THE COMMERCIAL PRODUCTS
OF INDIA

SIR GEORGE WATT
THE COMMERCIAL PRODUCTS OF INDIA
I may venture to explain that an effort has been made to render all trade statistics on the standards of English weights and measures, and while giving the rupee values to state now and again the equivalents in pounds sterling (1s. 4d. to the rupee). Unfortunately, by the time the press order had to be given, official returns later than 1905–6 were not as a rule available for all aspects of trade, so that while incidentally quoting such returns as were to hand of a later date, the main contents of the work turn on the positions attained in 1905–6.

I cannot close these explanatory remarks without stating that the bulk of the work has been written from the material sent to me from India by Mr. I. H. Burkill, M.A., Reporter on Economic Products. In connection with the preparation of the Dictionary there had been established in that office what have come to be officially known as the "Ledgers." These consist of books of blank paper assorted within boxes according to the names of the products of India. Into the books had been pasted cuttings from numerous publications, official and otherwise, in sequence of date, passing onward to the Dictionary and subsequently to the present day. It thus became comparatively easy to ascertain all new particulars, and to verify the data and correct the mistakes of the older work. In a similar manner, though perhaps not on so elaborate a scale, cuttings had been preserved for many years past both in the Revenue and Statistical Department of the India Office and in the Office of the Director of Kew. In addition, therefore, to the material amassed in India, I had placed at my disposal the papers brought together in England in the manner indicated, and the work as issued may, I trust, be found a useful digest, within the previously assigned limits, of all available information. Lastly, I
PREFACE

must take the opportunity to acknowledge my great indebtedness to the Librarians of the India Office and of the Kew Herbarium for the limitless facilities afforded me in consulting the numerous works, not recorded in the official ledgers, and for thus having greatly enhanced the value of the historic details. The primary objects kept in view have been to restrict observation to what concerns India, and to make the work of practical value to the Commerce and Industry of that country.

GEORGE WATT.

Kew Gardens, July 1908.
THE COMMERCIAL PRODUCTS
OF INDIA

ABROMA AUGUSTA, Linn.: Roxb., Trans. Soc. Arts, 1804, xxii., 382; 1806, xxiv., 151; Fl. Br. Ind., i., 375; Gamble, Man. Ind. Timbs., 1902, 104; Sterculiaceae. Perennial Indian Hemp or Devil's Cotton, ulatkambal, kemal, olak-tambol, sanu-kapashi, etc. A large open bush, widely distributed throughout the hot moist tracts of India and readily propagated by cuttings.

The bark affords a strong white bast Fibre, first discovered by Roxburgh in 1801 (Substitutes for Hemp and Flax); it is easily separated by retting in water or by decoction. It may be made to yield annually two or three crops of shoots, from 4 to 8 feet long, but according to Gamble requires rich land and plenty of moisture. The root-bark is held in high esteem by Native practitioners as a Medicine for dysmenorrhea. [Cf. Cross, Chem. Exam. in Imp. Inst. Tech. Rept., 68; Pharmacog. Ind., i., 233; Kanny Lall Dey, Indig. Drugs Ind., 1896, 2; Agri. Ledg., 1896, 6; etc., etc.]

ABRUS PRECATORIUS, Linn.: Fl. Br. Ind., ii., 175; Gamble, Man. Ind. Timbs., 1902, 240; Leguminosae. Crab's-eye, Jequirity, the so-called Indian Liquorice; a plant more or less sacred, and known by the following names—rași, gaunghī, gunjhā, guri-ginjā, etc., mostly traceable to gunjhā in the Sanskrit. A beautiful climbing shrub found throughout the plains of India and Burma, and on the Himalaya and other hills up to altitudes of 3,000 feet—cosmopolitan in the tropics.

The small shining red seeds are almost universally used by Indian goldsmiths as weights: they average 1.75 grains. The Koh-i-nur diamond was weighed with rași seeds. The chief interest turns, however, on the criminal use to which they are put. Ground down to a paste with a little cold water, they are made up into small pointed cylinders (suz or suatia), which if inserted below the skin of a bullock, or even of a human being, cause death in a few hours. There were, for example, 20 cases of abruss-poisoning in animals reported from the N.-W. and C. Provinces in 1897-9; from the Panjāb (1897-1903) 16 cases of animal and one of human poisoning; and from Bengal, 3 animal and 3 human cases. The lethal dose (according to Kober) is only 0.00001 grm. per kilo of the animal's weight. The toxic property is due to two proteids—a globulin and an albumose—and is thus closely analogous to the venom of snakes. When boiled, the seeds may be eaten, since their poisonous property is then destroyed. The roots are sold as an indifferent substitute for liquorice. [The names of a few only of the more important writers need be quoted:—Warden, Waddell, Sidney Martin, Weir-Mitchell, Reichert, Klein, etc.: also Pharmacog. Ind., iii. (app.), 151-2; Thevenot, Travels in Levant, Indostan, etc., 1537, pt. iii., 98.]
GENERIC PROPERTIES OF ACACIA

ABUTILON AVICENNÆ, Gurt. ; Fl. Br. Ind., i., 326-7 ;
MALVACEÆ. The Indian Mallow or American Jute. A small bush met
with in North-West India, Sind, Kashmir, etc.

The bark yields a fibre, spoken of as superior to Jute (Dodge, Useful Fibre
Plants of the World, 35). According to Duthie, the fibre is much valued in Kash-
mir. A. indicum, Sweet, and A. asiaticum, G. Don—two species that from
the industrial standpoint cannot be separated from each other. The former
is distributed throughout India in fact the tropics, and the latter is met with
chiefly in Western India. They are often spoken of as Country Mallow, kangi,
shampi, potari, etc., the seeds being babûj. They yield beautiful white bast
fibres, and the leaves, roots and seeds are rich in mucilage, hence used as
demulcents, emollients, and diuretics, and prescribed in fevers as cooling
MEDICINES.

ACACIA, Willd.; Fl. Br. Ind., ii., 292-8; Agri. Ledg., 1902,
No. 2; LEGUMINOSÆ. A genus of spinose or prickly climbing shrubs
or trees, which constitutes the most characteristic group of plants in the
Sub-order Mimosæ. There are in all 430 species, of which two-
thirds are peculiar to Australia. India possesses only some 22, and
these are distributed throughout the plains, two ascending to altitudes
of nearly 5,000 feet. [Cf. Prain, Some Additional Leguminose., Journ.
As. Soc., Beng., 1897, lxvi., 506-11; Gamble, Man. Ind. Timbs.,
291-302; Brandis, Ind. Trees, 263-9; Duthie, Fl. Upp. Gang. Plain,
i., 312-9; Cooke, Fl. Pres. Bomb., i., 443-51.]

It might almost be said that every Indian species is of some economic value.
There are of commercial importance, viz. Acacia arabica, A. Catechu, and
A. Senegal, while the remainder are mainly of local interest. The bushy
and arborescent forms, as a rule, afford astringent barks, leaves, or pods, and
are appreciated as MEDICINES, as TANS or as DYE AUXILIARIES. Many of them
afford useful GUMS that are more or less soluble and edible. Interesting par-
ticulars regarding the fungi that appear to be instrumental in the formation
of these gums will be found in a paper written by Mr. J. B. Prebble, and
published in the Pharmacographia Indica (i., 544-55). The barks of some
species yield coarse cordage FIBRES. The majority of the trees are of the greatest
value to the inhabitants of the tracts where they are at all prevalent, both as
sources of TIMBER and FUEL. With regard to the timber, Mr. Gamble observes
that the Indian species have sharp prominent medullary rays, which are short
A. Catechu, ferrugineae, and modestae, but long in the others. As a rule
they are not well marked in a radial section, but A. uteophila and arabica
are exceptional in this respect, the former being beautifully marked. All the species
of Acacia are recognised as of the utmost importance in AGRICULTURE, as for
example in the reclamation of waste lands. Indeed, in certain arid regions, they
are the chief trees and shrubs met with. And lastly, either as living hedges or as
dead thorny fences their spinose property is much appreciated for the protection
of cultivated lands, and the leaves beaten from the twigs afford a much-valued
FODDER to the cattle of the regions in which they are plentiful.

A few foreign species have become completely acclimatised in India, such as
A. dealbata—the Australian White or Silver Wattle; A. melanoxylon—the
Australian Black Wattle; A. deccurrens—the Common Wattle. These are fairly
general in the warm temperate tracts of India, more especially in the Nilgiri
hills, where they were introduced in 1840. [Cf. Maiden, Gums and Resins of
Australia, 172; Hooper, Agri. Ledg., 1902, No. 1; Imp. Inst. Tech. Repts.,
1903, 314-5.]

It may perhaps suffice to deal very briefly with the so-called unimportant
species and to touch mainly on their special features of interest, leaving the
above general observations as more or less applicable to them all.

A. arbica, Willd.; Fl. Br. Ind., ii., 293. This is the Indian
Gum Arabic Tree, the babul or kikar, babola, gabur, bakar, etc.
Dutt (Mat. Med. Hind., 160) gives it the Sanskrit name of tavuula, while
babula is a word which according to Rice is only Sanskritised, and
THE INDIAN GUM ARABIC TREE

as Rs. 24, and the gross proceeds for grazing and fuel as Rs. 251, thus leaving a net profit of Rs. 227. Dr. Leather (Agri. Ledg., 1896, No. 18, 158) shows the working expenses for an acre of land in Agra under babul as Rs. 146 and the gross receipts Rs. 446, so that the net profit in 10 years came to Rs. 294. But in neither of these cases does allowance appear to have been made for the sale of bark, the plantations having been undertaken simply for fuel purposes. In conclusion it may be observed that on good soil the tree is much less gregarious, is allowed to grow to a fairly large size, and is accordingly valued more as a timber tree than as a source of fuel. A tree is considered full-grown in from 20 to 40 years, and may then fetch from Rs. 40 to Rs. 100 according to the size of the timber afforded.

The variety (mentioned above) as kaudia or edji is that usually grown in Berar and Western India, when fuel only is desired. The telia or godi is ordinarily allowed to run to timber. Success in cultivation would seem to depend upon several circumstances, such as the scarcity and consequent high price of fuel. a good market for the bark, the existence of suitable land at low rents, etc., etc. But it must never be forgotten that, to be successful, production of babul fuel and babul bark must be in close proximity to the markets, since neither product could bear heavy railway freights.

Soil.—According to most observers the babul prefers a sandy light loam or black cotton soil to heavy clay, but appears to be somewhat indifferent to the presence of a fairly large percentage of reh or shor (efflorescent salts—see Alkalis, pp. 51–6). But it does not succeed either on rocky and hilly ground or on low-lying and submerged tracts, hence plantations to be made profitable must be on fairly good soils. The yield and quality of the gum, of the tanning bark and of the timber—its three chief products—greatly depend on the condition of the plant.

Enemies.—The life of the tree is generally said to be about 20 to 30 years; at all events after that age it seems to become a ready victim to the ravages of various pests, among which the grubs of one or two longicorn beetles may be specially mentioned. Mr. Stebbing (Injurious Insects of Forest Trees, 67, 69) describes these as Celosterna spinator and Pachydiplas holosericeus. Its greatest enemy, however (especially during the first 3 or 5 years of its existence), is probably the goat.

The commercial products and utilizations of babul may be dealt with under the following headings:—

1. The Gum.—This exudes in March, April and May, according to the vast majority of reports, but in connection with Amritsar it is said to ooze from the trees in the months of October, November and December. A tree yields a maximum of about 2 lb. a year, but the average might be more safely put at a few ounces. In certain localities little or no gum is given by the trees, and seasonal variations in yield are also well known and are said to be dependent on abnormal climatic conditions. Tapping the trees is generally believed to accelerate the flow, but this is not often practised, and may be detected by the presence of long stalactiform masses.

The gum occurs in the form of irregular and broken tears agglutinated, each tear being half an inch in size and of a pale straw-colour to red, brown or almost black, according to the age of the tree. The quantity yielded varies directly, but the lightness of colour and quality, inversely to the age of the tree. Such, at least, is the general opinion, although the Amritsar report states that old trees do not yield any gum at all. Long exposure to atmospheric influences, more especially to damp and rain, darkens the colour and lowers the value of the gum, besides making it astringent owing to the quantity of tannin (from the bark, doubtless) with which it becomes charged. [Cf. Vilbouchevitich, Journ. d’Agri. Trop., 1901, i, 49.] Observers have also noted that gum exuding from gnarled stems or diseased portions is dark; moreover, that it varies in colour and becomes brittle by exposure to the sun or artificial heat. [Cf. Goetz in Pharm. Zeit., 18, 119; Journ. Chem. Indust., 1903, xxii., 429.] The purer and paler-coloured gums
USES OF BABUL GUM

reduce Fehling's solution only slightly, are darkened in colour by ferric chloride and gelatinised by borax. The darker samples (highly charged with tannin) are precipitated by basic acetate of lead, form inky colorations with ferric chloride, deep brown with bichromate of potash and red with molybdate of ammonia. They freely reduce Fehling's solution. Moreover, the darker portions are much less soluble in water and leave a gelatinous portion undissolved. [Of, Pharmacog. Ind., i., 551.]

Uses.—Indian gum arabic is used in Calico-PRINTING and in all other industries where a mucilage is necessary and in which the peculiar properties of this particular gum are recognised as specially suitable. Amongst other minor purposes it is, for example, employed as an ingredient in whitewash and, in paints used for wall-distempering. It is added to certain MORTARS and to paints that are used for clay toys. As a MEDICINE it is an indifferent substitute for the true gum arabic of European pharmacy. It is often used as a vehicle for castor oil, and has the merit of absorbing the offensive smell. One drachm of gum dissolved in $\frac{1}{4}$ oz. of water will carry 1 oz. of castor oil. Its use in lozenge-form is diminished by the fact that it is less soluble than the true Gum Arabic. [Of, Taleef Shereef (Playfair, transl.), 1833, 142–3.]

At one time the gum was said to form an important item of human FOOD in times of scarcity, but recent inquiry has brought out a flat contradiction of that statement from almost every district in India. The gum at all seasons is several times as expensive as the grains eaten by the poor; preferably, therefore, they would purchase grain with it. It is nowhere so abundant as to become a famine food. It is, however, unquestionably edible, and fried with ghī, sugar and spices, is employed in the preparation of certain Native sweetmeats which are very generally eaten after child-birth.

So far as they have proceeded, the investigations into the Indian gums suitable for the European confectionery trade have revealed several very surprising circumstances connected with this gum. There are, for example, great variations in quality, which are not alone to be explained by adulteration with inferior gums. Not only does the quality depend largely on the age and variety of tree, but on the locality of production. Thus two samples, one said to have been the best quality from Nagpur, the other from Cawnpore (both believed to have been authentic samples of Acacia arabica gum), were forwarded to Messrs. Rowntree & Co. for examination and report. The reply which came in due course was—"They gave exceedingly dark solutions of medium strength, but both are quite useless to us on account of the colour." A third consignment procured from the Panjab was said to give "a pale solution, very thin and probably of little value for any purpose." The best Indian edible gum, from Messrs. Rowntree & Co.'s standpoint, would appear to be that referred to under A. Jacquemontii. It would thus seem that, far from Acacia arabica affording the best edible gum arabic of India, it might almost be described as the least important of all the Indian edible gums. It seems, however, probable that babul gum from Sind may be of a much superior quality to that from other parts of India. As met with in trade this gum comes mainly from the Central Provinces and Berar and is known in Bombay as Umrawatti and Amrad. But attention may here be called to the circumstance often discussed (e.g. by Vilbouchevitch, Lc. 48), that all gum from the same species and even
from the same tree is not of equal quality. The variation is doubtless
due to bacillie action, and ants have been spoken of as facilitating the
ingress and dispersion of the bacilli.

Price.—The information available regarding the price at which the
gum can be procured is so conflicting as to render the returns practically
worthless. They range from Rs. 12 to Rs. 50 per 100 lb.

2. The Tanning and Dyeing Bark.—Babul-bark is perhaps one of
the most extensively used and most highly valued of the crude tanning
materials of India. It is in fact, with many of the Native tanners,
the chief TANNING SUBSTANCE in practically all provinces except South
India, where its place is to a large extent taken by the tanner’s Cassia
(Cassia auriculata). It is also very extensively employed by the
dyers because of the rich colours it affords. In a work such as the present,
space cannot be afforded to deal with the methods of dyeing and
tanning pursued, nor to furnish the formulae of the special preparations
employed. The reader must consult the Dictionary and other such works
for all details.

Source.—The introductory paragraphs of the present article have already
set forth some of the practical considerations regarding production of babul-
bark. It is commonly obtained from trees felled for fuel, and the bark very
often becomes the woodman’s wages. So again the observation has been made
that the bark from old trees is not so valuable as that from trees 6 to 10 years
of age. In order, however, to obtain perfectly trustworthy information on
this point an extensive series of barks from a selected number of districts was
procured from trees of various known ages and during certain fixed seasons of
the year. [Cf. Agr. Lcdy., 1896, No. 9, 42, 54—5.] Apparently no report has
as yet been published of the results arrived at by the examination of the barks, thus specially brought together for that purpose. Hooper,
however, affirms that “the tanning content undoubtedly increases with the
age of the tree” (Agr. Lcdy., 1902, No. 1, 23), and he cites a report
of Mr. J. Tell of date 1845 in support of that opinion which is exactly the opposite
of the modern view held by the European tanners of India. Recent inquiry has,
however, been prosecuted sufficiently far to reveal the circumstance that babul-
bark is hardly likely to compete successfully with the tanning materials already
procurable in Europe, and that very possibly it will never even pay to manu-
facture for export a tanning extract from this bark or from the bark and pods
combined. Much has been written on this theme, but it may be said that the
chief claims of babul-bark turn on its cheapness and abundance. It is bulky
and the percentage of tannin is small, hence it cannot be profitably carried for
more than short distances. Accordingly the conclusion must be that babul-bark
is a tanning material of great local value, but one that stands a poor chance of
being exported to any appreciable extent. It contains 18-90 per cent. of catechol
tannin, which takes a beautiful cream colour when precipitated with gelatin.
Martin says that ¼ lb. of the bark suffices for each maund of hides. [Cf.
Monographs. Tanning, and Working in Leather — Walton, U. Prov., 23; Martin,
Bomb., 7; Chatterton, Madras, 26; Rowland N. L. Chandra, Bengal, 11-2; C. G. Chenevix Trench, C. Prov., 7.]

Price and Supply.—Very little of a definite nature can be published
on these subjects. It has been reported recently that the annual con-
sumption in Cawnpore alone is over 200,000 maunds, valued at eight
annas a maund. But Cawnpore is the great tanning centre of India, and,
therefore, its transactions represent a very large slice of the total traffic
in the bark. Quotations have been obtained from Dumraon, Bandelkhand,
the Central Provinces, Shahpura (in Rajputana), Delhi, Poona, etc., etc.,
which show that the bark fetches from 8 annas to as much as Rs. 2-4
per 100 lb. These and such as these are the returns that have come to
hand, and they afford very little trustworthy information other than
that the bark is a local product which in point of price is, like most
other commodities, influenced very greatly by the laws of supply and demand.

Babul-bark is extensively employed in India as an astringent *Medicine*, and the ashes as a dentifrice.

3. **Tanning Pod.**—Roxburgh (*Trans. Soc. Arts*, 1805, xxiii., 408–10) was apparently the first person to draw the attention of Europe to the large and valuable supply of these pods that might be procured from India. This subject did not, however, seem to attract much attention until 1884, when an absurdly high valuation as a **Tanning Material** was attributed to the pods. It was then affirmed that when crushed and freed from seed, they would fetch £40 a ton, or 50 per cent. more than was then being paid for oak-bark. This naturally led to numerous experiments to test the yield per acre, the cost of production and methods of crushing and baling the material. When the desired report finally came to hand from England, *babul*-pods ceased to attract attention; they had been found to contain at most 94 per cent. of tannin, and could not bring more than £10 a ton. All interest in the subject died as quickly as it had arisen. A more hopeful result seems, however, to have been obtained by Mr. Chatterton. *The Agricultural Ledger*, (1896, No. 9, 46) may be consulted for further particulars. But crushed *babul*-pods impart a beautiful colour to leather, and mainly on that account enjoy a certain local reputation as a weak tanning and dyeing material, useful in conjunction with other substances. At the Cawnpore Tanneries the pods are employed almost exclusively for the purpose of removing the lime from skins and hides, before tanning the latter with *babul*-bark or other substances. The dyers of India often utilise *babul*-pods to obtain certain shades that are admired in calico printing.

An extract may be prepared from the immature pods by inspissation. This was known to the Ancients, and through the Greeks reached the Arabs, to whom it was known as *akakia*. To this day a *Drug* comes to India under that name from Turkey and Persia, and is sold by most Muhammadan druggists. The unripe pods reduced to a powder are used as a domestic medicine in all cases where an astringent is indicated. They are employed in the manufacture of *Tooth-powder*, and along with sulphate of iron in the preparation of ink. The tender young pods are eaten as a *Vegetable*, especially in times of scarcity. They are often pickled (*achar*) and viewed as a luxury, especially by the Marwaris. The green pods with their seeds are regularly given as *Fodder* to goats, sheep, cows, and camels. In Sind the green pods are much appreciated, and in the early part of the hot weather, during April and May, the sale of green pods forms an important item in the forest revenue of that Province. In the Annual Reports of the Forest Department for Bombay (including Sind) the amounts credited as realised on this heading average from Rs. 12,000 to Rs. 30,206.

4. **Tanning Leaves.**—Most of the older writers speak of the leaves of this tree being also used as a **Tan**, but according to voluminous opinions recently to hand this would appear to be a mistake. They are sometimes employed in dyeing, and are also often utilised in the manufacture of ink, so that they do possess tannin but in such small quantity as to be useless as a tan. The chief value of the leaves is as *Fodder*, especially in times of scarcity or famine. Beaten from the lopped and dried spinose branches, they are regularly given to cattle. Although the tree is never leafless, fresh foliage appears from February to April. The value of this source of fodder when rain fails cannot be overstated, as the tree is thereby little, if at all, affected in the production of foliage.
The leaves constitute an ingredient in the intoxicating drug of Indian hemp known as madak, and it is said that in a similar way they are also made up with opium.

5. Minor Industrial and Agricultural Uses. — One of the most widely known of the minor uses of the plant is for tooth-brushes. Short twigs are made up into small bundles of about 100 each and in that form are exported as a regular article of trade from Karachi to Bombay and practically all over India. They are very extensively in demand by the Marwaris on being used the end is chewed until it forms a sort of brush. Very strong and durable baskets are also plaited of young green babul-twigs. In fact, this is the chief basket of the agricultural and industrial classes of many localities (see Basket and Wickerwork, etc., pp. 114–6). In some parts of the country fishing-traps are similarly constructed of the young shoots and the spines are occasionally employed as fishing-hooks or as pins to fasten together the leaves used as platters. Crude ropes are sometimes made of the bark fibre.

In Sind (and to some extent also in the Panjab) babul is one of the important trees on which the Lac insect is reared. The reader will find full particulars on this subject in The Agricultural Ledger (1901, No. 9). To the Indian cultivator babul is of the greatest possible value. It does not afford much shade, and yet curiously enough very little except grass will grow underneath it. On this account it is rarely, if ever, allowed to get established in the middle of fields. For avenue purposes, where shade is required, it is not a desirable tree. But in the Reclamation of waste lands babul is invaluable, especially where rech efflorescence gives cause for anxiety (see Alkalis and Alkaline Earths, p. 55). Grass rapidly becomes associated with it, so that grazing affords a distinct source of revenue in babul plantations. [Cf. Ribbentrop, Ind. For., April 1900, xxvi. Moreland, Director of Agriculture in the United Provinces. Official Reports regarding the Abhuspur (Oudh) Experiments.] Sown thickly as a hedge, babul forms a great protection both against animals and the parching, dust-laden winds. As dead fences, the spiny boughs are universally employed to afford temporary protection to valued crops. For these and similar reasons extended cultivation of this tree should invariably be commended in all suitable localities.

6. The Timber.—This timber is highly appreciated for all forms of agricultural implements, because of its hardness and durability. It is especially valued for cart-wheels. In Bengal, the United Provinces and the Central Provinces the timber is rarely, if ever, employed in house construction or for furniture, as it is supposed to be very unlucky. But in the Panjab, Sind and Bombay no such superstition exists, and accordingly it is frequently utilised in house-building and, is much appreciated where great strength is desired. In Bijapur it is in demand for the construction of the carts for which that town is famous. When used for furniture, especially wood-carving, the timber is previously carefully seasoned in water. Recently it has been suggested that babul-wood might be employed for wood-paving. A writer in Capital (March 5, 1903) believes that this would be found cheaper in the long run than the present method of metalling. The wood when seasoned is very durable and much easier to cut and shape than the timbers most largely used for paving-blocks. As a source of Fuel or Charcoal babul justly holds a high position in popular favour. Its cultivation in the vicinity of all large towns would seem highly profitable. An average-sized tree will give 5 maulms of fuel, besides branches and bark that bring in additional returns. Some years ago a scare was started by the Madras Railway that babul fuel injured the boilers. This point has been freely discussed since then. The practical result may be said to be the conclusion that, as compared with coal, all forms of wood fuel are injurious. Babul is not more injurious than other timbers, and moreover it has so high a calorific value that it is not only extensively used at the cotton and other mills and on the railways of Upper India, but would be even more extensively employed were it procurable in sufficient abundance.
VARIETIES OF THE SPECIES

characteristics and respective areas of distribution of the three forms of this plant. These are briefly as follows:

Varieties of the species: Var. (a) Catechu. *Calyx, petals and rachis with spreading hairs.*—This is the most northern form, having been recorded as met with in Hazara, Kashmir, Simla, Kangra, Garhwal, Mussorie, Central India, Bihar, and as far south as Gajam. But it has never been found in the Eastern Himalaya nor in Assam, and it has been only once reported as met with in Burma. This is, therefore, the kath-yielding form of Kumaon—the pale cutch, as it is sometimes called, the khaire, khoir, etc.

Var. (b) Catechuoides. *Calyx and petals glabrous but the rachis puberulous.*—This is met with in Bengal from Monghyr and Patna to Sikim, Assam and Burma. Though quite common in Pegu and Prome it has not as yet been collected in the Shan hills nor in upper Burma to the north of Ava. It is, therefore, the cutch-yielding plant of Burma, and “Pegu Cutch” is the chief commercial form of the extract. Its best names are khaire, koire, sha, etc.

Var. (γ) Sundra. *Calyx, petals and rachis, all glabrous.*—This is the Southern and Western plant and affords the cutch of Madras and Bombay Presidencies, being very common from Coimbatore northwards to the Deccan, Kanara and the Konkan, and has been recorded so far to the north-west as in Kathiawar and Rajputana, and to the north-east in Burma, at Segain, Mandalay, and the Shan hills. It is the lai-khaire (red Catechu), the nallasandra (or simply sandra, or, as Sir Walter Elliot renders it, chandra), also the kati, kute, kachh, kaghi, kempu, shehi, karangali, bopy, banni, etc. [If. Cooke, Fl. Pres. Bom., l., 448; Hooper, Rept. Labor. Ind. Mus. 1903—4, 28.]

Chief Products.—These three forms of var. A. Catechu are said to be practically identical in their properties and uses. They all yield a Gum, an astringent Extract and a useful Timber.

The Gum is of a pale yellow colour and often occurs in tears one inch in diameter. It is sweet to the taste, soluble in water, forms a strong pale-coloured mucilage and is not precipitated by neutral acetate of lead, but gelatinises with basic acetate of lead, ferric chloride and borax. It freely reduces Fehling’s solution. It is a better substitute for the True Gum Arabic than is babul gum. Most of the superior qualities of Indian Gum Arabic, especially those of South India, are very possibly obtained from this species of Acacia.

The Timber.—Sapwood yellowish-white, heartwood either dark or light red, extremely hard. It seasons well, takes a fine polish and is extremely durable. It is used for all kinds of agricultural implements, wheelwrights’ work, etc. In Burma it is employed for house posts and very largely as fuel for the steamers of the Irrawaddy Flotilla. The Fuel of dead khaire is much valued by goldsmiths. In Northern India cutch wood is made into Charcoal, and is regarded as one of the best woods for that purpose. It has been pronounced good for railway sleepers. A cubic foot of variety (a) weighs from 50 to 60 lb.; of (b) about 60 to 70 lb., and of (γ) slightly more. But it is as the material from which Cutch extract is prepared that the wood of this plant attains its greatest value.

THE EXTRACT CUTCHE OR CATECHU.

It is not proposed to deal with this substance very elaborately in the present work. The article in the Dictionary, amplified as it has been by The Agricultural Ledger (1896, No. 1; 1896, Nos. 2, 35; 1902, Nos. 1, 2; 1906, No. 3) contains practically all that is known. The reader is referred to these publications, and the remarks that follow must, therefore, be accepted as an abstract intended alone to set forth the aspects of commercial interest:

Commercial Qualities of the Extract and Methods of Manufacture.—How far the peculiarities of the above-mentioned trees account for the different properties
THE CUTCH TREE

of the extract, appears never to have been ascertained. It may be mentioned as a curious circumstance, very possibly connected with \textit{A. Sundra}, that one of the earliest European writers, Barbosa (1514 A.D.) speaks of \textit{cacho} as exported from Cambay to Malacca. The name \textit{cacho} would seem to be simply the Kanaresse \textit{kacu}, and very possibly gave origin to the modern Latin name \textit{Catechu}. In 1574 Garcia de Orta (Coll., xxxi.) gave a complete account of the plant, and of the manufacture of the extract under its Tamil name of \textit{kati (cate)}, a word which by some authors gave the first half of the name \textit{Catechu}, the second being derived from \textit{chusa}, to distil. It is probable, however, that although the earliest European authors saw the extract being prepared from \textit{A. Sundra}, the Pegu form is quite as ancient if not more so. It was not, however, until the seventeenth century that \textit{catechu} attracted the attention of Europe. It was then supposed to be a natural earth, and as it reached Europe by way of Japan it received the name of \textit{Terra Japonica}. About the same time \textit{Gambier} also found its way to Europe, and was designated \textit{Terra Japonica} indiscriminately with \textit{catechu}. Cleger exploded the mineral notion of these substances, by republishing in 1685 Garcia de Orta's account of the preparation of the extract. He affirmed that the best quality came from Pegu, other sorts from Surat, Malabar, Bengal and Ceylon.

There are said to be three forms of this substance: (1) \textit{Dark Catechu} or Cutch, chiefly used for industrial purposes; (2) \textit{Indian Pale Catechu} or \textit{kath}—a crystalline substance eaten in \textit{pan} or used medicinally; and (3) \textit{Keersal} (\textit{kirsal}), a crystalline substance found embedded in the wood, much after the same fashion as Barus camphor. To obtain the cutch the trees have to be felled, but the destruction is conducted in so ruthless a fashion, and so widespread is the demand, that many officers affirm the total extinction of the tree is threatened. [\textit{Cf. Upper Burma Gaz. Shan States, 1900, ii., pt. i., 314; For. Admin. Rept. Pegu Circ., 1900-1, 10; Summary Settl. Operations, Lower Chindwin Dist., 1901-3, 3; Hooper, Rept. Labor. Ind. Mus., 1904-5, 26-7; 1906-7, 10.}]

The following particulars may be given regarding the manufacture of the two first-mentioned extracts:—

\begin{enumerate}
 \item \textit{Dark Catechu or Pegu Cutch}.—Three men generally work together: one cuts down the trees and drives the cattle that drag the logs to the site of the furnace; the second clears off the sapwood and cuts the heartwood up into the little chips required by the third man, who attends to the furnaces and boilers. The chips are packed into earthen pots holding three to four gallons of water, and the whole is boiled down to one-half; the chips are then taken out, and the liquid of 20 to 25 pots is gradually poured into a large iron pan or cauldron, and again boiled and stirred and fresh liquid added from the earthen pots until the fluid attains the consistency of syrup. The cauldron is then taken off the fire and the contents stirred continuously with a wooden paddle for four hours or more, till the mass cools and can be handled. It is then taken out and spread on leaves arranged within a wooden frame, like a brick mould. It is left over-night, and in the morning the extract is dry and ready to be cut up into pieces for the market. It might then be described as a brick of cutch weighing 36 to 44 lb. A picturesque and illustrated account of the work is given by a correspondent in \textit{The Empress} (July 1903).
\end{enumerate}

The chips are sometimes boiled down a second time, but as a rule very little is extracted by this further boiling. Much difference of opinion prevails as to the necessity of beating the liquid after the cauldron is taken off the fire. Some manufacturers are satisfied with half an hour, others give it as much as four or five hours.

\textit{Cutch manufacture takes place from June 1 to March 31, but the}
KATH AND KEERSAL

months of December to March inclusive are those of most energetic operations. The produce of each cauldron is approximately 36 to 44 lb. a day, but the total yield during the season cannot be accurately determined since much depends on the quality of the trees, their proximity to the boiling place and, above all, the working days of the season. The proceeds of one cauldron may be 2,000 lb., or it may exceed 6,000 lb. As to the yield of cutch per given weight of heartwood, it is believed that a ton of wood might be taken as yielding 250 to 300 lb. of cutch.

In the western and northern tracts of India, such as Kanara, Dharwar, Khandesh, Surat and Baroda, and to some extent Chota Nagpur in Bengal, Dehra Dun and Gonda in Oudh, dark-coloured cutch is also prepared by a process that only differs in minor details from that briefly described in connection with Pegu. The industry in these regions is on a much smaller scale and the appliances are correspondingly less perfect, but the principle involved is the same. In Gujarat, as a rule, the trees are not felled, but the larger branches are simply lopped off, and these are cut and boiled down into cutch. The article from these localities as met with in the market differs, however, materially in external appearance and shape from Pegu cutch. It occurs in small cubes, flat cakes or rounded balls, and is of a redder colour and more opaque fracture. The influence of the method of manufacture, more especially the use of iron cauldrons, will be discussed in a further paragraph.

2. Pale Catechu or the crystalline substance known as Kath.—This is the restricted name, given in Northern India to a grey crystalline substance prepared from a concentrated decoction of A. Catechu wood by placing in it a few twigs and allowing the decoction to cool. The twigs are removed and the crystalline substance found adhering to them is collected and pressed into large irregular cubes. Whether the liquid is rejected or is afterwards boiled down to produce a poor quality of dark catechu or cutch has curiously enough not been recorded. The cubes of grey crystalline substance are the kath, which is eaten by the Natives in their pan and which imparts with lime the red colour to the lips. It is, apparently, hardly ever exported to Europe, and the name kath, while chiefly applied to it, is in some parts of India unfortunately also given to cutch. Kath and cutch have by Europeans been mistaken for the same substance, but the former is much purer chemically than the latter, and it may be owing to the fact of cutch being the form exported to Europe that catechu has lost the former position it held as an astringent medicine. It seems probable that the preparation of kath may be a secondary process from the cutch, since its direct preparation from the original decoction has only been observed at Kumaon, although the substance is universally used in pan all over India. This subject deserves to be thoroughly investigated, and the merits of kath and its process of preparation made better known. In a further paragraph will be found an abstract of recent investigations that have a bearing on the issue here raised. [Cf. Madden, Journ. As. Soc. Beng., 1848, 665.]

3. Keersal or Kbersal.—From the wood of Acacia Catechu is occasionally obtained a pale crystalline substance known as kbersal. The woodmen, when cutting up the timber for fuel, sometimes come across this substance and carefully collect it, since it is much valued as a medicine by the Hindus, and fetches a high price. [Cf. Dymock, Mat. Med. Western Ind., 232; Bomb. Gaz., vi., 13.]
ACACIA
CATECHU
Cutch

Dr. Warth's Investigations.

Improvements in Manufacture.—The Agricultural Ledger (1895, No. 1) records Dr. Warth's experiments in the manufacture of cutch, with the results obtained and the correspondence that ensued on his recommendation for the establishment of central factories under Government control. Warth showed that the Native system was wasteful and destructive, more especially through the use of iron cauldrons. He explained that the active principle of cutch was the tannin known as Catechu-tannin. This forms a greenish-brown compound with ferric salts. There is also present, however, another substance known as Catechin, and this is the active principle in kath, or the edible form of cutch. Catechin is, however, easily changed into tannin. It is soluble in hot water but practically insoluble in cold water, while catechu-tannin is completely soluble in cold water. From this simple fact Warth proposed that catechin should be invariably separated from the catechu-tannin and sold by itself, but he showed that it was essential that this should be accomplished by a rapid process and in concentrated solutions. Etti had previously pointed out these peculiarities, but Warth gave them a practical value. The concentrated decoction is by him recommended to be set aside for five days, to allow of the formation of the crystalline catechin. Cold water is then added and the solution filtered, and the filtrate again boiled down to form cutch free from catechin. As already suggested, it seems probable that by some such process kath may be regularly manufactured by the drug dealers of India, since the Kumaon supply could hardly suffice to meet the Indian consumption.

Warth then demonstrated the injurious action of iron on catechin, and urged that the cauldrons used should invariably be copper. His observation that wood spotted with white deposits is richest in catechin, and that such wood is more prevalent in Oudh than in Burma, confirms a widespread Native opinion, and probably points to something peculiar in the variety of plant grown in Oudh (var. α, Catechu, above), as compared with that of Burma (var. β, Catechuoides).

The inquiry was next prosecuted by Dr. Leather, Agricultural Chemist to the Government of India. His assistant, Mr. Collins, furnished a most instructive table of analysis, in which he showed that commercial valuations rarely coincided with percentage of catechu-tannin and catechin (more especially of the latter), but were dependent mainly upon the appearance of the extract. So far as the tanner is concerned the complete absence of catechin might be said to be a recommendation. Leather dealt in a most interesting manner with the best methods of cutting up the timber, with the effect of different kinds of water, the quantity of water required, and the time which was essential to boil the wood. He showed that it would be more economical to reduce the wood to shavings by the carpenter's plane than to cut it into chips as at present. When reduced to shavings the yield of catechu-tannin and of catechin was much higher than with chips; the proportion of water to weight of wood could be reduced from 20 to 10 or even less; and the duration of boiling might be reduced from twelve hours to half an hour. All these circumstances indicate not only vast financial economies, but the production of a superior quality of extract, owing to the smaller amount of boiling that is necessary. The separation of white catechu (or catechin) from eutch (or catechu-tannin), might be made a commercial success if accomplished from an extract prepared in the manner indicated by Leather.
In The Agricultural Ledger (1896, No. 35) will be found the results of Professor J. J. Hummel's and Mr. Reginald B. Brown's chemical investigations into the dyeing properties of catechu-tannin and catechin. Briefly, they have demonstrated that both these substances may under certain circumstances be used as dyes. [Cf. Journ. Soc. Chem. Industr., March 31, 1901, xx., 246.] The present purpose has been to convey the facts of commercial importance and the bearings of recent research (both botanical and chemical) on possible developments of the cutch industry.

Production and Trade in Cutch.—Trustworthy returns are not available regarding the production of cutch in India. The trade is very largely in the hands of small manufacturers and dealers. As a rule the right to work the cutch forests belonging to Government is granted by license and sold by auction or tender. The period for which the licenses hold good is usually four months. Commercial Circular (1896, No. 11) gives certain particulars of interest regarding the Burma trade. It is calculated that on the average 80 cutch trees are used per cauldron, and as the average price paid for the cauldrons comes to Rs. 225, the average price obtained per tree comes to Rs. 2–13. But each tree would yield about 25 cubic feet, say half a ton, so that the price obtained is equivalent to Rs. 5–10 per ton, or nearly as much as is usually got from the local traders for undersized teak logs.

It would seem that the Burma production averages from 130,000 to 150,000 cwt. a year; the South Indian perhaps 1,000 cwt.; the Bombay perhaps half that quantity; and it is probable that Bengal and the United Provinces yield between them about 20,000 cwt. This conception of the probable annual production is inferred very largely from the returns of Foreign, Coasting and Internal Trade, rather than from actual statistics, and consequently it ignores local consumption. Thus the total exports to foreign countries were 183,729 cwt., valued at Rs. 36,96,106, in 1895–6; 122,082 cwt. in 1896–7; 97,187 cwt. in 1897–8; 61,669 cwt. in 1898–9; but they rose again to 127,815 cwt., valued at Rs. 24,70,422, in 1899–1900; sank to 101,995 cwt. in 1900–1; and further to 66,162 cwt. in the year following. In 1902–3 there was a slight improvement to 70,305 cwt., valued at Rs. 13,42,583, and a still further improvement in 1903–4, viz. to 112,936 cwt., valued at Rs. 19,71,896. In 1904–5, however, they again fell to 62,662 cwt., valued at Rs. 9,71,041, and in 1906–7 to 97,269 cwt., valued at Rs. 15,92,561. The traffic thus fluctuates greatly, but would seem on the whole to be declining. Usually Burma contributes about 98 per cent. of the total. For example, taking the total export for 1906–7, Burma furnished 95,451 cwt., Bengal 1,687 cwt., Madras 124 cwt., and Bombay, 7 cwt. The Bengal trade seems for some years to have declined and direct shipments from Burma to have increased. The United Kingdom is the country to which by far the largest consignments are usually made. The next in order are, as a rule, Egypt and either France, Germany or Holland. The trade with the Straits Settlements has steadily declined from 6,585 cwt. in 1898–9 to 1,796 cwt. in 1901–2, 104 cwt. in 1905–6, but rose to 854 in 1906–7. The United Kingdom takes from 70 to 80 per cent. of the total annual supply. Of the coastwise traffic Bengal (Calcutta) is the most important receiving centre and Burma the most important exporting. In 1895–6, Bengal received 39,079 cwt., but that traffic seems to have declined seriously, and in 1902–3 was only
SOAP-PODS AND CASSIE PERFUME

13,557 cwt., and in 1905–6, 10,678 cwt. The Rail and River-borne trade returns show Bengal as the most important receiving province, and mainly from the town of Calcutta, hence doubtless Burmese. The United Provinces might be called the most important exporting centre, the major portion of the supply going to Bombay town and Presidency.

A. concinna, DC.; Fl. Br. Ind., ii., 296. A common prickly scendent bush met with in tropical jungles throughout India.

Since the pods of this bush are extensively used as a detergent, they are often confused with the SOAP NUT (Sapindus Mukorossi), and, indeed, they bear, as a rule, the same vernacular names—viz. rita or ritha, but are sometimes separately distinguished as the ban (wild), ritha, etikone, aitah, etc. These detergent pods are largely employed in washing silk and woollen goods. Some of the best tintorial results are believed to be obtained only with yarn washed with this form of soap previous to being dyed. They are extensively used in washing the hair, and with much advantage in cleansing tarnished silver plate.

In Northern Bengal they are utilised in poisoning fish. The trade in detergent pods must be very considerable in India as a whole. Collective returns are, however, not available, but we read of from 10 to 135 tons being imported into Bombay annually, and mainly from South Kanara. The Madras Mail (Jan. 1898) speaks of the local supply coming from Palghat and Vaninamba, and urges that an effort should be made to place these pods on the European market.

The bark of this bush is to some extent used as a TAN for fishing-lines, and is imported for this purpose from Bombay from Kanara. [Cf. Gamble, Man. Ind. Tumbe., 1902, 291; Cooke, Fl. Pres. Bomb., i., 450.]

A. Farnesiana, Willd.; Fl. Br. Ind., ii., 292. A small tree best known in Europe as the Cassie Flower, and curiously enough is in India denoted by comparative or descriptive names such as vilayati (English) babul or kikar, pisis-babul, gú-kikar, kankar, vedda vala, gaya-babul, murki tumma, naga tumma, kusturi, jáli, nanlóngyäng, etc. It is indigenous in America and possibly cosmopolitan in the tropics, is cultivated or naturalised all over India and Burmah.

It is largely grown in France on account of the rich Perfume obtained from the flowers. Although it yields a Gum and other products similar to most species, the chief interest centres in its "Cassie Flowers." The late Sir F. Abel, in a letter to the Government of India, dated July 16, 1894, gives certain interesting particulars regarding the success obtained by a tea-planter in Naini Tal, in producing Cassie Pomade. Although a good deal of attention has been given to this subject, little progress has as yet been made towards establishing a trade in the perfume. It is probable that in India a difficulty might be found to exist in preventing the hard or sweet oil, employed in the manufacture of the pomade, from becoming rancid. But in the lower hills or terai where this tree abounds, or might easily be cultivated, it seems possible that a useful auxiliary crop to tea, coffee or even indigo planting, might be found in Cassie Pomade. [Cf. J. C. Sawer, Odorography, 114–6.]

A. Jacquemontii, Benth.; Fl. Br. Ind., ii., 293. A small handsome shrub with polished stems and thorns, and flowers sweetly scented. It is met with in the North-West Himalaya up to 3,000 feet. In the Panjab plains, in Sind, in Rajputana and in North Gujarat it is often very abundant, especially within watercourses.

Known in Afghanistan as the kampa, in the Panjab it appears to bear, as a rule, the same vernacular names as A. arabica, but a sample recently received from Amritsar, by the Reporter on Economic Products, bore the vernacular names of dhakki and chota-kikar. In Rajputana it is called baoli or gultí boní; in Gujarat it is the rita-bíval; in Baluchistan harbarbara; and in Sind khanbut. Captain M. A. Tighe, Political Agent, Southern Baluchistan, speaks of the gum of this tree as one of the spurious gum arabics which are known in that country as khoríkhor. [Cf. Rept., dated March 14, 1898.]

For some years past a considerable trade from Baluchistan and Sind has
THE DISTILLER'S ACACIA

been done in the Gum of this species, exported from Karachi. Stokes (speaking of Sind many years ago) says that it is inferior to gum arabic, but is used in medicine, calico-printing, and in paper-making. Captain Tigh has much to say as to the difference between this and the true gum arabic (the khor-bu-khor) which see under A. senegal. But it may be added in conclusion that Messrs. Rowntree & Co., Ltd., of York, have pronounced the Amritsar samples (mentioned above) as the best of the series of Indian gums examined by them, for the confectioner's requirements. "It is strongly mucilaginous and forms a thin jelly on standing with ten proportions of water. The solution is brownish, but fairly free from sediment, and the flavour is sweet." It has been ascertained that about 35 cwt. of this is annually procurable in Amritsar.

A. leucophloea, Wild.; Fl. Br. Ind., ii., 294; Gamble, Man. Ind. Timbs., 295; Brandis, Ind. Trees, 265. The safed kikar, arinj, rinj, nembar, goira, hewar, haribaval, vel-cvellam, tella-tuma, tanaung. This large deciduous fast-growing tree is found in the plains of the Panjáb and Rajputana, the forests of Central and South India and Burma. It prefers a low-lying situation, and in the Panjáb its presence is regarded as significant of a rich soil. Its branches are often disfigured by large excrescences.

According to Mr. J. G. Prebble, it yields a Gum readily soluble in water, which forms a good thick pale-coloured mucilage, possessed of the somewhat peculiar property of being gelatinised by borax but unaffected by ether, neutral or basic acetate of lead or perchloride of iron. It seems probable that, owing to its close chemical affinity, this gum is often largely used to adulterate the better qualities of "Gum Ghati" (see p. 17) of commerce. According to Mr. Hooper (Agric. Leaders, 1902, No. 1, 26) a specimen of the bark sent from the Province of Mysore was found to contain 20-8 per cent. tannin, being equal to the best babul-bark; but this seems to have been an exceptional case, as he adds that a sample examined at Dehra Dun yielded only 9-33 per cent. Its use as a Tan is therefore doubtful. The bark affords a strong Fibré said to be of much value for fishing-nets. Ground to a powder it is sometimes eaten with bajra, especially in times of scarcity. But it has obtained a considerable reputation as an astringent used in alcoholic Distillation. On this account it is often called sharab-ki-kikar (spirit Acacia). The tannin precipitates the albuminous substances present in the saccharine juices, and thus facilitates fermentation, but is also said to give a pleasant astringent flavour to the beverage. In the Southern Marathá country the trees are farmed out by Government, in consequence of the value of the bark. A distiller in South India recently informed me that he would use this bark more extensively than at present, were it possible to obtain a guarantee of quality. He held that while most Acacia barks might be employed in fermentation, that of the present species was so much superior to all others as to justify its being called "The Distiller's Acacia." [Cf. Cooke, Fl. Pres. Bomb., i., 447.]

A. modesta, "Wall.; Fl. Br. Ind., ii., 296; Gamble, Man. Ind. Timbs., 299; Brandis, Ind. Trees, 266. The phula, phulái, sbhamburi, kantzisirayo, palosa. A moderate-sized tree found in the Suliman and Salt Ranges, the Sub-Himalaya—between the Indus and Sutlej—and is one of the characteristic trees of the Northern Panjáb plains. It grows readily in poor sandy or rocky soils, but curiously enough is also found occasionally in very damp situations. It is a slow grower, and in consequence is not often planted, except as a fence, for which it is peculiarly suited. It yields sparingly a very useful Gum which occurs in small round tears or angular fragments, with a few vermiciform pieces marked with waved transverse lines. Prebble says, "It is translucent and of a yellowish colour; very soluble in water, forming a good pale-coloured mucilage. With basic acetate of lead and ferric chloride it forms a jelly, but not with borax; with neutral acetate of lead a faint precipitate or cloudiness, and a slight reduction with Fehling's solution." The gum is sent to Bombay from Northern India, and is classed by the merchants as "Amritsar Gum." The Panjáb supply comes mainly from the Rawapindi and Jhelum districts. In Northern India it is largely

ACACIA MODESTA

Gum.

Suitable for Confectionery.

D.E.P., i., 52.

Gum.

Fibre.

Distillation.

Gum.

Used in Medicines.

D.E.P., i., 52.
ACACIA SENEegal

Gum Arabic

employed in medicine. The tree affords also a very beautiful, strong and durable Timber which is largely employed for cart-wheels, sugar-cane crushers, agricultural implements, etc. The soft delicate twigs are employed as tooth-brushes, especially in the Punjab. [Of. Pharmacog. Ind., i., 552.]

The bark is an article of commerce, being exported from the Konkan, and employed in Bombay to tan fishing-nets. Hooper (Agri. Ledg., 1902, No. 1, 26) says that a sample from Bombay was found to possess only 8.8 per cent. of tannin. In the Annual Reports of the Forest Department, Bombay Southern Circle, an entry occurs of the amounts realised by the sale of shemba bark. These range from Rs. 25 to Rs. 394. In Bombay it fetches about Rs. 14 per 700 lb.

A. Senegal, Wildd.; Fl. Br. Ind., ii., 295; Gamble, Man. Ind. Timbs., 299; Brandis, Ind. Trees, 266; Cooke, Fl. Pres. Bomb., i., 449. It yields the TRUE GUM ARABIC of European commerce, and is the khor (Sind), khor-ka-khor (Lus Bela), kiutua (Rajputana). A low tree with grey bark and flexuose branches, met with, so far as India is concerned, on the dry, rocky hills of Sind and Rajputana, more particularly in the Lus Bela country.

Commercial Qualities.—It seems desirable to bring together in this place a few of the more important facts regarding India’s participation in the world’s supply of Gum Arabic. There may be said to be three chief forms of the gum: 1st, TRUE GUM ARABIC OF EUROPEAN COMMERCE; 2nd, THE EAST INDIA GUM ARABIC; 3rd, THE GUM ARABIC OF INDIA, often collectively called “Gum Ghati.” The True Gum Arabic is obtained from A. senegal, Wildd., and there may be said to be two or three grades of it:—

1. (a) GUM SENEGAL, the cerek of the Negroes.—This comes from the French Colony of Senegal (on the West Coast of Africa).
(b) KORDOFAN or TURKEY GUM.—This is known in East Central Africa by the name hotah. It comes from the mountainous tracts of Kordofan on the Upper Nile and almost in the same latitude as Senegal, though across the vast continent of Africa from west to east. It occurs in round lumps, often as large as a walnut, or in irregular broken pieces, pure white, very much fissured, especially on the surface. This gum is most frequently used for medicinal purposes, and may, in fact, be regarded as the true official Gum Arabic of England, India and America.
(c) Inferior qualities known in trade, such as SUAKIM GUM, SENNAAR, BLUE NILE, BARBARY or MOROCCO and MOGADOR GUMS. These are most probably mainly derived from A. arabica. Reference has already been made to the variability of gum due to climate, soil, seasons, etc., and to the part possibly played by bacilli (see above, p. 2), but physical changes also take place subsequent to its collection, and these doubtless produce variations in quality. [Of. Journ. Soc. Chem. Indust., 1903, xxii., 429; Goezto, Pharm. Zeit., 18, 119; Pharm. Journ., 1903, 70, 417; Muriel, Ind. For., 1902, xxviii., 45-58.]

Attention may now be directed to THE EAST INDIA GUM ARABIC. This is imported into Bombay, in the first instance, from Aden and the Red Sea ports—no part of it being produced in India. There are two qualities, viz. makla (or makhla) and masusi. The former exists in large round tears or verricular pieces, white, yellow or reddish. It is much like GUM SENEGAL, but more fissured. It derives its name from Makalla, the port from which it is mainly shipped. The latter exists in angular fragments and verricular pieces very similar to the former and obtains its name
from the port of Massowa. Both of these are good soluble gums, very little inferior to true Gum Arabic. They are picked and assorted, then re-exported from Bombay as EAST INDIA GUM ARABIC, the traffic being by no means unimportant. Within recent years, however, that traffic has given distinct evidence of decline, due very possibly to direct shipments to Europe in place of to Bombay—the historic emporium of distribution.

Lastly, we come now to the INDIAN GUM ARABIC or GUM GHATI. It would seem that, in contradistinction to the gums that reach Bombay by sea, those that come by train, down the Ghats to Bombay, are collectively designated GUM GHATI. But it may be here mentioned that Clusius in 1605 speaks of Gummi Gutti as brought from China to Europe: hence it may be asked, is it the Malay *getah?* [Cf. *Kew Mus. Guide*, 1907, 150.] Accepting the modern usage, “Gum Ghati” would embrace very possibly a wide range of gums, and very often, it is feared, degrees of quality denote the extent of admixture rather than the nature of specific variation. Gum when detected is gathered casually by women and children, or by the shepherds, and sold in small quantity to the nearest shopkeeper. It is next conveyed to the dealers and so on through many hands until diversified gums, the produce of a wide area, get hopelessly intermixed. Nowhere in India is gum systematically produced, and indeed hardly anywhere is arboreal vegetation so exclusively of one gum-yielding tree as to admit of a large uniform and constant supply of any particular gum.

Prebble (in the paper to which reference has already been made) describes 27 gums as met with by him in Bombay. These include *A. arabica, A. Catechu, A. Farnesiana, A. Leucophloeae* and *A. Modesta.* Some short time ago Captain M. A. Tighe, Political Agent, Southern Baluchistan, was induced to give attention to this subject. In consequence he furnished admirable samples of the gums of Baluchistan, as also corresponding botanical specimens of the plants from which these had been procured. The two most important were thus definitely determined, namely, *khor* (or *khor-ka-khor)—*Acacia Senegal,* and *harbarbara—A. Jacquinontii.* Tighe’s description of the country, of the season of flow of gum, and the dependence on rain, will recall the conditions that prevail in the regions where the True Gum Arabic is produced. [Cf. *Agri. Ledg.,* 1902, No. 2, for further particulars.] Far to the south, at Tuticorin, a modern trade in gum has been organised. Considerably different prices are being paid for the various grades of it, and at least one firm employs a staff of persons to hand-pick and assort the gums as procured. I was unable to ascertain all the species of plants that afford these South Indian gums, but the most important would doubtless be *A. Sundra,* which is the South Indian variety of *A. Catechu* and an abundant tree from Coimbatore northwards to the Deccan and Gujarat. [Cf. *Heuze, Les Pl. Indust.,* 1895, iv., 258-66.]

TRADE IN GUM ARABIC.—As already stated, one of the features of this trade is the supply drawn by India from Africa, Arabia, etc., by sea, and from certain tracts of country by land routes across the frontier. There are thus exports from India in both Indian and foreign gums, the latter being usually designated re-exports. The following statement shows the total transactions under these headings:—

(a) **Imports by sea** 1898-9, 2,841 cwt., Rs. 59,531; 1902-3, 1,146

17

2
ACONITUM
Monk's-hood

TRADE IN GUM ARABIC

Cwt., Rs. 21,494; 1906-7, 10,127 cwt., Rs. 1,54,270: (b) by land 1898-9, 18,093 cwt., Rs. 282,877; 1902-3, 12,800 cwt., Rs. 1,66,066; 1906-7, 11,969 cwt., Rs. 1,56,932: (c) RE-EXPORTS 1898-9, 7,297 cwt., Rs. 1,05,801; 1902-3, 10,704 cwt., Rs. 1,47,044; 1906-7, 2,684 cwt., Rs. 57,417: (d) EXPORTS 1898-9, 41,469 cwt., Rs. 7,14,632; in 1902-3, 38,019 cwt., Rs. 4,54,639; and in 1906-7, 35,202 cwt., Rs. 6,69,263. In 1895-6 the exports were less in quantity, but nearly twice the price of those in 1902-3. There may be no meaning in averages of declared official values in a traffic that for some years has been obviously changing its main characteristics, it may be affirmed that a marked depreciation in price has taken place.

The traffic in Indian-produced gum for 1906-7 may now be analysed thus—exports from Bombay 35,044 cwt. and from Sind 51 cwt. The re-exports take place almost entirely from Bombay, and they are far in excess of the recorded imports, both by sea and land routes. It is not known to what extent the Trans-frontier traffic could be accepted as being gum arabic, but the chief items of the "gums and resins" carried across the frontier, drain from Nepal and Lus Bela. The latter seems a modern trade, and doubtless mainly in the gum here dealt with. The discrepancies between the returns of imports and of re-exports are seemingly due to the Trans-frontier land supply not being fully accounted for; to the varying extent to which stocks are drawn upon or withheld; and lastly very possibly to admixture with Indian gum arabic. The re-export trade fluctuates both in quantity and value very considerably, having undoubtedly in the past been greatly disturbed through war and plague. But on this subject Worden (Journ. d'Agri. Trop., 1901, i., 46) affirms that the advance in price of the gum called "Soudan" only lasted into 1892, and that since 1894 the price has been almost the same as in 1880. Vilbouchevitch believes that the only effect of the Soudan troubles has been to bring into notice, for subsidiary purposes, certain gums not previously known or indifferently appreciated. There seems no doubt, however, that so far as India is concerned, a decline has taken place in the imports from Red Sea ports, but an expansion of Indian supply, more especially through the organisation of the Sind and Madras contribution.

The figures discussed above are mainly those given for Gum Arabic, not the "other Gums" nor the "Resins." Moreover an error is ever present in that it is not always possible to isolate returns of gums from those of resins. The "other gums" may also be to some extent "gum arabic," and thus the figures quoted may not represent the total trade.

This medium-sized tree has a white bark (a circumstance that gives origin to most of its vernacular names); it is common in Bengal, Bihar, Assam and South India, from the Karnatak to Mysore. It is known as the air-kanta, kumta, dhaula (white) khejra, etc. Through being confused with var. Sunda (which see under A. Catechu, p. 9) it has by some writers been incorrectly spoken of as a catech-yielding species.

There are in the world perhaps 150 species of Aconites, chiefly inhabitants of the north temperate regions, 24 being Indian. These were figured and
be collectively designated as the East Himalayan Aconites, for although
one species exists in Kunwar and two in the mountains of Assam and
Manipur, their headquarters commercially are Sikkim and Nepal. They
are the Nepal Aconites of the shops of Calcutta. The important forms of
the series are:

47 (in part); Fl. Br. Ind., i., 28 (in part).

This plant occurs in the sub-alpine and alpine Himalaya of Garhwal,
and a well-marked variety of it (which Stapf calls latilobum) was collected
by Mr. Minniken in Nagli, Bashahr, where it is known as kalamohra (or the very
poisonous mohra).

A. laciniatum, Stapf, l.c. 168-9; A. ferox, var. laciniate, Brühl,

This plant comes from the sub-alpine and alpine Sikkim, where it is
called (so Rogers informs us) kalo-bikhuma—a name that doubtless would
mean the poisonous bikhuma, in contrast with the non-poisonous bikhuma
(A. palmatum above). This isolation of A. laciniatum from the true bikh is
interesting and important. It shows that it is recognised locally as only a
substitute or adulterant for the true root, and in fact it would seem to be ex-
clusively so used. Apparently it is the kalobachnag of Moolooine Sheriff, and
very possibly the kalaekut of other writers. The root is if anything larger than
the most prevalent "Nepal Aconite" of Sikkim (A. spicatum below) and
has numerous circular scars, indicating fallen lateral roots, so abundant and
regular as to resemble nodes or joints. In transverse section the tuber seems
to differ from that of A. spicatum by the absence of the so-called inner ring of
vascular strands enclosing the pith.

A. lethale, Griffith; Stapf, l.c. 175-6 (the Mishmi Aconite); and
A. nagarum, Stapf, l.c. 176-7 (the Naga hills and Manipur Aconite).
It is probably safe to regard these as the most eastern members of
the series.

Stapf views the aconite of the Akhas as being very possibly the true
und Phys., 1894, 138, 289.]

A. spicatum, Stapf, l.c. 165-8; A. ferox, var. spicata, also var.
ecrassicaulis, Brühl, l.c. v., pt. ii., 110; A. ferox, Fl. Br. Ind., i., 28 (in
part); Agr. Lead., 1902, No. 3, 94-6 (in part); and later by Dunstan
and Andrews, Trans. Chem. Soc., 1905, lxxxviii., 1636-50. This is
the most abundant, most robust, and most characteristic species of
alpine Sikkim and Chumbi.

The chief "Nepal Aconite" of Indian commerce, the bikh, bish, the ativasa
(very poisonous bish) of Sir Walter Elliot; the mitha-bish, aringi-bish, dagra,
bachnap, or takka of Indian writers, and the singia yar or singia khar of Talesh
Shereef (Playfair, transl.), 1833, 107. Its poisonous principle has been called
bikhaconitine by Dunstan and Andrews, and described as closely related to
pseudaconitine both in its chemical properties and physiological action.

The roots are very large, and when fresh are soft, flexible and pale-coloured,
but when quite dry they are hard, dark brown or black externally, and of a
brownish-red internally. The half-dry root when cut resembles horn (hence
the name singyi or singya-bish), but as it matures and dries it becomes hard and
has darker-coloured portions developed as embedded irregular patches within
the tissue. These patches often appear like resin in consistence. In transverse
section Stapf says the tubers are seen to possess cambium strands, continuous
and forming a more or less sinuous ring. The secondary sieve-strands of the
mother tubers are not encased in sclerenchymatic sheaths. The samples
examined by me might perhaps be properly described as having the vascular
strands in the form of an irregular sharply pointed star, enclosing a small central
pith surrounded by a secondary ring of bundles. To protect the roots from

D.E.P.,

i, 87-91.

Nepal
Aconite.
being weevil-eaten are often preserved in cow-urine. This may account for the dark colour of some parcels, and may perhaps explain the name kala (black) often given to these, though most writers seem to prefer to translate kala when given to an aconite as meaning deadly. This is the root exported from both Nepal and Sikkim to Calcutta. It has been pointed out that Nepalese traders have been in the habit of draining their supplies from the Sikkim as well as the Nepal side of the Singaleelah range, but that recently the facilities of the Himalayan Railway at Darjeeling have begun to make the Sikkim supply by far the most important. As indicative of the very poisonous nature of this plant, mention may be made of the fact that the sheep have often to be muzzled in the Sikkim Terai. [Cf. Kew Mus. Guide, 1907, 9.]

III. Poisonous Aconites, one at least of which contains pseudoaconitine; they are in Northern and Western India traded in as "White Bikh," safed-bikh, safed-bachnag or some derivative of the word mohra (a word which like bikh denotes a deadly poison). They also constitute grades of the so-called "Nepal Aconite" of Indian commerce, and are the Central Himalayan Aconites, those found in the shops of Upper and Western India.

A. delnorrhizum, Stapf, l.c. 158-60; A. ferox, var. atrox, Watt, Agri. Ledy., 1902, No. 3, 97 (in part).

This interesting plant was collected in Bashahr (Jani Kanda) by Mr. Minniken and said to bear the local name of mohra, but it is believed by Stapf to have been very possibly the maura bikh of Claghorn, the mitha-didya of Aitchison (Trade Prod. Lek, 175), and the plant referred to by Madden (Journ. As. Soc. Beng., 1848, xxi., 95). It is thus very possibly met with throughout the Central Himalaya from Kunawar to Nepal, and has been collected by Mr. Duthie in many parts of Kumaon. Moorcroft spoke of the abundance of aconite (possibly this species) in Kumaon, and supposed the stupefiant effects of the honey from certain localities to be due to the bees feeding on aconite. Dunstan and Andrews on the examination of fresh, more accurately determined roots, have arrived at the conclusion that the present species is that which should be regarded as affording the alkaloid pseudoaconitine of previous reports. The existence of that alkaloid in certain forms of Indian aconite appears to have been first made known by Schott (1857), elaborated by Hübschmann (1868), and worked out in every detail by Dunstan and Carr (Trans. Chem. Soc., 1897, reprinted in Agric. Ledy., 1897, No. 19, 1898, No. 3). These distinguished chemists give full particulars of the properties of the alkaloid and its decomposition products. It would appear that pseudoaconitine may physiologically be regarded as identical with aconitine, though very much more active. The chief objection to its extended use is the difficulty of obtaining a continuous supply of the root of uniform quality. It seems, moreover, probable that this plant is not separately recognised by the collectors of and dealers in drugs, but is confused with the following:—

This corresponds with a large portion of the A. ferox, var. atroxx, Watt (Agri. Ledy., 1902, No. 3, 97-8), and includes also A. ferox var. polyschita, Biihli. It is met with in the sub-alpine and alpine Himalaya of Garhwal to Nepal, and seems to be known by the vernacular names gobriya and banua or bhanua. At present it is doubtful how far the following names belong to this species or to A. delnorrhizum: phaktiga, kawariya, didiya, dhanka, dhunuriya, jhirina, etc. Mr. Duthie observes that every valley has its own names for its aconites, and even different names for the same plant when of a different shade of colour.

The difference between the roots of A. delnorrhizum and A. Balfourii is not very great. The latter is shorter and thicker than the former, and has always hardened sharp rootlets attached. The former is that which comes most largely into the markets of India as White Aconite, safed-bikh, safed-bachnag. According to Native opinion it is the most valuable and certainly the most expensive form in the bazaars. It was furnished to me under the name of 22
POISONOUS ACONITES CONTAINING INDACONITE

ACONITUM

CHASMANTHUM

Medicinal Aconite

"A. Napellus. Linn.," but it would seem that north and west of Cawnpore this is the bikh of the Indian drug shops, whereas south and east bikh would be A. spicatum. The white-bikh root is easily recognised: when dry it is brittle and white in section, has a farinaceous structure in some respects like that of bikhma, but it is distinctly poisonous and must, therefore, be carefully distinguished. It is usually about 2 or 3 inches long, broadest at its immediate extremity, and gradually and uniformly tapered to a long sharp point below. It is nearly always perfectly straight and the cuticle is of a chestnut-brown colour, smooth, though at the same time irregularly contracted into exceptionally large folds. In transverse microscopic section its roots are seen to have an interrupted ring of large cambium strands. These are either irregularly horseshoe-shaped or elliptical and arranged round the pith, which frequently becomes cavernous. Occasionally also a few single cambium bundles are seen scattered throughout the fundamental tissue.

I understand that Prof. Dunstan has found, on analysis of a sample of white-bikh from Dudatoli, that daughter tubers contain nearly 1 per cent. and the mother tubers ¼ per cent. of pseudoaconitine.

The plant which Bruhli named as var. polyschiza was supplied by Mr. J. S. C. Davis of Almora. When received by me the samples bore the names phutkia (faktia), and gobaria—names which recall some of those reported by Duthie as given in Garhwal. Recently Davis has obligingly furnished further material, as also a translation of a report which he had received from the political Peshkar at Garbyang. It would seem that at Garbyang, aconite root is designated mitha but that there are two forms, (a) faktia and (b) gobaria. The former is a smaller and less poisonous plant than the latter. The roots furnished were found to have a white farinaceous structure with a single irregular ring of cambium strands.

IV. Poisonous Aconites that contain inadconite. This may be accepted as a series that corresponds botanically with the most valuable medicinal aconite of Europe and America—viz. A. Napellus. Stapf has shown that the true A. Napellus nowhere exists in India. The world’s supply of medicinal aconite is, in fact, derived mainly from the cultivated plant, and comes very largely from Germany. But there are one or possibly two indigenous aconites met with in the extreme western division of the Himalaya and adjacent hills of the Panjab that seem worthy of a place in this section:

This very beautiful species occurs on the sub-alpine and alpine Himalaya from Chitralt to Kashmir, and also on the mountains of Hazara, between altitudes of 7,000 and 12,000 feet. It is the mohri of Hazara; tiisa, kachang, dudhia, pium of the Himalaya, and ban-bal-nag of Kashmir. According to Dunstan and Andrews its roots contain indaconitine, an alkaloid which represents a compound intermediate between aconitine and pseudoaconitine. Cash and Dunstan (Proc. Roy. Soc., 1905, 468) have pointed out that its physiological action differs in degree only, and not in kind, from the two alkaloids just named. Samples have been furnished by Indian chemists and druggists as “True Aconitum Napellus.” One contributor sent it under the name of mitha zaher. Davies (Trade Report) alludes to 20 seers of mitha tiisa as annually exported from Peshawar to Kabul. Mooden Sheriff mentions the circumstance that a very small and highly poisonous root is sold in Northern India but never seen in the south. It differs from that of A. Napellus by being smaller, shorter but comparatively thicker. The tubers are seen in cross-section to have the cambium continuous, forming a more or less sinuous or star-shaped ring. The remains

Kashmir and Hasara Aconites.
ADENANTHERA
PAVONINA

THE SWEET-FLAG

Red-wood of the stem are nearly always found on its upper extremity. It is not more than one inch or an inch and a quarter long. Is of a black colour; curved, densely coated with short sharp thorns (lateral rootlets), and is terminated by a short, hard, smooth and pointed beak. In the dry state it has a horny or cartilaginous fracture.

A. soongaricum, Stapf, l.c. 141-2; found in Gilgit.

Of all the Indian forms of the genus this comes nearest botanically to
A. Nepalis, Linn. The root does not appear to find its way to the bazars of India. This species has not as yet been chemically investigated, and it is just possible that it may be found to contain acoinitine.

ACORUS CALAMUS, Linn.; Fl. Br. Ind., vi., 555; Aroidae. The Sweet-flag, bacha, shadgrantha, vashambu, etc. The imported Persian rhizome is known as bāl-vach or bāl-vekhand. The medical treatise which constitutes The Bower Manuscript (Hoernle, transl.) makes repeated mention of this drug.

It is the Calamus aromaticus of mediaeval writers, and possibly the Acoron of the Greeks. It is a semi-aquatic herb occurring wild and sometimes cultivated, from Kashmir to Assam, Manipur and Burma, and to the mountains of Central, Western and Southern India. It is most abundant between altitudes of 2,000 and 6,000 feet. An essential oil prepared from the leaves is used in England in the preparation of a hair-powder, and from 1 to 2 per cent. of a yellow neutral essential oil may be extracted from the rhizomes, which like the other parts of the plant owe their property to the glucoside acorin. Gildezie and Hoffmann (Volatile Oils, written under the auspices of Schimmel & Co., 302) say that though the oil has been repeatedly examined no satisfactory insight into its chemical nature has been obtained. It is used in the manufacture of liquors and of snuff, but is less in demand than formerly for medicinal purposes. Native medical practitioners consider the rhizome in large doses an emetic, in small doses tonic or stomachic and carminative. It is prescribed in cases of fever, rheumatism and dyspepsia, as well as for flatulence, even in infants. It is also a pleasant adjunct to tonic or purgative medicines, and as an aromatic stimulant is recommended for catarrh and distressing coughs. Dr. Childe, Second Physician to the Sir Jamsetji Jijibhai Hospital, Bombay, tried an authentic tincture for malaria, dyspepsia, dysentery and chronic bronchitis, and after careful experiment pronounced it inert. Linschoten, who studied the cultivation of sweet-flag in Gujarath and the Deccan (a.d. 1598), mentions a preparation called arata (a mixture of the rhizome of sweet-flag with garlic, cumin seeds, salt, sugar and butter) which was used as a strengthening medicine for horses. Nicholson (Man. Coimbatore, 247) refers to its use in the treatment of foot and mouth disease. [Cf. also Taleef Shereef (Playfair, transl.), 1833, 34.]

It is generally stated that a considerable demand exists for sweet-flag spirit as a FLAVOURING for gin, beer, etc., and that the supply is obtained from the Broadst districts in Norfolk. In India it is said to be similarly employed in the manufacture of aromatic vinegar. The rhizomes of the bazars come mostly from the lower hills of Northern and Eastern India, but the imported Persian root is the most expensive. As an illustration of local Trade, it may be observed that Mr. Coldstream mentions an export duty charged on sweet-flag in Sarmor State, but the root can be purchased there at the rate of 12 seers per rupee. No particulars are available as to the total Indian trade or the foreign exports, if such exist, but a large supply is obtainable. Sir W. Lawrence (Valley of Kashmir, 72) speaks of it as an abundant wild plant in Kashmir, and the same is true of most if not all of the warm temperate tracts. [For Chemical and Medical opinions and results consult Thoms. Archiv. der Pharm., 1886, 465; Yearbook Pharm., 1886, 161; 1888, 131; Journ. Chem. Indust., 1901, xx., 833, 1237; 1902, xxii., 1295; 1903, xxiii., 317; Pharmacoep. Ind., iii., 539; Kanny Lall Day, Indig. Drugs, 9; H.H. Sir Bragvat Singhji, Hist. Aryan Med. Sc., 52; etc.]

Red Sandalwood.
Red-wood (occasionally called Red Sandal-wood or Coral Wood), the rukta kanchan, rukta kambal, ranjana, mandakai, thotralapuny, vali, bari-gumchi, etc., etc. Sometimes incorrectly called rukta-chandan (Pterocarpus santalinus). A large deciduous tree met with in the moist forests of Bengal, Assam, Bombay, Madras and Burma, and readily propagated by seed. A Gum (madatini) is said to be afforded by it. The wood is powdered and used as a Dye, and is the red paste (tilak) with which the Brahmins colour their foreheads after bathing. Taylor (Topogr. Stat. Dacca, 1840, 598) says a decoction of both the seeds and wood is used in pulmonary affections, and as an external application in chronic ophthalmia. The Timber is much employed for house-building and cabinet-making. The seeds, which are sometimes eaten, are bright red and therefore used for rosaries and as weights (about 4 grains). Ground to a paste with borax they form a useful cement.

ADHATODA VASICA, Nees; Fl. Br. Ind., iv., 540; ACANTHACEAE. The arusa, adulsa, bakas, vasa, basunti, rous, adhatodi, maya, etc. A sub-herbaceous bush, found throughout the warmer tracts of India up to altitudes of 4,000 feet, and usually very abundant on the Sub-Himalayan tracts but much less common in Western and Southern than in Eastern India. Gregarious and found in large patches, but where it does not grow as a weed it is often semi-cultivated in hedgerows, and under these latter circumstances often attains the proportions of a large bush.

Hooper (Handbook Imp. Inst., 1897, ser. No. 10) incorporates all the information available up to that date and should be consulted. Subsequent investigations has mainly consisted in careful therapeutic tests, with the object of ascertaining the medicinal value of the plant. The results of the inquiries will be found in the Report of the Indigenous Drugs Committee of India (i., 38, 68, 183, 385-418, 497). It may be observed here that the verdicts of recent trials in Indian hospitals may be said to confirm belief in the plant as afford relief in chronic bronchitis and asthma, but to preclude acceptance of its reputed virtue in cases of phthisis. The medicinal properties of this plant are mentioned in The Bower Manuscript, recently translated by Dr. Hoernle. It is there called vraha (85, etc.).

The leaves are sometimes boiled with the sawdust of jack-wood to make a yellow Dye. They seem to be most frequently employed, however, as or with Manure, being either put on to the fields just before the rains and ploughed in, or scattered over rice-fields recently flooded. It does not seem established whether this agricultural utilisation is as a preventive against noxious insects (see below), or in recognition of the quantity of potash which they contain. At all events it is one of the principal plants employed in India for the preparation of pearl-ash. It appears also to be used not infrequently for gunpowder Charcoal, and in Bengal the wood is turned into Beads. In the Naga hills the stems are used in a kind of augury.

Considerable difference of opinion prevails regarding the use of Adhatoda as an insecticide and antiseptic. In The Journal of the Pharmaceutical Society (April 7, 1888), Hooper announced that he had discovered the active principle of the plant to be an alkaloid, which he called vasicine, but seven years later Prof. Giacosa of Turin (at the instance of Sir Lauder Brunton) threw some doubt on this discovery, by stating that though he had found the leaves rich in potassium nitrate (and therefore a valuable green manure), he had found no alkaloid. In 1897, however, Hooper's discovery was fully confirmed by Dr. W. G. Boorama of Java, who added interesting suggestions as to the use of vasicine both as a drug and as an insecticide. Although the insecticide property would thus seem established, it has been found by practical experiment that vasicine cannot be used, as at present available. A tartrate is in the market, but cheaper and equally efficacious insecticides already exist. The use of the leaves, both as a green manure and as a poison to pests, especially on inundated ground (originally pointed out by me in 1887), might with advantage be further investigated and recommended to cultivators in localities where the plant abounds.

[Of. Taleef Shereef (Playfair, transl.), 1833, 12; Voeler, Improv. Ind. Agri., 1893, 107.]
MARMELOS
Gum

D.E.P.,
i., 117-24.

History.

A small tree found here and there both wild and cultivated throughout India and Burma. It is sacred with the Hindus, the leaves being specially suited for the worship of Siva (Jones, As. Res., 1790, ii., 349-50). It is all but universally known by its Sanskrit name bilva, a word which appears in some form, such as bel or bael, in most modern languages. The fruit is generally called srikhal. By the early European writers it was called Cydonia Bengalensis or Bengal Quince, and by others was confused with Crotona religiosa (which see, p. 429). Garcia de Orta, followed by his reviewer Clusius (Arom. Hist., in Hist. Écot. Pl., 1605, 233) early in the 16th century, called it Marmelos de Bengala, and he and other writers make special mention of the value of the fruit in the treatment of dysentery. Jacobus Bontius (Hist. Nat. et Méd. Ind. Or., 1629, in Piso, Incis. Utr. re Nat. et Méd., 1658, 98) terms the fruit Malum cydonium. Rheede (Hort. Mal., 1686, iii., t. 37) calls it covalum, but Rumphius, who wrote in 1750, makes no mention of it. Turning now to the Arab authors: Serapion describes three drugs under the names bel, fel and sel, but does not sufficiently distinguish these one from the other. Avicenna treats fel and bel as synonymous, and tells us that it is a drug with virtues very similar to the "Apples of Mandragora." [Cf. Paulus Egideta (Adams, transl.), iii., 448.] The Makhzan-el-Adwiyah describes the fruit as cardiac, tonic and astringent. In ancient Sanskrit poems this tree is frequently alluded to, and by Hindu physicians it is much extolled. [Cf. The Bower Manuscript (Hoernle, transl.), 14, etc.; Pharmacop. Ind., I., 277.]

Varieties.

There are believed to be several varieties, distinguished by the size and shape of the leaflets when taken in conjunction with the size, shape and texture of the fruit. The main distinction may be said to be into the wild state, with small, hard, round, very astringent and unpalatable fruits having numerous seeds, and the cultivated conditions with large, often oblong fruits, having frequently a comparatively soft rind, a richly flavoured and copious pulp with only few seeds. It has been observed that whilst in Northern, Western and Central India the wild fruits are very intoxicating and are often used as a fish poison, no such character attaches to the cultivated fruit. This curious observation deserves further inquiry. From the Panjâb comes the statement that a form known as kaspâ has a conically shaped fruit, while the cultivated plant generally met with is known as bil, and further that the wild condition (with small round fruits) is distinguished as the bilam—a name given in other provinces of India to Eerovina. [Cf. Joret, Les Pl. dans L'Antiq., 1904, ii., 286.]

The bael is usually grown from seed, but in Burma advantage has been taken of the fact that it frequently sends up shoots from the roots, to propagate the approved races by root cuttings. It is generally stated that in from 5 to 8 years the plants will begin to fruit, and that when about 25 to 30 years old, the trees may be regarded as in full bearing. When grown for medicinal purposes only, a small round fruited form, much like the wild plant, is preferred, and it is maintained by the Burmans that the best results are secured when that plant is grown on dry, open, rich soil.

Bael takes ten months to ripen, and it may be said to come into season usually during March and April. In some cases it can be had in December, January and February, but in such instances the fruit has most probably been forced. On the other hand, fresh fruit may be procured as late as June, having been simply left on the trees until required.

A reddish-brown Gum is sparingly obtained from the stem. A gummy or mucous substance is secreted within the cells of the fruit, and thus around the seeds. This is universally used as a Cements, and if carefully mixed with lime will be found a clean and useful article that will set rapidly and firmly. It is reported to be obtained more copiously from the wild than the cultivated fruits. In Northern and Central India it is in special demand for the construction of wells, since it sets firmly, takes a fine polish, and is not affected by water. The pure mucus is spoken of as a valuable Varnish for pictures and as a gum or glue of
PROPERTIES AND USES

ÆGLE MARMELOS
Bael Fruit

special merit, where extra security and, at the same time, neatness are desired. It is reported to give brilliancy when added to water-colour paints. In Burma it is commonly mixed with paint as a dryer and to give a glossy surface. But perhaps the most remarkable use of this substance is that recorded in connection with the Madras Presidency. In Madura it would appear that the yogis (Hindu devotees) employ the pulp of the fruit as a kalpam or substitute for oil. For this purpose a ripe fruit is placed on the hearth until it bursts. The pulp is then removed from the shell, and a little water worked up with it until a glutinous material has been produced. After being purified, the pulp is rubbed over the body. A bath is then taken, when the pulp acts as a detergent and imparts a refreshing and cooling sensation. Of South Arcot it is stated that the mucous fluid only is used for the above purpose, and that it is rubbed on the hair in place of oil by the poorer classes or is employed as SoaP in washing garments. The Dutch in Ceylon used formerly to prepare an Essential Oil (or attar) from the rind, known as Marmelle Oil (Journ. Agri.-Hort. Soc. Ind. (Proc.), 1857, ix., 134). A Perfume is also distilled from the flowers.

The Medicinal properties of bael fruit are so well known that they need hardly be detailed. The fresh ripe fruit is eaten as an article of Food by the poorer classes only, more especially the aboriginal hill tribes. By others it is mainly consumed as pickles or preserves or as a refreshing and mildly laxative drink or sherbet. Most writers say that the half-ripe fruit is extensively employed in India as an astringent, digestive and stomachic, and is prescribed in diarrhoea and dysentery, and often proves effectual in chronic cases when all other remedies have failed. For these purposes, however, according to some writers, the wild fruit is preferable to the cultivated. It is certainly much more astringent, contains a larger amount of the gummy substance already mentioned, but has an objectionable quantity of seeds and only a very small amount of pulp. On the other hand, Colonel J. Parker (Medical Storekeeper to Government, Bombay Command) writes (Rept. Cent. Indig. Drugs Comm., l.c. 138), "Natives do not use the unripe fruits for medicinal purposes, but the pickle prepared therefrom is considered to be admissible in illness when other forms of pickle are said to be contra-indicated. The half-ripe fruit is adopted by the British Pharmacopoeia, but the rind only of the ripe fruit is used at this Dépôt in the manufacture of Extractum Belae Liquidum." Moodeen Sheriff recommends for medicinal use a syrup made of the pulp of the ripe fruit, as more especially serviceable for chronic affections, and a powder of the pulp of the half-ripe fruit for acute diseases. He says of the last preparation that it is specially useful in altering the nature of dysenteric motions rather than in reducing their frequency.

The sun-dried slices of bael (generally known as belgiri) may be seen in every drug shop of India. They are not supposed to be injured by time, if kept perfectly dry, but in Europe the same beneficial results have not been attained with this drug as in India, a circumstance explained by European physicians by the theory that the dry slices deteriorate when kept for more than one season. Dymoeck says, "The best preparation of bael-fruit is a MARMALADE made from the full-grown but still tender fruit, cut in thin slices; it keeps well, which is not the case with the conserve made from the pulp of the ripe fruit that is usually met with in the shops."
In addition to the fruit, the root-bark is viewed as medicinal and employed in the treatment of intermittent fevers—a preparation from ten roots. The leaves when fresh are made into a Poultice and used in ophthalmia and maggot-infested wounds. The Juice expressed from the leaves is bitter and pungent. Diluted with water it is highly spoken of as a remedy in catarrh, fever and biliousness. It may be preserved by being boiled in oil. The leaves are eaten in order to destroy the desire for food, and are so employed by sadhus. Bael fruit is employed in the treatment of scum in vinegar manufacture (see p. 1110).

