led to all sorts of dubious devices,
notably that of giving the same name to ever so many different
kinds of things. The radical defect was confusion about what was
really to be understood by an “element” or “principle.” Intimately
connected with this confusion was the almost universal belief in
fire as the unfailing instrument of analysis capable of resolving
all mixed or compound bodies into the elementary substances which
compose them. And to crown this mass of confused notions, explana-
tions were made not only in terms of occult qualities, but also in
terms of substantial forms—the “forms™ of things being conceived
more or less as souls or spirits, after the manner of the Stoic dis-
tortion of the views of Aristotle, whose differentiation between
matter and form was identified by the Stoics with that between
body and soul. Quasi-animistic explanations of this kind only tended
to confirm the general conception of chemistry as a kind of magic.
Such, briefly, were some of the ideas which Boyle attempted to
rectify.

BOYLE

The Honourable Robert Boyle (1627-g91) was the seventh son
of the Earl of Cork. He was born in Ireland, studied at Eton, and
then travelled on the Continent. He was in Italy in the year in which
Galilei died and Newton was born (1642). He returned to England in
1644, just about the time when the Philosophical or “Invisible”
College was started; and when this College became the Royal
Society in 1662 he was one of its first and most influential members,
He had come under the influence of Francis Bacon's ideas about
science, and of the mechanical (or anti-animistic) philosophy which
had received considerable impetus on the continent through the
writings of Galilei and Descartes. He was devoted to experimentation,
yet appreciated also the importance of ideas, so long at least as
these did not clash with his religious prejudices, and he could at
times speak contemptuously of mere experimenters as “sooty
empirics.” Fortunately for Boyle and for Chemistry, his experimental
rescarches had no obvious bearing on Christian theology, and so
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he could pursue them in a genuinely scientific spirit, which did
much to sweep away the cobwebs which smothered the chemistry
of his day. Of his numerous books the most important one is The
Sceptical Chymist, first published in 1661, though it was written and
privately circulated some years before.

Boyle begins by insisting that chemistry should be pursued, not
as an empirical art for the making of precious metals or of useful
medicaments, but as a science, a branch of natural philosophy.
“Finding the generality of those addicted to chymistry to have
had scarce any view but to the preparation of medicines, or the
improving of metals, I was tempted to consider the art not as a
physician, or an alchymist, but as a philosopher” (Preliminary
Discourse to Boyle’s Works, ed. 1725, by P. Shaw, Vol. I, p. xxvii).
As a branch of philosophy or science chemistry is concerned mainly
with the theoretical explanation of phenomena rather than with
their practical exploitation. And such explanation was seriously
thwarted by the obscure jargon in which chemical writers of the
time wrapt their views and assumptions as if to shield themselves
from detection and attack. This smoke screen had to be dispersed
so that all that was hostile to science might be seen and repulsed.
Boyle accordingly proceeded to deal critically with the various un-
warranted assumptions indicated above, and his criticism was always
supported by reference to actual experiments.