The Timber, yellowish-white, mottled, close-grained, hard, has no heartwood, is not very durable and is readily attacked by insects. It weighs from 40 to 50 lb. per cubic foot. When freshly cut it has an aromatic smell. According to certain Hindus it is sacrilege to cut this tree down, but chiefly when cultivated and more especially when near temples. In the wild state, or when the tree has been neglected or has been killed, it may be felled and the timber utilised even for fuel or charcoal. It is used in the construction of sugar and oil mills, carts, agricultural implements, and, according to some writers, in the construction of idols, combs, and beads for certain rosaries. In the Institutes of Mani (ii., 45) the wood is given as an alternative with that of Butea frondosa, whence the Brahman sticks may be made.

Although there must be a very large local Trade in bael, nothing in the way of actual returns can be quoted. The dry fruits sell at about Rs. 1 per 100 and the green fruits at less than half that figure. The dry pulp (belgiri) can be purchased at about Rs. 20 per cwt. Although several firms, such as the Great Eastern Hotel Company, Ltd., in Calcutta, regularly manufacture the mar-malade, the article does not appear to be exported to any appreciable extent. In the London "price-current," quotations are given of dried and sliced fruit fetching from 1d. to 4d. per lb. It is often observed, however, that the market is neglected and the demand very limited.

The dried fruits, with pulp excavated, are largely employed as boxes in which to store medicines, sacred ashes, etc. Small ones are beautifully carved, and made into Snuff-boxes. A considerable trade is done all over India in these ornate boxes, but it is feared that the majority may in reality be made from the small hard fruits of Feronia, rather than of Eglite. In the snuff-boxes made at Peshawar there is a considerable export to Kabul and Lower India. Ganjam, far to the south, is famed for its charmingly carved snuff-boxes—these show the 10 incarnations of Vishnu. Charged with gunpowder, the small dry fruits are also employed as bombs in Firework exhibitions. Very young fruits (about half an inch in diameter) are used as Beads and are arranged alternatingly in necklaces with the seeds of Eleocarpus Ganitrus (the rudrak). These are specially worn by religious men of the Siva sect. The wood ground down on a stone to a paste, with a little water, is often employed alone or in combination with sandal-wood to give the white transverse caste markings on the forehead of the Sivites.

[The following works may be consulted, in addition to those indicated above or mentioned in the Dictionary:—Buchanan-Hamilton, Stat. Acc. Dinoj., 1833, 153; Journ. As. Soc., 1819, vii., 264; Ainslie, Mat. Ind., 1826, ii., 188; Tales Sheerej (Playfair, transl.), 1833, 42, 54; Journ. Agri.-Hort. Soc. Ind. (Proc.), 1837, 133; 1859, x., 157; 1863, xii., 348; 1865, xiii., pt. ii., 61; 1869 (n.s.), i., pt. ii., 58; 1872, iii., pt. ii., 14-26; Basu, Agri. Lokardaga, 1890, i., 130; Moodeen Sherif, Mat. Med. Mad., 1891, 84-7; Bull. Dept. Agri., 1896, Nos. 2, 8; Innes, Jungle Prod., 1898, 8; Banerjei, Agri. Cuttack, 1893, 191; Woodrow, Gard. in Ind., 1899, 217; etc., etc.]

ÆSCHYNOMENE ASPERA, Linn.; Roxb., Trans. Soc. Arts, 1806, xxiv., 156; Fl. Br. Ind., ii., 152; Gamble, Man. Ind. Timbs., 1902, 237; Prain, Beng. Plants, i., 418; Duthie, Fl. Upper Gang. Plain, 1903, 271; Leguminosae. The shola (Hind.), sola (Beng.)—a word corrupted into solar by English writers and manufacturers; is also atunete, benda, pani (water)-kuhila, kaydiya, kaydia-dhendor, etc. The
present species is often designated in Bengal and Assam, bhat (white or rice-like)-sola or phul (flower or soft)-sola, in order to distinguish it from—

A. indica, Linn.; the kat or kath (hard)-sola, kuhila, kathirdendor, etc. The chirmilli or sirmilli is *Sesbania* and not *Aeschynomenes*—a plant often used as a substitute for *sola*.

The former species is a floating bush, with sensitive leaves, found on land annually inundated or within the margins of tanks or lakes throughout Bengal and the greater part of Assam; it is frequent in Burma and also present in South India. The latter, a taller more bushy plant and much less aquatic in habit, represents the genus in the other provinces, is found in Bengal, Assam and Burma only above water-level on land temporarily flooded. Neither species is systematically cultivated, but in November and December the upper portions of *E. aspera* bearing pods are severed and thrown on the water and the seeds thus become self-sown. The roots also are perennial. By February-March the pods are ripe and the pith-yielding shoots over-ripe; the stem then becomes dry, shrunk and discoloured, whilst a large cavern forms along the centre. The plant usually grows in from 2 to 4 or 6 feet of water, and when found living above water-level it appears to be unhealthy. It is often seen in the corners of rice-fields, but as a rule is viewed as a pernicious weed, and accordingly uprooted.

Roxburgh would appear to have been the first person to draw attention to this plant and its economic uses. He recommended its adoption as a substitute for cork in the manufacture of swimming-jackets and lifeboats. But it is curious that he makes no mention of its use in the construction of hats (*sola-topis*). In Bengal and Assam the workers in Pithi usually belong to the Malakar or Mali caste of Hindus, who as a rule acquire the hereditary and exclusive privilege of manufacturing garlands for ceremonial use in certain districts. The thicker portions of the stems only are cut into lengths of 2-3 feet. These are tied into bundles and stored until dry, when the brown bark is removed and the pith cut up as required. If intended for the manufacture of hats, caps, or frames of pugglies, it is split into thin sheets. For this purpose the stem is held over a series of rollers and with a sharp knife, the knife being made to travel round and round within the thickness until the whole stem is reduced to a sheet not much thicker than note-paper. Hats, etc., are worked up on wooden or clay moulds, and, if honestly made, are built up layer upon layer of *sola* sheets pasted one on the top of the other. By dishonest makers a large proportion of paper is intermixed with the pith, thus adding greatly to the weight of the hat and lessening very materially its insulating power (to the rays of the sun) wherein lies the superiority of the pith hats (*sola-topis*) over all others used in the East.

In the Roorki district the pith from *A. indica* is very largely used for *sola-topis* with a surface-dressing of Bengal pith. Owing to its hardness, this form of pith cannot be split into the very thin sheets needed for flower manufacture. If pith be required for this purpose, or for weaving into mats, the debarked stalks of *E. aspera* are drawn between bamboos fastened upright in the ground at various distances apart, or are flattened by means of smooth stones. By either of these methods the pith is compressed, and will retain the form thus given it until moistened, when it again expands. To make a flower, the strips of *sola* are compressed in such a manner that in transverse section they are more or less triangular in shape, and along the surface, corresponding to the base of the triangle, parallel lines are cut. The strips are then sliced transversely with a sharp knife into very thin pieces. The pointed ends of the triangles are inserted into slits made on another stick of *sola*, intended as the stalk of the flower. When the required parts have been thus inserted into their places a brush, moistened in green-coloured water, is made to touch the outer whorl of triangles. These instantly expand and become the sepals of the rose or other flower. A brush, moistened in pink or other coloured water, next touches the inner whorls, and these, obeying the magician’s wand, expand into petals, and are bent while still flaccid into the desired positions. The slits cut lengthwise along the compressed sticks of *sola* are now seen to open out into petaloid teeth. Stamens are formed of thin strips of pith, upon the extremities of which, particles of sugar (from a coloured saccharine fluid) have been made to crystallise, thus forming glistening anthers. Floral buds are

Habitat.

Distribution.

Seasons.

Cork Substitutes.

Manufacturers.

Preparation.

Stripping.

Hats, etc.

Flower.

Manufacture.

Swell when moistened.

Stamens or Buds.
constructed of stained grains of rice fastened within green leaflets of sola. [Cf. Ind. Art at Delhi, 1903, 169.]

The three great centres of this art may be said to be Dacca and Mandalay for small and large flowers respectively, and Tanjore for models; but the ceremonial craft of the Malakars is practised all over India. The introduction of matches has practically rendered obsolete the domestic use of sola as a tinder with flint, but the pith is now made into covers for water-bottles, stoppers for medicine-bottles, and plugs to widen earing holes in the ears. It is also employed as a lining for the tops of palanquins and for seats and cushions, as also for the ornate Muhammadan tazias used at the Muharram. The cheaper pith of E. indica is usually employed for fishing-floats, fishing-baskets, rafts and swimming-belts, as it is supposed to be specially durable in water. Where procurable in abundance it is said to be especially useful in firing pottery, and the charcoal made from it is highly prized in the manufacture of gunpowder.

The soft sola (E. aspera) is used in surgery for insertion into the opening of a sinus or abscess since it rapidly absorbs moisture, expands, and thus widens the opening. A long article on the Chemistry of Sola by Hannock and Dahl will be found in The Chemical News (July 12, 1895). The leaves of the sola plant are sometimes used as a Pot-herb, and an Oil is extracted from the seeds. [Cf. also Hamusek, Micro. Tech. Prod. (Winton and Barber, transl.), 1907, 233-5.]

There is practically only a local demand for sola-pith, and in its unmanufactured condition it is hardly ever exported. The best quality is obtainable in Bengal, and is carried thence all over India. To this day the centre of the Trade may be said to be in Calcutta, where the manufacture of sola-topis appears to have originated. No information is available as to the trade in the harder pith of E. indica, but it may be recognised by the circumstance that the stem is curiously striated on the thin bark and has wart-like formations along the striations. A central pith is always present in the form of a hollow surrounded by a slightly hardened layer. In E. aspera the bark is not striated; the stem unless over-ripe is quite solid, very soft and of a pure white colour. [Cf. Acosta, Tract. de las Drogas, 1578, 241; Journ. Soc. Chem. Indust., 1903, xxii., 198; Der Tropenpflanzer, v., 598.]

Sola Substitutes.—The following are the chief substitutes:

Aralia armata.
Cassia micromosides.
Cephalanthus occidentalis.
Heptapleurum hypoleucum.
Mimosa pudica.

Pentapetes phenicea.
Sesbania paludosa.
Sonneratia acida.
Trevesia palmata.

AGATHIS LORANTHIFOLIA, Salisb.; Gamble, Man. Ind. Timbs., 703; Conifere. A lofty tree met with in Burma and the Malay Peninsula and islands.

It is in Burma known as theet-men and is generally spoken of as the Amboyna or White Pine. It affords a large quantity of transparent resin known as Dammar, which is used like that of the New Zealand coudie or kauri dammar (Agathis australis, Salisb.) in the manufacture of Varnish similar to Copal and for waxing and polishing fabrics. [Cf. Roxb., Trans. Soc. Arts, 1805, xxiii., 412-3.]

30
Drummond and Prain, the most recent authors on the Indian Agaves, review the various botanical opinions that have been advanced, give a complete history of the useful species, and also furnish a record of publications so exhaustive as to render further treatment in this work almost undesirable. The citation of publications below is intended therefore to amplify the enumeration given by these authors in so far as works, mainly of practical and commercial interest, are concerned.

Distribution.—The species of *Agave* are indigenous to tropical South America, Mexico and the Southern States of North America. By cultivation (chiefly during the 16th to 18th centuries) the forms of industrial and horticultural interest have been distributed throughout the greater part of the warm temperate and tropical regions of the globe. Several have even become acclimatised (or have run wild) in South Europe, Africa, India, the West Indies and some portions of the American Continent where they are believed not to have been indigenous. While completely naturalised in the warmer tracts of India, one of the species has become equally at home on the hills up to an altitude of 6,000 feet, provided the soil be dry and rocky, and the atmosphere not too moist. They are best known under the following names—American Aloe, Century Plant, Carata, Pita, Sisal Hemp, White Rope Fibre, and the like.

History.—One of the earliest detailed accounts of the economic properties of these plants was that given by Gomara (*Histoire générale des Indes*, 1554, 334). Writing of the Spanish West Indies including Mexico, he speaks of a plant known to the Natives as *meli* or *maguey* (= tree of wonders) and to the Spaniards as *cardon* (the thistle). He gives a statement of its use for textile purposes, and explains the name *fil-y-agulla* as referring to the use of the spine as a needle and the fibre as thread. Fragoso (*Hist. Med. Ind.*, 1600, 88) mentions the wine obtained from the plant (*pocaire*—the pulque of later writers). Dodonaeus (*Purgatorium*, 1574, 115) publishes a plate borrowed from Clusius who had it prepared from a plant seen by him near Valentinia (*Rar. Stirp. Hist. Hisp. Obs.*, 1576, 442). The same plate did duty in some form with later writers for the next two hundred years, though it usually appeared side by side with the plate of Camerarius (*Hort. Med.*, 1588, 10–11, t. v.). In 1727 Trew published an excellent monograph on the subject with a careful drawing of the flower. As regards India the first authentic reference would appear to be that of Roxburgh (*Ohs. on Substitutes for Hemp and Flax*, 1801). In *The Journal of the Society of Arts* (1804, xxv.) he speaks of *Agave* as wild and beautiful, and in his *Hortus Bengalesensis* (1814, 28) he mentions three species, *A. cantala*, *A. urda* and *A. tuberosa*. The *first* he tells us had been introduced into the Royal Botanic Gardens, Calcutta, before 1794 (from India, locality not stated), and further he affirms that it possessed a Sanskrit name—*kantala*; the *second* he speaks of as a native of America; and the *third* he says had been procured from Kew but turned out to be the plant called "Yuca Superba" of the Calcutta Gardens—a plant which had been procured direct from America in 1799. Subsequently Roxburgh (*Fl. Ind.,* ii., 167) was induced to think it wild. But neither the name *kantala* (nor any other) has been accepted by other writers as being Sanskrit. Roxburgh doubtless obtained it from Sir W. Jones (*An. Res*., iv., 239). It is possibly a gloss on *kateeka*, Rheedee's name for the medicinal aloe. The names that exist are mostly descriptive or comparative and thus modern, for example, *banakeora* (= the bamboo *Pandanus*) or *bara kaneve* (= the large aloe). From Vasco da Gama (1498) down to Hedges (1683) none of the Indian travellers seem to mention agave. It is not referred to in the *Memoirs of Baber* nor the *Administration of Akbar* (the *An-i-Akbari*), though the pine-apple appears in the latter work. It is perhaps referred to by Hove in 1787, and twenty years later Buchanan-Hamilton speaks of its being much planted as a hedge. There is reason to believe that it was introduced into Northern India by Rohillas from the south on purpose to be employed as an impenetrable hedge around forts. The name *keski* (usually restricted to *Pandanus*) is the most general name for agave in Central India. But it is significant that Rheedee should say nothing of agave in his account of the

31
plants of the West Coast of India (1678), while Rumphius (Herb. Amb., 1750, v., 273, pl. 94) should describe and figure a plant which is certainly agave and possibly A. Cantala. It seems then to have been a very recent discovery, and it probably reached India from America by the trade-route, via the East Indian Archipelago.

Brief History of the Efforts to acclimatise Sisal Fibre in India.—The several Governments of the West Indies (more especially of the Bahamas) have made strenuous efforts to participate in the sisal hemp trade, and the Blue Books that have appeared from time to time contain much of great value. It is perhaps safe to say of India that by far the most important contribution to the existing knowledge of cultivated agaves has been the direct outcome of the great personal interest taken by the former Director of the Royal Gardens, Kew, Sir William Thiselton-Dyer. Live plants of all the more highly approved species and races of agave were procured and the more interesting of these distributed to the Colonies and India. Reports have at the same time been obtained from the indigenous habitats of the various species as also from the regions of most successful production, and these have from time to time been published in the Kew Bulletin. Still later the information thus collected has most considerately been brought together and republished in one volume (B. Kew, add. ser., 1898), thus forming a convenient book of reference that contains full particulars of the results attained within recent times. The Director of Kew, at the suggestion of Sir George King, and subsequently of the Revenue and Agricultural Department of the Government of India, procured and forwarded to India three consignments of live plants of sisal hemp. The first reached India on July 9, 1890, but the plants were found to be dead on arrival at the Royal Botanic Gardens, Shibpur, Calcutta. The second consignment of 1,000 plants came to hand on October 29, 1891, and it was then found that 643 were alive. The third consignment of 4,900 plants reached Shibpur on October 14, 1892, and of these 2,984 were alive. Prior to these consignments, however, the Botanic Gardens, Saharanpur, had received by post in 1886, direct from Florida, a few live suckers. One of these had been successfully grown and had yielded many young plants, of which a limited distribution was made. Recently a report was called for as to the success attained with the 1892 consignment of plants. The preparation of that report was entrusted to Lt.-Col. D. Prain, at that time Curator of the Calcutta Herbarium. The recipients of the plants issued from the Royal Botanic Gardens were invited to furnish information on eleven separate subjects of inquiry, such as the nature of soil on which the plants had been grown; distance planted apart; percentage of deaths; the date on which they afforded suckers; date at which the plants were cut; the length of fibre obtained; the method adopted in preparation of fibre, etc., etc. It may be here explained that the Agri.-Horticultural Society of India having received a supply of plants from the Superintendent of the Royal Botanic Gardens, Calcutta, issued these to the members of that Society, and the answers furnished to the series of questions were published in the Journal (1898, xi, n.s., 864-8). The replies received by Prain were incorporated in his report. This was republished in The Agricultural Journal (1900, No. 6), and may therefore be regarded as a most important practical contribution to our knowledge of the sisal hemp fibre in India. It will be there found that Prain concludes a letter to the Hon. Secretary of the Agri.-Horticultural Society of Madras as follows: “I may add, for your information, that since preparing my Note I have learned that two private importations from Florida of Sisal Hemp plants, one in the Tirhut (indigo) area, and one in Assam (tea) area, have taken place, the parties concerned having said nothing about these importations, and all that I am able to say regarding them is that the efforts of the various Indian Governments, detailed in my note on Sisal plus those of your Society and of the Government of Madras are, when put together, insignificant as compared with either of those private ventures.” Of Dauracherre, in South Sylhet (the Assam instance doubtless in the above quotation), it is said that 10,000 plants were imported from Florida in 1894. In 1901 most of the original stock were poling and each yielding 2,000 to 3,000 bulbs. Mr. J. Cameron in his address to the United Planters’ Association of South India in 1900 stated that the Mysore Government had imported over 4,000 plants direct from Florida about seven years previous. These had taken kindly to the climate and now afforded material for an extensive propagation.

Carrying the Indian records to more recent dates, two exceedingly important
papers have appeared: (1) A Note on Agave and Furcraea by Drummond and Prain, and (2) Sisal Hemp Culture by Mann and Hunter. The former tackles in an able manner the much disputed botanical origin of the commercial plants and the latter gives useful details of an Indian plantation. Before dealing with the practical issues it may be advantageous to exhibit in this place the botanical opinions.

Species and Varieties.—The necessity for a complete revision of the species of this genus, more especially the cultivated forms, has long been felt as very urgent. Much has been done by systematic botanists for the wild forms in their native habitats, but much still requires to be accomplished before we possess the accurate knowledge essential to industrial progress. Cultivators have not always gone to botanists to secure their original supplies. There have in consequence been carried here and there throughout the tropics a multiplicity of forms, some at least of which in their new homes seem to have made confusion confounded by modifying the colour, shape and spinosity of their leaves until they have greatly obscured their botanical characteristics. And these have also brought with them incorrect or even quasi-scientific names that have passed unchallenged for many years. Hence it is no matter for surprise that the Agave turida of one high authority is not the Agave turida of "certain practical men." The blame for this state of affairs cannot, however, be cast at the one or the other: errors and misconceptions are unavoidable in the early stages of most discoveries. The necessity for a common basis of knowledge is now, however, the more urgently demanded. Drummond and Prain (l.c. Agri. Ledg., 1906, No. 7) have taken a most valuable step in the direction of the elimination of ambiguity. They have reduced the Agave cultivated and acclimatised forms to some ten species, and of these five or six are of industrial merit. It would be presumptuous for any one who has not specially studied this perplexing genus to venture on a critical review of the conclusions arrived at by these distinguished botanists. I shall accordingly content myself with an effort to transcribe into one place what appears to me of special value to practical men, and in so doing endeavour to focus my abstracts alphabetically under the scientific names given in the Notes for the chief forms:—

Agave americana, Linn., Sp. Pl., 1753, i., 323.—This plant (to which alone that trivial name should be restricted) exists in India as an ornamental garden plant only. It is extremely constant in its characteristics, and except as horticultural sports (in which the leaves become parti-coloured) it has no authentic varieties. Although a fibre can be and has been extracted from its leaves, this plant is of no value as a textile and does not exist anywhere in India in such abundance as to be of importance. The cultivated stock probably originated in the West Indies. [Cf. Drummond and Prain, l.c. 84-5, 121-2, 126, 136, 151.]

A. Cantala, Roth.: A. vispara, Dalz. & Gilb. (non Linn.), Fl. Bomb. (suppl.), 1861, 93.—This would appear (as indicated above) to have been the species that first reached India. It had taken such a firm hold of the country by 1804 that Roxburgh, when led to suppose that it had a Sanskrit name, was induced to regard the plant as indigenous. It is common in hedges and one of the two species most widely spread and most plentiful in India. Frequent near Bombay, in the northern portions of Madras Presidency, in Central India, and in the Gangetic plain generally, as far north as the sub-mountain districts of the provinces of Agra and the Panjab, ascending the hills to close on 6,000 feet, but is absent from the arid strip between Gwalior and Delhi. Fibre is extracted from its leaves in considerable quantity, but opinions on its quality are conflicting. It is the chief source of the Bombay Aloe Fibre of commerce. [Cf. Drummond and Prain, l.c. 87-8, 100, 105, 133-4, 135, 138-9, etc.]

A. sp. (? A. elongata, Jacq.).—Drummond and Prain (l.c. 88, 101, 105, etc.) show that the plant here indicated cannot be identified as A. mexicana, Lamb. Further they observe that it approaches A. sisalana and is intermediate between that and A. Cantala. It seems very close to the species cultivated at Kew as A. rigida, var. elongata. It has been met with in the Upper Gangetic plain, as for instance at Dehra Dun and the Panjab Siwaliks; it is somewhat extensively planted along railways in N.W. India, and is the most prevalent form in the dry arid tract from Gwalior to Delhi, being there, as it were, obtruded into the area of A. Cantala. The fibre has not been sufficiently investigated, but it seems good and would probably be found valuable. The plant has been grown on a marketable scale in the dry tract between the Chambal and the Jumna.
AGAVE
Species and Varieties
Cultivated Sisal.

A. *sisalana*, *Perrine.*—The True Sisal Hemp Plant of India, Australia, the Pacific Islands, etc. This was introduced on various occasions between 1885 and 1892. It is cultivated in Burma, Cachar, Sylhet, Assam, Bengal, N.W. India (as far as Lahore), Central India, Bombay, the Deccan (Poona), Mysore and Madras (Bellary). Original stock, obtained from cultivation in Yucatan, conveyed in 1834 to Florida and other parts of America, thence to the West Indies and finally to India. There are forms with the leaves having the margins spinose and others naked, but these conditions may be found on the same plant, so that they are not varietal in value. The seedlings and bulbs of both forms are spinoe. There is but one form of sisal in all India. Mr. Cameron fixes its introduction into Mysore in the year 1892. He mentions that the Lal Bagh of Bangalore had recently sold from its stock 45,000 plants. [Cf. Drummond and Prain, Lc. 83, 89–90, 96, 99, 103, 117, 135, 143–7; also Proc. Agri.-Hort. Soc. Mad., 1903, 44–6.]

A. *Vera Cruz*, Miller, *Dict. Gard.* (ed. 8), 1768, No. 7.—Possibly this plant came originally from Mexico. It is naturalised throughout Southern Europe, in most of the Mediterranean Islands and in N.W. Africa, but has not been recorded from S.E. Europe or the Orient, etc. This would seem to be the *A. americana* of Clusius, and of most writers prior to the time when Linnaeus restricted that name to the special ornamental garden plant. It has been called *A. turida* by some writers (but is not *A. turida*, Jacquin). Introduced into India from the Chelsea Physic Garden by Lord Auckland during 1836, and looked on by Wallis as doubtfully distinct from *A. “turida.”* Recorded as met with here and there practically all over India, but more especially in the Eastern Peninsula. It is spoken of as frequent in the Gangetic plains north to Cawnpore, used for hedging and luxuriances in Calcutta gardens, but rapidly disappears from all localities subject to occasional frosts. It stands a moist atmosphere more successfully than do most other species, and has become naturalised in Mysore. The fibre has not been separately reported on, so that its special properties, if any, are not at present known. [Cf. Drummond and Prain, Lc. 80, 83, 86–7, 99, 106, 121, 126, 131, 140, etc.] The above may be given as a conspectus of the opinions held regarding this species. Compiling from an extensive correspondence and comprehensive series of practical (not botanical) opinions, it would appear highly probable that the fibre of this plant has given origin to the low valuations of the so-called Aloe Fibre of India.

A. *Wightii*, *Praia; A. viesipara*, Wight, *J. Pl. Ind. Or., vi., n. 2924; Baker, Gard. Chron., n.s. 1877, viii., 780 (non Linn.). The Bastardi Aloe.—This is a well-known naturalised form in Southern, Central, Northern and Western India. It is wrongly regarded by some as being *A. Cantala, Roxb.*, and is often spoken of as desiro or “Native” owing to its being self-sown. It is easily recognised by its round, compact rosette of pale-coloured rather stiff leaves. It is widely spread in the drier tracts of India from Mysore to the Panjib. It extends to the extreme south and to the east of Bengal and Assam, but does not thrive in damp countries. The fibre has been reported as good but shorter than *A. sitchensis*, and on that account is not so much in demand as formerly. [Cf. Drummond and Prain, Lc. 91, 101–3, 123, 139, etc.; Greengrass, Letter in Madras Mail, 1903.]

A. ? *lontispola*, Tod.—This is species (H.) of Drummond and Prain (Lc. 90). It is naturalised at Saharanpur, met with near Calcutta, and also in Southern India and N.E. Burma, though nowhere on a large scale. It is distinguished in Saharanpur as *rambana keora*, and is understood to be most probably the plant that furnished the fibre favourably reported on so many years ago. It has an acrid juice.

PROPERTIES AND USES

Synopsis of the Properties and Uses.

The Fibre.—The leaves yield a fibre, the Aloe Fibre, Sisal Hemp or Vegetable Silk, which in common with most fibres of this class is often designated Fita.

Medicine.—The large, moist, fleshy leaves are sometimes used as a poultice. The expressed juice of the leaves is administered by American doctors as a resolvent and alterative, especially in syphilis (Ponder and Hooper, Mat. Med. Ind., 165). The roots are diuretic and antisyphilitic, and are said to find their way to Europe mixed with Sarasaparilla. Prescott (Hist. Mexico) says that when properly cooked, the root affords a "palatable and nutritious food."

Food and Fodder.—In its young green state the stem is regularly used as an article of food, as for example during the famine of North Arcot (Lisboa, Useful Pl. Bomp., 205). In The Agricultural Ledger (1893, No. 3) Mr. J. O. Miller gives the results of the experiments made in the United Provinces to test the value of these plants as articles of food, and the conclusion may be said to have been unfavourable. The leaves are occasionally utilised as fodder, especially for ostriches. [Cf. Agri. Journ., Dept. Agri. Cape Colony, July 1896, 252, 386.]

The Sap.—If the central bud be lopped off at the flowering season, the cut stem discharges freely a sour-sweet liquid which ferments rapidly and forms the Pulque beer of the Spaniards, or by distillation a kind of brandy known as Mescal. The putrid odour of the pulque is said to be due to the vats in which it is fermented being made of hides (Century Dict., 1899, vi, 484). The species specially cultivated for pulque is probably A. Saltiliana, Otto, never A. americana, Linn. [Cf. Journ. Agri. Trop., 1901, 42; Drummond and Prain, l.c. 98; Bull. Un. Agri. Cal., 1903, ix, 11.] Sugar and vinegar may also be prepared from the sap.

Industrial.—The juice may be used as a SUBSTITUTE for SOAP. Wall-plaster impregnated with the expressed juice is said to be proof against the ravages of white ants. (This same statement of the use in cement has, it will be found, been made under Aloe, p. 59.) A writer in The Madras Mail (Oct. 1901) says that the juice rubbed on the hands and feet protects them from injury by fire, hence the "fire-walking" of the Saniyasis. The flowering stem, dried and cut into slices, may be employed as a natural razor-strop or as a substitute for cork. The pulp after removal of the fibre is a valuable manure for the land on which the plant has been cultivated. It is rich in lime, magnesia and potash.

Fibre.—If possible, it would seem the most useful course to refer the observations that follow to two sections: (I.) THE PRODUCTION OF THE ALOE FIBRES and (II.) THE PRODUCTION OF SISAL HEMP. The former practically means the fibre from stock acclimatised in India many years ago, and the latter the fibre of more recently introduced plants. There are, however, only two or three localities in India where Agaves are systematically cultivated, and in these plantations, both old and new stock doubtless exist. But so much ambiguity and disappointment have resulted from not separately recognising the merits of the old stock that it seems desirable to endeavour to separate the Indian fibre into the two groups indicated, viz. American Aloe Fibre (old stock) and Sisal Hemp (new stock), (pp. 39-43).
AGAVE
Aloe fibres

THE ALOE FIBRE PLANT

1. ALOE FIBRES.

From the remarks made under the paragraph above on the botany of these plants it may be learned that the Indian fibres of this kind are derived from *A. Cantala, A. Vera Cruz, A. ? elongata* and *A. ? longisepala*. The assumption that the varying qualities of the Indian fibre were exclusively due to diversity in climate, season, age of collection, and methods of separation, etc., has been completely upset by Drummond and Prain’s recent paper (already briefly reviewed). We now know that there are several distinct species and that the *A. americana* proper is the most inferior and least important of all.

The necessity for a full knowledge of the plant being or proposed to be cultivated in any locality cannot be disputed. Prain (*Ann. Rept. Roy. Bot. Gard., Calc., 1903-4*) says:—“The Sisal Agave does not thrive equally well or give equally remunerative results in all parts of India, and in certain districts species of Agave other than *sisalana*, already so completely naturalised as to appear indigenous, thrive so much better than Sisal and yield fibres commercially so little inferior to the best Sisal fibre that their systematic cultivation offers a hopeful field for investment.” “It seems that, while, as a rule, more or less well-defined areas have particular species well established, the prevailing species in one area often differs from that most plentiful in another area. Moreover, it is found, when attempts are made to utilise the fibre of these local Agaves, that somewhat diverse results are obtained: at times the fibre extracted is reported to be nearly up to the standard of Sisal, at other times it proves too weak to be worth extracting. The explanation of these facts appears to be that other species of Agave share with *A. sisalana* the peculiarity of adapting themselves readily to certain localities and thriving less vigorously in others. The original object of the introduction of all the species was to provide secondary lines of defence round stockades, forts and strong villages; in more settled times they have been chiefly used as hedges bordering highways and lines of railway. Vigour of growth therefore has been the only quality considered in selecting plants within any particular area; the nature of the fibre has not till recently attracted attention.” In selecting stock there would seem to be every likelihood that it may be possible to discover two plants with equally (or nearly equally) good fibres, the one of which would poll in seven to twelve years, the other not till much later, say twenty-five years. There would be an obvious advantage in the latter, namely the greater number of years before the estate would have to be completely renewed.

Technical Reports on Indian Samples of Fibre.—Two samples of Indian so-called American Aloe Fibre (or what were believed at the time to have been such) were in 1893 examined and reported on by the Director of the Imperial Institute, London. These had been procured in 1891 by the Government of India from Saharanpur in the United Provinces, and by Thurston (Off. Reporter on Economic Products) from Coimbatore in the Madras Presidency. [U. Agri. Bull., Mad., 1894, No. 30.] Mr. Collyer of Messrs. Ide & Christie (the expert consulted) reported very favourably on both samples, and in consequence a series of questions were asked by the home authorities which were circulated to persons known to be interested in Agave fibre. The late Mr. Gollan, among others, replied to the questions and thereby afforded more direct and personal
knowledge regarding the Saharanpur sample and the cultivation of the plant, than will be found in the other Indian reports which have as yet appeared. [Cf. Agri. Ledg., 1894, No. 18.] Some doubt, however, may be admitted to overshadow most of the published statements regarding the so-called Agave americana of India from the exact species experimented with not having been accurately determined. But Mr. Gollan, who actually supplied the Saharanpur sample (along with his letter of February 3, 1891), wrote in reply to a special reference on this point, that at the time in question he furnished two consignments, one of the so-called A. americana (much of which very possibly should now be called A. ? longisepala), the other of A. vivipara (or rather A. Wightii) fibre, but none of A. sisalana, for the very good reason that no plants of the last-named species had reached Saharanpur until fully a year later, and no fibre from the Sisal plants had been cut until four years later. [Cf. Agri. Ledg., 1900, No. 6, 63.] The point is of importance chiefly in support of the contention that certain forms of Indian-grown Aloe fibre are little if at all inferior to the true Sisal of Commerce. The fibre that Mr. Collyer viewed with so much favour was thus procured from two of the long-acclimatised plants prevalent in North India. Subsequently Mr. Gollan furnished samples of Sisal fibre grown at Saharanpur, and these were also sent to the Imperial Institute for opinion and valuation. [Cf. Agri. Ledg., 1896, No. 34; Imp. Inst. Tech. Repts., 1903, 81-5.]

A sample of Agave fibre from Gwalior (possibly the plant indicated above as A. ? elongata) has been highly commended (Imp. Inst., i.e. 84), and a sample from South Sylhet, said to have been that of A. sisalana, is in the same publication reported on most favourably, Coventry gives a brief account of the Agaves in the Panjâb. [Cf. Agri. Journ. Ind., 1906, i., pt. 3, 265.]

CULTIVATION.—Indian-grown fibre has, however, been more frequently condemned than approved, but as already indicated this may have proceeded from the fibre of a worthless form having been supplied. It is true also that the condemnation may have arisen through the ignorance of the planters as to the best seasons and methods of preparation. It follows accordingly that the abundance of a species of Agave in a particular locality is no proof of commercial possibilities. The experts have, however, usually reported that the inferiority of many of the samples examined may have been due to either of two causes: (1) The leaves having been too old, thus causing the fibre to become hard, coarse and brittle; (2) The very defective method of cleaning that seems invariably practised by the Natives of India. The leaves while resting on a flat stone are crudely scraped by a knife and violently beaten every now and again in order to shake off adhering particles of cellular tissue. As a not unnatural result the fibres are broken, torn and cut short. But what is even still worse, before being scraped the leaves have often been retted for weeks, or the fibre after being separated has been soaked in water for days. As a result fermentation has been set up and the fibre discoloured, deprived of its natural polish and rendered harsh. The leaves as they near maturity, but not later, should be simply scraped by hand or by machine, then sun-dried and baled. Retting is not necessary and is distinctly injurious, but washing in a stream of water during the process of scraping is often recommended as advantageous.
AGAVE
Cultivation
Bengal

In Bengal.—The late Mr. N. G. Mukerji (Handbook Ind. Agri., 1901, 325–8) furnishes an abstract of the currently accepted views on Agave cultivation in Bengal. In the Dictionary will also be found a detailed report on the cultivation of this plant by Col. R. Cobb (at that time Superintendent of the Hazaribagh Jail), and since recent information regarding Bengal does not materially alter the conclusions there advanced, the original article should be consulted.

It may in fact be said that the chief exception recent investigation would suggest to Col. Cobb’s report, concerns the season when the fibre reaches maturity. Most writers affirm that when the pole has arisen from the middle of the rosette of leaves, the fibre is practically useless. It becomes too hard and brittle for manufacturing purposes. The fibre which has fetched the best prices would appear to have been obtained from fully grown leaves, but from plants that have shown no signs of producing the “candelabra-like” inflorescence. The plant grown at Hazaribagh seems to have been mainly A. Cantala, but the inferior samples of Bengal fibre have evidently been chiefly procured from A. Vera Cruz (the A. Iurida of some writers).

In Bombay.—The Bombay Aloe Fibre has recently attained an assured position in commerce and is being pushed with much success. It is chiefly obtained from A. Cantala, and apparently to some extent also from A. Wightii and more recently from A. sisalana and Fuerovia gigantea.

On the heavy clay soils of Bengal and Assam, as also some portions of the Central Provinces and of Madras, A. Vera Cruz might be regarded as a fairly abundant species, but on sandy loams and stony laterite soils of some parts of Bengal, the United Provinces, Sind, Rajputana, Central India and Bombay, A. Cantala becomes the most characteristic form, and is indeed met with in a state of more or less complete acclimatisation. [Cf. Madras Mail, Oct. 1904.] In the Panjáb its place is taken by A. Wightii, of which Stewart makes the very observation regarding its prevalence in that province which Roxburgh made of A. Cantala in Bengal, viz. that it might be regarded as indigenous.

One of the earliest descriptions of this fibre, as far as India is concerned, will be found in the Journal of the Agri-Horticultural Society of India for 1854 (vii., 148 et seq.) where Mr. A. R. C. Hamilton, then Resident at Indore, furnished a sample which was examined by Capt. A. Thomson at his rope-factory at Calcutta and found equal to the best Russian hemp. Capt. Thomson adds that a considerable quantity of a fibre exactly similar had lately been imported from the Malabar Coast and that he had had some made into rope which very much resembled Manila rope. Mr. Blackburn forwarded from Agra about the same time samples of fibre and rope made from “the Common Aloe,” and Dr. Falconer identified the plant from which these had been prepared as A. Cantala—a plant which he had been familiar as common at Saharanpur.

In 1889 the Bombay Government forwarded to the Secretary of State for India a report that had been drawn up by the Director of Land Records and Agriculture on “the aloe fibre shipped under the name of hemp’ from Bombay.” This fibre, it is there stated, comes chiefly from the Bombay Karnátk and the Central Provinces. “The plant grows wild but nowhere in abundance, nor is it anywhere cultivated specially for extracting fibre.” “In the Bombay Karnátk it is the chief hedge plant along railway lines. For fencing it is planted one to three feet apart according to the quality of the soil.” The Director then describes the crude method adopted to separate the fibre, namely by burying the leaves in running water or amongst the sand near streams where water percolates. When sufficiently decomposed the leaves are taken out and washed clean of the pulp by beating.

Sir D. Morris, at that time Assistant Director of Kew, identified the specimens of plants that accompanied the Bombay report as confirming the fact that the “Bombay aloe fibre” was prepared from the leaves of A. vivipara. It would now seem that it was A. vivipara, Dicz. & Gilb. (non Linne), i.e. A. Cantala, Roxb., according to Drummond and Prain. Sir Daniel, after suggesting
that the quality of the fibre might be improved by cultivation and that it was possible *A. sisalana* might be introduced on a large scale on the waste lands of Bombay, added, "The value of the machine-cleaned fibre ranges, according to length, from £25 to £30 per ton. The ordinary Bombay aloe fibre, cleaned by hand, is worth only from £5 to £12 per ton. These figures fully bear out the opinion offered in my letter of February 21, 1887, that the Bombay aloe fibre industry was capable of being greatly improved." The subsequent history will be found in the *Kew Bulletin.* (add. ser., ii., 1898, 194–200).

Plantations of Bombay.—The *Englishman* (June 10, 1899) gave a long and most instructive description of Dr. E. Suter's endeavours to establish successfully the plantation owned by the Fibre Company of Powai. Another equally admirable account of the Powai plantation and factory will be found in *The Textile Journal* (Jan. 1901). We learn that Dr. Suter has obtained a 30 years' lease of 3,000 acres of land, on a rent of Rs. 14 an acre, and that he is in treaty for a further tract of land of some 20,000 acres. He employs about 500 workmen for the greater part of the year. The plantation consists mainly of *A. Cantala,* but he has put out a large number of *A. Wightii,* also of *A. sisalana* and *Furcraea gigantea."

There are apparently two operations pursued in separating the fibre at his factory, during each of which a liberal supply of water is utilised. The sharp, thin extremity of each leaf is first dealt with, and when the fibre has been freed from the pulp, etc., it is washed before the lower half of the leaf is treated. The fibre of the apex of one leaf (or of several leaves treated at one and the same time) are then twisted round a small brass handle, by which means the operator is enabled to submit the lower and thicker ends of the leaves to be scraped without any risk of injury to himself. The fibre having been washed in the plentiful supply of water procured by the factory from the Powai lake, is then sun-dried. By the next process it is scutched or combed and thus turned into beautiful white threads which are assorted according to length into two qualities. Finally it is baled and is thus ready for the market. The men employed in the factory are dressed in woollen garments and gloves (supplied by the owners) in order to protect them against the acrid juice that would otherwise cause painful blisters on the skin. But Suter has also patented and is daily using a semi-automatic machine of which full particulars and photographic illustrations will be found in Mann and Hunter's pamphlet on *Sisal-Hemp Culture in India,* published by the Indian Tea Association, 1904 (22, pl. vii.). The fibre from Dr. Suter's plantation is said to fetch £36 a ton.

II. SISAL HEMP.

It was customary until quite recently to read of the Sisal hemp being botanically a form of the species known as *A. rigida,* Miller, and of there being two industrial forms of the species, viz. (1) var. *longifolia,* the Henequen Hemp of Yucatan, the Sacqui or Sacci (a name denoting light colour); this has the leaves spinose on the margin; (2) var. *sisalana,* the Sisal and Bahma Hemp, the Yashqui or Yaxqui (dark green); this has the margins of the leaves almost destitute of spines, but the apex ends in a conspicuous black spine. Mann and Hunter tell us that plants of the former introduced direct from Yucatan have not been very luxuriant in Sylhet, while the latter succeeds splendidly (l.c. 5). Drummond and Prain (l.c. 135) are of opinion that "there is one Sisal Hemp in this country and one only," and they add, "Leaves with and without prickles may be found on the same individual." That plant,
they are further of opinion, is *A. sisalana*, Perrine, a good species and not a form of *A. rigida*, Miller.

Mann and Hunter have dealt so fully and satisfactorily with its cultivation as an associated crop with tea that it seems almost undesirable to attempt to set forth as a separate chapter their main conclusions. Persons interested in the subject of Sisal cultivation in India should most certainly procure the pamphlet mentioned. But as experience gained by others differs slightly from that in Sylhet, it may be useful to give a combined review of the practical results hitherto attained in India as a whole.

CULTIVATION.— In Sylhet.—It would seem fairly certain that *A. sisalana* is an even more tropical form than most of the Agaves and will not live if liable to seasons of frost. It may be propagated (1) by seed, (2) by suckers from the base of the stem, or (3) by "pole plants or bulbils." The last mentioned are produced from the flowering spike or "pole," and are buds formed within the bracts of the individual flower stalks. Suckers are preferred in America, and "pole plants" are largely used (if not preferred) in the Bahamas. From 1,500 to 4,000 are formed on each pole, and they do not fall to the ground until they are six inches or more in length. They root at once, and if left alone form a grass-like vegetation around the perishing parent-plant. Seeds are not so often resorted to, owing to the great delay. Morris seems to doubt the advisability of propagation from bulbils, and Mann and Hunter only recommend that course until such time as a continuous supply of suckers has been established on the estate. [Cf. Sly, *Agave Fibre in Assam*, in *Agri. Journ. Ind.*, 1906, i., pt. iii., 247–9.]

Nursery and Plantation.—The young plants, whichever way obtained, are first raised in a nursery until they attain a height of about 15 to 20 inches—Mann and Hunter say 8 to 12 inches. Shade-trees in the nursery are injurious. According to the most generally approved plan in America the young plants are transplanted into the estate, in rows 12 feet apart, the individual plants being from 6 to 8 feet apart in the rows. This will give about 650 plants to the acre, but in some estates they are planted much closer, viz. 9 to 10×4 to 6 feet, thus giving about 1,000 plants or more to the acre. The danger of close planting lies in the fact that during wind storms, the leaves may stab each other and thus injure the subsequent growth of the leaf and discolor the fibre. Fermentation, set up within the growing leaf or in the leaves after separation from the plant, will ruin the fibre by staining it a red colour. A writer in *Capital* (March 1901) would seem to think that the Dauracherra Estate in South Sylhet has "made no provision for a permanent crop. The plants have been planted 8 feet between in the row and 10 feet between the rows. These distances have always been recommended hitherto. When the plants got to be about four years old a young sucker ought to have been planted in between, so that when a plant poles and dies, which they almost invariably do within ten years of planting, the plant placed between would be ready to take the other's place and keep the constant supply of fibre going. But after seeing the Dauracherra plantation the writer is convinced that 8 feet by 10 feet is far too wide apart and would say 4 feet by 6 feet an ample distance." Mann and Hunter think that 5 feet between the plants and 9 to 10 feet between the rows are suitable distances for general use. Thus it may be said that overcrowding is condemned in most parts of the world where sisal planting prevails. The best time for planting is from February
to June, and it is essential that the plants be pitted (not dibbled in) and that they should not be buried in the ground above the base of the leaves. They lay great stress on the latter condition; earth within the leaves, they say, causes them to rot. During the first two years the plantation requires to be hoed to such extent as found necessary to keep weeds in check.

Diseases and Pests.—Protection from cows, deer, etc., is necessary, since if the central bud be injured the plant dies. By the third and fourth years the plants are able to defend themselves. I am informed by Mr. G. Massee that at least one fungus is known to kill the leaves, namely, _Coniothyrium concentricum_, Sacc., and that this may often appear as discoloured patches without fructification. It would seem probable that “the discoloured spots on some of the older leaves of even very young plants” alluded to by Mann and Hunter are due to the fungus named. [Butler, _Sisal Hemp Disease_, in Agri. Journ. Ind., 1906, i., pt. ii., 261.]

Cropping Season.—Much depends on the size, age and vigour of the young plants when transplanted, but they attain as a rule the condition of being able to afford a first crop of leaves in the third year, and come into full bearing in the fourth or, it may be, only in the fifth year. Leaves as a rule are ripe when they extend at right angles to the stem. Mann and Hunter say that half a right angle to the stem will suffice but none before that should be cut. The plants continue to give an annual supply of leaves till about the twelfth year, when they show signs of forming the inflorescence or “pole.” Having given their crop of seed or “pole bulbi” the parent plants die and should then be uprooted. If the outer large leaves be not systematically removed year by year the plants will attain maturity at a much earlier date, say about the sixth year. Experience so far would seem to support belief that the plant will pole slightly earlier in Sylhet than in Yucatan. Mr. Woodrow reports that the sisal planted in Poona in 1892 began in 1898 to show signs of producing flowering-stems. On the other hand, it is recorded that under certain circumstances the plants may continue to yield for 15, 20 or even 25 years before the “pole” forms. In the _Kew Bulletin_ (1898, add. ser., ii., 178) will be found a most interesting correspondence on the methods that might be adopted to retard pollination. Sir D. Morris recommends the systematic removal of all suckers not required. It transpired (in the correspondence referred to) that the Bahamas hemp plant flowers earlier than the Yucatan hemp, a distinctly unfavourable circumstance if it be the case. As soon as the “pole” appears it has to be cut out, the remaining leaves harvested and the old plant removed. But it is customary long before this takes place to plant a seedling or sucker close by or within the interspace, so as to have a fresh plant nearing the bearing stage before the period of removal of the exhausted one has been reached. In Sylhet it has been found that the best time for cutting leaves is from October to June. This is mainly on account of the necessity for drying the fibre. The leaves are moreover less heavy at that season, an obvious advantage seeing that they have to be carried to the factory. This arrangement fits in admirably with the associated tea industry, which calls for most labour from June to October. In laying out an estate Mann and Hunter say that owing to the enormous weight of the leaves the factory should be central and have good roads in every direction. On a small estate pack bullocks, and on a large one a light railway may be used.
AGAVE
Cultivation
Mysore

In South India and Mysore.—It seems that an effort is being
made to organise an Agave or Sisal fibre industry of South India.
We read of the South Indian Fibre Company having taken this matter
up energetically. Particulars of actual plantations, however, are not
available, though Mr. Tytler seems to have made a start in Anantapur
Travancore is also mentioned as a locality where the plant is being culti-
vated. Reference has been made to the large importation of sisal plants
by the Mysore Government. Mr. J. Cameron and others (recent Proc.
Agri.-Hort. Soc. Mad.) describe the progress accomplished. Mr. Cameron
seems moreover confident that in Mysore there are many tracts of com-
paratively useless jungle that possess the requisite soil for Sisal cultivation.
He also tells us of having sold sufficient young plants to cover the cost
of importation of the original stock. The experience gained he sum-
marises thus:—

1. Land of a gravelly soil and stony nature is most suitable.
2. When it is planted, cultivation practically ceases for a period of
four years or until the matured leaves are ready for cutting.
3. On suitable land, failure of crop has never been heard of.
4. The profit of a cropped acre is estimated at £4 to £5 per annum—
that is, 60 to 70 rupees.

On this subject Mann and Hunter observe that the Sisal does not
require a rich soil. It must have a soil well drained, moderately light
and not too rich since that leads to luxuriance but loss of fibre, nor too
poor since the fibre will then become short. The presence of lime in the
soil is advantageous. In a word, much of that culturable land in tea
districts which is not suited for tea will do well enough for Sisal. But
it would appear these authors may have been led into the expression of a
too emphatic opinion as to Sisal being not only the best but the only
species suited to the tea districts (Mann and Hunter, l.c. 4, 9). It seems
highly probable that the liability to frost, to which not a few tea districts
are subject, might preclude the cultivation of Sisal and point to A. Can-
tala, for example, as preferable. Of course where it is found possible to
grow A. sisalana that would be the best species, but there seems no
doubt that for the whole of the tea districts, and still more so for the
whole of India, one and the same species is not universally suited. [Cf.

In Tirhut and Bombay.—Although a good deal has been written
in a general way regarding the Tirhut and Bihar ventures, little
definite knowledge is available such as to justify the formation of
opinions regarding either the methods pursued or the success obtained.
It is known that large shipments of plants have been secured, and it is
understood that they have taken kindly to the climate and soil of
Bihar. Frequent mention has also been made of Mr. Woodrow’s
experiments and results and of his endeavours to establish planta-
tions at Nasik and Nandgaon. In the prospectus of the Bombay Sisal
Hemp Co., Ltd. (issued in April 1899), Mr. Woodrow says, “I intro-
duced a few sisal hemp plants seven years ago; they have grown
remarkably well and have given 10,000 young plants.” Further on he
adds, “One million aloe fibre plants are at hand, enough for 500 acres,
and about 10 millions are procurable this year.” In the same way it
is known that Dr. E. Suter is growing Sisal at Powai, near Bombay.
But as already shown, the plant cultivated on that estate is chiefly
A. Cantala.

While these brief references denote what might be called the more
important centres of the new Indian Sisal hemp enterprise, particulars
of small experimental plots are to hand from every province of India
and Burma. The reader should consult Prain's Report for additional par-
ticulars (Agri. Ledg., 1900, No. 6).

Yield of Fibre.—Of Yucatan it is said that from 1,000 to 1,500 lb. per acre of
cleaned fibre are obtained and that 50 to 70 lb. are derived from 1,000
leaves of plant. This would come to an average of about 30 leaves yielded by
each plant, in order to give the amount of clean fibre stated; but most reports
place the produce at a much lower figure, namely from 10 to 20 leaves a year
for each plant. We read that in Lucksnow, grown on a poor soil, the plants are
said to have had 30 leaves; 50 in Saharanpur, Cachar, Tirhut; 60-70 in Port
Blair; 72 in Assam; and 80 in Poonah. Doubtless these numbers have refer-
ence to the total leaves on each plant, not to the number of mature leaves annu-
ally available for fibre extraction.

Harvest and Fibre Extraction.—The leaves are cut off from the stem from
below upwards by means of a heavy-bladed long knife, and the spine on the apex
is also severed by a blow of the same before the leaves are thrown on the ground.
In America and the West Indies the operators are paid as a rule by contract,
but a day's labour would be regarded as from 2,000 to 2,500 leaves. According
to Indian experience the leaves are approximately 4 feet 6 inches long and
5 inches wide with a weight of 2 lb. Some are recorded as only 2 feet long by
3 inches and weight 5 ounces; others 6 feet 6 inches long by 5 inches wide and
2½ lb. in weight. The Sydneys experience would be about the mean of the figures
given. True Sisal hemp, grown on suitable and not too rich land, should yield
for instance, 3 per cent. of fibre (and often much more) on the weight of leaf:
careful tests of the large blue Aloe in India have given 2½ per cent. only of fibre.

Furcraea gigantea (Mauritius hemp) gives a still less yield on the weight of leaf,
the amount being in Sylhet from 1½ to 2 per cent., but in this case the differ-
ence is more than counterbalanced by the larger weight of leaf obtained per
acre.

Machinery.—The most generally used fibre-cleaning machine in Yucatan
is called the "Raspador," although others are employed, such as the "Solis,"
"Preito," "Torruella" [cf. photograph in Mann and Hunter, i.e. 24, pl. vii.
and "Villamore," The "Raspador" [cf. Mann and Hunter, i.e. 21, fig. 2] con-
ists of a drum with brass knives fastened across the face. It is so geared as to
revolve about 110 times a minute. The leaf is held by a clamp and crushed as
it moves forward, while the pulp is scraped off by the knives as they dash across
it. When little more than one-half the leaf has been reduced to pulp it is with-
drawn and reversed so that the other half may be similarly cleaned. The fibre
is then dried in the sun and baled for export. Though crude in construction the
"Raspador" has the advantages of cheapness and simplicity. It is typical
of most of the modern machines that have been brought out, each with special
claims to superiority over the others. With Furcraea gigantea the "Gratto" machine
is in a position of supreme favour. But in addition to the machines already
mentioned, the following may be said to have been specially designed
to deal with the aloe fibres:—the "Death," the "Barraclough," the "Van
Buren," the "T. Abee Smith," and the "Weicher" machines. Then there is the
"Silburn" machine of which so much has been said in the Indian Press
recently, and lastly the "Suter" machine, which makes 500 revolutions a minute.

Properties and Uses of Sisal and Aloe Fibres.—I have not thought
it necessary or desirable to devote space to the discussion of these
subjects. Briefly the fibres are used for ropes and cordage; for
carpets, mats and matting; for brush-making; and the waste for paper-
making. To a limited extent the shorter and finer fibres are carded,
spun and woven. [Cf. Royle, Fibrous Pl., 1855, 41-50; Agri. Ledg.,
1896, No. 34; Dodge, Useful Fibre Pl. of the World, 1897; Stuhlmann,
in Der Pflanzer, 1907, Nos. 15, 16, 229-43; Hanousek, Micro. Tech. Prod.
(Winton and Barber, transl.), 1907, 96-8.]
THE SISAL HEMP PLANT

TRADE IN HEMP.—Mann and Hunter give interesting particulars regarding the prospects of a Sisal Fibre Industry; the capital required, the world’s markets for the fibre, prices ruling, etc., etc.; their work should be consulted for such particulars. One of the earliest records of this fibre refers to the imports into England from Yucatan from 1750 to 1780. Although high expectations were then raised, the fibre did not assume a position of importance until fully a century later, when the first plantation of some 50 acres was laid out. The exports from Yucatan were 243,968 bales in 1889 and 418,972 bales in 1898. It is said that in the latter year there were 1,200 plantations in Yucatan alone. It seems probable that in the Bahamas there are over 20,000 acres under the crop. According to Sir W. Robinson (lecture in March 1900 before the Royal Colonial Institute of London), so long as the fibre fetches even £20 to £25 a ton the prospects would be distinctly favourable for the investor in the West Indies. Were it not necessary to provide for heavy charges in supervision, for rent of land (as a rule too valuable for the crop), for freight charges in many instances over long distances to the seaboard, the cheap labour of India might be a factor of no small importance. But it cannot be denied that there are large tracts of India highly suited for this plant which are at present practically waste. As an auxiliary crop with tea and when grown on land near the seaboard, it is very probable that success would be attained. But the industrial developments possible for this fibre seem to be comparatively limited. Moreover, indications are not wanting that the increasing production is at a higher rate than the expansion of the demand. But that a limited Indian cultivation might be successful seems fully demonstrated by the results already attained. It may be of interest to add that the first public sales of Sylhet Sisal fibre show that it fetched £36 10s. per ton in London or approximately the same price as realised for the Bombay Aloe fibre, so that the difference in species grown does not appear materially to have affected the value of the fibre produced. [Cf. Ind. Plant. and Gard., Feb. 21, 1901.]

To what extent production is meeting the existing Indian demand cannot at present be discovered, but there would seem to be no doubt that steadily the Indian supply will improve, and the most recent information goes to show that most encouraging results have been attained in Assam (Sylhet). It is known that there is a regular import trade in “white fibre” to be used by the rope-makers in place of or in mixture with the more expensive Manila Hemp. Certain qualities of siscal or other aloe fibres are also used by the brush-makers. For brushes the larger, thicker, more elastic and more highly polished fibres are required, since these approximate most nearly to pig’s-bristle. In the Calcutta market a specially selected fibre for the brush-making trade is reported to be sold under the name of rejú and to be imported from England. But here it may be added that the Ixtle or Tampico fibre (Aguave heteracantha) is a Mexican fibre which might be said to be specially produced for the brush-maker. How far this may be the rejú fibre of India cannot at present be ascertained. Nor can definite returns of the Indian trade in siscal fibre be given, since both the import and export traffic is recorded under the collective heading of “Hemp.” Out of the total imports of “Raw Hemp” from foreign countries received by India in 1906-7 (viz. 22,513 cwt., valued at Rs. 6,94,623), China supplied 14,815 cwt., the Philippines 4,891 cwt., the
SHADE-TREES

ALBIZZIA

Jyeere Tea

United States 1,635 cwt., New Zealand 758 cwt., and the United King-
dom 209 cwt. The nature of the fibres classified as "Hemp" in these
returns can be judged of only by the countries from whence derived.
Thus the Philippine Hemp may in all probability have been Manila Hemp:
the supply from that country was renewed in 1899–1900. Perhaps the
most striking feature of these imports of hemp is the decline in the supply
from the Straits, which in 1896–7 fell from 6,624 cwt., valued at Rs. 1,01,831,
to 370 cwt., valued at Rs. 10,796, in 1905–6, and in 1906–7 nil.
The Exports from India are mainly, if not entirely, of "Sunn Hemp"
and other allied fibres, and thus quite distinct from the "Sisal Hemp"
here dealt with, so that the returns of exports need not be further con-
sidered. But it is believed that about 25 per cent. of the exports of Raw
Hemp from Bombay are at the present time Aloe (Agave) fibre. In 1906–7
Bombay exported 255,375 cwt. of Hemp, valued at Rs. 28,74,499. And a
striking feature of the exports of raw hemp is the fact that the Bengal section
appears to have given an indication of expansion, a consequence, doubtless,
of the Sylhet production of Sisal. In 1899–1900 Calcutta exported 63,433
cwt., valued at Rs. 4,66,503, in 1900–1 an expansion to double the quantity
and three times the value was recorded, viz. 128,634 cwt., valued
at Rs. 12,20,351, and in 1906–7 to 261,867 cwt., valued at Rs. 29,76,641.

Ind. Tims., 302–9; Cooke, Fl. Pres. Bomb., i, 452–5; Duthie, Fl. Upper
Soc., Beng., lxvi, pt. ii, 511–5; LEGUMINOSE.

There are in India 14 species of this genus, all trees except one. Lt.-Col.
D. Prain in his revision of the genus has added four species not hitherto
separately recognised and has removed much of the ambiguity that previously
prevailed. He has shown that Indian authors have been in error in thinking
that A. Julibrisin is met with in India: he has restored A. mollis, Boie,
to specific importance, and separated from A. Lebbek (under the name
A. Gamblei) an important East Himalayan form. Generically the species of
Albizia bear the vernacular names of sirs, sirsha, sirin, lurangi, chirangi, baghi,
vaghe, kokko, etc. A. Lebbek seems to be the true sirs, a tree, according
to Sir Monier Williams, that is sacred to the Buddhists. The other species are
distinguished as the sweetly scented siris, the white siris, etc.

They all afford Gum, more or less copiously, from wounds on the stem,
and though little is known for certain of the specific differences of these gums, that of
A. stipulata is reputed to be specially valued as a size in the manufacture
of Nepalese paper. The barks of most species are astringent and used as Dyes,
Tans and Medicines. That of A. Lebbek is employed in Madras to tan fishing
nets, and that of A. myriophylla (kanka-siris) is utilised as a substitute for
A. leucaaphila in distillation, and those of A. stipulata and A. procera are said
to be fish poisons. The leaves of most species are regarded as useful Fodders
and in some instances the trees are specially grown on that account, but according
to Mr. Hartless the stipples and young leaves of A. stipulata are poisonous to
cattle. The most curious discovery regarding the leaves of this genus may be
said however to be the determination made by me of the so-called Jyeere Tea,
which consists of ordinary tea mixed with specially prepared leaves of A. amara
(the talai or unjei). [Of Journ. Agri.-Hort. Soc. Ind., 1898, xi., 838–42; 1899,
982–3; Kew Bull., 1899, 82.] Mr. Chandra Bhushan Bhaduri, Officiating
Chemist to the Industrial Section, Indian Museum, analysed A. amara leaves
(hand-picked from a sample of jyeere tea) and found that they possessed no special

The Timber of these trees varies greatly, being very soft in A. stipulata, hard
in A. odoratiissima, lucida and amara; sapwood large and white; the heart-
wood light to dark-brown, streaked, shining; pores usually scanty and often

Gum.
Dyes, Tans and Medicines.
Fodder.

Botany.

Timber.

D.E.P.,
i., 155–60.
Aleurites Fordii, Hemsl., Kew Bull., 1906, 117, 120; Hooker, Icon. Pl., t. 2801, 2802 (confused with A. cordata by most authors); Euphorbiaceae or Spurge family. A small tree, native of China but successfully acclimatised in the Southern Shan States (between 1,500 and 3,000 feet in altitude) and to some extent also in Burma, Assam, Sikkim and Nepal. Frequently met with near Buddhist monasteries, though in some localities it appears to have escaped into the neighbouring jungles. A. cordata, R. Br. ex Steud., has a wrinkled fruit and is found in Formosa, Hainan and Tonkin and is cultivated in Japan.

Oil.

Trade Names.

A. Fordii yields an Oil known in commerce as Chinese Varnish or Tung Oil and in some books is spoken of as Chinese Wood Oil, the latter name referring to its special adaptability for varnishing wood (see p. 502). In fact the Chinese prefer to coat boats and other woodwork with this oil rather than to paint them. It dries in about four hours. It is chiefly prepared in the provinces of Ichang and Szechuan and is employed in lacQuering, varnishing and waterproofing, etc. The drying property of the cold-expression oil exceeds that of any other known oil; in fact it would appear to be an exceedingly valuable substance, the properties of which have been but indifferently appreciated in Europe. Of Japan it is said that the tree flowers at the end of May or beginning of June. The fruit ripens in autumn. Three to five seeds are contained in each fruit; they afford an oil to the extent of 37½ per cent, which is pressed out, in ordinary practice cold, to the extent of two-thirds of the possible yield. This oil, known in Japan by the name of Dokuyemonobura, serves for filling the pores of wood before it is coated with lac, or it is used when desired to protect wood against moisture. In Japan it is also employed for lubricating machinery.

A recent inquiry in India into the species that follows, led to information being procured from the Southern Shan States regarding the present plant. It would appear that in Kengtung the tree is fairly plentiful and the oil regularly prepared, although the demand is but limited. It has been estimated that the nuts of each tree might yield at least 50 ounces of oil. The kernels are first pounded, then steamed in a basket placed over the mouth of a pot in which water is boiled. The basket is next placed within a piece of bullock's skin and...
ALKALIS AND ALKALINE EARTHS

In its restricted sense the term Alkali might be said to denote Ammonia, Potash, Soda, Lithia—the alkalis proper. But in a wider signification it embraces the Alkaline Earths, viz. the hydrates of the metals Barium, Calcium and Strontium. These all possess to a certain extent the properties usually attributed to the alkalis. In like manner the Alkaline Ashes are very largely crude alkalis obtained by burning certain plants. Lastly the Alkaloids such as Aconitine, Morphin, Quinine, etc., have been described as the Organic Alkalis, but of course have nothing alkaline about them.

The distinctive features of the alkalis compounds may be said to be their solubility in water, their neutralisation of acids, their corrosion of animal and vegetable substances, and lastly their property of changing or inverting vegetable colours, such as litmus.

In all fairness it may be said of India that it does not possess any industry (pursued on modern scientific methods) for the production or refinement of the alkalis, alkaline earths and their salts. Such manufactures do exist (if common salt be for the moment left out of consideration) are a century behind the times, and consist mainly in the production of saltpetre, pearl-ash, barilla and the like.

It is intended in this place to deal more particularly with the collective aspects of the alkalis and alkaline earths and to discuss, in such detail as may be necessary, the minor products, but with those of commercial value, simply to indicate the positions where separate articles on these will be found.

ALKALIS.—1. Ammonia and its Salts.—This alkali is in Europe and America very largely prepared, from “gas liquor” (see Coal, p. 344) or “bone liquor” or from “volcanic salts.” It is not manufactured to any appreciable extent in India, for the simple reason that none of the crude materials named are to be had in sufficient abundance.

The chief preparations and salts are (a) Liquor Ammonia used as medicine, as a chemical and as a solvent for resins and for certain active vegetable principles, thus forming varnishes and ammoniated tinctures. Of the latter class may be mentioned the “Essence of Ginger,” employed in the manufacture of gingers and ginger beer; of the former the Hatters’ Varnish, which consists of shellac dissolved in ammonia and alcohol.

The salts are (b) the Chloride (nassara or nassadus), of importance as a material from which to manufacture other salts of ammonia, also essential in galvanising, in galvanic batteries and as an alkaline flux. (c) The Sulfate, which is largely employed as a manure (see Coal and Coke, p. 346). (d) The Carbonate, Sulphate, Oxalate, Nitrate, Phosphate and Bromide, all of which take important places in the arts and industries of every country and may be said to be entirely imported by India.

2. Potassium or Potash and Carbonate of Potash.—J. H. Brough, Cantor Lectures in Journ. Soc. Arts., 1903, lxi, 144. This is the chief source of Caustic Potash, and the two compounds may, therefore, be dealt with collectively in this place. The carbonate in its crude form is often called Potash or Pearl-ashes and in Bengali sarjika, in Hindustani jon-khar or ivak-khar, and in Sanskrit Yavak-shara. Of the other provincial names the following may be quoted:—jr-kasnamak, jhadicha-mitha, mara-vuppy, manu-vuppy, bidide-vuppy, karam, etc.

Sources.—Formerly the European supply of the crude material from which this substance is manufactured was very largely the Pearl-ash or Wood-ash obtained from America, Canada and Russia, etc. While the production of pearl-ash has steadily declined with the advance of traffic in more scientific and less wasteful materials, the imports into Europe of pearl-ash have not been entirely discontinued. Caustic potash is usually manufactured from the carbonate, and
INDIAN PEARL-ASH

this is procured:—(a) From the ashes of plants. (b) From the soil (due to the disintegration of felspar and other silicates and the ultimate combination of their potash with carbonic acid), also numerous methods patented for the accomplishment of this same result artificially. (c) From the potassium sulphate, produced by the decomposition of the chloride through the agency of sulphuric acid followed by fusion of the resulting sulphates with limestone and charcoal, in other words a process almost identical with the Le Blanc method of treating soda. (d) From suint or the wool of sheep impregnated with the sweat that exudes from the bodies of the animals. (e) Beet-root vinasse.

Roxburgh's statements regarding the production of pearl-ash are amusing and interesting (Fl. Ind., ii., 62). I shall quote his own words. “Our extensive, and I may also say impenetrable forests, which cover such large tracts of the best lands in India might by degrees be cleared and turned into potash, for the same reasons and by the same means” as the saltworts of the coast might yield barilla. “Certainly, labour is as cheap here as in Russia.” “In this hot climate we have many advantages, viz. immense tracts of wood of the most solid texture which require little labour to prepare it for the fire, on account of the great drought and heat which prevail at the season this manufacture could be best carried on. The same heat and drought is fully sufficient to evaporate the ley without the least assistance of fire.” “Our extensive and impenetrable forests” sounds remarkable when it is borne in mind that one of the reasons assigned at the present day for the recent expansion of the area of carbonate of soda impregnated sterile soils is the absence of forest. We know as a matter of trade history that India never actually burned her forests in the production of pearl-ash. Moreover, Roxburgh's “impenetrable forests” had very possibly no reference to Northern India. Still his remarks are significant since he was one of the best informed and most careful observers and at the same time one of the most accurate writers who ever lived in India. His words cannot, therefore, be placed on one side as unworthy of consideration. They doubtless denote that 100 years ago forest was very much more plentiful than at the present day and was possibly ruthlessly destroyed to make room for temporary cultivation.

Of plants it may in general terms be said that herbaceous annuals contain more potash than woody arboreous plants, but even of the same plant the succulent young growths are more highly charged than mature tissues. Of different species 1,000 parts of pine contain on an average only 0·45 parts of potash, oak 0·75, vine shoots 5·50, ordinary straw 5·8, ferns from 4·25 to 6·26, Indian cornstalks 17·5, nettles 25·03, wheat straw before earing 47·0, wormwood 73·0, and best about the same amount. These facts naturally suggest the plants best suited for the preparation of pearl-ash, and the immense development within recent years of the beet-sugar industry at once awakened an interest in carbonate of potash as a by-product that might supplement the returns of beet cultivation. This has been actually turned to account.

Indian Pearl-ash.—The following may be given as the principal plants employed in India for the preparation of pearl-ash:—

- Achyranthes aspera
- Adhatoda Vasica
- Alstonia scholaris
- Amaranthus spinosus
- Bamboo spp.
- Borassus flabellifer
- Butea frondosa
- Celsalpinia Bondocella
- Calotropis gigantea
- Cassia Fistula
- Cedrus Deodara
- Exstaxena indica
- Eupatorium serifolia
- Euphorbia Tirucalli
- Gmelina arborea
- Holarrhena antidysenterica
- Hordeum vulgare
- Indigofera tinctoria
- Luffa aegyptiaca
- Musa sapientum
- Nerium odorum
- Pennisetum typhoides
- Plumbago zeylanica
- Pongamia glabra
- Shorea robusta
- Stereospermum suaveolens
- Symplocos racemosa
- Terminalia belerica
- Vallaris Heynei
- Vitex Negundo

The crude ashes obtained from the above and such-like plants are the chief sources of the potash salts employed by the people of India in their arts, science and medicine.

Uses.—In Europe carbonate of potash is largely in demand for the manufacture of certain soaps, after having been converted into the caustic. It is also essential in the formation of potash-glass and enters into many tinctorial and textile processes, such as the dyeing of Turkey red and of Arnotto (Biasa Orelana).
ALKALIS AND ALKALINE EARTHS

SODA

Sodium Carbonate

In Garhwal hemp-fibre is boiled before being bleached (see Cannabis sativa, Fibre, p. 255). In India it would be almost impossible to over-estimate the extent to which a crude carbonate of potash is employed. A better selection of plants or improvements in the methods pursued for the production of pearl-ash are subjects, therefore, of no small importance. It may accordingly be remarked that it is surprising that while immense tracts of mountainous land are in India injuriously covered with various species of wormwood (Artemisia), except as a manure used locally the ashes of these plants are not apparently utilised by the people. From the high percentage of carbonate of potash which they contain, the preparation of pearl-ash from wormwood might be confidently recommended to the poorer inhabitants of the temperate regions of India as a useful new industry.

In Bombay, especially in the rainy tracts, the system prevails of robing (as it is called) the seed-beds. This consists in burying brushwood, boughs of trees, cow-dung, etc., under a thin layer of soil, then firing the mass. In this way the soil becomes highly charged with wood-ashes, the most important constituent of which is doubtless potash. It is found that the finer qualities of rice can alone be grown when the seed has been previously germinated on rob-beds, and later on transplanted to the fields. It would be well, in connection with the subject of potash as a manure, for the reader to consult Leather's admirable papers on Indian Manures. [Cf. Agri. Ledg., 1897, No. 8; also Indian Soils, 1898, No. 2; Mollison, Textbook Ind. Agri., i., 83–5, 119–21.]

3. Potassium nitrate (see Saltpetre, pp. 972–5).

4. Sodium and its Compounds, Carbonate of Soda; Ball, Man. Econ. Geol. Ind., 1881, 492–7; Holland, Rec. Geol. Surv. Ind., i., 115. The term soda, strictly speaking, denotes the oxides of the metal, but it is also used for the hydroxide and the carbonate. The last mentioned is not only the most important commercially, but it is the compound from which the majority of the other soda salts are made or can be made, and therefore it may be dealt with in greatest detail.

Carbonate of Soda is a valuable salt; it exists in nature and is, as a rule, the most abundant and, from the point of view of the agriculturist, the most objectionable ingredient of the soluble sodium salts found in the soil. This subject will be dealt with in a further paragraph under the heading of Rith deposits (see below). It may be here observed that from such deposits carbonate of soda can be isolated and purified commercially, or a crude mixed salt can be made that might be utilised in the manufacture of special alkaless or in the glass, soap and other trades. Sodium carbonate in an even purer state may be obtained from the brine of certain lakes, such as the Lonar in Berar.

Manufacture from Kelp.—In Europe some few years ago a large trade used to exist in the separation of sodium carbonate from calcined sea-weeds—Kelp, or salt-worts—BARILLA. Indeed to this day it may be said that SALSOLA SODA is still regularly produced both in France and Spain because of the large amount and fine quality of soda obtained from its ashes. And it was the loss of their regular supplies of barilla, during the wars with Spain, that compelled the French people to seek for new sources of the salt and finally led to Le Blanc taking out a patent in 1792 for the artificial manufacture of carbonate of soda from common salt. Le Blanc's discoveries practically revolutionised the chemical works and industries of Europe (see pp. 50–1). The calcination of sea-weeds is pursued as a rule for the purpose of obtaining potash rather than soda, and at the present day "kelp" is much more frequently spoken of as the source of IODINE than of either of the alkalis named. [For particulars regarding the manufacture from Sea Salt the reader might consult Agri. Ledg., 1902, No. 5.]

One of the greatest economies in the carbonate of soda industry was effected by the manufacture of Sulphuric Acid from Pyrites, in place of from the expensive Sicilian Sulphur. The extensive deposits of copper pyrites that exist in India, if utilised in the combined production of copper and sulphuric acid, should open a highly lucrative field of enterprise. So also the manufacture of the phosphatic deposits of India and adjacent countries into superphosphates should not be neglected, though so far as at present known the phosphatic deposits of India seem to contain too much iron and alumina to make really good superphosphates. As an exemplification of such results it may be remarked that the production of sulphuric acid from iron pyrites was in Germany 358,149 tons in
1882, and 754,151 tons in 1898, and of that large quantity only 25,000 tons were exported, the balance being used up in the exceedingly important German chemical industries which within the past three-quarters of a century have expanded from being nominal to a valuation of $50,000,000. The imports of sulphuric acid taken by India have averaged from 1902-7 Rs. 6,58,488 in value.

For the finer sorts of glass, and for many other minor purposes, a Refined Carbonate is required. This is obtained by re-dissolving the 'salt in hot water, settling, boiling down and re-furnacing—the result being a purer quality of carbonate. Soda Crystals may be said to be a well-known special preparation that contains 10 parts of water in combination with the carbonate. For household purposes of cleaning, bleaching, etc., soda crystals are still sold. The other substances obtained from sodium carbonate that may be here mentioned are the bicarbonate of soda and caustic soda. Before proceeding to deal with the last mentioned, the Indian manufacture and sources of supply of carbonate of soda may be dealt with very briefly. These have already been incidentally mentioned, namely, Rèh and Barīla, but to the former must be added the sources of natural carbonate derived from the waters of certain lakes, such as the Lonar in Berâr. [Of Oldham, Man. Econ. Geol. Ind., 19.]

5. Rèh or Sajji-matti; Ironside, Phil. Trans., 1774, lxiv., (ed. xiii.), 506; Sleeman, Tour through Oudh, 1858; Agri. Ledg., 1893, Nos. 12, 13; 1896, Nos. 1, 33; 1897, Nos. 5, 7, 13; 1901, Nos. 4, 13; 1902, No. 5, 117-24; Oldham, Man. Geol. Ind., 1893, 447; Mollison, Textbook Ind. Agri., i., 77-80; Wedderburn, Drought-resisting Fodder Plants, in Ind. Famine Union Leaflet, Dec. 1901, No. 2; Jan. 1903, No. 8; Alkali Land and its Reclom., in Dept. Land Rec. and Agri. Mad., 1905.

This is an efflorescence that occurs on the surface of the ground, in most provinces of India. It may be said to be a mixture of the following salts:—sodium carbonate (sajji), sodium sulphate (khari), and sodium chloride (common salt or namak). In most localities the carbonate predominates but in others the sulphate, and in the latter case it is very often associated with potassium nitrate or even with calcium nitrate. Soils badly impregnated with soluble alkali salts are variously designated as úsar, bhâdi, rëhâl, rëh, kalâr (kalr), etc., though these terms are employed occasionally to denote the presence of common salt, just as khâri usually indicates a soil containing the sulphate. But it may be here remarked that the earlier investigators of úsar lands speak of the sulphate as being the most abundant constituent. Hence apparently Yule and Burnell (Hobson-Jobson, Gloss. of Anglo-Ind. Words) defines rëh as an efflorescent sulphate of soda mixed with chloride and occasionally carbonate. On the other hand, Voelcker advanced what is to-day the correct view (Improv. Ind. Agri., 37) when he said of rëh, "The salts are principally impure carbonate of soda, but sulphate of soda also occurs largely and with them are found common salt and salts of lime and magnesia." An efflorescence of the nitrates of potash or soda would oftener be viewed as of value rather than of danger. Rëh frequently occurs in such abundance as to give origin to large tracts of desert—and constantly increasing tracts—the surface being literally encrusted with a white, snow-like deposit, hence the name rëh or rëj (shining)—or the salt may be invisible and only present to an extent sufficient to greaty lower fertility, or while still hardly visible, may yet render the soil more or less sterile for at least half the year. In passing it may be added that fuller's-earth is a hydrous silicate of alumina, but is often called, though incorrectly, sajji-matti: it contains no soda.

Formation of Usar.—The opinions advanced regarding alkali deposits vary in consequence of what might be called professional bias. Apparently the earliest mention of such deposits is made by Sleeman. His theory is in essentials not far

21447
TREATMENT OF ŪSAR SOILS

Manuring and Tillage.—Dr. Brown (then Chemical Examiner to the Panjāb) investigated the use of lime salts as manures to be employed in the treatment of reh soils, and his views were published by Mr. Baden Powell (Ph. Prod., 1868, 149) as follows—"When the deleterious sulphates and carbonates are mixed with any soluble salt of lime, such as the nitrate of lime, decomposition occurs and nitrate of soda is formed while carbonate and sulphate of lime are produced. Carbonate of soda is insoluble in pure water and has no power of injuring plants, while nitrate of soda and sulphate of lime are beneficial in supplying them with nitrogen, the former by direct decomposition of its acid and the latter by absorbing ammonia from the air. Nitrate of lime is formed whenever organic matter decomposes in contact with carbonate of lime." Some years later Brown advocated the use of farm-yard manure and green manuring with such plants as Culotropsis gigantea on the ground of their supplying the nitrogen which, in combination with the lime (naturally present in all Ūsar soils), would tend to reduce the carbonate of soda to a harmless condition. Center wrote a long and highly instructive report on the chemistry of the Ūsar soils, and confirmed in the most striking way Brown's recommendations for lime nitrate. He also gave an account of the operations in the Utah Basin and other parts of America, where heavy nitrating manures were employed as a remedial measure for alkali soils. Later on the sulphate of lime (gypsum, see pp. 716-7) gained a well-deserved reputation as a chemical substance that might be employed with great advantage in the neutralization of the sodium carbonate in Ūsar soils whenever that salt predominates. Where reh consists chiefly of sulphate of soda, gypsum would very possibly do harm rather than good.

The next most important step, therefore, in the study of the chemical treatment of Ūsar soils may be said to be Leather's various papers that have appeared in The Agricultural Leader. These give extensive analyses of soils, waters, etc., from the entire alkali area of India. They contain the results of practical experiments to test the amount of soluble alkali salts that may exist in soils before these become poisonous to vegetation. They indicate the plants that first show signs of succumbing to the influence of these salts, and the amount of each salt that proves fatal. By special pot cultures of various plants, Leather proved that sodium carbonate is (as has always been uphold) infinitely more injurious to plant life than are any of the other soda salts. But perhaps the most instructive part of his researches was the demonstration of the physical properties (called to by Romanis, Wallace and others) possessed by carbonate of soda, which greatly augments its injurious chemical influence on plants. While filtering soils in order to obtain their soluble salts, Leather observed that certain soils could practically not be filtered. A little muddy water percolated through at first, but very soon the surface of the filter-cloth became coated with a perfectly impenetrable layer, and further filtration was then impossible. The soils that manifested this peculiarity were those most highly charged with carbonate of soda. To remedy this defect he experimented with gypsum and soon ascertained that its well-known merit as a chemical manure in the reclamation of Ūsar soils rested as much on the destruction of the impervious deposit as in the reduction of the "white" to the "black alkali." It would thus appear that should climatic and soil conditions exist sufficient to give origin to a reh efflorescence containing carbonate of soda, there must sooner or later be produced (at a certain position or depth) an impenetrable layer through which surface percolation of water would be impossible. This waterproof layer may not be sufficiently developed to be visible to the naked eye as a "hard pan," but if carried near to the surface it will give origin to a crust of salt. A change in the physical condition of the soil is accordingly quite as urgent a necessity as in its actual chemical composition. It may thus be inferred that subsoil drainage, below an impervious layer, would be next to useless unless the soil be chemically treated with some of the soluble lime salts, or be penetrated for tree cultivation by deep trenches filled with fresh soil. It would indeed seem probable that the surface vegetation that has been reported as accompanying successful tree cultivation, may be due very largely to the pits dug for trees having acted as openings through the impenetrable layer by which the soluble salts of the surface have been washed into the natural drainage.

By way of concluding these observations regarding gypsum, it may be suggested that it is not necessary to assume that the exact amount of that salt which would be required chemically to neutralize the ascertained weight of carbonate present need be given as a manure before beneficial results may be
ALKALIS

RÉH

Important Factors.

Soil-washing.

American Results.—This leads, therefore, very naturally to a brief reference to the admirable investigations and practical results that have been attained by Hilgard and Loughridge in the reclamation of alkali wastes in California (Agr. Ledg., 1896, No. 1). These officers performed an extensive series of experiments and analyses, with the result that they arrived emphatically at the same conclusions as our Indian experts had done many years previously, namely, regarding the history of the formation of the alkali salts, their movements in the soil, and lastly their treatment with drainage, chemical manures, and selected or special crops. The difference between American and Indian experience in this matter may therefore be said to be that in the former country the scientific experts were at the same time the administrative staff who had to deal with the alkali wastes. Their observations were not treated as scientific theories, but were at once put to practical test, with this result, that alkali wastes are in America not only regarded as comparatively easy of reclamation but have actually been largely turned into some of the most profitable of lands.

Helpful Vegetation.—Medlicott urged that to protect the soil from the excessive heat of the summer months and consequent injurious capillary efflorescence, it was most important to alleviate the serious Indian defect, viz. the almost total absence of arborescent vegetation from the agricultural tracts of the country. But there is an aspect of vegetation that seems to have entirely escaped Medlicott's observation, namely, the employment of certain plants as direct agents in reclamation. It is well known that many plants not only can survive on soils that contain a proportion of alkali that would be fatal to others, but that they actually luxuriate under such soil conditions. Of this nature may be mentioned the Saltworts (see under Barilla, pp.113-4). Long, therefore, before reclamation could be carried to the extent of admitting of ordinary crops or even of arborescent cultivation, the soil might be protected from the sun by saltworts, and have at the same time large amounts of its poisonous salts removed by the temporary cultivation of such plants.

This subject has not, however, been entirely neglected in India. It was believed that were alkali lands protected from cattle for a number of years, or even annually from the close of the rains through the hot months, the plants produced during the rains might be encouraged to survive and even others, including trees, gradually to invade such protected localities, until in a few years' time the growth of a soil garment might ultimately prevent efflorescence. Such experiments have actually been conducted, and with considerable success. The plant found first to invade the protected barren lands was the grass known as khar úsara (Sporobolus arableus), which from its vernacular name may be inferred to be a salt-loving species. Sporobolus coronandulans (bhab-bur) also springs up readily enough, but only during the rains. It, however, affords useful fodder, although it does not protect the land from the summer's heat. After partial reclamation the dâh (Eragrostis cynosuroides), the dâb (Cynodon dactylon), the bat (Diplachne fusca), the jameu (Andropogon annu tus), and several other species readily appear. Since fodder is of necessity a pressing need in all parched lands, it is valuable to know the Indian grasses that should be first resorted to in reclamation operations, but it is unfortunate that the true saltworts have not hitherto been seriously investigated in India since they would appear more desirable preparatory plants to any of the grasses named. We read of a few desultory experiments having been put forth to acclimatise the Australian Saltbush, but it does not seem to have occurred to any of our Indian agricultural authorities that this country possesses perhaps a richer and more varied assortment of indigenous saltworts than is to be found in any other. In the Panjab and elsewhere a few of these have been (one might almost say) systematically cultivated for the production of barilla, but not one of them, so far as I can discover, has been seriously investigated as a preparatory crop in
industrial uses of carbonate of soda

ALKALIS

RéH

Useful Trees.

Immediate Returns.

Industrial Uses.

Lake Supplies.

Different Qualities.

Glass-making.

Native Industries.

Dyeing.

Bleaching.

Tobacco.

Adulteration.

asser reclamation. Mollison makes no mention of the Indian saltworts, though he refers to the Australian Saltbush.

There is a wide range between the saltworts that may be grown on soils highly impregnated with alkalis and the plants that refuse to grow on soils that contain a particle above what might be called normal soil-supply. But partiality or impartiality is not governed by botanical considerations, since within one and the same natural order of plants both dispositions may be met with. It would thus seem necessary that lists of plants should be framed, after searching tests have been performed indicative of the selection of saltworts, trees and useful crops that might be grown progressively on land under reclamation. Acaelia arborea, Butea frondosa and Dalbergia Sasso have been spoken of as useful trees, but these belong to the Leguminosae, a family which shows a stronger aversion to saline soils than almost any other that might be mentioned. They may, however, be good, but are they the best that could be chosen? If the most convenient and serviceable, at what stage should they be planted, and with what other plants preceded, associated or followed? These are questions of the greatest possible moment to India, but to which at present no satisfactory answer can be given. The greatest fault, however, with all Indian endeavours, such as they have been, at reclamation and reforestation, has been the impecunious craving and short-sighted policy of desiring immediate returns.

Industrial Uses of Soda.—Incidentally this subject has already been dealt with. Throughout India soda soils are washed and more or less pure carbonate obtained. At one time a fairly large trade was done in this way in South India (Salem, Mysore, etc.) and expectations of a considerable development entertained. Licenses were granted in Bihar, the United Provinces and elsewhere for the manufacture of sajji and rasi (two qualities of carbonate of soda) from saline earths. The object in licensing the industry is to protect the revenue, since from the factories concerned fairly large quantities of common salt are obtained, especially at the factories and refineries for the production of saltpetre. (For method of manufacture, see Glauber's Salt, p. 56.)

Carbonate of soda of a very pure kind is regularly prepared at the Lunak Lake at Berar.Ball says (Man. Econ. Geol. Ind., 494), "Blocks of mixed salts are obtained by divers in certain parts of the lake, but the waters of the lake, on evaporation, deposit salts among which the principal is carbonate of soda. . . . The local names for these products are dally, which consists of a close collection of acicular crystals, between two and six times of surface; kuppal, a thin kind of dally, principally of red colour; papad or papri, a white saline froth."

Whether obtained from soil efflorescence or from salt lakes by treatment with sulphuric acid, the mixed salts (especially where the greater proportion is already the sulphate) may be reduced to a salt-cake (similar to that obtained in the first stage in the Le Blanc process of manufacture), and by calcining with lime and coal that may be converted into soda-ash. At Awah, in the United Provinces, an attempt was made, in 1880, to utilise the reh efflorescence in the manufacture of glass and glass-beads. A complete set of tools was imported from Venice, but the following, among other conclusions, appear to have been arrived at regarding these and all such experiments at utilising the alkali deposits in glass-making:

(a) The impurity of the alkali prevents the formation of good quality of colourless glass.
(b) It is, therefore, necessary to organise chemical works to produce pure alkali.
(c) Good beads could be made, but doubtfully at a lower price than they can be imported.
(d) Improvement of glass manufacture in India would depend on the work being done on a large scale with skilled supervision.

Wherever soda efflorescence is at all abundant, the Natives in industry of glass-making (such as it is) is more or less prevalent, especially that of glass bangles. But reh and sajji are put to an infinite variety of other uses by the Natives. They are employed for dissolving crude lac and kamela, preparatory to dyeing silk, also for extracting the crimson dye from safflower in cotton dyeing. They are used for bleaching silk, cotton and wool. Sajji is employed, in Farukhabad, in making country paper from hemp. Both salts, in conjunction with shell-lime, enter into the composition of country soap. White reh sprinkled into boiling cane-juice is employed to neutralise the organic acids in the manufacture of sugar, a process very similar to that of the use of lime (p. 712), barium carbonate (p. 57), or strontium carbonate (p. 58) in Europe. Reh is an adulterant of tobacco, and is added to
increase the weight. In Native medicine these salts are supposed to be digestive and hepatic. The effort to utilise in the potter’s art the peculiar clays that are in association with carbonate of soda has not as yet received the consideration that it deserves, although the ceramic art of India has been the subject of special study. As a historic fact, that has escaped the attention of most writers on this subject, it may be said that some 60 years ago Sir William O’Shaughnessy submitted to the Government of India the results of an inquiry which included extensive trials of Bengal clays, such as Kolgong khari, Saban mitti, Rotas clays, Moulmein clays, Singapore clays, etc., as also numerous experiments in glazing the pottery turned out. [Cf. Beng. Dispen., app., 700-17.]

6. **Black Salt** (kāla-nun, kāla-nimak) is an article of some importance in the local markets of India. It is prepared in Upper India, chiefly at Bhiwāni in Hissār.

Common salt is heated with the chebulic and emblic myrobolans together with saji, until a sort of fusion takes place. The article so manufactured is used as a medicine. Dr. Warth favours me with a note on this subject from which he would appear to regard sodium sulphate as an indispensable ingredient. He writes: “I have produced perfect specimens by fusing a mixture of pure common salt with sodium sulphate, a little sodium carbonate and organic matter represented by sugar. According as the proportion of anhydrous sodium sulphate varied from 1 to 3 per cent., a more or less strongly medicinal salt was produced varying from pink to a decided vermilion colour, whilst as much as 15 per cent. of the sulphate yielded a very dark purple-coloured salt. All these had the characteristic sulphurated-hydrogen smell, and gave the same chemical reactions as the Native-made product. The jungle fruits which they add can have no special influence on the salt because they are completely carbonised and serve only as reducing agents for the sulphate to sulphide, the characteristic material of the prepared medicinal (or black) salt.”

7. **Phuli.**—This is believed to be a form of carbonate of soda. It is imported into Leh from Changthang, Rupshu and Nubra in Ladak. It is said to be extensively used for mixing with tea to bring out its strength. It is exported to Kashmir and Kûlû and into Lower India. The Bhotiyas are said to use it for washing clothes and for dyeing wool. The average imports appear to be from 50 to 120 tons, and the average cost about Rs. 6-4-0 per maund.

8. **Barilla or Sajji-khar** (see Barilla and The Indian Saltworths, pp. 112-4).

9. **Borax or Sodium bi-borate** (see Borax, p. 171).

10. **Caustic Soda** (= kshard in Sanskrit).—So much space having been devoted to carbonate of soda and a further article to sodium bi-borate, the present salt must be disposed of in the briefest possible manner. At the present day it may be said that India’s supply comes entirely from foreign countries. One of the Indian paper mills is believed, however, to have attempted the preparation of its own supplies from the rēh salts found in the neighbourhood, but it is not known whether its endeavours in that direction were successful.

The greatest possible interest has been aroused in Europe and America through the discovery of a method of direct decomposition of common salt into caustic soda and chlorine gas by means of electricity. With regard to Electro-Chemistry the reader might consult The Mineral Industry (New York, 1900, 763-72).

The Indian press have hailed the discovery of the direct decomposition of salt as bringing a cheap supply of alkali to the doors of our Indian soap-works, paper-works, etc., owing to the possession of a limitless supply of sodium chloride. The great recommendation to India of this new method lies in the fact that sulphuric acid is not required. Without sulphuric acid Le Blanc’s manufacture of soda-ash could not be brought to bear on our supplies of common salt or of rēh efflorescence—hence in all probability the backwardness of India in chemical enterprise.

11. **Sodium Chloride** (see Salt, pp. 963-71).

12. **Sodium Sulphate, or Glauber’s Salt.**—This is generally known in India under the name khari or kharinum, and as already ex-
plained (p. 51 et seq.) it is met with as one of the efflorescent salts that constitute réh. It has been shown (p. 50) that the chief use of this salt might be regarded as in the preparation of carbonate of soda. Its production is at all events the first stage in the Le Blanc process of soda manufacture, and where met with at all abundantly as a surface efflorescence it might be viewed as the first stage accomplished without the expense of sulphuric acid having been incurred.

This salt is in India derived from réh efflorescence, either by solar evaporation (ásis) or by artificial heat (jaria), and by a method very similar to that pursued with crude saltpetre. The quality of the earth collected is of course different in each case, but the nature of the filters, boilers and pans employed is the same; and for evaporation and condensation of the brine, boilers and churnam pans are both used, the former in Bihár and the latter in the United Provinces of Agra and Oudh, where prolonged dry, hot weather may be more confidently reckoned on than in Bihár.

Industrial Uses.—Patna-khari (as the khari produced in Bihár is called) is used chiefly for preserving hides, and also as a cathartic for cattle; it sells at from 8 to 12 annas a maund, and contains very little sodic chloride. Khari produced up-country, by solar evaporation, is also much employed as a cathartic for cattle. It contains, however, a considerable percentage of common salt (20 to 30 and sometimes even more); it realises from 12 annas to one rupee per maund. Glauber's Salt may be said to be better suited than common salt for the curing of hides, owing to the tendency of the latter to absorb water and soften the hides. The khari (or chamra-khari of Bihár being as a rule purer than that of the United Provinces, is accordingly in greater demand. Buchanan-Hamilton in 1806 drew attention to this circumstance by his having pointed out that the patna-khari was the best procurable in India. According to Dutt (Mat. Med. Hind., 1900, 90) it was known to the recent Sanskrit writers under the name of kshārī dāvāna, and was used medicinally in combination with other saline substances. As manufactured in India it is an impure salt.

ALKALINE EARTHS.—Having now discussed the true alkalis and their salts with as much detail as the available space will admit, it becomes necessary to record the chief facts known regarding the Alkaline Earths and their salts as met with in India.

The oxide of this metal (baryta) is an extremely caustic, poisonous and strongly alkaline substance that forms a hydrate with water.

14. **Barium Carbonate.**—This is imported into India to a very limited extent. It is highly poisonous. In Europe it is employed as an ingredient in certain forms of pottery and glassware, and is the basis of certain delicate colours. In France it is used in the defecation of beet-root sugar in place of lime. (*Cf. Min. Industr.,* 1900, 53-4.)

15. **Barium Nitrate.**—This is obtained by decomposing the carbonate by means of nitric acid. It is the chief salt employed in pyrotechny for the production of green fires. It is also the tintorial principle in BARYTA GREEN—a pigment of some value. Recently barium nitrate has been substituted for saltpetre in the preparation of certain explosives.

16. **Barium Sulphate.**—This is the most important of the barium salts and is known as BARYTES (BARYTES) or HEAVY-SULPH. It is found in mineral lodes and usually constitutes a distinct portion of the gangue there present. In the Karnal District, Madras, it occurs along with galena, within the veins of quartz. Large quantities also occur with quartz, forming a network of veins, as for example near Alangayam, Salem district (Holland, *Rec. Geol. Surv. Ind.,* 1897, xxx., pt. iv.).

If ever worked, large supplies could be obtained from that locality. So, in the same way, barytes exists in the Central Provinces in association with copper such as at Jabalpur and in the Rewá State. In Rajputana barytes has been reported by Dr. Irvine as occurring at the lead mines of Taragarh in Ajmir. In the Panjâb it has also been found in association with galena at Subâthu in the Simla district. While it would thus appear that the Indian sources of this alkaline earth have not been worked, barium sulphate is nevertheless available in every bazaar and seems to be very largely sold as "white lead," or in adultera-
ALLIUM SATIVUM

THE ONION AND GARLIC

Used by Paper-makers.

Strontium.

Celestite.

Sugar Refineries: Strontianite.

17. Calcium and its Salts (see Lime, pp. 709-19).

18. Strontium and Strontia.—The oxide strontia does not exist in nature, but it may be produced by burning either the carbonate or the sulphate.

Celestite, the sulphate of strontium, has been reported as met with in two localities in India, viz., in the Kirthar limestones of Sind and in the red clays of Surdag in the Salt Range. In the sugar refineries of the Continent of Europe the native carbonate (Strontianite) was formerly used in place of lime (Journ. Soc. Chem. Indust., Nov. 1901, 1902). But the metal is chiefly known in India in the form of the imported nitrate which is largely employed in the preparation of red-coloured flames in fireworks.

ALKALOIDS (see Atconitum, Cinchona, Papaver, etc.).

D.E.P., i., 168-75,

ALLIUM, Linn.: Fl. Br. Ind., vi., 337-45; Liliaceae. A genus of bulbous herbs which embraces about 250 species, all indigenous to the temperate regions. In addition to the onion and the garlic (which are the most important species), the shallot and the leek (A. ascalonicum, Linn., and A. Ampeloprasum, Linn.) are also cultivated in India, the latter being the parú of Bengal and the kirdh or kirás of Arabia. In Western India, according to Woodrow, leeks succeed best at altitudes of 2,000 feet.

Onion.

A. Cepa, Linn.: Dutchie, Field and Garden Crops, iii., 5, pl. lxv.; Mollison, Textbook Ind. Agri., iii., 211.

The Onion is extensively cultivated in India, chiefly near large towns, and is known as piaza, padanadu, kanda, vella-vengayam, vellu-padalu, etc. There are two forms, a small silvery and a large red or yellow. Patna and Bombay (Jangira) are famous for their onions, and, speaking generally, the onions from the northern provinces are the largest and best. The size and quality would seem to be improved by transplantation, which is also a preventive against disease from fungi and insects. Seeds will not keep in India for more than one season, hence selected bulbs are planted for seed purposes at the beginning of the cold season. After careful preparation the seed-bed should be sown about September and the seedlings transplanted in November or early in December. The crop may be lifted from March to May. In two test cases mentioned by Mollison the yield was about 35,000 lb. to the acre. Onions are extensively eaten in India by Muhammadans, much less frequently by the Hindus; they are occasionally given to milk cows and buffaloes. There would appear to be a considerable export trade in the bulbs from Bombay to Zanzibar, Japan, etc. [Cf. Ain-i-Akbari, 1590, 63; Sen, Rept. Agri. Stat., Dacca, 1899, 25, 38, app. vii.-xii.; Imp. Dept. Agri., West Ind., Pamphl. Nos. 16-21.]

Garlic.

Garlic, Linn.: Dutchie, l.c. 34, pl. lxvi.; Mollison, l.c. 214. The Garlic, lusan, raasun, belloli, thiram, sir, vallai-pindu, etc., is cultivated throughout India, the cloves (or small bulbs) being planted out in October and the crop gathered in the beginning of the hot weather. As showing the extent to which the seasons of production vary, it is reported of Coimbatore district, South India, that planting commences in May-June and harvesting in September, being followed by a tobacco-crop, or if planted in December and gathered in March, it is followed by cholam. According to Mollison, a good crop will yield 8,000 to 10,000 lb. per acre and be worth Rs. 250 to the cultivator. As a Food, garlic is almost universally used in curries by the Natives, who also eat the bulbs almost daily. In Medicine it is regarded as a stimulant, expectorant, tonic, and employed as a remedy in bronchial affections and as an application for deafness. Dyamock (Pharmacog. Ind., iii., 480) says that after intense fatigue a clove of garlic slowly chewed and swallowed acts as a very powerful restorative. The freshly expressed juice makes an excellent Cement for glass-ware. The imported Muscat-garlic is much used for pickling. [Cf. Taleef Shereef (Playfair, transl.), 1833, 147.]
THE ALOES OF INDIAN COMMERCE

Several species of Aloe and diverse methods of extracting, drying and preserving the juice result in the supply of the different known qualities of this drug. The following species may be specially mentioned as affording the major portions of the aloe of Indian commerce:—

A. abyssinica, Linn.; Baker, Journ. Linn. Soc., xviii., 174. Jaferabad and possibly also the bulk of the Mokâ aloe imported from the Red Sea coast. This is prepared at the town of Jaferabad in Kathihar by persons supposed to be of African descent. It is sold in the form of flat circular cakes almost black in colour, has a glasy fracture and yields a yellowish powder having a strong aloeetic aroma. This, as also the imported Mokâ quality, constitutes the aloe most in demand in India.

A. Perryi, Baker, Bot. Mag., 6596. This is the Socotrino Aloe, and possibly also the Zanzibar Aloe of commerce, of which a fair amount is imported into Bombay, and after being assorted is re-exported again to Europe. [Uf. Mandesalo, Travels, 1639, 15.]

A. vera, Linn.; the Common or Barbados Aloe or Curaçao Aloe. Several forms of this species have become completely naturalised in India, and that too from the hot, dry outer valleys of the N.W. Himalaya throughout the central tableland to Cape Comorin. Both the aloe plant and the drug have Sanskrit and vernacular names attributed to them that would seem fairly ancient. The following may be specially quoted: For the Plant:—ghî-kunwîr, ghîrta-kunwîr, kûmâri, kûrâ-kûndâ, kândà, kâlambudu, lola-sara, etc. For the Drug:—išu, eitya, eito, yâlwa, mo-shabbâr, musumbâ, kâlabî, etc., etc. Sir William Jones calls it taruni, sahu, cumârî (As. Res., iv., 279).

Most scientific writers are agreed that although the aloe has been completely naturalised in India for a very long time it is not originally a native of the country. Of late, attempts have been made with comparative success to show that some at least of the species might provide an efficient substitute for the imported drug. Indian aloes seem first to have been mentioned by Garcia de Orta (1563, Coli., ii.) as prepared particularly in Cambay and Bengal. He adds that though Pliny and Dioscorides refer to the Indian aloes as the best, they were referring unconsciously to the re-export of the Socotrino product. Paulus Egina (Adams, transl., iii., 34) reviews the information possessed by the early Greeks, Romans and Arabsians, and might be consulted. The early Indian travelers such as Linschoten, Tavernier, Hove, etc., afford useful particulars, but greater details may be learned from Ainslie, Royle, Warring, etc. Rumphius (Herb. Amb., 1750, v., 272) mentions the use of aloes on the Coromandel Coast in the preparation of cement. [Uf. Acosta, Tract. de las Drogas, 1578, 191–211; Ligon, Hist. Barbados, 1657, 98; Rheede, Hort. Mal., xi., t. 3; Kanny LLal Day, Indig. Drugs. Ind., 19; Taleof Shereef (Playfair, transl.), 1833, 138; Tschirch, Schweiz. Wochenb. fur Chem. und Pharm., 1902, No. 23 (attributes the aloes of the Cape to A. ferox); Johannes Klaveness, Studien Natal Uganda-Aloe, 1901; White and Humphroy, Pharmacop., 1901, 51–2; Ponder and Hooper, Mat. Med.; Bens, Southern Arabia, 1900, 381.]

The Indian Trade in aloes is not a very large one. The total imports come usually to something like 600 cwt. valued at a little under Rs. 20,000 (501 cwt., valued at Rs. 7,994 in 1906–7), a quotation that would seem to be about one-third less than that of 20 years ago. The total exports (including re-exports) would appear to average very nearly the same in quantity and value as the imports. The Indian foreign supply, drawn mainly from Africa and Arabia, and the exports of Indian-grown aloes go mainly from Bombay and Madras. In fact, the most striking modern feature seems to be the growth of an export from Madras to the Straits Settlements. The re-exports (foreign aloes exported) are made almost exclusively from Bombay and go mainly to the United Kingdom, the next largest demand being made by the Straits Settlements.

59
ALPINA, Linn.; Fl. Br. Ind., vi., 252; SCITAMINEAE. A genus that contains some 40 species inhabiting the tropical and sub-tropical regions of Asia, Australia, and the Pacific Islands.

Galangal.

The two most important species are *A. Galanga*, Willd., and *A. officinarum*, Hance, which are considered separately below. *A. Allughias*, Roxb.—taro or tariko—a native of Bengal, Assam, Burma, Ceylon and the Konkan, has an aromatic rhizome which is used by the natives MEDICinally. It has been recently stated that the leaves and stem yield a FibRE which might possibly be useful in paper-making, owing to its exceeding abundance. [Cf. Hooper, Rept. Labor. Ind. Mus., 1904-5, 28.] *A. khulanjan,* a supposed new species described by the late Dr. Moodeen Sheriff in 1869 [cf. D.E.P., i., 194], is believed to be the same as *A. officinarum,* but owing to the continued uncertainty the latter species has been kept separate. *A. Nutans,* Roxb., the Light Galangal, is a native of the Eastern Archipelago, much cultivated in Indian gardens. The rhizome is used in place of the Greater or Java-Galangal, and is sometimes mixed with it or with ginger.

Galanga, Willd.; the Greater or Java-Galangal, the barakulinjan, mothakolamjan, pera-rattai, pera-ratta, padagoji, etc., is found throughout India from the foot of the Himalaya to Ceylon and Burma; distributed to the Malay Islands and widely cultivated.

It is mentioned by Marco Polo (A.D. 1290) as grown in Bengal, and by Varthema (1510) as found in Cambay. Garcia de Orta (1563) and Linschoten (1598) say that there are two sorts, one Chinese called "Lavandon," the other Javan and there called "Lanquas." The latter, they say, was sown in Indian gardens.

It is a native of China from whence the rhizome is exported largely to India, and somewhat less than in former days to England. The principal demand for it is in Russia, though it is still an ingredient in certain old-fashioned English MEDICINES. In India it is considered a nerve tonic and an aphrodisiac.

It is not possible to distinguish between the Greater and Lesser Galangal in the Indian trade returns, but the collective imports have increased from 2,794 cwt., valued at Rs. 21,525 in 1899-1900, to 5,292 cwt., valued at Rs. 39,731 in 1902-3, though they have since declined to 3,918 cwt. in 1906-7, valued at Rs. 21,375. The collective exports also have fallen from 1,327 cwt., valued at Rs. 12,255, in 1899-1900 to 393 cwt., at Rs. 3,475, in 1902-3. Since then, however, the exports have shown an increase—viz. to 1,245 cwt., valued at Rs. 12,249 in 1905-6. In 1906-7, however, they fell to 614 cwt. and Rs. 6,338. By far the largest increase is in the trade from China (Hongkong)—viz. from 692 cwt. in 1899-1900 to 3,200 cwt. in 1904-5, and 2,104 cwt. in 1906-7.

ALSTONIA SCHOLARIS, R. Br.: Fl. Br. Ind., iii., 642; Gamble, Man. Ind. Timbs., 483; Cooke, Fl. Pres. Bomb., ii., 132; APOCYNACEAE. A tall evergreen tree of the moister regions of India, but nowhere very common. It affords the dita-bark of commerce, and is known in the vernacular as chatwan, chatiun, lationj, satidna, pala, pala-garuda, rukatana, etc.

The bark is used in MEDICINE as an astringent tonic, anthelmintic, alternative and antiperiodic. It is a remedy in cases of chronic diarrhoea and advanced dysentery, as also of catarrhal fever and stomachic debility. Externally the milky juice is applied to foul ulcers and is also used with oil in earache. Ditaun, an uncrystallisable substance obtained from the bark, and also a tincture of *Alstonia,* appear to be useful in cases where the quinine produces distressing secondary symptoms. The Report of the Indian Indigenous Drugs Committee (i., 410-38) seems to show that the drug is useful in diarrhoea and dysentery, but
that its effect as a febrifuge is not lasting (Pharmacog. Ind., ii., 386). The Timber, which is not durable but easily worked, is used for boxes, furniture, seaboads, coffins, etc., for blackboards (dusted with sand) in Burma, whence the name scholariis, and, according to a correspondent of The Agricultural Bulletin of the Straits and Federated Malay States (1903, ii., 114), the young wood is employed in Borneo as a substitute for cork in bottle-stoppers (see Gutta- percha, p. 627).

ALTINGIA EXCELSA, Noronha: Fl. Br. Ind., ii., 429; Gamble, Man. Ind. Timbs., 332; Brandis, Ind. Trees, 302; Hammamelidaceae. Burmese storax, rasamala, sildwar, jutili, nantayok, etc. A lofty deciduous aromatic tree of Assam and Burma, Yunnan, Java, etc.

This, like the closely allied Liquidambar orientalis, Mill., of Asia Minor (the Liquid Storax), yields a fragrant balsam, known as nan-ta-yok in Burma, which is used in that country as a perfume, incense and medicine. The true Storax (Styrax Benzoin) is imported into Bombay, and is used all over India as a Medicine both by the Muhammadans and Hindus. The Burmese article to all intents and purposes is identical with the rasamala of Java, and is little if at all inferior to the resin of Asia Minor. Hooper (Agri. Ledg., 1904, No. 9) reviews all available information on this subject, and concludes by saying that his chemical investigations confirm those of Prof. A. Tschirch and Dr. L. van Itallie—viz. that while the Burmese storax (like the rasamala) differs in many respects from the true article, it might be pushed in trade as a good substitute. [Cf. Pharmacog. Ind., i., 593–8; Archiv. der Pharm., Sept. 1901, 239, 541–7; Journ. Chem. Soc. Ind., xx., 1122; Hooper, Rept. Labor. Ind. Mus., 1900–1, 18; 1904–5, 24–5.]

ALUM and ALUMINIUM-ORE: Bauxite, Laterite, etc.; Holland, Rev. Min. Prod. Ind., in Rec. Geol. Surv. Ind., 1905, xxxii., 94; Oldham, Man. Econ. Geol. Ind., 303, 352; Ball, Man. Econ. Geol. Ind., 431–5; Journ. Soc. Arts, 1903–4, lii., 445; Brough, Cantor Lect. Alum, phitkari, phatkiri, sphaikari, shib, zik, patakri, kyankchin, etc., is prepared from alum-shale in several localities of Bihar, Kach and the Panjab. It is also found, but not worked, in Upper Burma.

Alum appears at one time to have been very extensively imported into India from China, and the price on the Calcutta market in 1809–11 is quoted as 3/–6 sicca rupees per maund (Milburn, Or. Comm., 1813, ii., 498), but it is curious that there is no hint of any such trade in the E. India Co.'s records, at the beginning of the 17th century, although we learn that it was then an article of extensive trade with Japan, "for they cannot dye with sapanwood without it" (Foster, E.I.C. Letters, v., 7). The Indian production is very uncertain, probably not amounting in all to more than 1,000 tons yearly. Kalabagh on the banks of the Indus and Kotkiil at the mouth of the Chichali pass, produce about 400 tons annually between them (Min. Rec., 1894–7, etc.). Mr. Holland says that the yield in 1898 was 750 tons, valued at £3,150, but in 1901 it fell to 98 and in 1902 was 112½ tons. No returns for 1903 were available. But the Indian alum is not so white as the imported mineral, being discoloured by impurities. The alum imported into India during the six years 1898–1903 averaged 69,296 cwt., valued at 3 lakhs of rupees. The actual figures for 1906–7 were 72,344 cwt., Rs. 3,19,407. The principal use is as a mordant in Dyeing, but it is also employed in Medicine, photography, etc., and in the purification of vinegar (see p. 1110).

Recently it has been discovered that many of the rusty-coloured laterite deposits which cover large areas in the Peninsula and Burma are identical with the substance known as bauxite, now the chief source of Aluminiun. Like the original bauxite of Les Baux, these deposits were originally worked without
success as a source of iron. "It is difficult at present to fully estimate the value of this discovery, as a deposit of laterite, which ordinarily would be regarded as small and of little consequence, contains enough alumina in some of the instances examined to completely swamp the market of bauxite, of which the world's total production is at present little more than 110,000 tons a year. Without any disturbance of present prices, the aluminous laterites would hardly pay, at the ordinary rate for first-class bauxites of 21 to 22 shillings a ton, to mine for export to Europe and America, and they must consequently be utilised for the extraction of alumina on the spot, either for export as such, or for the manufacture of aluminium in the country. To prepare the alumina from the bauxite (or laterite) would, according to the most recent processes, require the use of caustic soda, which is not at present made in the country. But one of the latest successful processes for the manufacture of caustic soda involves the separation of chlorine (from which bleaching powder is prepared) by the electrolytic decomposition of dilute brine, and as both caustic soda and bleaching powder are now largely imported for use in paper-making, there would be a market for both, apart from the requirements of alumina manufacture."

Aluminium Manufactures.—It is impossible to furnish actual statistical returns of the extent to which this metal has been introduced as an Indian industrial material. Mr. Chatterton, Principal of the Madras School of Arts, pioneered the new industry so very successfully that others were induced to engage in the trade and finally the school withdrew in favour of private enterprise, viz. The Indian Aluminium Co. at Madras, which purchased the Govt. Aluminium Dept. in the school. The Company employed 150 persons in 1901 and 356 in 1904. There are three other factories at Madras, but apparently of small importance. The impetus due to Chatterton's success would seem, however, to have given the North India a hold on the aluminium trade that she is not likely to forgo. The imports of aluminium-ware must also be very considerable judging from the extent aluminium cooking-pots, water-bottles and other articles of that nature are now met with throughout India. (See Corundum, p. 428.)

There may be said to be two or perhaps three distinct groups of amaranths that are of economic value to the people of India. These are the species cultivated in gardens and mainly if not exclusively as _Pot-herbs_; second the wild species that are eaten as pot-herbs or _Medicines_; and third the forms cultivated in fields and exclusively so as edible _Grains_. The last mentioned are by far the most valuable and hence may be taken up in greater detail than the others. But in passing it may be observed that the Indian species of this genus seem to be sadly wanting careful study and revision. The limitations of scientific and vernacular names here adopted are given tentatively. Of the garden pot-herbs there are many varieties or recognisable races under each botanical species. These may be indicated as follows:—

Section A. Pot-herbs.

1. _A. Bilitum, Linn., var. oleraceus_ (sp. _Linn._), a plant with small obtuse leaves cultivated mainly in sub-montane tracts. The leaves serve as a pot-herb and the seed as a grain (_Rec. Bot. Surv. Ind._, i., 169). This may be only a form of the following:—

2. _A. gangleticus, Linn.; Agri. Ledg._, 1904, No. 6, 63; Duthie and Fuller, _Field and Garden Crops_, iii., 17–8, pl. lxvii.; _Ileag, chaulaisiq_, etc. The vernacular names apply equally to the foregoing species. Roxburgh differentiated _A. gangleticus_ proper from _oleraceus, polygamus_ and other forms mentioned below as varieties, by the fact that it gave only one crop and was pulled and sent to market with the roots. Some forms, such as _A. bicolor_ are grown as ornamental plants. Of the many varieties _lanceolatus_ is used in curries, _tridus_ as a pot-herb, and _oleraceus_ (sp. _Roxb._) as a substitute for asparagus. Then there may be mentioned _polyyomus_ (sp. _Roxb., non Linn._) [cf. Long in _Journ._ 62}
RAMADANA AND ANARDANA

Agri.-Hort. Soc. Ind., 1859, x, 30] and tristis (viru kira) a vigorous plant much esteemed by the Natives.

3. A. polygamus, Linn.: chelu natia, etc., the smallest Indian species and a weed of gardens throughout India. It is regarded as a very wholesome pot-herb specially suited for convalecents (Rec. Bot. Surv. Ind., ii., 187; Agri. Ledg., i.c. 64).

4. A. spinosus, Linn.: Pharmacg. Ind., iii., 138. The prickly amaranth, taddula, kante-math, etc., a weed of cultivation throughout India. It is used by the poor as a pot-herb, and in medicine is valued for its mucilaginous properties. (Rec. Bot. Surv. Ind., i., 207; Agri. Ledg., i.c. 64, 72.)

5. A. viridis, Linn.: choulaie, chaulai, etc., a weed of cotton soils, but apparently nowhere cultivated. The tender tops are eaten (Rec. Bot. Surv. Ind., i., 354; Agri. Ledg., i.c. 65.)

Section B. Grains.

This is fairly plentifully cultivated throughout the plains of India as a garden ornamental plant (and to some extent as a pot-herb also) much after the same fashion as its near allies, the Prince’s Feather (A. hypochon-driacus); the Weeping-willow-leaved Amaranth (A. salicifolius); and the Cocksecomb (Celosia cristata)—all great favourites with the native gardeners. But A. caudatus in India takes a further and more directly economic position since it is cultivated by the hill tribes as a regular field crop, on account of its grain, the ramdana. The seed is sown in May and June and the grain is harvested in October. In the plains of Northern, Western and Central India it is also occasionally seen as a cold-season crop being grown on the borders of fields. It is chiefly distinguished from the next species by the obtuse tips of the leaves and the long pendulous tails or spikes of the inflorescence.

A. paniculatus, Linn.; Fl. Br. Ind., iv., 718; Duthie, Field and Garden Crops, iii., 23, pl. lxviii.; A. frumentaceus, Ham., in Roxb., Fl. Ind., iii., 609; A. Anardana, Ham., in Wall., Cat.; and A. farinaceus, Roxb., Herb. This appears to be the anardana of the early writers but is best known as chüa, chuko, ganhar, márla, bátu, etc.

Cultivated on the Himalaya from Kashmir to Sikkim between the altitudes of 3,000 and 10,000 feet; also on the hills of Central and South India and Burma, and on the plains of Northern, Western and Central India, as a cold-season crop. It is one of the most important sources of food with the hill tribes of India, and there are both golden-yellow and bright purple conditions. The former is more frequent and seems therefore to be preferred; most fields, however, contain a few red plants among the yellow. It is an exceedingly ornamental crop; the hillsides, on account of the fields of this plant, become in autumn literally golden-yellow and purple. It is sown in May and June and reaped in October–November, but in the plains it is not ripe until February to March. (Madden, Edinb. Bot. Soc. Trans., 1858, v., 118.)

It is not possible to furnish information as to the total production of this grain. It is grown as a rule for local consumption and is hardly if ever exported. The grain has been analysed by Church (Food-Grains of Ind., 107–9) and the average of three samples gave the nutrient ratio at 1:53 and the nutrient value 90. It has been estimated that one plant will produce 100,000 grains. Speaking of another sample, which Church attributed to A. gangeticus, but which may possibly have

Love-lies-bleeding.

Food-grain: Ramdana.

Important Food-grain.

Seasons of Sowing and Reaping.

Food Value.
ANANAS SATIVA
Pine-apple

where it is often gregarious. In South India it is important in coast-dune reclamation.

The bark yields a Gum which is obnoxious to insects. The juice which issues from incisions in the bark is used as an indelible marking-ink. The bark and the pericarp yield an Oil (called dik), which is occasionally employed to tan fishing-nets. Two Oils are obtainable from this plant: (1) a light-yellow from the pressed kernels, of which the finest quality is equal to almond oil; and (2) “Cardole,” obtained from the shell of the nut—an acrid and powerful fluid efficacious for preserving carved wood, books, etc., against white ants. It is used as a rubefacient and vesicant MEDICINE. The spirit distilled from the juice of the fruit and sold when redistilled at about Rs. 1½ per gallon, is a useful stimulant and the fruit itself has antiscorbutic properties. The seeds, known as Cashew-nuts, are usually eaten roasted and are made into confectionery with sugar. The fruit-pedicels are also eaten. The Timber (weight 30 to 38 lbs. per cubic foot) is used for packing-cases and for boat-building and charcoal. Cashew-nuts are imported into Bombay from Goa in very considerable quantities. The kernels are valued at about Rs. 18 per cwt. [Cf. Garcia de Orta, 1563, Coll., v.; Acosta, Tract. de las Drogas, 1578, 232; Linschoten, Voy. E. Ind. (ed. Hakl. Soc.), 1598, ii., 127; Acosta, 1598, in Clusiuss, Exot. Pl., 1605, 272; Garcia de Orta in Clusiuss, Exot. Pl., 1605, 198; Boyom, Fl. Sin., 1666, c.; Milburn, Or. Comm., 1813, i., 273; etc., etc.]

D.E.P.

ANANAS SATIVA, Schult.: Bromelliaceae.

Shortly after the discovery of America the Pine-apple appears to have been dispersed rapidly over the world and acclimatised in most tropical countries. The Spaniards called it Pinas because of its resemblance to the pine-cone, but the Portuguese adapted to their own tongue its Brazilian name Nanas and called it Ananas, a word which in some form or other has accompanied the plant throughout the world. In most of the languages of India it bears names clearly derived from the Brazilian, such as anás, anânash, anáras, anáshappazam, na-nad, anás, etc. Or it is called Foreign Screwpine, European Jack Fruit, etc.—all modern names. There are no names for it in any of the classic languages of Europe, Asia, Arabia or Egypt.

Introduction into India. Early Travellers in India.

History.—Oviedo (Hist. de las Ind., 1548 (ed. 1853), iii., 280-4) described the plant as grown in the West Indies and on the American mainland, and Christopher Acosta (in Clusiuss, Hist. Exot. Pl., 1605, 284) speaks of it as plentiful in India. He mentions a wild form in the Deccan called queurna, which suggests a confusion with Pandanus odoratissimus, and it is curious that Abul Fazl (Ain-i-Akbari (Bloechmann, transl.), 83) should contrast the leaves of the queurna (Pandanus) with the maize—a plant then only recently introduced into India. Maregraf (in Piso, Ind. Utri re Nat. et Med., 1658) mentions the pine-apple in Brazil, and Hernandez (1651) in Haiti and Mexico. It is figured and described by most botanists of the 16th to 18th centuries, e.g. J. Bauhin (1651), Boyom (Fl. Sin., 1656), Ligon (Hist. Barbados, 1657), Bontius (in Piso, Lc. 1658), Rhodee (Hort. Mal., 1692, xi. tt. 1-2), Merian (Inseet. Surinam, 1705, tt. 1-2), Rumphiuss (Herc. Amb., 1750, v., 228), etc., etc. Boyom speaks of it as brought from India to China. Rhodee (confirming Acosta) declares it to have been introduced by the Portuguese, but less than a century later it had become so common as to be considered indigenous by Rumphiuss. Marco Polo naturally says nothing of it, and the reference usually given to Garcia de Orta is properly a note by Clusiuss contrasting Garcia’s description of the Mango with Oviedo’s description of the pine-apple. It is mentioned prominently by Linschoten, Pyrard, Bernier, Herbert and other travellers, and Jahangir (Memoirs (Price, transl.), 13-4) alludes to its introduction, but the Emperor Baber (1519) does not include it in his list of the fruits of Hindustan. Finally in 1800, Buchanan-Hamilton wrote that it was regarded as the fourth most important fruit in Dinaapur. [Cf. Herbert, Travels, 1677, 334; Turner, Acc. Emb. Tibet, 1800, 13-5; Taleef Shereef (Playfair, transl.), 1833, 17; As. Journ., 1819, vii., 264; Watson, Journ. As. Soc., Beng., 1834, iii., 27; Bennett, Wanderings N.-S. Wales, 1834, ii., 208-9; Logan, Pinca Cloth, Journ. Ind. Archi., 1848, 528; De Candolle, Orig. Cult. Plants, 1884, 311-2; Blechyned.
CULTIVATION FOR FRUIT

Cultivation for Fruit.—The English hot-house pine-apples are often spoken of as much superior in flavour to those grown in tropical countries. The fruit appears to have been first cultivated in Europe at Leyden in 1650, and the first pine-apple grown in England was raised in the Duchess of Cleveland's hot-house at Downey Court and presented by her gardener (Mr. John Rose) to King Charles the Second some time before 1672—the date at which Rose became the Royal gardener. [Cf. Murray, Hist. Roy. Hort. Soc., 1863, 4 and pl.] With the modern facilities of rapid transport to Europe and America, large supplies of the fruit have recently reached these continents from the West Indies, from Madeira and from the Canary Islands. This has led to a decline in hot-house cultivation, to an immensely increased supply and consequent great reduction in price, and has given birth to a highly lucrative new planting industry in all tropical countries situate within practical access of the European and American markets.

Much attention has recently been given to the study of the varieties and races of pine-apple, as also to the methods of cultivation and markets of supply and demand. In India, while the plant is extremely abundant as a fruit grown in gardens and in some localities has even become completely acclimatised, little or no effort has been put forth either to improve the quality or to develop, on a commercial basis, the industry of pine-apple growing, which it would appear might be originated with advantage to India and profit to those concerned.

Climates and Localities.—The pine-apple was first introduced on the West coast of India, but rapidly crossed the country and attained its greatest perfection in the Eastern Peninsula. From Calcutta through Eastern and Northern Bengal to Assam and Burma may be said to be its best Indian habitat, though it also occurs here and there throughout India, and is very abundant on the Western Ghats, especially on their southern extremity. Speaking of Bengal, Thevenot (Travels, Levant,Indostan, etc., 1687, pt. iii., 68) mentions the pine-apple growing as large as a melon. In Assam (more particularly the Khasia hills) it might also be said to exist as a wild plant and yields a profusion of most delicious fruit. In Tenasserim it has become so completely acclimatised and is so abundant that, as observed by Dr. Helfer many years ago, a boat-load of fruit might be purchased in June or July for one rupee. It is thus not by any means exclusively on the littoral tracts, nor within the inundated areas of India, that the pine-apple has attained its greatest perfection, but rather considerably inland and on the dry, sandy loams of the lower hills and terai, though in tracts of country subject to a high annual rainfall. A warm, moist atmosphere and a well-drained sandy loam would appear, therefore, to be the essentials for success with pine-apple.

Varieties.—Indian writers allude to only one or two recognisable varieties. Firminger, for example, speaks of the Sylhet or roomlak pine—a small fruit with very few but exceptionally large eyes; and the Dacca—a remarkably smooth pine with white eyes. He then discusses imported

ANANAS SATIVA

Cultivation

Fruit.

Cultivated Forms.

Indian Supply.

Modern Trade.

Western India.

Eastern Distribution.

Essential Conditions.

Indian Varieties.

67
ANANAS
SATIVA
Pine-apple

pines, such as the Ceylon, Penang and several English hot-house forms, occasionally met with in the fruit gardens of Europeans. Practically, therefore, little or nothing has been published as to the cultivated races of the plant met with in India.

Soils, Manures, etc.—Nicholls says the best soil is a sandy loam with good drainage, and next come the free sands and gravels. Clay of all kinds and badly drained lands are unsuited. A good proportion of lime is advantageous, but animal manure, unless perfectly rotted, should not be put near the plants as it is inimical to their growth. Speede, one of the earliest of Indian practical writers, on the other hand, affirms that no soil can be too rich and no manure too strong for pine-apples. Woodrow recommends dried salt-fish as a manure, and urges that during the first opportunity of dry weather in the monsoons the manure should be dug into the soil. But as opposed to such views, and in support of the West Indian experience, Firminger tells us that he found the plants to rot and perish from an oversupply of manure. Further that a soil thoroughly lightened with leaf-mould, well-decayed cow-dung and sand, may be mentioned as that on which pine-apples will thrive to perfection. He then urges that shade of any kind is to be avoided, as it will increase the size of the fruit but greatly injure its flavour. Repeated watering, as the fruit forms, is essential. Firminger further urges, as of great importance, that the plants should be removed after comparatively short intervals to new soils. On this subject Nicholls remarks that after three or four years the plants show signs of exhaustion, and they must in that case be uprooted and the land prepared for fresh stock.

Propagation and Seasons.—When the fruit has formed, numerous suckers will be found around the parent stem. These are preferably selected for propagation, though of course plants may be raised from the crown of leaves taken from the fruit, and even from the black seeds often found within the fruit itself. In the West Indies it is stated that in lining an estate the distances apart at which the suckers are to be planted should not be less than 3 feet, which would give nearly 5,000 plants to the acre. Nicholls adds, however, that “a better plan would be to line out the land in rows 6 feet apart, and to plant the suckers at a distance of 3 feet in the rows—this would allow nearly 2,500 plants to the acre; and after the first crop a few of the suckers, say four to each plant, could be left, and then this would give nearly 10,000 fruits for the second crop.” It is most important to have fairly large spaces between the rows, since the plants being spiny the necessary room for working the land has to be provided. Moreover, after uprooting and preparing the land for re-lining it is possible to set the new plants on the interspaces not occupied by the former crop, and thus to continue cultivation on the same land very nearly indefinitely.

The fruit comes into season in the West Indies in from eight to nine months from the time of planting. Firminger says that for the Lower Provinces of India the proper season for planting out pine-apple is in August. The plant flowers in February and March and ripens its fruits in July to August, after which, in September and October, it makes its perfect growth. It sometimes happens, however, that it breaks into flower during the latter months and produces fruit in the cold season—most undesirable condition, since without heat the fruit cannot ripen and is accordingly acid and uneatable. On the other hand, Woodrow, writing
of the Bombay Presidency, says that strong suckers may be planted between January and March and watered until roots are formed.

Packing.—The fruit should be cut off with a sharp knife through the middle of the stalk and a little before it is fully ripe. In dispatching to a distance each fruit should be wrapped in straw or paper, and deposited if possible in a separate compartment made for itself, or at most a compartment for two or three fruits. When either bruised or over-ripe, fermentation takes place and the entire consignment may be ruined through the presence of one fermenting fruit.

Production of Fibre.—The leaves afford a superior fibre, which in the Philippines is woven into a beautiful fabric called pina (or pigna = Spanish for a cone) or batiste d’ananas, a fabric resembling the finest muslin. In the Rangpur district, Northern Bengal, the fibre is in considerable demand for the string said to be used by the shoemakers. It is also employed for necklaces in the Southern Maratha country (Goa). Jenkins drew attention to the Khasia pine-apple fibre in 1836 (Trans. Agri.-Hort. Soc., 1867, iii., 137), and Wallich purchased, on the Khasia hills in that year, a bag made of the fibre. Royle speaks of supplies of the fibre obtained from Madras. It will thus be seen that the fibre is by no means unknown in India, though little or no progress has been attained in the establishment of a commercial supply. In 1887 Mr. Weynton read a paper before the East Indian Association on the commercial prospects of Assam, in which he made special reference to Sylhet as a country in which pine-apple fruit, fibre and alcohol might be produced. Recently Sir J. Buckingham, then of Aunguri, Assam, furnished the Reporter on Economic Products with a sample of the fibre. This was forwarded to the Imperial Institute, London, for opinion and valuation. The late Sir F. A. Abel furnished in reply a most encouraging report, which will be found in The Agricultural Ledger (1898, No. 11). The fibre was found to be fully up to the quality of any hitherto seen in London, and it was thought would probably fetch £20 to £25 per ton.

For particulars regarding the method of separation of fibre, the machinery employed and the yield obtained in America and other countries, the reader must consult the publications enumerated. Though much advantage might be expected to accrue to India from the organisation of a pine-apple fruit and fibre industry, the fact that so little interest is taken in the subject precludes more detailed treatment in this work.

Minor Uses.—In conclusion it may be added that the minor uses of the pine-apple, such as its reputed medicinal properties, the prospects of an industry in the manufacture of alcoholic or other beverages from the juice, also vinegar (see p. 1109), as well as the industrial utilisation of the plant, have been purposely excluded from consideration.
ANOGEISSLUS
LATIFOLIA
Dhaurá

SYNONYMY OF THE GRASS-OILS

ANDROPOGON, Linn.; Fl. Br. Ind., vii., 164-210. A genus of Grasses (Gramineae) by botanical writers usually referred to several sub-genera. Sir J. D. Hooker (Fl. Br. Ind.) has, for example, accepted eleven, but Dr. Alfred Barton Rendle, in the Catalogue of Welwitsch's African Plants, gives only six (which practically correspond to as many in the Flora of British India), while he restores Cymbopogon, Heteropogon, Sorghum and Vetiveria to independent positions.

In point of botanical structure there is perhaps little justificaton for the separation of these four genera, but as a matter of expediency (more especially from the standpoint of economic botany) it is most desirable that Andropogon should be broken up into a few independent groups or genera. This view was taken when the original edition of the Dictionary was penned, and it is believed the majority of botanists, including Hooker himself, would not seriously oppose the four genera named being treated as distinct from Andropogon. He has in fact (Handbook to Ceylon, pt. v., 228) admitted that some such view will have to be eventually adopted. I have, accordingly, resolved to assert the available economic information regarding these plants as follows:—

3. Andropogon halepensis, Brot.; see Sorghum halepense, Pers. (p. 1031).
8. Andropogon Nardus, Linn.; see Cymbopogon Nardus, Rendle (p. 455). [Cf. Stapf, Lc. 354-5.]
9. Andropogon odoratus, Linn. in Journ. Bomb. Nat. Hist. Soc. 1889, iv., 123 and t.; 1891, vi., 68, 203; also Bomb. Grasses, 1896, 70; Fl. Br. Ind., vii., 177; Stapf, Lc. 363. This sweetly scented grass, Mrs. Lisboa says, bears the following vernacular names—"adixia-gomot" and bosa, tambritte. It is common at Lanowli, Poona, etc., and at the end of the rains gives a purple colour to the countryside. The authors of the Pharmacographia Indica (iii., 570-1) observe: "We have distilled the grass and obtained from it an essential oil, having at first an odour recalling that of cassia and rosemary, but afterwards a strong persistent odour of oil of cassia. Messrs. Schimmel & Co. noticed the odour of pine-needle oil in this sample, and found the sp. gr. to be 0·945." "The yield of oil from the grass was equal to that obtained from A. Schoenanthus; it had a deep sherry colour, a sp. gr. of 0·931 compared to an equal volume of water at 40° F."
[Cf. Gildemester and Hoffmann, Volatile Oils, 299.]

ANILINE AND ALIZARINE (see Coal Tar, p. 344)

D.E.P., l., 256-8.
Dhaurá.

ANOGEISSLUS LATIFOLIA, Wall.; Fl. Br. Ind., ii., 450; Gamble, Man. Ind. Timbs., 346; Comberacée. The dhaurá, dhúri, dhavada, hezal, bákhí, arma, vellay naga, chirman, etc. A large deciduous

70
tree of the Sub-Himalayan tracts from the Ravi eastward to Central and Southern India. Ascends to 3,000 feet in altitude.

Dhaura Gum is used in calico-printing and has been suggested as likely to be useful to dyers in England (Journ. Chem. Soc. Industr., Dec., 31, 1887, 79). It is largely exported, and constitutes the bulk of the Gum Ghatti sold in Bombay (see Acacia, pp. 15, 17). [Cf. Hooper, Edible Gum, Rept. Labor. Ind. Mus., 1904-5, 23.] The leaves yield a black Dye and a Tan. Hummel (Select. Rec. Govt. Ind., 1888-9, 93) valued the leaves for tanning purposes at 4s. 2d. per cwt. (about one-third of the relative value of divi-divi). A tanning extract has been prepared from the bark by Hooper, containing 43-8 per cent. of tannin. The Timber is strong and tough, but splits in seasoning and will not stand damp. It is used for axe-handles, axles, etc., also in furniture-making and ship-building, and has been recommended for railway sleepers. It gives a good fuel and charcoal. The white-wax insect (Homoptera cerasiforme) has been reported as found on this tree.

Other two species of economic interest are—A. acuminata, Weil, chakwa, ponchi, etc., met with in Bengal, South India and Burma, which yields a poor Timber; A. pendula, wall, dah, daflora, etc., a small gregarious tree of the dry forests of Rajputana and Bandelkhand, which copices well and yields a timber much like that of A. latifolia.

ANONA SQUAMOSA, Linn., and A. RETICULATA, Linn.; Fl. Br. Ind., i., 78; Pharmacog. Ind., i., 44; ANONACEÆ.

The former is the CUSTARD-APPLE of Anglo-Indians, SWEET-SOP of SUGAR-APPLE (West Indies and America), sharifah, sythpal, ata, bina, sita-palam, sitâ-punda, avra, duranji, etc. A small tree native of tropical America but much cultivated in India. In Central and Western India it occurs wild and so abundantly as almost to constitute forests. The latter is the Bullock’s Heart, or rhamph, ramsita, which yields an inferior fruit sometimes eaten.

The bark affords an inferior Fibre and the fruit, bark, leaves and roots are used in MEDICINE, the latter being considered a drastic purgative. The crushed leaves are applied to the nostrils of women in hysterical or fainting fits. Dynecke informs us that the seeds yield an Oil and three Resins; the latter appear to be the acrid principles and are useful as Insecticides. The same quality is ascribed to the leaves and immature fruits. The Fruits are eaten by both Natives and Europeans, and in the West Indies a kind of cider is made from them. The fruits of the wild plant have proved useful in famine. The cultivation is said to be simple. The seeds, obtained fresh from the fruit, are sown in pots about the middle of February. The seedlings are transplanted into holes 3 feet deep by 3 feet diameter, which have been filled with cow-manure, old mortar and garden soil in equal parts. The trees should be pruned and re-manured every March or April and well watered until the rains set in (J. H. Dives, Ind. Gard., Feb. 23, 1899). The Custard-apple is in season in Bengal during the greater part of the rainy and cold months (Firminger), and constitutes one of the chief fruits of that season. Another species, the Chirimoya of Peru (A. Chirimonia, Miller), is cultivated in parts of Burma for the fruit, and it appears to do well [Cf. Land Rec. Admin. Rept., Rangoon, 1904, 18.]

ANTIARIS TOXICARIA, Lesch.; Fl. Br. Ind., v., 537; Gamble, Man. Ind. Timba., 651; URTICACEÆ. The Upas Tree, jasinda, karved, alli, jazigrı, aranjili, hymaseek, etc. A gigantic tree of the evergreen forests in Burma, the Western Ghats and Ceylon.

Very full accounts of the legendary attributes of this tree and of the investigations may be found in the above-named works, and also in the Pharmacographia Indica (iii., 348-55), Yule and Burnell (Anglo-Ind. Gloss., Hobson-Jobson, 932-9), and the Kew Bulletins for February, October, and November, 1891. The tree exudes a white Resin used for poisoning arrows. [Cf. Lewin, Die Pflieglige, 1894, pt. iii., 301, etc.] The inner bark gives a Fibre which makes strong cordage. The Natives strip the bark into large pieces, soak them in water and beat them to obtain the white fibre. In Western India the tree is known as the “Sacking-tree,” because the tough bark is stripped off whole from branches or young trees to form rice-sacks, a section of the stem being left to serve as a bottom to each sack. The seeds are said to be used in

D.E.P., i., 259-61.

Custard-apple.

Fibre.

Insecticide.

Food.

Propagation.

Resin.

Fibre.

Sacking-tree.

Habitat.

Habitat.
AQUILARIA AGALLOCHA

Agar.

D.E.P.,

*270-1.

Antimony.

Type-metal.

Cosmetic.

D.E.P.,

*271-2.

Celery.

Medicine.

Food.

D.E.P.,

*278-82.

Eagle-wood.

Habitat.

Perfumery.

Timber.

Fragrant Resin.

AQUILARIA AGALLOCHA, Roxb. *Fl. Br. Ind., v., 199-200;

**Ind. Trees, 546; Thymelaeaceae.* Calamabac, Aloe- or Eagle-wood, the Aloe or Lingum Aloe of the Scriptures, agar, agar, ugal, ud, sasi, akyau, kayu, gari, etc. The Sanskrit *aguru* (a privative, and *guru* heavy—a name given to it from the circumstance that it does not float on water) is the root from which most of its vernacular names have been derived. *Labu* or *lauba*, another Sanskrit and Pali synonym, is supposed by some to be the origin of the expression Aloe-wood—and might therefore be accepted as denoting a light form that would float on water.

It is a large evergreen tree of the Bhutan Himalaya, Assam, Khasia hills, Eastern Bengal and Martaban hills (Burma). It attains a height of 60 or 70 or 100 feet and a girth of 5 to 8 feet. It is fit to be cut down for *agar* collecting at 20 years, but some authors consider it is not mature until 50 or 60 years. Another species, *A. malaccensis, Lamk.,* is supposed to be the Eagle-wood of Malacca and of Tenasserim.

THE CALAMBAC OR EAGLE-WOOD.

ANTIMONIUM or ANTIMONY ; Ball, *Man. Econ. Geol. Ind.,* 163-7; Holland, *Rec. Geol. Surv. Ind.,* xxxii., 97. The surmā, surmah-i-

Isfahani, anjan, anjanak-kallu, anjamam, ismad, etc. A black ore of antimony or tersulphide.

Antimony-sulphide (stibnite) occurs at Shigri in Lahoul, also in the Jehelum district of the Panjāb, and in Tenasserim of Burma. Large quantities of the ore, containing gold, have also been discovered in the Amherst district of Burma. Natives do not seem to utilise this metal as an alloy. Its chief use is in the manufacture of type-metal. It is employed by the ladies as a cosmetic, but much of the antimony sold for that purpose is really *galona* imported from Kabul and Bokhāra, which is often confused with antimony.

A glabrous herb native of England and other parts of Europe, and widely distributed—e.g. to North Africa and the shores of New Zealand. It is cultivated in different parts of India during the cold weather, chiefly in gardens near towns for the use of the European population. It is also cultivated in Bengal for its seed and in the Panjāb for its root. In Mediterranea the official root is considered alterative and diuretic, and the seeds are given as stimulant and cordial. Cooked celery is said to be useful in rheumatism. The seed is eaten as a Spice by the Natives, and the blanched stems and leaf-stalks by Europeans. In the wild state it is to a certain degree, poisonous. [Cf. Forster, *Ph. Esc.,* 1786, 67; *Paulus Elgineta* (Adams, Comment.), iii., 106; *Pharmacog. Ind.,* ii., 122-4; *Queensland Agric. Journ.,* 1903, xiii., 257; U.S. Dept. Agric., *Farmer's Bull.,* 1902, No. 148.]

AQUILARIA AGALLOCHA, Roxb.; *Fl. Br. Ind.,* v., 199-200;

**Ind. Trees, 546; Thymelaeaceæ.* Calamabac, Aloe- or Eagle-wood, the Aloe or Lingum Aloe of the Scriptures, agar, agar, ugal, ud, sasi, akyau, kayu, gari, etc. The Sanskrit *aguru* (a privative, and *guru* heavy—a name given to it from the circumstance that it does not float on water) is the root from which most of its vernacular names have been derived. *Labu* or *lauba*, another Sanskrit and Pali synonym, is supposed by some to be the origin of the expression Aloe-wood—and might therefore be accepted as denoting a light form that would float on water.

It is a large evergreen tree of the Bhutan Himalaya, Assam, Khasia hills, Eastern Bengal and Martaban hills (Burma). It attains a height of 60 or 70 or 100 feet and a girth of 5 to 8 feet. It is fit to be cut down for *agar* collecting at 20 years, but some authors consider it is not mature until 50 or 60 years. Another species, *A. malaccensis, Lamk.,* is supposed to be the Eagle-wood of Malacca and of Tenasserim.

A review of the recent information collected by the Reporter on Economic Products (written by Hooper) will be found in The Agricultural Ledger (1904, No. 1). The wood in its ordinary state is not of much value, being pale in colour, light and inodorous. But under certain conditions a change takes place in both trunk and branches, the wood becoming gorged with a dark resinous, aromatic juice, which gives it a greater specific gravity. The portions thus impregnated are collected and constitute the drug called *agar,* which is esteemed in proportion as it abounds in resinous matter. In no other part of the tree is this fragrant resin deposited. There is no external mark by which to recognise good from bad trees; they have to be cut down to discover the resin, which is only rich in one out of twelve. The average yield of a mature tree is 6 to 8 lb., and an exceptionally good tree may afford as much as Rs. 300 worth of *agar.* It is
difficult to decide what is the predisposing cause of the secretion of this oleo-resin, but the majority of forest officers are of opinion that it is usually, if not always, found where some former injury has been received. The old tradition mentioned in the Ain-i-Akbari (Blochmann, transl., 80), that the branches were lopped off and buried in the ground in order to cause the formation of the resin, has been completely exploded by modern research. The Dhurag occurs in pieces of extremely irregular shape and size. The largest rarely exceeds a pound in weight, while some of excellent quality is met with as small chips or splinters. The lighter portion of wood called doon is the cheapest and is sold for Rs. 1 to Rs. 3 a seer, the black or brownish-black is the true agar of commerce and is called gurkoo; it is worth from Rs. 16 to Rs. 20 a seer. The Ain-i-Akbari (i.e. 81) gives full directions for the distillation called chuukah, used in perfumery.

From ancient times agar has been used all over the East on account of its perfume and its supposed medicinal qualities. It is alluded to repeatedly in The Boer Manuscript as agar (Hoernle, transl., 21, 23, 104), which may be described as a medicinal treatment which dates from the 5th century. It is to-day employed largely in China, and utilised as incense and in the manufacture of joss-sticks. It is met with in most Eastern bazars, including those in Syria, where Hanbury found it for sale. In Sylhet a certain quantity is collected each year for the sake of extracting from it a sort of essential oil (agar-attar), which is considered as costly as attar of roses. In Bombay agar-batis or agar-lights are made of various sweet-smelling substances of which aloes-wood is the chief ingredient. These sticks are burned as incense or are used to perfume apartments. Marco Polo, Garcia de Orta, Vartihéma, Barbosa, Linschoten, Herbert and many other of the early European visitors to India allude to Eagle- or Calambac-wood, although in some cases it may be questionable whether it is the present plant. They one and all attribute, however, the finest quality to Cambodia, or to some part of the Malay Peninsula or Archipelago. Prebble, speaking of the present traffic, says the best quality, imported into Bombay, comes from Bankok. He mentions two well-known trade qualities, the gavai (A. Agallocha) and the mawardi (A. malaccensis). Do these correspond to the gharki and mandali of the early writers? To A. malaccensis has very possibly to be referred the jangli agar and the Singapore agar of the Bombay market. But the Sylhet agar holds an honourable position. Various qualities are mentioned by most of the early writers such as Abul Fazl (in the Ain-i-Akbari, i.e.). Roxburgh wrote a long and highly instructive article on A. Agallocha, which was followed by an article by Henry Thomas Colebrook. These two papers give practically all that is known of the Indian Agar-wood (Trans. Linn. Soc., 1855, xxxi, 199-206, p1. 21). Rumphius some time previously described two kinds of true and two kinds of false aloes-wood. The first of the true forms he says was the kilam of the Chinese and cambalas of the Malays, and was obtained from Cambodia; the second true form was the garo or garu (a word that may be accepted as the Malayen variant of agaru)—both are possibly varieties of A. malaccensis. According to the authors of the Pharmacognosia Indica the best medicinal quality is the garhi 9d. from Sylhet. [Cf. Paulinus Aegineta (Adams, transl.), iii, 18; Pyrard, Voy. E. Ind., 1691 (ed. Hakl. Soc.), i, 335; ii, 390; Clausius, Hist. Exot. Pl., 1605, 172; Barbosa, Coasst. E. Africa and Malabar (ed. Hakl. Soc.), 204; Herbert, Travels, 1677, 333; Millburn, Or. Comm., 1813, ii, 312-23; Birdwood and Foster. E.I.C. First Letter Book, 337, 340, 406, 410, 427-8; Buchanan-Hamilton, Comment on Herb. Amb., in Mem. Wern. Soc., 1832, vi, 276; Taylor, Topog. Stat. Dacca, 250; Hooker, Him. Journ. (ed. 1854), ii, 328; Moeller, in Pharm. Post., 1896, 1898; Holmes, Mus. Rept., Pharm. Soc. Gt. Brit., 1898-1902, 39-43]. The last-mentioned work is an exceedingly instructive review of Moeller's results, and republishes his illustrations of microscopic sections of the various forms of the wood, etc., etc.

Mr. E. A. Gait, who was director of Land Records and Agriculture, Assam, in 1894, drew attention to the fact that the bark of Aquilaria Agallocha affords a NATURAL PAPER that appears to have been used for ages by the aboriginal tribes of Assam, like the birch bark of the Aryans. The information then collected will be found in a paper on the Abstract of Contents of one of the Ahum Puthis (Journ. Ass. Soc., Beng., 1894, lxxii, pt. i., No. 2), from which the following may be given: "Although the bark was widely used as a writing-material throughout Assam, prior to the introduction of paper, its employment as such seems to have escaped notice. Brahmins and Goshais in the habit of performing religious ceremonies in the houses of their disciples or in the presence
of the gods in the temple, consider it impure to have their mantras written on mill-made paper and, therefore, retain the custom of writing their sacred books on the prepared bark of the sachi tree." Loureiro says that the common paper of the Cochín-Chinese is made of the bark of A. manihotensis. Besides forming the leaves of books the bark is sometimes used as covers for binding books. The Nagas and other hill tribes prepare strips of the bark by which they hang their baskets on the forehead. The fibre is employed for making ropes, but it is not very lasting.

Taggar Wood. According to Holmes, is a dark-brown timber exported from Madagascar to Zanzibar, and thence to Bombay, but Colebrook so long ago as 1851 spoke of it as a wood sold in Bengal to the unwar as a substitute for agar. Dick, in a letter to Roxburgh, gave taggar as the Bengali name for a wood found in the hills near Sylhet, a geographical reference that might suggest Excoecaria Agatiflora, a plant known by various Indian names such as thilla, tilai, and tajaw kayaw in Burma, and sala kiriya in Ceylon. So far as Roxburgh was aware, however, it did not afford any form of agar-wood. Mason speaks of it as Blinding Alhes, and by others it is called the Tiger's Milk Tree.

ARACHIS Hypogaea, Linn.; Fl. Br. Ind., ii., 161; Cooke, Fl. Pres. Bomb., i., 408; De Candolle, Orig. Cult. Plants (Engl. ed.), 411; Mollison, Textbook Ind. Agri., iii., 102; Agri. Ledg., 1893, No. 15; 1899, No. 12, 147; 1900, No. 1; Burkill, Kew Bull., 1901, 175–200; Leguminosae. The Ground-nut, Earth-nut, Pea-nut, Monkey-nut, Pindar, Katjang, Pistache de terre, Manila-nut, Chinese-nut, and in the vernaculars of India (which for the most part are translations of one or other of the names mentioned), mung-phalt, bhu-mung, bhu-singh, bhu-chana, vildyoti-(bulati) mung, chinu-badam, Manila-kotai, veru sangaliu, myeleh, mibe, etc. There are thus no Indian names that would imply an ancient knowledge of the plant.

This is undoubtedly, therefore, another of the very long list of plants introduced into India in comparatively recent times. There would seem little room for doubt that though nowadays extensively cultivated in all tropical countries it is originally a native of Brazil. But there would appear to have been successive and possibly independent efforts to introduce it into India. It may have come from China to Bengal (hence the name Chini-badam); from Manila to South India (Manila-kotai), and from Africa and very possibly direct from Brazil as well, to Western India.

History.—It does not seem necessary to quote all the passages that support these conclusions. Perhaps one of the earliest direct references to this plant, as grown in India, occurs in Buchanan-Hamilton’s Travels through Mysore, etc., published originally in 1800. In the Report of South Acret (1850–1) mention is made of 4,000 acres being under the crop. The nut made its appearance in Europe as a commercial product about the year 1840. The Indian modern trade may be said to date from a Resolution of the Government of India published in November 1877, and a subsequent Resolution of August 1879. In consequence of the replies to the latter, J. E. O’Conor wrote a report on The Cultivation of Ground-nut in India (Journ. Agrt.-Hort. Soc. Ind., 1879, n.s., vi., 87–98). After detailing the facts ascertained regarding the extent of cultivation and other useful and interesting particulars, he drew attention tersely to the present position and future prospects of the Indian foreign trade in the nut. The exports were in 1875–9, 25,472 cwt., "or little more than 1 per cent. of the imports into France. The question now is, whether India should be content to leave France to draw all her supplies of this valuable food-stuff and commercial product from Africa or whether she should not enter actively into competition for at any rate a substantial portion of the trade" (l.c. 97).

Space cannot be afforded in this work to deal very fully with the subject of the ground-nut. It may, however, be useful to enumerate, in sequence of date, some of the more important publications in addition to those mentioned in the Dictionary. [Cf. Dymock, Mat. Med. Western Ind., 1884, 674; Church, Food-Grains of India, 1886, 127; Pharmacogn. Ind., 1890,
A CHANGE IN AREA OF PRODUCTION

CULTIVATION.—Although grown here and there all over India as a garden and even an occasional field crop, it is only in Madras and Bombay that the pea-nut is produced on a commercial scale. The remarks that follow will, therefore, be restricted very largely to an abstract of the available particulars regarding these two Presidencies.

Area.—In most provinces the area under the crop is not returned separately from other pulses or other oil-seeds, so that a complete statement cannot be furnished. O'Connor tells us that in 1879 there were in all India 112,000 acres under the crop, of which 70,350 acres were in Bombay and 34,630 acres in Madras. Ten years later (1889–90) Madras alone was returned as having had 279,355 acres, of which 185,876 were in South Arcot, the chief seat of South Indian production. From that date the popularity of the crop steadily declined up to 1897–8, from which date it improved. Omitting the last three figures, the areas in Madras were as follows:—258 in 1890–1; 201 in 1891–2; 226 in 1892–3; 247 in 1893–4; 226 in 1894–5; 243 in 1895–6; 157 in 1896–7; 94 in 1897–8; 116 in 1898–9; 102 in 1899–1900; 229 in 1900–1; 337 in 1901–2; 421 in 1902–3; 384 in 1903–4; 366 in 1904–5; 393 in 1905–6, and the estimate for 1906–7 shows the Madras area as 507,600 acres, while that of Bombay is only 93,800 acres. The explanation of this decline and subsequent expansion will be found below—viz. the improvement rapidly accomplished by the introduction of a new stock. The experience of Bombay (including its Native States, mainly Kolhapur) has been somewhat similar, except that production has not recovered. The acreage under the crop in 1891–2 stood at 145,468, and in the succeeding years, expressed in hundreds, was as follows:—142 in 1892–3; 184 in 1893–4; 159 in 1894–5; 164 in 1895–6; 148 in 1896–7; 120 in 1897–8; 101 in 1898–9; 71 in 1899–1900; 64 in 1900–1; 96 in 1901–2; 69 in 1902–3; 89 in 1903–4; 93 in 1904–5; and 95 in 1905–6. Bombay cultivation may be said to be confined to the Deccan and the Karnátak with Sholapur and Satara as the most important districts.

Varieties and Races, also Deterioration of Stock.—From the early imported stock there had gradually developed certain races of the plant that within the past few years came to be spoken of collectively as the "Indigenous Variety." Some of the so-called indigenous races are grown purely and simply on garden soil and eaten as nuts; others are specially adapted for field cultivation and vary greatly in the amount of oil they contain. Although doubtless inferior, India thus possesses a series of races that correspond to the large edible forms produced in perfection in America, and to the special smaller oil-yielding nuts of Africa. In the Madras Bulletin (No. 37) mention is made

75
of a communication from the Madras Chamber of Commerce attributing the decline in the production of the nut to a deterioration in the quality of the Indian stock. In reference to that opinion, Sir William Thistleton-Dyer, then Director of the Royal Gardens, Kew, addressed the Under-Secretary of State for India on February 23, 1899. The following passages may here be given from that letter: "I may say at once that deterioration of seed is a facile theory which is continually advanced when the produce of a crop is disappointing. It is one in which I have very little belief. The real explanation of the falling off is to be found usually in the exhaus- tion of some constituent of the soil. Madras ground-nuts have long been known to be poorest in quality of any to be found in commerce. The percentage of oil in shelled kernels is given in the United States Consular Report (April 1, 1894, 683-9) as follows:—Senegal, 51; East African, 49; American, 42; Madras, 43. From these figures it does not appear that any advantage would arise from introducing American seed. As to Japan ground-nuts I have no information. The oil from the American seed again appears to command an inferior price to that of Africa."

"The problem is one which should be taken up on an experimental farm. It is not improbable that want of potash is the cause of this diminished yield, if the diminution be a fact. Manuring with wood-ashes would be a simple means of testing this." "Formerly the cake or residue after the expression of the oil was only used for cattle food. It is now converted into various palatable forms of human food, the use of which has been tried with success in the German army."

The reference to American and Japanese seed was doubtless in consequence of the proposal to import such seed having been made in the Madras Government Proceedings. The above letter caused a searching and highly beneficial inquiry to be instituted in both Madras and Bombay. Opinions were called for from the District Officers of Madras Presidency, but the replies may be said to have manifested a remarkable agreement in favour of the theory of a deterioration of the Indian stock having actually taken place. Mollison, on the other hand, wrote: "I do not think that any positive deterioration in the seed of the Bombay crop can be proved. There is, however, perhaps good reason to join issue with the Madras Agricultural Department and test on Government Farms whether imported seed of the better varieties give better results than the indigenous seed. I should, however, do this in the first instance on a small scale." It has been shown by the areas of production, that quite as serious a decline, however, took place in Bombay as in Madras. It is probable, therefore, that the shrinkage in both Presidencies may have been due to the same causes, whatever these may have been.

Acting on the opinion of its local officers, the Madras Government imported various reputed races of seed, and private individuals seem to have done the same. The result was that the indigenous varieties were rapidly displaced, and it is believed at the present moment they hardly anywhere exist in the Madras area of field cultivation. Barber in his report (published 1890) says: "Two or three years ago something like a revolution had occurred in the introduction of a new variety called the Mauritius ground-nut. The suddenness and completeness of this change is worth considering." Barber accordingly gives particulars of the crops found by him on certain fields. He only came across four little pieces of land containing the indigenous plant, and these he did not think
INTRODUCTION OF NEW STOCK

collectively could equal an acre in extent. He then continues: "The ryots of this neighbourhood have, therefore, changed their seed, and I believe that they have obtained a good variety and have thus greatly improved their position." In another passage Barber again returns to the subject: "There has recently," he says, "been a change of seed—a fact which is of undoubted importance in the checking of disease, if of no further advantage."

Benson (Bull. No. 41) gives the results of the Madras Government experiments, as also of the French Government experiments at Pondicherry. These showed splendid results in Madras with the Haut Saloum variety from East Africa, and in Pondicherry with the Senegal. The returns of the Saidapet Farm were as follows:—Country, 271 lb.; Mauritius, 425 lb.; Japan, 427 lb.; Ruffisquil, 598 lb.; Sine, 884 lb.; Gambie, 1,021 lb.; Haut Saloum, 1,379 lb.; American large, 303 lb.; and small, 436 lb. per acre. The figures of the Pondicherry experiment from equal plots were as follows:—yield, 21 lb. from Bombay seed; 41 lb. from local seed; and 652 lb. from Senegal seed. Benson then concludes by explaining that the so-called Mauritius, now largely being grown in the Presidency, came in reality from Mozambique, though brought to India by a passenger from Mauritius. "That variety," he adds, "has given results on a par with the Senegal, but the seed contains a resino-gommeuse substance which, as it remains in suspension in the oil, delays the settling and gives a very pronounced taste of the ground-nut to the oil." Mollison (Textbook, l.c. 104) says: "A good crop on suitable land liberally managed will, on an average, yield from 3,200 to 3,500 lb. of unhusked nuts per acre. These figures apply only to good land. The proportion by weight of unhusked nuts to those with husk removed is as 4 to 3." "They are usually sold unhusked, and are worth from 30 to 45 lb. per rupee according to locality and season."

In response to the reputation of an inferior yield of oil from the Indian nut, Leather made an extensive series of analyses, the result being the discovery that the yield in the indigenous seed averages from 40 to 44 per cent. and that of the so-called Mauritius from 44 to 49 per cent. It would thus appear that India has not only secured a more prolific plant but one richer in oil by the importation of the Mozambique seed. As already indicated, an improvement in production has taken place, which must, to some extent, be the direct expression of the renewed popular favour of the crop. Of Indian agriculture, however, it would not be far from correct to affirm that the selfish systems pursued very often result in an unconscious retrograde selection, so that it may be believed degeneration of imported stock is an exceedingly frequent result. But it goes without saying that the continuous cultivation of the same plant with little manure and an imperfect rotation must produce a poverty of soil and a corresponding decline in the value of produce. Fresh supplies of seed or seed brought from a distance to the country or locality of cultivation, is in all branches of agriculture an admitted advantage. It remains to be seen how long the new seed will retain its superiority on the Indian soil and under Indian methods of cultivation. By way of concluding this paragraph, therefore, it may be added that there is little or nothing to prove that a decline in the oil-yielding property of the Indian stock had actually taken place. It was grown originally as an edible nut, and it is probable that no effort was made to improve the stock into an oil-yielding form, so that it was, doubt-
ARACHIS
HYPOGAEA
Ground-nut

THE EARTH OR PEA NUT

less, always inferior as an oil plant, just as the American plant is so, compared with the special oil forms of East Africa. Mr. E. Solly reported to the Royal Asiatic Society (Committee of Commerce and Agriculture) in 1838, that he found the Indian ground-nut to contain 45-5 per cent. of oil. O'Conor tells us that in 1878-9 the husked seed yielded from 33 to 50 per cent. of oil. It thus seems highly probable that the present average, ascertained by Leather, may have prevailed ever since India participated in the world's supply of the nut. But within recent years the Indian plant has been subject to several diseases, and may have become in consequence less profitable to the cultivators than was formerly the case.

Diseases.

Diseases and Pests.—In The Agricultural Journal of India (ii, pt. ii., 170-1) there will be found a short note by C. A. Barber on this subject. The pests attacking ground-nut are comparatively few, the principal ones being 'Surul' or 'Mudupuchi' and 'Tikka.' The latter is a fungoid disease which is not at present very serious in this part of India and apparently prevails in damp, close weather. Surul on the other hand is universally present and does great damage. The word 'Surul' means a 'curling,' and is dependent on the habit of the insect of burrowing inside the tissues of the leaves, which curl up and get distorted. The chrysalis is formed in a fold of the leaf. The insect is a minute dark moth (Anacampsis nexitoria, Meyr.) of very active habits and is probably nocturnal. On walking over the fields a constant shower of disturbed insects may be seen that quickly seek shelter under the neighbouring leaves. The walls of bungalows in the neighbourhood are sometimes blackened at night by millions of the moths attracted by the bright lights.

"The Surul puchi appears to prefer laying one egg in each leaflet, which speedily turns brown and withers. In a bad attack the whole field assumes a blackened or blasted appearance. As is the case with most pests of this class, showers of rain are most beneficial, while hot sun and dry air lead to rapid increase, whether in dry or irrigated crops." From the internal working of the caterpillar it is doubtful whether spraying will be of much use, but, on the other hand, it seems probable that light traps may help in destroying the moths at night."

Soils.

Soils.—The ground-nut requires a sandy loam, light and porous, with plenty of lime, free subsoil drainage and a liberal supply of water. In Madras, according to C. K. Sabba Rao, the best soil is ash-coloured, absorptive and fairly retentive of moisture. The nut, however, is most generally grown on the more prevalent red sandy loams, but the opinion prevails that the darker the soil the darker the nut and the less desirable for seed purposes. Mr. Handy urges this same fact, namely that a light-coloured soil gives a light-coloured pod and thus improves the selling value as an article of food, though, he adds, "equally sound and well-flavoured nuts may be produced on other soils." Sabba Rao further observes that salt soils are unsuited, though stony soils rich in sand (if well manured) may yield a highly profitable return, while clayey soils are quite unsuited. In South Arcot, he tells us that the ground-nut had displaced indigo, since it is more profitable; on the soil on which the one crop flourishes the other may be equally successfully grown. Mollison, speaking of Bombay, observes that although raised on black land it delights in a good loam. But he adds that a heavy crop cannot be got without manuring and careful tillage.

Rotation.

Rotation of Crops.—Sabba Rao remarks that the raigats are unanimously of opinion that ground-nut is an exhausting crop and that it cannot be cultivated uninterrupted without the liberal use of manure. The rotation, which they observe, is with the second crop off the same field within the year, a rest being given every fourth or fifth year. "In the majority of cases, in South Arcot, the crop is sown amongst a standing crop of kambu (Pennisetum typhoides), ragi (Eleusine coracana) or other crop when the latter is being hand-hoed. In places where the crop has been recently introduced and plenty of good manure is available, it is cultivated either as every year on the same land, or only with an intervening crop at intervals of 4 or 5 years, whilst in some villages of the Shiyali taluk it is cultivated without intermission. In the neighbourhood of Panruti . . . the crop is changed once in 4 or 5 years." Sabba Rao next gives particulars of the various crops with which ground-nut may be rotated and
the reasons for and against each, and adds that the most popular rotation is with the cereal *varagu* (*Panicum miliaceum*). Barber recently re-investigated the question of rotation of ground-nuts with other crops and came to the conclusion "that the charge of continuous cropping was well-founded. The answer usually given to general inquiries on the subject was that a rest of one year was allowed in every 4 or 5." "The fields may be said to have little rest. Several crops are usually taken off in the year, of which ground-nuts form one." "Of scientific rotation it may safely be asserted, as regards ground-nuts, there is none, although the interval of rest allowed to the land shows that the rust is aware of its disadvantage." Barber thus views rotation from a different standpoint to that of the Indian cultivator, and by most persons his views would be upheld.

Mollison, speaking of the rotation pursued in Bombay, says the production of ground-nut is undertaken by well-to-do cultivators, and is an indication of prosperity and easy circumstances. It is often rotated with sugar-cane and chillies, and is occasionally taken where potatoes, onions, and *brinjals* (*Solanum Melongenum*) are grown. In the garden land of Surat, where *chicko* (a sedge) is a troublesome weed, the growth of ground-nut helps to suppress it, and the thorough digging which the soil gets in removing the nut is very beneficial. Among garden crops ground-nut occupies the important position which gram holds among dry crops.

Manure.—Sabb Rao observes that the best manure appears to be the silt deposit of tanks, and so highly is this valued that the cultivators carry silt from great distances and even pay high prices for the privilege of removing it. In South Arcot the fields are so manured once in 4 years with from 50 to 100 cart-loads per acre. The silt from the Perumal tank (that most in use in South Arcot) has been found to contain about 22 per cent. of lime and nearly 70 per cent. of sand. Lime is fully recognised as a valuable manure for the crop. [Cf. *Soudapet Farm Manual*] Ashes are also reckoned as very good manure for ground-nut, more especially on poor, sandy soils. So important is this that ashes are also carried great distances, even by rail, to the ground-nut area. Ashes are in fact applied every year, sometimes at the rate of 30 cart-loads an acre. With regard to Thiselton-Dyer's recommendation to test the value of wood-ashes as a manure, it may be remarked that Leather made a special examination of certain soils in South Arcot, commonly under ground-nut. He found them all very deficient in lime. Four contained too little phosphate; five were low in nitrogen, and only one showed a defect in potash. Mollison remarks on the subject of manures for ground-nuts that sheep or goat manure, applied either by folding the flock on the field or otherwise, is considered specially suitable, but, failing this, ordinary farm-yard manure should be applied in considerable quantity. Deep ploughing and thorough pulverisation of the soil before sowing helps the crop materially.

Preparation of Land and Seasons of Sowing and Reaping.—After the remarks already made on soils, rotation, etc., it is hardly necessary to do more than observe that ordinary methods of tillage usually suffice. About 90 lb. of seed per acre will be sufficient for sowings made up to the middle of August, but later on about 112 lb. are required since the plant does not grow so luxuriantly. The crop is sown thickly since the bulk of the pods are borne within a few inches around the central stem. The crop is generally hand-hoed twice, about fifteen men per acre being required each time. The bullock hoe is not used owing to the injury done by it to the crop. In normal seasons ground-nuts, sown under irrigation, are watered twice a week during the last two months. While being watered it is customary to weed the plots, and in some cases the plants are lightly trodden under foot with the object of bringing them into better contact with the soil. On unirrigated land the crop is sown any time between the middle of June and the middle of August; on irrigated land from the middle of August to the middle of September. The latest possible sowings are from September 30 to October 15, viz. in Chingleput and North Arcot. There would thus appear to be two areas or conditions—an early and a late. The normal dates of sowing for the former

IMPERFECT ROTATION

ARACHIS

HYPOGÆA

Cultivation

No Rotation.

Bombay Method.

Manure.

Silt.

Lime.

Sheep and Goat Manure.

Madras Method.

Seed to the Acre.

Hoeing.

Watering.

Unirrigated Crop.

Irrigated Crop.
THE EARTH OR PEA NUT

would appear to be from July 15 to August 15, and for the latter from August 1 to September 15.

The duration of the crop in the soil seems to vary considerably. The crop sown on irrigated land in South Arcot normally on July 10 comes into season about October 10, having occupied the soil for only three months. Again, the crops sown normally on June 15 in the Bhavani and Cauvery valleys are not mature until January 15, and have thus occupied the soil for seven months. Usually the crop occupies the soil a little over five months, and thus for the early districts (such as South Arcot) it comes into market from January 15 to February 15 and for the later districts (Chingleput and North Arcot) from February 1 to March 15. As a rule, however, in the districts of late sowing the crop occupies the soil for a slightly shorter period, and thus comes into market approximately at the same time as the other sowings.

Of Bombay Mollison observes that the ground-nut is usually a *kharij* (rain) crop, sown as soon as the previously prepared soil has been sufficiently moistened by the first fall of rain in June; but in the Deccan it is also grown as a *rabi* (winter) irrigated crop. The monsoon crop occupies the soil six to seven months, and in the absence of rain the land must be kept moist artificially. It is usual to give two to four waterings during the last two or three months. The seed is ordinarily sown between monsoon showers, when the land is dry enough to be worked by a plough. The crop should be weeded at least twice. As soon as it shades the ground, no further attention, except watering, is required. The crop is harvested likes potatoes, sometimes with a plough, but more often the field is dug over by hand with a Native pick. A cultivator collects a regular army of workers, and usually pays in kind. In order to expedite the digging the haulms or vines are previously reaped and removed. These form an esteemed fodder.