First he attacked the current assumption that all things are
composed of three or four or some other small number of elements.
This assumption appeared to him as unwarranted as if somebody
“seeing a great book written in cypher, whereof he were acquainted
with but three letters, should underiake to decipher the whole
piece” with those few letters. “The Book of Nature” may need many
more than three or four elements wherewith to decipher it. Boyle
exposed the current confusion in the use of the term “element” (or
“principle,” etc.), and formulated his own conception of it as
follows: “I . . . must not look upon any body as a true principle
or element, but as yet compounded, which is not perfectly homo-
gencous, but is further resoluble into any number of distinct sub-
stances, how small soever. . . . I now mean by elements . . . certain
primitive and simple or perfectly unmingled bodies, which not
being made of any other bodies, or of one another, are the ingredients
of which all those called perfectly mixed bodies are immediately
compounded, and into which they are ultimately resolved.” The
formulation of this conception was itself a valuable service to
chemical science, though the fullest use of the concept was not
made until Lavoisier based on it his list of chemical elements.
However, having cleared up the notion of an element, Boyle warned
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his readers against mere fancies and vague possibilities. The busi-
ness of the scientific chemist is ““to consider, not of how many
elements it is possible that nature may compound mixed bodies,
but (at least as far as the ordinary experiments of chymists will
inform us) of how many she doth make them up.” Boyle has no
difficulty in showing that not all substances can be compounded
out of, or resolved into, either the four elements or the three prin-
ciples, and he offers to defray the cost of an experiment which
will decompose gold into salt, sulphur, and mercury. Again, from
some bodies more than three or four distinct substances can be
obtained. Blood, for example, yields phlegm, spirit, oil, salt, and
earth. The four elements of the Peripatetics and the three principles
of the Spagyrists are far too few to account for even a tenth of the
phenomena known. Their inadequacy is concealed by the application
of the same name to many different substances. Thus, for instance,
the term “salt” is applied to such different things as fixed vegetable
salts, volatile animal salts, etc., though (as Boyle shrewdly notes)
they differ visibly in their (crystal) forms. Similarly, the term
sulphur is applied to different substances, some of which float on
water while others sink in it. And so on. (Seep. Clym., pp. 236, 350.)

Boyle next attacks the radical error on which the above errors
arc based, namely the contemporary misconception of the action
of fire in chemical experiments. It was commonly assumed that fire
is the universal instrument of analysis, and that it only separates all
the elements which pre-exist in the heated substance. Boyle con-
tends that this triple assumption is unwarranted, and he supports
his contention with experimental evidence. In the first place, fire
{or heat) does not analyse all mixed bodies. Glass, for instance,
cannot be analysed by means of fire, although it is known to be
composed of the salt and the earth remaining in the ashes of a burnt
plant. Even when fire does separate a mixed body into various
parts, these parts are not necessarily elements. For the results
obtained when the same material is treated by fire are different
according as the fire is applied in the form of combustion or of dis-
tillation. Wood, for instance, yields soot and ashes when burnt, but
gives oil, spirits, vinegar, water, and charcoal when distilled. The
effect of fire is really different in different circumstances. Thus
coal burnt in the open air is calcined to ashes, but is not calcined
at all if heated in a closed vessel, even if kept red-hot in a vehement
fire. Similarly, sulphur if burnt in the open air gives fumes which
yield an acid liquor, but if heated in a closed vessel it sublimes to
flowers of sulphur, which may be melted into the original kind of
sulphur. Fire may, in fact, compound the parts after a new manner,
or even incorporate new ingredients (instead of separating the old
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ones), and so produce what did not pre-exist in the original mixed
body. Thus in experiments with plants, like van Helmont's above-
mentioned experiment with a tree, it would seem that the various
things obtained from the plant by distillation, namely salt, spirit,
earth, and oil, may be produced out of water, in which they could
not have been pre-existent, any more than the glass produced
by heating the ashes of a burnt plant can be said to have been pre-
existent in the plant.

While making the criticisms just outlined Boyle had occasion
to clear up yet another important chemical concept, namely that of
“‘composition.” In a mere “mixture” each constituent retains its
properties and can be separated from the rest; in a *‘compound
mass” each constituent loses its characteristic properties and is
more difficult to separate from the rest. Sugar of lead, for instance,
is composed of litharge and vinegar, but is sweet in taste, unlike
either of its components.

In the course of his attack on the view of fire as the universal
instrument of analysis Boyle repeatedly pointed out that various
mixed substances which could not be separated by means of heat
could be analysed easily by other means, such as agua fortis, a solu-
tion of salt of tartar, etc.

Elsewhere, in his study of colours, Boyle made an observation
of considerable chemical importance, when he found that syrup
of violets, which is blue, turned red on addition of acid, and green
on addition of alkali. He suggested that these changes might be used
to determine the nature of bodies “chymically prepared” and the
changes “that nature and time produce” in them.