The returns of sowing and reaping furnished by the authorities regarding the Bombay Presidency show the crop to be slightly earlier in Bombay than in Madras. The earliest sowings take place on June 1 and the latest on July 31. Of the Bombay districts Poona and Sholapur sow, as a rule, about fifteen days later than the other districts. The period of occupancy of soil varies considerably; the maximum duration is eight months in Belgaum, where the crop is normally sown on June 10 and reaped usually about February 10. In Ahmednagar it is reaped a month sooner, having occupied the soil for seven months. The shortest duration is four and a half months in Poona, where the crop, sown on June 15 (normally) is reaped on November 1. In other districts the crop occupies the soil a little over five months, and as Satara and Sholapur are the most important producing districts it may be added that the Bombay crop comes into season in November, and thus on an average six weeks before the chief Madras crop. This is therefore a fact of considerable importance which the foreign buyers of Indian nuts should bear in mind.

TRADE.—Foreign Trade.—It has already been fully demonstrated that the area of production in India has been vastly extended and the condition and location of the trade exactly reversed since O'Conor's report of 1879. The greatest area of production is now in South India, and moreover there has grown up in Madras a considerable traffic in the manufacture and export of the oil. In other words, an increased local consumption would seem to be gradually lessening the amount available for foreign
ARACHIS HYPOGAEA
Ground-nut

0-920 when old. It becomes turbid at 3°C., concretes at 3°C., and hardens at —7°C. As an illuminating oil it is now recognised as having but a feeble power, and its chief use is therefore in soap-making and as a lubricant. It is also much employed by perfumers in the preparation of pomades, cold creams, etc. The finer qualities are, however, used both in Medicine and as an article of Food, and there can be little doubt that large quantities are annually passed off as Olive oil and are made into a form of butter employed in cookery. The chief centre of this oil industry may be said to be at Marseilles, though it is also produced at London, Hamburg, Berlin, etc.

Formerly the seat of the Indian ground-nut oil trade was Pondicherry. In 1894, however, a change took place and the traffic migrated to Madras ports, more especially the port of Cuddalore. In 1890-1 the total exports (coastwise and Foreign) from Pondicherry are said to have been 762,195 gallons and from Madras ports 41,275 gallons. In 1893-4 the corresponding figures were 860,800 gallons and 8,717 gallons, but in 1894-5 they stood at 165,858 gallons from Pondicherry and 567,375 gallons from Madras ports, while in 1895-6 the coastwise exports from Madras were 690,134 gallons, mostly consigned to Burma. Steadily this change continued until the exports from the French port had been entirely discontinued. A similar migration of the trade in ground-nuts from Pondicherry also took place.

Turning now to consider the total traffic of India in this oil, the total foreign exports for the last eight years were 1898-9, 27,859 gallons; 1899-1900, 53,261 gallons; 1900-1, 40,357 gallons; 1901-2, 73,079 gallons; 1902-3, 84,785 gallons; 1903-4, 50,603 gallons; 1904-5, 48,582 gallons; 1905-6, 7,314 gallons; and 1906-7, 16,608 gallons. The total coastwise exports from India (not Madras alone as above reviewed) during the corresponding periods were in 1898-9, 544,572 gallons; in 1899-1900, 761,584 gallons; in 1900-1, 1,585,964 gallons; in 1901-2, 2,159,843 gallons; in 1902-3, 1,610,975 gallons; in 1903-4, 1,761,898 gallons; in 1904-5, 1,469,699 gallons; and in 1905-6, 2,472,334 gallons. Of these amounts on an average 70 to 80 per cent. go from Madras to Burma, while the foreign exports in the oil go mainly from Madras and Bengal and are consigned to Mauritius, Natal and the Straits Settlements.

OIL MILLS.—It is significant that the bulk of the Indian manufacture of this oil should be in the hands of the owners of ordinary Native pestle-and-mortar-pattern rotary mills. At Valavapour there are said to be 700 such mills, at Panruti 200 mills, and at Pondicherry there were formerly 200 mills. Mills of the European pattern were tried both at Pondicherry and Cuddalore, but it was found they could not compete successfully with the Native mills. The cake from the European mills was too dry, powdery and wanting in oil, hence everywhere rejected. This is all the more significant since so very economically are the oil mills worked at Marseilles that ground-nut oil is cheaper in France than in India—a circumstance perhaps to some extent due to the fact that African seed is very much richer than Indian. It is commonly estimated, moreover, that 1 cwt. of dry kernels will yield about 5 gallons of oil. The seed produced on unirrigated is more oily than that raised on irrigated land. Formerly it was customary to read of the seed of Tanjore and Shiyoli being richer in oil than that of any of the other districts of Madras. It remains to be seen if the same will be true of the Mozambique seed now being cultivated or if the new seed will preserve a uniform quality throughout the Presidency.
Recently mills have been opened in Calcutta and elsewhere in Bengal for the manufacture of this oil. Already these new mills have had the effect of checking the imports of the oil that formerly came from Pondicherry and Madras, and they have given birth instead to a large import traffic in the nuts. One of the chief markets for the South Indian ground-nut oil has been the supply required by Burma. From recent correspondence hope is entertained of the Shan States being able to meet the Burma demand. For information regarding the Chemistry of the oil and of the oilcake and their values as articles of food, as also the medicinal and industrial uses of these and other products of the ground-nut, the reader is referred to *The Agricultural Ledger* (1893, No. 15) and to the *Kew Bulletin* (1901, 194), more especially the particulars given regarding the pea-nut flour and biscuits. It seems probable that as an article of food during military operations, special preparations of the pea-nut may have a great future. For microscopic examination of pea-nut cake consult Hanausek (*Micro. Tech. Prod.* (Winton and Barber, transl.), 1907, 387-91).

Habitat.—So much might be written regarding this nut that it is difficult to make a selection of the particulars likely to prove of greatest value from the commercial and industrial standpoint. It is cultivated exclusively within the moist tropical tracts that fringe the coast of India and practically within a belt of land that does not extend inland for more than 200 miles. It rarely ascends to altitudes of 3,000 feet and gradually disappears, even from the littoral area, as localities are entered where the duration of the dry hot months equals or exceeds the monsoons. Usually it is seen as a garden plant, two or three or a dozen palms at most being found around the huts of the more prosperous and industrious. But occasionally, and in certain localities, especially of Southern and Western India (Malabar) and of Burmah, where the soil and climate may be exceptionally favourable, it is grown in special gardens along with cocoa-nut, plantain, orange, mango, etc., and either with or without the *pān*—*piper betle*—climbing on the palm-stems. Lastly in Eastern and Northern Bengal and some portions of Assam its cultivation has assumed still greater dimensions. In certain districts of these provinces regular plantations of 5 to 20 or even 100 acres in extent occur (exclusively of betel-nuts) and at such frequent intervals that they might almost be said to constitute a distinct agricultural feature scarcely less important than the combined crops raised on the intervening portions of the country.

History.—This cultivated palm is met with throughout the hot damp regions of Asia and the Malay Islands. It is a masticatory of great antiquity with all Asiatic races, best known as *Betel-nut, suwaka, puga, kramuka* (Sansk.), *fufal* (Arab.), a corruption of *gupal* (Pera.), a word cognate with *kubara* (Sansk.). By these and other names was originally intended *Piper Betle* leaf—the *pān*—though subsequently these and many other names were appropriated to the nut or to the special preparation of leaf, nut, lime and spices ready to be chewed. This was first designated *bira* (*vīla*) in Sanskrit but ultimately became *pān*, the *paen* or *pan-sapari* of modern writers. The nut is symbolic of festivity; it is accordingly a fit offering for the gods, and is an essential at the betrothal ceremony.

From the most ancient times the presentation of *pān* has been the polite termination of ceremonial visits, hence the expression *bira-dena*—the dismissal. The name Betel or Bete is Malay in origin and simply means "a leaf," and came to English through the Portuguese Bete. The best-known vernacular names for the nut are—*supāri, hopāri, gua, gaya, kasai, mari, tambul, pokakula, oku, kāmuguru, adik, kūnsi*, etc.

It would seem that the earliest historic reference by a European to the habit of chewing betel-nut occurs in the writings of Marco Polo (1298 A.D.). "All the
PROPAGATION IN BENGAL

plantations also a distinct percentage of cocoa-nuts are interplanted among the betel-nuts, so that an old plantation in many cases has lost all its original regularity and becomes a dense jungle of palms with only a winding footpath leading to the owner's house. This generally stands on the bank of a tank and near the middle of the holding.

The seasons of flowering and fruiting may be said to be distributed throughout the year. The flowers that form in January will ripen fruit in October; the flowers formed in March will fruit in December and January. The harvesting period is from October to the beginning or middle of January, but occasionally the new flowers may begin to form in December or January on trees from which last year's fruits have not been collected.

If a few trees are planted near villages, but not in regular groves, the betel-nut may fruit when it is only 6 or 7 years of age. In plantations they rarely fruit before the tenth or twelfth year. The trees subsequently put out in the plantation (just as the first set begins to flower) do not come into bearing for 20 years. There is no third planting except, as already stated, to fill up vacancies. Land formerly covered with betel-nuts, if re-planted with them, even after a rest of several years, in the form of mandar groves, does not, as a rule, yield until the palms are 20 years old. It will thus be seen that it takes at least 30 years before a betel-nut plantation comes into full bearing. The fruiting life of a tree may be put at from 30 to 50 or 60 years after maturity, and the total life of the tree might thus be stated at from 60 to 100 years.

The soil of the Bengal plantations is the ordinary grey sandy loam on which rice is grown. Occasionally the plantations are surrounded by a ditch and wall made of the soil thrown up from the ditch, but this appears to be more intended for protection than drainage. More inland, in the districts of Tippera, Dacca, Sylhet, Goalpara and Rangpur, the palm is grown on considerably higher land, and usually as special gardens or avenues in gardens, or along the high banks of the streams. In Northern Bengal and Assam the pan leaf is very often trained to grow on the Areca palm stems, so that the two industries are combined, while in the great nut-producing districts of the Sundribans the betel-leaf is never or very rarely grown in the nut plantations. In the lower portions of Sylhet and Cachar, on the other hand, betel-palm groves and pepper betel-leaf houses are very characteristic features of the river-banks. Taylor informs us that the average number of trees to a bigha in the Dacca district (two-thirds of an acre approximately) would be about 700, but he adds the palm is usually planted around gardens and huts and not in solid clumps.

Bombay Presidency.—The betel-nut may be said to be chiefly grown along the coast from Kolaba, Thana and Kanara to Goa. Interesting particulars will be found in the Gazetteers of these districts and more recently in Mollison's special Report on the Betel-nut, Pepper and Cardamom Gardens of Kanara, as also in his Textbook of Agriculture (l.c. 257–8). He there tells us that the Areca is cultivated chiefly by Haviks—a race of cultivators supposed to have come originally from Mysore. "It does not matter much," he writes, "whether the soil is naturally fertile or not, because the yield of the crops grown is mostly affected by the quantity and quality of manure directly applied. . . . In many gardens irrigation is not required even in the hot weather. At this time a trickling stream, fed from natural springs, may be seen running along the main channels or a
ARECA
CATECHU
Betelnut

Nurseries.

Selection of Seed.

Planting Season.

Manure.

Bearing Period.

Yield.

Artificial Hoods.

Pass from Tree to Tree.

South India.
Mysoore.
Cultivation in Madras.
Revenue.

Best Gardens in Malnad.

perennial nāla passes by the main channels through the garden. The soil is thus kept continuously moist.” The palms are raised in seed-beds and are once transplanted before they are planted out permanently. The first seed-bed is carefully prepared, the soil is dug, broken fine and mixed with leaf-mould. Fully matured nuts from old trees are specially selected for planting. These are planted about 9 inches apart in April. The seed-bed should be kept thoroughly moist. The shoots appear in June. The seedlings are transplanted in October into any moist place in the garden or along the watercourses about two feet apart and remain until permanently transplanted. This permanent transplantation is usually done towards the end of the rains. In the following March the trees are manured with leaf manure and the manure is covered with fresh-cut branchwood which is partially withered but which retains the leaves. The object of placing a layer of small branches above the manure is to break the force of heavy rain.”

“The betel trees are manured as described every second year and come into bearing in ten years or so. The plantains are maintained for some years after the betel-palms are permanently planted, but in time are removed and cardamoms planted between the palms, and on the stems of the latter pepper-vines are trained. Betel trees are known to fruit freely for 30 or 40 years, and there is a popular belief that they are sometimes profitable much longer. On an average each tree has two bunches of fruit, sometimes three or four. But two good bunches yield as much as three or four inferior ones. The size of the bunch depends upon the manure used and upon the rainfall. A good bunch gives 200 to 300 nuts and a specially good one about 400. With unfavourable rain or cloudy weather in April or May many of the young nuts fall off and a smaller number of nuts on each bunch reach maturity. The trees produce flowers in March and April and the nuts are ripe in November or December, but to some extent the trees produce flowers and fruit out of season” (I.c. 259).

The flower spathes and leaf-sheaths are “valuable products in the garden economy. They are used to provide hoods for protecting the branches of betel-nuts from the rain. If unprotected the nuts rot. Two sheaths are used to make one hood. The hoods are made and tied on by professionals who come from Mysoore territory and below the Ghats. A good workman can make 250 hoods per day and is paid Rs. 2 per 1,000. This operation and tying them on costs at contract rates Rs. 10 to 12 per 1,000 bunches and two meals per day. The men do not ascend and descend each tree. When once they have climbed up, by means of slight exertion they swing the tree and deftly catch hold of another and rarely descend to the ground for hours. These expert climbers also gather the fruit by cutting the bunches from the stem, getting Rs. 4 per 1,000 bunches and three meals per day” (I.c. 260).

South India.—A good deal has been written on the subject of the special cultivation pursued in Mysoore. Cameron (For. Trees, I.c. 324–6) practically reprints the account given in The Mysoore Gazetteer when he says:—”Areca-nut gardens are a profitable source of income both to the cultivator and the State, the latter deriving a large revenue from a halut or custom duty levied upon the nut. The finest betel gardens are situated on the confines of the Malnad where there is a rich soil and plenty of water.” ”It is necessary, during the rainy season, however, to drain off superfusious water by means of open
ditches placed at intervals between the rows of trees, for although the areca requires a perennial supply of moisture at no great depth in the subsoil, it is keenly susceptible of being waterlogged."

"In tope exclusively apportioned to the areca-nut, the planting is mostly too close: 1,200 to 1,500 trees being allotted to the acre, exclusive of the banana trees."

"A full-grown tree is calculated to produce 250 to 300 nuts annually."

Mr. D. B. Murti, in his Lecture on the Cultivation of Betel-nut in the Godavari district, says a man owning a plantation of 3 acres is considered rich. The plantations contain mangoes, plantains, cocoa-nuts, jackfruit, oranges, pomegranates, and these form a fringe around and also lines within, but areca-nuts are planted 10 to 12 years after the rows of other fruit trees have been established. Seed-nuts are selected specially from trees over 50 years of age because these form few but exceptionally large nuts. It is believed that such nuts ensure timely sprouting and steady growth of the future tree. The details of the nursery, of the transplanting, etc., followed in Godavari are similar to those already fully discussed. The harvest season is generally in the months of August, September and the first half of October.

Burma.—Mr. G. G. Collins has recently published the following brief account of the cultivation of Betel-nuts in Toungoo:—"The Toungoo district is noted for its cultivation of and trade in the betel-palm. This is confined almost entirely to the Karen tracts lying in the Kanni (Leitho), Tantabin, Kyaukkkyi and Shwegyin townships east of the Sittang river."

"The gardens are formed particularly on the lower slopes of the hills which form the eastern boundary of the district and from which run the numerous streams that drain to the Sittang. The cultivated area covers at intervals a course of some 200 miles from North to South. The produce of the trees varies with the locality; a fair average may be 100 per tree, but as many as 400 to 600 nuts have been obtained from one palm."

"The cultivators of the betel-palm also grow oranges, many to a large extent, and the trade in both products in this district is very large. The price of the betel-nut at the gardens after drying varies from Rs. 80 to Rs. 100, and at the market town from Rs. 100 to Rs. 140 per 100 viss (viss = 3·65 lb.)."

Diseases and Pests.

It may have been inferred that in the chief Indian area of production, viz. the Gangetic delta, the plant is cultivated on flat interfluvial tracts very little raised above inundation level, and has practically no labour bestowed on it during the half century or more that it continues to yield fruit. In other parts of India the palm is grown under a high state of cultivation with much attention and money devoted to it. These two extremes—utter neglect and careful treatment—should manifest, and perhaps naturally, widely different conditions of disease. Butler, in a paper on *Some Diseases of Palms* (Agri. Journ. Ind., i., pt. iv., 299-310), observes that fungus diseases are fortunately rare though a few have appeared in recent years, each apparently confined to a particular part of the country. He then gives details of the diseases found on the betel-nut palms of the Malnad district of Mysore and of Sylhet in Eastern Bengal. It would appear that in the former locality a fungal disease is known as *koth rogs* or black rot, but that "up to the present it has not been found elsewhere and, as it does not appear to have extended much during the time it has been observed, it is probably favoured by the special climatic conditions of the locality where it occurs." Butler is of opinion that the disease in question is caused by a fungus of the genus *Phytophthora*. The reader should consult the original paper for all necessary details. The practical aspects may be here summarised. The *sporangia* require to fall into water to ensure their full propagation, and hence the spread of the disease is closely dependent on conditions of moisture and rainfall. The disease originates on the flowering and
ARECA
CATECHU
Betel-nut

fructing inflorescence, and for its growth it is necessary that moisture should exist at that period. He accordingly recommends steps being taken to secure a change in the period of harvest. The late crop of former years he regards as having been beneficial, and may be obtained by departures in the method of cultivation. So also improvements in the nature of the covers presently used to protect the inflorescence, he views as very desirable. Covers that leak, he adds, are likely to be more injurious than none at all.

Speaking of the Sylhet disease, he says that the general symptoms are the same as those in Mysore kola roga, namely, the dropping of the nuts before maturity. Gradually the swollen green part below the leaves is seen to diminish in size. Withering of the outer leaves then follows, and finally the whole head dies and falls off. "The conditions resemble those which would be caused by drought or some general disturbances and not by a local disease at the crown of the palm. No trace of any parasitic fungus can be found in the earlier stages at the top of the tree. The stem is generally healthy. Below ground, however, matters are different. Here there is invariably a rot, either of the roots or of the below-ground part of the stem even in very early cases." Reasoning from analogy with other root fungi, Butler recommends the surrounding of affected portions by trenches. But to be effective, trenching must be undertaken as soon as the first disease appears in the garden. The trench should be two feet deep, about a foot broad, and drained so as to prevent water accumulating in it. It should entirely surround and cut off the first affected palm or palms. (Cf. Festa and Blights of the Tea Plant, 1903, 413.)

Bombay.
White-ants.
A Borer.

Bengal.
Plague.

Indolence.

Loss of Revenue.

Dead stumps.

Destruction of Tissue.

Causes of Plague.

Remedy.

Of Godavari, it has been said that white-ants often injure the palm materially by eating the rootlets. Of Bombay, Mollison (L.c. 262) observes, "Betel-palms are not much affected with disease. A borer does considerable damage. It cuts a tunnel from the root upwards and in time reaches to the growing top. The damage there done is so considerable that the top withers and when wind blows breaks off and falls to the ground."

The investigations conducted by me in the great betel-nut area of Bengal left the impression on my mind that there was less to be surprised at in the severity of the plague that devastates the plantations than in the infrequency of its occurrence. It is next to impossible to imagine any industry existing at all under the conditions of abject neglect that prevail in the Bengal betel-nut districts. All that the owner of a plantation does is to lay the estate out on the principle of the greatest number of trees on the least space, and at the lowest labour and expense possible. He then builds his house, and he and his sons and grandsons settle down to a life of family disputes that not infrequently lead to lawlessness. He hires out his plantation to contractors who collect the fruits in any way they think fit, the owner all the while sitting by in a state of complete indifference and indolence. He neither drop manures, nor cultivates his plantation in any form worthy of the name but lives in opulence until plague appears, when, if his property chances to be devastated, he gathers together his movable goods and leaves the district in order to escape payment of the revenue or rent during the twenty years of renovation that may have to be faced.

After the most careful examination of numerous plantations (or rather jungles) of betel-nut palms in Eastern Bengal I failed to find any serious insect or fungal blight, or the trees that were nevertheless seen to be dead and dying in every direction. The crown of leaves withered and was blown off, leaving a dead stump behind, until what was once a plantation looked like a harbour with thousands of masts. The destruction was not confined to particular plantations but had spread over the country like a great wave of infection in such a manner as to justify the name of "Plague" that had been given to it. On microscopic examination, the tissue of the dead and dying palms was found to be permeated with an organic agent of destruction in which it might be said that the fundamental tissue had invaded and devoured the fibrovascular. The condition, in other words, was very similar to that described under the name "Tyloses." As seen in Europe on the vine, the cucumber and other plants, that constitutional disease is believed to be induced when an undue amount of moisture is given to the roots, while the leaves are at the same time exposed to an abnormally dry, hot atmosphere or the reverse conditions. The cultivators in Bengal admit that plague follows when the soil becomes abnormally dried up, through failure of the customary showers in January, more especially if the hot months are ushered in by a cyclone. The remedy lies in more generous spacing, when laying out the plantation; more careful cultivation, in which drainage, irrigation and
manure are provided; and lastly an extension of the system of combination of betel-nut cultivation with that of other fruit trees. The cultivation of surface crops such as vegetables, ginger, tobacco, pepper-betel, etc., would also no doubt prove not only profitable but beneficial to the palms. They would retain moisture in the soil and preserve a healthy balance in its food materials. But in the country where betel-nuts are grown on a large scale and with the class of people who engage in that remarkable branch of agriculture, such preventive measures would perhaps be next to impossible, unless they could be made compulsory.

MANUFACTURE.—Preparation of the Nut.—It would take many pages to detail the various methods of preparation pursued in Bengal, Assam, Manipur, Burma, Madras, Mysore and Bombay. In some cases the shelled nuts are boiled, in others not; occasionally the nuts either before or after boiling are sliced or cut up into variously shaped pieces; lastly certain qualities of the nut are recognised according to region of production and variety of plant or degree of maturity at which collected. On this subject the authors of the *Pharmacographia Indica* (l.c. 532) say: "The varieties of the nut met with in trade are numerous; they may be classed as natural and artificial; the first class includes different varieties of ripe betel-nut produced by cultivation which have not undergone any preparation; the second class, all nuts, ripe or unripe, which have been treated by boiling or other process before being offered for sale." Mollison observes that in Kanara the nuts after being boiled are dried in the sun and sorted into three kinds, viz. chikni, betta, and gotu. The first and the best quality sells at Rs. 6 to 7, the second at Rs. 3 to 4, and the third at Rs. 2 to 2½. Taylor describes the Bengal method of shelling and cleaning the nuts before being sent to market. Briefly it may be said the fruits are cut off the branches, collected in baskets and spread out to dry, most frequently on the roofs of the houses. They are never boiled, but are simply cut open and assorted according to size.

The Extract.—Mollison says—"The scraped nuts are boiled for about two hours in fairly large copper pots. A handful of lime or of the ash of the bark of mali (Terminalia tomentosa) is added to the water. The presence of lime causes the water to become red or red-brown in colour as the boiling proceeds. The water also becomes thick with a resinous extract from the nuts. The boiling is continued until the eye-bud or germ of growth from each nut comes out or becomes absorbed in the extract. The nuts are removed by a long-handled ladle (zāra). The ladle has perforations in its bowl which allow the extract to drain from the nuts back into the pot. The extract is again and again used for boiling fresh supplies of nuts, pure water as required being added from time to time to prevent the decoction becoming too thick and concentrated. The extract after being used for boiling repeatedly becomes deep red-brown and thick. It is then emptied into another broad-mouthed vessel which is placed under full exposure to the sun. The mass by evaporation thickens and *Areca Catechu* or kossa is the product." Several other writers allude to this extract. In the *Dictionary* passages from the *Thana Gazetteer*, and from Baden Powell's *Panjāb Products* will be found. Very little of a definite nature is known regarding it, however, further than that it is always prepared when the nuts are boiled and is used to flavour and colour inferior nuts. But no particulars are available as to the existence of a separate trade in the extract kossa itself.

Properties and Chemical Composition.—The reader is referred to the *Pharmacographia Indica* for full particulars under these headings.
BRIEFLY it may be said that the chief use of the betel-nut is as an astringent and stimulating masticatory. To some extent it is employed in medicine, the unripe fruits are in India viewed as laxative and carminative, and a paste of the powder of the dry or burnt nut is used as a dentifrice.

In Europe the ripe fruits have been employed as an anthelmintic and astringent. Most writers affirm that occasionally the nuts (especially when eaten fresh) are found to possess intoxicating and poisonous properties. This is believed to be an accidental peculiarity of certain trees which thus show a reversion to what may be the wild condition. This poisonous property has been ascertained to be destroyed by boiling, and hence no doubt has come into existence the system mentioned above of preparing the nuts for market by various methods of cooking. It has been ascertained that the active and poisonous principle present in areca-nut is an alkaloid Anecoline. The antidote to this, as recommended by Rumphius (in 1741 A.D.), is said to be salt, lime-juice or acid pickles.

TRADE.—Betel-nuts are not only very largely produced in India but are imported from Ceylon, the Straits Settlements, Sumatra and China. In 1895-6, the year before the effects of the Bengal betel-nut plague became serious, the foreign imports stood at 58½ million lb., valued at 36½ lakhs of rupees. Steadily these imports improved until in 1899-1900 they stood approximately at 90 million lb., valued at 62½ lakhs of rupees. These figures may be accepted as representing a loss to the Indian producer of 26 lakhs of rupees. This opinion may be confirmed in various ways. In my report on the ravages of the betel-nut plague it will be found that I have stated that in many plantations visited there was a loss of from 50 to 90 per cent. of the trees. The returns of the river traffic from the betel-nut area into Calcutta, showed for 1895-6 a decrease of 8 million lb., as compared with that of the three previous years. The trade still further declined for the two following years but revived very greatly subsequently, and has now been more than restored to its former magnitude. It will thus be seen that during the disturbed years above indicated production in Bengal decreased by the exact amount that the foreign imports increased, involving a loss during these years of some £200,000 per annum to the betel-nut growers of the province. But since 1900 the foreign imports have continued to increase, till in 1906-7 they reached 119,732,410 lb., valued at Rs. 1,15,35,030. The foreign exports were 280,782 lb. in 1896-7, and for the five years ending 1906-7 they were 375,050, 341,937, 320,176, 343,526, and 289,770 lb. To these amounts would have to be added the re-exports, which in recent years have varied from some 20 to 40 thousand lb.

The magnitude and importance of the Indian production of betelnuts may, however, be judged of by the extent of the coasting trade. During the three years ending 1905-6 the inter-provincial exchanges have ranged from 57 to almost 64 million lb. of Indian-grown nuts valued at from 82 to 89 lakhs of rupees. Of that amount Bengal has exported from 32 to 37 million lb. Burma is the largest importing province, and has taken from 29 to 34 million lb. Of the internal trade mention may be made of Assam. It produces these nuts chiefly in Sylhet and Gauhati, but the large number of Indian coolies concerned in tea-planting are dependent on the supplies drawn from Bengal. Madras is supplied very largely by the Malabar Coast, and the exports of South India go mainly
to the Straits while Bengal exports to Burma. Judging by the coastwise trade alone, the chief areas of production are Bengal, Bombay, Madras and Goa, mentioned in the sequence of their importance. A certain proportion of the quantities recorded as carried by rail and river appear again in the sea-borne traffic (the coastwise and foreign exports) or they have been derived from the foreign imports, but allowing for all such necessary corrections, the transactions by land routes must be accepted as greatly augmenting any estimate that might be framed as to the total quantity and value of the Indian production. But over and above all published returns there is still a source of error (and in this case an important error) in the local or village cultivation and consumption which escapes registration entirely. As a deduction from the estimate that might be arrived at from the study of foreign supply plus Indian production, the Foreign Exports would have to be accounted for, say 250 to 350 thousand lb. These go mainly from Bombay ports and are derived chiefly from the coastwise imports from the other parts of that Presidency with a smaller supply from Goa and Madras. Madras is the next most important exporting province. Bengal, the chief producing province, exports very little to foreign countries. The Trans-frontier (land) traffic from India to Kashmir, Nepal, Bhutan, Manipur, the Shan States, etc., has during the three years ending 1906-7 been 53, 46, and 64 thousand lb.

From the published returns of foreign imports and Indian production, briefly indicated, it would seem safe to affirm that the annual consumption of betel-nuts in India itself cannot be far short of a valuation of Rs. 225 lakhs, or say £1,500,000. The price adopted in making that calculation has been obtained from the mean of the declaration value in the foreign imports and internal traffic for a period of five years. But if the foreign imports alone be considered, the price would seem to be from Rs. 5-78 in 1895-6 to Rs. 7-87 in 1898-9 and Rs. 6-98 subsequently per 100 lb. of nuts. These figures correspond sufficiently nearly with those given by O'Conor, viz. Rs. 6-5-8 per maund, risen recently to Rs. 7-8-0. The retail price may therefore be expressed at 24 to 3 annas per lb. The following quotations from the Bombay market price list of different trade qualities may be regarded as amplifying the above average calculations:—

White Betel-nuts.—Goa, Rs. 8 to 10 per cwt.; Mangalore, Rs. 14 to 22 per cwt.; Rupasi, Rs. 12 to 16 per cwt.; Calcutta, Rs. 12 to 13 per cwt.; Asigree, Rs. 12 to 14 per cwt.; Kanarese, Rs. 16 to 20 per cwt.; and Severdani, Rs. 18 to 19 per cwt. Red Betel-nuts.—Malabar, Rs. 14 to 16 per cwt.; Kumpta, Rs. 12 to 18 per cwt.; Marorkhudi, Rs. 16 to 17 per cwt.; Goa, Rs. 24 to 32 per cwt.; Wasai, Rs. 20 per cwt.; Malwa, Rs. 12 to 13 per cwt.; Vingora, Rs. 12 to 13 per cwt.; and Calcutta, Rs. 10 to 12 per cwt. It would appear that the poorer classes use various substitutes for the betel-nut, for example the seeds of Calamus erectus, Roxb.

ARENGA SACCHARIFERA, Labill.; Fl. Br. Ind., vi., 421; Roxb., Trans. Soc. Arts, 1804, xxii., 366-8; 1806, xxiv., 155; Gamble, Man. Ind. Timbs., 728; Dodge, Useful Fibre Plants of the World, 66; Palmeae. The Sago-palm of Malacca and the Malay, taung-ong, eju, gomut; etc.; very commonly cultivated in India and wild in the forests of Burma and Assam. It flowers about the tenth year.

At the base of the petiole is found a beautiful black horsehair-like fibre known as the Ejū or Gomuta Fibre. Within the sheaths is a layer of reticulated fibre.
ARSENIC:
REALLAR

WHITE, YELLOW AND RED ARSENIC

fibres said to be in great demand in China for caulking boats. It is also used for kindling fires and in Manipur to filter water. It has been recommended for ropes intended for use under water and even as covering for submarine telegraph cables. The coarsest fibre is only fit for brush-making. For this purpose the leaves are first washed and then soaked in an alkaline solution (Morris, Canter Lect., Journ. Soc. Arts., Oct. 18, 1895, 391). - Sandals are made from the leaf-sheath. [Cf. also Roxb., Obs. on Substitutes for Hemp and Flax, 1809—a paper which gives some results of a comparative test with efié fibre.] The sago from the interior of the stem, although inferior to that obtained from the true sago palm (Metroxylon Sagum, schott.), is nevertheless an article of Food. It is the source of the Java Sago, which is of considerable importance throughout the Malaya, although the palm is chiefly cultivated for its sap from which palm-wine (toddy), spirit (arak), sugar and vinegar are prepared (see Malt Liquors. p. 780). A long and interesting account of the process of extraction of the sap (Simmonds, Trop. Agri., 248) will be found in the Dictionary (i., 303), and Tschirch (Indische Heil und Nute-Pflanzen, 159-161, pl. 97) describes the uses and appearance of the palm in Java. The latter observes that it is not worth while to grow the palm for sugar because its production per acre is insufficient. He gives the yield for Java as about 8,000 lb. per hectare (say 2½ acres). The estimate quoted by Simmonds is about 6,600 lb. to the acre. Jumelle (Les Cult. Colon. Pl. (Aliment.), 27) says that about 400 trees can be planted to the acre and from each tree can be had 154 lb. of sago, giving the enormous total of 61,600 lb. to the acre. Roxburgh remarks that one palm gave about 180 lb. of good sago-meal. The palm will grow on soils where the cultivation of cereals could not succeed. "The palm dies after ripening its whole crop of fruit, and the stems, which speedily become hollow, are then useful for troughs and water-channels, lasting well underground" (Gamble, Lc. 728). [Cf. Milburn, Or. Comms., 1813, ii., 310; Der Tropenpflanzer, iii., 498-500, 7., 364-5.]

A. Wightii, gef.; Talbot, List Trees, etc., 1902, 340. This is the dadaul, a palm which according to the excise reports is often tapped for toddy.

ARSENIC (Oxide), including Orpiment and Realgar: Ball, Man. Econ. Geol. Ind., 1831, 162, 592, 606; Holland, Rec. Geol. Surv. Ind., xxxii., 97. This metal is met with commercially in India in either of the three forms:—the Oxide, commonly called White Arsenic or Arsenious Acid, safed sambul, somal, etc.; the Sulphides, known as Orpiment, Yellow Arsenic, karitala, hsoe-dan, etc.; and Realgar, Red Arsenic, munsil, etc.

White Arsenic is purely a manufactured article obtained by sublimation in the smelting of arsenical pyrites. The sulphides are natural minerals, though they can be artificially produced. Of orpiment there are two qualities, (1) the medicinal and criminal form, consisting of smooth shining scales, which is chiefly imported into Bombay from the Persian Gulf ports, and (2) the coarser and less poisonous form, which occurs in opaque masses. The sulphides of arsenic are regularly drawn from Munsirai in Kumaon, from Chitrál and from Upper Burma and Yunnan. An interesting account of the orpiment mines of Chitrál will be found in The Pioneer (Sept. 9, 1898). That from Munsirai is brought by the Bhutias to the Bagesar fair. Orpiment is also carried from the Swat country and Kasilgar to Peshahwar, and from Herat to Kandahar. All three forms of arsenic have always been imported from Burma and China, and although white arsenic is now mainly brought by sea, the sulphides still form a valuable transhipment from Western China through Upper Burma. There has been some trade, both export and import, in arsenic. The average export of Indian arsenic (excluding orpiment) from 1897 to 1903 was about 334 cwts., valued at £225, whilst the average import was 2,346 cwts., valued at £3,110. In 1906-7 the exports were 106 cwts., valued at Rs. 2,233, and the imports 1,925 cwts., valued at Rs. 44,195. The imports of orpiment into Burma from Western China averaged in 1897-1903, 9,551 cwts., valued at £11,470. The tendency seems to be for the trade to increase whilst prices fall.

It may be mentioned that white arsenic, that of all poisons it is the most frequently resorted to, especially in the Punjáb, which has about 50 per cent. of the recorded cases of such poisoning. In the Annual Report for 1902 the Chemical Examiner, Panjáb, observed that 64 per cent. of the cases of human poisoning in that year were with arsenic. However, by the Poisons Act of 1904 very wide
discretionary powers were granted to the local Governments, subject to the control of the Governor-General in Council. Special restrictions are placed upon the traffic in white arsenic. Opium, besides being a Pigment and a Dye, is an essential ingredient in the manufacture of shellac, lac toys, Afridi waxcloths, etc. [Cf. Tales of Sereef (Playfair, trans.), 1833, 99, 156, 173; Watt, Ind. Art at Delhi, 1903, 211, 221-2, 231; Hooper, Rept. Labor. Ind. Mus., 1903-4, 36.]

ARTEMISIA, Linn.; Fl. Br. Ind., iii, 321-30; Composite.

This wormwood yields by distillation a dark green or yellow Oil having a strong odour of the plant and an acrid taste. In large doses it is a violent narcotic poison. In Medicine the whole herb is considered an aromatic tonic and anthelmintic, but in Europe is now relegated to the position of a domestic medicine. A liqueur consisting of an alcoholic solution of oil of wormwood with flavouring ingredients forms the Absinthe so largely consumed in France. Foster (Engl. Factories Ind., 1618-21, 338) alludes to "wormwood wine" among the articles provided for the Company's ships.

A. maritima, Linn.; Pharmacog. Ind., ii., 288. Wormseed, Santonin, *shik, kirmâli, kirmâri-eva* (or *kirmâni* *eva*), etc. A very variable plant found in the Western Himalaya from Kashmir to Kumaon, altitude 7,000 to 9,000 feet, and abundant in Western Tibet on salt-plains between 9,000 and 14,000 feet. The Levant wormseed of European commerce comes from Persia, Asia Minor, etc., whilst the Barbary wormseed comes from Palestine and Arabia.

The flower-heads are largely used for their anthelmintic, deobstruant, and stomachic- tonic qualities. Santonin is now well known to the Natives of India and is largely imported from Germany, but according to Dr. von Schroeder it is not poisonous to ascariads as was formerly thought, but merely drives them into the large intestine whence they can be removed. Wormseed is brought from Russia and also from Afghanistan and Persia, its value being about Rs. 2$1$ to 3 per Surat maund (37½ lb.); but much of the prepared santonin sold in the bazaars is adulterated to the extent of three-fourths with gum, boracic acid, etc. Details of the trade are not available. Duthie observes that in the Himalaya wormseeds are fed upon this plant with relish, and he adds that "other species of Artemisia are mentioned as affording good fodder for sheep on the Panjâb Himalaya." The Kew Bulletin (June 1893, 127), commenting on this, observes that in localities where hardly any other vegetation exists, the use of the wormseed as a fodder plant might prove of value. Church reported on a bundle of dry leaves received at Kew from Duthie. The following is his analysis:—

Percentage composition of *Artemisia maritima*:

- Water .. 13-6
- Oil, resin, wax, etc. 4
- Starch, sugar, gum, etc. (by difference) . 34-2
- Albuminoids (true) 6-9
- Fibre 33-9
- Ash (includes 2-7 of sand and mica) 8-3

Church remarks that the plant contains rather less albuminoids, less digestible carbohydrates, and more fibre than the average hay of mixed grasses. It is, however, thrice as rich in albuminoids as the straw of European cereals. The harsh woody texture of the plant and its sickly odour would not commend its use as the chief ingredient in horse-fodder; but to any animals not deterred by these factors it might prove of considerable value under such special circumstances as obtain in barren tracts of the Western Himalaya. *A. pasciformis* is also browsed by sheep and goats. [Cf. List of Himalayan Fodder Plants (excluding grasses), D.E.P., iii, 427.]

A. vulgaris, Linn.; Indian Wormwood, Flea-bane, *nâpduin*, *nâpdouin*, *katuar, surband*, etc. A gregarious shrub found throughout the mountainous district of India and distributed to temperate Europe, Siam, Java, etc.

One or two of the forms of this species, along with *A. absinthium*, constitute the official wormwood, but by itself *A. vulgaris* is not an article of commerce. In Medicine it is held to have stomachic and tonic properties, and
ASBESTOS

THE JACK-FRUIT TREE

the modern Hindus regard it as deobroutent and emmenagogue. It may be used as an inferior substitute for cinchona in intermittent fevers, and is probably one of the sources of the remedy known to the Muhammadans by the generic title of afisant. Said to be used in China in the preparation of an external application (moza) employed in relieving pain (Breit Schneider, Hist. Europ. Bot. Disc. in China, 1898, 234). [Cf. Hartless, Note, April 9, 1897; see Alkalies, etc., p. 50.]

ARTOCARPUS INTEGRIFOLIA, Linn.; Fl. Br. Ind., v., 51;
Gamble, Man. Ind. Timb., 652; Urticaceae. The Jack-fruit tree; kānthīḷ kāntīḷ, kāthīḷ, panasa, phala, kantaka, etc. A large evergreen tree cultivated in the warmer parts of India and Burma and occurring wild on the Eastern and Western Ghats up to altitudes of 4,000 feet. The dense mass of dark foliage and the huge fruits make this tree a prominent feature of most Indian villages.

Of the 40 odd species of Artocarpus indigenous to tropical Asia and the Pacific, only five are of economic importance in India. The four besides A. integrifolia are:—(1) A. Chaplasha, šux.; chaplash, sam, cham, pani, etc., met with in Eastern Bengal, Assam, Burma and the Andamans; (2) A. hiranta, lāmk.; the pat-phanas, anjalli, aymī, hebalu, etc., which occurs in the Western Ghats up to 4,000 feet; (3) A. incisa, Linn.; the Bread-fruit, divy-balasa (divy-jack), rata-del, etc., an introduced South Sea species cultivated in S. and W. India, Ceylon and Burma, but unable to hold out against the Bengal winter; (4) A. lakshocea, šux.; the laksha, dhe-paral, lovi, komma-regu, myauk-lök, etc., found in Kumaon, Eastern Bengal, South India and Burma.

The bark yields a true Gum and the juice forms a useful CEMENT. CALUTCHOW is obtained from all the above-named species, but the amount is very small (Hooper, Rept. Labor. Ind. Mus., 1005-6, 26); that of A. incisa is employed as a glue in caulking canoes. A yellow Dye or PIGMENT is obtained by boiling the wood and sawdust (especially from the root of A. lakshocea), and this is employed in Burma, Madras, and elsewhere in dyeing the garments of priests (Agri. Ledg., 1896, No. 4), but it is said not to dye with mordants (Text. Mucr., Jan. 25, 1896). The lac insect is in Assam often obtained from A. Chaplasha. The bark yields a FIBRE, that of A. incisa, being used apparently for clothing in Otahite and other islands (Royle, Fibrous Plants, 341). The juice, leaves and root are employed in MEDICINE. The Fruits of all the above species are eaten occasionally, but that of A. integrifolia is of course most sought after. It is mentioned by almost all the early European writers, and in the Ain-i-Akbari, 1590 (Blochmann, transal., 66, 70). The name Jack-fruit was given by the Portuguese from the Malayalam tejaka. Kircher gives it the Chinese name of po-lo-mi. Varthéna (Travels, 1510 (ed. Halk. Soc.), 159) calls it ciceoro. The fruit is seldom eaten by Europeans owing to the smell of the ripe pulp, but the Natives regard it as one of the best fruits of the country. It is, as a rule, from 12 to 18 inches long, by 6 to 8 inches in diameter, and should be called a frutescence. If the component flakes be fermented and distilled they yield an alcoholic beverage, and the roasted seeds taste not unlike chestnuts. The Timbers of all the species seasons well, and is considered valuable, being used for canoes, doors, frames, etc. That of A. hiranta is the anjili-wood of commerce, and that of A. integrifolia is exported to Europe for cabinet-work, turnery and brush-backs. [Cf. Vertomannus, Travels. in Hakl. Voy., 1811, iv., 388; Barber, Memoirs, 1519 (Leyden and Erskine, transal., 329); Garcia de Orta, 1563, Coll., xxxviii.; Linschoten, Voy. E. Ind., 1598 (ed. Hakl. Soc.), ii., 20; Pyrrad, Voy. E. Ind., 1619 (ed. Hakl. Soc.), ii., 366; Clussius, Hist. Exot. Pl., 1605, 281; Boym, Fl. Sin., 1656, L; Kircher, China Illust., 1667, 186 and pl.; John Ellis, The Mangostan and Bread-fruit, 1770; Talees Shereef (Playfair, transal., 1833, 116; Joret, Lee Pl. dans L’Antiq., 1904, ii., 296; etc., etc.]

ASBESTOS; Ball, Man. Econ. Geol. Ind., 518-9, 631; Holland, Rec. Geol. Surv. Ind., xxxii., 99. A fibrous variety of amphibole which in Bombay has been called shank-ha-palista (wrick made of shells). It is reported to occur in Afghanistan, the Panjāb, Garhwal, Bhopawar (in Central India), Chota Nagpur, and Mysore. 94
The average recorded yearly production in India would seem to be insignificant, namely about 5 to 6 cwt., valued at Rs. 40 to 48, but the great increase in the demand for fireproof materials has resulted in efforts being made to discover new and more profitable sources of supply. (Min. Rec., 1896-7.) Recent discoveries in Central India and Rajputana seem likely to prove of value. In November 1899 two samples of asbestos found in the Jobat State, Central India Agency, were sent to the Imperial Institute, London, for analysis and report. The Director replied that both samples consisted of soft friable asbestos chiefly of very short staple. They were of inferior colour, even the so-called white variety being grey and impure. A commercial expert was of opinion that it would not pay to bring it to Europe, but that it might be found useful locally for fireproof packing, decorative work, etc. [Cf. Yates, Tex. Antig., 1843, 356-65; Textile Mercury, April 11, 1896; Hanusek, Micro. Tech. Prod. (Winton & Barber, transl.), 1907, 156-7.]

From this and perhaps several other species is obtained a Gum called katirā or gabina which exudes from fissures in the bark. This is known in Indian commerce as Tragacanth. It is further said that on the stem being cut across, the gummy substance shoots out of the medullary cavity in the form of pipe-Tragacanth. Aitchison observes: "This is collected in large quantities near Buzi in Khorasan for exportation in all directions to India, Persia and Turkestan to be chiefly employed in the stiffening, glazing, and facing of local fabrics. Most of the gum sold in India as katirā is this and not the product of any Indian plant." Possibly another species (A. Saracocola, Dymoch; ansurer, ansurud, gujar, gužhad, etc.) is the drug which was known as saracocola to Pliny, Dioscorides, Avicenna, etc. It is hardly, if ever, met with in Europe at the present day, although still used in the East. The gum is imported into India, and is one of the principal ingredients in the ļep (plaster) employed by Parsis to set fractured bones, etc. The average value is said to be about Rs. 3 per maund of 37½ lb. Aitchison is of opinion that without further knowledge of the plant than was derived from finding the fruit of an Astragalus amongst the gum and from an experiment with the seed, it would have been better not to identify this as a new species, since in all probability it will be found to be a form already described by Bunge. The drug consists of pale-yellow irregular grains not unlike crushed resin, and is said to be collected by being shaken off the tree on to a cloth. Eaten by ladies to improve their appearance and to give the skin a gloss.

Astragalus (Tragacanth) Substitutes: the Bassora or Hog-gums of India.—This is a group of gums resembling Tragacanth, but much inferior, the colour being most objectionable. The collective name in commerce is Bassora Gum, given because the gum of this class which first attracted attention is supposed to have been exported from Bassora. In India these gums are collectively known as katirā, though Aitchison observes that most of the katirā gums are non-Indian in origin. Chemically Tragacanthin and Bassoran are probably identical. The Indian Bassoras or Hog-gums are as follows:—

- Allanthus excelsa.
- Bombax malabaricum.
- Cochlospermum Gossypium.
- Moringa pterygosperma.
- Prunus Amygdalus.
- Sacopetalum tomentosum.
- Sterculia urens.
- Stereospermum suaveolens.

ATROPA BELLADONNA, Linn.; Fl. Br. Ind., iv., 241; Solanaceæ. Deadly Nightshade, sangangûr, angûr-shēja, sūchī, gribûtû, ustrung, yebray, luckmuna. A coarse glabrous herb native of the Western Himalaya from Simla to Kashmir at altitudes of 6,000 to 12,000 feet; distributed to Europe and North Persia.

95
The official parts of the plant are its leaves and the dried roots, which are powerfully sedative, anodyne and antispasmodic. The properties of the drug are so well known that it is unnecessary to detail them here. It appears that although the Himalaya might supply the world with belladonna, its cultivation has been but indifferently investigated. [Cf. Leake, *Agri. Journ. Ind.*, 1897, ii, pt. ii., 210–11; *Paulus Eginton* (Adams, Comment., iii, 240), etc., etc.; *Pharmacog. Ind.*, ii, 572; Fluckiger and Hanbury, *Pharmacog.*, 455–9; *Rept. Ind. Hemp. Drugs Comm.*, 1894, i, 172; etc., etc.]

Habitat.—There are some 13 species, in addition to the cultivated one met with in India. Of the wild forms all occur on the Himalaya, their area extending from Baluchistan and Afghanistan in the west, through Kashmir, Kumaon and Nepal to the extreme east in Sikkim. The species *A. aspera*, *A. aestuans*, in addition to its Himalayan habitat, occurs on the Khasia hills, the Nilgiri hills and the mountains of Ceylon. Nowhere are the wild Avenas found abundantly; a few plants here and there is their usual condition, though several (such as *A. fistula*, *A. pratensis*, *A. lanata* and *A. subspicata*, *A. clara*) are widely dispersed, being met with very nearly throughout the temperate Himalaya.

History.—None of the truly indigenous species are ever cultivated in India. And in fact it would seem that the Natives do not recognise them as worthy of distinctive names, hence they do not separately distinguish the species, and the following names may very possibly denote any *Avena* including the cultivated *A. sativa* :—jái, javi, jéi, javi, gandai, ganer, ganhel, gozang, gandel, etc. There would appear to be no well-authenticated classic names for either the plants or the grains in India, Africa, Arabia, Egypt, Persia, China or Japan. The *bromus* of the Greeks and the *avena* of the Latins were names given to wild species, but there is no satisfactory evidence that either the Greeks or the Romans cultivated the Oats. *Paulus Eginton* (Adams, Comment., iii, 78) says that the chapter in Dioscorides on this subject is spurious, and that *Eginton* simply translated Galen. The plant seems, however, to have been known in Asia Minor during fairly ancient times. Caspar Bauhini (*Theat. Bot.*, 1658, 470–1) describes and figures two forms, viz. alba and muda; and of the former he says that according to Serapion it is called *churtal* by the Arabs. A similar reference is made by the *Hortus Sanitatis* (1491) to Serapion, but I have not been able to verify the passage in question. The reference in Pliny to the Germans who lived on oatmeal porridge, would seem to imply that that was curious and interesting news to the Romans. The ancient Slav *ovei* is connected with the Latin *ovis*, so that the word *avena* would therefore mean "sheep-weed." [Cf. Hehn, *Kulturpfl. und Haust.*, 1894, 539.] De Candolle (*Orig. Cult. Plants* (Engl. ed.), 373–6) gives the derivation of oats as from the Anglo-Saxon *ата* or *ате*. He then concludes his very interesting and instructive account of this plant as follows:—"As all the varieties of oats are cultivated, and none have been discovered in a truly wild state, it is very probable that they are all derived from a single prehistoric form, a native of eastern temperate Europe and of Tartary."

One or two popular writers in India affirm that oats were carried there in the wake of Chingiz Khan, and that they were well known to the Mughal Emperors. In the *Ain-i-Akbari*, 1590 (Blochmann, tranal., 135), mention is made of oats in the chapter on Fodder. It has also been said that Warren Hastings, when Resident at the Court of Moorshedabad, experimented with oats on the grounds of the Mothu Jheel. Be that statement as it may, the cultivation of oats in India certainly dates from at least the beginning of the 19th century, and though still unimportant has been extended all over the country, especially in the vicinity of large towns and stud farms. The grain does not appear to fill sufficiently to justify the attempt being made to introduce it as an article of human
food, and moreover its liability to fall from the ears on its ripening, induces its being harvested when still green. In India, accordingly, it is used exclusively for feeding horses. If harvested late, the grains are shed and the straw loses much in feeding value. The crop is, however, of considerable value since the straw is recognised as being very much more nutritious than that of either rice or wheat.

Cultivation.—This is similar to that of barley. Duthie and Fuller say that with a copious supply of water, oats will give as many as three cuttings of green fodder, and thereafter make sufficient growth to bear a thin crop of grain. A large proportion of the Hissar oats area is treated in that fashion as a green fodder crop. An acre, Mr. Munkerji says, should yield 20 maunds of grain and 30 of straw. Mr. Mollison observes that the finest quality of grain is produced on the lower slopes of the Himalaya. The crop is grown to a considerable extent in Delhi, Hissar and Meerut districts and to a less extent in Poona, Ahmednagar, Satara and Ahmedabat. All the acclimatised forms grown on the plains of India produce long thin grain with much husk, and the weight per bushel does not usually exceed 35 to 37 lb.

In the plains oats are sown in September to October, or as soon as the rains have subsided. Mollison, for example, says of Bombay that oats are only grown as a rabi season crop, and always under irrigation. They grow best on well-drained friable soils of a fair depth. Very light sand and dense clay are not suitable. In fact, adds Mollison, “oats are grown on the same kinds of soil and under the same conditions as irrigated wheat and barley.” The seed should be broadcasted, and about 100 lb. to the acre will be required. The crop comes to maturity in 3½ to 4 months. The grain can be threshed out on a board or trampled underfoot by bullocks. Mr. Mollison says that a fair outturn on good soil would be 1,800 to 2,200 lb. grain and 25 cwt. straw per acre. Oats as given to horses in India are invariably crushed and mixed with other food substances. [Cf. Butler, Formaline Treat. of Oat Smut, in Agri. Journ. Ind., 1906, i., pt. iii., 257–9.]

Trade.—The imports are small and come for the most part in ships that bring horses. Oatmeal is also to a certain extent imported under the heading of “provisions,” but as it is not separately declared, no particulars can be furnished. But the exports are more considerable than would at first sight be anticipated. During the past 20 years or so they have fluctuated from 50,000 to 80,000 cwt., valued at from 1½ to 4 lakhs of rupees. In 1906–7 the actual figures were 55,518 cwt., valued at Rs. 2,26,022. The traffic is not, however, progressive. It goes very nearly entirely from Bengal and to Mauritius.

AUERHOOA BILIMBI, Linn.; Fl. Br. Ind., i., 439; Gamble, Man. Ind. Timbs., 119; Pharmacog. Ind., i., 248; Cooke, Fl. Pres. Bomb., i., 168; Duthie, Fl. Upper Gang. Plain, i., 132; GERANIACEAE. The bilimbi, bilimbi, belambá, pulich-chakkay, pulusu-kāvđ-lu, vilimbí, havnojom, kala-zoun-si, etc. A. Carambola, Linn.; the kamaranga, khamrak, kamragál, kamragá, tamarak, kamarakha, tamarta, etc. This and the preceding are commonly cultivated in gardens.

These small trees, called, according to Garcia de Orta, 1563 (Coll., xii.), balimba in Malaya and carambolas in Malabar, are fairly extensively grown for the sake of their fruits. It is customary to read of their having been introduced by the
Portuguese from America. The kermerick is not only mentioned in the Memoirs of Baber (Leyden and Erskine, transl., 325), of a date approximately 1519 A.D., or about 27 years after the discovery of America, but it is described in such terms as to leave no doubt whatever as to its identity. Baber gives his account of this fruit in a list of "Vegetable Products Peculiar to Hindustan," and makes no sort of suggestion of its having been only recently introduced. These facts, when taken in conjunction with the existence of a Sanskrit name, may be regarded as throwing grave doubts on the supposed American origin of the karmaranga. The fruits of the Bilimbi ripen about the middle of summer and are used in pickles and curries. The flowers also are sometimes preserved. Of the Caromula, the leaves, roots and fruits, having antiscorbutic properties, are used as cooling medicines. The fruits ripen about January, and when stewed are very palatable. The Natives sometimes eat them raw. When unripe they are astringent and are used as an acid in dyeing, or to remove iron-mould, owing to their containing much potassium-oxalate. The Timber is said to be employed in the Sundribans for building purposes and for furniture. [Cf. Linneushoten, Voy. E. Ind. (ed. Hakl. Soc.), ii. 35; Acosta in Clusius, Hist. Exot. Pl., 1605, 286; Jacobus Rontius in Piso, Ind. Utri re Nat. et Med., vi., 102; Rhede, Hort. Mal., iii., tt. 43-4; Buchanan-Hamilton, Stat. Acc. Divinj., 162; Taylor, Topog. Stat. Dacoa, 50; Moodeen Sheriff, Mat. Med. Med., 75-6; etc., etc.]

The White Mangrove, bina (bani), mada, venkandan, karungandan, tivar, oepata, thame, lameb, etc. A small tree or shrub of the salt marshes and tidal forests of India and Burma; found also in the Andaman and Nicobar Islands and the Malaya.

The Bark of this tree is astringent and used by tanners (Agri. Ld., 1902, No. 17, 48). The ashes of the wood are used to wash cloth. The green fruit mixed with butter and boiled is made into a plaster for softening and maturing humours and to heal smallpox ulceration. The Timber is brittle and employed only for firewood; it is reported as used in the Andamans in the construction of oil-mills, etc.

It is proposed to treat the Bamboos from the practical rather than the scientific standpoint, and accordingly to deal with them collectively instead of under their separate genera. But many of the purposes for which bamboos are utilised are met also by the Canes (Calamus, p. 202), by the Reeds, and other basket and wicker-work materials (Baskets, p. 115). The Canes proper are climbing palms, and the Reeds are species of grasses which, from the industrial point of view, are very nearly identical with the smaller bamboos. The Reeds proper are the species of Phragmites, as also certain species of Arundinaria, Andropogon, Arundo, Ischaemum, Saccharum and Typha. But many basket-materials are not grasses, and the link is thus given that carries the attempt
to classify these industrial substances away completely from the Bamboo and its associates into Mats, until it becomes logically impossible to separate Cotton, Silk and Wool—the chief matting materials—from the Bamboos, the Canes and the Reeds.

The following are the chief Indian genera and species of the *Bambuseae* as recognised by botanists, together with the more valuable special properties of each:

Arundinaria arista, Gamble: *bhèbham, babain, raò niglī*a, East Himalaya, alt. 9,000 to 11,000 feet. *A. densifolia*, Munro: the smallest of Indian bamboos, met with in South India and Ceylon. *A. elegans*, Kuntz: a common species in Burma, distributed to the Naga hills and Assam, alt. 5,000 to 7,500 feet. The *jîla* bamboo of Assam, where it is used in house-construction. *A. patens*, Rees: the Himalayan Bamboo—from the Ravi to Nepal, alt. 4,000 to 8,000 feet. Is the *ringlī*, *nigalī*, *nàgara*, *narri*, *garri*, *gorara*, *spikna*, *nigdola*, *kewi*, *tham*, *utham*, *kutina*, etc. Culms are exported to the plains where they are worked up into *hookah*-tubes (*nàicha*), fishing-rods, lining for roofs of houses, arrows, basket-work, etc. The neat little baskets used by the hillmen to hold the wool and distaff with which they beguile leisure hours is made of the *ringal* bamboo. (Cf. Ind. For., 1886, xii. 414; xiv., 309; Geo. Monog. Fibrous Manuf. Ph., 1891, 13.)

A. *Griffithiana*, Munro: *khanp* or *w-spar*, a thorny shrub of the Khalsa and Jaintia hills, employed to tie thatch. (Cf. Ind. For., 1888, xiv., 309.)

A. *Hooperiana*, Munro: a cespitose species of the Eastern Himalaya—the *nàngam*, *prong*, etc. affords an edible seed. (Cf. Ind. For., 1888, xiv., 310-4; For. Acad. Nett. 1886, 9.)

A. *intermedia*, Munro: the *nàjula*, *nîgala*, *parmiok*, *prong mok*, etc. An East-Himalayan species, alt. 7,000 feet. Is an excellent hedge plant, the culms of which are strong and used for fishing-rods, baskets, mats, etc. Is largely exported from Darjeeling to the plains.

A. *Khasiana*, Munro: the *nàmìlang* (or *kouldar nàmìlang*), a species of the Khalsa hills, alt. 5,000 to 6,000 feet. Is often specially cultivated and used for wattle-and-dab walls.

A. *Prairiæ*, Gamble: Naga and Jaintia hills. A graceful climbing plant which has six stamens and is known as *sampa*, *kev*, etc. It is used in basket-work and in hut-building, etc.

A. *Mauni*, Gamble: another climbing species, may also be mentioned. It occurs in the Darjeeling hills and is known as *beneng*. It is used split as a binding material in hut-building.

A. *racemosa*, Munro: the *maling*, *phyuen*, *miknū*, *mheem*, *phong*, *pat-hius*, etc. A Darjeeling gregarious species extensively employed in mat-making and for roofs of Native houses, fences, garden supports, etc. Largely used in Darjeeling as fodder for ponies (Ind. For., 1888, xiv., 308-9).

A. *spathiflora*, Trin.: the high-level *ringal*, *garri*, *deo nigal*, etc., of the N.W. Himalaya (from the Sutlej), alt. 7,000 to 9,000 feet. Is the common undergrowth of *deo* and *pie*. Often flowers gregariously. A. *Weightiana*, Rees: the *chowari*—a shrubby species of the hills of Southern and Western India, specially abundant on the Nilgiris. Largely used for mats, baskets, walking-sticks, etc.; exported to Bombay and all over India. The young shoots are eaten and the juice has often proved of much value.

Bambusa arundinacea, Wild. The Spiny Bamboo or *kañta bana*, behor, *bona*, *katanga*, *kolak*, *vàs*, *ketia*, *katai*, *kotha*, *goda*, *dunji*, *mugar* bana, nîl bana, vedru, *pent-vedru* (hollow bamboo), *mûnglī*, *yakatwa*, etc. This tall, graceful bamboo is both wild and cultivated all over India and Burma, except in the Himalaya and Sub-Himalaya and the valleys of the Ganges and Indus. It is scarce in the Central Provinces but not uncommon in Gujrat. Very frequent in Orissa and the Karnâtak, both as a small and as a large variety, and abundant in the Konkan and on the Western Ghats ranges. In the Deccan it occurs in the valleys (as it also does throughout South India), ascending the Nilgiris to alt. 3,000 feet. Scarce in Northern and Eastern Bengal and Assam, but becomes common in Burma from Pegu and Martaban to Tenasserim.

Gamble tells us that it flowers about every thirty years and is reproduced by seed, but several writers in the Indian press say only twice in a century. A forest of surpassing splendour is transformed into one of desolation and death, soon followed by fire, until the charred stems, dust and ashes are all that remain. But seeding would appear to take place in sections. A writer in the
BAMBOOS:
BAMUSA
TULDA

Gardeners' Chronicle describes the manifestation of 1862 as having commenced in Travancore, extended to Malabar in the following season, and in the next year to Coorg and Mysore.

The seeds, which somewhat resemble wheat, are EDIBLE, and have in certain years proved of great value in supplementing food-supplies, more especially since flowering very frequently accompanies seasons of famine or scarcity. Speaking, probably of this grain, Church (Food-Grains of Ind., 102) gives the nutrient value as 87. He then remarks: "The food value of bamboo grain, after the removal of the husk, is high; its defects are due to the low proportion of oil and mineral matter." The analysis, he says, shows 73.7 per cent. of starch, 11.8 albuminoids, 11.0 water, 1.7 fibre, 1.2 ash and 0.6 oil. The young shoots (kuila bôna) are greedily eaten and somewhat resemble asparagus; they appear above ground in August. The leaves are very largely employed as fodder, more especially for buffaloes and elephants. The leaves and tender twigs are used MEDICINALLY, being supposed to possess emmenagogue properties. The silicious deposit within the joints, known as Tabahîr, though found in most, if not all bamboos, was first observed in connection with this species.

The CULMS, which attain a height of 80 to 100 feet, and are 6 to 7 inches in diameter, are very largely employed (although this is by no means one of the best bamboos), but they are rather crooked and often knotty. At the same time the densely interlacing thorny branchlets make it difficult to extract the felled culms, hence it is not a species that would be cultivated in the commercial supply of bamboo. But as a hedge it has often proved of great value, and as Mr. Gamble says, except explosives nothing would have much effect against it. It is often badly attacked by a small hemipterous insect, an aphis which has been described under the name of Oreyna bambusa (Stebbing, Injurious Insects, 20-2). This attacks the leaves in such multitudes that it causes a sort of MANNA to form. [Cf. Taylor, Topog. Stat. Daes, 1840, 61; Pharmacog. Ind., 1893, iii., 586-92; Jasper Nicholls, Journ. Bomb. Nat. Hist. Soc., 1893, viii., 298; also Ind. For., 1895, xxxi., 90-5.]

B. Balcoa, 'balco. The balco bôna, balvka, bhâluka, boro-bôna, sîl bôria, telî bôria, wamnakh, beru, betua, etc. This well-marked and most useful bamboo is a native of the plains on the eastern side of India. The culms are 50 to 70 feet high and 3 to 6 inches in diameter; nodes swollen with a whitish ring above and hairy below. It is probably the best and strongest species for building purposes and is greatly esteemed in Caleutta, but it is not a handsome plant and would hardly be chosen for ornamental purposes. It is much used for scaffolding and is very durable if well season by immersion in water, a process said to protect it from subsequent attack by Rosochicâs beetles (Working Plans, For. Jlapai, 1898, 22.)

B. nutans, 'wâni. The pichle, bidâlû, nal bôna, mukial, mazal, mahî, pâschi-ding-ting, jotia, deobâna, wa-malang, ering-jai, etc. A moderate-sized graceful species, found on the lower Himalaya from the Jumna to Assam and Eastern Bengal, doubtfully wild anywhere west of Sarada but common near villages and along roads and canals in Dehra Dun. In Sikkim it is met with up to alt. 5,000 feet. Culms 20 to 40 feet high, 1½ to 3 inches in diameter, and having the internodes 15 to 18 inches long. Strong, straight, hard, good and much esteemed, and since they rise from the ground well apart, plantations of this species can be easily and profitably worked (Kanjhîlal, For. Pl. School Circ. U. Prov., 1900, 367.)

B. polymorpha, 'muaro. A common species in the upper mixed forests of the Pegu Yomah and Martaban, often associated with teak and distributed westward to Assam and Eastern Bengal. The culms, which are found in dense clumps, are 50 to 60 feet high and 3 to 6 inches in thickness, much branched above and curving downwards. The species is known in Burma as kyathunyea (kya-thon-u), in Assam as betu, and in Bengal as jáma betu; is considered one of the best bamboos for walls, floors, roofs of houses, etc. [Cf. Ind. For., 1876, i., 22; 1896, xxii., 70; 1897, xxxii., 131, 263; 1903, xxix. (flowering of), 244-5, 513-6; Alpin, Rept. Exp. Shan States, 1887-8; Ind. and East Engineer, 1897, 166, etc.]

B. tulda, 'tulda. The Common Bamboo of Bengal, tulda, jowra, dyoea bôna, mak, malâk, mûrândi, matela, peka, wîrtena, mîlenga, witori, tmumâ, wopi, nal-bôna, deo-bôna, bijulî, jari, jao, ghora, theina, thâkwa, etc. This occurs in Central and Eastern Bengal, Assam and Burma, also on the hills of the Northern Circars and probably in Orissa. It is cultivated throughout Eastern Bengal

100
and Burma, and is perhaps the most common bamboo in the rice country of Bengal and Assam. It is, however, somewhat difficult to distinguish from *B. nudaum, and the two plants are consequently often much confused and the same vernacular names given to either indiscriminately. It flowers gregariously over considerable areas, but single flowering clumps are not unusual. The culms are green, streaked with yellow; they attain a height of from 20 to 70 feet and 2 to 4 inches in thickness. They are regarded as strong, but not so much so as those of *B. Bacocon. Roxburgh says that if seasoned in water they become fairly durable, otherwise they are soon devoured by a small *Bostrichus beetle. The culms are used for building purposes, roofing, scaffolding, making mats and baskets, fans, window-blinds, etc., and when young are picked and eaten.

B. vulgaris, Schrad. In Bengal this is the *bāsinī* or *bāsini*, that is “Female Bamboo” — a name which in South India is also given to *B. arundinaeae*. In other parts of the country it is the Golden or Yellow Bamboo, *barīla, san-dropai, kaluk*, or *kalak*, or *vansa-kudaka, kula, ana, wane*, etc. This cosmopolitan species is cultivated and runs wild over the warmer parts of India and Burma; its original country is uncertain, but it is found in Java, Mauritius, Madagascar, Algeria, the West Indies, Mexico and Central and South America, etc., etc. The culms are bright green or striped green and yellow, polished, shining. They attain a height of from 20 to 50 feet with a diameter of from 2 to 4 inches. The nodes are hardly raised but have a ring of brown hairs. The species is used chiefly in basket-making and to some extent in house-construction. [Cf. Lisboa, Bomb. Grasses, 1896, 140; Talbot, List Trees, etc., 1902, 347; Firminger, Man. Gard. Ind. (ed. Cameron), 1904, 321.]

cephalostachyum capitatum, Mume. *The gobia, gop, payong, sillea, sileet, etc.* A shrubby semi-scandent bamboo found in the North-East Himalaya and in the Khasia, Jaintia and Nagla hills. It is a graceful plant which often forms dense thickets. The wood is used by the Lepchas in preference to that of any other kind (for making bows and arrows), and is also regarded as good for baskets. The joints of the culms are often 21 feet long. The leaves are employed as FODDER and the seeds are eaten in times of scarcity.

C. pergracilis, Mume. *Is known as latang, madang, tinua, kengwa*, etc. A deciduous arborescent bamboo common in Burma, and after *Dendrocalamus strictus* is there, perhaps, the most abundant of all species. It occurs also in Chota Nagpur and Assam and is being cultivated experimentally in South India. The culms are largely used for building purposes, floating timber and mat-making. In Burma the joints are employed for boiling the *kaukkyiyin* or glutinous rice, the effect being to produce a long mould of boiled rice which can be carried about and eaten on journeys. In Manipur I observed my coolies invariably cooked their food in joints of green bamboo. The fact of their being green and the presence of the fluid within, seemed to render the fire incapable of burning these wooden cooking-pots.

Dendrocalamus Brandisii, Kurz. This is sometimes confused with *D. giganteus*, and, like it, is often called *kabob*. Its proper names are *kyelowa, kawpu, wakay, waku*, etc. Mr. Alpin (Rept. on the Shan States, 1887–8) calls it *kyelio* bamboo. It is a lofty tufted evergreen species with ashy-grey culms from 60 to 120 feet in length and 5 to 8 inches in diameter. It is found in the tropical forests of Pegu and of Martaban up to alt. 4,000 feet, chiefly on calcareous rocks. It is said to flower sporadically and not to die off after flowering. Nisbet (*Burma under Brit. Rule and Before, 1901, i., 381*) says the culms are employed for boat masts.

G. giganteus, Mume. This truly gigantic grass is a native of the Malay Peninsula but much cultivated in Burma, where it is known as *kabob* and in Assam as *worra*. It is used in Burma for posts and rafters in house-building, for carts, etc., and the joints for pails, boxes, flower-pots, etc. The large culms (often 120 feet long and 25 to 30 inches in circumference) are said to fetch Rs. 2–4 each, or in quantity, Rs. 150 to Rs. 180 per hundred. At the Colonial and Indian Exhibition, London, I had extra fine culms cut into short lengths and prepared as umbrella stands, when they readily fetched 5s. to 10s. each, according to size. [Cf. Varthema, *Travels*, 1510 (ed. Hakl. Soc.), 218–9.]

D. Hamiltonii, Req. & Atn. In the lower North-West hills this is called *cyge*; in Darjeeling *tama, pao, and pa-shing*; in Assam and Burma *kokwa* or *kakua, wah, pecha, jonay, wanoke, wobu-myetamaye, etc.* It is a large bamboo that flowers sporadically and also gregariously. It occurs in the North-East Himalaya, Assam, Khasia hills, Sylhet and Upper Burma, and is dis-
THE INDIAN BAMBOOS

BAMBOOS
DENDROCALAMUS
STRICTUS

buted westward to the Sutlej, though beyond Nepal it is doubtfully indigenous. The culms run from 40 to as much as 80 feet in height and from 4 to 6 inches in diameter; the nodes are marked with root-scars, the internodes are 12 to 20 inches in length, and the walls half an inch thick. It is the common bamboo of Darjeeling, the Duars and Assam, and is universally employed for all kinds of basket and mat work. For building purposes it is not much esteemed. The young shoots are eaten as a vegetable, and in Assam a specially prepared substance known as _guss-tenga_ is eaten as a luxury (Hooper, _Rept. Labor. Ind. Mus._, 1905-6, 37). The inner layer of the culm-sheath is utilised for covering Burmese cigarettes.

Referring to its straggling habit, Mr. Oliver says: "When they have no trees to support them, the main stems bend over, forming impenetrable thickets, and the lateral branches ascend vertically, often forming shoots nearly as long as the main stems." Mr. Manson alludes to the value of this species to the tea-planters of Darjeeling district in shading their plantations from hot and violent winds. (Cf. _Agri. Legd._, 1896, No. 27, 245, 260; Kanjilal, _For. School Circ. U. Prov._, 1901, 369; _For. Admin. Rept. Assam_, 1896-7, 14.)

D. Hookeriana, Hook. The _seit, usey, sejerni, vijong, uhotang, pates, tilu, karu ule._ A large bamboo with long curving branches, met with in the Khasia and Jaintia hills, alt. 2,000 to 5,000 feet, in the Daphla hills, also Sikkim, and is distributed to Sampa in Upper Burma. The culms are from 50 to 60 feet high and 4 to 6 inches in diameter, walls about 1 inch thick and internodes 18 to 20 inches long. The culms are used in making water and milk pails (_chungus_).

D. longispathus, Kurz. A large and handsome bamboo of East Bengal and Burma, chiefly near streams. It is known as the _khang, ora, wa-ya_ and _talaay._ Wa-ya in Burmese means "Stinging Bamboo," a name given in allusion to the irritating hairs on the sheath. The culms reach to 60 feet high; internodes 10 to 24 inches long and 3 to 4 inches in diameter, with the walls half an inch thick. It often roots at the nodes, and the culm sheaths are papery and more or less persistent. It is not much appreciated as a building material, though used when better kinds are not available. (Cf. _Madras Admin. Rept._ (numerous passages), 1888-9 to 1898.)

D. sikkimensis, Gamble. The _pugriyan_ of Darjeeling, _wadah_ of the Garo hills and the _tiria, vola_ in Nepal. A large bamboo, with cespitose stems and few culms, but these 50 to 60 feet or more high and 5 to 7 inches in diameter. It occurs on the hills of the North-East Himalaya—Sikkim and Bhutan—at altitudes of 4,000 to 6,000 feet, also at Tura in the Garo hills, and is cultivated in several localities. It is the largest and perhaps the most beautiful species in Sikkim, where its thick culms are preferred for making the _chungus_ (or pails) in which water and milk are carried and butter churned. But the leaves have the evil reputation of being poisonous to cattle and horses.

D. strictus, Nees. This is the most common, most widespread and most universally used of all Indian bamboos. It is the "Male Bamboo," the _báns, báns kabon, báns khérd, karail, mathan, mah, bára mat, saiha báns, halpá, vadur, bhiro, kark, kal mungil, kibidaru, sajanapada-vadrú, kauka, muniwa_, etc. Is deciduous, densely tufted, gregarious, has strong often solid culms, which average from 30 to 50 feet high and 1 to 3 inches in diameter. It occurs on all moderately dry hills throughout India and Burma, except in Northern and Eastern Bengal and Assam. In South India and Burma it reaches a large size and has hollow culms, while in the drier Deccan hills and the Siwaliks it is smaller but has nearly solid culms. Flowering is usually gregarious: the flowers appear in the cold season, the seed ripens in June and is shed, but the husk remains. After flowering, the plants die and are replaced by seedlings.

Col. Dove ton (_Ind. For.,_ ix., 529) gives an account of the Indian uses of this bamboo in connection with the Central Provinces, that might be consulted as it is characteristic of the species wherever found. Amongst other uses, he mentions rafters and battens, spear and lance-shafts, walking-sticks, whip-handles, the manufacture of mats, roofing, sieves, hand-punkhas, umbrellas, chairs, vessels for holding grease and oil, bows, arrows, and cordage, etc., etc. When converted into charcoal is in request for the finer smiths' work. The dry stems are also used for torches and the production of fire by friction. The leaves are much sought after as food for buffaloes and even for horses. The seed is used in times of famine as a food-grain, and the young and tender shoots are also largely eaten as vegetables (see _Bot. Bure. Ind._, 1903-4, ii., 29, 156, 198). In another paragraph particulars will be found of the recent and highly interesting discovery of manna (saccharon) seen on this species. (Cf. _Agri. Legd._, 1900, No. 17.)

102
One of the chief European uses for this bamboo is the manufacture of lance shafts. For this purpose solid stems of uniform thickness are essential. But apparently they are only here and there completely solid. Thus the supply is unequal to the demand. Split up and again united they are made into fishing rods. For bamboo furniture the hollow stems are now largely utilised. In India it fetches from 8 annas to Rs. 1–8 per hundred in the forests, but the transport charges to the coast are the chief items of expense. Gamble estimates the total annual production at possibly 100 million culms. [Cf. For. Admin. Rept. C. Prov., 1892–3, 13–4; Lisboa, Bomb. Grasses, 1896, 141–4; Lovegrove, Ind. For., 1900, 433–42; Smythies, Ind. For., 1901, xxvii., 126; Kanjilal, For. Fl. School Circ. U. Prov., 1901, 369; Church, Food-Grains of Ind., suppl., 9, 1901, 7; Branthwaite, Ind. For., 1902, xxviii., 253; Murie, Ind. For. Forr., xxviii., 507–8.]

Gigantochloa macrostachya, Linn. An evergreen bamboo with striped culms from 30 to 50 feet long and 2 1/8 to 4 inches thick. Native of Assam, Chittagong and Burma. **G. verticillata** is the beautiful striped species often cultivated in India but introduced from the Malay. Gamble suspects *G. auriculata*, Kor. the forest of Bengal and *talayewa* of Burma, may have to be placed under *Oxytenanthera*.

Melocalamus compactiflorus, Bent., Hook. f. This arboreal species, tufted and scanty evergreen occurs in Eastern Bengal and Burma, viz. from Sylhet and Chittagong down to Martaban, but is frequent only between the 25th and 42nd degree of latitude. In Sylhet and Chittagong, it is locally known as *un-powe*, and in the Kachin country as *machinae*, in Chittagong as *lota*, and in Sylhet as *dara*. The culms are largely used for basket-work, and when split in the green state may be reduced to such small, fine and pliable strands that they may be woven. It is a material employed in the construction of the shoes worn by the Kachin, Shan and Chinese traders seen in Bhamo, and in the characteristic lacquered ware of Upper Burma. The seed is large, edible and mealy, somewhat resembling the chestnut. [Cf. Ind. For., 1902, xxviii., 432; Ind. Art at Delhi, 1903, 223.]

Melocanna bambusoides, Trin. This is sometimes called the berry-bearing bamboo and is known by the following vernacular names—*muhi*, *metungu*, *paita*, *toria*, *wati*, *arum*, *tarihu*, *wattrai*, *kuyunguyo*, *papu-pulla*, *kuyunguyo*, *kuyunguyo*, *kuyunguyo*. It is an evergreen bamboo with distant culms, often called the Terai bamboo. An arboreal species, tufted and scantly evergreen, with slender stems, arising from the rainforest as an underground rhizome. Met with throughout Eastern Bengal and Burma. In Chittagong it is perhaps the most prevalent species, and is universally employed for building purposes and mat-making. It is very largely exported to Lower Bengal, and according to the forest returns about 16 million culms are yearly required in the Gangetic Delta. It is, in fact, from the Indian standpoint, one of the most valuable of bamboos. Though thin-walled is strong and durable and has the great advantage of being being straight and of possessing only very slight knots. It is doubtless the *paita* and *aworja* bamboo referred to by Lewin, who observes that when this and other species are cut, the resin will not attack it. Gregson says the young shoots are often killed by a beetle—*Cyrptocolechus longipes* (Ind. For., xxv., 420). The fruit is large, edible and occasionally germinates and makes as much as 6 inches growth before it comes up from the stem (Stapf, Trans. Linn. Soc., 1901–5, vi., 409–23). *Tabashir* is often very abundant in the stems (Roxb., Fl. Ind., ii., 197). A shrubby gregarious reed or bamboo, met with on the mountains and plains of South India (in Tinnevelly and Travancore districts), up to alt. 3,000 to 5,000 feet. It has exceptionally large flowers and fruits and as many as 120 stamens in one spikelet, united more or less into a tube. The culms attain a height of 20 feet, and the internodes are sometimes 5 feet in length. T. F. Bourdillon, Conservator of Forests, Travancore State, has furnished much useful information regarding this species. It flowers, he says, gregariously every 30 to 40 years, then it dies down. The shoots when 6 to 9 months old constitute a splendid paper material. For some five years or so a paper-mill was run in Travancore which used this material almost exclusively. The fibre has been pronounced superior to *esparto* but the expense of chemicals killed the industry, as it seems a larger quantity was required than with other paper materials. [Cf. Ind. For., 1899, xxv., 152.]

Oxytenanthera nigrociillata, Munro; *podah* (And.) *wahalut* (Garo), *balang* *bons* (Oriasa). A tufted evergreen species, found in Orissa, Chittagong, Burma, the Andaman Islands and Malay Peninsula. Used in house-building and for basket work.

BAMBOOS:

OXYTENANTHERA NIGROCIILLATA

- **European Demand.**
- **Fishing-rods.**
- **Furniture.**
- **Price.**
- **Production.**

D.E.P.
- **iii., 498.**
- **Striped Bamboo.**
- **Eastern Bengal and Burma.**

D.E.P.
- **i., 372.**
- **Scanty Bamboo.**
- **Eastern Bengal and Burma.**

Woven.

Large Edible Seed.

D.E.P.
- **v., 225.**
- **Berry Bamboo.**

Building Purposes.

Mat-making.

Trade.

Most Valuable Bamboo.

White-ant-proof.

Tahbshir.

D.E.P.
- **i., 372.**
- **South Indian Reed-Bamboo.**

Paper Material.

D.E.P.
- **v., 675.**
- **Eastern Peninsula Species.**

103
the different species. One peculiarity is preserved by all bamboos, namely, the rapid growth of the young shoots. This is a most important provision, for a branched shoot could never penetrate through the crowded mass of mature culms. Having in about a month reached its full height and thickness, the shoot commences to produce its branches and branchlets, and thus weighted, it curves into the graceful plume which is the elegant and familiar feature of most species.

As a rule the bamboo is gregarious, establishing itself so thoroughly over certain portions of wild forest tracts that it very nearly exterminates all other forms of vegetation. Seen from a height, nothing could be more lovely, but, to the traveller who for days together may have to clear a path for himself, the interminable monotony, the twilight shade and death-like stillness, broken only by the sighing of the grating culms, make the bamboo jungle dreary in the extreme. In mixed forests, an occasional clump has a most pleasing effect. It supplies the traveller, moreover, with some of his most essential materials of equipment. Indeed, where bamboos are plentiful tents may be dispensed with, for, through the expert handling of that material, the camp followers, armed with large knives, can in a remarkably short time erect a comfortable hut and furnish it with beds, tables and chairs, all constructed from the bamboo. Sir J. D. Hooker (Him. Journ.) observes that it took "the Leptchas about twenty minutes to construct a table and two bedsteads within our tent." Lewin (Wild Races of South-Eastern India, 1870, 28-30) says: "The hillman would die without the bamboo, and the thing he finds hardest of credence is that in other countries the bamboo does not grow, and that men live in ignorance of it." A writer in The Pall Mall Gazette published in 1893 a charmingly told story of bamboo and its uses. He said the Orient was wreathed in bamboo; it was the one characteristic common to all the East,—bamboo was in fact symbolic of the East. Mason (Burma and Its People (ed. Theobald), 1883, ii., 102-3) gives a brief sketch of the varied uses of the bamboo, in which the methods of procuring fire from that material may be found specially interesting.

Popularly, bamboos may be divided into those which grow in separate clusters or clumps, and those which send up their shoots singly from an underground root-stock, and thus form continuous patches of perhaps many miles in extent. The former are characteristic of the tropical, and the latter of the extra-tropical or temperate forests. Each clump bears from 30 to 100 culms, which attain a height of from 30 to 100, or even 130 feet. The creeping bamboos are often exceedingly valuable. Of this class may be mentioned *Pseudostachyum polymorphum*—an East Himalayan and Burmese form—and *Melocanna bambusoides*, one of the most valuable species and one which is extensively exported from Chittagong. Of this kind may also be mentioned *Bambusa nutans*—a Darjeeling bamboo. The distance apart of the culms is a feature of commercial value, since the difficulty of removal of ripe culms from dense clumps is a serious disadvantage in some bamboos. A few are climbers (such as *Arundinaria Pratini*, *Cephalostachyum capitatum* and *Melocannus compactiflorus*), their festoons and pendulous boughs passing gracefully from tree to tree.