Boyle's interest in the nature and action of fire nearly led him
to the discovery of oxygen. He observed that various burning
bodies, such as candles, coals, sulphur, when placed in the receiver
of his air-pump were extinguished when the receiver was exhausted.
He also noted that the flame of a lamp, though fed with oil, went
out even in an unexhausted receiver, and that all but a very small
part of the air was left in the receiver after the extinction of the
flame. It seemed, therefore, that only some part of the air was neces-
sary for combustion. He concluded, accordingly, that “there may
be dispersed through the rest of the atmosphere some odd sub-
stance, cither of a solar, astral, or other foreign nature, on account
whereof the air is so necessary to the subsistence of flame.” These
experiments on combustion in an unexhausted receiver, however,
misled Boyle to underestimate the proportion of this “odd sub-
stance” in the air. For he noted that the “spring” of the air in the
unexhausted receiver was undiminished after combustion. To
Boyle, therefore, the air seemed practically unchanged. His method
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of experiment was such that it could not reveal the true cause of the
undiminished “spring,” namely the fact that the gaseous products
of the combustion had maintained the volume of the original air.
His experiments on the calcination of metals did not help to enlighten
him on the matter, because he explained their increase in weight as
due to their absorption of particles of heat or fire from the furnace
(Fire and” Flame weighed in the Balance, 1673). Anyway, Boyle had
arrived at the conclusion that some part of the air was necessary
for combustion. This conclusion and the experiments on which it
was based were described in his New Experiments Physico-mechanical,
touching the spring of the Air, and its Effects (published in 1660) and in
Hidden Qualities of the Air (1674).

In the former treatise Boyle also discussed problems of respiration.
His experiments tended to show that the life of an animal is as
dependent on some part of the air as is the flame of a lamp. He
quotes the view of Paracelsus who had compared the relation of air
to the lungs with that of foods to the stomach ; the lungs digest and
consume part of the air and expire the rest as a kind of excrement.
“We may suppose” (Boyle continues) “that there is in the Air a
little vital Quintessence . . . which serves to the refreshment and
restauration of our vital Spirits, for which use the grosser and
incomparably greater part of the Air being unserviceable, it need
not seem strange that an Animal stands in need of almost inces-
santly drawing in fresh Air.” His only criticism of this view of
Paracelsus is that it should have been verified experimentally—a
defect which Boyle tried to remedy. He showed that animals placed
in a receiver, from which the air was then pumped out, died very
quickly. An eel in such an exhausted receiver turned on its back,
but revived when air was readmitted, Even in an unexhausted
receiver animals only live a comparatively short time if the air
in it is not renewed. Fishes, whose gills function just like lungs, die
in ponds that arc frozen over and so exclude new supplies of air,
Boyle also considered the case of the embryo or foetus and the
absence of direct respiration on its part. The absence of direct
respiration appeared to be made good by a supply of the mother's
arterial blood, containing a rich supply of “vital quintessence"
drawn from the air by the lungs of the mother. Thus the conception
of a vital substance or quintessence contained in the air and helping
to sustain animal life through respiration and mingling with the
animal’s blood brought Boyle once again to the verge of the dis-
covery of oxygen. But Boyle appears to have been too cautious
to venture on the identification of the part of the air used up in
combustion with the part used up in respiration, or even to suggest
the chemical properties of either part. The problems of combustion
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and respiration were carried a stage nearer their solution by Boyle's
contemporaries, and co-workers at the Royal Society, Robert Hooke
and Richard Lower.