For about two-thirds of its lower portion, the culm of most bamboos is unbranched, or possesses only very short and inconspicuous branches. On escaping from the ground the shoot attains very rapidly its full di-
FLOWERING OF THE BAMBOO

meter and appears like a great scaly cone, clad in large embracing sheaths. Solid-stemmed bamboos are, as a rule, much smaller than hollow ones, but bamboo culms may be said to range from the thickness of a goose's quill to more than a foot in diameter. Until the branches have been fully developed the culm is not mature. The branches are produced from below upwards, and with their appearance the stem gradually matures. A good deal has been written as to the rate of growth of the shoot, but up to the present exact and definite figures, even for the important species, cannot be obtained. It is probable that an average of three inches per day would not overstate the growth of the young shoots of the more important bamboos. This seems also, in the majority of species, to take place chiefly at night and to continue for a month pretty uniformly, being increased if anything by fine clear days, and retarded apparently by damp and cloudy weather. The period of sprouting is generally about the beginning of the rains. Repeated cutting of bamboo-shoots considerably weakens the stock, while the cutting of full-grown haulms does no more injury than mowing does to grass. Indeed it is believed that too much cutting of shoots results in early flowering of the stock, and in most cases death to the plant. This fact has an important bearing upon the question of the application of the bamboo for the manufacture of paper, since young and not mature culms are necessary for that purpose. The number of shoots produced yearly from each clump varies according to the vigour of the individual and the peculiarities of the species. It is believed that the larger species produce 12 to 20 and the smaller 30 to 50. If we assume 10 a year, that would mean 300 culms in 30 years, which is the mean age of most species. The greatest possible variability exists in the colour and markings of bamboo culms. Some are pale-coloured, others dark-green, some bluish, others yellow, or again others are variegated. Solidified buds are sometimes developed into formidable recurved spines, or below the sheath a whorl of rootlets are produced which harden into spineless bodies. These are popularly called the spiny bamboos. For the purpose of live fences the spiny bamboos are specially valuable, such as B. arundinacea and B. Blumeana. The last mentioned is split and made into mats and sugar sacks in Java. Most bamboos show a tendency to flatten above the nodes; especially is this the case with Phyllostachys, the genus that affords the “square” bamboo of China. The Whangee canes are obtained from P. nigra. [Cf. Or. Comm., 1813, ii., 545; Hobson-Jobson (ed. Crooke), 1903, 969; Kew Mus. Guide, No. 2, 78.]

Durability of the bamboo depends, in the first instance, upon the culms being cut when mature. Specific peculiarities render some culms more durable than others, as, for example, the thickness of the woody-shell, and the amount of silicious matter deposited within the tissue. In this latter respect bamboos vary exceedingly. Long immersion in water greatly enhances the durability, rendering the stem less liable to the attacks of insects, owing to the sap, which they are fond of, being quickly extracted.

Flowering of the Bamboo.—A great deal has been written regarding this exceedingly curious and interesting subject. All the species commence to flower when in full leaf, but as the inflorescence expands the leaves as a rule fall off, until when in complete flower the clump or certain portions of it are leafless. In some cases special flowering culms are produced, at other times every culm flowers, the flowering portion of the entire clump dying off after the seed has been matured. In a few instances
the plant continues to flower as a perennial, while some bamboos are entirely annual, flowering and dying down to the ground every year. With all the larger species the flowering stage is reached after a prolonged period of vegetation, variously stated at from 25 to 50 years, and is almost regularly followed by the death of the whole stock. But the most curious circumstance in the flowering of bamboos may be said to be that while certain species are sporadic, others are gregarious. That is to say, a few plants here and there flower in the one instance, and all the plants of the same species flower simultaneously in the other. In the alphabetical enumeration above the reader will find occasional mention of this feature. According to some writers the gregarious flowering is due to specific maturity being attained at a certain age, when flowering ensues on all the plants derived from the same stock. According to others, flowering is directly a result of climatic conditions. Both opinions may be true, and this is probably the wiser solution of the phenomenon—in other words, a bamboo may not flower before it has attained a certain age, but its flowering may be retarded or accelerated by climatic influences. It is an undoubted fact that the flowering of the bamboo is decidedly influenced by the causes which bring about famine, for the providential supply of food from this source has saved the lives of thousands of persons during several of the great famines of India. Sleeman (in 1836) suggested that it might save the complete destruction of the bamboos of a district to introduce seedlings obtained from the same species found in remote localities. Whether or not this would have the desired result cannot as yet be stated. But it appears certain that it is inmaterial whether cuttings are taken a few years or many years before the flowering; the parent as well as plants raised from it by cuttings, will flower and die simultaneously. Indeed it has been shown that cuttings taken a year or so before the flowering, if unable to produce flowers, nevertheless die with the rest. [Cf. Brandis, Ind. For., 1900, xxv., 10-25; Bean, Kew Bulb., 1907, 228-33.]

Propagating the Bamboo.—This may be effected:—1. By Seed. The slowest but most satisfactory process. Some species germinate while the seed is still attached to the plant, the young seedlings dropping from the parent when about 6 inches in size. Nothing is known as to the period of vitality of the bamboo seeds, but if carefully collected and matured in the usual way, they may be sent from one part of India to the other in good condition. But this, of course, applies only to those which fall from the plant before germinating. Seedlings, however, require 10 to 20 years to attain a growth sufficient to admit of full cropping, the period varying slightly according to the species grown and the locality of production.

2. By Cuttings.—This is the process most frequently adopted in artificial production. The lower part, say 3 feet in length, of a growing half mature stem is placed in the ground shortly after the commencement of the rains. This is most frequently cut off so as to leave, if possible, a portion of the rhizome attached. The cutting should be made a little below one of the nodes and buried so as to include two nodes. Sometimes the cuttings are laid lengthwise along the ground on a specially prepared soil, and the sproutings at each node with their rootlets are afterwards severed and transplanted to their final positions.

Paper Material.—" Of all the fibre-yielding plants known to botanical science, there is not one so well calculated to meet the
pressing requirements of the paper trade as "Bamboo," both as regards facility and economy of production, as well as the quality of the "paper-stock" which can be manufactured therefrom; grown under favourable conditions of climate and soil, there is no plant which will give so heavy a crop of available fibre to the acre, no plant which requires so little care for its cultivation and continuous production." These are the opening sentences of Mr. Routledge's most useful and interesting pamphlet on Bamboo as a Paper-Making Material, published in 1875 (also Bamboo and Its Treatment, 1879). I had the pleasure of meeting Mr. Routledge during his visit to India. There seemed then a possibility of doing something with bamboo. He spared no pains to test his theories and expectations. Unfortunately he died shortly after having learned that there were practical as well as physical and chemical difficulties that seriously opposed the growth of a trade in this new paper material. These may be briefly summarised as follows:

1.—The young shoots only being serviceable for paper-making, three serious difficulties arise:—(a) the bamboo shoots appear from June to July and are in condition during August and September, but by the end of October are too old; (b) the stock suffers severely from the removal of the shoots; (c) each clump can yield only about three or four shoots a year.

2.—Experiment seems to have failed to induce the bamboo to produce a continuous supply of shoots throughout the year.

3.—A large percentage of the old stems requires to be left on the stools, otherwise the plants are killed, and this same danger exists in complete removal of the young shoots. Hence methodical working of the jungles becomes essential, thus considerably increasing the charges of collection and transport. Sir George King demonstrated that if all the shoots be removed for three successive years the plant is killed. This danger may however, be averted for a time by systematic working of the clumps, but it appears to be ultimately certain to ensue.

4.—During the months in which the bamboo shoots appear, the climate of the most important bamboo tracts is such that labour could not be obtained. In fact, bamboo forests occupy, as a rule, uninhabited districts rendering the labour question, apart from the dangers to human life, one of the most serious difficulties.

5.—The freight and transport charges incidental to all raw products which have to be conveyed for long distances are very considerable. In fact, owing to the scattered nature of the clumps which form bamboo jungles, human labour would be the only means of collecting the material to centres from which it could be conveyed to the factory.

6.—A most unexpected difficulty, which in itself almost renders the bamboo unsuitable for paper-making, exists also in the hard adpressed hairs which cover the scales and young stems. It has been found impossible to remove these, and they are not only dangerous to the men employed, but injure the paper seriously. [In passing it may be added that in Java these hairs are reputed to be used as a criminal poison. Gamble points out, however, that the difficulty in the hairs does not exist in Melocanna.]

7.—As demonstrated in Travancore with perhaps the most likely bamboo (Ochlandra travancorica), the amount of chemicals required is prohibitive.

BAMBOO MANNA

Edible Leaves, Seeds and Shoots.—In the brief abstract of information given above as an alphabetical enumeration of the more important species of Indian bamboos, mention will be found of those that are specially valued as *Fodder*. Some are highly prized (especially for horses), others viewed as very indifferent fodders, and still others (such as *B. nana*) used mainly as cattle *Medicines*. It has already been stated that in times of scarcity bamboo *Grain* has saved the lives of thousands of human beings. Many instances are on record of the providential flowering of the bamboo in times of famine. The grain is pounded in the ordinary way in order to remove the husk, then milled until reduced to a coarse meal or flour. In that form, either by itself or after being mixed with rice or *juûdr*, it is baked into cakes (*chapatis*) and thus eaten. The young *Shoots* constitute a most important article of food all over India, nearly every bamboo being eaten in this stage; but the larger species are most generally used. Freed from the sheaths and hairs, they are cut up into small pieces and eaten in curries. They are also pickled or boiled into preserves. The young shoots of the smaller species if boiled in water with a little salt resemble an inferior quality of asparagus. [Cf. Nisbet, Ind. For., 1895, xxii., 98-100; also Wallinger, xxvii., 226-8.]

Chemical Composition.—The most complete analysis yet published of bamboo grain is that given by Prof. A. H. Church (Food-Grains Ind., suppl., 1901, 6), which shows in 100 parts: water 13.5, albuminoids 10.8, starch 71.6, oil 0.6, fibre 2.1, and ash 1.4. "The above-stated percentage of albuminoids, calculated from the total nitrogen present in the grain, gives us the nutrient ratio 1:6.7, the nutrient value being 83.5." This was the result obtained from the examination of a sample of *B. Tulda*. Church adds that the grains were much larger than those of *B. arundinacea* though similar in chemical composition. Prof. T. Thomson of Glasgow found the ash of bamboo grain to consist of silica 90.50 per cent., potash 1.10 per cent., peroxide of iron 0.90 per cent., alumina 0.40 per cent., moisture 4.87 per cent., loss 2.23 per cent.

Manna.—In March 1900, Mr. A. E. Lowrie, Forest Divisional Officer, Chanda, sent me a sample of bamboo manna. This was chemically analysed at my request by Mr. D. Hooper and his results published in *The Agricultural Ledger* (1900, No. 17). Mr. Lowrie wrote as follows: "About the middle of last month I went through the area of *Dendrocalamus strictus* seeded forests and found that, though most of the bamboo clumps were far advanced in seed, small stretches were still flowering, and strange to say, in the drier portions of the forest on poor soil, very stony and chiefly laterite. It was while passing through one of these tracts that I noticed the culms in the clumps streaked all the way down with what appeared to me to be a white brittle gum, similar to what one sees exuding from *Odina Wodier*. On asking some of the Gonds (local men) who were with me, what it was, they could not tell me and had never seen it before. I at once collected some, and on tasting it, found that it was perfectly sweet. The men then began collecting it by handfuls. I also collected some and send you a tinful in case you would care to have it. On reaching camp I got hold of a number of the villagers, both Gonds and others, and on inquiry they told me they had never seen or heard
of this gum. I passed through a number of similar stretches in which the bamboos were covered with the gum. This sugary deposit only extended for about five feet along the culms and was entirely absent towards the tops; it was found both at the nodes of the bamboo as well as on the stems between the nodes. I am sure this has nothing to do with any insect deposit, nor has it been caused through the aid of insect punctures in the stem of the bamboo, as I made a careful examination of a number of culms. The culms also were old ones, one, two and three years old."

Mr. Stebbing, however, reports that he had found the leaves of *Bambusa arundinacea* so attacked by an Aphis as to cause a manna to fall in drops on the stems. Hooper found that the manna furnished by Mr. Lowrie consisted of a saccharose related to, if not identical with cane-sugar. [Cf. with *Hobson-Jobson* (ed. Crooke), 863.]

Timber.—Bamboos form the most important portion of the minor forest produce of all forest divisions, and one that increases in value every year. Gamble estimates that the Indian annual consumption of bamboos must be something like 150 millions per annum. The forest administration Annual Reports issued by the various provinces of India afford useful particulars as to the supply drawn from their respective producing areas. It would occupy a volume to enumerate even by name all the uses to which the mature bamboo stems are put. To the inhabitants of the regions where the bamboo luxuriates, it affords all the materials required for the erection and furnishing of ordinary dwelling-houses. Certain species are more serviceable for posts, others for matting and basket-work, etc., etc., but if one or two species be used every requirement in house construction and furnishing may be met. Perhaps one of the most curious is the employment of specially prepared slips of bamboo for the purpose of letter-writing. M. Chavannes (*Les Livres Chinois, etc.*) has shown that in ancient times (or prior to the discovery of the art of paper-making in 105 A.D.) the stationery of China was mainly of this nature. Stein (*Ancient Khotan*, 1907, 358) has moreover shown that the oldest manuscripts discovered by him (3rd century) were written on specially prepared pieces of wood made up on the pattern of the older bamboo slips (see under *Leather*, p. 636; also *Paper and Paper Materials*, p. 862). The reader had better also consult the account of the economic uses of the Bamboo as given in the *Dictionary*.

D.E.P.

i., 394-9.

Barilla.

A century ago the manufacture of carbonate of soda from the ashes of certain saltworts was an important industry. Attention was accordingly early directed to India as a source of supply for Great Britain to supplement that obtained from Spain. Roxburgh, Royle, Baden-Powell and many other writers in succession described the existing trade and discussed its possible developments. Roxburgh (*Fl. Ind., ii.,* 61) practically speaks of the future of the Indian barilla trade as being of national importance. He explains that one species of *Salicornia*, one of *Arthrocnemum* and one of *Salicornia*, which are extremely abundant plants on the Coromandel Coast, might be made to yield barilla sufficient to make SOAP and GLASS for the whole world, since labour is cheap and population abundant. That opinion was written before the date of the famine that removed fully half the labouring classes of Coromandel (1791-3). It need hardly be said, however, that the discovery of Le Blanc's method of preparing sodium carbonate chemically from common salt not only destroyed these and all other similar expectations of a remunerative trade in barilla, but
revolutionised the world's necessities and demands for the salt. At the present moment were the available lands not only of Coromandel but of all similar suitable tracts in India to be devoted exclusively to the production of barilla, they probably could not supply a tithe of the present demands for sodium carbonate.

Baden-Powell (Pb. Prod., 1868, i., 86) gives an instructive account of the barilla industry of the Panjáb. Very little of importance has since been written on this subject and the following abstract may, therefore, be taken from that work:—"The process by which this substance is prepared is carried on during the month of October and three following months. The plant after being cut down is allowed to dry. The next step is to dig a pit of a hemispherical shape, about 6 feet in circumference and 3 feet deep. One or more vessels with holes perforated are inverted and placed in the bottom of the pit, the holes being kept closed until the alkali begins to flow, when they are opened by a stick previously arranged for that purpose. The dry plants are gradually burnt, and during the process a liquid substance is found to run down into the inverted vessels. After this has taken place, the residue is stirred up by means of a flat piece of wood and kept covered over for three or four days till it cools. Care must be taken not to allow water to get to the molten liquid, otherwise the whole mass would blow up.

In the inverted vessels will be found a pure form of khār saijī (sometimes called lota (pot) saijī) and in the bottom of the pit an impure form containing a mixture of ashes."

In the Dictionary more recent papers are reviewed. The Deputy Commissioner of Multán says that in that district the plants are collected in January and February. He then observes that the land on which barilla-yielding plants grow was in 1883-4 leased for Rs. 7,907. The Settlement Report of Shahpur District contains an interesting account of the barilla industry in which it is stated that the farming of the monopoly fetches upwards of Rs. 8,000 a year. The quantity of saijī manufactured is said to be about 10,000 maunds. In Montgomery and Jhang the khār (or khangan khār) plant is Hatoxylon recurvum, and this is supposed to yield the finest quality of saijī; the inferior qualities are believed to be made from the various species of land, of which the gora land is the best (Salsola setifida).

In Sind the plant that yields the best saijī is said to be known as land. This grows wild all over the province and springs up spontaneously after a copious fall of rain. The process of manufacture pursued in Sind differs from that described in connection with the Panjáb in the circumstance that earthen pots (lota) are not employed. This industry flourishes most at Kutch in Khelāt, where over 5,000 maunds are annually prepared. In Shikárpur a like quantity is made, and in Thar and Parkar about 3,000 maunds are annually turned out.

There seems also to exist a fairly extensive manufacture of sodium carbonate at Aden from the so-called Aden Balsam (* Sarsa ambiformis*).

The publication of the article "Barilla" (in the first volume of the Dictionary) led to a correspondence on the subject of a possible extension of the industry. In 1888 the Madras Government asked the assistance of the Director of Agriculture in the Panjáb. The result was that Mr. J. R. Drummond, then Deputy Commissioner of Karnāl, was invited to draw up a report on the Panjáb saltworts actually in use in the manufacture of barilla, and this was furnished to the Madras Government. After considering the information procured from various sources, the conclusions arrived at by the Government may be put thus:

1. It was cheaper and more convenient to obtain sodium carbonate from alkali deposits in the soil (such as the well-known dhobi's earths of various parts of the Presidency) than to burn saltworts and manufacture barilla.

2. The imported pure salt could be had at such a low price that it was doubtful whether either method was likely in the future to compete successfully.

Indian Saltworts.

The following may be given (in continuation of the observations under Alkaline Soils—Rēh, p. 51) as an alphabetical enumeration of the better known saltworts of India, in which all those that might be successfully tried in reclamation of rēh efflorescence have been shown, as well as those actually employed in the manufacture of barilla.

Arthrocnemum indicum, Mee. The jadu palang, machola, ghuri, chil, umari, koia, pipalit—a native of the salt marshes of Bengal, Madras and Bombay.
BASKET-WORK

INDIAN SALTWORTS

Halocarhis violacea, Bunge. A small diffuse annual common in the Peshawar Valley, Western Punjab, Salt Range, and Baluchistan.

Haloxylon recurvum, Bunge. The khar, khar-rani, etc.—a straggling bush plentiful in the C. and W. Punjab plains and Salt Range, also found in Sind, Deccan (Coimbatore) and Burma. This is the most important barilla-yielding species. H. multiflorum, Bunge, and H. salicornium, Bunge; the former occurs in the Punjab and the latter in Sind. They seem to be used as adulterants or substitutes for H. recurvum. [Cf. Agri. Journ. Ind., i.c.]

Kochia indica, Wight. Bui, kaura ro—a herbaceous plant which occurs from Delhi to the Indus and also in the Deccan (Coimbatore). [Cf. Agri. Journ. Ind., ii., 107.]

Salicornia brachiata, Roth. The guilu, umari-kirat—a small shrub found on most salt marshes in Bengal, South India (Tanjore), etc.

Salsola costata, Del. The lant, shora (shorge), loman, ella-kura, etc.—a saltwort much valued as fodder for camels and employed in the Hari-rud in the Punjab from Peshawar Valley south-westwards.

Suaeda fruticosa, Forst. The minimalist, choti-lani, timch, ushak lani—a sub-succulent shrub of N.W. India throughout the Punjab. Used mainly as an adulterant in barilla. S. microscapi, Forst.—a shrub species met with on the coast of the S. Deccan. S. nudiflora, Moc.—morasa, khari-lani, geria, kiray, rava kuda, a shrub met with on the coasts of Bengal, Bombay and S. India. S. maritima, Dumort.—lani, khari-lani, lané, yella kiray, ila or ella-kura. A herbaceous species (occasionally shrubby) met with in the Upper Gangetic plains from Delhi to the sea-coasts of Bengal, Bombay and the Deccan. The leaves are eaten, especially in times of famine. Drummond says that most references by authors to S. nudiflora should be taken as denoting this plant. [Cf. Kew Bull., 1891, 96-7.]

The above heading embraces several distinct crafts, but since the materials employed are often identical, collective treatment may perhaps be the most satisfactory.

The opening paragraph of the article Bamboo has already set forth some of the leading ideas that prevail, such as the separation of the Bamboo (Bambusae) from the Canes (Calamus) and from the Reeds. But there remains the even more difficult task of designing a classification for the basket materials that are neither reeds nor canes, and for the matting materials that are often grasses, reeds, canes or even bamboos. It is proposed to get over this difficulty by furnishing in this work several articles that conjointly may embrace the whole of these somewhat diversified crafts and materials. These will be (a) Bamboo; (b) Calamus; (c) Basket and Wicker-work—the reeds for the most part; (d) Cyperus or Grass Matting; and (e) Mats and Matting. But over and above these collective articles, certain substances that have other and more important uses than as materials for baskets and mats will be discussed in their own alphabetical positions, and references to these are accordingly given in the collective articles so that the reader may have little difficulty in discovering the products necessary to complete special enumerations.

Throughout India basket-making in some form is practised, and very largely so by the gypsy class. In the rural districts it is of the crudest possible kind, the baskets produced being intended purely and simply for agricultural purposes. Here and there, however, basket-making, as a consequence of special materials and facilities, attains a fairly high position, and in one or two instances even becomes artistic and ornamental. The following may be mentioned as the chief materials used and the centres of their utilisation, taken up in the alphabetical sequence of the scientific names of the plants concerned:

Acacia arabica—Agricultural baskets (see p. 8),
Alnus nitida.—The aider or shril, udish, etc., twigs used in tying loads, in construction of rope-bridges and of crude baskets.

Arundinaria spp. (see Bamboos, p. 99).

Bambusa, etc. (see Bamboos, pp. 99–101 et seq.) Along the foot of the Himalayas from east to west, bamboo basket-making is an important industry. The combined hat and umbrella of the Assam and Burmese cultivators, as also the highly artistic hats of the Shan, are made of bamboo. In Bengal, ingenious and often neatly constructed fish-traps and bird-cages are also constructed of bamboo. The traffic in these articles is by no means insignificant.

Borassus flabellifer.—Fancy baskets, etc. (see p. 170).

Cajanus indicus.—Agricultural baskets (see p. 200).

Calamus (see pp. 201–4.) Cane baskets of great strength are largely produced in Bengal, as for example in Patna, Pubna, etc. These are formed of entire cane wound round and round and held in position by tie-bands. Fancy cane-work is largely produced in Poona, Ratnagiri, Kanara, etc. In Bengal a small colony of Chinamen are engaged in the production of cane-chairs, baskets, etc. In Shimoya in Mysore and in several localities in Coorg cane-work of some note is turned out.

Caryota urens (see p. 286).

Corypha umbraculifera (see p. 429).

Dendrocalamus (see Bamboos, p. 102).

Indigofera atripurpurea.—The bankati, sakuan, and I. Gerardiana, the kati, khenti, etc., are fairly extensively employed by the hillmen to tie loads and make baskets, etc.

Melocalamus compactiflorus.—The bamboo most highly prized for lacquered boxes and trays (see p. 103).

Parrotia Jacquemontiana.—The peher or piscor, killar, spikecha, etc., of the N.W. Himalaya, is a most useful shrub, the twigs of which are extensively employed in binding loads, making strong (though not very durable) baskets and in constructing the so-called rope-bridges (jhuhas) which are thrown across the mountain torrents. Occasionally twigs of Cotoneaster, Indigofera, Olea, and Salix are mixed with Parrotia, and in other parts of the Himalayas the grass Ischumum is mainly used for these bridges.

Phoenix (see pp. 884–5). Beautiful cigar-cases are plaited in Madras from specially prepared strips of the leaves of this palm. The leaves, which are known as bhutra or khushab, are also woven or plaited into fans, baskets and ropes, etc. The leaf-stalks (chhori) make excellent walking-sticks, and split up they furnish a material which is woven into exceedingly strong crates and baskets. W. H. Gee (Lc. 15) says that in the Panjab the manufacture of fans from the date-palm is universal, and that there is a fair export in these articles from Peshawar. Fans are made largely in Rohtak and Karnal. In Delhi also there are two factories for date-palm fans. The leaf is soaked in water for a short time and some of the leaflets are cut off and plaited in with those that remain, thus forming the fan. They are then stained according to certain patterns. A man can make about twelve such fans a day. In most parts of the country where one or other of the date-palms is plentiful the leaves are largely employed in the construction of baskets, as a rule in the bee-hive shape. These are produced in the Madras and Bombay Presidencies and in the Panjab, Sind, Baluchistahan and Afghanistan. In the eastern parts of Bengal, matting used in houses is almost always of khajur (Phoenix) and is sold at about Rs. 6 per 100 square yards. [Cf. Gee, Lc. 6, 14.]

Phragmites (see Mats and Matting, p. 777).

Pseudostachyum (see Bamboos, p. 104).

Rhus Cotinus.—The Elm-leaved Sumach or tinga, phan, etc.; shoots employed in coarse basket-making.

Salix.—Several species of Willow. There does not appear to be in India any generic name like osier which denotes the specially grown shoots used in basket-making, but bed or benti are very general names, and others such as bin, bâs, bêsa, bhek, baish, boâns, bes, etc., all denote willows. Although never so successfully worked up as in Europe, the willows of India are of the greatest possible value to the people. The kîlais or load-baskets carried on the back by the hillmen are very generally made of willow, and the long willow-baskets used in conveying apples and pears from Kullu and Kashmir to the plains are well known. The kilia is a pointed basket so
designed as to throw the chief weight on the shoulders. In some of the jails and asylums of India admirable willow baskets and chairs are now produced, but this is apparently a modern industry. Willow twigs, when procurable, are largely used in all rural parts of the country for wattles, weirs, dams and fences. The bark is often stripped off the twigs and used in place of string, the twigs being then converted into charcoal, which is viewed as of special merit.

Tacca pinnatifida.—The *dhak, diva, periyu, kanda, kanli-kund, toak-ta*, etc. An investigation recently conducted at the Imperial Institute into the possibility of this plant being used as a braiding material, resulted negatively. But the tubers are fairly extensively eaten by the hill tribes of Chota Nagpur and the Central Provinces. [Cf. Forster, Pl. Esc., 1786, 59; Rumphius, *Herb. Amb.,* v., t. 114; Nicholls, *Excise Rept. C. Provs.*, 1878-9, app. D.]

Tamarix.—The *jau* affords long flexible twigs that are very generally employed in the manufacture of baskets, brooms and wattles, especially in South Panjab. Stein (*Ancient Khotan*, 1907, 332 et seq.) makes repeated reference to the tamarisk as seen in the ruins of Khotan, the specimens being found in association with other objects of date 3rd to 5th centuries. Wattle wattlings of tamarisk plastered over were one of the chief methods of forming partitions in house-construction. The pens used by these ancient peoples were also made of tamarisk wood.

Tridium, also *Oryza* and other straws are worked up into fancy baskets, as for example in Hazara and Nepal. W. H. Gee (c.c. 14) observes that the wheat-straw baskets of Hazara are of two kinds, viz. *mandhas* and *parotas*. "The former cylindrical and narrow at the base, the latter with straight sides; both are often worked in coloured designs and cost from Rs. 0-4-0 to Rs. 1." Collins (*Arts and Manuf., Bengal*, 1890, 9) says that "in the Patna and Bhagalpore Divisions fancy baskets of coloured grasses are made by high-caste ladies... Fancy straw baskets are made in Purnea district. Leghorn hats are made of the straw of spelt wheat (see p. 1084).

Typha (see Mats and Matting, p. 777).

Vetiveria xizanoides.—The *khas-khas* (see p. 1106).

BASSIA BUTYRACEA, *Roxb.*, *As. Res.*, 1805, viii., 477-95, with coloured plate; also *Fl. Ind.*, ii., 527; *Traill, Proc. Roy. As. Soc.*, 1838, 115-7; *Gamble, Man. Ind. Timbs.*, 448; *Fl. Br. Ind.*, iii., 545; *Sapotaceae*. The Indian Butter Tree, *phuluwára, chiuva, chára, cheuli, chiri, yel*, etc. The butter is called *chiuara-ke-pina, phalel or phulúa*. A large deciduous tree of the Sub-Himalayan tracts from the Ganges to Bhutan, ascending to altitudes of 15,000 feet.

MAHUA OR ILLUEPI TREE

Oudh and Kumaon to Gujarat, Kanara and Burma. It ascends the hills to altitudes of close on 4,000 feet and is often cultivated.

B. longifolia, Linn.; Gaertner, Fruct. et Sem. Pl., ii, t. 104; Lamk., Illust., t. 398; Roxb., Fl. Ind., ii, 528; Wight, Illust. Ind. Bot., ii, t. 147; Rec. Bot. Surv. Ind., ii, 183; Gamble, Man. Ind. Timb., 448; Cooke, Fl. Pres. Bomb., ii, 92; Fl. Br. Ind., iii, 544. This evergreen tree is met with from the Konkan southwards and replaces B. latifolia in South India. It is most frequently met with in cultivation. The Tamil, Telugu and other South Indian names mentioned above especially refer to it, such as ippa, yeppa, pinna, illipi, ippi, hippe, mi, meze, etc.

Habitat. — The mahua, though met with in a purely wild state in many parts of India, is of the greatest possible value to the inhabitants of large tracts of country where it exists in a state of semi-cultivation. It prefers dry sandy and even rocky soil to rich low-lying and inundated lands. Apparently it is self-sown, the seedlings being in some parts of the country protected for a few years (Ind. For., 1880, v., 468). But to the casual visitor, it would appear, seedlings are not readily detected. Hamilton in 1788 (l.c. 305) says that neither he nor any of his friends had ever seen an infant plant. Several writers have recorded the same observation. Mr. Sly (Commissioner of Settlements and Agriculture in the Central Provinces) does so in his Annual Report for 1902-3, and adds that in the absence of reproduction it is only a question of time for many villages to lose a most valuable addition to their food supplies. Numerous writers deplore the disappearance of the tree from regions where it formerly grew. Others urge, and with much force, that every effort should be made to extend rather than to contract its cultivation. As a protection against famine few schemes are to be more highly commended (for many parts of India) than systematic cultivation of mahua where suitable lands are available.

History of Mahua. — It seems highly probable that the economic information published from time to time regarding the mahua tree is fully applicable to all the above-mentioned species, each in its own area being the mahua or illupei of popular writers. From the industrial standpoint there is in fact no very sufficient reason for their different values. The most remarkable fact regarding the mahua is that it appears to have escaped the notice of all the early European travellers—Marco Polo, Vasco da Gama, Garcia de Orta, Varthema, Linschoten, Tavernier, Rheece and Rumphius are silent regarding this most valuable tree. It was, however, well known to the classic authors of India. Its best-known Sanskrit name is madhukas. Susruta describes the spirit obtained by the distillation of the flowers, and the oil from the seed is mentioned by Chhadradatta. Ibn Batuta, who travelled in India in 1332, calls it mahua and remarks that the sun-dried flowers taste like figs (Dymock). In the Memoirs of the Emperor Baber, written from 1494 to 1529 (Leyden and Erskine, transl., 1826, 325), the mawash or mant-chelam is said to be a wide-spreading tree of whose timbers the houses of the Natives of Hindustan are chiefly constructed. Mention is also made of the spirit extracted from the flowers, of the dried flowers eaten like raisins, and of an oil extracted from the kernels. Thavenot (Travels Levant, Indostan, etc. (Engl. transl.), 1817, iii, 94), speaking of Golconda, tells us that clumps of a tree called "mawasha" were placed along the boundary of the territory of the "Magul." The Ain-i-Akbari, 1590 (Bleichmann, transl., 70), refers to it as yielding a fruit known as gilavanda, which Abu Fazl adds is employed in the preparation of an intoxicant. The botanical and other writers mentioned above in connection with each species, carry the history of the products of these plants up to the most recent dates, and it may be added that only the more important, and especially those not mentioned in the Dictionary, have been quoted.
THE MAHUA TREE

Economic Value.—It may be said that there are two great products of the tree, (a) the Edible Flowers and (b) the Oxl-yielding seeds. The Dictionary should be consulted for the minor uses, and these may therefore be disposed of here very briefly. A Gum or gutta (the milky sap hardened) flows from incisions or abrasions on the stem (see p. 627). [Cf. Pharmacog. Ind., ii., 353–60 and 361. for its chemical properties and uses.] In some parts of the country ringning of the stems is practised just on the setting of the fruits. When this is done the gum may be obtained in abundance. The bark is employed as a Dye. The flowers, the oil, the spirit distilled from the flowers, and the bark are all used medicinally. Lastly the Timber has some merit, but the trees are, as a rule, too valuable to allow of their being killed for this purpose.

Flowers.—The mahua shows its leaves from February to April. The cream-coloured flowers appear as great clusters (of 30 to 50) near the ends of the branches, from March to April, and are soon followed by the young leaves. Preparatory to the harvest of flowers the people clear the ground below the trees by burning the weeds and smoothing the soil. About March the flowers begin to come to maturity, and every morning just after sunrise the succulent corolla-tubes fall in showers to the ground. This continues till the end of April, each tree yielding from 2 to 4 maunds of flowers, but usually the fall from a single tree is complete in about 7 to 10 days. Mukerji (Handbook Ind. Agri., 291) says the yield of each tree is from 5 to 8 maunds. A drying-floor is prepared in a position central to a selected batch of trees. The ground is smoothed and beaten, etc.; on this the flowers as collected day by day are spread out to dry in the sun. In a few days they shrink in size, change in colour to a reddish-brown, and their peculiar sweet smell becomes more concentrated and its resemblance to that of mice more intense. But the mahua that is intended for sale is not dried to the same extent as that set apart for home consumption, and naturally so since the loss in weight is considerable. But mahua is eaten extensively while fresh—in the dried form it is cooked and eaten along with rice and other grains or food materials. Before being eaten the dry corolla tubes are beaten with a stick to expel the stamens (jili); the quantity required is then boiled for six hours or so and left to simmer until the water has been entirely evaporated and the mahua produced in a soft juicy condition. Tamarind or stil seeds and gram are frequently eaten along with mahua. By the better classes it is fried with ghi (butter) or with mahua oil. It is extremely sweet, but the power to eat and digest this form of food is an acquired one, so that few Europeans are able to consume more than one flower without having disagreeable after effects. Sometimes the mahua is dried completely, reduced to a powder, and mixed with other articles of food. In that condition it is often baked into cakes. Sugar may also be prepared from the flowers or they may be distilled and a wholesome spirit prepared, the chief objection to which is its peculiar penetrating smell of mice. Nicholls estimated that in the Central Provinces 1,400,000 persons use mahua as a regular article of food, each person consuming one maund per annum—an amount that would set free about 1½ maunds of grain or about 30 per cent. of the food necessities of the people in question. This at the lowest estimate comes to one quarter of a million pounds sterling which the tree presents annually to these provinces. It would serve no purpose to speculate as to the corresponding total supply for all India; the above illustration of one province exemplifies its extreme value.

Mahua, in times of abundance, may be purchased at a very small figure, but normally it costs about 12 annas a maund. As a rule the surplus
over local necessities is sold. The chief purchasers are the distillers, and
the additional revenue thus derived greatly enhances the value of the
tree. Some few years ago the experiment was attempted in Bombay of
the Forest Department becoming the vendors of the available surplus
and selling to the trade. The object in view was the protection of the
poor and ignorant people, who it was believed often got but a fraction
of the actual value of their produce. At that time also there was a
fairly brisk new export trade in mahua, which went apparently to Europe
to be used for distillation. It is generally believed that the action of
the French Government in closing their ports to mahua ruined the
foreign traffic and accordingly the exports shrank to small proportions,
the article being at present exclusively used in Europe to feed pigs—a
purpose recommended originally by E. Lockwood (Journ. Linn. Soc.,
xvii., 89).

Mahuua Spirit.—As already indicated, the art of distilling these
flowers is a very ancient one in India. Susruta mentions mahua spirit.
The Ain-i-Akbari alludes to it. Hove (who travelled in Bombay in 1787,
142) tells us that the maura (as he calls it) affords when distilled a pure and
very pleasant but remarkably strong spirit. This he observes is often
poisoned with Datura, and accordingly he concludes, “I would advise the
Company to send out orders to their Settlements to inspect the common
liquors more minutely and they would not lose half the troops which they
commonly do on this side of India.” Williamson (East Ind. Vade Mecum,
ii., 153) tells us that in 1810 the number of shops for the sale of mahua and
other spirits was “absolutely incalculable.” Thus India had little to
learn from Europe in the art of distillation or in the habit of
alcoholic consumption. The registration and supervision of the traffic
which had been inherited by the Company and by the Crown became a
necessary evil.

One of the best accounts of mahua spirit is that by Archibald
Keir (As. Res., 1788, i., 309-19). That article was written in Chatra in
Ramgarh after a most careful personal study of the subject. Dr. Gibson
(Hooker’s (Keve) Journ. Bot., 1853, v., 90) tells us that in Gujarat and
Rajputana every village has its spirit-shop, and he adds that the
Government duty on the spirit distilled at Caranja, opposite Bombay,
came to something like £80,000. He then observes that the spirit
prepared was something like Irish whisky but had a strong smoky and
rather foetid flavour.

The aroma is the chief disadvantage to the spirit, but it is understood
that a gentleman who experimented in Monghyr very extensively with this
issue, succeeded in producing a spirit quite free from the objectionable
smell. Lockwood tells us that he had ascertained that six gallons of
spirit could in Europe be produced from one hundredweight of mahua.
More recently it has been found that as much as 7-6 gallons per cwt. can
be produced, the yield from molasses being only 5½ gallons, and much
less from barley, potatoes, etc. [Cf. Manson, Journ. Agri.-Hort. Soc.
Ind., 1886, vii., 83-5.] He tells us that the spirit is called daru and
much resembles Hollands both in appearance and taste, but unfortunately
it retains the sickening flavour of the flowers. The method of dis-
tillation is similar to that pursued in all other countries, save that in
India it is less scientific and correspondingly more wasteful (see Ellesine,
p. 521). For preparation of vinegar from mahua flowers, see p. 1109.
the Sub-Himalayan tract from the Indus eastward, also of Central and South India and Burma.

B. racemosa, lam. The kachnd, banraj, kaimu, kaimrangi, areka, ari, asotri, aupta, palan, etc. — A small crooked tree met with in the Sub-Himalayan tract from the Ravi eastwards, in Oudh, Bengal, Burma, and Central and South India.

B. retusa, lam. The kural, kandula, loba, etc. — A moderate-sized deciduous tree of the N.W. Himalaya from the Bess eastward, to Simla, Garhwal, Kumaon and Central India.

B. tomentosa, linn. The kachnd, asander, chaimal, etc. — An erect shrub met with in the U. Provinces, and throughout India to Ceylon and Penang.

B. Vahlit, W. & A. The malghám, chehur, shâr, borla, sungung rik, jom, lama, shioli, maualan, etc. — One of the most useful of Indian climbing Bauhinias. It is found all along the lower Himalaya from the Chenab eastward, in N. and C. India and Tenasserim. [Cf. Hooper, Rept. Labor. Ind. Mus., 1904-5, 28.]

B. variegata, linn. The kachnd, kòhar, rakta káncham, kurnang, singya, kundal, taki, kovidara, buéchlin, etc. — A moderate-sized deciduous tree found in the Sub-Himalayan tract from the Indus eastward and throughout the forests of India and Burma. It is largely cultivated in the plains as an ornamental tree.

Most of the species yield a Gum which solubles in water to be of great value. That from **B. retusa** (semila gánt) is very like gum arabic. It is eaten by the poorer classes and is used to waterproof terraced roofs, and also medicinally as an external application to sores. By some Native practitioners it is regarded as emmenagogue and diuretic. In the report by Dunstan, republished in The Agricultural Ledger (1900, No. 12), it is pointed out that the gum absorbs more than twice its own weight of water, and that a 10 per cent. solution yielded a thick mucilage which could not be manipulated. Several firms of brokers were asked to report on the gum. The estimated value was from 10a. to 20s. per cwt. They did not consider the gum of any commercial importance. It must, therefore, be regarded as mainly of local interest. The export from Dehra Dún amounts to about 2,500 maunds per annum, and the local valuation is about Rs. 1-8 to Rs. 2-8 per maund.

Several species are reported to yield Oils, e.g. **B. acuminata**, **B. tomentosa**, etc., but information as to their economic use (if any) is wanting. The bark of **B. purpurea** is used in Dyeing and Tanning and that of **B. racemosa** in dyeing. The latter produces at first a dirty red colour, but the dyed article having been worked up in mud for some hours subsequently appears black or nearly black (Note by Conservator For., E. Cira. Burma, 1896).

Bauhinia is, however, principally noted for the Fibres afforded by one or two species. A cordage, strong but not durable, is made from the inner bark of **B. racemosa**. According to Dodge, this being very tough has been employed in India in the construction of certain bridges across the Jumna. The stems are usually cut in July or August. Concerning the strong cordage prepared from the bark of **B. Vahliti** a full account is given in the Dictionary (l.c. 424) and need not be repeated here. It is a very important article with the hill tribes. The malu fibre is one of the few that will stand to be dyed, bleached and worked up along with wool (Watt, Res. of Brit. Ind., 1894, 15). In certain districts ropes are made from it in two ways. Either real fibres of the branches are extracted and twisted into ropes or the branches are simply split up and used as natural ropes. They are known in the Panjáb as udala and are extensively employed for tying slates and thatch on to roofs (Gee, Monog. Fibrous Manuf., Pb., 1889-90, 5). The shoots are said to grow as much as 50 feet long in one year.

Whilst it may be said that most of the species enumerated above are used in some way in Native Medicine, almost every part of **B. variegata** is so used. The bark, flowers, and root are triturated in rice-water for use as a cataplasm. A decoction of the root is given in dyspepsia, the flowers are taken with sugar as a laxative, and the bark is regarded as tonic and anthelmintic. The medicinal use of the gum of **B. retusa** has already been mentioned. **B. tomentosa** is said to be antidysenterie and to be useful in liver-complaints. The leaves of **B. Vahliti** are demulcent and the seeds tonic and aphrodisiac. The acrid leaves of **B. mutalabica** are used as Food in Burman and Bombay, and elsewhere the young shoots are eaten as a vegetable. The flowers of **B. purpurea** are used in curries as a pot-herb or are pickled. The leaves form a cattle-Fodder. The buds and seeds of **B. racemosa** are eaten by

Gum.

Oils.

Dyes and Tans.

Fibres.

Medicine.

Food and Fodder.
BÈCHE-DE-MER
Sea-slugs

Natives and the leaves are relished by buffaloes in N. India. The seeds of B. Vahlii are eaten raw or fried, and the young pods of this species and B. variegata are cooked and eaten by some of the hill tribes. The also of B. variegata are made into cigarette covers (bidā)—those of the former are said to be exported to Sind and Persia, while the latter in the Thana district alone bring a revenue of Rs. 1,500 a year. Those of B. Vahlii are made into cups, platters, etc., and the bark of this climber, as of B. macrostachya, is used for matchblocks. Finally, the leaves of B. racemosa are worshipped at the Dasara festival.

BEADS.—These may be referred to three groups:

(1) Mineral, including glass and stone-beads, alabaster and metal ornaments, etc.

(2) Animal, including bones, corals, pearls, shells, etc.

(3) Vegetable, including flowers, fruits, seeds, etc.

Mineral.

(1) In the mineral group there is a large import trade, especially from Italy, in glass beads. The value of the trade in 1902-3 was Rs. 16,651,325, representing 14,437 cwt. of goods, and in 1906-7, 22,520 cwt. or Rs. 24,024,442 (see Glass, p. 563). A considerable internal trade is also done in the cheaper kind of stones which are collected on the mountains of India and Burma, as also brought across the northern land frontier (see Gem Stones, p. 560). Small beads made of various metals are also common, the more elegant being gold beads mixed with precious stones or coral.

Animal.

(2) Personal ornaments derived from the animal kingdom are chiefly Cowrie and Conch shells (see Shells, p. 989), feathers of birds, skins, furs, horns, bones, the smaller pearls, etc. Such information on these subjects as can be here given will be found under the respective articles, Birds’ Skins and Feathers (see under Birds, pp. 138-42; Bones, p. 169; Hides, p. 639; Horns, p. 645; and Pearls, p. 557).

Vegetable.

(3) In the Dictionary (i, 430-3) will be found a complete enumeration of the various plants of which certain parts are used for beads, rosaries, garlands, etc. In the more important instances the domestic uses will be found under the plant-names in their proper alphabetical positions—Adhatoda, Ascle, Coix, etc., etc. [Of. Vieux, Agri. Ledg., 1906, No. 6.]

Sea-slugs.

BÈCHE-DE-MER: Sea-slug; Tripang; Suala, Swallow, or Swallow, etc., names given to various forms or qualities of the Edible Holothurian; Thurston, Mar. Fa. Rameswaram, Mad. Cent. Mus., sc. ser., 1887, No. 1, 15, etc.

Habitat.—These edible Sea-slugs are found on the coast of the Mediterranea, the Eastern Archipelago, Australia, Mauritius, Ceylon and Zanzibar, whence they are occasionally brought to Bombay for re-export to China. Several species are found on the shores of the Andaman and Laccadive Islands and on the Burmese coast, particularly that of the Mergui Archipelago, where they are collected from the Nicobar Islands, the Maldives, the Gulf of Mannar, etc., cured and sent to China via Burma and Madras ports. It is, however, mainly from New Caledonia, Tahiti and the Fiji Islands that China is supplied.

Preparation.—Very little of a satisfactory nature is known regarding the Indian and Burmese species and qualities; the methods of collection, curing and drying; system of packing and exporting; chief towns concerned in the trade; seasons of collection, prices, etc., of these edible products. In fact very little of a practical nature has been contributed since Capt. Andrew Cheyne wrote his account—an abstract of which will be found in the Dictionary. Mr. Thurston tells us that "The Tripangs are collected by Natives, as they lie on the mud at low water, and placed in a cauldron which is heated by a charcoal fire. As the temperature rises in the cauldron, the still living animals commit suicide by ejecting their digestive apparatus, etc., and become reduced to empty membranous sacs, which, by loss of water consequent on the temperature to which they are exposed, shrivel up considerably. At the end of twenty minutes or half an hour the boiling process is stopped, and then the same process is repeated for a similar
its wild state builds its combs exclusively more or less in the open—that is to say, on the undersides of the branches of large trees, in caves or under overhanging rocks, in buildings, etc." The combs are three to five feet long, and two feet or more deep: they consist of cells that are 4½ to the inch. Only occasionally is a second comb built, side by side with the first. Some of these combs weigh as much as a maund, and an average one gives from 10 to 20 lb. of honey and from 2 to 3 lb. of wax. Mr. J. D. Douglas's note in the Dictionary (I.c. 435) furnished the following reasons against the systematic cultivation of this species:—

1. It builds naturally in the open. 2. It makes as a rule but one comb, so that honey cannot be removed without destroying the brood. 3. Its comb is so large as not to be so great in cubic capacity as the combs of the ordinary domestic bee of Europe (A. mellifera). 4. It is only met with in tropical countries. It may be added that it is a vicious, intractable insect.

(6) A. Indica, Fabr. ; Bingham (I.c. 558) ; the Indian SEMI-DOMESTICATED BEE : the Hill BEE ; the Tree BEE of Indian writers, or sathpuria, Rotha, sateri, satpada, mohury, mohri, xara, ngap, yung, manchtsir, doar, doyer sodhi, sadde, kol, tudit-jen, aduku theni, thord elal, pya ung, etc.

Habitat.—Found throughout India and Burma and ascending the hills to 9,000 feet. In the high altitudes of its area, such as Bhutan, Hazara, Kashmir, Khasia hills and Simla, the insect seems to become larger than when met with in the plains and lower hills. Unlike A. dorsata it does not as a rule live in the open, but chooses hollow trees, overhanging caves, crevices in walls, etc., and shows a preference for proximity to human dwellings rather than for the hearts of forests or the faces of inaccessible rocks. There are several combs, one above the other, hence the name sathpuria or seven-layered. The cells are about 5½ to 6 in the inch. The yield of honey from a fair-sized hive would be from 10 to 40 lb., and of wax from 2 to 10 lb.

Mr. G. Minniken, in a report published in the Dictionary (iv., 268), gives an interesting account of the degree of domestication practised on the Himalaya, and that may be here epitomised since it is fairly representative of the bee-culture of India. In Besahur, he says, houses—one, two or three stories high—are often specially kept for rearing bees. In these, small recesses are made in the walls, two feet apart and closed on the outside by a wooden panel in which an entrance hole is made. A man is usually in charge of each such bee-house, whose duty it is to prevent over-swarming. This is effected by giving each colony ample room, and sometimes by clipping the wings of the queen. He has also to keep the apiary well stocked with early swarms, and to guard it against the rapacity of bears, martens, hornets, caterpillars, etc. Stocking is most generally effected by capturing wild swarms and bringing these to the apiary. But where bee-culture on a large scale is not contemplated, it is customary for the hill people to provide one or two recesses in the walls of the ordinary dwelling-houses in which a few swarms may be reared. In the Simla district it is believed the best honey is procured in localities where Plectranthus ruggosus (the pekh) abounds.

The Bashahr system is followed in Chamba, Hazara, Jhelum, Kangra and Kullu. Swarms are looked for in the jungles, and carried off to the zamindar's house. In Kashmir, a honey-bee—manchtsir—is almost completely domesticated, and seems to be a variety of A. indica hardly separable from A. mellifera. In the Khasia hills a somewhat similar semi-domestication exists, the swarms being captured in the jungles and kept in small boxes under the eaves of the houses.

(c) A. florea, Fabr. ; Bingham (I.c. 559). This is the smallest of the three Indian bees, but with A. indica is much more closely allied to the European honey-bee (A. mellifera) than to the Indian rock bee (A. dorsata).

Habitat.—It has been collected in Bengal, Assam, Burma, Madras, Malabar, Central Provinces, Central India, the United Provinces and on the Himalaya from Kumaon and Sikim. It might in fact be viewed as a slightly more tropical species which displaces to a large extent the western and northern A. florea.

It has been called FLOWER BEE by some writers, and appears to be the kadyul, lamai, tudbi, sinya, kol-jen, kom-buthem, thodi-pera, pullu-eqalu or pulatenai-eqalu, xin-pya, etc., etc. Its combs consist of cells that are nine to the inch. It would appear frequently to build in the open a single comb suspended from branches of trees or rather thorny bushes, especially near river-banks, but sometimes it selects cavities in walls or hollow trees, or builds under the cornices or other protecting parts of houses. It is a comparatively harmless insect, and about the size of the domestic fly. It is probable that the mohri or
BEES’ WAX

APIS FLOREA
Flower Bee

Khandesh Bee.

Burmese Bee-culture.

Wax.

Season of making.

Bleached.
Coloured.

Regions of
Supply.
Calcutta.

Syhet.

Saharanpur.

Ratgarh.

Seasons.

Supplies of the
Hills.

morhi bee of Khandesh, found on bushes in the vicinity of large expanses of Strobilanthes, is one of the many varieties of this species. The honey it affords is but small in quantity, and when found on trees is thin in quality. It appears to improve when produced within large combs in protected hives. In Burma (Kachin country) a sort of domestication has been attempted apparently with this species, though with little success. According to some writers its honey is superior to that of the other two species. In Burma as a whole, however, A. dorsata is regarded as the most valuable insect, though it is never domesticated in any way.

[The following additional works may be consulted:—Linschoten, Voy. E. Ind., 1598, i., 21, 67, 130; Ain-i-Akbari (Gladwin, transl.), ii., 37, 80, 95; Hoffmeister, Trav. in Ceylon and Cont. Ind., 1848 (Engl. transl.), 339; Adams, Wnt. Nat., 1867, 80; Lewin, Wild Races S.E. Ind., 1870, 80; Hoey, Monog. Trade and Manuf. N. Ind., 40; Douglas, Handbook Bee-keeping Ind., 1884; Bingham, Journ. Bomb. Nat. Hist. Soc., 1888, iii., 183; Cunningham, Plagues and Pleasures of Life in Beng., 1907, 34-9, etc.]

II. BEES’ WAX.—This substance is best known by the following names—mom, sinth, mena, min, mozhukin, mainam, mezhuka, lelin, phayoni, and in the classic—madhujam, siktha, shama, etc.

The observations already made regarding the species of bees met with in India afford incidentally certain particulars regarding wax. It may, however, be useful to disregard the individual insects and to bring together provisionally the particulars available regarding the centres of supply. The season for making wax would appear to be the hotter months, viz. April to June. The separation of the honey from the wax is usually done in the crudest manner possible by the persons who collect the combs. Refined wax is rarely practised, but adulteration is not usual, and although under the Indian sun it might be readily bleached, Indian wax is rarely so treated, but on the contrary is purposely coloured with turmeric. It is made up in balls, rolls, cakes or blocks, sometimes moulded and at times even as much as 2 feet in diameter and 6 to 9 inches in thickness.

Hooper’s paper (l.c. 92-100) should be consulted for fuller details, but the following abstract may be useful:

Bengal.—Supplies are drawn by Calcutta from the Sundribans, Chota Nagpur, Chittagong, Darjeeling, Bhutan and Nepal. It would appear that average qualities realise from Rs. 53 to as much as Rs. 75 a maund. It is largely consigned to Singapore and the Straits Settlements.

Assam.—The dealers in wax reside in Sylhet, and they derive their supplies from the Khasia hills and wild tracts beyond the frontier. Naga wax is usually sold in rolls cast in bamboo moulds. Assam wax is of inferior quality as a rule.

United Provinces.—The right of collecting honey and wax is leased, but a decline in the supply has recently taken place. It is drawn from the Eastern Dun Forests, Khari, etc. The trade is chiefly in the hands of traders resident in Saharanpur. It fetches about 11 annas a pound, the imported foreign bleached wax realising about 9 annas.

Central Provinces.—It has been stated that the forests of these provinces are capable of yielding 500 maunds of honey and 100 maunds of wax annually. In Chadgarh bees are so plentiful that it is impossible to beat the forests for big game. Ratgarh hill has been described as a “hive of bees.” The following are the chief localities of supply in alphabetical sequence of names—Betul, Chanda, Chhindwara, Damoh, Hoshangabat, Jabalpur, Mandla, Nimar, Raipur, Sambalpur and Wardha. Wax fetches locally, according to quality and season, from 3 annas to 12 annas per pound. There are said to be two seasons for collecting—April to May, and again November to December.

Punjab.—Bee-culture and the collection of honey and wax from wild bees seems to be confined to the hilly country. The districts most famed are Bashahr, Chamba, Hazara, Jhelum, Kangra, Kashmir, Kullu, Simla, etc. Certain
identical in composition, and a combination of the wax of one species with that of another cannot be regarded as a fraudulent admixture. It must be admitted, however, that the Apis dorsata, because of the much larger comb it manufactures, is the chief source of the bees' wax of the country. It is satisfactory to record that out of 64 samples collected from different parts of India only 3 were really adulterated, or less than 5 per cent. of the total, and there is no evidence that the sophisticated wax was a native product or was manufactured in the country.

Uses of Wax.—It is perhaps hardly necessary to mention the uses of wax. The introduction of paraffin and other composition candles has removed, to a large extent, the demand for wax to be used as votive offerings at the temples and churches. Jahangir (Memoirs (Price, transl.), 3) alludes to camphorated wax lights used in the palace. It is, however, required by the silver and goldsmiths, also by brass and copper foundrymen, to give finishing touches to their moulds and to be subsequently liquefied and dispelled by the molten metal poured into the matrix. There is a considerable demand in Burma for it, accordingly, in the workshops that turn out the brass idols of Buddha. Wax is also fairly extensively employed as a resist in certain stages and methods of calico-printing (Ind. Art at Delhi, 1903, 229-30, 259-67). Lastly, it is largely used by the shoemakers of India. In medicine wax is extensively employed in the preparation of ointments and plasters.

Recently some interest has been observed in a substance called "propolisine," derived from the propolis of bees (see below) by dry distillation. It is said to destroy all known bacteria without danger to human beings.

Wax Trade of India and Burma.—During the past twenty years the exports of wax have practically remained stationary. The highest figures occur in 1905-6—viz. 8,593 cwt., valued at Rs. 7,31,320, and in 1894-5, namely 7,487 cwt., valued at Rs. 7,05,247 the lowest in 1896-7—viz. 3,142 cwt., valued at Rs. 2,76,190. In 1906-7 they were 8,162 cwt., Rs. 5,96,009. The major portion of these exports go from Bengal, and the chief receiving countries in 1905-6 were Germany, 2,854; the United Kingdom, 2,609; Belgium, 988; Straits Settlements, 622; United States, 408; France, 406; all other countries making up the balance of 8,593 cwt., the exports for the year. [Cf. Milburn, Or. Comm., ii., 315.]

III. BEES' DAMMAR.—Bingham, Fa. Br. Ind. (Hymenoptera), i., 559-64; Cooke, Gums, Resins, etc., 1874, 95-7; Hooper, Agri. Ledg., 1904, No. 7, 79 et seq. The Dammar bees, as the little insects that afford this substance are called, belong to the genus Melipona, or, as it has been called, Trigona. A resinous substance employed by several species of this genus in forming their nests, is an article of commerce. It has been said to be chemically allied to propolis, the substance used by the domestic bees to repair injuries to their hives or to stop up useless and objectionable openings. These very minute and stingless bees are met with all over India and Burma. Among the collections recently brought together some 40 samples of wax, honey, etc., were identified, through the insects that accompanied them, as being the product of species of Melipona. These came
THE INDIAN BEES

from the following localities, the figures denoting the number of separate samples to hand: Almora (2), Basin, Belgaum (2), Betul (3), Chhindwara, Coimbatore (4), Damoh, Dehra Dun (4), Darwar (2), Kanara (2), Khandesh (3), Madura, Nellore, Nilgiris (2), Panch Mahals, Raipur (2), Ratnagiri (3), Rawalpindi, Sambalpur, Singhbum, South Kanara (2), Tenasserim and Tinnevelly (2). It will thus be seen that these insects are practically distributed all over India and Burma, and perhaps to a greater extent than was known to Bingham when he wrote his *Hymenoptera*. That distinguished author describes twelve species, of which *Melipona laticeps* of Tenasserim is the most interesting, since it affords (or at all events, is the chief source of) the resinous substance known as *Pwé-nyet*. The following are the vernacular names for the specimens of *Melipona* recently procured:—kunti, kote, kuntali, poye, nasari, bhikwa, bankua, misri, nasriyen, kusutteni, kuliada, musuruteniya, moye byah, etc., etc.

Pwé-nyet.—The insects referred to are said to build nests in hollows within trees, crevices among rocks, and sometimes in holes in stone walls, etc. The interior surfaces of the nests are lined with a resinous substance, and the entrance is often formed into a beautiful projecting funnel also composed of a resinous substance—the product for which these insects are valued. When the nests are small, the resinous substance (or bees' dammar) is not collected, but in the case of *A. laticeps* the trumpet-shaped structure of resinous wax which very often forms the entrance to the nests projects from the hole in the tree for a foot or more.

Horne gives an interesting account of the finding of the nest of *M. ruficornis*, and states that the hollow in which it was built was coated all over with a layer of black wax, and that the cells, containing a dark honey of excellent flavour, were globular in shape, pendent side by side from the roof. *M. ruficornis* is apparently the only Indian species that has been systematically described. Whether the forty odd samples indicated above are one and all derived from this or from several species has not as yet been ascertained. Horne's description of the resinous lining and the comb is most valuable. Mr. Parish is careful to advise us that he had not seen an interior of a hive of the *pwé-nyet*, but he suggests that the external trumpet-shaped structure may be constructed by the bees from the resin of *Hopea odorata* and other trees mixed with the oil of *Diplodocarpus latus*. Hooper (Rept. Labor. Ind. Mus., 1904-5, 29-4) furnishes a report on two samples examined by him. It is, he says, a peculiar compound of various resins and gum-resins. In a fresh state it may be moulded to any shape. Its constants were determined as well as its solubility in alcohol and ether. He promises a full report in the future, but for the purpose of comparison has specially studied the resins and oleo-resins of *Hopea, Vateria, Canarium*, and *Diplodocarpus*. So far, therefore, Hooper seems to confirm the popular opinion that *pwé-nyet* is composed of certain gums and resins collected by the insects from trees. Speaking apparently of the wax of the combs, Hooper further observes:—

"The wax of the species of *Melipona* has quite a different character and composition compared with that of the true bees. The blackish colour, sticky consistency and higher melting point, acid and iodine values readily distinguish it." According to Greshoff and Sach (Pharm. Weekblad., 47, 933), the substance consisted of a mixture of 84 parts resin, 12 parts wax with 4 parts of an impurity insoluble in alcohol. The resin melted at 60° and the wax at 66°. But it is not quite certain whether they had examined the true wax or the *pwé-nyet*.

Uses at Pwé-nyet.—The resinous product collected and used by the bees in making their nests is called 'pwé-nyet' by the Burmese, and after boiling in water and mixing with earth-oil or petroleum, it is largely used for the caulking of boats. The right of collecting 'pwé-nyet' is sold by the Local Government in Burma and Tenasserim yearly, and forms one of the sources of revenue under Minor Forest Products" (Bingham, l.c. 560).

IV. BEES-HONEY.—The best names for honey are *shahad*, madh, madhu, sahut, saht, polē, ten, jenu, piyya-ye, etc. The honey-bee would be *shahd-ki-makh*.

It is not necessary to deal with this subject in detail after the treatment already given to Bees and Wax. The regions of production of the latter are 128
necessarily those of the former. Occasionally, however, the wax is neglected and the production and sale of the honey becomes the important aspect. Honey is a plentiful wild product over the greater part of India, and is obtained also from bees in a state of semi-domestication, chiefly in the hills of the Panjāb. It is highly appreciated as an article of food by the inhabitants of many parts of India. It is also employed to preserve fruits, and in the Khasia hills, apparently, human bodies are sometimes temporarily preserved in it. At certain seasons, due doubtless to the flowers visited by the bees, or possibly to the species of insect, the honey has intoxicating and even poisonous properties. The honey of the various species of Indian bees, mentioned above, at all events varies considerably. The most abundant is that of *A. dorsata*, which provides the greater portion of the honeys of the United Provinces, the Central Provinces, Berār, Bombay, Madras and Burma. This is the insect of the Kudahs, the honey of which is collected in March and again in September. The March crop is the best. Mr. A. Mervyn Smith published in the *Statesman* in 1895 a most instructive account of the Honey and Wax collection of the Kudah country. As this is representative of the operations pursued in the Nilgiri hills, in the Wynaad, in the Sattayamangalam hills and elsewhere, a fairly extensive passage may be abstracted:—

"A strong stake was driven into the ground 15 or 20 feet away from the edge of the precipice, as a purchase for the rope, as it was being lowered down the face of the precipice. One end of the cane-rope had a double loop, in which a Koornar seated himself, his feet being supported by a short stirrup of bark. A light, reed-like bamboo, 20 feet long, armed with a reaping-hook at the end, served to cut the combs from the rocks. A small landing-net below the sickle received the combs as cut. A light cord, running through a loop about 10 feet above the head of the gatherer, and fastened to the sickle-end of the rod, enables the gatherer to use the rod as a derrick, which he can raise, lower, and swing to any position, without being inconvenienced with the weight of the combs in the net. When the net is full, he empties the contents into a large close-framed basket lined with leaves, which is suspended from a separate cord; and this basket is drawn up when filled. The occupation of gatherer is extremely dangerous and requires steady nerves. In many cases the men are suspended 400 feet from the top of the cliff, with many hundreds of feet below them to the bottom of the precipice. These cane-ropes are immensely strong and stand more rough usage than one made of fibre, and they are also extremely light. The suspending rope is shifted about from place to place in answer to signs with the hand from below. Immediately the bees are disturbed, they crowd round the gatherers in myriads. The men are literally covered with a coating of bees from head to foot and present a most curious appearance, just as if they were covered with rusty chain armour, each link of which is in motion. The pungent smell of the wood-smoke from the bodies of the gatherers has a kind of paralyzing effect on bees and prevents them stinging. The flight of bees thus disturbed could be distinctly seen from where we were, half a mile off, and resembled a flight of locusts. We could even hear the humming noise made by the irritated insects. In about two hours all the combs within reach had been collected and the ropes were drawn up."

The next most important honey is that of *A. indica*, an insect found here and there all over India, but semi-domesticated in the Khasia hills and the mountains of the United Provinces, of the Panjāb and of N.W. Frontier Provinces. It is accordingly the chief source of the honeys of Assam and the Panjāb, and possibly also of Bengal. The third form is hardly a commercial article, although the honey, like that obtained in settled positions it is said to be remarkably good. It is the honey of *A. florea*. This is met with in the Central Provinces, Bombay, Berār, Madras and Burma. Lastly, some of the species of *Melipona* afford honey. This is incidentally alluded to by Hooper all through his review of the information recently collected by the Reporter on Economic Products. He tells us that it is often tainted with a peculiar odour, and has a bitterish and acid taste. It has, however, a considerable reputation in many parts of India for its medicinal properties. In some parts of the country (Nellore) the honey of the dammar-bee is said to be intoxicating, and in Kanara it is reported that the insect is semi-domesticated. [Cf. Institutes of Manu, iii., 119; v., 41; viii., 131, etc.; Barbosa, *Coasts E. Africa and Malabar* (ed. Hakl. Soc.), 167; Lawrence, *Valley of Kashmir*, 1895, 366; Journ. Board Agri., 1898, 335-9; *Bee-keeping, Imp. Dept. Agri., West Ind.*, 1901.]

Preservative.

Intoxication.

A. dorsata

Honey.

Kundah.

Method of Collection.

Cane-ropes.

Wood-smoke.

A. indica

Honey.

The Hills.

Medicinal Properties.
BERBERIS
Barberry

Oil.
Medicine.

RUSOT AND MAMIRAS

BENINCASA CERIFERA, Savi; Fl. Br. Ind., ii., 616; Cucurbitaceae. The White Gourd Melon, petha, kumhra, etc., an extensive climber cultivated in India; native of Japan and Java.

Sown at the beginning of the rains or in the hot weather, it continues fruiting until the close of the rainy season. The fruit excretes a waxy bloom which it is said can be made into candles. The seeds yield a milky, pale Oil. The fruit possesses alterative and styptic properties, and is popularly known as a valuable antimercurial. It is also used as a vegetable and in curries or is made into a kind of candied fruit called heskmi or heshim, sold at about 3 lb. to the rupee.

There are twelve species of Barberry mentioned in the Flora of British India. They are not easily distinguishable, and the vernacular names are therefore probably indiscriminate. The products are common to five or six Himalayan species and may be dealt with collectively. The chief are the following:

B. aristata, DC.; chitra, siumli, kasmal, tsema.
B. asiatica, Roxb.; kilmora, mati-kissi, chitra, etc.
B. Lycium, Roger.; kasmal, chotra, ambar-bhuri, etc.
B. vulgaris, Linn.; kashmali, bedana, ambabarsi, etc.

Habitat.—The entire Himalayan districts between 6,000 and 10,000 feet, also the Nilgiris, Ceylon, etc., etc. The bushes often constitute thickets many miles in extent.

A Dye is obtained from the roots and stems, which is sometimes used in tanning and colouring leather. It would seem that the colour exists chiefly in the bark and in the young wood immediately below the bark. In the older wood there is less though better quality of dye. Barberry is perhaps one of the best yellow dyes in India, and the supply is inexhaustible. The seeds yield an Oil.

The principal use of the barberry is, however, in Medicine, the parts employed being the stem, dahrulad, the fruit, zarishk or zirishk, and the root-bark. A watery extract is prepared from the stem and root, called rusot or rassot (Takef Shereef, Playfair, transal.), 1833, 87. It is worthy of notice that this extract has the same beneficial effects in the treatment of ophthalmia which have been ascribed by certain Greek and other early writers to mamirias. The plants now known in India as mamirin seem, however, to be Coptis Tectora, Wall., Corydalis Goanizana, Wall. and Geranium Wallichianum, Sweet. The juices of these are still used as applications to the eye, and two of them, at least, contain berberine. In later times the barberry appears to have been extensively sought by European oulists, and it seems to have been the origin of the Lycium, whereof the empty pots were found in Herulaneum and Pompeii.

[Cf. Fluckiger and Hanbury, Pharmacog., 33-5.] Berberis-sticks, 1 inch thick and 12 to 18 inches long, are fairly extensively exported from Kangra and thence carried all over India (see Coptis, p. 405).

Trade.—Various preparations of the barberry are used in fevers, the advantage claimed over quinine being that repeated doses of berberine do not cause depression and deafness. The fruit is given as a cooling laxative to children, and the stems are said to be diaphoretic and laxative in rheumatism. The berries are dried like "currants," and thus brought down to the plains. The Trade value of dahrulad is stated by Dymock (Mat. Med. W. Ind., 28) to be Rs. 3½ per maund of 37½ lb.; of rassot, Rs. 8 to 9; of zirishk, Rs. ½ per lb. Moodeen Sherrif (L.c. 15), however, quotes the wholesale price of rassot as Rs. 35 per maund, and the retail price as Rs. 2½ per lb. He says that the fruit (zirishk) may be had at Rs. 6 per maund (wholesale), or 6 annas per lb. (retail). Kanny Lall Dey gives the price of the extract (rassot) as 8 annas per lb.

BIRCH BARK

Betula utilis, Don.; Fl. Br. Ind., v., 599; Gamble, Man. Ind. Timbs., 668; Pharmacog. Ind., iii., 359; Cupuliferæ. The Indian Paper Birch, bhúja-patra or bhuj-patar, бурь, shák, takpa, phuspät, bhúr-japatr, etc. A moderate-sized deciduous tree forming the upper edge of arborescent vegetation in the Himalaya (14,000 feet).

By some of the hill tribes the bark is regarded as more durable than paper, and it is well known as the material upon which the ancient Sanskrit MSS. of Northern India were written. It is widely used for writing medicinal charms and is said to be found in every druggist's shop. Its uses are, however, varied; for wrapping up parcels, for surrounding hookah-stands, for umbrellas, for water-tight roof-lining, and apparently sometimes also for clothing. Minute strips are used in certain forms of tie-dyeing. [Cf. Ind. Art at Delhi, 1903, 256.] The younger branches are plaited into twig bridges. It has also certain aromatic and antiseptic properties. The leaves are lopped for cattle-FODDER, and the timber is extensively used in the inner arid Himalaya for building, since it is elastic, seasons well and does not warp. [Cf. Tulate/Sheerei (Playfair, transl.), 1833, 48; Lawrence, Valley of Kashmir, 1895, 68–9, 79; Journ. Soc. Chem. Indurst., 1900, xix., 1141.]

Another species, B. alnoides, var. shad-dagh, shad, shakshin, etc., of the outer Himalaya, the Khasi hills and Burma, has a bark which constitutes an important article of Food with the Lahúpas in the mountain-tracks of N.E. Manipur. In the upper tracts of Kullu, where earthenware vessels are procurable with difficulty, the outer bark is peeled off in long strips and bound around water-pots as a protection. The Timber is valued in Nepal for strength and durability.

Bezoar.—This is the padzahr or pazahr of the early Persian writers, a name which usually denotes an antidote or alexipharmic. The word comes into English through the Arabs, who wrote it bezahr. The true bezoar is a stone or concretion found within the bodies of certain animals, more especially the Persian Wild Goat (Capra aegagrus) of Blanford, Fa. Br. Ind. (Mammalia), 503 (see p. 743).

Sources.—Moodeen Sheriff (Ind. Pharm., suppl., 68–70) says there are many kinds or qualities, according to the animal from which procured, such as Goat-, camel-, fish-, snake-bezoar, etc. The last mentioned is generally called Snake-stone. But there is no foundation for the very general belief that snake-stone is procured from the head of the snake (see p. 141). Some writers classify the bezoars into animal and mineral, the last being a fossil cobblestone and possibly often a coprolite. So also numerous references are made by writers on this subject to false or artificially prepared bezoars, fabricated apparently from calcined bone. Certain towns are famed for their bezoars, such as Diu and Golconda.

Chemical Examination.—Dr. Davy was apparently the earliest author to examine the stones chemically, and his description of them has been drawn upon by the majority of subsequent writers. Taylor formed nine groups, three being phosphates (of lime, magnesium, or of ammonium and magnesium), one oxalate of lime, and the five others mostly mechanical or obtrusive accumulations such as hair, vegetable-fibre, ambergris, etc. Milburn observes that the genuine Oriental bezoar is commonly of an oval form and between the size of a hazel nut and a walnut; the larger it is, the more valuable. It is externally smooth and glossy, and is composed of several layers. The colour most prized is a shining olive green. It has a peculiar smell but no taste. Can be scratched easily by a penknife, and when applied to the tongue or any moist surface adheres firmly and absorbs the moisture. The supposed virtue as alexipharmics depends upon this power of absorption, but in Europe it has been proved that they have no special chemical or mechanical merit in support of their varied reputation. [Cf. Watts, Dict. Chem., 1883, i., 584.]

BIRDS; Blanford and Oates, Fa. Br. Ind. (4 vols. on Birds); Jerdon, Birds Ind., 1862–4; Henderson and Hume, Lahore to Yarkand, 1873, 170–304; Hume, Scrap Book; also Nest and Eggs; Oates, Birds of Burmah; Barnes, Birds of Bombay.

From the standpoint of utility the study of the birds of India might...
BIRDS

THE ECONOMIC BIRDS OF INDIA

the South of India it is known as jawolum and wallur. To a less extent
Falco peregrinus, or bhury, deqa or British Falcon is also valued. A few
other species are occasionally seen trained to strike, such as F. jugger, the
Lagger Falcon, and F. cherrug, the Saker Falcon.

Nikitin (a Russian who travelled in India from 1468-74) mentions the fact
that the Grand Duke Iwan III. sent a present of falcons to the Shah of Shirvan.
The Ain-i-Akbari (Blochmann, transl., 293-4) gives many particulars of interest.
In fact a very extensive series of authors might be quoted in support of the
antiquity in India both of the training of and hunting with hawks. Jerdon
gives a most interesting account of this Indian methods. As this is reproduced
in Blanford’s Fauna of British India (iii., 416-7) it can be consulted by those
iii., 189, 579) speaks of the falconer as the mirakehari. In the Kanyra Gazetteer
(1897, 99) we read of Hindu traders called paprdas, who come from Amballa
and Patiala to purchase hawks, which they teach and then sell at a profit in
the plains. The Madras Mail (July 5, 1898) gives many details (derived
chiefly from Oates) regarding the catching and rearing of hawks in South India.
[Cf. Thvenot, Travels in Levant, Indostan, etc., 1687, iii., 38; Taleef Shereef
(Playfair, transl.), 1833, 140.]

3. Birds, Edible.—This is necessarily a very large and important
aspect of the study of Indian economic birds. It is readily referable
to two sections, viz. domesticated and wild. The former embraces the
varied assortment of birds usually classed as “poultry” and the latter
Corresponds to the
Ducks, etc.

(a) Ducks, Teal, Geese and Swans.—This corresponds to the
Anseres or Natatores. Blanford, l.c. iv., 411-71; E. C. Stuart-
goose are the most important birds of this assemblage, but the common
wild teal, Nettium crecca (Blanford, l.c. iv., 443) is universally eaten,
and sometimes reared (or fed up) in a state of semi-domesticity. In
Madras Presidency immense flocks of domestic ducks are herded on
the flooded fields, their eggs being an important article of export to
Burma. [Cf. Ainslie, Mat. Ind., 1826, i., 441; Campbell, A Successful
Duck Farm, in Agr. Gaz. N.-S. Wales, 1898, ix., 1377-82; Monier-
Williams, Buddhism, 525.]

(b) Game Birds; Hume and Marshal, Game-Birds of Ind.; W. L.
Sclater, l.c. ii., 117-21. This includes examples drawn from many families
such as the Bustards, Cranes, Ducks, Pheasants, Pigeons, Plovers, Quails,
Rails, and Snipe.

Sclater gives the following as the birds commonly eaten or brought to
market:—Calandrella brachydactyla, the baghaira Ortolan; Charadrius fultus,
the Golden Plover; Chamaeleus nesperus, the Gadwall; Cieonia tene-
cephala, the manikji or Beefsteak Bird; Columba intermedia, the kabutar
or Black Rock Pigeon; Coturnix communis, the Batur or Gray Quail;
Crocorius phoenicoperotus, the kurrial or Green Pigeon; Dostila acenta, the
Pintail; Eupodotis edwardsi, the tokdar sohan or Bustard; Francolinus pictus,
the Painted Partridge; Francolinus vulgaris, kalatif or Black Partridge;
Fuligula nigroca, the White-eye; Fuligula rufina, the Red-crested Pochard;
Gallinago gallinaria, the Common Snipe; Gallinago stenura, the Pin-tailed
Snipe; Gallopardus spectabilis, the Red Spur-fowl; Gallus serufus, the jungli-murgi or Jungle Fowl; Gallus sonnerati, the Gray-fowl; Grus antiquus,
the sarus or sarus-Crane; Houbara Macqueeni, the Houbara Bustard;
Hydrophasianus chirugus, the Pheasant-tailed Jacana; Nettapus coromandus,
the Cotton- teal; Ortygornis gularis, the bantitar or Kyal Partridge;
Paro cristatus, mor or Peacock (Taleef Shereef, l.c. 158); Pterocles excelsus,
kuhar or Sandgrouse; Querquedula cincta, the Blue-winged or Gargaray Teal;
Syptethis bengalenis, the charas or Florican; Tofanus calidris, the Red
shanks or Snippet; and Tofanus glareola, the Spotted Sandpiper or Snippet.

Game Birds

Brought to Market.
With slight modifications to meet local supplies, the above enumeration is representative of the traffic throughout India. For particulars consult the further popular sections given below concerning the Edible Birds.

(c) **Ortolans.**—The true Ortolan (*Emberiza hortulana*) occurs only occasionally in India, but the substitutes for it are the *bargeil*—Social or Short-toed Lark (*Calandrella brachydactyla*), the duri Ash-coloured Finch-lark (*Pyrrhulauda grisea*) and other allied species abundantly met with on the plains of India. Buchanan-Hamilton (*Hist. Ant. and Stat. Beng.* (ed. Montgomery Martin), 1807–13, i., 226; ii., 148, 506; iii., 186) makes frequent mention of the ortolan.

Excluding the poultry from present consideration, there are something like 60 species of wild pheasants, partridges, etc., which are systematically shot and eaten. The majority inhabit the hills, and are, therefore, but rarely seen in the bazaars of the larger towns of the plains. In Simla, for example, there is a regular supply of the *chir*, *kali*, and *mondl* pheasants; of partridges the *son-titur* or *kairal*, and last but by no means least, the *chakor*. The horned pheasant—*jewar* or *argus*—as it is sometimes called, is also occasionally seen. These and many others are included by the Sanskrit authors under the category of *visakhira* or birds which scatter their food. The *Ain-i-Akkari* (Gladwin, transl., i., 267; ii., 136; also Blochmann, transl., i., 63) mentions several forms and alludes to the practice of catching them by means of call-birds, a method pursued to the present day. One or two are favourite cage birds, especially the quail, and are reared for the purpose of fighting (*Ainalie*, *Mat. Ind.*, 1826, i., 288). Others are much prized on account of their plumage (e.g. *mondl* and *argus*). No information exists as to the extent of the traffic in these birds, but it may be affirmed that the huge annual slaughter has for many years called urgently for the protective game-laws which have only just come into operation. (The following publications, assorted provincially, will be found to contain useful local particulars:—**PUNJAB**: *Settl. Repts. Hazara*, 1868; *Bannu*, 1879; *Ludhiana*, 1878–84. Game-birds, pheasants, etc., are frequently mentioned in the *Memoirs of Baber*, written about 1519, and the *lukch*, to which he makes special reference (320), appears to be the *mondl*. **CENTRAL INDIA**: Forsyth, l.c. 1889, 54–7. **KASHMIR**: Lawrence, l.c. 118. **UNITED PROVINCES**: *Gaz.*, iv., 243. **BOMBAY**: Gazettiers Kaora, Pananj Mahals, Ahmedabad, Ratnagiri, Thana, Kanara, Belgurm, Dharwar, Satara. **MY ;ORE**: Rice, *Gaz.*, i., 155.)

(e) **Pigeons and Doves**: Blyth, *Ann. and Mag. Nat. Hist.*, 1847, xix., 104; Darwin, *Animals and Pl. under Domes.*, 1868, i., 131–224; Rice, *Squab Raising, in Farmer's Bull., U.S. Dept. Agri.*, 1903, No. 177; Blanford, l.c. iv., 1–52. It does not seem necessary to deal with this subject very fully. There are some 40 wild species known and valued, and in domestication practically all the breeds met with in Europe are to be found in India, and a few seem even to have originated in that country.

Pigeons are closely connected with certain traditions of the Muhammadan faith, hence the birds are often protected in certain localities, such as at Mecca. They have been reared for pleasure from the earliest times of the Moslem nobility of India. Baber (Memoirs, 7) tells the story of the death of Omer-Sheik Mirza in 1494, through having been precipitated from his pigeon-house. In the *Ain-i-Akkari* (1590) full details are given of the methods adopted for rearing and training pigeons. Tumblers, carriers, pouters, etc., are mentioned, but it seems doubtful if the *lukch* or *luggin* of the *Ain*, identified by Blyth as having been the fantail, was so or not, though that name is commonly given to them.
at the present day. The kokah pigeon, the voice of which sounds like the call to prayer, and the baghah, which utters a peculiar sound in the early morning, as also the yahu-yahu, may have been trumpeters and laughers. The lotan was doubtless a ground tumbler. One of the special and much-prized features of Indian pigeons is the remarkable way they return to the dovecote on a certain signal being given.

In some Hindu towns, such as Jaipur in Rajputana, pigeons exist in a semi-wild condition. A race of the blue rock has simply been allowed to breed undisturbed for countless ages. This bird seems to differ from the English stock in having the lower part of the back ash, instead of pure white, hence its separation as *Columba intermedia*. Baber speaks of the Indian rock-pigeons as being smaller and more slender than the Central Asiatic bird, and as having a sharper cry.

Pigeons are much valued by many classes of people as food, and the traffic in them all over India must be exceedingly great. They are usually brought to market alive, and fed from day to day by the traders. In Calcutta they are stored in large flat baskets, the owner feeding them by squirting from his own mouth into the gullets of the birds, one by one, a small quantity of grain and water. [Cf. *Settl. Rept. Jhelum*, 1883, 20; E. H. A., in *Times of India*, May 1890.]

(f) **Poultry and Eggs.**—This may be accepted as embracing the Domestic or Common Fowl, the Guinea-fowl, the Turkey, Ducks, Geese, Pigeons, etc. Since some of these birds are discussed in this article under their respective names, the present remarks may be restricted to the Fowl. It is fairly generally accepted that all the Domestic Fowls of the world have been derived from *Gallus ferrugineus*, a bird met with in its wild condition throughout the lower Himalaya from Kashmir to Assam, and from the mountains of Burma to the Malay Peninsula, Sumatra, Siam and Cochin-China. It would seem probable that it was first domesticated in the Malay and introduced into India in that condition. It is mentioned in the *Institutes of Manu*, and appears to have reached Europe about 600 B.C. The wild bird, it has been observed, when reared in captivity or when crossed with the domestic fowl, is more fertile when procured from the east than from the west of the Bay of Bengal. A few special breeds may have originated in India, such as the Chittagong and the Sooty Fowl. Examples of the Frizzled Fowl (a bird with the feathers curled backwards) and of Jumpers are not uncommon, the latter more especially in Burma.

Considering the importance of the subject, remarkably little of a trustworthy nature has been published regarding the Indian domestic fowls. Ibn Batuta, Marco Polo, Varthema, Linschoten, Dampier and many other early travellers make special reference to the quality, size, and abundance of Indian fowls. Hove (Tours in Gujarat, etc., 1787, 80) says: "In this country fowls are prodigiously large, and are called by the Europeans Colombe fowls. They breed them now about Surat in abundance. . . . Some of them are so large that they are often mistaken by strangers for turkeys." It is difficult to conceive why the early travellers in India so uniformly speak of the fowls seen by them as "large."

The ordinary fowl of India to-day is a very small and very inferior representative of the fowl of Europe.

Mention has been made of Chittagong fowls, and it may be added that it is customary to read of them as a peculiar and valuable race, characteristic of Eastern Bengal. In the Bengal Administration Report (1901-2), for example, the observation occurs that "the best poultry comes from Chittagong and the hill tracts, and are short-legged, large-bodied birds, much resembling English fowls." The "jumper" of Burma is an exceptionally short-legged bird, derived doubtless direct from the Chittagong breed. Further to the east, the Cochin-China breed would appear to have originated. Game-cocks have from time immemorial been specially reared in many districts of India, and in some localities cock-fighting has, from the most ancient times, been a favourite pastime. Sonnerat (Voy. aux Ind. Or., 1782, v., 113) says he thinks the birds specially reared for cock-fighting are derived from the indigenous wild species.
and thus is led to believe that the domestic fowls of the world may have come from India. The special association of Chittagong, however, with the gamecocks of India has little more to justify it than the early association of the turkey with Calicut. Montgomery Martin, compiling from Buchanan-Hamilton, speaks of the people of Assam as keeping game-cocks (E. Ind., iii., 671). Lawrence tells us that in Kashmir capons are specially reared for the table, but in India as a whole little or no attention appears to be given to special methods of breeding, feeding, etc., of fowls for the table as distinct from those reared for the supply of eggs. Bernier (Travels, 1656-68 (Constable, Or. Misc.), 1891, i., 251) attributes this to "the people being tender-hearted toward animals of every description, men only excepted." "The markets are amply supplied with fowls tolerably good and cheap. Among others as small hens, delicate and tender, which I call Ethiopian, the skin being quite black." Inspired possibly by Marco Polo, Linschoten (who was by no means as accurate an observer as Bernier) affirms that the flesh of the so-called Ethiopian as also the bones are black.[Cf. also Theyenot, Travels in Levant, Indostan, etc., 1687, iii., 51.] Tegetmeier (Poultry Book, 265-8) gives full particulars of these so-called "Nigger-fowls" (the Sooty Fowls of some writers), and it need only be added that they are by no means common in India. John Leo (Africanus (Geog. Hist. Africa (Pory, transl.), 1600, 314) describes the incubators in use in Egypt during the 16th century.