HOOKE

Robert Hooke was born at Freshwater, Isle of Wight, in 1635.
From about 1655 he was employed as research assistant by Robert
Boyle, whom he helped with the construction of the air-pump, and
in his numerous experiments. In 1662 he was appointed Curator of
Experiments to the Royal Society, of which he was elected a Fellow
in the following year. From 1662 until his death in 1703 Hooke
carried out innumerable experiments at the Royal Society., He was
a very skilful experimenter and a most versatile thinker, but appar-
ently lacking in sufficient perseverance to carry through completely
many of the thoughts which occurred to his fertile brain. The nature
of his post at the Royal Society, and the free and easy exchange
of ideas at the meetings of this Society, have inevitably made it
difficult in many cases to ascertain who was really the first author
of various suggestions which were first ventilated at these meetings.
It is quite possible that Hooke did not always get due credit for his
share in a number of scientific discoveries or inventions. Be that as it
may, his share in the researches into the nature of combustion and
respiration seems clear and creditable. Presumably he had some
share in the experiments made by Boyle and described in his New
Experiments Physico-mechanical, of 1660, of which some account has
been given above. Hooke, however, advanced beyond Boyle by
identifying the part of the air used up in combustion with the part
used up in respiration, and by describing this part of the air as
nitrous in character. The main facts relating to Hooke's contribu-
tions to the study of combustion and respiration are recorded in
Birch’s History qf the Royal Society, and in Hooke’s Micrographia (1665),
and especially in his Lectures (1681-2). They may be summarized
as follows.

In 1664 Hooke made experiments which showed that when en-
closed in a receiver containing compressed air a lamp would continue
to burn, and a bird or 2 mouse would continue to live, much longer
than when the air in the receiver was at ordinary pressure. In 1665
Christopher Wren appears to have thrown out the suggestion that
air contains “npitrous fumes" which sustain animal life; and he
actually tried to invent something for fumigating sick rooms with
nitrous fumes. The idea secems to have been taken up promptly by
Hooke, who extended it also to explain combustion. At the end of
1664 (0O.S.) Hooke made an experiment which was intended to
show that flame or fire is the dissolution of combustible bodies
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brought about by a “nitrous substance inherent and mixt with the
air.”” In the Micrographia this “nitrous substance” is described as
“like, if not the very same, with that which is fixt in salt-petre”
(ed. 1665, p. 103; Alembic Club Reprint, No. 5, p. 44). In a later
volume Hooke assimilated respiration to combustion in the state-
ment that animals “live no longer than they have a constant supply
of fresh air to breathe, and, as it were, blow the fire of life; for so
soon as that supply is wanting the fire goes out, and the animal
dies” (Of Light, May 1681, in R. Waller's ed. of the Posthumous
Works of R. Hooke, 1705, p. 111). On the other hand, he showed
that animals can be preserved alive by blowing through their lungs
with bellows, even without the usual breathing motions of the lungs.
As already remarked, the essential part for combustion and respira-
tion, according to Hooke, is the volatile nitrous substance which is
contained in the air. That the part of the air involved is nitrous
seemed evident to Hooke from the fact that mixtures containing
nitre can burn even without air. “This” (he says) “is obvious in
compositions made with salt of nitre and other combustible sub-
stances, as in gunpowder and the like, which will actually burn
without the help of air . . . under water; nay, in an exhausted
receiver . . . though where this nitrous part is wanting no com-
bustion . . . will be produced, be the heat never so great” (ibid.,
Discourse of the Nature of Comels, 1682, p. 16g).

In 1665 Hooke showed experimentally that plants need air for
their growth. He had sown some lettuce-seed upon earth in the
open air; and at the same time upon other earth in a glass receiver
which was afierwards exhausted of air; the seed exposed to the
air was grown up an inch and an half high within eight days; but
in the exhausted receiver not at all (T. Birch: History of the Royal
Society, 1756-7, Vol. 11, pp. 54, 56).

In 1667 and 1668 Hooke studied experimentally the entry of air
into the blood of animals and the effects produced thereby. In the
presence of Richard Lower he made experiments to ascertain
whether an embryo in the womb lives by its own or by its mother’s
respiration. The experiments seemed to show that the blood of
the embryo is ventilated by the help of its mother, and that there
is a “*continual and necessary communication of the blood of the dam
with that of the foetus™ (T. Birch: History of the Royal Society, 1756-7,
Vol. II, p. 233). Other experiments showed **that blood, though of
a dark blackish colour, would, when exposed to the air, become
presently very florid, and that florid surface being taken off, and
the adjacent part exposed again, would acquire the like floridness;
and that therefore it might be worth observing by experiment
whether the blood, when it passes from the right ventricle of the
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heart into the left, coming out of the lungs, it hath not the tincture
of floridness, before it enters into the great artery ; which if it should
have, it would be an argument, that some mixture of air in the
blood in the lungs might give that floridness” (ibid., p. 274). These
and connected problems were investigated more thoroughly by the
above-mentioned Richard Lower, who availed himself, however,
of Hooke’s method of producing artificial respiration.

LOWER

Richard Lower (1632—g1) was born in Cornwall, studied medicine
at Oxford, was elected a Fellow of the Royal Society (in 1667), and
eventually became the most noted London physician of his time. He
was the first to carry out successfully the operation of transferring
blood from one animal into another; and consequently dreamed
dreams of what might be achieved “by exchanging the blood of old
and young, sick and healthy, hot and cold, fierce and fearful, tame
and wild animals,”” Here, however, the chief interest lies in his
valuable work to explain the significance of respiration in animals.
So far Boyle had shown the necessity of air for animal life, and
Hooke had shown that animals can be kept alive without the
breathing movements of their lungs, if air is blown through these
by means of bellows. Hooke also suggested that the florid colour
of arterial blood might be due to “some mixture of air in the blood.”
It was at this point that Lower took up the problem experimentally
and brought it nearer solution. His experiments and conclusions are
described in his Treafise on the Heart, published in 1669. The differ-
ence in colour between (florid) arterial blood and (dark) venous
blood was well known even to the ancients. Sometimes the blood
in the arteries was regarded as different in kind from that in the
veins; sometimes it was thought that the blood changed colour
somehow during its passage through the heart. Lower showed that
the blood in the arteries and the veins is the same, and that the
change in colour from dark to florid is due to the action of the air
in the lungs. First he showed experimentally that the difference in
the colour of the blood in the right ventricle of the heart and in
the left ventricle of the heart has nothing to do with the heart. The
blood in the right ventricle of a suffocated dog is as dark as that
in the left ventricle; while the blood in the left ventricle is as florid
as that in the right ventricle is normally, if the lungs are so per-
forated and inflated that the air has access to the left ventricle,
This showed that the “‘production of the scarlet colour must be
attributed wholly to the lungs,” or rather “to the particles of air
insinuating themselves into the blood” (Tractatus de Corde, 166q,
p. 166). This is confirmed by the already familiar fact that venous
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blood when shaken with air becomes scarlet. In the meantime Lower
had also adopted the Paracelsan idea of the composite nature of

ir, Hooke's (or possibly his own) assimilation of combustion and
respiration, and Wren’s and Hooke’s identification of the “nitrous”
part of the air as mainly involved in both combustion and respiration.
Accordingly, Lower regarded respiration as a process by which the
“nitrous spirit”’ (a term reminiscent of Wren's “nitrous fumes") of
the air enters the lungs, saturates the blood, and so gives it its fAorid
colour. But “after the air has again for the most part escaped into
the structure of the body . . . and has transpired through its pores
. . . the venous blood, deprived of it, immediately appears darker
and blacker” (ibid., p. 170). Whether Lower had any clear idea of
the nature of the “nitrous spirit” of the air seems very doubtful,
for, in the same passage in which he speaks of this nitro-aerial
spirit, he also speaks of the *“nitrous spirit of snow” passing through
dishes of delicacies, and cooling summer wine. (See De Corde,
facsimile edn. with English trans. by K. J. Franklin, Oxford, 1932.)

MAYOW

John Mayow (1641-79) was born in Cornwall, studied law and
medicine at Oxford, and was eventually elected a Fellow of the
Royal Society. In 1668 or 1669 he published two small treatises On
Respiration and On Rickets. In 1674 he published Five Medico-Physical
Treatises containing the one On Rickets, an improved version of the
one On Respiration, and new essays On Sal Nitrum and Nitro-gerial
Spirit, On the Respiration of the Foetus, and On Muscular Motion (com-
plete English translation published by the Alembic Club, 1907).