In the more populous parts of India (Bengal especially) fowls, like many other articles of food, have risen in price considerably within the past 20 to 30 years. At the beginning of that period four large or eight small fowls could have been purchased for one anna; while at present they cost 4 to 12 annas or even one rupee each. [Cf. Scott, Dom. Poul. known to the Jews, Mem. Wern. Soc., 1830, vi., 391-401; Wilson, Orig. Dom. Poult., 402-16; Low, Hist. Tenasserim, Journ. Roy. As. Soc., ii., 272; Anderson, Mandelay to Momien, 16; Hoey, Monog. Trade and Manuf. N. Ind., 152; Voelecker, Improv. Ind. Agr., 405; Lawrence, Valley of Kashmir, 365-6; Collett, A.B.C. Guide to Rearing Poultry, Ind.; Isa Tweed, Poult. Keeping in Ind.; My Poul., by "The Indian Henwife"; Mackenzie, Popular Poult. Keeping; Wright, The Book of Poul.; Numerous writers in Indian public press such as there in Calcutta Gazette, Aug. 1896; Madras Mail, Feb. 1896 (report on the Dudar Poult. Farm); Ind. Agrist., Feb. 1898; McCue and Bradshaw, Poult., in Agri. Gaz. N.-S. Wales, 1898, ix., 594-7, 1161-80; Planters' Gaz., Oct. and Nov. 1899; Pioneer, article by "Camellia," Feb. 1900; Ind. Agrist., May 1900 (a report on Poult. Rearing in Beng. at the Model Farm of Pakur); Poult. in West Ind., in Imp. Dept. Agri., Pamphl. No. 23, etc., etc.]

TRADE IN EGGS.—Mention has already been made of the production of Ducks' eggs in Madras Presidency for the Burmese market. Though all large towns have regular supplies of eggs, nothing can be learned as to the sources on which they depend. It would thus seem as if every great centre produced its own fowls and eggs, within its immediate neighbourhood. In the official publication Prices and Wages in India, certain particulars are furnished regarding eggs in the Western Presidency. A rise in price has on the whole taken place, but in Bombay town this is not material, as eggs sell at 4 to 5 annas a dozen. Taking the years 1871-75 as being 100, they sold in 1901 at 107, in 1902 at 109, and in 1903 at 103; in Sind at 127; and in Central India and Rajputana at 118. The traffic in Egg Albumen is important. An article in The Indian Agriculturist (Feb. 1898) reviews an account that appeared in a Burma paper of the Chin-hiang China trade in that substance. Ducks abound in the neighbourhood, flocks of 4,000 to 5,000 being not uncommon. The eggs are broken and the white separated from the yolk. The white or albumen is used in dyeing, being largely exported for that purpose to Europe, and the yolk, used in the dressing of certain leather, is in much demand in Europe. The Diplomatic and Consular Report (1901, No. 2601, 10) gives the returns of the Chinese traffic in egg-yolk. It rose from 18,731 to 22,583 cwt. in 19 years.

[Cf. Ainslie, Mat. Ind., 1829, 117, 288; O'Shaunessy, Beng. Disp., 686-7; Royle, Prod. Isinglass, 5; Honigberger, Thirty-five Years in East, ii., 329; Waring, Pharm. Ind., 281; Simmonds, Waste Prod., 1876, 118; Hoey, Monog. Trade and Manuf. N. Ind., 1880, 152; Hendley, Med. Top. Jeypore, 1895, 67; Lawrence, Valley of Kashmir, 1895, 366; Ind. Agrist., Feb. 1, 1898; Journ. Board of Trade, Sept. 1899, vi., 149-56; Dec., 362; many newspaper articles on preservation of eggs, on the testing their freshness, etc., have appeared in the Indian press, mostly.

D.E.P., i. 160.

Eggs.

Indian supplies.

Egg.

Price.

Albumen.

China Trade.

Yolk.

Preservation of Eggs.
BIRDS

Industrial

THE ECONOMIC BIRDS OF INDIA

reprinted from European, American and Australian publications. No writer has, so far as I can discover, given particulars of the Indian markets or of Indian experience.

(g) Quall, Snipe, Plovers, Florican, etc.—When speaking of the plains of India the quall and snipe are by far the most important of the game birds. The former are often captured in great quantities and sent alive all over India, and the latter are both trapped and shot. As a protective measure, it may be added that some of the railways refuse to carry live snipe, since the birds do not eat after being captured, and are often handled most cruelly; for example, to prevent them fighting or escaping, they are blinded or otherwise disfigured. It is to be hoped, therefore, that very shortly, under the new Act, measures may be enforced even more stringent than the humane action of the railway companies. The florican is valued as much for its rarity as for the delicacy of its flesh. [O]f Ainslie, L.C. i., 392; Hunter, Imp. Gaz. Ind., vi., 1836; Burke in Field (reprinted in Times of Ind.), Nov. 28, 1899; Snipe-Shooting in Ind., Englishman, Feb. 10, 1902; E. H. A. in Times of Ind., July and Aug. 1899.

4. Birds: Edible Nests (Collocatia francica and C. fuciphaga);

A fairly detailed account of this curiously interesting edible product will be found in the Dictionary. That article was compiled very largely from a report by Mr. Portman regarding the Andaman, and one by Mr. de Ropartz on the Nicobar supplies. Blanford tells us that C. francica, the Little Grey-rumped Swift, affords the purest quality of edible nests. It is met with on the coasts of Tenasserim and Arakan, as also on the rocks in the Andaman and Nicobar Islands. The breeding season is in March. The nests produced by C. fuciphaga (= C. nidifera) are found in Ceylon, the Malabar Coast, the Nilgiri and Anaimalai hills, etc. Its breeding season is March to June. The former bird gives nests quite free from grass, moss or feathers, the latter is much adulterated with the substances named, which are simply cemented together by the insipissated saliva. Jacobson and Portman was the first European writer who described the edible swallow's nest. He gives an excellent picture, and says the nests are sold in great quantity throughout India. He regarded them as made from the foam of the sea. Mandelslo (Travels Ind., 1639, 134), speaking of the Malay, says that the swallow's nests were found "on rocks by the seaside, and are of such esteem in China that they sell them for 3 or 4 crowns the lb." It is probable that Volckamer (Nunn. Heiser, 1714, ii., 236) is also alluding to this substance when he speaks of the chickens that spin fibre out of their mouths. Milburn says edible nests are found in caves on the sea-coast of Sumatra, Java and many of the Eastern Islands. "The cleanest and best are almost as white as writing paper and as transparent as isinglass."

"They should be perfectly dry; if so crisp as to break, it is the better."

The merchants who trade in this substance are Chinamen resident in Rangoon. The nests are assorted into three classes and then exported to China. The finest qualities go to Pekin. The Japanese do not use these nests, but they are said to fabricate an artificial nest from seaweed which is sent to China. The trade seems to be declining, as shown by the steady diminution of the sum paid in Burma for the right to work the supplies (see Manures, p. 769; Isinglass, p. 695).

D.E.P.,
iv., pt. i., 378;
Quail and Snipe. Handled cruelly.

D.E.P.,
ii., 504-9;
Edible Nests.

Three Kinds.

Season.

Earliest Description.

Trade.

D.E.P.,
ii., 430;
iii., 321-2;
Upholstery.

5. Birds: Industrial.—The materials that fall under this position are briefly—Bird-skins, Feathers, Guano and Quills. The first two may be taken collectively and the third will be found under Manures (see p. 769).

(a) Bird-skins and Feathers.—It is customary to discuss feathers
SKINS AND FEATHERS

BIRDS

Plumage

under:—COMMON FEATHERS used for upholstery; DOWN used for quilts; ORNAMENTAL FEATHERS and QUILLS. In India the feathers of the domestic fowl are almost universally destroyed through the habit of removing them after immersion in hot water. Were an effort made to remedy this defect, India might supply a large quantity of upholstery feathers. The same remark is applicable to the supply of down. Ornamental feathers are usually referred to three classes: (a) those like the ostrich plumes whose barbules are long and loose, giving beauty of form; (b) those in which the plumes are decomposed, as in the egrets; and (c) those that manifest great beauty and brilliancy of colour (see below under Plumeage). Balfour (Cyclop. of India) appears to be the only writer who has so far afforded particulars of the feather industry—fortunately an industry of historic but not of great future intrinsic value. He tells us that "the Madras dealers in birds' feathers used to carry on their trade on an extensive scale. One dealer had nearly 100 sets of hunters, each composed of four or five shikaris and one cook; most of these people are kowares (basket-makers) who live in and about Madras. Each set has its head man, who is responsible for the others. The sets are sent out once a year, each receiving from Rs. 20 to Rs. 100 together with a number of nets, a knife, etc. They traverse all India, collecting the feathers of kingfishers, etc." "They bring back from 1,000 to 6,000 skins which are exported to Europe, Burma, Penang, Singapore and Malacca." The blue jay feathers are much in demand in China.

(b) Ostrich.—Some few years ago an effort was made to establish ostrich farming in India (near Agra) but with little or no success. Mention has recently been made of Mysore as a favourite locality, a suggestion inspired by the great success of the Australian farms. [Cf. Madras Weekly Mail, Aug. 1899; Pioneer, Sept. 1903: for Food to be given to Ostriches, see Agave, p. 35.]

(c) Plumeage-Birds.—The following, it may be added, are the chief birds killed in India on account of their plumage, the particulars given being abstracted very largely from Blanford. A certain amount of grouping has been attempted in order to save space; thus all the paroquets are brought together, all the bustards together, etc., etc., the assortment being otherwise alphabetical according to the scientific names of the birds or groups of birds:

Ardea cinerea (Fa. Br. Ind. (Birds), iv. 382 et seq.), the Common or Blue Heron, the nari, anjam, sain, etc.; *Ardeola grayi*, the Pond Heron or bagla, khonch-bogla, kokie, etc. A common and familiar bird of rice-fields and village tanks—often called the Paddy-bird; also *Bubulcus coromandus*, the Cattle Egret or surkhia-bagla, gai bogla, huni koku, etc. This egret is a constant attendant on cattle and feeds on the insects that are attracted to them. Scater groups these three herons together as birds which produce feathers which are sold in large quantities, but which do not fetch such high prices as the egrets proper.

Ceryle varia (l.c. iii., 119), the Indian Pied Kingfisher, the korola-kilikil or karikata; *Halepon smyrnensis* (l.c. iii., 132), the White-breasted Kingfisher or kilkila, khandu, machhanga, etc.; *regregopsis gurni* (l.c. iii., 129), the Brown-headed Kingfisher, gurai, badami, etc. These and several other kingfishers, such as *Ateodo impala*, chot kilikil, A. grandis, the Great Indian Kingfisher, and *Ceyx tridactyla*, the Three-toed Purple Kingfisher, are all extensively slaughtered for their skins. Hunter (Stat. Acc. Beng.) makes special mention of the traffic in the skins of kingfishers from Tippera and Chittagong to Burma and China. Mr. C. M. Inglis says that in Darbhanga there is a village of 16 houses, all concerned in the bird-skin trade. One man told him that on an average he snared at least 100 kingfishers during the season,
the skins fetching Rs. 15 to Rs. 20. This for the entire village would make a destruction of thousands a year. Decoys are used, namely, live birds with their eyes sewn up.

Coracias indica (L.C. iii, 103), the Indian Roller, the Blue Jay of Europeans or nilkant, sobzak, tás, pälü pitta, katti kade. As already mentioned, this is perhaps the most extensively killed for its beautiful plumage of all the Indian birds, and as it is helpful to the cultivators, its destruction is to be greatly deplored.

Eupodotis edwardsii (L.C. iv, 192 et seq.), the Great Indian Bustard, the sohum, kukan, hüm, tokdar, tugdar, bat-meka, kanal-myle, etc. Met with throughout India except in Bihár, Chota Nagpur, Orissa, Bengal. It is usually found singly or in twos or threes, and keeps chiefly to the open dry country, especially waste covered with low grass and scattered cultivation. It feeds on insects, especially grasshoppers, small reptiles, fruit, grain, shoots of grass, etc. In the A'in-i-Akkari mention is made of the okar feathers of Kashmir. Baden-Powell gives the name onkar to the feathers used in making kalgí, the plumes of the khod or helmet. These were probably the black feathers of a Bustard, or of the Snake-bird (see below). Houbara Macqueenii, the Houbara bustard or hóbára, tilur, talur, etc. A cold-weather visitor to North-Western India, Panjáb, Sind, Rajputana, Kach and Northern Gujrat. Otis biterax, the Little Bustard or chota tilur, met with in the Panjáb. Lastly, Syopehctis aurita, the Lesser Florican or likk, chota charat, charas, barsiti, ker mor, tan-mor, chiní-mor, níla muni, etc. Also S. bangalensis, the Bengal Florican. These birds are found at times throughout India from the Himalaya to Cape Comorin, but the former chiefly inhabits the Peninsula south of the Godavari in winter, and breeds in the Deccan, Western and Central Provinces, Central India, Rajputana, etc. The latter occurs in the country from the foot of the Himalaya and the Ganges to the plains of Assam. Blanford observes of the former that the numbers are being greatly reduced by the unsportsmanlike practice of shooting during the breeding season. And of the latter he remarks that it is one of the most delicious of game birds.

But it may be said that most of the above-mentioned birds are or rather have been killed on account of their plumage as well as for their flesh. Bustard feathers constantly appear in the Madras trade reports.

Gallus furrugineus (L.C. iv, 75), the Red Jungle-fowl or jangal-murgí (male), jangli-murgí (female); common throughout the Lower Himalaya from Assam to Kashmir. Also G. sonnerati, the Grey Jungle-fowl or konari, khí, etc., of South, West and Central India.

The wild fowls, though killed mainly for food, afford skins that are as a rule preserved and sold. The wild fowl of South India is specially valued for making artificial fishing-flies; its golden or ferrugineous spotted feathers are unsurpassed for certain purposes, and fetch higher prices than do most other feathers met with in the market.

Herodias alba (L.C. iv, 385), the Large Egret, mallang-bagla, tar-bagla, bara-bagla, pedda-tella-konga, mala-konga, vella-koku, etc. Found throughout India and Burma; often seen solitary but in association with either of the next two species. In North India and Burma it breeds in July and August, and in the Karnátk in December to February. Also H. garziella—the Little Egret or kíschí, nella-nucha-konga. Common throughout India and Burma. Lastly H. intermedia, the Smaller Egret, patokha bagla, patangkha, etc. Met with throughout India and Northern Burma. The breeding season is the same as that of the large egret. These pure white, slim herons develop temporally during the breeding season a dorsal train of feathers, which elongates and becomes "decomposed," as it is expressed, that is to say, the bars are separate and distant from each other, thus forming the ornamental plum or sigrette for which these birds are much sought after and ruthlessly destroyed.

The present trade in Egret and Bustard feathers seems to be chiefly in the hands of Madras traders. Some time ago Commercolly in Bengal was famed for its egret feathers, and these were used for head-dresses, tippets, boas and muffls. Although this trade still exists in Darbhanga, Purneah and Malda, the birds are becoming very scarce. It would seem that at the present day the chief Indian supply is from Madras.

Leptoptilos dubius (L.C. iv, 373), the Adjutant, or harghá, garur, cianíria dhauk, dusta, pinigula-konga, don-zat, pir-e-dang, etc. A useful scavenger that
used formerly to frequent Calcutta and is still met with at the Salt Lakes and has been found in immense herds in Burma. The down of the young adjutant bird is (or rather was formerly) made into ladies' boas and victorines. The under-tail coverts are collected and sold in considerable quantity. They are known in trade as Marabout or Commerically feathers, and seem to be procured at present mainly from Tirenoor and Malabar, though formerly the traffic was chiefly from Commerically and Nadiya to Calcutta. It is described by Aelian (A.D. 250); Baber (Memoirs, 1519-25, 321) and Ball (Jungle Life, 82) both refer to the snake-stone said to be found in the head of this bird.

Lophophorus refugiens (l.c. iv., 96), the mondil, nil, lont (male), karari, ham (female), nil-mor, nilgur, datiya, etc. An extremely beautiful and large pheasant found throughout the Himalaya, from Chitral and Kashmir to Bhutan, at altitudes of from 9,000 to 15,000 feet, except in the winter, when it may be found at 5,000 feet. Skins of the cock birds are extensively traded in all parts of India, and a fairly large number are annually exported, the supply received at Calcutta coming mainly from Bhutan and Nepal. Selater tells us that he has seen as many as 1,000 skins offered for sale at one time.

Palaornis cyanochephalus (l.c. iii., 251-9), the Western Blossom-headed Paroquet, the tuaa-tota, faranda, kir, etc. A fairly plentiful bird in all the forests of the lower Himalaya and Peninsula of India. P. fasciata, the Red-breasted Paroquet, the madna, koyla, your-tota, etc. Himalaya up to 5,000 feet from Kumaon to Assam, Manipur, Burma, Cambodia, Cochin-China, etc. An inhabitant of well-wooded tracts, but visitant of the intervening fields.

P. nepalensis, the Large Green Paroquet or chandana, a bird met with plentifully in Northern and Central India, the lower Himalaya, the Northern Circars, Kangra and Mount Abu to Bengal. P. rosa, the Eastern Blossom-headed Paroquet, the kyay-ta-ma of Burma. Lastly, P. tortuatus, the Rose-ringed Paroquet or tota, lybur tota, tiya tota, ragu, chilluka, killi, kyagget, etc. This is by far the most plentiful paroquet of India, and abounds near towns and houses and prefers open cultivated lands to forest tracts. It often does much damage to field and garden crops. It is very frequently kept as a pet, and is a very docile and docuous bird. Baber (Memoirs, 319) gives a long account of the various birds of this kind that were taught to speak by the people of India in his day (early 16th century).

Most of the above species of paroquets are extensively killed on account of their skins, but since they are very abundant and often very destructive, little regret need be expressed at their being annually killed off to a certain extent. Paroquet skins are largely exported from Hill Tippera.

Pavo cristatus (l.c. iv., 68), the Common Peafowl, the mor, mahr, manja (male), manir (female), myl, nimili, now, etc. Plentiful throughout all the drier tracts of India. It ascends the Himalaya to 2,000 feet in altitude. Abounds in Gujarat (a fact specially mentioned by Thevenot in 1687), Kach, and Rajputana, and being protected, since regarded by certain Hindus as sacred, it frequently does much damage to the fields. The males moult their long trains after the breeding season, about September, and the feathers are collected by the villagers and sold, but in many parts of the country large numbers are killed, and their feathers and complete tails sold to the dealers. In Indian Art at Delhi (1903, 198-9) particulars will be found of the artistic use of peacock feathers. They are largely employed in ornamental work, such as the manufacture of fans, morchals, chauris, braids, etc. Some few years ago a large trade was done in peacock-feather braids, which were used in trimming dresses and for other such purposes. The chief centres of manufacture are Agra, Aurangabad, Benares, Jhansi, Mysoor, Nepal and Savantvadi. Peacock feathers seem to be exported mainly from Bombay. [Cf. Baber, l.c. 318; Amslie, Mat. Ind., 1826, l. 290, quoted.]

Morphnus melanocephalus (l.c. iv., 344), the Indian Darter or Snake-bird, the banura, pum dubbi, ygar, etc. This bird exists throughout India and Burma, wherever fairly extensive lakes, marshes, etc., of fresh water or large rivers with slow currents occur. According to Jerdon the lengthened scapular feathers are looked on as a badge of royalty by the Khasias, and were once the badge of one of the Bengal regiments of Irregular Cavalry. The birds are killed on account of these feathers, which formerly were fairly extensively exported.

Tragopan melanopygus (l.c. iv., 190), the Western or Simla Horned Pheasant, tewar, taghi, sing-monat, jimurana (male), beadal (female), fulgur, etc.
THE ECONOMIC BIRDS OF INDIA

North-West Himalaya from Garhwal to Hazara. *T. satyra*, the Crimson Horned Pheasant, the *langu, ono, bap, tar-rhyak*, etc. Eastern Himalaya from Garhwal to Bhutan. These two pheasants are sometimes called the Argus by European sportsmen, and their skins are generally sold under that name—the true Argus occurs in the Malay Peninsula.

Upper Hoopoe. (i.e. iii., 159), the European Hoopoe and *U. indica*, the Indian Hoopoe or *hudhud, sutár, kondeh pitta, chawl kurwê, tum-be-cote*, etc. The former is met with in the Himalaya and on the plains of Northern and Central India, and the latter throughout India and Burma, except Sind and the Western Panjâb. Both birds are extensively slaughtered on account of their plumage. [Cf. E. H. A. in *Times of India*, Sept. 29, 1899.]

Trade in Birds, Skins, etc.

(d) **Feathers.**—The above are the chief birds killed for their brilliant feathers, but all birds with bright-coloured plumage may be and occasionally are killed for that purpose, such as the honey-suckers, bitterns, jays, water-hens, bee-eaters, orioles, shrikes, bulbulis, grebes and hornbills. The trade in these and such-like is a very ancient one. Varthème (Travels, 1510 (ed. Hakl. Soc.), 200), speaking of Tenasserim, alludes to the sword-hilted made of the helmet-hornbill. The modern trade in feathers of all kinds fluctuates greatly. In 1880—1 the exports were valued at Rs. 2,69,447; in 1884—5 at Rs. 6,33,017; in 1887—8 at Rs. 5,70,495; in 1895—6 at Rs. 5,55,185, since which date it appears to have declined materially; in 1900—1 it stood at Rs. 1,35,440; in 1901—2 at Rs. 1,79,618; in 1902—3 at Rs. 88,691; in 1903—4 at Rs. 5,093; in 1904—5 at Rs. 880; in 1905—6 at Rs. 4,416; in 1906—7 at Rs. 1,437. In former years the major portion of these exports went usually to the United Kingdom, which took in 1895—6, Rs. 4,18,006; in 1902—3, Rs. 60,000; and in 1906—7, nil. More recently to China (Hongkong), which took in 1895—6, Rs. 58,562; in 1902—3, Rs. 23,387; and in 1906—7, Rs. 1,350. Practically the balance on these valuations of the total for the years in question goes to the Straits. The imports of feathers are unimportant. As a natural consequence of recent legislation the portions of this traffic concerned in the foreign supply will be discontinued.

(e) **Quills.**—The traffic in bird-quills is unimportant. Peacock quills are used in embroidering leather, as for example in the small boxes made at Bilaspur and Anandpur in the Panjâb, etc. Porcupine quills are to a small extent employed in South India, mainly in veneering fancy boxes.

A shrub originally a native of America and now largely cultivated in India for the dye afforded by its seeds. It is very common in S. India, and believed to be there almost completely naturalised. Hove speaks of its cultivation in Bombay in 1787, and Buchanan-Hamilton (Stat. Acc., Dinaj., 1833, 155) mentions that "the Bëxà, an American plant, is now rapidly spreading over Bengal." Occasionally planted for ornament, especially in Ceylon; the least touch of frost is fatal, but it will grow almost anywhere within the tropics where the rainfall is 35—60 inches. The plants make a good hedge or wind-break.

There are two forms, one having white flowers and greenish capsules, the other pink flowers and red capsules. The pink-flowered form is viewed as most desirable though it is not always the most easily grown, although one or other exists throughout tropical India. Fuller particulars of the distribution and cultivation will be found in Mr. Burkill's *Review of Existing Knowledge*
BOCHNERIA
NIVEA
Rhea

CHINA-GRASS AND RAMIE

Europe, while the other—the Malaya plant—can only be raised under glass, so far as Europe is concerned. The distinction ought therefore to prove of considerable value to Indian prospective cultivators. In fact it seems possible that some share of past failures may be due to Indian experimentalists having forced the cultivation of the tropical plant in temperate areas. That being so, it may be useful to set forth the two forms separately, but the reader should consult The Agricultural Ledger (above mentioned) for the botanical synonyms of the plants in question:

a Vari. nivea proper; Watt, *loc. s. t. 1.* The China-grass or Rhea of commerce bears the following local and vernacular names:—*chu-ma* in China; *cay-gai, pa-ma* in Cochin-China; *kankura* (rarely *kund* or *korkund*), in Bengal; *recha (riha)* or *riha* in Assam; *pas* in the Shan States, and *gun, gwon* in Burma (ma, see Cannabis, p. 251).

It will be seen by a comparison with the Malayan names recorded as more especially applicable to the second variety below, that very possibly the only truly indigenous Indian names in the above enumeration are *kankura* and *riha*. Further, the latter name is perhaps only a modern translation from one plant which to another of the word *riha*, the Naga name for a fibre-yielding plant which has recently come to be spoken as the *ban-riha* or wild-*riha* of Assam (see Villebrunea, p. 164). In part support of this idea it may be added that the people who use the *ban-riha* fibre grow the true *riha* plant, but only as an article of export—they never use that fibre themselves, so that it seems fair to suppose that the plant which they use is their own *riha* or *riasa*. In fact there are no references to any fibre that could for a moment be supposed to be rhea. There is a curious passage, however, in the account of the *Voyage to the East Indies*, written by Linschoten (1598, p. 96), which describes a fibre under the name of "Hearbe Bengalen," that might be (and has been) supposed to be rhea, though it was more probably *Catotropis gigantea* floss, perhaps the grass-cloth fibre of the early English writers (see pp. 207–8). Turning now to China, Marco Polo, speaking of Kweichian, mentions the bark fibre from which "they manufacture very fine summer clothing." Many subsequent writers allude to the *hiaup* or * sia-pu* or the summer cloths of Kweichian, which seem to-day made of China-grass, it is assumed were so made in Marco Polo’s time; and there is probably little doubt that they were. One of the earliest European travellers to describe the China-grass (of China) was Cunningham, who in the beginning of the 18th century sent Chinese plants to his English friends Sloan, Petiver and Plukenet. Among these was the textile plant *ma*, which he called *Urtica racemifera maxima* Sinaruma (Fam. Amalth., 212, t. 49, f. 2), a plant which Linnaeus identified (Sp. Pl., 1764, 1398) with his *Urtica nivea*.

β Vari. tenacissima (sp. *nosea*); Watt, *loc. c. 20, t. 2.* This is the true rami or *ramie*, which by some writers has been incorrectly called rhea while they have assigned China-grass as distinctive of the variety *nivea*. The first record of its introduction into India brought the Sumatran name *calice* (kalise) *calicoe* or *calau* to that country; throughout the Malay it is *rami*, *rame*, or *ramien* or *gun*; *inan* in Bonoa; *gume* in Celebes; *mounseram* in Java; *kiparoy*, *kapieriet*, *haramay*, *lalakie*, in Sunda; *klos* in Sokojan, etc., etc. Prain (Sketch of Life of Francis Hamilton (once Buchanan), 1905, 24) gives a letter of Hamilton’s dated 1814, in which he refuses to believe that the *calice* differs from *B. nivea* and further that he considered it groundless to expect the fibre to turn out of general use. Roxburgh (Trans. Soc. Arts, 1806, xxiv., 148) tells us that in 1804 the plants grown in the Botanic Gardens, Calcutta, from Malaya seed had flowered and that he had sent a drawing of the same to the Court of Directors.

Races of Plant Grown. During repeated investigations, through the Indian rhea districts, a large percentage of the known plots of cultivation in Bengal, Assam and Kangra were systematically visited. With practically only one exception the stock was that indicated above as *var. nivea*, and the one exception that of a tea-planter’s vegetable garden in Assam, where a few recently imported roots of *var. tenacissima* were found. In several instances, however, plants which might be regarded as local developments, if not crosses between the two varieties, were
RHEA CULTIVATION IN INDIA

met with, thus possibly pointing to a cultivation of *tenacissima*, since abandoned, or to *tenacissima* being only a sport from *nivea*. Recently I have heard from Tirthut that a sport had spontaneously appeared there, in an experimental plantation, which was very hardy, although apparently an inferior fibre-yielder. There seems little doubt that careful study and selection would do much to improve the crop. But in no instance were plants grown in India seen to possess anything like the apparent luxuriance of a series of botanical specimens procured direct from Wenchow in China. Some of the most vigorous plants collected by me in India were found in North Lakhimpur, Assam, while the healthiest looking were those in the Ram Bagh plantation in Kangra—the survivals of the original six plants imported in 1863 by Mr. James Montgomery, India's pioneer rhea-planter. His widow, a very old lady, was alive at the time of my visit, and I had the extreme pleasure of being conducted by her over the plantation, and was much fascinated by the undying faith which she manifested in the ultimate success of her husband's life-work. One plot, she told me, had neither been transplanted nor manured for sixteen years, and yet the plants were fairly vigorous-looking. It was annually inundated and richly manured by the rise of the river. When I inquired if any of the European tea-planters in the district or Native zamindars had followed her example and laid out plots of land with rhea, Mrs. Montgomery replied that it was perhaps fortunate for her that they had long since abandoned all thought of rhea, because the produce of her little plantation was more than sufficient for the local demand.

RHEA CULTIVATION IN INDIA.

Future Prospects.—Indian Rhea cultivation and manufacture was dealt with very exhaustively in *The Agricultural Ledger* (1898, No. 15). That paper was the result of a special tour of inspection, conducted under orders of the Government of India, to each and every district where the plant was known to be cultivated or reputed to be found. With the details thus readily accessible, it may be the most useful course to make the present review amplify or correct the opinions already set forth, rather than to repeat in abstract the established facts. At the same time opportunity may be taken to answer the objections and difficulties that have been raised without becoming controversial. My previous writings have been affixed to discourage endeavour, and as that was not my intention I would explain that my attitude has proceeded from mature conviction that a rhea industry is not likely to be established in India until certain misleading statements and misconceptions have been effectually removed. Of these I would mention the following:

1. The affirmation repeatedly made, that rhea is a wild plant, found over large portions of India, and that it has only to be cut in order to be turned into gold. In my report of 1898 I have shown that this is not only an error but that rhea nowhere exists in India even as an escape from cultivation. That it is purely an exotic and is rapidly exterminated from land when neglected or abandoned. Still further, that the most valuable of the so-called wild-rheas (*ban-rhea*) of Assam is an entirely different plant, though one which affords a fibre for which there might be a market apart altogether from the possibility or not of organising an Indian rhea trade.

2. The statement that it can be grown anywhere in India and with a purely nominal amount of cultivation and care. Far from this being so, it is a plant that requires a particular class of soil, a large supply of manure annually, and definite climatic conditions. It must thus receive high cultivation and be protected from animals. If the price paid for the produce will not suffice to cover these expenditures then the industry will not pay.

3. The purport of my report may, therefore, be said to be that the experimental cultivation in India by Europeans has hitherto been in the most unlikely regions and that the price offered for the produce has rendered essential methods and
materials of cultivation prohibitive. This last statement might be compared with the final experience of Mr. Cyril E. Baxendale of Selangor. That gentleman seems to have been most unfortunate to say the least of it, for he tells us that his correspondence with "ramie spinners would fill a massive tome." He could not apparently dispose of some of his produce, and had to direct it to be burned in order to save demurrage charges at Liverpool. As a not unnatural consequence he adds, "We now leave the ramie to the cows. They like it." [Cf. Capital, Aug. 11, 1904; Agric. Bull. Straits and Fed. Malay States, 1903, 359, 362-6; and compare with Ind. Gard. and Plant., Dec. 15, 1898.]

4. I have endeavoured to point out that the most satisfactory regular cultivation and the most promising experiments seen by me, have been those within approximately the same latitudes as the successful production in China. In other words, the southerly extremities of Rangpur and Bogra in Eastern Bengal would be approximately in the latitude of Canton and Formosa, and the most northerly Indian area (Kangra) in that of Nanking. Thus the Indian area of successful production so far as ascertained by me corresponds fairly closely with that of China, and I have urged that in dealing with the Chinese form of the plant, at all events, it would be well in the future to concentrate attention on the region indienced. And I may add that within the more southerly limits of that area I found the plant by no means so vigorous as on the most northerly, so that a northern rather than a southern extension would seem most full of promise. Outside the area, more especially within tropical tracts, it would appear likely, however, that good results might be obtained with the Ramie or Malayan plant.

Conditions of Cultivation.—During my tour of inspection through the Indian rhea districts I had frequent occasion to comment on the singular uniformity that prevailed in the name given for the plant, the character of the stock grown, the location of the plots of land under the crop, the class of cultivators concerned, the method of cultivation pursued, the system of separation of fibre employed, and the purpose to which the fibre was put. These and many other points seemed significant and highly exceptional in Indian agriculture as a whole, where much diversity of opinion is usually manifested. In Bengal and Assam the plant had to be grown in order to secure fibre wherewith to make or repair fishing appliances, and there the matter began and ended. Usually the Indian agriculturist shows interest in the produce of his fields; rhea is not an agricultural crop, it is a plant grown by or for the fishermen! In only one Sub-division of the Rangpur district (Kurigona), and even there in connection with but one or two villages, was it found as a field crop in the hands of the regular cultivators (rajbunis). Everywhere else it was exclusively a garden plant found on the homesteads of the fishing classes. On an average the plots would not exceed 20 square feet in size, and were as a rule beds of pure manure sometimes 2 feet in thickness, raised above the level of the surrounding land, and closely fenced in to protect the plants from cattle which otherwise would completely devour the crop. In China it is practically grown on poudrette. A writer in *The South Indian Observer* (March 1902), who professes to have a practical knowledge of rhea-growing both in India and China, says that no part of India is in any sense a favourable field for the introduction of the rhea-planting industry. [Cf. with the reprint in Ind. Plant. and Gard., June 1902, and compare also with Plant. Gaz., Dec. 1898.]

A Garden, not Field Crop.—In the whole province of Bengal it would be difficult to find a better soil or a more enlightened class of cultivators than in Rangpur, and yet few, if any, have taken to rhea, in spite of the fact that the fibre fetches locally from £50 to £180 a ton and even more fabulous prices. They have witnessed the plant being grown by the fishermen for at least a century. Buchanan-Hamilton's...
description of its cultivation in 1807 might be given as an account of the rhea-production of to-day, and yet the cultivators gave almost invariably one answer to the inquiry made by me why they did not take to rhea. "Why should we?" they asked. "We have other crops that pay quite as well and give infinitely less trouble." To that I had no very definite answer to offer. It would have been useless to have made the assurance that if they were prepared to risk a little, a large export might be developed and machinery invented that would perhaps render rhea-fibre production both profitable and easy. The Indian cultivator is neither willing nor able to undertake risks, still less to purchase machinery. Tobacco and ginger in Bengal and tea in Assam are consequently likely to continue to occupy the land best suited for rhea, until European capital and enterprise come to the aid of local resources. Dr. Buchanan-Hamilton drew the attention of the Indian cultivators to rhea as a valuable fibre and expressed the hope that jute (which he also found in the same districts with rhea), a fibre then quite unknown in Europe, would not attract attention until san-hemp had been given a fair trial. What has been the result of the hundred years that have come and gone? Both rhea and san-hemp are in the identical positions today that they were when Buchanan-Hamilton wrote; in fact if anything they have gone backward, while jute has expanded into one of the most important crops of present-day Bengal agriculture. It cannot, therefore, be said that in the region of rhea cultivation the farmers are opposed to such new crops as trade may demand, so long as they are profitable. The undoubted answer to the present state of affairs must be that jute has paid handsomely and rhea has hitherto offered no inducement to extended production.

Indian System of Cultivation.

It may perhaps be as well to bring into prominence the admission that it is impossible to furnish a definite statement of the cost of production and possible margin of profit in rhea cultivation. Though many writers have loudly condemned unfavourable opinions about the future of rhea and have given their personal assurance of ultimate success, no one has been either able or willing to furnish actual data that could be accepted as representative. It may perhaps be the more convenient course, therefore, if I arrange province by province such material as exists regarding the methods of cultivation and experience gained generally.

Bengal: Eastern and Northern.—Soil and Rotation.—At Joyganj, in the district of Dinajpur, the late Rajah Syama Sankar Roy, Bahadur, experimented with rhea. He laid out several plots of high land that contained a rich loamy soil and aggregated 600 acres. He placed the plantation thus formed under the charge of a European manager. The plants grew remarkably well and gave three (sometimes four) cuttings a year. The experiment had to be discontinued, however, since the price offered for the produce was not equal to actual cost of production. The land was simply abandoned, and fourteen years later (the date of my visit) not a plant of rhea was to be found, though much of the land had never subsequently been cultivated. In Rangpur district rhea is fairly extensively grown, but with one or two exceptions not as a field crop. It flourishes exclusively within the tobacco-growing portions of the district, and most successfully where the finer qualities of tobacco are produced. It demands the best soil; the land must be
above height of prolonged inundation, but possessed of free subsoil moisture (which in Rangpur is about 3 feet below the surface); the fields have, moreover, to be manured and carefully tended. In Rangpur wherever soil of a rich sandy loam occurs, there *kankura* cultivation may be expected, and wherever heavy clay soils appear there it disappears. In other words, wherever a situation and soil suitable for tobacco is met with, there rhea may be found, and when grown on fields it is rotated with tobacco and ginger. Of Bogra the same remarks may be made, viz. that tobacco and rhea occur on sandy loam, rotating with chillies and sweet potatoes, but that the absence of all these is universal with the appearance of red-clay soils.

It is hardly necessary to repeat similar observations regarding the other districts of Northern and North-Eastern Bengal. The plant is not grown in every district, nor in all parts of the same districts where it is met with. In Dinajpur, for example, it is confined to the northern tracts; in Rangpur, Bogra, Jalpaiguri and Kuch Behar, similar isolations exist. In other words, there are conditions that seem to have arbitrarily restricted production in the past and which are admitted freely by the cultivators as favourable or unfavourable to the crop to-day. One instance may be given at once. Rhea will not grow as a field crop nor even as a profitable garden plant to the south of Bogra in the rice and jute clay lands. But much more obscure though doubtless of equal value are the botanical facts I have endeavoured to deal with in my report. The comparative absence of leguminous plants, both as wild species or as field and garden crops, is a most significant feature of the rhea country. So again importance must, I believe, be attributed to the appearance of certain peculiar garden crops, not met with outside the area in question. Of these I would especially mention—*Malva verticillata*, *Chrysanthemum coronarium*, *Brassica cuneifolia* (a plant closely allied to Chinese cabbage) and *Rumex vesicarius*, which, with the green tops and flowering shoots of rhea itself, are all extensively eaten as vegetables and take the place very largely of the peas and beans of other parts of India. So again *Corchorus capsularis* is very possibly a native of China and that plant is common in Eastern and Northern Bengal and Assam, while *C. olitorius* is the jute of the other districts of Bengal and of India generally. These are striking coincidences if that be the view taken of them. In my opinion they have a far higher value, and justify the conclusion that there are climatic and other physical conditions intimately associated with the restriction of the area of what might be called the Indian commercial (or rather, successful) production of rhea to the tract of country indicated—a country that might be said more closely to resemble the rhea area of China than of any part of India.

Methods of Cultivation.—In Bengal rhea is propagated by root cuttings, though the system of burying stem-cuttings horizontally is sometimes pursued, more especially to fill up vacancies and to increase the number of plants in the field. The cuttings are usually 6 to 9 inches in length and planted under 3 to 4 inches of soil. They are placed from 1 to 3 feet apart each way. There are said to be two seasons for transplanting, the first in April to May (before the commencement of the rains), and the second in September to October (at the close of the rains). The majority of cultivators favour the former season. The fields are weeded and hoed after each cutting and heavily manured every year during the cold season. Unless so treated, and liberally, the plants should be removed into new plots of land after two, three, or at most four years, according to the fertility of the soil.

Number of Cuttings.—The shoots are cut down when the bottom portion of the stem begins to turn a brown colour. At this stage the leaves, low down on the stem, also begin to fall off. Two to four or even five cuttings are obtained a year, the shoots being 4 to 5 feet in height. The majority of cultivators mention three cuttings as a good average crop. Two cuttings they regard as indicative of neglectful cultivation, and five or six, they hold, can only be obtained from very small plots, shaded, heavily manured and freely watered. As a rule the entire plot is cut down at one and the same time, but occasionally the more intelligent cultivators select the stems when ripe, and thus practically cut only small quantities at a time, but throughout the year.
RHEA FIBRE OF INDIA

From September-transplanted plots the following were given as the seasons for cutting: 1st cutting in May (the worst); 2nd in June (the best); 3rd in July; and 4th in August. But many cultivators prefer to reject the May cutting and to use it for green-manuring the plot, thus having only three cuttings. If transplantation takes place in April to May, there are usually only the three cuttings already indicated. A cutting made later than August is regarded as affording a very inferior fibre. Many cultivators, nevertheless, cut down the plants once or twice during the cold season, but with a view to cause a vigorous simultaneous shooting for the June cutting.

Outturn.—The information procured by me on this subject was so unsatisfactory that I hesitate to publish it. So far as I can learn, the average yield of the highly cultivated homestead lands, worked out to the acre, would not exceed 600 lb. (say 5 to 7 maunds) per annum of roughly cleaned and dry fibre. As compared with this it may be stated that the average yield of jute might be put at 15 to 20 maunds. It has been urged by some writers that since it gives 2, 3 or even 4 cuttings a year, the yield of rhea is bound to be higher than the one cutting afforded by jute. But jute occupies the land for, say, only a few months, that is to say it is not a perennial but an annual crop; it can be raised on much cheaper and more abundant land than rhea; it demands little or no cultivation, and usually no manure; and lastly the fibre is easily separated. With these advantages, let alone the facts that it produces more stems to the acre and these grow to a length equal to the combined length of all the cuttings obtained from rhea, it is not to be wondered at that jute is both more popular and more profitable than rhea at the prices at present offered by Europe.

Probable Direction of Expansion.—The most hopeful prospect of a future Indian expansion may be said to lie within its present area in North Bengal. The overflow might then be looked for to pass east and north-east into the valley of Assam rather than to go to the southern and south-western or south-eastern districts of Bengal. In fact, it would almost appear as if there had been a migration north-east since the date of Buchanan-Hamilton’s explorations in 1807. Its suitability to the Rangpur and Jalpaiguri districts and to the Duars, would point, however, to a possible expansion westward towards Tihut. In other words, it would almost seem as if the Indian rhea of cultivation might become distributed within the belt of districts which, starting in the extreme east-north-east in Lakhimpur and passing through Sibsagar, Nowgong, Kamrup, Goalpara, Kuch Behar, Rangpur, Jalpaiguri and the northern extremity of Dinajpur, would pass still west to Purneah, Bhagalpur, Darbhanga, Muzaffarpur, Champaran, and possibly also to Saran. The sub-montane character of this tract of country, skirting as it does the foot of the Bhutan, Sikkim and Nepal Himalaya, may be at once admitted as very possibly possessing many physical and meteorological characters in common. It may be said to lie between 25° 30’ and 27° north latitude.

How far a western expansion may be possible the future alone can reveal, but it may be added that recent experiments in Tihut and those proposed in Purneah seem encouraging. No climatic difficulty would appear at all events to exist in the way of an eastern distribution. Rangpur lies right in the centre of the region indicated, but, as already stated, the crop was found to attain its greatest perfection in the north and the north-eastern divisions of that district—the portions that may be said to face eastward towards the Brahmaputra valley.

By way of concluding these brief observations on the Bengal rhea industry, it may be added that Sir D. M. Hamilton, of Messrs. Mackinnon Mackenzie & Co., is believed to have prosecuted with fair success the experimental cultivation of Behmeria nivea for some few years in the immediate neighbourhood of Calcutta. It may, therefore, be said that the Indian people are looking to him to prove or disprove the com-
BOEHMERIA NIVEA
Assam

CHINA-GRASS AND RAMIE

...mercial possibilities of this fibre. Capital and personal enthusiasm are the essential elements of success, and it seems, therefore, likely to be established whether Lower Bengal is or is not the most hopeful centre. And as having a direct bearing on this issue it may be added that a writer in The Englishman (Dec. 6, 1900), who signed himself "D. M. H.," made the pertinent observation, "Until we know the cost of growing the article it is not much use discussing the cleaning and manufacture." That is the crux of the whole controversy; will it pay?

Assam.—It is perhaps hardly necessary to repeat all the conditions and circumstances of rhea cultivation in this province, since in most essentials these are identical with what have just been stated regarding Bengal. One or two important differences may, however, be set forth. Assam, having been a poorly populated country prior to the advent of tea, much of the fertile sandy loams that in Northern Bengal have for centuries been under crops were available for European enterprise and rapidly became tea-gardens, instead of rice, wheat, tobacco, ginger and rhea farms. Any expansion of rhea plantation in this province would, accordingly, have to contend with tea, for available waste land, and with European planters instead of Native landholders. Another feature, and one of even greater importance, may here be stated, namely that the valleys of the Brahmaputra and Surma carry culturable flat and undulating lands far to the north of the districts discussed in connection with Bengal. According to my observations this northern trend is distinctly advantageous. Moreover, Assam possesses in a remarkable degree the features of vegetation already discussed in connection with Northern and North-Eastern Bengal. As I take it, therefore, Assam is pre-eminently the rhea province of India, though doubtless to this category must be added the northern tracts of Burma, which are practically an extension eastward of the rhea area, until it becomes conterminous with that of China, Cochin-China and the Malay Peninsula. In fact it might be said that the districts of Northern and North-Eastern Bengal, discussed above, are collectively the most western section of the great Rhea, China-grass and Ramie area of the world.

Two other peculiarities of Assam may now be mentioned—one highly favourable, the other unfavourable. There is a climatic feature of the rhea area that in Assam becomes greatly developed, namely the winter rains and humidity. The cold season instead of checking growth carries it forward, so that the growing season extends almost right up to the hot season. In other parts of India the dryness of the atmosphere during the winter months is such that growth is checked at the close of the rains. The untoward aspect is that the immense natural fertility of the soil has rendered the Assam people the least industrious of all the races of India. As a rule a man need not work more than half the week in order to ensure not merely the necessities of life, but the comforts that he and his family desire. That being so, nothing in the world will induce the ordinary Assamese cultivator to do more work than he pleases. It is hopeless, accordingly, to look to the people of the country to engage in a new and arduous piece of work, however remunerative it might be. If rhea is to be established in Assam it will have to be by European capital and enterprise and through imported labour. Will this pay? It might as a by-product with tea, but we have nothing to show that it would by itself.
is now and again employed by the hill tribes as a source of fibre, and is best known to commerce by the name of Nilgiri Nettle. Amongst the Shans the true rhea is, however, fairly extensively grown, and under the name of gun. The fibre is separated by scraping off the cuticle, then breaking out the core of wood. It is twisted into thread and woven into small bags, or employed in sewing leather sandals, etc., on account of its great strength. A modern European use of rhea is the manufacture of shoemakers' thread. The Shan bags are similar to the Naga bags made of wild riha or *Villebrunea integrifolia* (see p. 164).

Panjāb.—Far away to the north-west, in the mountainous district of Kangra in the Panjāb, the first European investigator (following on the path of Col. Hannay on the north-eastern frontier) was Mr. J. Montgomery, to whom reference has already been made. In pursuance of India's sporadic policy of research Montgomery was allowed to import direct from China, at a great cost and after much loss of time, six China-grass plants. A reference to Col. Hannay, in Upper Assam, would have procured not only a large supply of the self-same plant (at a comparatively nominal cost), but would have secured at the same time full details of the methods of cultivation, as also the experience gained by him. There is no local rhea cultivation in these provinces similar to that described in Bengal, Assam and Burma. I have already admitted, however, that I consider Kangra well suited for rhea cultivation, though it is by no means so favourably placed as Upper Assam or Northern Burma. It hardly seems necessary, therefore, to review Montgomery's results further than has been already briefly indicated. His plantation was an exceedingly small one, on rich, loamy soil, annually enriched by river silt. The plants grew vigorously, were remarkably healthy, and the estimate of yield framed on the results obtained from a selected number of stems (1,000) was originally 750 lb. to the acre, but five years later a fresh estimate raised the output to 972 lb. It has since been admitted on all hands that estimates based on a selected number of stems, or even on small plots of garden land, are utterly untrustworthy.

United Provinces.—In these provinces numerous experiments have been performed, and moreover the trials of fibre-extracting machines, conducted under the auspices of the Government of India, were held at Saharanpur. According to Col. Hyde's report, the results obtained might be thus expressed: two cuttings a year were all that could be expected, though if liberally manured and watered, three might be obtained. The green stems yielded from 1½ acres came to 3½ tons, but 480 lb. of useless stems had to be rejected, reducing the produce to 7,360 lb. of stems or 328 tons, which yielded by Mr. Greig's machine 207 lb. of fibre. Adding the second and a possible third cutting, the annual total yield would have been considerably under 300 lb. filasse or clean fibre per acre. Sir George King, while Superintendent of the Botanical Gardens, Saharanpur, discussed in 1869 the results obtained at Dehra Dun. He very properly observed that being "on the ground all the year round, both rabi and kharif land rents must be debited against the crop, and also water rent, where irrigation is necessary. Besides this, allowance must be made for more manure than the Native cultivator usually puts on his land." But if well manured and watered, Sir George thought three cuttings might be obtained.
The late Mr. Gollan (then Superintendent of the Botanical Gardens) was of opinion that at Saharanpur three or even four cuttings might be secured, the second or monsoon crop being the best and yielding about one ton of green wands, stripped of leaves, per acre. He was very correct indeed when he observed that “rhea will grow, or to be precise, exist in nearly all classes of cultivable soils with a minimum of attention, but in order to make it produce long straight wands of good fibre-yielding quality, it requires a warm, humid, equable climate, a rich friable loamy soil, which if further enriched with liberal dressings of fertilising manures, such as cow and horse dung, bazár refuse, etc., so much the better.” Mr. Gollan would appear to have given the total yield at, say, 2 tons green stems, yielding at 4 per cent. under 200 lb. of fibre per acre a year. But he hastened to add: “I do not look upon rhea as a crop that can be grown with profit in the United Provinces or anywhere in Upper India, at the price being offered for the ribbons.” “I, therefore, take this opportunity of warning the Upper Indian planter, to make sure of his ground, by experiments on a small scale, before he largely sinks his capital in rhea cultivation.”

South India.—It may suffice to give but one illustration of the results and experience of South India, since there is no Native industry and it is believed that all European experiments have been practically abandoned. The Glenrock Company, Ltd., laid out a plantation of 400 acres at Pandalur in South-East Wynaad, and 100 acres at Kullar, some 5 miles from Mettappoli. These were worked for five years from 1884 to 1889, and ultimately abandoned because “the fibre obtained at the price ruling, did not pay for the cost of production.” In one year 8 tons of green stems were cut from a measured acre, or 128,000 stems, but that was an experimental case. Mr. Minchin shows that the range of quantity of water in the green stems is very great—namely, from 75 to 90 per cent. of the total weight, and that it depends on the humidity of the locality or of the season of production. At his plantations the ribbons were stripped both by the Death and Ellwood machines and by the Fremy system, but during the rains “great difficulty was experienced in drying the ribbons.” Three good cuttings were normally obtained in the Wynaad and with irrigation as much as six, but there is always very little rain for four or five months of the year. Commenting on this feature Mr. Minchin (late Manager of the Glenrock) observes: “It may be that a more equable distribution of rain might give a fourth cutting.” In another part of his report he says: “I consider that Dr. Forbes Watson’s estimate of 750 lb. of ribbons per acre is the utmost that can be obtained per annum from rhea, and that quantity only under very high cultivation. These 750 lb. of ribbons should give after degumming about 500 lb. of clean filasse.” “Unless the market is prepared to give up to £70 per ton for rhea ribbons I do not think there is any inducement to undertake the cultivation.” Let it be clearly observed Mr. Minchin means ribbons, and the market quotation for these seems to be anything from £15 to £30, or a little less than half the price necessary to make rhea cultivation profitable in South India.

Mr. Minchin’s experience and opinions are likely to be admitted as the only ones with which the public have as yet been favoured, that are entitled to be accepted as something more than speculations and estimates. It will be seen that the Glenrock had to close their plantations,
and lose their capital, because a yield of 750 lb. of ribbons or 500 lb. of flaxseed (the so-called cleaned fibre of Bengal and Assam) would not pay working expenses. It will be for the practical planter to consider whether indications of a trustworthy nature have been adduced for Bengal and Assam in support of a higher and a more profitable yield than obtained in the Wynaad (with its abundant cheap labour), and whether that difference will make the profit.

Conclusion.

By way of bringing these observations to a close, it may be remarked in passing that the disappointing Indian results can be contrasted with Mr. Frank Birdwood’s opinions (Journ. Soc. Arts, 1904, 401). “What remains to be proved,” he says, “is, can it be grown in India, and be prepared for the market at a profit? Many questions have to be considered; chiefly cultivation. It is impossible to lay down hard and fast hypothetical rules; the planters in India are busying themselves in the matter and their experience is worth all the textbooks ever written.” Naturally, but perhaps Indian planters may ask themselves how many failures and heavy losses such as those of Mr. Montgomery in the Panjâb, of the Rajah S. S. Roy in Joyganj, Bengal, and of the Glenrock Company in South India, to say nothing of Mr. Baxendale of Selangor, may be necessary to establish the conviction that India at least, more especially outside the area indicated by me, is not the most promising of rhea-growing countries. In Tirhut, recent endeavours seem to have given some promise of a possible future success, and Mr. Bernard Coventry has recently furnished full particulars of the results obtained (see the passage below, p. 157). In Assam the plant grows freely, but with exception of the Jokai experiment, cultivation has not hitherto been seriously entertained by planters. The Jokai plantation had been abandoned some time previous to the date of my personal inspection of the rhea cultivation of India, and the Company’s Manager could only show me a few miserable shoots not eighteen inches high, as all that survived. I could discover no trace of Col. Hannay’s experimental plot, thus once again proving that when abandoned the plant cannot hold its own against indigenous vegetation, and has, therefore, not become acclimatised even in Assam. Perhaps the most hopeful country of all, Upper Burma, remains to be commercially exploited. But the real issue, I venture to suggest, is not “Can India grow rhea?” but “Can the purchaser afford to pay a price that will leave a margin of profit to the Indian producer?” And this will meet its solution in the further question, “Can and do other countries (China more especially) produce it profitably at a lower price than India is able to do?” Hence if there is a manufacturer’s side that requires expert knowledge for its full comprehension, there is also an agricultural aspect that demands careful consideration. Both issues must go hand in hand, and perhaps the most hopeful solution would be found in the owners of patent machinery and of spinning and weaving factories undertaking, for a time at least, the production of the plant and the fibre they require. This would save the disappointment of finding no market for the fibre when produced.

SEPARATION AND MANUFACTURE OF THE FIBRE.

As already observed, Dr. Buchanan-Hamilton has the honour of having first published an account of rhea fibre in Bengal. Of the
separation of the fibre prevalent during his time, he says, "The fresh shoots are cut, and steeped in water to procure the fibres of the bark." Now, if that was the system pursued in 1807, it has since changed completely. I have only come across one or two persons who have spoken of the use of water in the separation of the fibre. Col. H. H. Stansfield, speaking of Bhagalpur, described a process of slow boiling, simmering and beating in water. To the boiler was added crude carbonate of soda (saajji matti), the stems being boiled in this for 1½ to 2 hours. The shoots were then taken out and beaten on a board in contact with running water. They were next returned to the boiler and simmered for another hour, then beaten again in running water till the bark and gum were entirely removed. The ribbons were then drawn through a rough carding machine to remove all adhering woody tissues. It is said that a maund of shoots could be thus easily worked per hour, and yield 2½ per cent. of fibre ready for spinning. Mr. Montgomery tells us that he had tried retting on the green and dried stems as well as on the green and dried peel, in running water and in stagnant, both cold and hot. The results were uniformly unsatisfactory. These then (with Hannay's process of steaming, shortly to be described) are the only passages with which I am familiar where a process of retting or of boiling are spoken of as having been actually tried or used in India. It has, however, been recently announced that the Algerian method of retting in sea-water has proved an unqualified success. If that be so, a great difficulty—the removal of the gum—has been once more satisfactorily overcome. Mr. D. Hooper (Curator Industrial Museum, Calcutta) performed recently an experiment with artificially prepared sea-water and reported his results. His observations have been reproduced in many Indian newspapers [cf. Capital; Indian Planting and Gardening, etc.], and unfavourably criticised in the Anglo-Indian Review. The Madras Mail, commenting on this reawakening of interest, observes that "hope lives eternal in the human breast, and there is no inherent reason why in this particular case hope should tell but a flattering tale."

Remunerative Market.—Many writers including myself have for years past urged, however, that it is not a machine nor a process that is wanted, but a remunerative market. The Chinese method is perhaps as nearly perfect as attainable with the people and the conditions concerned. It is unapproached by any European invention or Indian indigenous process [cf. Letter in South Ind. Observ., March 1902]. Moreover the Chinese production is on a large scale which leaves apparently a sufficient margin to meet present European demands.

As witnessed by me in Bengal and Assam the fibre is obtained purely and simply by hand scraping. Ribbons are never prepared by the Natives, since the bark is removed before the fibre is stripped from the twigs. The following passage from my original report gives an account applicable, I believe, to the whole of Assam and Bengal at the present day:—"The stems are required to go through a process of drying, hence rainy weather or even cloudy days during the drying stage are supposed to injure the fibre. The shoots are at once stripped of their leaves, and the leaves are very generally returned to the field as manure. The shoots are then carried to the dwellings of the cultivators, and by means of a bamboo knife or scraper are deprived of the bark and the green succulent outer-tissue around the fibre. It is regarded as essential that all the plants should be scraped or decorticated within 24 hours after being cut. The stalks are then laid out on the ground in some dry situation and exposed to the sun during day and removed within doors at night to avoid the dew, and this method of drying is continued for some 4 to 10 days. The stems are thus com-
BOEHMERICIA NIVEA

CHINA-GRASS AND RAMIE

Machinery and Processes

Cleaning the Fibre: Completely dried and the adhering fibre more or less bleached. They are then each broken across, a little below the middle. The finger or scraper is inserted underneath and run upwards and downwards until the whole of the fibre is removed. For this purpose the central stem may have to be broken more than once. This stripping stage is considered the most troublesome of all. After being removed from the stem, the fibre is drawn rapidly once or twice between the thumb and the flat surface of the forefinger, in order to free it from any adhering particles of the stem or bark. The after cleaning of the fibre, preparatory to its being spun into thread, is done for the most part by the women and children, and consists entirely in splitting up the cords by means of the fingers. Sometimes, however, it is dipped for a few minutes into a boiling solution of *haldi* (turmeric), from the idea that it is thereby softened and rendered more easily separable into its finest bands of fibre. In one instance, while in Bogra, I was told that the partially cleaned fibre was boiled for a very short time in the water obtained after cooking rice. This was also said to soften the fibre. It is probable that both with *haldi* and rice-water the advantage secured might have been obtained through boiling in water only, but it is perhaps desirable that this question should be chemically investigated.

Preparation of Fibre.

Ribbons.—It is customary to find (in reports published in Europe) the statement that rhea ribbons are exported from India. I cannot say definitely that that is not so, but I should think it highly probable that the supply must have been derived exclusively from European experimental plantations (the Glenrock, for example) or that it was prepared to order. The Bengal cultivator invariably scrapes off the bark before separating the fibre from the stem, and thus offers for sale what may be a crudely cleaned fibre (or China-grass) but is certainly not the much condemned "Indian rhea ribbons" that have given an evil name to, and greatly lowered the value of, the Indian fibre. The Bengal cultivator, generally speaking, decorticates first, then strips the fibre, and it seems to me that process is a more rational one than that followed by each and every one of the inventors of the so-called decorticating machines hitherto placed on the market. These either strip off the bark with its adhering fibre or smash up the contained stem (scutching) and liberate the bark and fibre in that way. No doubt by a subsequent action some of them get rid very largely of the adhering bark, but they fall far short of the operation of complete removal of the bark and of the green pulp external tissue which is immediately effected by the cultivator on the stems being cut. Whether his subsequent process of drying the exposed fibre before separating it from the stem is advantageous or not I have had no opportunity of testing, but long acquaintance with the Indian cultivator has prejudiced me in favour of the view that he rarely does much within his own sphere of life that is useless, and he certainly never imposes on himself very considerable additional labour to no purpose.

According to the description given by Col. Hannay in 1850, the Chinese strip the bark and fibre into ribbons as the first operation. The ribbons are then steeped in water for a couple of hours, and thereafter scraped to remove the bark and gum. He then adds that this is quite different from the method pursued by the Dooms in Assam, and observes, "A cheaper method of preparation, and one which is best suited for separation on a large scale, is to subject the strips of fibre, after being taken from the stalks, to the steaming process in boxes, tubes or cylinders. The steaming will soon carry off the sap and its bad qualities, and the bundles well dried will then, I think, be quite in a marketable state." Here we have what may be regarded as the principle, if not also the actual manipulation, of the process patented many years afterwards as the Fremy system. Speaking of the Wynaad experiments, Mr. Minchin says, "Small portable boilers on wheels were used, which followed the coolies who were cutting the stems along roads through the cultivation. The steam was turned into closed wooden boxes into which the stems were placed. The skinning by hand was a slow process, but the ribbon was saved."

Machinery and Processes.—So much has been written for and against the various machines and processes that have been invented and patented for stripping the bark into ribbons, for degumming the fibre, or for producing filaments directly from the stems, either by chemical or mechanical contrivances, etc., etc., that it seems undesirable to venture further, in this very brief sketch of the existing Indian rhea industry, on so very controversial a subject, and one which has hardly assumed practical importance in India. It may, however, be said that by one set of writers it has been upheld that the proper way is to treat
PREPARATION OF FIBRE

the green stems and produce direct what might be called a green filasse; by
others, that since the fibre from such a process has still to undergo an elaborate
chemical treatment before being fit for the spinner, there is nothing gained by
turning out filasse on the spot. All that is required is the production of dry
ribbons or even dry stems. By still another set of writers it has been upheld
that the percentage of fibre to bark varies so very greatly that it would be
dangerous to organise a future trade on such a basis. The prices offered for
ribbons of bark would have to be very low, in order to safeguard against an
unprofitable yield of fibre—thus ruinous to the grower of good stock. It has
accordingly been contended that success can alone be obtained if the clean fibre,
in a state very nearly, if not altogether, fit for the spinner, be produced by the
grower, though perhaps at central factories adjacent to the areas of cultivation.

In the Kew Bulletin (add. ser., ii., 1898), the reader will find full particulars
regarding the various methods of cleaning the fibre, and of all the machinery
up to then in use.

Mr. Bernard Coventry’s highly interesting paper in The Agricultural Journal
of India (1907, ii., pt. i., 1-14) reached my hands after the above observations
had been passed to the press. It has thus been only possible for me to make
room for a brief notice. He does not seem to lay more stress on the machinery used
than on the geographical and soil conditions of the countries of production or the
race of plant grown. In that he may possibly in the future find himself mis-
taken. In any case the yield of 2½ per cent. of clean fibre is practically that
mentioned by not a few of the past Indian investigators, from Hannay, Stans-
field, etc., downwards. But Mr. Coventry narrates the circumstances under
which rhea fibre cultivation had been undertaken in Tirhut. These, it would
seem, were precisely those recommended by me some years ago (Agri. Ledg.,
1898, No. 15, 469-7). And briefly as follows:—A company of Calcutta
merchants (the Bengal Rhea Syndicate, Ltd.) undertook to supply the Faure
mills for the decortication and the plant, and to ship and sell the produce.
Certain indigo plantations were to grow the plant and prepare the fibre, “the
expenses and realisations in connection with the whole enterprise being brought
under a joint account.” “The area covered by these contracts aggregated
over 3,000 acres. As the planting and cultivation progressed it was found,
however, that many localities which had been selected were unsuited to the
growth of rhea, so that ultimately the area actually put down did not exceed 2,000
acres” (Coventry, i.e. 4). In a further passage Coventry mentions incidentally
the area in Dalsing Sarai as having been 500 acres. Speaking of the subject of
yield, he says, “The stems in well-established plants should be as tall as possible,
from 4 to 6 feet, but never less than 3 feet. Four good cuttings should be secured
per annum if it is to pay, and the total weight of these four cuttings of green stems
should not be less than 30,000 lb. per acre, or say 15 tons. The yield of dry
fibre from these stems should not be less than 2½ per cent., making 750 lb. per
acre per annum. This amount will vary with the efficiency of the decorticating
machine. The possible amount of fibre to be obtained from the stems is be-
lieved to be 5 per cent., but owing to the large amount which is broken and
cut away in the rough process of decortication, only 2½ per cent. can be relied
on for an average yield with existing machinery, and this is given by the Faure
machine.” It is thus not quite clear whether these are the results actually
obtained at the Research Institute, Pusa, or only indicate Coventry’s per-
sonal opinions and expectations. It is all the more disappointing, therefore,
that this uncertainty has to be concluded by the opinion that “if the spinners
are truly desirous of developing this important industry they must encourage
the growers and offer a price more commensurate with the intrinsic value of
the product.” What is doubtless wanted is a remunerative demand. [Cf. Agri.
Ledg., 1898, No. 15, 466; Kew Bull., 1907, 4-8.]

Indian Industrial Uses.—I came across no Natives of India who were
aware that the fibre could be spun into such fine yarn that it might be woven
into fabrics. In the case of Bhagalpur it is stated that it had been used some
twenty years ago in admixture with silk. Whether it is still so employed I
have been unable to discover, but throughout Bengal and Assam it is spun
into coarse thread, three strands of silk, which are again spun together to make
fishing-lines and the cord of which the koi jolos or fishing-nets are made. While
travelling in Dinajpur and Rangpur I heard of one or two markets or annual
fairs at which the fibre, the cord, or the nets of rhea were said to be regularly
offered for sale, such as the Bora Daroga melas and fair at Kaunia.
FINANCIAL ASPECTS OF RHEA.

Yield in Other Countries.—The foregoing remarks have been thrown together with a view to represent all that is actually known regarding the cultivation and manufacture of rhea in India. I have quoted figures of yield and prices obtained for bark and fibre, but I have not attempted to give actual estimates of the cost of production nor of the practical results obtained, because so far as I am aware these can hardly be said to exist in connection with India. It would seem, however (to judge by the yield of bark and of fibre reported from other parts of the world, where rhea cultivation has been conducted on business lines), that we have to suppose that the plant is infinitely less productive in India; in other words, that India is not well suited for rhea production; or that the plant has degenerated to a stock very much inferior to that which exists in China, Japan, the Malaya, and America; or that our system of cultivation is altogether defective and deficient; or that the Indian results have been much under-stated; or, lastly, that the returns from other parts of the world have been greatly over-stated. I cannot, therefore, attempt more than to allude briefly to some of the figures that have been published outside the limits of India. In a report issued by Mr. L. Wray, jun., the results of the Perak Government cultivation are given for five experiments. These varied in yield from 1,280 lb. to 2,508 lb. of ribbons per acre, or a mean of 1,656 lb., which gave 1,173 lb. of cleaned fibre. With so splendid a result (very nearly double the usual figures recorded for India) one would have expected the experiment to have been announced as a financial success, but Mr. Wray tells us that with ribbons at £7 a ton in London, a net loss of £18.30 per acre was sustained. Of Wenchow in China it has been found that one cutting of 80,000 stems yielded 312½ lb. of fibre per acre. It is thus possible that, adding the other cuttings, the total return would have been 900 to 1,000 lb. of China-grass.

Mr. E. Mathieu of Singapore has published a highly satisfactory account of rhea cultivation in the form of a review of the results obtained by the Director of the Botanic Gardens of Java. Mr. Mathieu supports his views by reference to parallel results obtained in America and Algeria. He believes that after three or four years’ growth a Malayan plantation should yield in four cuttings 20 tons of stems per acre, and that these ought to give 3½ per cent. of clean dry fibre or 1,680 lb. per acre, worth in London £24 a ton, which would yield a net profit over working expenses of £102.30 per acre. If this estimate be accepted, the Malayan plantations would yield fully double the average outturn mentioned in connection with India. But even such a splendid production falls far short of others that have to be recorded. According to certain returns published in connection with the Keru valley, California, four cuttings are said to have been obtained a year, making a total of 50,400 lb. of green stems, or a little more than double Mr. Mathieu’s estimate for Malayan production and perhaps five times the mean of all the figures given above in connection with Indian experience. Mr. Charles Richard Dodge (Useful Fibre Plants of the World, 89) gives 25 tons of green stems with leaves as a fair average for California, and Hilgard mentions a yield at the Californian Experimental Station (Bull., Nos. 90, 91) of 1,935 lb. of fibre per acre. From the experimental cultivation of a small plot of B. nivea at Kew, it was calculated
BEHMERIA OR RHEA SUBSTITUTES.

Practically every fibre obtained from the Natural Order URTICACEAE or the Nettles might be mentioned as a possible Rhea Substitute. These are, however, referred by botanists to two sub-tribes, viz. the STINGING and the STINGLESS NETTLES. Of the former may be mentioned Girardinia, Laportea and Urtica, and of the latter Behmeria, Debregeasia, Maoutia, Sarcochlamys and Villebrunea. These and a few other allied genera are well known to afford strong and beautiful fibres. There is, however, an objection to the former group that applies in nearly equal force to all the species, namely that the poison of the stinging hairs renders it difficult to collect the plants; and indeed in some instances the poison is absorbed and retained by the fibre during the process of preparation. The stinging nnettles are consequently an intractable group of plants, no single member of which has assumed or seems likely to assume commercial importance in the modern commerce of any part of the world, even although the fibres they afford are strong and exceedingly beautiful. The other group—the stingless nettles—in addition to the China-grass or Rhea contains several plants that are much appreciated in the countries where met with plentifully, and mainly as sources of useful fibre. Several of these are also capable of extended utilisation, should the necessities of commerce call for new and diversified fibres. Each possesses special features of its own, and the chief difficulty that stands in their way is that which has retarded rhea itself, namely that the necessity for their recognition has scarcely arisen. By far the most promising fibre of this series is Villebruna integrifolia.

In the remarks that follow I shall deal as briefly as may be possible with each of the more hopeful rhea substitutes, and, as customary, in the alphabetical sequence of their scientific names:

Debregeasia hypoleuca, Wedd.—This large shrub is met with plentifully on the margins of fields, by roadsides and watercourses, and near houses, in the western temperate Himalaya, at altitudes of 3,000 to 6,000 feet. It is best known by the following vernacular names:—pûrûni, tashâri (tushiyara), siâru, tashâri-siâr, sihâru, sandâri, sansdâri, anmer, thanô, pincho, prin, etc.

It is freely polluted in October, and forms long, straight, willow-like shoots which yield a fair percentage of bark-fibre; the shoots are also made into crude baskets for local use. The fibre is very generally extracted by the hill people and employed for ropes and cordage. Various methods of separating and cleaning the fibre have been reported. Baden-Powell observes that the shoots are not steeped in water but are dried, and when brittle are beaten and the fibre collected. The fibre is reported to be exceptionally strong and of special value for fishing-nets, because of its resisting the action of water. As cordage and rope it is employed for all agricultural and domestic purposes by the hill people, but I have never heard of its being spun and woven nor have I come across any account of a systematic production or even of a scientific investigation of the fibre.

The closely allied species D. velutina, Gaud., perhaps hardly deserves to be treated as distinct. It is a tall shrub of the sub-tropical Himalaya (especially Eastern) and of the mountains of Western and Southern India and Burma—common in evergreen forests. The following are its better-known names:—Tashîâri, kamhym, kopsi, kurgul and puchaw. It takes the place very largely, in the mountains of Western and Southern India, of the previous species on the Himalaya. It is also used by the Himalayan people, more especially on the eastern extremity, but is less plentiful to the west than the former. In the Madras Manual of Administration it is spoken of as one of the chief fibres of that Presidency. It is fairly extensively used in the Nilgiri hills, and a consignment was sent to Europe by the Glenrock Company which was valued at £70
a ton! Mr. Cameron refers to it as one of the commonest and most conspicuous plants of the Wynaad and Nilgiri hills. Its fibre he tells us is used for bow-strings, and "would appear to require to be better known to be much appreciated." In Ceylon it is used for cordage and string especially suitable for fishing-lines.

Girardinia heterophylla, Dene.— In commerce this is known as **Nilgiri Nettle.** There are three fairly well recognised varieties, viz. (a) **heterophylla** proper, the condition met with on the temperate and sub-tropical Himalaya from Marri eastward to Nepal, Sikkim, Bhutan, Assam and Burma; (b) **palmata**, the special form on the Nilgiri hills and Ceylon; and (c) **zeylancica**, the variety met with on the mountains of Rajputana, Central India, the Central Provinces, and the Deccan, south to Travancore. It is commonly stated that **palmata** yields a fibre superior to either of the others. It would be more correct to say that **palmata** had been systematically studied and reported on in 1862 by the late Mr. McIvor, Superintendent of the Horticultural Gardens, Ootacumund, while the other forms, though known to be fairly extensively used by the hill tribes, had not been separately investigated. Under these circumstances it seems likely to serve the purpose of the present work if all three be treated conjointly. The following are the vernacular names best known:—bichúa, allú, avá, bhábar, keri, sanoli, horú-surát, pha-pat, tutak, serpa, herpa, ullo, kazu, shish-una, kubra, jurkändál, Kundálí, motí khaíjat (or motí-kajotí), agúa, agarra, awah, ana, schorigenain, hpetye, betya, bekshá, etc. [Of Agri. Leal., 1898, 78-9.]

Production.—In the North-West Himalaya **Girardinia** takes the place of **Dobryeana** in the higher and more interior or northern tracts; it occurs between 4,000 and 7,000 feet in altitude, and thus practically above the altitude of **Dobryeana**. It is a tall, stout, much-branched plant that grows to a height of 6 to 10 feet and usually in the form of dense clumps which, owing to the very poisonous nature of the stinging hairs, are left severely alone both by men and animals. The plant is, however, fairly extensively utilised by the hill tribes, especially on the Himalaya, as a source of strong and durable fibre. The long straight shoots are cut down in the cold season (August to October), stripped of their leaves and buds at once, so as to remove as far as possible the stinging bristles; they are then washed for three or four days in water, and the fibrous bark thereafter drawn off as with hemp. Capt. Rainey, speaking of the present plant, not **Dobryeana**, says the shoots after being cut are exposed to the open air for one night; then stripped of their leaves and sun-dried; next placed in vessels and boiled with wood-ashes for twenty-four hours. The fibre is thus found to separate easily and is removed, washed and sprinkled with the flour of the grain kodra, and left to dry, when it is ready to be spun. Campbell observes that in Nepal this fibre is used in making an exceptionally strong cloth called bangra (Agri. and Rural Econ. Nepal), and Gamble and others use for that cloth (as met with in Sikkim) the name gunny or gunná; in Burma it is called gun. These names are doubtless derived from bhang (which signifies to break) and ganja—two words that, at the present time, are restricted to the intoxicating property of hemp. The term gunny in modern commerce is applied to a seating made of jute.

It has already been mentioned that McIvor cultivated the form **palmata** on the Nilgiri hills. The soil best suited he describes as alluvial deposits such as are found in ravines. He sowed the plant in rows 15 inches apart and cut down the young shoots for fibre twice a year, namely in July and January. In doing so he left 6 inches of stem as the stool for future shoots. After each cutting the earth between the rows was dug to a depth of 8 inches and manure applied. From the crop of July an average produce of 450 to 500 lb. of clean fibre may be expected. Of this 120 lb. will be superior quality, in other words the produce of the very young and tender shoots, which should be assorted by themselves at the time of cutting. The January crop will yield on an average 600 to 700 lb. per acre. This fibre is, however, inferior owing to the shoots being mature. Were fine fibre only desired, McIvor was of opinion it would
Behermaia
Laportea
Crenulata

China-Grass Substitutes

be necessary to reap the shoots at an earlier time, and perhaps more frequently than stated.
The inner bark abounds in fibre, that of the young shoots being the finest and strongest and peculiarly silky and at the same time woolly. The shoots when cut were allowed in McIvor's experiment to remain as they fell for two or three days, by which time they had largely lost their stinging property but were pliable enough to allow the bark being peeled off and separated from the leaves. The bark was then tied in small bundles and dried in the sun. When quite dry the ribbons were beaten with a wooden mallet, which caused the outer bark to fall off and leave the fibre comparatively clean. The fibrous part was then wrapped up in small bundles and boiled for about an hour in water with wood-ashes. The fibre was thus removed and washed as rapidly as possible in clear running water, after which it was bleached as with flax or hemp.

Nothing further is known of the above experiment, but it may be inferred that the result was not considered a financial success since the endeavour to grow the plant and sell the fibre appears never to have been repeated in any part of India.

By way of concluding it may be said that, in connection with the inquiry into rhea fibre in Burma, information was received of what was called Wild-rhea—a plant fairly extensively used as a source of fibre by the Shans. On a botanical specimen being furnished this was found to be *Girardinia heterophylla*, called by the Shans *hpeye*. Mr. Carr, Deputy Conservator of Forests, Mandalay, wrote that the fibre was not considered so good as *gun* (rhea) and was not used much by the Burmans. The Palungs, however, were said to mix it with *gun*. It is somewhat curious that the Jabako and Angami Nagas also employ *Girardinia* fibre mixed with their *ban-riha* (*Villebrunaea*) or with cotton, and in Europe the opinion formerly prevailed that the special feature of Nilgiri Nettle fibre was the ease with which it could be mixed with wool, a property not possessed by rhea, and due to the woolly nature of *Girardinia*.

Properties.—Recently, however, as a consequence of inquiries made at the Industrial Museum, Calcutta, a sample of the fibre was sent to the Imperial Institute for report. Dunstan furnished a reply which has been issued by the Reporter on Economic Products as a *Commercial Circular* (1905, No. 1). The following abstract may be here given:

It is evident that these results confirm those of Cross and Bevan, but indicate that the present sample is less susceptible to the prolonged action of alkali (as shown by the b-hydrolysis) and contains a larger percentage of cellulose. The fibre of *Girardinia heterophylla* is remarkable for its ability to withstand the action of alkali, its richness in cellulose, and the length of its ultimate fibre. There can be no doubt that the product is of excellent quality, and it seems highly probable that, if it could be prepared on a commercial scale, it might take a high position among textile fibres.

Mr. B. J. Rose, of the Indian Trade Enquiry Office, 73, Basinghall Street, London, E.C., obtained a commercial valuation of the fibre which was as follows:

"The small sample of the prepared fibre of the Nilgiri Nettle (*Girardinia heterophylla*) received from the Reporter on Economic Products was submitted to a fibre broker, who reports as follows:—'We have examined the sample of vegetable fibre, and beg to report on same: microscopical examination reveals similar structure to flax, appearing, however, to be ineffectively retted; soft and more open than flax, also of a more downy nature. Length and fineness similar to flax and slightly more silky. In our opinion this fibre is more likely to be employed under similar conditions to the flax fibre than as a wool substitute. We value the fibre at £20 per ton.'" [See also p. 151.]

Laportea crenulata, Gaud.; the Fever or Devil Nettle. An evergreen shrub met with in the tropical Himalaya from Sikkim eastward to Assam, Burma, Ceylon, Perak, Java, etc. Is known by the following:

Surat, chorppatta, moringi, sir-nat, mealumma, pheytakye, etc.

This curious plant may be described as the most poisonous of all the nettles of India, although compared with the preceding it is harmless looking. Its stinging hairs cause excessive burning pains, which last for days, augmented when the part being washed; at the same time it produces violent sneezing and copious running at the nose and contraction of the jaw with severe swelling of the part affected. J. D. Hooker (*Him. Journ.*, 1852, ii., 188); Masters (*Prod. Angami*
PUA HEMP

Boehmeria urtica dioica

Hills); Beddome (Fl. Sylc., ii., 306), and many other writers allude to the poisonous property of this plant.

Properties.—The bark is known to yield a strong and fairly useful fibre, the ultimate cells of which measure 8–16 mm., but its great loss on hydrolysis, together with its poisonous property, stamp it as unlikely ever to become of commercial importance. The Indian plant is closely allied to L. canadensis, the fibre of which at one time was of importance in Europe and which recently has been proposed for cultivation in France as a substitute for rhea.

Maoutia Puya, Weid., Agri. Ledg., 1898, No. 15, 120–6, and pl. Is known as pua-hemp, and Nepah Hemp, and by some writers as Wild-rhea, poy, pua, puya, yendi, kyubi or kieten, puttan, sat-sa or sat-sha or sap-sha, etc. A shrub from 2 to 6 or even 8 feet in height, fairly plentiful in the damp forests at the foot of the Himalaya from Garhwal eastwards through Nepal and Sikkim to the Khasia hills and the mountains of Burma, at altitudes of from 1,000 to 4,000 feet.

This is purely a wild plant and is nowhere cultivated. It does not grow in the forests but frequents glades and open places, overrunning abandoned fields. It sheds its leaves in winter, comes into fresh foliage about May, and flowers and fruits in August and September; the shoots intended for fibre must be cut before the fruits mature.

Properties.—Mr. G. A. Gammie described (in 1890) the preparation of the fibre at Mungpo in Darjeeling, his description coinciding in almost every particular with Dr. Campbell's account written in 1847: "The bark is peeled off the stems in long strips; boiled in water, thickened with common woodashes until it is pulpy; then as much as possible of the adhering bark is separated from the fibre by alternating beating with a wooden mallet and washing in cold water. After this the water is rinsed out, and each bundle of fibre is thickly covered with a paste of micaceous clay, and dried. When thoroughly dry, the clay and the remaining bark are easily shaken off, leaving the fibre in a state fit for use. If fibre is required free from dust, it is repeatedly rinsed until the water runs clear, and then re-dried. The white or bluish-white clay found here and there, near streams, is preferred as it gives the fibre a good colour. If its appearance is of no consequence, yellow clay is said to be as effective. I do not know whether the action of the clay is altogether mechanical or not. A few samples which were prepared by treatment with lime and chalk were coarse in appearance and rough to the touch; those treated by clay, on the other hand, were soft and silky." It need only be added that Gammie says "pua is chiefly used for fishing nets and lines. I am told that formerly the Lepchas made cloth from it, but the contraction and expansion readily caused in it by atmospheric changes made it uncomfortable and undesirable for wearing apparel."

Sarcochlamys pulcherrima, Gaud.—A large shrub in Assam, the Khasia hills, Sylhet, Chittagong and Burma, and distributed to Sumatra. It bears the following names:—golab jam, dogal or daggdl, sonafu, tsetya, shap-sha-pen.

This bark gives a good rope fibre, and the leaves and twigs in conjunction with the bark of Albizia are used in Assam in the production of a madder-brown dye.

Urtica dioica, Linn., also U. parviflora, Roxb.—One or both of these plants are met with plentifully near human dwellings on the Himalaya (up to 12,000 feet) from Kashmir eastward to Assam and Burma; also on the mountains of Central, Western and Southern India, at altitudes of from 3,000 to 5,000 feet. They are given the same names as Girardinia.

Properties.—The young tops and the hypertrophied shoots (caused through the parasitic action of an acellid fungus) are largely eaten on the Himalaya. Nettle fibre was the textile of certain purposes in primitive Europe (Hehn), and still is in use. The word Net is derived from the same root as Nettle. A knowledge of their fibres prevails in India, but it can hardly be said they are manufactured. Gubbins doubtless was alluding to Urtica parviflora when he said that the
BCEHMERIA
VILLEBRUNEAN
INTEGRIFOLIA

CHINA-GRASS SUBSTITUTES

plant is cut in October and sun-dried; when brittle it is beaten and the fibre separated. "Seeing it stated that there was considerable labour required in cleaning the fibre, I made particular inquiries on this head; as far as I could learn, there is no greater trouble in cleaning the fibre of the Urtica, when merely dried, than I am experienced in the hemp of the hills which is not retted in water." The fibre is said to be employed for making ropes. [Cf. Hanousek, Micro. Tech. Prod. (Winton and Barber, transl.), 1907, 88-9.]

Villebrunnea integrifolia, Gaud.; Agri. Legd., 1898, No. 15, 108-19, and pl.; Risa Fibre. This small tree or bush is met with on the Eastern Himalaya to Assam, the Khasia hills, Sylhet, Manipur, Chittagong, and right across to the other side of India; on the Deccan Peninsula from the Konkan southwards; and lastly in the Andaman Islands. It is the bon (wild) riha of Assam, also riya, riza or ree, jutta, bon-kotkora, lükoi or lükoi khun, lipic or lipiah, kaphiti

History.—It affords both the red and the white fibre made known by Hannay in 1850 under the name of mesakhi. In fact Dalton affirmed years ago that Hannay's mesakhi was the same as his bon riha. Royle suspected Dalton to be correct and I have little or no hesitation in saying that he was so, though it is curious that none of my correspondents in Assam or on the eastern frontier anywhere have sent me either the plant or the fibre under the name mesakhi, nor was that name mentioned to me during any of my numerous explorations on the Assam frontier. Although fairly plentiful in the Deccan it does not seem to have a vernacular name, nor apparently is it known to afford a useful fibre by the people of Western India. During a brief tour in Coorg and the Wynad some short time ago I personally endeavoured to learn something about this plant. It was found plentiful in the lower damp valleys near the cardamom plantations, but no one seemed aware of its being of any value. Debregeasia velutina was pointed out as the only known wild fibre plant. Subsequently one writer, in response to my account of Villebrunnea (Agri. Legd., l.c.), affirmed that wild rhea was plentiful in Salsette and the fibre regularly exported up the Persian Gulf, but on being asked for a sample, sent a plant which was neither rhea nor any of the rhea-substitutes, thus once more demonstrating to what extent the bugbear ban-(wild) rhea has obstructed the natural development of India's fibre resources.