Mayow knew Lower personally, and was familiar with the experi-
mental work done by Boyle and Hooke as well as Lower. In his
account of nitro-aerial spirit and of respiration he brought together
all the ideas that had come to light concerning combustion, fer-
mentation, and respiration as the result of the researches of Boyle,
Hooke and Lower, as outlined above. It is probable that Mayow
also carried out some experiments on his own account, and he was
clever enough to have some ideas of his own, even if he was in some
ways as uncertain or obscure as were some of his older and abler
contemporaries. His Treatises did not elicit much praise, or even
approval, among his contemporaries. Oldenburg informed Boyle
that “Some very learned and knowing men speak very slightly of
the Five Treatises of J. M.” The main reason for this, no doubt, was
that these treatises as a whole did little more than describe the
results already arrived at by older and better known contemporaries.
But a century later, afier the discovery of oxygen by Priestley and
Lavoisier, matters took a new turn. Mayow was “discovered” as the
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man who had anticipated Priestley and Lavoisier by a century.
At least one writer put him on the same pedestal with Francis
Bacon and Newton ; others have compared him with Aristarchus, the
neglected forerunner of Copernicus, and so on. This kind of beati-
fication of Mayow had become a well-established tradition, when,
in 1931, T. S. Patterson’s researches (published in Isis, Vol. XV)
showed up the errors of the traditional estimate of Mayow. Now
there is some danger perhaps that Mayow’s services may be
underestimated,

The three treatises in which Mayow deals with combustion,
fermentation, and respiration have the merit that they bring
together in a comparatively concise and orderly manner the
scattered rescarches of a number of different people. He was not
always clear himself. For instance, he frequently speaks of nitro-
aerial “spirit,” yet seems to regard it as composed of solid particles
which float in the air, rather than as a gaseous component of air.
But then Boyle, Hooke, and Lower also are not always clear and
definite, and they were certainly more long-winded than Mayow,
whose account is at least a useful summary, interspersed with some
original suggestions or comments, and illustrated by helpful pictures
of the experiments described. In fact, a summary of Mayow's
account may serve here the purpose of a brief survey of the results
reached, at the period under review, concerning the chemistry of
combustion and respiration.

The air is impregnated with a salt of a nitro-saline nature, or a
vital, igneous, and highly fermentative spirit. Nitre itself consists
of an extremely acid salt and of an alkali ; or of purely saline volatile
salt taking the place of the alkali. The volatile part of the nitre
comes from the air, while the fixed part is derived from the Earth.
Experiments on combustion have shown that such “nitro-aerial
particles™ are indispensable to the production of fire, and that they
are only a part of the air. Nitre itself contains such particles, for
when mixed with sulphur (as in gunpowder, for instance) it burns
in an exhausted receiver, in which other fires would go out imme-
diately. Again, comparing antimony calcined by a burning glass
and antimony treated with spirit of nitre poured on it and drawn
off again, the result is found to be the same, and is due to the action
of the nitro-aerial particles in both cases. Moreover, the increase in
weight shown by antimony calcined by the Sun’s rays must be due
to the nitro-aerial particles fixed in it during calcination, as no
other cause of the increase in weight can be imagined. (It is true
that, in 1630, Jean Rey had suggested that ths increased weight of
calcined metals is due to the air; but he did not regard the air as a
factor in calcination, but as absorbed by the metal after calcination.)
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Fermentation and respiration are also due to the action of nitro-
acrial particles. In respiration these particles are taken from the
air by the lungs and passed into the blood. That is why the air
expired from the lungs is lighter and less in volume than the air
which had been inhaled. These particles play the leading réle in
the life and movement of animals and plants. In the case of an
embryo the absence of respiration is made good by a supply of
the mother’s arterial blood, which is rich in nitro-aerial particles.
Animal heat is also the result of the union of nitro-aerial particles
with combustible particles in the blood; and the increased heat
resulting from violent exercise is due to the extra intake of nitro-
aerial particles with the increased respiration. The scarlet colour of
arterial blood is likewise due to the action of these nitro-aerial
particles. The essential factor in respiration is not the movement
of the chest or of the lungs, but the supply of nitro-aerial particles
from the air.