A botanical specimen of the present plant was sent from Assam to the Herbarium, Royal Botanic Gardens, Calcutta, by Jenkins early in the 'fifties. On the label of that specimen is recorded the following—“This is the ban-rhea from which the China-grass cloth fibres are prepared.” I mention this circumstance as of historic value since it proves that the so-called wild-rhea of the early Assam investigators and the bon (bon) rhea pointed out to me on numerous occasions, during explorations in Assam and across the north-eastern frontier into the country of the Mikirs, Nagas, Singphos, Jabakas, Manipurs and other tribes, is the self-same plant of which so much had been said fully half a century ago. In the country indicated the plant is indigenous, but so far as I could discover, is nowhere systematically cultivated though doubtless encouraged to grow and even planted along embankments, roadsides and other suitable situations with a view to affording a ready supply of fibre. In its purely wild habitat it frequents damp glades near streams, though with its roots well above water-level. Because of its being an indigenous plant and called ban-(wild) rhea there arose the very mistaken notion that it was the source of the cultivated rhea, and still more perniciously the idea that rhea fibre could be procured in India from a wild source for little more than the cost of collection, and further that all that was necessary to secure a never-failing supply was to plant out waste lands with the wild rhea. I have already fully disposed of these absurd notions and need hardly repeat that the wild-rhea of Burma is Girardia.
the wild-rhea of Sikkim *Maoutia*, and the wild-rhea of Assam the present species—three plants that are as remote from rhea proper and from each other as they could well be. They are all nettles it is true, but there the resemblance begins and ends. They are different botanically, chemically, industrially and agriculturally. To continue to think of them as wild forms of rhea is the blindfold acceptance of a name at the probable expense of a future trade. To place this wonderful fibre—wild-rhea of Assam—on the markets of Europe has equal in price, merit and industrial application with the wild-rhea of Burma, would in all probability be too remiss in it to complete neglect. It has merits and properties of its own as different from rhea itself and from all other wild-rheas as from the fibre. It would, therefore, be of great advantage were some entirely distinct name accepted and recognised in Europe as the commercial name of this fibre, such, for example, as that which I have ventured to assign to it above, namely its Naga name *Risa*.

Conditions of Cultivation.—According to the opinion hitherto published, it may be propagated by root-cuttings, by slips, or by seed, and its cultivation conducted on the same lines as with the willow in Europe. It is said to be grown largely by the hill tribes on the north-west of Yunnan, and by the Singphos and Dhannoos of the Assam north-east frontier to a small extent only (Hannay). The tree when left unmolested attains a girth of about 2 feet and a height of from 30 to 40 feet. It is also plentiful within the valleys bordering on the Khasia and Garo hills. It is only found in mixed evergreen forests, and is not gregarious. It thrives principally in shady damp places on the sides of streams, but does not grow at all on the plains or in places exposed to the sun. The tree flowers in March, and the seeds ripen in April (Lloyd). I collected the plant repeatedly on the plains of Assam proper, for example on the embankment of the Rajghur in Sibsagar, and at Nabor Rani in Tezpur. It is very plentiful at Tingali, at the foot of the Jhabka Naga hills, growing on loose soil with plenty of water. It could be grown on the sloping banks of most of the depressions or *hullaha* within tea estates—lands which at present are not only waste, but often a source of positive danger to the tea plant.

Collection and Separation of Fibre.—The trees are pollarded during the months of November to February, and the young shoots become available in June and through the rains. The fibre is extracted from the branches in exactly the same manner as from *Boehmeria nivea*, only the fibre is longer. One man preparing *risa* can get as much fibre in the same time as three men preparing the cultivated rhea fibre (Lloyd). The young shoots begin to appear in May, and these alone are used for fibre. The Naga way of preparing the ribbons is quite different from the Assamese. The cuttings are not made from May to October, during the rainy season. The shoots are carried to the villages, where the outside green skin or bark and a little slimy matter are scraped off. Then the ribbons of the clean fibre are stripped from the shoots. The inside of these ribbons is next scraped with a knife so placed in the hand as to allow the edge to rest against the forefinger. The strips are drawn through repeatedly in order to remove the slimy and gummy substances from the inner face. After being cleaned in this way, the ribbons are left to dry in the shade. When fully dried they are next steeped in water and wood-ashes for about twenty-four hours, and then boiled in rice water for four hours. The fibre will be then found to be quite free from gum, and may be separated into fine threads. This is, however, a tedious process and is mostly carried on by the older people of the villages. The Assamese, on the other hand, take off the fibres when the shoots are in a half-dry state and do not first scrape off the outer bark and gum. They also leave the inner face coated with the slimy substance. They purify it in a coarse way by washing in lime and then twist it into twine, or simply divide up the ribbons and without any preparation twist these into twine. This is employed in making the nets used to catch deer (Sovarin).

Yield and Utilisation.—Col. L. A. M. Lumsdon, C.B. (of Lumsdon's Horse) was good enough to supply the thongs of bark that were furnished for examination and report. These were stripped from wild plants that had not been cultivated nor pollarded to produce special fibre-yielding shoots. The consignment was, therefore, very mixed and an allowance has to be made for this circumstance. The following facts are instructive. The green branches stripped came to 36 mounds 32 seers; the green ribbons of bark obtained from these weighed 3 mounds 30 seers and the dry ribbons, without any preparation other

BÖEHMERIA VILLEBRUNEAE INTEGRIFOLIA

Cultivation

Fibre.

- Season of Pollarding:
- Extraction of Fibre:

The Naga Method.

- Shoots Scraped.
- Dried.
- Boiled in Rice-water.

Assam Method.

- Lime-water.

Yield of Ribbon.
CHINA-GRASS SUBSTITUTES

BEOHMERIA
VILLEBRUNEA
INTEGRIFOLIA

than drying in the shade, came to 1 maund 30 seers (Lumsden). The fibre is used in the manufacture of a coarse cloth, but chiefly for fishing-nets (Hannay). In the Garo hills the fibre is only prepared in small quantities and for home consumption. The people use it in making nets, and in certain cases for mixing with silk in making cloth (Lloyd). In the Jabaka Naga country it is valued because of its great strength. It is coarsely woven into the bags that are carried over the shoulder. These are often beautifully ornamented, being embroidered with dyed thread of the same fibre (Phillips). The Nagas believe that the harder the thread is spun the stronger it becomes (Severin).

Properties of the Fibre.—In 1853 Capt. Thomson reported that for canvas or lines the fibre required only to be known to be generally used for these purposes. Royle published the results of a comparative study of the fibre supplied by Hannay as follows:—Petersburg clean hemp, broken with a weight of 160 lb.; Jabbalpur hemp, with 190 lb.; China-grass, with 250 lb.; rhea with 320 lb.; and wild-rhea with 340 lb. These were the results obtained half a century ago, but still no progress has been made with this fibre. In March 1897 I collected personally a supply of bark in the Sibasagar district, and submitted the same for examination to Mr. Melrose Arnot, at that time Chemist of the Bally Paper Mills. He reported that the fibres separated from the bark were beautifully white and of a fine silky lustre and measured 25 to 30 mm. long and 0.013 mm. in diameter. They were cylindrical or nearly so, and tapered at both ends; they had a small central canal and thick striated walls; a pecto-cellulose very similar to flax, but much finer while being equally long. Arnot then added, “As compared with the fibre of Baoheria nivea this is exceedingly fine, indeed it is one of the finest fibres I have ever measured, and although not anything like so fine in the individual fibre, the filaments are long and strong, and I have no doubt that in every respect the material would prove more easily workable on textile machinery, and it would undoubtedly produce very much finer textures than Baoheria nivea.” “The colouring matter contained in the bark appears to be well worth serious study.”

These results were only just what might have been anticipated: no one can scrape the bark off a young shoot and procure a sample of the fibre without realising that it must be very valuable. But in order to have an independent opinion I desired Col. Lumsden to procure me the supply of ribbons alluded to above, and these were forwarded to the late Sir F. A. Abel, Director of the Imperial Institute, London, with the suggestion that Prof. W. R. Dunstan might be invited to examine and report on the fibre.

On April 28, 1898, I forwarded the fibre along with a letter in which the following occurs:—“During my explorations in Assam I gave special consideration to the ban-rhea. I found, as I had suggested in the Dictionary, that while related no doubt to Baoheria nivea it was a perfectly distinct plant, namely Villebrunea integrifolia. It can be grown on all waste lands; it has little or no gum, will give a high return where Rhea fails; is a very fine fibre, and perhaps as strong, if not stronger, than China-grass. On these considerations I contemplate making an effort to bring this fibre to the attention of commerce, and I shall be very grateful if you can see your way to secure the co-operation of the Officers of the Research Department. I desire to have the fibre examined both chemically and industrially. For the latter purpose I shall be glad to send a larger consignment on hearing from you. The
ribbons have been simply stripped off the stems. They have not been cleaned in any way, and the loss no doubt will be found serious. The plant produces shoots 20 feet long; the bark strips off easily, but no doubt machinery could be readily designed to produce a cleaned and partly bleached raw fibre. Perhaps the most important point in connection with this fibre is that it could be produced at a third the price of Rhea."

In October of the same year I had the pleasure to receive Dunstan's report, and the following passage sets forth his results and conclusions:—

"Unfortunately the untreated bark-fibre was sent for examination, consisting of the bark peeled from the plant—containing the bark-fibres in strips from 3 to 5 feet in length. The only course to adopt was to imitate as nearly as possible the retting process adopted on an industrial scale, which the almost complete absence of gum rendered possible. Two samples of fibre were received. A small quantity of each was placed in dishes covered with water and allowed to stand for about three weeks, after which time one of the samples was sufficiently soft for the fibre to be removed. This was carefully combed and picked, and by this means about 10 grams of a nearly clean brown fibre in long silky threads were procured."

The fibre thus treated was then submitted to the usual chemical examination, and commenting on the same, Dunstan adds:—

"It is interesting to compare these numbers with those obtained in the examination of the fibre of Bauhmeria nicaea made by Messrs. Cross and Bevan. Watt has pointed out that these two fibres are certainly distinct; the Ban-Rhea may be the more important of the two, owing to its growing wild on waste land, to its containing little or no gum, and also because it furnishes a silky fibre at least as strong as China-grass." "A comparison of the results of the examination of these two fibres clearly brings out the superiority of the Ban-Rhea, especially in regard to its smaller loss by hydrolysis and its higher nitration number. At the same time it must be remembered that the process adopted in treating this fibre in the laboratory only very roughly approximates to that which would be used on a large scale. Portions of the original samples have been submitted to a fibre expert, who reports that they can be readily treated by a special and simple process which has recently been devised. Further information as to this process can be supplied if this aspect of the matter is thought to be of importance."

I need only add to the above that I purposely sent the "untreated bark fibre" from the belief that perhaps Dunstan might like to have the opportunity of seeing everything contained in the bark and thus learning its good as well as its bad points. The fact that it lent itself to simple retting is a point of infinite value which might not have been discovered so soon, nor told us with such force, but for the happy accident of my having imposed on Dunstan the necessity of having to separate the fibre for himself. Comment seems almost superfluous. The report demonstrates the superiority of risa fibre over ordinary rhea in regard to strength, texture and composition. The results cannot but be considered as most important, and should commend this new fibre to the favourable attention of all persons interested in rhea, rami and the allied rhea-fibres. As a catch crop to the tea industry risa has perhaps no rival, certainly no equal. The fact that this fibre may be cleaned by simply retting the ribbons of bark (after the
THE SILK-COTTON TREE

BOMBAX MALABARICUM
Semul

fashion of jute) is perhaps of even more interest than its exceptionally high merit as a textile. Expensive decorticating and degumming machinery and methods are thereby rendered unnecessary. It is thus possible that the fibre could be turned out at a price that would not only undersell rhea, but for certain purposes compete with flax, if not with jute itself. At all events the cultivation and separation of a crudely cleaned fibre of great merit might easily enough be accomplished by even the poorest agriculturist. While rhea must of necessity command capital and enterprise, risa can be developed by the peasant. Indian and English newspapers and periodicals have meantime been flooded with the usual quinquennial dose of the will-o’-the-wisp controversy on the favourable or unfavourable aspects of rhea cultivation in India. Hardly a word has been said in commendation of this interesting fibre, which thus seems destined once more to lapse into oblivion.

BOMBAX MALABARICUM, DC.; Fl. Br. Ind., i., 349; Gamble, Man. Ind. Timbs., 90; Pharmacog. Ind., i., 215; Cooke, Fl. Pres. Bomb., i., 120; Duthie, Fl. Upper Gang. Plain, i., 95; MALVACEAE. The Red Silk-cotton Tree, semul, paqun, roko-simul, simbal, bouro, semar, sàvar, munda, bura-chettu, pulá, buria, sàmalí, letpan, etc., etc. A large deciduous tree common throughout the hotter forests of India, Burma and Ceylon.

The tree yields a dark-brown gum which is sold in the bazars under the name mëcha-ras. Another vernacular name for the gum is supåri-ka-phul, "produce of the betel-palm," the name supåri being said to be given to the blunt thorns of Bombax by children who masticate them instead of the fruits of Arceca Catechu (the true supåri). The gum only exudes from portions of the bark which have been injured by decay or insects, for incisions in the healthy bark do not cause it to flow. It is collected from March to June, and is used as a katira or hog-gum. Mooden Sheriff (Mat. Med. Mad., 1891, 61) says there are three market qualities of semul gum, of which the first fetches Rs. 12 per maund, and the third Rs. 8. The gum is used in medicine. It is very astringent and is used by both Hindus and Muhammadans in diarrhoea, dysentery and menorrhagia.

The inner bark of the tree yields a good fibre suitable for cordage, and the seeds afford the so-called red silk-cotton or semul-cotton, a fibre too short and too soft to be spun, but useful in stuffing pillows, etc. It has also been talked of as a paper-fibre. The smoothness of the floss is believed to prevent its felting, and hence in the textile industries it could only be employed to mix with other fibres in order to impart a silky gloss. Its only important utilisation, however, is in upholstery. But it should be observed that Buchanan-Hamilton and other writers have considered it as apt to deteriorate and become lumpy, distinct defects in upholstery. There are four plants which may be said to be the silk-cotton plants of India, viz.:—(1) Eriodendron anfractuosum, DC.; (2) Bombax malabaricum, DC.; (3) Cochlospermum Gossypium, DC.; (4) Calotropis gigantea, L. & Br. [For further information see Calotropis, pp. 207–8.]

The flower-buds of Bombax constitute an article of Food, being eaten as a pot-herb. Some years ago it was reported that the estimated amount annually consumed in the Central Provinces was 5,000 maunds (Nicholl, Ecc. Rept., 1878–9). The root of the young tree (semul-musla) is said to be a Medicina and used as an alterative; it is made into a confection with sugar and ghí and administered as an aphrodisiac or as a restorative in phthisis. The young fruits (mardí-moggu) are stimulant, diuretic, tonic, and expectorant. The wholesale price is quoted for Madras as about Rs. 3 per maund. The Timber is not very durable, except under water. It is used for planking, packing-cases, toys, fishing-floats, coffins, the lining of wells, etc. It is also sometimes made into casks and water-troughs. The tree is called the yana-drūma or tree of the infernal regions or of the god of death, because it makes a great show of flowers and produces no fruit fit to eat. The cotton is made into tinder, and the wood

168

For some time the export of bones and bone-manures from India was much deplored by writers on Indian economy. The majority of the scientific investigators whose publications have been enumerated above have, however, pointed out, first, that the Indian soils as a whole are not deficient in phosphates of lime; second, that bones contain, in view of their cost, too small a proportion of nitrogen to justify their use; third, that cereals are not so much benefited by bone-manures as by nitrogenous manures; and fourth, that it is the roots which are not grown as field-crops in India that are most immediately and successfully treated with bone. For these and many other reasons it has been contended that to the Indian cultivator, as matters stand at present, it is perhaps more profitable to sell the bones found on his fields than to utilise them as manure. Mollison, however, observes that "The rayat could, if he took the trouble, collect in some districts quantities of bones, the cost of which would be cartage and his own labour. He could grind the bones into powder ... and by simple process of fermentation make the bones more soluble and, therefore, more quickly acting than in their natural condition." If these operations were conducted in the rayat's spare time and the value of his labour more or less discounted, I have no doubt that the bone-manure would be found as cheap as any other manure procurable. "Bone-meal has been found specially useful with sugar-canes, and to some extent is used with both tea and coffee."

Mills.—In all districts tapped by railways or navigable canals and rivers, bones are systematically collected and conveyed to important centres, more especially seaport towns, where bone-crushing mills and bone-manure factories have been established. In 1891 there were 13 such works that gave employment to 491 persons. Steadily these increased, and in 1900 there were 18 works employing 991 persons. These are distributed as follows:—Seven in Madras, 6 in Bombay, 2 in Sind, 2 in Bengal, and 1 in the United Provinces. Thus bone-meal and superphosphate are regularly manufactured and on a fairly large scale in India, but as the local demand is limited the produce is mainly exported. It is not possible, however, to furnish separate returns for the traffic in raw bones as distinct from the prepared bone-manures. In 1884-5 the exports were 18,383 tons, and from that quantity they have steadily increased. Apparently they attained their highest magnitude in 1900-1, when they stood at 112,051 tons, valued at Rs. 58,41,916. For the years 1902-7 the figures were: 1902-3, 100,391 tons, Rs. 54,97,967; 1903-4, 74,788 tons, Rs. 41,57,119; 1904-5, 68,203 tons, Rs. 37,51,480; 1905-6, 87,522 tons, Rs. 49,78,778; 1906-7, 93,760 tons, Rs. 55,45,241.

BORASSUS FLABELLIFER, Linn.; Fl. Br. Ind., vi., 482; Gamble, Man. Ind. Timbs., 737; Pharmacog. Ind., iii., 519; Agri. Ledg., 1894, No. 20; Brandis, Ind. Trees, 1906, 657; Palmmyra. The Palmmyra Palm, Brab-tree, tāl, tād, dral, panai-maram, panā, panē-mara, darakhte-
BORASSUS
FLABELLIFER
Tari

The Palmra or Brab Palm

 térı, tanbin, etc., etc. The name "brab," commonly used in Bombay, is derived from the Portuguese brava, "wild palm."

It is now known that the Talipot Palm of the older writers was not Borassus but Corypha umbraculifera. B. flabellifer is an erect graceful palm, dioecious, with terminal crown of fan-shaped leaves. It is believed not to be indigenous to India, but is now cultivated and run wild throughout the plains of India, Burma and Ceylon. Symonds speaks of the "Palmra forests" of Tinnevelly. It is probably a native of Africa, although its present African congener, B. Ethiopeum, is slightly different. Sadebeck (Die Kulturgezw. der Deut. Kolon., 1913) says that B. flabellifer, var. ethiopeum, Mart., does not yield the Pissabafibre. Wisener (Die Rohst. des Pflanzenz., ii, 1905, 5, 454-5) details a careful microscopic examination of the differences between the fibres of Corypha and Borassus. A distinguishing feature of the two palms is the swelling in the upper stem of the African form. A common supposition is that the African plant became extinct owing to the tearing off of the young leaves for fibre, and the same fate was once said to threaten the palm in Ceylon. It grows readily if protected from cattle, etc., and is a valuable tree for checking sand-drift. But E. J. Butler (Agr. Journ. Ind., 1905, ii, pt. iv., 304-10) describes a fungal disease that threatens to prove very destructive.

Properties and Uses.—Every part of the Palmra is turned to account in some way or other, and a Tamil poem enumerates 800 uses of it. There are, for example, five fibres:—A loose fibre which surrounds the base of the leaf-stalk; a fibre which may be separated from the leaf-stalk; a fibre called tár which may be prepared from the interior of the stem; a fibre or coir derived from the pericarp; and the fibrous material of the leaves. The leaf-fibre is utilised in the manufacture of the basket-ware of Madras, produced at Pulikat in Chingleput, Kimedi in Ganjam, and Bezwada in Godavari, etc. Fine strips of the leaves specially prepared and dyed are plaited into braid and worked up into fancy boxes in nests, cigar-cases and the like. At Diamond Harbour near Calcutta, hats have for many years been made of this material and sold to the European sailors who visit Calcutta. A recent inquiry into the braiding materials of India revealed the fact that after Borassus, Corypha, Nipa, Phanur, and Cingomy were the most hopeful. [Cf. R.E.F., Ann. Rept. and Prog., 1897-8, 22.] A few years ago investigations were instituted in India with a view to determining the extent to which the cords-like fibres might be employed in brush-making, as substitutes for the American piassaba fibre and the Ceylon kiritul (Caryota urens). So far indications have not been obtained of a very great demand for these special Indian fibres. The stem or tár fibre is prepared in some special way by the fishermen so that it is pliable and can be plaited into fish-traps. It is neither spun nor twisted, a single thread or fibre-vascular bundle being used; the method of preparation adopted by the fishermen has not as yet been made public. [See also Brushes and Brush-Making, p. 187, also Caryota urens, p. 296.] The export trade in tal coir (or "Palm Fibre," as it is often called) centres largely in Tuticorin (Ann. Rept. Ind Mus., Calc., 1899-1900, 15). The leaves themselves are found serviceable for fans and in thatching. They were formerly prepared as a writing parchment, being so used by the Dutch Government. In Bengal and elsewhere long strips of the leaf are employed by school-children as washable "slates."

In MEDICINE the juice of this plant is used as a stimulant and anti-phlegmatic. The root is considered cooling and restorative, as also the gelatinous contents of the unripe seeds. The ash of the spathe is given for enlarged spleen, and the silky substance on the young petioles of the leaves is utilised as a stptic. The Tamas splits easily but will support a very severe cross-strain, and when old is useful for rafters. It is also hollowed out into water-pipes, channels and gutters, and is made into canoes. It is to some small extent exported and used in making walking-sticks, rulers, umbrella-handles, etc. The juice is used in the preparation of cements.

By far the most important aspect of the Palmra palm is as a source of Food. On tapping the flower-stalk a juice (ras) is obtained, which is either consumed while fresh as a beverage or allowed to ferment, which it will do after sunrise, thus forming an intoxicating liquor (tárı or toddy). If the toddy be distilled the result is palm wine (arak), and by destructive distillation a good quality of vinegar is produced (see p. 1111). The ras is also boiled down into a kind of sugar called gür or jaggery (see p. 928). Small round cakes used formerly and to some extent still pass as currency in Tinnevelly district. [Cf. Yule and Burnell, Hobson-Jobson, 1903, 170]
BORAX

Sohaga or Tinkal

Use of Lime.

Yield of Tāri.

Proportion of Sugar.

Arak or
Palm Spirit.

Edible
Albumen.

Vegetable and Pickle.

BORAX

Sohaga or Tinkal

Use of Lime.

Yield of Tāri.

Proportion of Sugar.

Arak or
Palm Spirit.

Edible
Albumen.

Vegetable and Pickle.

BORAX or SODIUM BI-BORATE; Ball, Man. Econ. Geol. Ind., 1881, pt. iii., 498–9; Agri. Ledg., 1902, No. 5, 132–4; Min. Industr., 1900, 57–9; Holland, Rec. Geol. Surv. Ind., 1905, xxxii., 99–101. This salt is known in India under an extensive series of vernacular names such as sohāgā, tīnkāl, annābēdi, kuddia khār, tankankhār, venkaram, velligaram,
BORAX

Sohaga or Tinkal

billigáru, lakihiya, cavu, tan-kana, tinkar or tankar, etc. In some parts of the Panjáb frontier and Tibet it is tasilé or sal (shal) (one variety being chú tsalé or water-borax, the other tasle mentog or flower-borax).

History.—The substance was apparently known to the ancient Sanskrit authors and is unmistakably mentioned by Susruta. From the Sanskrit they are derived doubtless its Persian and most of its Indian vernacular names, as also its old English synonym tincale. Perhaps the earliest mention (by a European writer) of this substance, in connection with India, is the reference by García de Orta (in 1568) in which he says it is known to the Gujarátis by its Arabic name of tincor. It is mentioned by Abul Fazl in the Ain-i-Akbári (Blöchmann, tranl., 1590, l., 26), and is called tangar. Hove (Tours in Gujarát, etc., 129), who visited India in 1787, describes the salt as refined in Kathiawár. Ainslie (Mat. Ind., 1826) gives a good account of it as a drug and says that the process by which tinkal was refined into borax was kept a secret by the Dutch. Royle (Prod. Res. Ind., 419) gives a brief notice of the substance, but by far the most complete statement hitherto published may be said to be that given by Baden-Powell in his Panjáb Products (1868, 90–4). This reviewed the reports of Cunningham, Hay, Edgeworth, Marcadieu and others.

Sources.—Borax proper is a native borate of sodium found, along with common salt, on the shores of certain lakes in Tibet and possibly beyond in Persia and China, and is deposited with sulphur by hot springs in the Puga valley of Ladák, Kashmir. The Indian area may thus be said to commence in Puga valley of Ladák and to pass east to the lakes of Rudokh. To the south of Lhasa, at the Yamdoche, borax is also obtained. Holes are dug in the ground in many parts of the deserts of Tartary, and within these tinkal is said to collect.

The Western supply (from Puga) enters India by Kullu and is refined at Sultánpur, before being consigned via Mandi and Bhaji to Simla, or via Rámpur in Bashahr to Jagádhri and thence to the plains. Smaller quantities from this same source also find their way through Chamba to Nurpur or to Kashmir and Lahore. Tibetan borax enters India across the frontier of the United Provinces. Atkinson furnishes an interesting account of this traffic. The borax, he says, is collected in June to September and sold at certain markets. It is brought by Bhotia traders and purchased by the merchants at Ránmagar, where it is refined.

Economic and Industrial Uses.—Borax is employed extensively as a Mordantz in dyeing and calico-printing. Medically it is used as a tonic, useful in loss of appetite and painful dyspepsia, and also as an exceedingly valuable detergent in affections of the skin. The antiseptic and disinfecting property of borax, although fully known, might, as it seems, be much more extensively taken advantage of than appears to be the case. For household purposes its uses are practically limitless. As a substitute for soap and soda crystals, it may be regarded as cleaning without destroying colour, and a little added to the starch gives a pleasing gloss to collars, table-linen, etc. As a preservative for meat it is invaluable, and it is probable that as an insecticide (especially in the tea-garden) it would be found unrivalled. Its most important use may be said, however, to be for glazing pottery and as a simple and convenient enamel for metallic surfaces, such as the dials of watches and clocks or domestic enamelled metal wares. It acts as a flux in the formation of a glass which has a low melting-point and thus affords a material that may be employed even in the ornamentation of the surface of glass or glass vessels, since it can be fused and fixed at a temperature lower than what would re-melt the glass on which it has been painted. But ornamentations produced by borax are generally held to be unstable because of the fact that borax is rendered anhydrous by fusion. In time they gradually absorb moisture and become hydrated and efflorescent, when the glaze splits and crumbles to pieces. Sir William O'Shaughnessy was instructed by the Government of India in 1839 to investigate the question of the production in India of glazed pottery sufficient for use at Indian hospitals. His report will be found in the Appendix to the Bengal Dispensatory, and on pages 710 and 711 he also gives a most instructive description of the lime-borate that he employed.
USES AND TRADE

BOROWELIA SERRATA
Frankincense

Metal-welding.

Glass Beads.

Varnish.

Soldering.

Candle Wicks.

Trade.—For some years past the foreign demand for Indian borax has been steadily declining, in consequence of the Italian manufacture from boracic acid and sodium carbonate, as also in consequence of the discovery in California and Nevada of limitless supplies. So recently as 1886-7 the foreign exports of borax were 24,273 cwt., valued at Rs. 5,80,637. During the five years ending 1906-7 they have increased from 5,002 cwt., valued at Rs. 1,13,003 in 1902-3, to 5,613 cwt. and Rs. 1,15,300 in 1906-7. The internal consumption has not, however, declined materially. In 1897-8 the imports across the land frontier to India were 15,273 cwt.; in 1898-9, 16,564 cwt.; in 1899-1900, 20,315 cwt.; in 1901-2, 31,085 cwt., valued at Rs. 3,61,446; so again in 1902-3 they were 29,874 cwt., valued at Rs. 3,52,231; in 1904-5, 19,025 cwt., Rs. 2,24,589; and in 1906-7, 21,506 cwt., Rs. 2,60,864. It will thus be seen that borax is an article of considerable importance in the industries of India, and it is satisfactory to know that the local supplies have proved sufficient to check materially imports from Europe and America. There are, however, signs of a slight renewal of the imports from Great Britain. In 1895-6 these were only 13 cwt.; they rose steadily to 597 cwt., valued at Rs. 9,050 in 1901-2; were 463 cwt. and Rs. 6,792 in 1902-3; 848 cwt. and Rs. 10,840 in 1903-4; 1,500 cwt. and Rs. 18,139 in 1904-5; 1,700 cwt. and Rs. 20,389 in 1905-6; and 2,798 cwt. and Rs. 37,039 in 1906-7.

It is probable that several species yield the true Frankincense or Olibanum of commerce, and of these perhaps the most important is B. Carterii. These balsamiferous trees inhabit the Somal coast of Africa to Cape Guardafui and also the south coast of Arabia. The African or Arabian frankincense has long

173
been regularly imported into India, and bears the following names:—kundur, lubán, thus, váséh, eseó, parangi-sham-birdi, kunurakkam-piskhin, etc., etc. Muhammadanaur distinguish several kinds of the imported obalamum, viz. kundur zakar, male frankincense, which is of the best quality and consists of deep yellow tears; kundur uma, female frankincense, kundur madharaf, the exudation artificially made into tears; kisháh kundur or kasjafa, the dhup of the Bombay market, consisting of the bark of the tree coated with the exudation; and dúcák kundar, the dust of the obalamum and substance reserved for the Indian and Chinese market, whilst the finer qualities (such as the kundur zakar) are assorted and exported from Bombay to Europe. Frankincense is thus an article imported and subsequently re-exported, and is not strictly speaking an Indian product, though it is largely traded in by Indian merchants. It may be useful to furnish, therefore, a few details of the Trade of which Bombay is the centre and draws 90 per cent. of the imports and has, moreover, a monopoly in the re-exports. During the five years 1898–9 to 1902–3 the imports expanded from 20,487 cwt., valued at Rs. 2,12,423, to 28,982 cwt., valued at Rs. 3,79,279, and have since (1906–7) increased to 32,082 cwt., valued at Rs. 4,12,682. Similarly the re-exports amounted in 1898–9 to 20,218 cwt., valued at Rs. 3,18,619, in 1902–3 to Rs. 5,27,827, and in 1906–7 to Rs. 6,40,540, and were sent chiefly to the United Kingdom, Austria-Hungary, China (Hongkong), and recently to Germany and Russia. [Cf. Paulus Eginetae (Adams, transl.), ii. 217; García de Orta, Coll., lv., also Comment. by Ball in Proc. Roy. Ir. Acad., i. (3rd ser.), 677; Linschoten, Voy. E. Ind. (ed. Hakl. Soc.), 1598, ii., 99–100; Birdwood and Foster, E.I.C. First Letter Book, 337, 340, 406, 410; Celsius, Hierobot., 1745, i., 23; ii., 22, 29; Milburn, Or. Comm., 1813, i., 139; White and Humphrey, Pharmacop., 1901, 496, etc., etc.]

Indian

Olibanum

Tree.

E. serrata, Thaxb., ex. Coeleb. (L.C. t. 377)—This is sometimes called Indian Olibanum Tree, and (more especially the gum) known as salhe, sálaí, kundur, lubb, anduku, naggar, guggula, dhup, chittu, bastaj, etc., etc. There are said to be two varieties:—(a) serrata proper, a moderate-sized gregarious tree of the intermediate northern and southern dry zones; and (b) ghnabra, a native of N.W. India. It is often met with in tracks of country where few other trees exist, and on that account is valuable.

The Gum (resin) (sálaí-gugul) occurs as a transparent golden-yellow semi-fluid substance which slowly hardens. It exudes only on injury to the tree and in the Panjáb is collected twice a year, in March from an incision made in the previous October, and in June from an incision made in March. It is computed that each tree yields annually about 2 lb. It is, however, probable that nearly all that has been written about its medicinal properties refers to the imported obalamum, from which it must be carefully distinguished. The Sanskrit word kundur is probably wrongly applied to it, and conversely, although it would appear to be the guggula of Sanskrit authors, gum-gugul of the present day is Indian bdellium (Commiphora dactylifera). It is pungent, slightly aromatic, has a balsamic-resinous odour, is consumed almost entirely in Central and Northern India and hardly if at all exported. As a result of various inquiries some samples were sent to Dunstan, who reported that Indian obalamum "closely resembles Frankincense in its chemical properties. There is little demand for such a product in England, but it might find a market on the Continent as an ingredient for incense." It is employed in rheumatism and nervous diseases and is an ingredient in certain ointments. In Gujarat it is burnt as incense in religious ceremonies. The Timber, which is rough and moderately hard, is recommended for tea-boxes. It is used for fuel and for making charcoal, as well as to some extent in the manufacture of doors, shutters, bowls, dishes, etc. Fernandez (Man. Ind. Syl., 99 (quoted by Gamble)) observes that the tree enjoys a considerable immunity from being browsed or lopped for fodder owing to its resinous leaves, and moreover has a great capability for withstanding forest-fires. It is thus valuable in the reclamation of dry hills. [Cf. Taleef Shereef (Playfair, transl.), 1833, 146; Moorhead Sheriff, Mat. Med. Mod., 1891, 96–9; Bisoe, List Hydrobad Trees, 1895, 3; Kanny Lall Day, Indig. Drugs Ind., 1896, 50; etc., etc.]

BRASSICA, Linn.; Fl. Br. Ind., i., 155–7; Prain, Agri. Ledy., 1898, No. 1; Cruciferæ.

This genus contains some of the most useful of esculent plants, such as the Broccoli, Brussels Sprouts, Cabbage, Cauliflower, Colewort, Colza,
CABBAGE, CAULIFLOWER, ETC.

Kale, Kol Rabi, Mustard, Rape, Savoy Cabbage, Turnip, etc. There are probably nearly 100 species, a good many of which are cultivated, with under these perhaps as many more races or special forms recognised by the farmers and gardeners of the world. They are all natives of the north temperate zones, but pass into the tropics as cold-season crops. There would appear to have been three great centres of production—a European, an Oriental and a Chinese. The present review of Indian information is intended to set forth the leading commercial facts regarding the more important plants, viz. the Mustards and Rapes, and can, therefore, be incidentally indicate the other species.

In the Dictionary (1884) it was urged that from an agricultural point of view the Asiatic forms may be referred to three important sections: (a) Sarson, (b) Toria, and (c) Rai. The information given in that work was essentially a compilation, and in no sense a report of personal investigations. Since that date, Lt.-Col. D. Prain while Curator of the Herbarium, Royal Botanic Gardens, Calcutta, was able to devote much attention to the study of the Bengal cultivated forms. He had sent to him seeds of the mustards, etc., grown in practically every district of that province. These he specially cultivated at Sibpur, and was thus enabled to study the plants critically, from germination to harvest. As a result he published a very comprehensive report of his investigations, illustrated by twelve plates and two maps. \textit{Agri. Ledg., 1898, No. 1.} By a comparison with Duthie and Fuller’s account of the species met with in the Upper Provinces (\textit{Field and Garden Crops}) and other such publications, it would appear that what Prain has said of Bengal is, in the main, applicable to the whole of India. But following up Prain’s studies, Dr. W. Kinzel, of the Agricultural Station at Dahme, has furnished the results of microscopic and chemical studies of authenticated seeds supplied to him by Prain. \textit{[Cf. Die Landwirtsch. Versuchs-Stationen, liii., 169–93, transl. and republished in Agri. Ledg., 1901, No. 7.]} It has thus been rendered possible, through the combined labours of Prain and Kinzel, to identify the Indian rapes and mustards with a degree of assurance not hitherto admissible.

Until such personal investigations had been made it was not to be wondered at that numerous ambiguities, due to faith having been too implicitly placed on vernacular names, should have disfigured the literature of the subject. Prain expressly tells us that the \textit{rai} of one district may be the \textit{tori} of another, or the \textit{sarson} of a third. “Although often, perhaps indeed usually, rigidly enough applied within a given district, native names are worse than useless when they are depended on to yield information regarding another group of districts.” This is doubtless true, but is perhaps due more to the ignorance or carelessness of the contributors of samples than to the cultivators of the plants. The writer is fortunate who, like Prain, may be able to analyse native opinion in the light of authentic specimens. It is most satisfactory, therefore, that the literature of this hitherto very obscure subject has been placed on a rational basis. “Practically,” says Prain, “there are but three mustards cultivated in Bihar and Bengal. These three constitute the familiar \textit{Rai}, \textit{Sarson}, and \textit{Tori} crops. Each one of the three varies within its own limits to a greater or less extent: none of them shows the slightest tendency to pass from one to another. So far, at least, as the Lower Provinces are concerned, the existence of anything in the nature of a form intermediate between \textit{Rai} and \textit{Sarson}, \textit{Rai} and \textit{Tori}, or even between the more closely allied \textit{Sarson} and \textit{Tori}, is wholly imaginary.” Many of the errors that have been made by botanists would seem to have arisen from greater faith having been put on the study of dried herbarium specimens than on practical knowledge and experience of the living plants. So also the association of the Indian with the European forms has led to confusion. Prain accordingly concludes his most admirable paper as follows: “As regards the relationship that our three staple mustard-oil crops bear to the corresponding crops in Europe, it may be tentatively held:

1. That \textit{Rai} (\textit{Brassica juncea}) is a crop not grown in Europe, at any rate on a commercial scale, but that it takes the place here of \textit{B. nigra} and \textit{R. alba}, which in turn are not grown in India;

2. That \textit{Sarson} (\textit{B. campestris}, var. \textit{oilifera}) is a crop not grown largely, if at all, in Europe, but that in India it takes the place both of \textit{B. campestris}, var. \textit{oilifera}, and \textit{R. rapa}, var. \textit{oilifera}, which in turn are hardly ever met with here: finally,
BRASSICA
CAMPESTRIS
Indian Colza

"(3) That Tori (B. Napus, var. dichotoma) seems to be the same plant as
B. precox (Summer-rape), or if not the same is at least very like and very
near it, and is undoubtedly the plant that in India takes the place of B. precox
and of B. Napus, var. oleifera" (Prain, l.c. 78).

With these introductory and explanatory observations it may now be
desirable to discuss the chief Indian forms in an alphabetical sequence of their scientific
names:

B. alba, H., f., & T.: Duthie and Fuller, Field and Garden Crops,
pt. ii., 34; Prain, l.c. 9–10. White Mustard; also B. nigra, Koch.
Black or True Mustard. These two species, if met with at all in India,
occur in gardens only within the temperate areas or in Upper India during
the winter months. They are nowhere field crops, nor do they contribute
in any way to the Indian supplies of Mustard or Oil.

I. INDIAN FORMS OF SARSON AND RAPE.

B. campestris, Linn.; Prain, l.c. 22–44, 46.
From the standpoint of commerce it is a matter of supreme indifference
whether campestris, Napus, and raya be treated as separate species or sub-
species of one and the same species. The European cultivated races of the
assemble may be grouped as follows: oleifera, the Colza; Napus-brassica,
the Swedish Turnip and Rutabaga; Napus the Rape, and Raya the True
Turnip. The turnip or slaigham is extensively cultivated in India as a cold-
season crop. The Brahmins and Baniyas are said to have a prejudice against
it. In no part of India are either the Swedish or True Turnips grown as field
crops intended to feed cattle. Prain had sent him from Chittagong,
seed of a mustard that proved on cultivation to be almost identical with the
European Colza. From Sikkim and Bhutan he procured seed of a plant that
turned out to be B. Napus, var. esculenta, DC., the Sweet Navet.

The following are the chief varieties and races:

Indian Colza or Sarson; Sinapis glauca, Roxb., Fl. Ind., iii,
118, also S. trilocularis, Roxb., l.c. 121; B. campestris subsp. Napus,
Fl. Br. Ind., i., 156 (in part); B. campestris, subsp. Napus, var. trilocularis,
also quadricavalis, Duthie and Fuller, Field and Garden Crops, pt. ii., 28–9;
B. campestris, subsp. Napus, var. glauca, Watt, l.c.; B. campestris, Linn.,

Prain (l.c. 77) says the plant thus briefly indicated "occurs in every
province of Bengal except Chittagong, where it is replaced by a different mustard.
It is easily distinguished from Rasi by its stem-clasping leaves, and from Tori
by the greater amount of "bloom" on its foliage, by its taller stature, its more
rigid habit, and its thicker, plumper pods. When reaped the seeds are distin-
guished by their usually white colour; when brown the seeds are distinguished
readily from those of Rasi by the larger size and the smooth seed-coat; from
those of Tori by their being of a lighter brown, and by not having a paler spot
at the base of the seed."

"There are two races—one with erect pods, the Natka Sarson or Sarson
proper, and one with pendant pods, the Ulti or Térd Sarson. Each race has
two distinct subraces—one with 2-valved, the other with 3–4-valved pods." "The forms with hanging pods are not common except in North Bengal
and East Tirhut (Purnea), the subrace with 2-valved pods being almost con-
fined to this area. But the 4-valved kind extends sparingly through Western
Tirhut, and crossing the Ganges spreads southwards through South-West Bihar
and Western Chota Nagpur."

"The forms with erect pods practically occur everywhere: the 2-valved
subrace, however, is little known in Bihar, though it is grown both in Shahabad
to the south-west and Monghyr to the south-east. It extends over the whole
of Chota Nagpur and over Orissa and West, Central and East Bengal. The
4-valved subrace occupies West Tirhut and West Bihar, extending thence sparingly
through South-East Bihar and along the dry parts of West Bengal, as far south
as Midnapore. It also occupies North Bengal and the northern part of East
Bengal (Mymensingh), to the exclusion of the 2-valved subrace. Roughly
CULTIVATION OF SARSON

speaking, therefore, the 2-valved erect subrace is characteristic of Chota Nagpur, Orissa, West, Central and East Bengal; the 4-valved erect subrace is characteristic of the western half of Bihar, and again of North Bengal, while the pendent subraces occupy the region between the areas to the north of the Ganges occupied by the erect 4-valved subrace.”

“The name Sarsun prevails in Chota Nagpur in Bihar, and in extreme North Bengal. In Bengal proper this is the mustard known as Sweti Sarisha, or simply Sweti. In Orissa it is Ganga toria.”

Dr. Kinzel says, “It is so easy to recognise this species as such, that with a little more experience it may become possible to distinguish microscopically the seeds of the various races of sarsun. In brown-seeded sarsun the structure of the testa is very uniform, and is almost equally so in the white-seeded and yellow-seeded kinds. The mucous epidermal layer has been found to be undetached in every one of the races.” In The Agricultural Ledger (1901, No. 7, 111, pl. i., ff. 1-3) are shown the form and structure of the seed-testa of various qualities of sarsun. This, it will be seen, is composed, like that of all the species of Brassica, of a soft parenchyma below, a layer of glutinous cells, a layer of colouring matter, a layer of palisade tissue (the cells of which are narrow, elongated and acute, the shape and size varying with each form of mustard), and lastly an epidermal layer. To appreciate the value of the relative developments of these structures in the various species and races, it is necessary to inspect Dr. Kinzel’s plates. Concluding his account of sarsun, he observes that “the quality of mustard-oil varies from 0-560 to 0-875 per cent., and shows remarkable uniformity in some of the races. In nine sorts examined the mustard-oil averaged 0-708 per cent. The quantity present was lowest in the race with the longest seeds (Loaka Tora, the large-brown race).”

Wiesner (Die Rohst. des Pflanzen., 1903, ii., 726) reviews Kinzel’s paper and thus indirectly accepts some of Prain’s main conclusions regarding this and the other special Indian forms of Rape and Mustard. The Talesh Shereef (Playfair, transl., 1833, 92, 94) mentions sarsun under the names sedarth and sir kup.

Cultivation and Area.—N. G. Mukerji (Handbook Ind. Agri., 271), endorsing previous published opinions, says that tori (latni, sarisha, shorshé) and also sarsun (shweti shorshé) are usually sown with wheat or barley, or in gardens with carrots, amaranth, etc., while rai is grown by itself. They are sown in September, i.e. six weeks to two months before the regular rabi sowings. He then observes that when grown as mixed crops with barley, amaranth, etc., while rai is grown by itself. They are sown in September, i.e. six weeks to two months before the regular rabi sowings. He then observes that when grown as mixed crops with wheat or barley, or in gardens with carrots, amaranth, etc., while rai is grown by itself. They are sown in September, i.e. six weeks to two months before the regular rabi sowings. He then observes that when grown as mixed crops 1 1/2 lb. of seed to the acre are required, the yield being 1 1/2 to 2 maunds. When sown as pure crops 4 to 6 lb. of seed are necessary and the produce 4 to 6 maunds. With rai the seed should be 3 lb. and the crop 3 to 4 maunds.

The greatest possible difficulty exists in furnishing definite particulars regarding the area of production and methods of cultivation of sarsun in India as a whole. Duthie and Fuller’s account of the United Provinces of Agra and Oudh may very possibly be admissible as indicative of the main features of interest, when taken in conjunction with such particulars as may be derived from Prain’s account of the mustards, etc., of Bengal. From the Field and Garden Crops we learn that sarsun is a cold-season crop, grown usually mixed with wheat or barley. It is sown either broadcast or in parallel lines running across the fields. It is cut shortly after the harvest of the associated crop. But it is difficult either to fix the actual area under it, or to ascertain the yield. The districts of the middle and lower Doab are specially well suited to it, and in these hardly a wheat or barley field can be seen in which some portion is not devoted to sarsun. The extent of that cultivation may be inferred from the fact that in 1901-2 while only 125,585 acres were returned as pure “sarsun, rape or mustard,” 8,267,844 acres were shown as mixed crops of these oil-seeds along with wheat, barley, etc. If, however, we accept the yield in the mixed crop to have been approximately in the same ratio.
as that of the pure crops, the net area (worked back from the published production) would have been 1½ million acres (calculated as pure crops) yielding 467,450 tons of "Rape and Mustard." That calculation represents a yield of, say, 5 cwt. an acre. Sarson is, however, an extremely precarious crop, being very liable to pests and blights as also to climatic vicissitudes. For example, it is peculiarly subject to the ravages of an aphid that sucks the sap of the young shoots to such an extent that they fail to produce seed. It is, however, exceedingly profitable, and whenever possible the cultivators put at least some portion of their lands under it.

**Indian Rape or Tori, Lutni or Maghi; Sinapis dichotoma, Roeb., Fl. Ind., iii., 117; S. campestris, subsp. Napus, Fl. Br. Ind., i., 156 (in part); Brassica campestris, subsp. Napus, var. dichotoma also Toria, Duthie & Fuller, Field and Garden Crops, pt. ii., 29; B. campestris subsp. campestris, var. dichotoma also Toria, Watt, l.c.; B. campestris, Linn., subsp. Napus, var. dichotoma, Prain, l.c. 36-40, 46, 76-7.

Prain (l.c. 76) says that after rai this is the most important of Indian grades of mustard. It is a cold-season crop on the plains of India and a spring crop on the Himalaya. It was sent for cultivation and study from all the districts of Bengal except Saran and Shahabad. "It is easily distinguished from Rai by its stem-clasping leaves and its small size; when reaped the seed is recognised as being larger, though of the same colour, and by having a paler spot at the base of the seed; the seed-coat, too, is only slightly rough. From Sarson or Indian Colza it is easily distinguished by its smaller size and by its leaves, though stem-clasping, as in Sarson, being less lobed and having much less bloom. The seeds are of much the same size in Tori and in ordinary Sarson, but as a rule the seeds of Sarson in Bengal are white. When Sarson seeds are brown they are of an amber colour, and have no paler spot. The seed-coat, too, is smooth. The seeds of Sarson are sometimes considerably larger than those of Tori. When this is the case, the two are easily distinguished."

"There are two kinds of Tori—a taller, rather later, and a shorter, very early kind. Both kinds, however, ripen well ahead of any Rai or any Sarson. The earlier kind of Tori does not appear to occur in North-West Tirhut; the later kind is unknown in East Bengal or in Chittagong; elsewhere both sorts prevail throughout the Lower Provinces."

"This mustard is known as Tori in Bihar and the northern districts of North Bengal, Lutni in Chota Nagpur and the drier parts of West Bengal, Sariska in Orissa, West Bengal, Central Bengal and the south-western districts of North Bengal, Maghi in the south-eastern districts of North Bengal and throughout East Bengal. The Bengal name Sariska recurs in Chittagong."

Kinzell (l.c. 108) informs us that "as compared with European Rape and Colza, the amount of mustard-oil the seeds contain appears very variable. As compared with other species, the testa of the seeds has remarkably narrow, very distinctly circular markings. The only species with circular markings almost as small is B. rugosa, Prain, which is at once diagnosed by its detachable epidermal layer. All the samples dealt with here have in transverse sections an undetached epidermal layer with narrow lumen." The transverse sections of the samples examined were, moreover, very uniform. As compared with the other species, the cells of the palisade-tissue have a very thin wall, and consequently a nearly defined wide lumen, exactly as in B. Napus, Linn., the European Rape. In transverse section they appear very blunt at the apex. The layer with colouring matter is very loose; the viscid cells are often in two layers; the thin-walled parenchyma is disposed in three to four layers." Kinzel gives the range of mustard-oil as from 0·239 to 0·484 per cent.

Cultivation and Area.—It has not been found possible to isolate some of the facts regarding this plant from those of sarson. The foregoing observations have, therefore, to be read in connection with the special particulars that have been elucidated regarding tori—the present plant. Duthie and Fuller urge that so far as the United Pro-
PRODUCTION IN INDIA

PROVINCES are concerned, the present plant is mainly grown as a pure crop, while sarson and rai are almost entirely produced as mixed crops. It follows therefore that the area in these provinces shown as "pure" can be taken as tori (luni, lahi) or rape. According to the Agricultural Statistics of India (1901-2 to 1905-6), compiled by the Director-General of Statistics, there were in the United Provinces during 1901-2, 120,436 acres and 36,841 tons of pure rape; in 1902-3, 140,296 acres yielding 31,320 tons; in 1903-4, 131,926 acres yielding 29,643 tons; in 1904-5, 140,100 acres yielding 18,800 tons; in 1905-6, 154,700 acres yielding 30,000 tons; and in 1906-7, 153,400 acres yielding 30,000 tons. But the area of mixed crops, that is to say of mustard and rape, grown along with other crops was much greater, namely, in 1901-2, 1,461,000 acres and 430,617 tons of seed; in 1903-4, 2,429,000 acres and 542,000 tons of seed; in 1904-5, 2,509,000 acres and 336,000 tons of seed; in 1905-6, 2,026,000 acres and 398,000 tons of seed; and in 1906-7, 2,210,000 acres and 424,000 tons of seed. Rape is "produced in greatest abundance in the districts which border on the Himalayan Terai, and is cultivated all over the hills up to altitudes of 11,000 feet" (Atkinson). It is very little grown in the districts of the Ganges-Jumna Doab, where it generally occurs as a subordinate crop in vegetable gardens. Concluding their account of this product these authors say, "The export of rape is one of the leading features in the commerce of these Provinces, and centres at Cawnpore."

"Rape Seed" is an important article of export trade from the Panjāb and it is grown in Kashmir and Afghanistan. Unfortunately no Panjāb writer has as yet studied the mustards botanically, and it is not, therefore, possible to discover to what extent the reports that have appeared should be accepted as rape or be assigned to colza or even to mustard. These crops are largely grown in Ferozepore, Hissar, Jhelum, Rawalpindi, Dera Ismail Khan, Lahore, Gujrat, Dera Ghazi Khan, Jhang and Karnal Districts, in the order of importance named. Fully three-fourths of the crop is raised on unirrigated land, a fact that must commend it very greatly to the cultivators. The traffic centres very largely in Ferozepore and the exports go mainly to Karachi. The year 1900-1 was one that might be described as having been abnormally favourable to rape-seed cultivation in the Panjāb. The area under the crop became more than double the average of the preceding years, and was returned at 1,699,700 acres. The yield was also remarkably fine, so that it was described as 25 per cent. above normal, and the total yield became 260,167 tons. Since 1900-1 both area and yield have somewhat declined, though in 1905-6 the area was again recorded as 1,699,700 acres, but the yield only 194,900 tons.

Nothing of any value can be learned regarding the rape, sarson and mustard cultivation in the Central Provinces, Berār, Rajputana, Central India, Sind and Bombay. Mollison (Textbook Ind. Agric.) does not refer to these crops. "Gujarat Rape" of the Bombay and Karachi trade returns would appear to be mainly a special and superior quality of the present plant. But the total area under the crop in the province of Gujarat is not great, being usually about 500 acres, so that the expression "Gujarat Rape" denotes a quality of seed not necessarily procured from the province indicated (see p. 183). However, the total area returned for Sind and Bombay (including their Native States) as devoted to rape...
and mustard is well under 200,000 acres, or less than the acreage of these crops in the Ferozepore district alone. So far, therefore, as can be learned, the sub-mountain tracts of the United Provinces and the greater portion of the Panjáb may be taken as the Indian region of rape production. Bengal province is mainly concerned in the sarson and rai trade. But it may be pointed out that in official statistics the acreage of pure mustard crops in the United Provinces is that which is alone accepted. Hence, as already indicated, the sarson and rai, which are always mixed crops, are excluded from consideration, whereas in Bengal and the Panjáb they are included. In consequence of this arbitrary treatment the “Rape and Mustard” cultivation of the United Provinces is shown as very much smaller than that of the Panjáb, while as a matter of fact it is quite as large and possibly larger. If, therefore, a correction be made of, say, 1,500,000 acres, added to the total area of India under Rape, Colza and Indian Mustard, the result would be 5 to 5½ million acres instead of a little over 4 million acres as presently accepted. If this conclusion be upheld by future inquiry, Bengal would still head the list of Indian provinces with about 2 million acres, and would be followed by the United Provinces with very probably 1½ to 2½ million acres, and by the Panjáb with 1½ million acres, while all the other provinces and Native States put together would conclude the enumeration with less than half a million acres between them.

**Brassica Substitute—Eruca sativa, Lam.; Fl. Br. Ind., i., 158; Brassica Eruca, Linn.; B. erucoïdes, Roxb., Fl. Ind., iii., 117; Duthie and Fuller, Field and Garden Crops, ii., 26, pl. 36; Dioscoreides, Codex Anicius Juli, 512 A.D., pt. i., pl. 118; Paulus Ægineta (Adams, transl.), iii., 118, gives the key to classic and Arabic literature. This is known in Europe as the Rocket and in India as the tara-mira, tara-moni, duan, dawa, jambho, jamba, usan, shevan, chara, etc. According to Prain, the name sheti sarisha given by Roxburgh to this plant is nowadays restricted to sarson.

The tara-mira is a native of S. Europe and N. Africa, and is extensively cultivated as a cold-season crop in Upper India, ascending the Himalaya to altitudes of 10,000 feet. It is fully dealt with by Duthie and Fuller, but is only incidentally mentioned by Prain, a circumstance that may be accepted as denoting its comparative absence from Bengal. However, all the standard authors on Upper and Western India (such as Stocks, Stewart, Baden-Powell, Atkinson, etc.) describe the plant and the methods pursued in its cultivation. It is most commonly grown mixed with grain or barley, taking with these crops the place which rape fills in wheat-fields. It is also met with very largely in association with cotton. It is sometimes grown alone, but only on exceptionally dry fields. It may be sown at any time between the beginning of September and the end of November, and it ripens about the same time as the rabi crops. The yield is said to be from 4 to 12 maunds an acre. Usan is very largely used as green fodder, especially when grown with gram or peas, and the oilcake is much appreciated for feeding cattle. The plant is grown as a substitute for sarson or rape, and the oil is used mainly for burning, but to some extent for food.

The trade in this seed seems mainly within India and as a substitute for sarson, while for foreign countries apparently as a grade of rape. It appears under the name of jamba very frequently in the export manifests from Karachi, the supply being apparently drawn from Sind, Rajputana and the Panjáb.

II. INDIAN MUSTARD.

B. juncea, H., f., & T.; Sinapis juncea, Linn.; S. ramosa, S. patens, Roxb., Fl. Ind., iii., 119, 124; Duthie and Fuller, Field and Garden Crops, ii., 33; Prain, l.c. 16-22, 47, 76; Indian Mustard, rai, asl-rai, etc.
PRODUCTION OF INDIAN MUSTARD

Prain (I.c. 76) concludes his admirable account of this species with the following brief statement of the main facts brought to light by recent investigations. *Rai* or Indian-mustard is the most important of the three species of *Brassica* grown in Bengal. It is met with "in all the provinces except Chota Nagpur, where it is practically unknown, though it seems to be cultivated to a slight extent in Singhbum. It is easily recognised by having none of its leaves stem-clasping; and, after reaping, its seeds, which are brown, can be readily distinguished from those of *Toris* or Indian Rape by their smaller size, their being distinctly rugose, and being reddish-brown all over. From *Sarson*, which has white seeds or, less often in Bengal, brown seeds, it is equally easily distinguished; *Sarson* seeds are always considerably, often very much, larger, and even when brown have the seed coats smooth."

"There are three subraces, a tall, late kind, and two shorter earlier kinds, one of these latter roughish with bristly hairs, the other smooth with darker coloured stems. The taller subrace is quite absent from Chota Nagpur, and from Tippera and Chittagong. The shorter subraces are quite absent from Orissa, and are absent from North Bengal, except Dinajpur, and from East Bengal except Tippera."

"The name *Rai*, occasionally *Lahi* or *Li*, once also *Mai*, occurs everywhere except in Orissa, where this mustard is termed *Chota Sarirsha* (*chota* = "small," with reference to its seeds). In various districts other names are locally applied, either alone or as alternative names for *Rai*.

Kinkel (I.c. 113) in describing the seeds of Indian mustard furnished to him by Prain, says that the testa examined under the microscope in surface preparations after treatment with sulphuric acid and caustic soda shows "very peculiar circular markings very readily distinguished from those of any European *Brassica* except *B. Besseriata* (*Skrepeta Mustard*), which, however, differs in having a separable mucous epidermis. It may be noticed in passing that, as a rule, it is not necessary to make transverse sections in order to demonstrate this separability, because among a large number of surface preparations some fragments that lie transversely are always to be met with when looked for. The colour of the testa of *Rai* is on the whole clearer than that of European Rape and Colza. The lumina of the cells of the palisade tissue, as indeed the whole testa, show in section characteristic features that in practice impress themselves on the memory, though they could hardly be reproduced except by photography." "The quantity of mustard-oil present in *Rai* varies from 0.672 to 1.059 per cent., and gives an average in six kinds examined of 0.814 per cent."

Cultivation and Area.—This mustard is cultivated here and there throughout India, and is met with (or closely allied forms are) westward to Egypt and Europe, and eastward to China. It enters directly into competition with Russian mustard (*B. Besseriata*) a plant extensively cultivated in South and South-East Russia (the Sarepta Mustard). Though the cultivation in India is fairly extensive, it is extremely difficult to procure satisfactory information regarding the extent of production in the various provinces. As already fully exemplified, the returns of "Rape and Mustard" are given conjointly along with those of colza (*sarson*), but it would seem certain that Bengal and Assam are the most important provinces and South India the least important. In Upper India (the United Provinces, Panjab, Rajputana and Sind) the rape crop becomes more important than the mustard. Duthie and Fuller, speaking of the United Provinces, say that this species varies very much in height, some of the kinds attaining 5 feet or more. It also varies in the shape of the pod, which, usually cylindrical, sometimes becomes stout, laterally compressed and less torulose than in typical kinds. They further observe that this mustard is rarely grown alone (except in Benares), but is subordinate to wheat, barley and peas. It is not nearly so extensively cultivated as rape and is usually restricted to the borders of fields. It yields less oil than rape (one-fourth instead of one-third) to the weight of oil.
BRASSICA
RUGOSA
Pot-herb

MUSTARD AND RAPÉ

Mustard-flour.

Fodder.

D.E.P.,
1., 533.

Indian
Established
Vegetables.

of seed; moreover the oil is less esteemed as an article of food. The seed is very generally used in India as a spice to give flavour to vegetables, and sometimes also as a medicine. Mustard-flour is not consumed by the people of India, and the traffic for that purpose is therefore entirely foreign. It would seem, however, that both the Indian and the Russian seed are largely used as one of the ingredients in some of the modern preparations of mustard-flour sold in Europe. The plant is very often (like rape) cut green in January and given to cattle, and in some localities the young leaves are eaten as a vegetable. (For further particulars see the paragraph below on Oil and Oilcake).

B. oleracea, Linn. The Cabbage, Cauliflower, etc., etc. It will serve the purpose of this work to indicate very briefly the chief cultivated plants of this species met with in India. In all the forms the leaves are glaucous or green and destitute of hairs: the leaves of the inflorescence only are stem-clasping. The chief forms are:—var. acephala, which includes the Kale, Borecole, Cow-cabbage, etc.; var. bullata, best known through the Savoy Cabbage and Brussels Sprout; var. Botrytis, the Cauliflower and Broccoli; var. capitata, all forms and colours of Cabbage proper; var. cantalupa, the Siam Cabbage or kohl-rabi; lastly, var. chinensis, the "Leaf-beet" or China Cabbage (Kohlrabi, Khol XXI., 1888, 157-8; 1893, 344.)

The cabbage (kobi), white-kohlrabi (phah-khol), and the turnip-rooted cabbage (knol-khol or kohl-rabi) have recently become established vegetables and are grown by the market gardeners in the suburbs of all large towns. Except with the Native gentlemen, however, they are not grown in the average village garden, and are not yet eaten by the mass of the population. A large coarse form of cabbage is extensively cultivated and has become perfectly acclimatised; the early cabbages met with in the markets are the young heads of that plant. The knol-khol is relatively more extensively grown in India than in Europe, and seems to succeed admirably in the cold season, if liberally watered for the first fortnight of its growth. There are two kinds commonly seen, a purple and a green, and both are much appreciated: they come into season before almost any other European vegetable. The Chinese cabbage is a rainy-season vegetable, but notwithstanding its being procurable when few other vegetables are to be had, it is not popular in India. [Of. Engler and Prantl., Pflanzenfam., iii. (2), 177-8.]

B. rugosa, Prain, l.c. 11-6, 47; Sinapis rugosa, Roxb., Fl. Ind., iii., 122; B. chinensis, Dutchie & Fuller (non Linn.), Field and Garden Crops, pt. ii., 34. The Cabbage-leaved Mustard, pasai or pahari-rai. Although this plant is closely allied to B. juncea it is quite distinct. None of the leaves are exactly lyrate lobed, and the radical ones are persistent. It is a cold-weather crop of the Western, Central and Eastern Himalayas, especially in Nepal and Kumaoon. It possesses a very short stock till it sets to flower. The permanent radical leaves form a loose cabbage-like head often mistaken for China Cabbage. Prain believes this plant came to India from China, like B. juncea, but in its present form. He, however, recognises as a wild condition of the same stock the Manipur plant discovered and named by me provisionally as B. dentata.

Kinzell (l.c. 115-7) remarks, "As this is the only Indian species (so far, at least, as the material at the writer's disposal has gone) which possesses a cellular separable mucous epidermis, the identification of these fragments of testa in Indian oil-seed with B. rugosa is, at all events, a fairly probable one owing to the further similarity of their structure in surface preparations." The full description and also the plates given by Kinzel should be consulted by those who may have occasion to identify this or other Indian mustards by the appearance of the seeds. The sample of B. rugosa examined by him came from Kalimpong, and was found to contain 0-826 of mustard-oil.

B. rugosa, var. cuneifolia, Prain, l.c. 14; Sinapis cuneifolia, Roxb., Fl. Ind., iii., 121.

This plant is extensively cultivated in Northern Bengal and Assam as a sage or pot-herb. In my article on Bhumiera nivcæ (Agri. Ledg., 1898, No. 15, 182
OILS AND OILCAKE

518) I have referred to it as one of the rather remarkable vegetables prevalent within, and hardly met with outside, the rhea-fibre area of India. It occurs, for example, in Dinajpur, Bogra, Rangpur, Kuch Bihar, and throughout the valley of Assam. In nearly every peasant garden a row or two of this plant may be seen. It has a rosette of ground-leaves generally of a dark bluish-green colour and with very broad yellow mid-ribs and leaf-stalks. When young it looks like a cabbage, but in time it shoots up a much-branched inflorescence to a height of four to six feet. This becomes clothed with numerous sessile leaves. All the parts are eaten, more especially the young flowering shoots with their delicate leaves. It is one of the most significant of vegetables, and there are probably several easily recognised forms. It is known, throughout the area indicated, as lai-hak or mustard-vegetable. This, with the previous species, would appear to be the only cabbage-like vegetable that existed in India prior to the introduction of the cabbage and cauliflower.

THE OILS AND OILCAKES OF MUSTARD AND RAPE.

In the foregoing observations mention has been made of the Oils obtained from the various species of Brassica and Eruca. It seems desirable to bring into a separate paragraph a few of the more striking characteristics of these oils and their oilcakes. All the species afford a bland or fixed oil in addition to a volatile or essential oil (Gildemeister and Hoffmann, Volatile Oils (Engl. transl.), 1900, 182, 409–17). The essential oil is practically not known to the people of India, so that when mustard, rape or sarson oils are mentioned (by popular writers) it should invariably be accepted that they are alluding to the fixed or fatty oils. The peculiar properties of the essential oil are those on which the merit of a mustard seed mainly depends. It is on this account, therefore, that the researches of Kinzel are of such special interest to India. The passages already quoted from his report give an estimate of the percentage of mustard-oil (a term used in Europe to denote the essential oil only) present in the samples examined by him. Previous reports on the presence of this oil, in the various qualities of Indian rape and mustard, have been unsatisfactory because not definite; they have accordingly retarded foreign exports. Schimmel & Co. give the following as the percentage of mustard-oil in the samples examined by them:—Russian seed, 0·4 to 0·5; Dutch, 0·7 to 0·8; Italian, 0·6 to 0·7; East Indian, 0·6 to 0·7; German, 0·7. Kinzel gives the average yield of tori seed as 0·549, rai seed 0·814, and sarson 0·708 per cent. (Agri. Ledg., 1901, 104.) The pungency of the Indian is thus not so very different from the corresponding European seeds.

The karuca-tel (= bitter oil) is the fatty oil obtained from Indian mustard and rape seed, and inferior qualities from sarson. It is the chief oil used in Indian cookery, and is accordingly very important to the people. Rape (and sometimes also sarson) is in India largely used to anoint the body. The practice seems to be fairly ancient, since it is alluded to by Terry (Voy. East Ind. (ed. Havers), 1665, 377) as follows:—

"The better sort anoint themselves very much with sweet oyls, which makes their company very savory." Rape and sarson (colza) are names which unfortunately have come to be used almost synonymously by Indian commercial men, and are so treated in official statistics. Nevertheless the fatty oils derived from them are even more distinct from each other than are those from the corresponding European plants. In the Kew Report (1877, 34; Kew Bull., 1894, 96–7) we read that the Indian seed known as "Gujarat Rape," largely crushed at Danzig, is found to yield 3½ per cent. more oil than the European seed, and leaves a cake

183
richer in fatty matter and albuminoids. That information was derived from a paper by Dr. Wittmacq of Berlin. But the presence of a percentage of the essential oil of mustard in rape-cake has been said to render such injurious to cattle. Roxburgh regarded Indian mustard-oil (fatty oil) as inferior to rape-oil. Duthie and Fuller hold the same opinion. Speaking of mustard-oil, they say it is less esteemed as an article of food than that of rape. Most other writers affirm, however, that although the yield from mustard is less, the quality of the oil is superior to that of either rape or sarson. Thus it seems probable that the qualities of rape and mustard vary considerably. Sarson is, as a rule, spoken of as an oil that rapidly turns rancid and even for burning purposes has to be purified before it can be used. The mustard-oil of the bazars of India has a pungent odour and bitter taste, due to the presence of a certain amount of the essential oil. This is occasioned through the habit of watering the cake before pressing it a second time in order to abstract the residuary oil. It is often largely adulterated with poppy-seed and other oils. Dunstan in his paper on Indian Edible Oils (Agri. Ledg., 1899, No. 12) unfortunately affords no information on the comparative values of the Indian mustards and rapes. He furnishes, however, most useful particulars as to their specific gravity, acid value, saponification, viscosity, etc., etc., and classes them as semi-drying oils. Leather in a paper on Food-Grains and Fodders of India (Agri. Ledg., 1903, No. 7) gives further details of the chemical compositions of these oils. Lastly the Pharmacographia Indica furnishes all necessary information on the medicinal merits of four qualities. These appear to be Indian mustard, rape, sarson and jambia (Erucia sativa).

The adulteration of linseed with certain qualities of mustard or rape seed has been reported to prove very injurious to cattle fed on such cakes. This subject has been dealt with very fully in the Dictionary, and the article in that work on Oils and Oilcakes should therefore be consulted. [Cf. Leather, Agri. Ledg., 1897, No. 8, 158; also see Linum, p. 731, and Manures, p. 770.]

PRODUCTION OF AND TRADE IN MUSTARD AND RAPE.

Acreage.—It has been shown that owing to many of the crops indicated above being grown in conjunction with other plants, it is difficult if not impossible, in our present state of knowledge, to give any very satisfactory statement of the area that they annually occupy. The suggestion has been hazarded that the total (expressed as pure crops) cannot be far short of 5 or 6 million acres. But according to the Agricultural Statistics published by the Government of India, both the area and the yield vary considerably, especially in the Panjāb, Rajputana and Sind, in response to the amount and seasonableness of the rains. For example, the Panjāb acreage of these crops, returned in the official statistics of area and yield, was in 1899–1900, 397,500; in the following year, 1,638,400; in the next year, 665,800; and again in 1903–4, 1,038,900, since when it has remained fairly stationary.

Yield.—Turning now to the estimated production, it would seem that during the ten years ending 1901 there were two periods of abnormal yield, namely 1897–8 and 1900–1. If these be disregarded, the traffic fluctuated from a little over half a million to close on one million tons of seed, during the decade mentioned, and production has shown on the whole a tendency to expand. This view is in strict accord with the constantly

184
repeated statements of popular writers that the trade in these oil-seeds has been steadily increasing, and is now one of the staples of Indian commerce.

Rape and Mustard Seed: Rail-borne and Coastwise Traffic.—The returns of Rape and Mustard carried by rail and river show the exporting provinces to be the United Provinces, Bengal, the Panjāb, Assam and Bombay, in the order named. But as illustrative of the fluctuating nature of the trade, it may be mentioned that in 1897–8 Bengal exported a little under 2 million cwt., the United Provinces close on 1% million, Assam about % million, and the Panjāb a million cwt. of these seeds. The following year the figures were—United Provinces 2% million, the Panjāb 1% million, Bengal 1% million, and Assam a little over % million cwt. But by 1906–7 a complete change had taken place—the United Provinces exported 2% million cwt., the Panjāb 1 million, Bengal % of a million, and Assam under % million cwt. Calcutta usually heads the list of importing towns, but Bombay and Karachi take the lead in years of high production in the Panjāb. The importance of Karachi as a distributing centre has been established for many years past, and, although extreme fluctuations have been experienced, it can be said to be improving. The following were the supplies conveyed to the chief seaports in 1906–7:—Calcutta 2% million cwt., Bombay 1% million, and Karachi % of a million. The coastwise returns show Bengal as the most important province. But for some years the Bengal supply seems to have been falling off, and that of Sind correspondingly expanding. But here again the trade seems to fluctuate so violently that no reliance can be placed on comparisons of short periods.

Exports.—The foreign exports of Rape from India in 1891–2 were 130,793 tons, valued at Rs. 1,70,89,524; in 1893–4, 365,954 tons or Rs. 4,73,45,133; in 1895–6, 112,489 tons or Rs. 1,40,09,294; but they fell in 1900–1 to 86,368 tons or Rs. 1,23,57,451; recovered in 1901–2, viz. 346,244 tons or Rs. 4,45,56,044; and fell again in 1902–3 to 196,345 tons or Rs. 2,47,11,358. Since then the values of the exports have been—1903–4, Rs. 2,53,41,010; 1904–5, Rs. 2,73,37,732; 1906–7, Rs. 2,46,70,617. Of the exports the chief receiving countries are Belgium, France, Germany and the United Kingdom.

The Mustard traffic is much smaller than that in Rape. In 1891–2 the exports were 2,640 tons, valued at Rs. 3,86,818; in 1894–5, 7,809 tons or Rs. 11,27,605; in 1900–1 they fell to 1,721 tons or Rs. 3,25,589; in 1901–2 they were 3,332 tons or Rs. 5,61,895; and in 1902–3 stood at 2,613 tons valued at Rs. 4,93,342. Since then the annual values have been—1903–4, Rs. 4,22,123; 1904–5, Rs. 6,19,004; 1905–6, Rs. 8,94,553; 1906–7, Rs. 5,65,000. Of these exports by far the most important receiving countries in recent years are France, followed by Belgium, Germany, Ceylon, Mauritius and the United Kingdom, the names being given in sequence of importance.

Mustard and Rape Oil.—The traffic in Mustard and Rape Oil shows a more steady expansion than that of the seed. In 1899–1900 the exports stood at 259,661 gallons, valued at Rs. 3,52,962; in 1900–1 at 238,270 gallons, valued at Rs. 4,70,161; in 1901–2 at 286,169 gallons, valued at Rs. 4,74,028; in 1902–3 at 314,792 gallons, valued at Rs. 4,79,649; in 1903–4 at 346,174 gallons, valued at Rs. 4,84,835; in 1904–5 at 432,752 gallons, valued at Rs. 5,58,762; in 1906–7 at 273,684 gallons, valued at Rs. 4,90,893. The bulk is exported from Calcutta.
BRUSHES AND BRUSH-MAKING

THE PAPER-MULBERRY

Out of the last year's total (1906-7), 257,282 gallons went from Bengal; 14,244 gallons from Sind; and 2,158 gallons from Bombay. The receiving countries were Mauritius, 113,068 gallons; Natal, 93,787 gallons; United Kingdom, 19,892 gallons; Australia, 22,581 gallons; Straits Settlements, 10,159 gallons; and British Guiana, 3,574 gallons.

BROUSSONETIA PAPYRIFERA, Vent.; Fl. Br. Ind., v., 490; Gamble, Man. Ind. Timbas., 633; Brandis, Ind. Trees, 613; Engler and Prantl, Pflanzenfam., 1889, iii., pt. i., 76; URTICACEAE. The Paper-mulberry or Tapa-cloth, making, thate, kodzo, kaji, etc. A small tree or bush, native of China and said to be wild on the hills of Upper Burma and Martaban. Frequently cultivated in India, largely so in the Southern Shan States (Craddock), and distributed to Siam, Japan, etc., Western China, Ichang and Yunnan, etc. According to Wiesner (quoted in Stein's Ancient Khotan) it is the paper material of Eastern Turkesthan; it was introduced into Southern Europe and parts of Germany about 1750. Brandis remarks that it is a marvellous instance of a plant that may be sown both in temperate and tropical countries.

From the bark of this tree is obtained a flax which perhaps deserves to be carefully investigated. From it is made the falsely named Chinese "leather-paper," the Japanese kodzo-paper, the curious paper-maché school-slates of the Burmese (parabaik), the tape-cloth of the South-Sea Islands and the mulberry paper cloth of the Karens. It is an excellent paper-fibre, though according to some authorities the stock is a little difficult to prepare of good colour. The silkworm can be fed upon the leaves, and the annual prunings of twigs to obtain a fresh flush for the silkworm might be made to give a profitable return as a paper-fibre. The plant produces suckers in profusion, coppices well and grows fast. It has been most successfully cultivated at Dehra Dun, but the district is too far from the paper-factories to allow of profitable production. It will not survive on jungle-land or on dry soils, nor can it stand severe cold; but it might pay on waste land near the coasts of Bengal, Burma, Malabar, etc., whence transport would be cheap. The usual Japanese method of propagating is by slips. Kämpfer, followed by Rein, says that every autumn after the leaves have fallen the young shoots near the ground are cut off, and in this way, after three or four years, bushes with from four to seven one-year shoots are obtained. It is estimated that 2 cwt. of raw Broussonetia bark will yield about 2¼ qrs. of white bast—about 45 per cent. Craddock describes the manufacture pursued in the southern Shan States. It closely resembles the description quoted in the Dictionary from Royal (Fibres 2. Ind., 1855, 341-2). Rein (Indiat. Japan, 1889, 165, 393-5, 401, 403) gives an interesting account of the plant and furnishes an illustration printed on kodzo-paper. (See Daphne, pp. 486-7: Paper and Paper Materials, pp. 862-4.)

Brooms are made all over India from a wide assortment of materials presently to be enumerated, the selection being as a rule 186
governed by the supply available and the necessities of the people. Stein (Ancient Khotan, 1907, 333) figures and describes what is very possibly the most ancient specimen in existence. This was found at Dandān-Uiliq (a city abandoned in the 8th century). The lower portions of some grass were seen to have been plaited into a continuous strip, then rolled round and secured firmly by a string, thus forming a broom, which in every detail agrees with the corresponding article of modern India.

Indian-made brushes are principally of the bazár-type and are, therefore, mainly of local interest. Two firms, the "Pioneer Army Brush Co." of Cawnpore, and "Messrs. P. Thompson" of Coonoor, Madras, manufacture brushes of the European pattern. Both firms gave some prominence a few years ago to the use of kuttal-fibre (Carpota urens) in place of bristles, from the belief that the sovars or Native cavalry would prefer vegetable fibre to animal bristles. Although Indian-made brushes may now be seen all over India, particulars are not available of the actual extent of manufacture. There is moreover a very considerable import by India from Europe of brushes, but complete statistics are not available. We read, for example, that from the United Kingdom there were received in 1903, 2,891 dozen brushes valued at £8,910.

Materials.—Turning now to the materials used. It would be undesirable to attempt a complete enumeration of all the substances which in India are employed, or which might be so, for brushes or brooms. Even in Europe the variety and diversity are extraordinary—e.g. bristles, kuttal, broom, rattan, whalebone, wood, rushes, wire, spun-glass (specially serviceable for contact with acids), etc., etc. India at the same time exports a very considerable quantity of brush-making materials including both vegetable fibres and bristles, and the trade would appear to be improving. Thus in 1899–1900 the total exports were 54,388 cwt., valued at Rs. 11,49,998; whereas in 1903–4 they were 83,258 cwt., valued at Rs. 20,76,351; and in 1906–7, 88,158 cwt., valued at Rs. 17,68,930. Although in point of quantity Madras takes by far the largest share, viz. 79,350 cwt. in 1903–4 and 85,203 cwt. in 1906–7, the goods it exports are much lower priced (viz. Rs. 9,70,328 in 1903–4 and Rs. 9,71,212 in 1906–7) than those sent from Bengal (viz. 3,396 cwt., valued at Rs. 9,60,571 in 1903–4, and 2,360 cwt., valued at Rs. 6,52,827, in 1906–7). The Bengal exports are mainly in high-priced bristles. Of these Bengal exports for 1903, Rs. 5,75,790 represented the value of the bristles sent to England, whilst only Rs. 22,470 were attributable to vegetable brush-fibres with the same destination. The total exports of brush-making materials from all India to Great Britain in 1903 were 17,943 cwt., valued at Rs. 10,38,909, and of that amount Rs. 6,07,305 was the value of the Indian contribution of bristles to the British supply.

The following are some of the principal plants employed in brush-making:

Arennga saccharifera, Labill. (see p. 92).
Aristida setacea, Retz.; Fl. Br. Ind., vii., 225; Gramineae. Broomstick-grass, shépur-gadi, vina-pullalu, thodapaa-pullu, etc. A reed three to four feet in height, found in Western India from Bihar and the Konkan southward, also in Ceylon, the Mascarene Islands, etc. The roots attain a length of 15 inches to 1 foot and are said to be used in the manufacture of weavers' brushes in Madras and along the west coast (Ind. Agric., Dec. 12, 1891). These roots are collected in South India by Yerukalas (a nomad tribe) and sold to the weavers at 3 or 4 annas a viss. The Telinga paper-makers construct their frames of the
BUCHANANIA LATIFOLIA

Piyar

culms and these are also employed for making *tatties* in the same way as the *khas-khas* roots of Northern India.

Agave Cantala, Roxb., and other species (see p. 33).

Bambusa, various species (see pp. 99-101).

Borassus flabellifer, Linn. (see p. 170).

Bristles, see *Live Stock* (Hoggs) (p.752).

Caryota urens, Linn. (see p. 286).

Chloroxylon Swietenia, D.C. (backs of brushes) (see p. 294).

Chrysopogon Gryllus, Trin. The roots of this plant are said by Jackson, Hannan and others to be the Venetian whisk-fibre which in England and other countries is made into brushes of various kinds. The grass is abundant on the hills of North India, but except as a fodder plant it is apparently not known to be of any economic value.

Cocos nucifera, Linn. (see p. 356).

Corypha umbraculifera, Linn. (see p. 429).

Hair of bears, squirrels, camels, badgers, goats, polecats, sables, ichneumons, etc., is used in the European brush industry, but no information is available as to the extent, to any, to which India contributes to the supply, or herself utilises any of the hairs mentioned.

Ischemium angustifolium, Huds. (see p. 694).

Pandanus odorattissimus, Linn., f.; the Screw-pine—the *keura*, *keto*, *kundo*, *talum*, *mugali*, etc. A common and much-branched plant frequently grown on account of the fragrance of its flowers, but is wild on the coasts of South India, Burma and the Andaman Islands. The leaves contain a strong fibre used for cordage and for spinning into coarse yarn. The roots are used in basket and brush-making (*Perrumery*), see p. 821. (*Cf.* Forster, *Fl. Esq.*, 1786, 38-41; Rept. Ind. Hemp Drugs Comm., 1894, i., 156; Marco Polo, *Travels*, ii., 250; Ains-i-Abbabi [Jarrett, transal.], ii., 126, etc.)

Phoenix sylvestris, Roxb. (see pp. 115, 884-5).

Saccharum arundinaceum, Retz. (see p. 930).

Sorghum vulgare, Pers. the Italian whisk (see p. 1031).

Tamarix, spp., see *Baskets* (p. 116).

Vetiveria zizanoides (see p.1106).

The *piyar*, *chironji*, *piul* or *peal*, *chirauli*, *piera*, *tarum*, *char-kha-gond*, *mouda*, *nuskul*, *lonepho*, etc., etc. A middle-sized tree, leafless only for a short time, met with in the dry forests throughout India and Burma, ascending in the Sub-Himalayan tract to 3,000 feet, and frequently associated with the *sdl*, the *mahúca*, and the *dhdk*.

A pellucid Gum (*peal* or *piul*) which exudes from wounds in the stem is more than half soluble in water. It is said to resemble Bassora gum, to have adhesive properties like inferior gum arabic, and to be suitable for dressing textiles. As a consequence of inquiries organised by the Reporter on Economic Products it was found that in many provinces the gum is not collected, while it is reported from Jhansi (U. Prov.) as used in printing cloth, from Berar as employed in dyeing, and from the Central Provinces as sold mixed with dhawra gum (*Anogeissus latifolia*) to the *bánias*. On some samples sent to the Imperial Institute, London, the Director reported that the gum was not entirely soluble, but when mixed with twice its weight of water, about 10 per cent. formed a gelatinous mass; the sample examined, moreover, contained a large quantity of extraneous matter. The brokers reported that if it were carefully collected and a regular supply assured, it might fetch 20s. per cwt., on the London market, and be employed for cheap manufacturing purposes. (*Cf.* Agri. *Ledg.*, 1900, No. 9, 92.)

The bark and the fruits furnish a natural *Varnish*. The kernels yield a sweet and wholesome Oil (*chironji*), but owing to their being much prized as a sweetmeat when cooked, the oil is seldom expressed. The kernels, which have a flavour something between that of the pistachio and the almond, are eaten by

Varnish.

Oil.

Nuts.
THE DHAK OR PALAS

the Natives (Baber, Memoirs, 1519, (Engl. ed.), 326). They are also used to flavour gānja (Rept. Ind. Hemp Drugs Comm., 1894, 157). In the hills of Central India the fruits with the kernels are pounded and dried and subsequently baked into a sort of bread (Church, Food-Grains of Ind., 177). From the Panjāb and Bengal the leaves are reported as used for FODDER. The Twmēns is not very hard nor durable and is of small value, though made into spoons, plates, toys and bedsteads, and is even employed for door and window frames, plough-handles, etc. White insect-wax has been found on the tree in the Central Provinces. The kernels of B. angustifolia, Roxb., are used like those of the above species. [Cf. Ain-i-Akbari (Blochmann, transl.), 1590, 71; Taleef Shereef (Playfair, transl.), 1833, 68; Buchanan-Hamilton, Stat. Acc. Dinaj., 161; Lisboa, Useful Pl. Bomb., 1884, 53-4, 217, etc.; Mooden Sheriff, Mat. Med. Mad., 1891, 128-9; Journ. Soc. Chem. Indus., xi., 404; Ind. For., Sept. 1895, xxii., 329; Bisso, Hydrobad Trees, 1895, 3; Kanny Lall Dey, Indig. Drugs Ind., 1896, 53; Rept. Coll. Ind. Mus. Calc., 1901, 61, etc., etc.]