Mention may also be made of a few other matters which do credit
to Mayow as a chemist. He showed by means of roughly quantitative
experiments that what we call hydrogen and nitric oxide follow
approximately the law of inverse relation of pressure and volume
(Boyle's Law). He was also responsible for the experiments which
showed that when nitric oxide is mixed with air the mixture shows
a contraction to the extent of a quarter of the volume of the air.
Moreaver, Mayow had a good insight into the nature of the ex-
changes between salts and acids. Thus, to quote but one or two of
his many examples of chemical exchanges, when describing the
distillation of sal ammoniac with salt of tartar he explains that the
acid part of the former coagulates with the fixed salt of tartar, “but
the volatile salt, of which it also in part consists, ascends of the
same nature as before. And the reason of this is that the acid spirit
of salt is capable of entering into closer union with any fixed salt,
than it is with the volatile salt, so that it immediately leaves the
volatile salts that it may be combined more intimately with the
fixed salt. But if oil of vitriol is united with salt of tartar, they can
scarcely be scparated from each other. And yet this is not because
these salts have mutually destroyed each other, but because there
is nothing in nature with which either of them can unite more firmly
than they do with each other” (Alembic Club Reprints, No. 17,

. 161).

p"-"-’: may conclude this account of Mayow by citing two of his
experiments with the accompanying illustrations. The second
experiment here described is especially noteworthy because it was
the same kind of experiment, though more elaborate, which, about
a century later, led to the invention of the instrument now known
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as the eudiometer, for measuring the “goodness” of the air, that is
the amount of exygen contained in it.

(1) “Let a moistened bladder be stretched over the eircular
orifice of a vessel and tied to it just as the skin of a drum is stretched -
then let a small bell-jar in which a little animal, say a mouse, has
been put, be accurately applied to the said bladder by placing a
weight upon the jar lest the animal inside should upset it.
[See Illustr. 188] . . . It will in a short time be seen that the jar is
firmly fixed to the bladder; and the bladder also, in the place where
it lies under the jar, is forced upwards into the cavity of the glass

[lustr. 188, —Experiment Iustr. 189.—Elasticity of Air
with a Mouse
Just as if the jar had been applied with a flame enclosed init. . . . If

the jar be grasped by the hand and raised, the bladder, along with
the vessel, will still adhere firmly to it unless the vessel is very heavy
- . . and from this it is clear that the elastic power of the air enclosed
in the aforesaid jar has been diminished by the breathing of the
animal, so that it is no longer able to resist the pressure of the sur-
rounding air. . . . Ihave ascertained from experiments with various
animals that the air is reduced in volume by about one-fourteenth
by the breathing of the animals” (On Sal Nitrum, Alembic Club
Edition, p. 72 ).

(2) “Let a rod equal in length to the diameter of a glass bell-jar
at its widest part be put inside it, and placed transversely and drawn
downwards till both ends of the rod lean upon the sides of the glass
and are supported by them [as in Illustr. 18g). Next let an earthen-
ware vessel, glazed inside and capable of holding about four fluid
ounces, be hung from the transverse rod by an iron hook attached
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to it, and let it be about half-filled with spirit of nitre. Further,
let some small pieces of iron, tied together into a bundle and sus-
pended by means of a string from the rod, be made to hang directly
over the vessel (the string moreover ought to be of such a length
that its other end may reach to the mouth of the glass and hang
outside, in the manner shown in the illustration). These arrange-
ments made, the mouth of the inverted bell-jar should be sunk in
water about five finger-breadths, yet so that the water within
the bell-jar may be at the same level as the water outside, as may
be done by means of a syphon. . . . Then let the water outside
be drawn off until it is lower than the water inside by about three
finger-breadths. . . . Let the height of the water within be noted
by papers attached here and there to the outer surface of the glass.
. . . And now let the aforesaid small picces of iron be lowered by
means of the string, the end of which hangs outside, into the vessel

which contains the spirit of nitre. . . . A very intense action will
soon be excited and the water within will at once be depressed
by the vapours thence arising. . . . When the water within has

been depressed about three finger-breadths by the vapours pro-
duced, let the picces of iron be lifted out of the vessel by means of
the aforesaid string. This done, after a short time you will see the
water within gradually rising, and in the course of an hour or two
you will see it far above the height first marked. For the water which
was quickly depressed by the aforesaid vapours about three finger-
breadths below the point first marked, now rises some three finger-
breadths more or less above it; so that about a fourth part of the
space in the glass which was previously occupied by air is now
occupied by the water rising within, and indeed the water which
has risen in this way in the glass will not, even after a long time,
fall to the original mark. So that clearly we must conclude that the
air contained in the glass has its elastic force diminished by about
one-fourth part, in consequence of the said action produced by the
spirit of nitre encountering the iron" (ibid., pp. 94-6).

THE DISCOVERY OF PHOSPHORUS

Before concluding this chapter something must be said about
the discovery of phosphorus. Sometime about 1670 (the dates
given vary from 1667 to 1674) Brand, an alchemist and quack
physician of Hamburg, appears to have prepared a phosphorus
from urine that was unlike other known phosphori in that it glowed
in the dark without preliminary exposure to light. By some means
or other, Krafft, a chemist of Dresden, obtained possession of the
secret of Brand's preparation, and crossed to England, where he
exhibited the product before Charles 11 in 1677. Among those who
saw the substance was Boyle; and, after the manner of the times,
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in an exchange of secrets Krafft hinted that the substance essential
to the preparation of this astonishing new product and scientific
curiosity “‘was somewhat that belonged to the body of man” (Boyle:
The Aerial Noctiluca, 1680, p. 12; Works, ed. 1772, IV, p. 382).
About 1680 Boyle discovered how to make this phosphorus, pub-
lishing his studies in The Aerial Noctiluca (1680) and The Iy Nocti-
luca (1681-2). In these tracts he described the various facts that
he had discovered relating to the glowing of phosphorus, namely,
that contact with the air was necessary for the production of the
glow, that the glow was produced in solutions of phosphorus in
some oils but not in others, that water which had been in contact
with phosphorus and its fumes yielded on evaporation a liquid
[phosphorus acid] from which flashes of light and small explosions
were produced on heating, that after long exposure to the air
phosphorus emitted a strong smell [due to the production of ozone]
which differed from that of the “smoke” [fumes] simultaneously
given off, and that one part by weight of phosphorus, dissolved in
spirit of wine, still exhibited the glow when over 6oo,000 times
its weight of water had been added to this solution. Thus Boyle
had at this time discovered all the important facts now known with
regard to the glowing of phosphorus. His method of preparation
was as follows: A large quantity of human urine was evaporated
to the consistency of a thick syrup, incorporated with about three
times its weight of sand and heated strongly in a retort, the phos-
phorus given off being collected under water in a receiver luted to
the retort ( The Aerial Noctiluca, 1680, pp. 105 f.). The carbon necessary
for this process would be provided by the decomposition of organic
matter present in the urine,

Probably Brand, Krafft, and Kunckel (about 1678) prepared
phosphorus by the same method; but Boyle holds the chief place
in the history of the study of phosphorus, as he discovered all the
important facts relating to its glowing, and was the first to describe,
though not to discover, a method of preparing it. The yield by this
process was, however, slight, and phosphorus commanded a price
of six guineas an ounce (Boyle's Works, ed. P. Shaw, 1725, III,
p- 210 footnote). Indeed, it remained expensive until Scheele devised
the method of preparing it from bone-ash in 1777 (Collected Papers,
trans. L. Dobbin, 1931, pp. 312-13). But it was extensively studied
by those who could afford to buy it. On account of its origins, its
glow was thought to have some connection with the “fame of life,”
and its discovery intensified the importance already attached to
urinous products such as the crystalline substance, sodium ammo-
nium hydrogen phosphate, obtained by the decomposition of urine,
and long known, on account of this, as microcosmic salt.

(See J. R. Partington, A Shert History of Chemistry, London, 1948.)
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