This well-known tree is, when in flower, a conspicuous feature of open country and grass lands, owing to its brilliant flowers which appear at the beginning of the hot season. It is valuable for recovering salt-lands since it will grow even where there is a bad efflorescence of rēh (see Alkalis and Alkaline Earths—Rēh, p. 55). It yields naturally, or from artificial scars on the bark, a Gum called chūnī-dōnd, kamarkas, palás-ki-gond, etc., which occurs in round tears, as large as a pea, of an intense ruby colour and astringent taste. The gum is used in Native Medicine as a substitute for true kino (Pterocarpus Marsupium, which see, p. 906). Roxburgh pointed out that it differed from true kino in being more soluble and the solution more astringent in water than in spirit, just the reverse being the case with the product of Pterocarpus Marsupium. It has been written on the subject in chemical and pharmaceutical journals and other publications. Hooper, for example, has dealt with it at length in the Pharmaceutical Journal (June 23, 1900, 4th ser., x., 664 et seq.).

The gum is usually very impure owing to careless collection, and it would be a matter of some difficulty to clean it for medicinal purposes. In any case with true kino available in India, in sufficient quantity to meet all medical requirements, there is not likely to be any market for this substitute. The Lac insect (p. 1053) is reared upon the tree in India, and it is regarded as affording the second best quality. [Cf. Tachardia lacca, Agri. Ledy., 1901, No. 9, 181, 211, 221, 224, 230-1, 235, 238-9, 242, 250, etc., etc.] The gum may be used both as a Dye and Tan, but for these purposes is hardly, if at all, in demand outside India. The Natives are said to use it to purify and precipitate blue indigo. It seems possible that if the bark or wood were utilised as in preparing Catechu, a pure tannin extract might be obtained. The flowers, called kēn, kēnī, etc., yield a brilliant yellow dye by simple decoction, but the colour is fleeting, though rendered a little less so by the addition of an alkali. Formerly it was much used at the Hōlī festival, the fleeting character being regarded as an advantage, but at the present time it appears to have lost its popularity, being supplanted by aniline dyes. [Hummel and Perkin (Journ. Soc. Chem. Indus., 1895, xiv., 459-60) point out that under certain treatment the colours given by Butea flowers resemble those afforded by young fuscic. Hence these chemists add that they "cannot therefore endorse Sir Thomas Wardle's opinion that if Butea flowers could be obtained in sufficient quantity and sufficiently cheap they
BUXUS SEMPERVIRENS
Boxwood

would be a useful addition to the yellow dyes we already possess" (see p. 1053). The bark yields a Frasne used for rough cordage and for caulking boats. A bright, clear Oil derived in small quantity from the seeds (pulpa-pépria) is used in Medicine. Dymock (Mat. Med. W., 1855, 292) says, "I have tried the seeds as an anthelmintic and am inclined to think favorably of them; they have an aperient action." Pounded with lemon-juice they are a powerful rubefacient, and have been known to cure herpes. B. superba, Roxb., is considered to possess similar properties to those of B. frontosa. [Of also Rept. Cent. Indig. Drugs Comm., i., 45, 65, 81, 121, 180, 282.] The leaves are given as Fodder to buffaloes. The Timber is not durable above ground, but is said to be much better under water, and is consequently used in Upper India for well-curbs and piles and also for the water-scoops of Native wells. Gamble observes that if cut up green and seasoned in the plank, it is likely to be a fair wood for rough boxes. Buchanan-Hamilton (Stat. Acc. Dínaí), 159) says that the flowers are offered to the gods. [Of Journ. As. Soc., 1813, iii., 219-20; Taleef Shereef (Playfair, transl.), 1833, 40; Taylor, Topog. Stat. Dacca, 1840, 62; Wardle, Rept. Dyes and Tans, Ind., 1887, 7, 20, 36-8; 51; Forsyth, Highlands Cent. Ind., 1889, 380, 421, 463; Kanny Lall Dey, Indig. Drugs Ind., 1896, 53-4; Gaz. Karnal Dist. P. (2nd ed.), 1890, 18-9; Russell, Moneg Dyesing Indast. C. Prov., 1896, 17; Hooper, Rept. Labor. Ind. Mus. (Econ. Sec.), 1900-1, 17; Joret, Les. Pl. dans L'Antiq., etc., 1904, ii., 347, etc.]

BUXUS SEMPERVIRENS, Linn.; Fl. Br. Ind., v., 267; Gamble, Mán. Ind. Timbs., 592-4; Brandis, Ind. Trees, 1906, 559; Euphorbiaceae. The Boxwood Tree, shanda lahtihu, chikri, papri, shamshad, shumaj, shibashin, etc., etc. An evergreen shrub or small tree of the Suliman and Salt Ranges, the Himalaya eastward to Nepal and Bhutan (absent from Sikkim), at 4,000 to 8,000 feet, chiefly in shady ravines, more especially on calcareous soils. It is a slow-growing tree, very difficult to raise from seed.

A tincture from the bark is used in Medicine as a febrifuge, and the leaves are occasionally browsed by goats, though to most animals they are poisonous. Boxwood is found on the Himalaya of large size, occasionally over 5 feet in girth, 3 feet being not unusual. The Timber is very valuable, being in great demand for turnery, carving and other purposes for which a very hard, close-grained wood is required. The principal European use, since the 15th century, has been for wood-engraving, and it is regarded as the best substitute for ivory in many ornamental purposes. But the Indian areas are almost always difficult of access, and it has been found that the timber cannot be cut, seasoned and delivered at an Indian port, still less in London, at the prices usually offered. Hitherto the principal supplies for Europe have come from the Caucasus, but this is spoken of as being rapidly exhausted. The trade has accordingly asked for suitable substitutes that may at least meet certain of the purposes of boxwood. The following have been mentioned as the more likely Indian timbers:

Lasiococca symphyllisfolia.
Murraya exotica.
Olea ferruginea.
Paidium Guyava.
Punica Granatum.
Santalum album.
Viburnum erubescens.
Wrightia tinctoria.

Atalanta monophylla.
Celastrus spicatus.
Chloroxylon Swietenia.
Crataegus Oxyacantha.
Dodonae viscosa.
Euphymes Hamiltonianus.
Gardienia latifolia.
Hemicycla sepiaria.
Ixora parviflora.

CÆSALPINIA BONUDCELIA, Ftem., As. Res., 1810, xi., 519; Coretti in Rheede, Hort. Mal., ii., t. 22; Globuli majorés in Rumphius, Herb Amb., v., 92, t. 49, f. 1; Bentley and Trimen, Med. Plants, ii., t. 85; Duthie, Fl. Upper Gang. Plain, 1903, i., 302; Fl. Br. Ind., ii., 204; Leguminosæ. The Fever-nut, the Nicker-tree (Yeuz de bourrique, Fr.), putikaranja, kat-karanja, karauny, nata, kanja, gach-chakaya, gila, gajikai,
collection and methods of preservation, etc. "Divi-divi," he affirms, "is classified by dyers and tanners as a true astringent and is associated with oak-galls and myrobalans in affording a maximum amount of tannin with a minimum amount of colouring matter." Crooke (Practical Hand- book Dyeing and Calico Printing) speaks of divi-divi (or libi-divi as it is sometimes called) as being one of the most important astringents in the market. "The best pods," he writes, "are thick and fleshy and of a pale colour. Those which are dark, with black spots and blottches, have probably been gathered in a damp state, or have been subsequently exposed to moisture, which greatly reduces their value. The amount of tannin in divi-divi is greater than in sumach or even myrobalans." These opinions had reference of course more especially to the use of divi-divi dyeing, and accordingly Crooke adds that a great objection to divi-divi lies in the fact that fragments adhere to the textile, which act as resists and produce a mottled condition of the dyed surface. But from the tanner's point of view divi-divi is an uncertain material, more especially if the seeds be contained within the pods. It is greatly influenced by atmospheric conditions, is very subject to injurious fermentation, and imparts weight to leather through the absorption of a gummy substance which is less waterproof than the materials imparted to skins by other tans. In India, according to Thorpe (Madras Mail, 1888), divi-divi cannot be successfully used without the aid of an anti-ferment.

Hummel (in connection with the Colonial and Indian Exhibition of 1885–6) was the first of the modern chemists to examine the Indian-grown pods. He reported that they were inferior to the American and West-Indian. Proctor (Leather Indus., 1898, 77) gives a classification of tanning materials and shows divi-divi along with Acacia arabica pods, myrobalans, etc., as a pyrogallol tan. Mr. A. G. Perkins of the Yorkshire College gives the tannin of these pods as ellagittannic acid. Dunstan found an inferiority similar to that reported by Hummel. He had sent to him samples from Chota Nagpur in Bengal, and after examining these expressed the opinion that the pod from other parts of India (Bombay and Madras, etc.) might be found richer in tannin than the Bengal sample. American pods, Dunstan adds, usually contain from 30 to 50 per cent. of tanning matter. The Bengal pods were found to contain only from 19-73 to 32-79 per cent. Warburg discusses the cultivation of divi-divi in German East Africa and furnishes particulars of the imports into Hamburg. [C]. Stewart, Tanning and Currying Leather, in Select Rec. Govt. N.-W. Prov., also revised in Watt's Select. Rec. Govt. Ind., 1889, 100–11; Ind. Agr., March 1882; Cooke, Fl. Pres. Bomb., i., 413; Gamble, Man. Ind. Timbs., 268; Talbot, List. Trees, etc. (2nd ed.), 141; Rec. Bot. Surv. Ind., ii. (Plant Chota Nagpur), 99.)

C. digyna, Rottl.; Fl. Br., Ind., ii., 256; Hooper, Agri. Ledg., 1899, No. 9; 1902, No. 1, 27; Dunstan, Imp. Inst. Tech. Repts., 1903, 192–7; Prain, Beng. Plants, i., 1903, 449. It is best known by the following names: —vakeri, vakeri-mal, kuni, amal-kuchi (or kochi), nami-gach, gakungchi, sunilte (or sun-let-the).

History.—By what appears to be an error, the pods of this prickly climbing shrub have been called tari, teri, or tourki. The earliest mention of them would seem to be in an article by Mr. John Tait which quotes two letters from Mr. Scone of Chittagong, dated April 23 and July 7, 1847, addressed to the Secretary of the Agri.-Horticultural Society of India. In the last letter Mr. Scone gives them their Chittagong name jeri (vi., 246–51 and app., 6–8). It seems probable the true tari is C. sappan; in fact tari is almost a generic word for tanning material and is applied very frequently to myrobalans. The plant is met with in Central and Eastern Bengal, Assam, the Circars and Burma, and according to Brandis it occurs also in the Central Provinces (Sambulpur) and in the Western Peninsula. Recently it has been experimentally cultivated in many parts of India and

192
TANNING (TARI) PODS

even in some foreign countries, the demand for the pods having been very considerable.

Properties and Uses.—Roxburgh named the bush \textit{C. oleosperma} in allusion to the oil afforded by the seeds, which he tells us was in some parts of the country employed as a lamp oil. He makes no mention of the still more valuable property of the pods as a source of tannic acid. None of the standard works published prior to 1890 make definite references to the use of the pods in medicine or as a tanning material, though Buchanan-Hamilton (\textit{Stat. Acc. Dinaj.}, 1833, 170) states that they were in his day much employed by the dyers. It may thus be said that while these pods had been favourably reported on by Mr. John Teil of Calcutta in 1848, they were subsequently forgotten for fully half a century. In 1892 Mr. E. M. Homes, Curator of the Museum of the Pharmaceutical Society of Great Britain, sent to the Reporter on Economic Products some "\textit{tari}" pods that he had received from India as a medicine. He suggested that an inquiry might be instituted into the source and available supply, and accordingly they were identified. \textit{Tari} pods were in consequence included in the programme of operations of the Reporter for 1893. A circular letter was issued to the Directors of Agriculture in Madras, Bengal, Assam and Burma. In 1894 samples came from many districts in Burma. About the same time the Director of Assam (in connection with a monograph on dyes of that province, which he had under preparation) sent a sample of "\textit{teri}" pods to be determined. He was at once informed that they were the pods of \textit{C. digynna} regarding which a special inquiry had been addressed to his office. Holmes had the pods analysed in 1892 (by Messrs. Gonne, Croft & Co.), when they were found to contain 33\frac{1}{4} per cent. of tannin. Shortly after Evans published in "\textit{Leather}" a report in which he mentions a yield of about 33 per cent. Wiesner (\textit{Die Röbst. des Pflanzenr.}, 1903, ii., 844–5), quoting from Hartwich (\textit{Die Neun Arzneidrogen}, Pfl., 1897, 27) under \textit{Acacia digynna}? mentions that the pods contain 33:25 per cent. of tan, and, like Holmes, Evans and others, he adds that if procurable in quantity they might come into extensive use. In 1898 a large supply was in consequence procured from Sylhet, from many districts in Burma, and also from Chittagong. But it is remarkable that so far none have been procured from the Circars, where Roxburgh first found the plant.

The Forest Department have taken the greatest possible interest in this new product (consult the late Mr. H. C. Hill's letter of July 20, 1901, to all Conservators of Forests). The Annual Reports from Burma and Bengal record from year to year the progress made. The Report for Tenasserim (1901–2, 27) says, "There is no demand and the stock of 60 bags was sold for Rs. 4 per bag, a price that just covered expenses." The Report for the Southern Circle in 1902–3 states that the plant had proved easy of cultivation, but adds, "As there appear to be no present demands for the pods, further plantations of this species are not wanted." It will thus be seen to rest with the trade to say whether or not the expectations of writers on this subject are to be realised.

A fair quantity of two sets of pods, secured through the Forest Department of Burma, and a corresponding parcel from the Assam stock, were consigned to the Imperial Institute, London and in due course reported on by the Director. The two parcels (of pod-cases without the seeds) from Burma were found to contain 53.82 and 53.86 per cent.
tanning material, while the Assam sample was still richer, viz. 59·89 per cent. The report (l.c. 192) continues: "With the view of obtaining a practical opinion as to the tanning value of this powder, a sample was furnished to a well-known tanning expert, who reports that he is much impressed with the results that he has so far obtained; they compare very favourably with those furnished by the best divi-divi, whilst the aqueous liquor from C. digyna did not appear to undergo the injurious fermentation which is the difficulty in the use of divi-divi." A second consignment from Assam was sent to the Imperial Institute in 1900 and found to contain a slightly lower percentage of tannic acid, viz. 45·45 per cent., also a third parcel from Burma, which, however, contained more than the previous, viz. 60·5 per cent. These results accordingly place the pods among the richest of tanning materials, and they undoubtedly impart an excellent colour to the skins. They are, in fact, much richer in tannic acid than was supposed some few years ago. It may therefore be added that it would be unfortunate (as seems likely) if they should be destined to a second half-century of oblivion, such as followed their original discovery by Mr. Scone in 1847. [Cf. Gamble, *Man. Ind. Timbs.*, 266; Brandis, *Ind. Trees*, 247; *Rec. Bot. Surv. Ind.*, ii. (Plants, Chota Nagpur), 99; Hanusek, *Berichte der Deut. Bot. Gesell.*, 1902, 77 (Gvsh.), (gives a long account of the microscopic structure of the pods); *Board of Trade Journ.*, 1903, i., 146; Chandra, *Tanning, and Working in Leather*, Beng., 1904, 7; Chatterton, *Tanning, and Working in Leather*, Mad. Pres., 1904, 47.]

C. Sappan, Linn.; *Tisza-Pangam*, Rhede, *Hort. Mal.*, 1686, vi., t. 2; *Lignum Sappan*, Rumphius, *Herb. Amb.*, 1750, iv., 56–8, t. 21; Roxb., *Corom. Pl.*, i., 17; Beddome, *For. Man.*, 90, pl. xiii., f. 1.; Greshoff, *Nutt. Ind. Pl.*, 1894, 121–4, t. 29; *Fl. Br. Ind.*, ii., 255. The Sappan- or Bakam-wood or Sampfen-wood, sometimes also called Brazilian-wood (the name Brazilian being derived from *braize* (red coals) and thus originally unconnected with the country of that name; in fact, given long prior to the discovery of Brazil). The better known vernaculars of India are—*bakam* (bokom), *tairi*, *teri*, *patang*, *patangga*, *sappanga*, *chapangam*, *tein-nyet*, etc.

History.—This plant is frequently mentioned in letters from East India Co.'s servants at the beginning of the 17th century, showing that it was a well-known article of trade even then. One of the earliest detailed descriptions of it, however, is that given by Rhede, where it is called *tisza-pangam*. That account was followed by the *Herbarium Amboinense*, in which a long list of both the European and Native names for it are given, but of these the Bengali *russo* need only be here specially mentioned—a name that does not appear to be in use at the present time since in Bengal it is generally known as *bokom*. It is also interesting to add in this connection that Rumphius suggests the derivation of Sappan from the demand of the Arabs for the wood to be employed in the construction of certain ornamental boats or portions of boats. Hence, adds Rumphius, comes the Malayal *sampan*, a decorated boat. He further tells us that the pegs (or wooden nails) employed in ship-building are chiefly made of this wood. But the Sappan is a small thorny tree of the Eastern and Western Peninsulas of India, also of Pegu, Tenasserim and the Shan plateau of Burma—cultivated where met with elsewhere in India and Burma. Hence with its Malayal name *shappannam* and its Tamil *shappu*, it is more likely, as suggested by Yule and Burnell (Hobson-Jobson (ed. Crooke), 794), that the wood sampan was derived direct from India itself and is not Malay. Gamble (Man. Ind. Timbs., 1902, 276) says he has never seen it wild. Rhede observes that it prefers sandy places, is indigenous to Travancore and cultivated as an ornamental and useful tree all over Malabar.
BRAZILIAN (BAKAM) WOOD

Properties and Uses.—The wood yields a valuable red dye, which, before the days of aniline, was exported very largely from India to Europe. Recently the traffic has declined very materially. But the dye may also be obtained from the pods (tairi) and from the bark, hence the necessity of not confusing the pods of this species with those of C. digynas, which are nowadays also called teri or tari. The accounts given by both Rheede and Rumphius of the methods pursued by the dyers of India or of the East might be given as a modern statement, so very accurate are these writers in most particulars. The use of lodi (leha) bark (Symphococ racemosa, p. 1053) as a dye auxiliary, and of chalk to deepen the colour and of alum to fix it, as also the circumstance that the colour is bleached or destroyed by acetic acid—these and such other circumstances are fully detailed. Rumphius tells us that in preparing the decoction the Natives throw a few grains of paddy into the boiling liquid. If the husk scales off, the boiling is regarded as sufficient, not otherwise.

Sir Thomas Wardle speaks very favourably of sappan in wool-dyeing and in calico-printing. Of the pods, he observes that they are astringent and much used in dyeing and tanning since they produce with salts of iron a rich black. It may be doubtful whether the pods alluded to are, however, those of this plant; they may be those of C. digyana. Sule, speaking of Berár, describes the manufacture of a special dye called abashai from the wood. Giles similarly says that in the Karenli country a plant known as the sawku (possibly sappan) affords from the powdered root a brick-red dye that on being boiled with cotton becomes permanent and requires no mordant to fix it.

By the Sanskrit authors sappan is often treated as a form or quality of sandal-wood. It is not generally recommended as a medicine either by the Hindus or by the Muhammadans of India, but has for years been employed by Europeans in India as a useful substitute for logwood. [Cf. Rept. Cent. Indig. Drugs Comm., i., 156.] Ainslie speaks of the emmenagogue properties of a decoction of the root.

According to the Pharmacographia there are two qualities of the wood met with in Indian shops, viz. the Singapore and the Dhunsari, with a third and less valuable obtained from Ceylon. It sells at from Rs. 30 to Rs. 42 per kandy of 7 cwts., according to quality. Fawcett (Monog. Dyers Bomb., 15) calls it by the old name—"Brazilian-wood," and speaks of it as imported from Siam and Malabar. It sells at Rs. 2 per 12 seers (24 lb.) and is largely used in preparing gulal. Formerly it was extensively employed in Ahmedabad in cotton-dyeing but has been superseded by aniline, which is sold under the appropriated name of patanga. In this connection it may also be remarked that in Lahore I found a yellow aniline sold in packets under the name piorina : illustrations of the direct adaptation of the aniline wares to the markets of India, the former being intended to supplant the classic patanga and the latter the piori. [For chemistry cf. Pharmacog. Ind., i., 500 ; Journ. Chem. Indust., 1898, xvii., 691 ; Hanausek, Micro. Tech. Prod. (Winton and Barber, trans.), 1907, 252, etc.]

[Cf. Marco Polo, Travels, 1290, ii., 312, also n. 315 ; Varthéma, Travels, 1510, 205 ; Garcia de Orta (though often cited, does not apparently allude to it); Linschoten, Voy. E. Ind. (ed. Hakl. Soc.), 1598, i., 121 ; Banerjei, Agri. Outuck, 199 ; Monographs, Dyes and Dyeing :—Hadi, 78 ; Fawcett, 15 ; Holder, 1896, 2 ; Banerjei, 1896, 13, 17, 23, app. ii. ; J. D. Fraser ; F. H. Giles, 4 ; 195]
CAJANUS INDICUS, Spreng.; Fl. Br. Ind., ii., 217; Leguminosae. The Pigeon-pea, Embrevade, Pois d'Angole, Cyttis des Indes, etc., dal, cadjan, tuwar (tuber), tur, thor, arhar (or arar, oror), rahar dal,lahar, oroha, gela-mah, loqao, kanalu, peh-yen-kyung, etc., etc.

History.—The pigeon-pea would seem to have been introduced into the West Indies (Grisebach, *Fl. Br. West Ind.*, 191) and to America from Africa, and apparently through the slave trade. It has been long cultivated in India, but nevertheless no Indian botanist has recorded having found it wild, or even naturalised, so that there would seem little doubt that in India it is an introduced plant. It is not mentioned in any of the early Sanskrit works. In Rheed's time (1866) it was regularly cultivated in Malabar, and bore practically the same vernacular names as at the present day. On the other hand, several travellers mention having found it wild in Africa. Schwein- furth, according to Jumelle (*Les Cult. Colon.*, 1901, 128), for example, discovered it wild in the region of the Upper Nile. Welwitsch (*Cat. Af.; Pl.*, i., pt. i., 266) speaks of it as cultivated and wild in the coast districts of Angola—its vernacular name being jinsongo or quinsongo. Loureiro makes mention of it as both cultivated and wild in China and Cochinchina, but as opposed to that view Bretschneider does not allude to it as having been known to the ancient Chinese scholars. Seemann speaks of it as introduced into Fiji by the missionaries. In Madagascar it is an important and apparently very anciently cultivated plant.

Varieties.

Varieties and Races.—There are two forms of this well-known pea, which by some authors have been viewed as species. They are apparently of independent economic value and hence may be here separately indicated:—

- **C. bicolor, DC.**; Sloane, *Hist. Jam.*, 1725, ii., 31; Burmann, *Thees. Zeyl.*, 1738, 86, t. 37; Hughes, *Hist. Barbados*, 1750, 199, t. 19; *Cytisus pseudocajan*, Jacq., *Hort. Bot. Vanh.*, 1770, i., 54, t. 119; C. Cajan, *Tussac, Fl. des Antill.*, 1827, 4, 94, t. 32; *Cytisus Cajan*, *Descourt., Fl. Pittoir. et Med. des Antill.*, 1827, 221, pl. 280; *Bot. Reg.*, 1845, xxxi., t. 31; Duthie and Fuller, *Field and Garden Crops*, 1882, ii., 20, t. 34. This might be described as a large bush, 6 to 8 feet in height, according to Roxburgh, with a circumference of 20 feet around the extremities of its branches—in other words, twice the size of the next form. The flowers are yellow streaked with purple, and there are four to five seeds in the pods, which are also marked with dark streaks. Roxburgh (the author from whom most recent writers have compiled) tells us that it is commonly sown with the first rains in June, ripens its main crop in about nine months, and yields 600-fold. It is in reality a perennial, but from its yielding a poor second crop, is in India usually treated as an annual. In the West Indies this is called Congo or Angola pea, and in India it is best known by the name arhar.

- **C. flavius, DC.**; Rehede, *Hort. Mal.*, 1886, vi., 23, t. 13; Plikenet, *Alm.*, 1696, ii., 293, *Phyt.*, 213, f. 3; Rumphius, *Hrb. Amb.*, 1750, v., 277, t. 135, f. 2; Duthie and Fuller, *Lc.* 20, t. 33. This is a much smaller plant than the preceding. It has been described as having perfectly yellow flowers, and usually only two or three seeds in the pods, which are never spotted. It is known in the West Indies as the no-eye pea and in India as *thur* or *tuwar*. According to Roxburgh it is sown in September, occupies the soil as a rule for only three months, and yields 100-fold.

Crops.

- **Rabi and Kharif.**—The recognition of these plants as distinct crops can hardly be viewed as having received in India the attention that the subject deserves. They practically correspond respectively to the *rabi* and *kharif* phases of most Indian cultivated plants. In the *Botanical Magazine* (1879, xxv., 3rd. ser., No. 6440) is given a beautiful illustration, and description by Sir J. D. Hooker of a form of *Cajanus* which was grown at the Royal Gardens, Kew, from seed supplied from Calcutta by Sir George King. This proved to be botanically an intermediate form that broke down the specific distinctions of *C. flavius* and *C. bicolor*. Subsequent writers accordingly accepted these as but varieties of one species. In the plant grown at Kew the flowers were pure yellow, and the
CAJANUS

INDICUS

Cultivation

Climatic Influences.

Bombay Races.
Associated Crops.
Period of Growth.

A three-months' or nine-months' Crop.

Three Forms in Mysore.

Panjâb Forms.

U. Prov. and C. Prov.

Two Forms.
Bengal and Assam Forms.

Cultivation.—Hot-season Peas.—Throughout the world pigeon-pea cultivation has been commended as desirable for all tropical countries, on account of the green peas it affords being an excellent substitute for the common garden pea, and it comes into season during the hot months when the ordinary pea is not available. With this object in view its cultivation has been extended into most temperate and moist tropical regions. An excellent
account of the plant, for example, will be found in The Agricultural Gazette of New South Wales (1892, iii., 6). In India it is most frequently grown as a mixed crop, especially var. bicolor, and more particularly as a rotation crop for cereals. The sowings are ordinarily in drills or lines that divide the field and often are so arranged as to protect the intervening crop from climatic inclemencies. A common system is every fourth row to be tur. The yield cannot, therefore, be stated without information as to the extent to which this crop occupies the soil. So again it frequently remains on the ground for a much longer period than its associated crop or crops. If grown alone on good soil the yield may be 2,000 lb. per acre, but as a mixed crop it averages about 500 to 700 lb. or even much less; some of the test experiments in the Central Provinces, for example, show a yield of only 400 lb. It is a hardy plant and thrives in seasons of drought when other crops fail. It is one of the best leguminous restorative plants known to the Indian agriculturist. [Cf. Agri. Ledg., 1894, No. 7, 198.]

Diseases and Pests.—E. J. Butler (Agri. Journ. Ind., i., pt. i., 25–30) has rendered admirable service by his investigations into The Wilt Disease of the Pigeon Pea and Pepper. "The former plant," he says, "has been found to suffer habitually from a condition like that of flax (linseed) which is known as "flax sickness" in Europe and America, and which has thrown great difficulties in the way of successful flax cultivation in several countries. The flax disease is due to a parasitic fungus developed in the soil, and an allied fungus is responsible for arhar sickness in India." In consequence successive cultivation of flax or pigeonpea on the same soil is followed by disastrous increase of the disease. At present it is "found over an immense extent of country; Bombay, the Central Provinces, the United Provinces and Bihar being the areas most affected." It has been reported from the Panjáb; in fact, "with the exception of Madras," where Butler says he has "neither seen nor heard of it," one may assume that wherever the crop is extensively grown, the disease is to be found. The reader desirous of full particulars should consult Butler’s paper. It will there be found that the fungus in question is described to penetrate the tissue of the plant and to accumulate within the vessels that carry the food supplies, thereby causing the pigeon-pea to turn black and decay gradually until it is completely wilted. "It is thus clear that no direct treatment can be successful against a disease of this type. The parasite early enters the internal tissues of the plant, and is then out of reach of any curative application." Our author consequently explains that there remain but two possible methods of diminishing the ravages of this disease. The first is the introduction of longer systems of rotation than are usually followed with arhar cultivation, so as to give time for the soil to be freed from infection. The second, the discovery or production of wilt resistant forms of the plant. In 1894, while touring through the Central Provinces and Berár, I discovered a disease very prevalent on the tur, and ascertained that it was caused by a parasitic fungus on the roots (Agri. Ledg., 1895, No. 20, 322); and very likely, therefore, it was the disease here dealt with.

Turning now to the pests, it may be observed that a caterpillar, ille, often destroys the first crop of pods; but frost is by far the most serious danger. On usar (réh) soils it will not thrive. [Cf. Agri. Ledg., 1897, No. 13, 231; 1901, No. 13, 424; Maxwell-Lefroy, Mem. Dept. Agri. Ind., 1907, i., 142, 149, etc.]
THIRD IMPORTANT PULSE

Area and Production.—It is impossible to form any trustworthy conclusions regarding the total supply of this _dal_ in India, or of the area under the crop. Mollison speaks of 700,000 acres in the Bombay Presidency. Duthie and Fuller estimate for 3½ million acres in the United Provinces as partly or entirely under it. In recent Bombay official papers mention is made of 566,465 acres _khari_ and 14,024 acres _rabi_ having been in 1902-3 under this crop. It is not known if these figures were worked out as pure or as mixed crops. In the _Season and Crop Report_ (1905-6), the area in the Presidency proper is said to have been 443,365 acres. In connection with the United Provinces we read of 2,039,692 acres, doubtless mixed crops, and for the Central Provinces 262,493 acres, both returns being for 1902-3. In connection with Berar it has been stated that for the year named there were 266,709 acres under this pulse, all grown as _khari_ crops. Regarding the other provinces of India no recent estimates are available, so that a full statement of the area for all India cannot be furnished for any one year. It is placed in official statistics under the heading of “Other Food-grains including Pulses,” of which the total for all India has, during recent years, ranged from 27 to 29 million acres.

Similarly particular cannot be afforded regarding the trade in the pigeon-pea since it is placed under “Other sorts of Grains and Pulse.” Mollison says that the dry pulse sells at from 35 to 40 lb. per rupee, and in exceptionally cheap years 50 lb. or more to the rupee may be obtained. The official publication _Prices and Wages_ (1906, 72-3) gives an elaborate statement of the annual returns (seers per rupee) of this pulse in all provinces of India back to 1861. A further table (l.c. 122-3) reduces these to quinquennial averages, and the following are the prices given for the five years 1901-5:—Eastern Bengal and Assam, 10’8 seers per rupee; Bengal, 11’75; Agra, 12’59; Oudh, 13’01; Rajputana, 14’18; Central India, 10’32; Panjab and N.W. Frontier Province, 10’49; Sind and Baluchistan, 9; Bombay, 9’56; Berar, 10’15; Central Provinces, 10’65; Nizam’s Territories, 15’97; Mysore, 7’02; Upper Burma, 8’19; Lower Burma, 8’37 (the seer equals approximately 2 lb.).

Economic Value.—In India the pulse is highly esteemed by the Natives, who regard it as the third in rank of importance among the leguminous seeds. _Taleef Shereef_ (Playfair, tr., 1833, 10) describes it at length, adding that a decoction of the leaves makes an antiseptic wash. It enters very largely into the vegetarian diet of the Hindus and is sold either in the form of split peas or as pea-meal, of which sweet cakes are often made. Many of the early European authors, writing of the East Indies, speak of this pea as in demand by seafaring people. Rheede, for example, says it is specially valued as a food for ships’ companies. Burmann observes that pigeons live on it, and men chiefly when on board ship. Decourtiz (l.c. 222) remarks that from the peas may be prepared a sort of sago much sought after by British and American sailors—an observation that recalls the parody on “The Mariners of England” who lived on “yellow peas” (see _Cicer_, p. 295).

Sometimes the tender green pods with their contained peas are in India cooked in curry like French-beans. They constitute in fact an excellent vegetable much neglected by the Europeans resident in India. Of the ripe peas there are, as already indicated, at least two seasons of their coming into market, viz. November to December for the early crop, and February to April for the late. The chief crop is the
CAJANUS INDICUS

Dal

Fodder.

Chemical Composition.

last mentioned. The plants are cut off close to the ground by a sharp knife and conveyed to the homestead, where they are stacked on the threshing-floor. The leaves and pods are then stripped or shaken off and the grain thrashed out. The leaves form a valuable FODDER, and occasionally a pruning of the young shoots is taken and given to cattle. The outer integument of the seed with part of the adhering kernel is a favourite food for milch-cows—it is known as chuni (Agri. Ledg., 1895, No. 6, 75). The pea or meal is largely employed as a cattle-medicine. [Cf. Cattle Diseases, Agri. Ledg., 1896, No. 28, 275, 283, etc.]

Church (Food-Grains of Ind.) gives the composition of the husked pea as:—water 10.5; albuminoids 22.3; starch 60.9; fat 2.1; fibre 1.2; and ash 3.9. The nutrient ratio is 1:3 and the nutrient value 80. "It is wholesome and nutritious when properly freed from the husk, its irritant and laxative character being thus greatly reduced. It is not unusual to find that the higher-priced and finer qualities of this pea have been slightly oiled before sale, to improve their appearance. This practice is not unknown in reference to wheat in the South of Europe." Leather (Agri. Ledg., 1901, No. 10, 356) has published his analyses of some four samples of this pea: one, a white, and two, red peas from Poona, and a fourth from Cawnpore. His results for the white pea may be here given to allow of comparison with the above:—moisture 6.7; oil 6.93; albuminoids 13.25; soluble carbohydrates 51.38; fibre 18.10; soluble minerals 6.44; sand 3.13; total nitrogen 2.45; albuminoid nitrogen 2.12. Leather thus found higher proportions of fibre and minerals than given by most other chemists. [Cf. Greeshoff, Chem. Zeit., 1903, No. 42, 331.]

Charcoal and Gunpowder.

Lac-insect (feeding on Arhar).

The stalks are used as fuel, the larger ones being chipped for the charcoal sold to the makers of gunpowder. The thin straight branches are employed for roofing and basket-work, as also for the thatting of carts and the tubular wicker-work linings of wells.

In Northern Bengal and Assam the arhar is specially grown as a food-plant for the lac-insect. One of the earliest accounts of this special industry (lac-rearing) was written by Buchanan-Hamilton in his Statistical Account of Bengal (1809). He there gives the plant the name of mendu-kolas and says the seed is sown in the spring, generally in the form of a hedge around gardens. In the beginning of the cold season the insects are applied by tying to each bush a small branch containing those about to produce larvae. A year afterwards the twigs of the bushes are then found to be covered with the lac incrustations (Agri. Ledg., 1901, No. 9, 218). There would seem to be much less lac reared on arhar in Bengal nowadays than in former years. In Assam the opinion is held by the Garos and Miris that while the lac-insect may be reared on many plants, the arhar forms its most convenient and suitable food. If sown and well watered in November, the young plants are fit to be transplanted at the close of the following rains—end of October—and each should average 4 feet in height. They should be planted 4 feet by 8 feet apart (about 1,360 to the acre), and will be ready to receive the insects two years after date of sowing. They should be charged with stock-lac in November: about 40 lb. will be necessary to the acre. One year later, the crop should be obtained, each bush yielding about 8 lb. or 6 lb. of cleaned lac, which at present rate would fetch about 2144 per acre, less expenses. If well cared for and properly pruned, to prevent flowering, seed for next year's crop being left on the bushes, the same plants may continue to yield for several years. [Cf. Agri. Ledg., l.c. 232, 271.]

Silkworms.

Junelle (Les Cult. Colon. (Aliment.), 1901, 128-31) gives a most interesting account of the cultivation of this plant in Madagascar for the purpose of feeding a special silkworm (landîbé) of that country. This industry exists mainly in the south of the island at Betsileo. It would appear to be a silk that resembles tasar or eri. The landîbé is said to be the Baroceras cajani of entomologists. It lives in the open air, and forms its cocoons among tufts of grass placed within the bushes for that purpose. It lays its eggs in March, is in chrysalis for one month, and takes eight days to spin its cocoon. It requires a warm, sheltered situation. Tussac (Fl. des Antill., 1827, iv., 94-6) also alludes to the fact that a silkworm is reared on the leaves that are eaten by the Arha. Arhar silk would thus seem well worthy the attention of the Indian cultivators as a possible additional source of revenue.
CANES AND RATTANS

History.—Rattan, it may be explained, is synonymous with Cane, is in fact identical, being the Malay word rotan—a cane. In modern usage the word "reed" denotes as a rule a hollow grass-stem (the bamboo is an arborescent reed), and the word "cane" implies a solid palm-stem. The separation into canes and reeds, whether etymologically correct or not, is a convenient industrial distinction. In fact the only desirable exception might be made in the case of the solid bamboos (male bamboos, as they are often called). These are used as walking-sticks, lance-shafts, and even more directly for some of the purposes for which the true canes are specially employed. But certain species of one or two other genera of palms such as Daemonorops and Plectocomia are used indiscriminately with those of Calamus as true canes.

Species and Varieties.—Before proceeding to discuss the Indian trade in "Canes and Rattans" or to furnish particulars regarding the associated industry of Basket or Wicker-work, it may be desirable to enumerate the more important species and to exhibit, while doing so, their habitats, their better-known vernacular names, and their special or individual properties and uses:

Calamus acanthophantherus, Griff. : the gouri-bet, purka-bet, rue, ru, etc. An extensive climber found in Eastern Nepal, Sikkim, Bhutan and the Khasia hills at altitudes of 2,000 to 6,000 feet. Gamble says, "the best of the rattan canes of Sikkim. The canes are rather thick, and where obtainable are used for cane-bridges, chair-making, and walking-sticks, but are now getting scarce."

C. gracilis, Roxb., Fl. Ind., iii., 781. The maquribet, krasang, hundi-bet. Upper Assam, the Khasia hills, Cachar and Chittagong—"a species with very slender canes.

C. Guruba, Ham., in Mart., Hist. Nat. Palm., iii., 206, t. 175, f. 1; Daemonorops Guruba, Mart., l.c. 330, var. Masterianus and var. Hamiltonianus. The keyini (or kyeing-ni), sudi-bet, quabi-bet. A scaldent plant met with in the forests of Bengal, Assam, the Khasia hills, Chittagong and Burma. The slender canes are used in basket-work.

C. latifolius, Roxb., Fl. Ind., iii., 775; Beccari (l.c. 211) regards macracanthus as a subspecies. The dangribet, bril, korak-bet, saun, yama, yamata kyeer (or yan-ma-kta); and var. macracanthus—rubee, raib, groom, pheki-bet. A stout climber found in the Sikkim Himalaya, the Terai and East Bengal to Assam, Chittagong and Burma. These canes are very strong and much in demand for walking-sticks and all forms of basket-work; the bril has the reputation of being best suited for walking-sticks. This is by far the strongest cane that finds its way into Indian trade at all plentifully. By most persons, in fact, it would very possibly be regarded as the true rattan of the commerce of the Eastern side of India and of the greater part of Burma.

C. leptospadix, Griff. The lat, chemchus—a scaldent slender species of the damp valleys of the Eastern Himalaya and Terai swamps, the Khasia and Naga hills and Manipur. Canes thin and apparently not of much value, though used locally.

C. Rotang, linn. : Roxb., Fl. Ind., iii., 777; Fl. Br. Ind., vi., 447; Mart., Hist. Nat. Palm., iii., 334, t. 116, f. 8; Blume, Rumphia, 1847, iii., 33; C. Roxburghii, Griff., in Calc. Journ., Nat. Hist., v., 43; C. monicus, Roxb., l.c. 783; C. scipionum, partly Lamk., Encycl., vi., 304; Dodge, Useful Fibre Plants of the World, 102. A very numerous assortment of vernaculars might be given for this plant such as:—bet, bent, peda, prabba, veta, natar, perambu, rotan, etc. An extensive climber found in the Central Provinces, the Deccan, Kurnatok, Konkan and Ceylon. According to Roxburgh it is a native of Bengal and the

Canes and Rattans.
CALAMUS
Basket-work

Coromandel Coast, delights in a rich moist soil, where there are bushes and trees for it to climb on. It seems probable that Roxburgh may not have sufficiently separated this from the two following species as cane-yielding plants. *C. Rotang* proper is not met with in Bengal. The slender stems are the common rattans of Central and Southern India; they are used for basket- and wicker-work, chairs, mats, blinds, etc., but are not strong though easily worked. [Cf. Taylor, *Topog. Stat. Dacca*, 1840, 52; Brandis, *Ind. For.*, 1887, xiii., 55; Thoselton-Dyer, *Ind. For.*, l.c. 185.]

D.E.P.,
i., 23.
North India and Bengal.

Eastern Peninsula.

C. *tenus*, Roxb., *Fl. Ind.*, iii., 780; Griff., *Palms Brit. Ind.*, 1850, 57, t. 193, s. r. c.; Prain, *Rec. Bot. Surv. Ind.*, ii., 347. This is the *bet*, bent, *chachi*-(sanchi) *bet*, *bandhari* bet, *kaling*, *talla* bet, *jail*, etc. A very long scandent plant met within the Sub-Himalayan tracts from Dehra Dun eastwards to Assam, Sylhet, Chittagong and Pegu. This is the common cane of Northern India and Bengal. It is largely used for basket-work, mats, screens, chairs, etc., etc. The fruit is eaten in times of scarcity. [Cf. Innes, *Jungle Prod.*, etc., 1898, 13.]

C. *viminallis*, Wild.: *Palmaficus viminalis*, Rumph.—a Javan plant; var. *fasciculatus*, Becc. (C. *fasciculatus*, Roxb., *Fl. Ind.*, iii., 779). The *bara-bet*, *pepa beti*, *amla vetasamu*, *kyeinge*, etc., and according to Roxburgh it is the *umba-retus* of Sanskrit. It is a stout scrambling and climbing species of Lower Bengal, Orissa, the Karnátak, Chittagong, Burma, the Andaman islands, Penang and Cochin-China. Cane thin but strong, makes excellent walking-sticks and is the chief rattan of the Eastern Peninsula.

D.E.P.,
i., 21.
East Bengal.

Damonorops Jenkinianus, *Mart. Hist. Nat. Pigm.*, ii., 327; Prain, *Rec. Bot. Surv. Ind.*, ii., 347. This is the *gola-bet*, *gallah*, etc. A stout scandent rattan found in Eastern Bengal, Darjeeling Terai, Assam, the Khasia hills, the Sundarbans and Chittagong. The canes are long but are said to be rather soft, though extensively used for basket-work.

D. Kurzianus, Becc. l.c. 219. A stout species of the tropical forests of the Andamans, giving useful canes and a kind of dragon’s-blood gum.

D.E.P.,
i., 98-102.
Dragon’s-blood.

Canes and Rattans: Basket- and Wicker-work.—Few plants are more useful to the habitants of moist tropical regions than the canes and rattans. The long scandent stems constitute the canes of commerce.

The stems when freshly cut contain a large quantity of liquid, which may be collected by blowing through short lengths, and from this, by evaporation, a red resin may be obtained. One of the best-known qualities of that resin is sometimes called “East Indian Dragon’s-blood.” This is, however, for the most part prepared from the fruits of several species of *Calamus*, met with in Eastern Sumatra, South Borneo and Penang. The gum exudes naturally from between the scales of the fruit, but inferior qualities are obtained by boiling the fruits or by tapping the stems. The only Indian species hitherto reported as affording this resin is *D. Kurzianus*—a species already briefly indicated. The false Dragon’s-blood, met with in Indian commerce, is imported into Bombay from Sumatra, Penang, etc., in large cakes or is found compressed into bamboo tubes. The true Dragon’s-blood is, however, procured from Socotra and is derived by tapping the stems of several species of *Dracaena* not *Calamus*. [Cf. *Yearbook of Pharmacy*, 1884, 234-6; 1897, 180; *Pharm. Journ.*, 1893, xxiv., 47, 108; *Pharmacog. Ind.*, iii., 532-5; *Kew Bull.*, 1906, 197-9.]

The fruit in the species of *Calamus* is produced in great clusters, and the inner succulent layer is often an edible refreshing bitter-sweet pulp. The roots and young sprouts are eaten as vegetables and somewhat resemble asparagus. But the species of the above-mentioned genera owe their chief
value to the great strength more particularly of the outer woody layer of their long flexible stems. As substitutes for ropes these are invaluable, and in the countries where they abound, canes 300 to 400 feet in length are frequently employed as the bearing-ropes of suspension-bridges. They are also used in towing heavy objects, stones, logs of timber, etc., and formerly were much valued in the East as cables for ships. The smaller canes are extensively employed throughout the world in basket-work both entire and stripped. Chairs, sofas, couches, baskets, etc., are constructed of entire canes wound round and round and fastened to each other by thin strips of the cane-bark. When the interstices are filled up, they become water-tight baskets and granaries. A strong and durable floor-mat is similarly made of these canes placed close together and held in position by binders of cane-bark. Canes are also very largely used as walking-sticks, umbrella-handles, and to give strength in saddlery and harness. Loureiro (Fl. Cochinchin., 1790, 210) under C. Scipionum says, "Pro baculis ex dignitate, vel elegantia manu gestandis"—a description fully applicable to the Malacca and Whangee canes of to-day. But of course the chief European use for canes is in furniture and basket-making. Machinery is now utilised in stripping the barks into cane-ribbons, thus leaving the core in the form of a perfectly round and even rod. These rods are employed in the construction of fancy baskets, chairs, window-blinds, where great strength is not essential, and they have the advantage over the siliceous stronger bark-ribbons in that they take colour readily. The waste fibre obtained during stripping and trimming the ribs and cane-rods is used in upholstery along with, or as a substitute for coir. Wiesner (Denkschr. Akad. Wiss. Wien. Math.-Nat., 1902, lxxii., 15-6) refers repeatedly to the Chinese employment of rattans in the manufacture of paper. Tschirsch (Indische Heil-und Nutzpflanzen, 1892, 169) very pictur- esquely describes the varied uses of the cane from caned boyhood to caned seated dotage. His illustrations are forcible, but add little or nothing new. [Hanausek, Micro. Tech. Prod. (Winton and Barber, transl.), 1907, 255-61.]

Trade in Canes.—The Forest Departments of the various provinces of India, including Burma, publish annual reports from which it might be gathered that the yearly crop of canes amounts to about 10,000,000 maunds and the annual revenue therefrom from Rs. 50,000 to 60,000. The Reports of the Conservators of Forests in Burma for the year 1904-5, for example, show a total revenue from canes amounting to Rs. 37,775. The imports of canes and rattans into India from foreign countries may be said to average from 30,000 to 40,000 cwt., valued at from 2 to 3½ lakhs of rupees (38,436 cwt., valued at Rs. 3,85,674 in 1906-7). These come mainly from the Straits Settlements and Siam. The exports to foreign countries of Indian canes come to from 1,000 to 3,000 cwt., valued at from Rs. 20,000 to Rs. 50,000 (2,427 cwt., valued at Rs. 38,100, in 1906-7), but in addition there is also a re-export trade (foreign canes exported) formerly of about the same quantity and value as that just mentioned, but showing a considerable diminution in recent years (673 cwt., Rs. 11,291, in 1906-7). It is thus significant that India, with its vast supplies of canes and rattans, should not be independent of foreign tropical countries, and the explanation may possibly lie in the cheaper sea as compared with land transit. Large towns like Bombay, Calcutta and Madras find it more economical to obtain their supplies from the Straits than from the inland forests of India. (See Baskets, p. 115; also Mats and Matting, p. 775).
CALOPHYLLUM
INOPHYLLUM
Mast-wood

Mast-wood, the sultana-champa, surpan, surangi, pinney, punang, puna, undi, ponnyet, etc.—punngaa (Sansk). An evergreen tree, which in some localities, especially when near the sea, attains a considerable size. It is indigenous throughout the Western Peninsula, Orissa, Ceylon, Burma and the Andaman Islands, and is distributed to the Malay, Polynesia, Australia and the islands of Eastern Africa.

Species and Varieties.—Besides the above there are four other species of Calophyllum worthy of special mention in this place. These are:—(1) C. polyanthum, Wall., the kande, kironi, kraidone; an evergreen tree of Northern and Eastern Bengal, the Khasia hills, Chittagong and Martaban. (2) C. spectabile, Willd., the pantoga, talchum, dakar-talidda; a tall evergreen tree of Tenasserim, the Andaman Islands and Ceylon. (3) C. tomentosum, Wight.—the Poon Spar, nagari, surhoni, etc.; a large evergreen tree often 150 feet in height, self-propagated in the western coast forests from N. Kanara to Travancore. (4) C. Wightianum, Wall.; the bobbi, irai, cheru pinney, an evergreen tree found along the Western Ghats from the Konkan to Travancore.

Properties.—There appears to be little doubt that the true Bum Tzacamahaca, formerly identified by some writers to C. inophillum, is neither obtained from that nor from any other Indian tree. But when wounded the stems and also the fruits of the mast-wood exude a small quantity of bright-green pleasantly scented resin (soluble in alcohol) which is not collected nor made use of at the present day. Rheedee observes, however, that it is emetic and purgative, so that it would appear to have been formerly of medicinal value. From the seeds is expressed a greenish-coloured oil, known as Pinney or Domba Oil. According to some the yield is as great as 60 per cent. by weight, and the oil is said to congeal when cooled below 50°. The seeds are collected twice a year, in August and again in February. The oil possesses a disagreeable odour and flavour, but is fairly extensively used for burning, and is valued, especially in Polynesia, as an external application in rheumatic affections. Mixed with chaumagra oil (p. 1068) is also employed for exanthematos eruptions. In Pondicherry the oil is believed to be very useful in the treatment of scabies, a property specially mentioned by Rheedee in 1686, and again by Rumphius in 1750. The chief centres of production are Bombay, Goa, Travancore, Tinnevelly, Tanjore, Puri, etc. It is said to fetch a little more than half the price of cocomut oil and is fairly extensively exported from India to Burma. The oils of C. tomentosum and C. Wightianum are similarly expressed from the seeds, but do not differ in properties and uses from that of C. inophillum. Rumphius affirms that in his day the bark was boiled down along with that of a plant which he named Siderosylon, and the decoction given as a purgative; he also states that warriors carried a little bottle of the oil by their sides and smeared it on their spears and bolts, believing that they were thereby more likely to pierce the objects against which they were thrust.

The Timber is moderately hard and close-grained, and by Sebert (Les Bois de la Nouvelle Calédonie) is believed to be magnificent for cabinet-work. All the species, and in particular the Poon Spar C. tomentosum, are highly serviceable for masts, spars, railway-sleepers, machinery, etc., but for these purposes are much less in demand than formerly. Linschoten (Voy. E. Ind. (ed. Halk. Soc.), i., 67) alludes to the "long masts for ships" sold at Cananor, and Hamilton (New Acc. E. Ind., 1744, i., 267) says the Poon-masts are heavier and stronger than fir. They are sometimes employed, especially C. polyanthum, in boat-building. [Cf. Elliot, Fl. Andhr., 1859, 155, 160; Moodeen Sheriff, Mat. 204]
CALOTROPIS GIGANTEA

R. Br.; and **C. procera**, **R. Br.**; **Fl. Br. Ind.**, iv., 17; Wight, **Illust. Ind. Bot.**, ii., t. 155, 156a; also **Lc.**, t. 1278; Gamble, **Man. Ind. Timbs.**, 491; Cooke, **Fl. Pres. Bomb.**, ii., 151; **Asclepiadéae**—the Swallow-worts.

Habitat.—The two species indicated above are so nearly the same from the practical standpoint that they may here be treated conjointly. The former is an erect spreading perennial bush which chiefly frequents waste lands in the warm moist tracts of most tropical countries, in India being especially abundant in Bengal, Assam, South India, and distributed to Ceylon, Singapore, the Malay and China. The latter is a slightly smaller plant, met with chiefly in the drier regions, and so far as India is concerned is most abundant in the Sub-Himalaya (from the Indus to the Ganges), also in Central India, Rajputana, the Deccan and Upper Burma, and is distributed to Persia and Tropical Africa. Both species are known by the following names:—**madar** (sometimes written by Europeans as *mudar* or even *muder*), åk, åkanda, árka, rai (a name specially suggested by the silk-cotton), yercum, erukam, jilledu, yekka, erukku, etc. But the former species is sometimes called the purple and the latter the white åkanda—the árka and álarka. The name **madar** is derived from the Sanskrit *mandára*, hence the synonyms **rudra**, aditya, surya-pattra. To its name **arkaparna** (sun or lightning-leaf) is doubtless due the tradition of its blinding properties.

History.—One of the earliest European writers to describe this plant was Prosper Alpinus (*De Pl. Ægypti*, 1592, ch. xxv.). He tells us that it is the **bêda leother** of Alexandria, where it grows in damp places. Rheede was the earliest Indian botanist to narrate its properties (**Hort. Mal.**, 1679, ii., t. 31), and he furnished a most accurate drawing of it. He calls it **ericu**. Rumphius (**Herb. Amb.,** 1755, vii., 24, t. 14, f. 1) gives a poor illustration but describes the plant in great detail under the name of **mador**. Jones (**As. Res.,** 1798, iv., 267) deals with it under the name **arca**. Roxburgh placed it in the genus **Asclepias**, and Robert Brown a little later assigned to it a separate position under **Calotropis**.

Calotropis.—It is a sacred plant with certain Hindus, and is associated with the observances of the **maruts** or winds, the demigods of **rudra**. The ancient Arabs also appear to have had superstitious beliefs regarding it since they associated it with sun-worship. It is a popular tradition in many parts of India that the great Emperor Akbar was so named from having been born under the shade of an **ak**-bush. It is the **ushar** of the Arabs and the **khark** of the Persians, but the former seems to be a generic word for milk-yielding plants and was possibly restricted to *Calotropis* at a comparatively late date. Abu Hanifeh was perhaps the first Arab writer to give an explicit account of it, but much useful information will be found in the writings of Ibn Baithar (Southemer, transl., 1842, ii., 193). [Cf. Joret, *Les Pl. dans L'Antiq.*, 1904, ii., 354.]

Properties and Uses.—This plant may be said to yield **Gutta-percha** from the milky sap; a strong **fibre** from the bark; a useful **floss** from the seeds; and a **medicine** from the root-bark. Space cannot, however, be afforded to do more than review even these properties very briefly, and there are many minor ones that cannot even be mentioned.

The Gutta-percha.—The inspissated and sun-dried sap (milk) drawn from the stems constitutes the **madar gutta** of India. Hooper (**Rept. Labor. Ind. Mus.**, (Indust. Sec.), 1905-6, 29) calls it a pseudo-gutta and gives its composition as "37.9 insol.; 52.9 resin; and 9.2 ash." He then adds that it contains large quantities of **atteb** and **psuvit** resins (see p. 627). There are large tracts of the sandy deserts of Rajputana and Central India, as

Sacred to

Rudra.

Products.

Gutta-percha.
CALOTROPIS GIGANTEA
Madar Fibre

also of Sind, in which this plant is not only the most prevalent but almost the only form of vegetation met with. In many instances also it has been observed to be the pioneer in the reclamation of sterile tracts (see Alkalis, Réh., p. 53). If, therefore, a demand could be originated for any one or all collectively of the products of this plant, much good might result to India. Its production could be fostered and by selection and cultivation the quality and quantity of the produce improved, until the plant assumed the condition of a regular crop for poor soils. But unless some method could be designed for extracting the milk from shoots cut on account of their fibre, it is feared that it would not pay to tap the plant specially for its gutta. The stems and twigs are too small and the yield from each too little to justify the opinion that methodic tapping would prove remunerative as an industry by itself. Moreover, it has been found by chemical experiment that Calotropis gutta, being a fairly good conductor of electricity, is not suited for electrical purposes and is thus very possibly debarred from one of the most profitable markets for this class of product. Heyne (Tracts, etc., Ind., 1814, 245) says that the milk instead of reddening vegetable blue colours, changes them to green. [Cf. Kew Bull., 1886, 45.]

Bark Fibre.—The bast fibre has attracted considerable attention and been spoken of as one of the best of Indian fibres. The great difficulty appears to consist in the inability to separate it rapidly and cheaply. Unfortunately the fibre cannot be prepared by retting the stems since it is reported to rot when so treated, and yet the cleaned fibre when made into fishing lines and nets (as is the case in Karachi) seems quite durable and very strong, especially when used in sea-water. Mr. Liotard, after many experiments performed in Calcutta with fibre-extracting machinery generally, arrived at the unfortunate conclusion that the hopes formerly entertained by himself and others regarding this particular fibre were never likely to be realised:—(1) because of the small percentage of fibre (1·56) to weight of stems, and (2) the shortness of the ultimate fibre. But in recent experiments conducted at the Imperial Institute with a sample procured from Madras, Dunstan found that the staple measured fully 12 inches. [Cf. Agri. ledge., 1899, No. 2, 7.] Dodge (Useful Fibre Plants of the World, 1897, 104) observes that an acre of ground planted 4 by 4 feet with this plant will yield 10 tons of green stems and 582 lb. of fibre; this would mean a yield of roughly 2·6 per cent. He then adds that the fibre possesses many of the qualities of flax though somewhat finer. Its fineness, tenacity, lustre and softness, in fact, fit it for many industrial purposes. Cross and Bevan found that when nitrated it could hardly be distinguished from silk, and long years ago Wight showed that a rope of this fibre broke with a weight of 407 lb. when a similar rope of cotton gave way with 346 lb., and coir with 224 lb. It is, however, quite incorrect to affirm, as has been done by Wiesner (Die Rohstoff. des Pflanzen., 1903, ii., 317), Dodge and others, that this fibre is widely used in India. Although prepared to a small extent for very special purposes, the greatest possible difficulty was experienced in procuring the few pounds required.

Mr. G. W. Strettell (New Source of Revenue to India) advocates the value of this plant as a paper material. Routledge did not form a high opinion of its qualities. [Cf. Kew Rept., 1877, 37.] It may thus be fittingly concluded that were it found possible to utilise the gutta as an additional source of revenue, the fibre, either for textile purposes or paper-making.

THE INDIAN MADAR PLANT

Plant
Common.

Method of Tapping.

Defect of the Gutta.

Bark Fibre.

Retting
Impossible.

Yield.

Hardly distinguishable from Silk.

Great Strength.

Paper Materials.
CALOTROPIS
GIANTAE
"Hearbe Bengalen"
confirmed by Fitch in 1585 (Habl. Voy., ii., 359), who gave an account of his
explorations of the Ganges, including Orrisa (Orixa, as he calls it) where there
was "great store of cloth which is made of Grasse which they call yerua." That
vernacular name is clearly a form of the word that denotes Calotropis through-
out Orrisa and the Karnátask to this day. Doubtless also Linschoten's "Hearbe
Bengalen" was the same textile. I have purposely made reference to Linschoten
under Bambusa nincia because all modern writers whom I have been able to
consult quote the above passages, and several others to the same effect under
rhea, in place of Calotropis, to which they most undoubtedly belong. Pyrard,
who visited India in 1601–10, in his chapter on Bengal (Voy. E. Ind. (ed. Hakl. Soc.),
i, 328–9) makes mention of the silk herb being brighter than silk itself. Coming
to more recent dates, Alexander Hamilton (New Acc. E. Ind., 1727, i., 393), who in
1688 visited Bengal and passed up the Ganges to Benares and Patna, describes
Balasore as producing manufactures of cotton, silk, mixed silk and cotton, and
of "herba (a sort of tough grass) of which they make gingham, pinasocs, and
several other goods for exportation." Even so late as 1813 Milburn mentions
among his Bengal piece goods "herba taftrees."

Though it is certainly most surprising that this ancient industry in silk-
cotton textiles should have died out completely and been all but forgotten,
it is a useful object-lesson of the possibilities of the future, which manufacturers
would do well to consider. (For other Silk-cottons, see BOMBAX, p. 168.)

Medicine.—It would take many pages to indicate even a tithe of
the information that exists on the varied medicinal properties of the
milk, the flowers, the leaves and the root-bark. The late Dr. Kanny
Lall Dey regarded madar as a useful medicine when given during
remission of intermittent fevers, and especially if these were associated
with eczema. The majority of Indian medical writers extol the merits
of the root-bark in the treatment of dysentery. In order to verify these
opinions, the study of madar was taken up by the Central Indigenous
Drugs Committee of India. Authentic parcels of the root-bark were
procured and made up in the form of both a powder and liquid extract.
These preparations were issued to a selected number of Hospitals and
Dispensaries throughout India, with the suggestion that they should
be used as alteratives and alternative tonics. By chemical tests it had
been previously ascertained that the bark of mature plants was preferable
to that of immature ones, since they contained a higher percentage
of the acid and bitter resinous matter on which the property depended.
Ultimately an extensive series of reports came to hand (Rept. Cent. Indig.
Drugs Comm., 1901, i., many passages), the combined verdict of which
would seem to be that as a substitute for ipecacuanha it is not so satisfactory
as its reputation would seem to imply. In fact in acute dysentery
and chronic diarrhoea it is found undesirable and certainly less efficacious
than ipecacuanha. When given in large doses it frequently occasioned
nausea and vomiting, so persistent and severe as to make the drug objection-
able if not dangerous. In small doses of say 3 to 5 grains of the
powder (preferably) its action on the stomach was that of a mild stimulant,
hence the opinion was often expressed that it might with advantage
be combined with cinchona in the treatment of certain fevers. As an
emetic the powder, in doses of 30 to 40 grains, was found very effectual.
In the Hemp Drugs Commission's Report (1893–4, i., 156) it is mentioned
that the juice of the madar is employed to enhance the potency of ganja.
[Cf. Taleef Shereef (Playfair, transl.), 1833, 5; Taylor, Topog. Stat. Dacca,
1840, 57; Hooker, Him. Journ., 1854, i., 36–7 (temperature of leaves and
sap); Elliot, Fl. Andh., 1859, 74, 111, 162, 176; Jackson, Comm. Bot. 19th
Cent., 1890, 127; Pharmacog. Ind., ii., 428–37; Kanny Lall Dey, Indig. Drugs
Ind., 1896, 56–7; Collett, Fl. Sirm., 1902, 315; Gaz. Multan, 1901–2, 17.]

208
THE TEA PLANT

CAMELLIA, Linn. ; Fl. Br. Ind., i., 292-3 ; Frutex Thea, Jacobus Bontius, Hist. Nat. et Med. Ind. Or., 1631 in Piso, Ind. Utri. re Nat. et Med., 1658, pl. 88 ; The Sinensis, Jacob Breyn, Exot. Pl., 1677, 111-5, with plate (said to have been made after a sketch by William ten Rhyne) ;

Species and Varieties of Tea.—Linnæus (Gen. Pl., 1737) indicated two genera, Thea and CAMELLIA. The differences he established turned on whether or not the stamens were free from each other or united, and on the number of cells and seeds in the fruit. Accordingly he placed Thea in Polyandria Monogynia and CAMELLIA in Monadelphia Polyandria. Subsequently (Sp. Pl., 1753, 515, 698) Linnæus assigned the tea plant as the type of Thea and the Japanese Camellia as the type of CAMELLIA. But it has since been abundantly established that Linnæus was incorrect in regarding the stamens as being free in the tea plant, and it is a matter of everyday knowledge that on the same tea plant fruits may be found with one, two, three or more seeds. Modern botanists are accordingly agreed that the two genera cannot be separately upheld. Hence it may be regarded that priority of accurate generic recognition of the structural peculiarity of the stamens (were there no other considerations) necessitates the retention of the name CAMELLIA, and the reduction of Thea. Turning now to the specific name. In the first edition of the Species Plantarum, Linnæus (without giving any description) called the tea plant Thea sinensis and remarked that he had seen some specimens with six petals and others with nine, but he left it to those who had the opportunity of studying the living plants to say whether that peculiarity denoted two or only one species. In the second edition of his work Linnæus made no alterations, but in the fourth (prepared by Willdenow, 1797) a few additional particulars are given (of the two forms above indicated) and T. bohea is referred to two varieties:—(a) laxa—a plant with rough elliptic oblong leaves —and (b) stricta—a plant with plane lanceolate leaves.

Seemann pointed out that on his own copy of the sixth edition of the Genera Plantarum, Linnæus had written certain corrections which show that the material then to hand had induced him once more to amend and amplify his description. Since then many botanists have striven to uphold the two Linnæan genera, their recognition being regarded as justified by certain trivial peculiarities of the calyx or, as Seemann affirms, of the stamens, but the final conclusion of the majority of writers, as already indicated, seems to be that they constitute but one genus and one species, tea. Engler and Prantl (Pflanzenfam., 1885, iii., 6, 182-3), the most recent authors, reduce CAMELLIA to Thea, and restore the rejected name Thea sinensis. But it would seem that that specific name cannot be given as a collective appellation for the many races of the cultivated

209
Camellia
THEA
Japanese Camellia

Tea plant, since it was rejected by Linnaeus and, as Seemann points out, is geographically hardly correct. Long years ago Sims (Bot. Mag., 1807, 998) recorded the conviction that there was but one species of tea, and further that Thea would have to be reduced to Camellia. Link, however, accepted two forms of the tea plant, and called them Camellia Thea and C. viridis, and thus reduced Thea to Camellia.

Bohea.

The name Bohea is a corruption of Wu-i (Bu-i) mountains in Fuh-kien, long famous for Black Tea. According to Martyn (Miller, Gard. Dict., 1807), Linnaeus gave the name Camellia in honour of Kamel, a Moravian Jesuit, who collected plants in the Philippine Islands and sent them to Ray and Petiver between the years 1683 and 1700. The Abbé Berlese thinks, however, that the genus was named after an Italian, Father Camell, who is said to have introduced C. japonica from Japan to Europe in 1739. Linnaeus (Hort. Cliff., 1737, 294) makes the interesting observation that although seven separate consignments of seed had been received at Clifford's garden in Holland, none had germinated, nor was he aware of any garden in Europe where the plant had been grown. Commenting on that statement, Breyn refers to J. Commelin (Cat. Pl. Hort. Amstel., 1689, 346), who makes mention of the cultivation of the tea plant, but whether, adds Breyn, raised from seeds or live plants transported to Europe, he was unable to ascertain. This little episode brings to mind the repeated references to the sacred associations of the Chinese and Japanese with their tea industry and their unwillingness to furnish information regarding it. In fact the explanation of the failure to germinate the seeds may very probably have been due to the not unusual circumstance of these having been boiled before being allowed to be exported. Du Halde (Gen. Hist. China (Engl. transl.), 1738, iv., 21) speaks of tea as "another plant made use of in Physick." He then tells us that "the best tea grows in the middle of the trees which are most exposed to the sun." "The tea whose leaves are long and large is the best, on the contrary that which hath small short leaves is not esteemed good; that which hath its leaves curled is the most valuable, and that which hath them quite smooth is the worst." Here we have the practical man discussing the large- and small-leaved forms of the plant for which the botanist of that time invented names. But history is only repeating itself. Had the Indian planters considered these and other such passages they might have saved themselves the trouble and expense of introducing the small smooth-leaved Chinese plant, and taken at once to the large and bullate-leaved Assam indigenous.

There are several cultivated and wild forms of Camellia, but only the two that are of economic interest and, it might be said, of exceptional value to man, need be here dealt with—

1. Camellia japonica (including C. assamica). The Cultivated or Garden Camellia. This plant may be spoken of as a modern introduction to the gardens of Europe and India. It is accordingly not described by the early fathers on gardening. The year 1792 is generally mentioned as that of greatest interest in the history of the camellias, since all the better known kinds may be said to have appeared simultaneously about that time. For twenty to thirty years subsequently considerable interest was taken in their cultivation, and the number of forms, grown in hothouses, multiplied rapidly. But the great delay in their first arrival may be accounted for by the maritime struggles for supremacy in the Eastern trade, between the Portuguese, Dutch and Spanish, which culminated in their temporary expulsion from both Japan and China. To this same circumstance also is largely due the ahor of religious secrecy that opposed the development of the trade in—

2. C. Thea. The Tea Plant; the t'u or cha'she, theh of the Chinese and teja, cha, ts-cha of the Japanese—words which have practically accompanied the prepared leaves as tea, te, toy, the, cha, chai, etc., etc., into most of the languages of Europe and Asia. The English word tea was originally pronounced like the Chinese te or toy, hence Pope (Rape of the Lock, 1712) rhymes it with obey. It changed, however, very shortly after, since Edward Moore rhymes it (1750) with "Mrs. P."

Habitat.—Several writers report having met with the tea plant in a wild condition in certain parts of China and Cochín-China. It was discovered wild, or at all events completely acclimatised, in various parts of Assam by Bruce, Scott, Jenkins and Charlton, and the so-called indigenous habitats were examined by the "Tea Commission" and specially reported on by Griffith. In 1882 the wild tea plant was found by me as a forest tree or large bush in the eastern tracts

210
of Manipur, and again, in 1894, was specially investigated in the Naga hills in connection with an effort to ascertain to what extent the pests and blights of the cultivated tea plant existed on the wild or acclimatised stocks. There would seem little doubt that it has been cultivated for several centuries at least, in Upper Burma and the Shan States, and doubtless by most observers it occurs in isolated spots, similar to those in the greater part of the Assam area; hence it could of course under these conditions be upheld as a survival of former cultivation rather than as manifesting a truly indigenous habitat. [Cf. Agri. Ledg., 1896, No. 27.]

History.—Breitschneider (Bot. Sin., 1892, ii., 20, 130–1) states that the tea plant is mentioned in the ancient Chinese Dictionary, the Rh-ya. It is there called kia and k’u-tu (k’u meaning bitter). He further explains that the Chinese character T’u, which has so many other meanings in the early Chinese classics, may, however, have specially meant tea. He then adds that the comparatively modern Chinese character ch’a arose through a confusion with that of t’u, somewhere between 202 B.C. and 25 A.D., but that it did not come into general use much before the 7th or 8th centuries. So in the same way the character ming, which would appear to denote the tea plant, occurs as ming ts’ai (= tea vegetable) in works written some centuries B.C. The Shans and Burmans to this day use pickled tea-leaves (see Letpet below) more as a vegetable relish than as a beverage and it seems possible that this may have been the condition of use during the earliest classic times of China. We read that Wang Meng, father-in-law of the Emperor, in the middle of the 4th century, was fond of drinking tea, and set it before his friends, but they found it too bitter and generally declined, feigning illness. So again Breitschneider tells us that according to the Ch’i-a-pu—a special treatise on tea, published between the 10th and 13th centuries—the Emperor Wen-ti (389–405 A.D.) was recommended by a Buddhist priest to drink boiled ming leaves as a medicine for headache. It is somewhat curious that Kämpfer relates a similar Japanese tradition that would seem to attribute the introduction of the plant to that country by Darma, the third son of an Indian king. But if the t’u of ancient Chinese classics be accepted as denoting tea, it may have originally been viewed as a medicine obtained from the plant known as ming, ch’i-aan and k’u-tu. The habit of drinking a decoction of the specially prepared leaves, there would seem no doubt, is of comparatively modern origin. In the 8th century A.D. we have the first undoubtedly evidence of tea having become a regular industry, for in the annals of the T’ang Dynasty we learn of its being subjected to an imperial duty. It was not regularly cultivated in Japan until the 13th century. That tea drinking in the rest of the world is quite a modern habit may be inferred from there being no classic names either for the plant, the prepared leaves or the beverage, in Japanese, Sanskrit, Arabic, Persian, Hebrew, Greek or Latin.

Marco Polo, who travelled in China (in the tea districts of Fuh-kien) in the 13th century, makes no mention of tea, neither the plant, the vegetable nor the beverage, and yet it is well established that the plant and its properties were as fully known then as to-day. [Cf. ed. Yule, ii., 37–8, n.] But in passing it may be added that he similarly does not record having found the people in any part of his long travels drinking coffee. His omission to record tea is the more curious, however, since four centuries previously (9th century) the Muhammadan merchant Solaiman (according to Reinaud, Relat. des Voy. faites par les Arabes et les Persians dans l’Inde et a la Chine, 1845, i., 40) wrote, “The people of China are accustomed to use as a beverage an infusion of the plant, which they call sakk.” “It is considered very wholesome. This plant (the leaves) is sold in all cities of the Empire.” [Cf. Macpherson, Hist. Europ. Comm. Ind., 1812, n. 130.] Ramusio (in the introduction to his edition of Marco Polo published in 1545) mentions having learned of the tea beverage from a Persian merchant, Hajji Muhammed. It was used all over the country of Cathay, where it was called chiisi. In 1560, Gaspar da Cruz (in Purchas’ Pilgrimes, ii., 180) refers to the porcelain used by the Chinese in presenting to their friends the beverage cha. Maffeius (Hist. Indicarum (Select. Epist. ex Ind.) 99), in a letter from Ludovic Almeida dated Nov. 1565, similarly says that it was the custom with the Japanese to show their friends with pleasure the pots, cups, etc., employed by them in drinking of a certain herb, reduced to powder, which was called cha. Maffeius (in the text of his work which was originally published in 1588) attributes the freedom of the Chinese from certain diseases (stone, etc.) to their habit of tea-drinking, and the Chinese (like the Japanese),
he adds, take great pride in the teapots which they use in giving a friendly cup. Tulpius *(Observ. Medicus, 1641)* exults the merits of tea as a medicine. It is somewhat significant that Garcia de Orta makes no mention of tea as one of the commodities brought from China and Japan to India. Linschoten *(Voy. E. Ind., 1598* (ed. Hakl. Soc.), 1885, l., 157), who usually compiles from Garcia, practically repeats Maffei's account of tea-drinking in Japan. Trigantius *(De Christ. Exp. in Sinas, 1616, l., 68-9)* speaks of the hot-tea drink of the Chinese. Casper Baulhin *(Pinax, Theat. Bot., 1623, 147)* was apparently the first scientific or botanical writer who makes mention of what would appear to have been tea. But the passage in question does not occur in his earlier work *(the Phytotinax, 1596)*. He calls it *cha* and describes it as his seventh variety of *Funiculum* *(Fennel)*: Absurd though this may seem there would appear to be no occasion to doubt that he is speaking of tea. Bontius, a Dutch physician resident in Batavia—*(Hist. Nat. et Med. Ind. Or., 1631, in Piso, Ind. Utri, re Nat. et Med., 1658, 87)—tells us that his friend General Spex had removed all doubt as to the nature of the tea plant, since he had studied its cultivation in Japan. Bontius then goes on to say that the finer qualities of the decoction are often so bitter that sugar has to be added to make it palatable, and he compares the beverage to the "*casa*" *(coffee)* of the Minahasa *Kabban* (see p. 364). He then urges that the difference between black and green tea is only in the method of preparation—a fact that took Europe nearly two centuries to accept. In Piso there is an excellent engraving of *Camellia Thea* *(the Chinese form)* drawn from nature in Japan by D. Caron, and presented to Piso; Caron went to Japan in 1638 under the Dutch E.I. Company. *(Bretschneider, Hist. Europ. Bot. Disc. in China, 1898, 25.)*

Albert de Mandelslo *(Travels, in Olearius, Hist. Muscoey, etc., 1692, 15, 18)* says, "At our ordinary meetings every day we took only *Thea*, which is commonly used all over the Indies, not only among those of the Country but also among the Dutch and English, who take it as a drug. The Persians instead of *Thea* drink their *Kahve.*" This same statement occurs in Ovington's *(Voyage to Suratt, 1689, 303-9, 427)*. It is curious, however, that in the *Ain-i-Abbari, 1590*, no mention is made of tea. It was conveyed to Europe by the Dutch East India Company; and from Holland was carried to England by Lord Arlington and others. In 1666 tea-drinking had become so general that it was taxed along with coffee, chocolate, etc., and sold at the coffee-houses. The English East India Company soon gave attention to it. In 1664 they made a present of some tea to King Charles II., and in 1677 the Company had taken steps to secure a regular supply. At this time tea sold in London at £5 to £10 a pound. A few years later (1689) a direct duty on imports *(which amounted to 5s. a pound)* was imposed. It is further noteworthy that at that time the East India Company drew its supplies for Europe and Madras and Surat and not direct from China. This circumstance would thus give an air of plausibility to the statement made by Mandelslo that tea was drunk in India about the same time, if not before, the habit had been originated in England. Evelyn *(Mem., 1690, ii., 29)* speaks of having examined a specimen of the "root of thea which was so perplexed large and intricate that it was wonderful to consider." Petiver *(Op. Hist. Nat., 1767, i, t. 21)* shows a chair made of the roots of the tea plant which was presented by the "New East India Company" to Lord Somers. Curiously enough, one of the earliest and at the same time most instructive botanical specimens of the tea plant extant is in the Sloane Herbarium of the British Museum *(lxxxi. f. 48).* It belongs to a series of specimens said to have been collected in Malabar, between 1698 and 1702, by Samuel Browne and Edward Bulkeley. Browne was a surgeon in the service of the East India Company, and died some time prior to 1703. He was succeeded by Bulkeley. Both of these officers made extensive botanical collections, which were sent for the most part to James Petiver. It is just possible that long prior to the discovery of the indigenous tea plant in India or to the importations from China of seeds and plants accomplished by Gordon and Fortune *(presently to be described)*, the tea plant had actually been conveyed to India and cultivated experimentally somewhere on the Malabar coast. But what is most curious of all is that the plant so grown was not *Camellia Thea*, *(tea, bohea)* (the plant presently being cultivated most frequently in the plantations of South India), but *var. ciriidae*, and was thus very similar to the so-called "Assam Indigenous." It is, moreover, just-possible that upon this very specimen was based the name *Thea ciriidae*, as given by Hill and adopted subsequently by Linnaeus. In fact Linnaeus pos-
CULTIVATED FORMS

CAMELLIA THEA

Early Imports

It may now be useful to refer to a few recent writers and to thus carry the story nearer to the present time. J. H. Cockley Lettsom, in the second edition of his splendid work, says that he agrees with Kempfer and Staunton in thinking that the question of green and black teas, as also the various qualities of these, is a matter of soil, age of leaf used and method of manufacture, and is not due to there being two botanically different plants. He gives, however, a coloured plate of the "Green Tea" plant and another of the "Bohea Tea." Both these are of course C. Thea, Linn., but by Assam planters the former would doubtless be characterised as a hybrid, with linear-oblong bullated leaves (swollen between the veins), while the latter would be viewed as the typical so-called Chinese plant, with short ovate-oblong thick, smooth, dark-green leaves. It would thus seem that the finer tea plant of China was Thea riddida, Linn., and formerly was, and probably still is to-day, not unlike the Assam indigenous; and hence very possibly stock of the most inferior qualities only was allowed to be exported to India. If this surmise be correct it is highly likely that but for the discovery in India of a superior indigenous plant, the establishment of the tea industry there might have been retarded by many years. At all events Indian planters regard the introduction of the so-called Chinese small-leaved plant as having been a calamity which it has taken them years of heavy expenditure to efface. It is somewhat significant that, while the question of the green and black teas has been thus for the second time satisfactorily disposed of, it should have been allowed once more to be revived, by certain subsequent writers, and to thus disfigure the literature of tea for a great many years. But to return to Lettsom's most valuable work. It is referred to several chapters and focuses in these all the practical information brought to light by the more trustworthy previous authors. The chapters are:—i. Authors on Tea (8–18), in which reference is made to 120 separate books or reports on tea that had appeared between 1565 and 1799 (most if not all these have been examined by me in preparing this article); ii. Origin of the Tea Plant (19); iii. Trade in Tea (24); iv. Soils and Method of Culture (26); v. Gathering the Leaves (29); vi. Method of Cutting (33); vii. Varieties of Tea Plant (38); viii. Ball or Brick-tea (40), etc. This brief abstract of some of the more important portions of Lettsom's book must suffice to indicate its great merit and historic value. Staunton (Auth. Acc. Macartney, Embassy China, 1798, i., 22; ii., 464) records the exports from China in English and foreign ships, 1776–95—a truly monumental work very largely drawn upon by Lettsom and others. The quantity is there shown fluctuating between 12 and 37 million pounds. The King's duty on Tea between September 1784 and March 1797 amounted to £4,832,189. Barrow (Trav. China, 1806, 572), who was Secretary to the Earl of Macartney of the British Embassy, practically continues the record given by Staunton, and many instructive particulars will be found in Milburn (Or. Comm., 1813, ii., 520–42); Cooper, (Trav. Pioneer Comm., 171); Murray (China, ii., 337); Maepherson (Lc. 128–32). From these and such-like works we learn that in 1703 the imports were 100,000 lb.; in 1721 they attained 1,000,000 lb., and for the hundred years 1710–1810 the aggregate sales by the East India Company amounted to 750,470,916 lb., valued at close on 130 million pounds sterling. In 1722–44 the duty was fixed at four shillings a pound excise, with in addition a customs' due of 14 per cent. on the average price. From 1784–95 the duty was gradually reduced until it fell to 12½ percent. Unfortunately in 1795 the old course of raising money by taxing tea was again resorted to and steadily augmented until in 1819 tea sustained a duty of 100 per cent. and in consequence the sales stood stationary at 21 million pounds. But by an Act of Parliament the East India Company's monopoly was abolished; unrestricted trade stimulated competition and reduced the price very greatly. At the same time the duty was lowered to from 1s. 6d. to 3s. a pound according to quality. In 1856 the duty became 1s., in 1867 it was 6d. a pound, and in 1906, 5d. a pound.

Species and Varieties of the Tea Plant.—In the first days of tea planting in India, though the presence of a wild tea plant was regarded as an indication of the suitability of the land, the wild plant itself was not viewed with favour as the stock to be employed. In fact, as already pointed out, the opinion was expressed most strongly by all or nearly all the experts of 1834–7 in favour of imported Chinese stock.

While that is so it may be said that for the past thirty or forty years the
CAMELLIA THEA

Varieties

THE TEA PLANT

planters have deplored the day when the so-called Chinese tea plant was brought to India. At present no planter would for a moment dream of planting China tea, as they would even grow the hybrid, while the majority would cultivate but one only of the several so-called indigenous stocks. The China plants imported in the early years of the industry still exist, however, and have furnished the seed for a considerable part of the present tea area. In consequence of the crossing of the Indian and Chinese plants there has come into existence the extensive series of so-called hybrids. Perhaps the clearest conception may, therefore, be obtained by an attempt to classify the forms, as near as may be possible, on botanical standards.

In a paper read by me before the Royal Horticultural Society (to which reference has already been made) I have given my views in some detail. Link (I.c. ii., 73) was the first botanist who definitely placed the tea plant under the genus *Camellia*, and as already observed he recognised two forms, viz. *C. Thea* and *C. viridis*. There would seem, however, no great advantage in regarding the forms indicated as anything more than varieties if not cultivated states of one species. Thus:—

Under this I assert the following races and cultivated states:—

1. Assam Indigenous—This has the mature leaf ranging from 6 to 7½ inches in length, and from 2½ to 2¾ inches in breadth. It contains about 16 veins on each side of the midrib. In passing it may be here observed that the value of the number and condition of the veins in the classification of the cultivated races of tea, was first pointed out in the *Pests and Blights of the Tea Plant* (ed. 1898, 15, 46–9). But there are numerous subraces of the Assam stock, such as the Singlo, Bazolena, etc. Collectively they are the most highly prized and most widely cultivated of all the Indian forms of the tea plant. It is, however, somewhat curious to read in Ovington's *Voyage to Suratt* (1869, 308) that three kinds of tea were in his time conveyed from China to India, namely, "Bing, Singlo and Boha." This is apparently the first mention by a European writer of "Singlo," and the surprise naturally arises, how came that name to be given to one of the best of the Assam indigenous plants?

2. Lushai—Sometimes called "Cachar Indigenous" or "Light-leaved Manipur." Under favourable conditions this forms the largest leaf of all the Indian tea plants. It has been measured from 12 to 14 by 7¾ inches and recorded as possessing from 20 to 24 veins. It is not found wild outside the Lushai hills and South Cachar. It is a rather delicate plant and will not safely bear the hard pruning which may be given with impunity to other teas.

3. Naga Tea—This has a long, narrow leaf, generally from 6 to 9 by 2 to 3½ inches, with as a rule from 16 to 18 veins. It is very little cultivated except in one or two gardens on the borders of the Naga hills, such as Amguri, but is reported to be often used as a crossing stock.

4. Manipur—This is the wild tea of the Native State of that name. It exists there purely and simply as a forest plant, the seed of which, but not the leaf, is valued. It is now grown fairly extensively in Cachar and some parts of Assam. It is a larger, coarser and broader-leaved plant than the Assam indigenous. The average mature leaf is from 6 to 8 inches in length and 2½ to 3½ inches in breadth and usually contains 22 veins.

5. Burma and Shan—Too little is known of these teas to allow of their critical separation from the Manipur plant. The leaves are smaller, thicker, more acutely serrated and distinctly more elliptic in shape than with the other teas. The plant in question has possibly been grown for centuries more as a vegetable than as a source of the beverage. This circumstance may be found to have produced properties with which we are at present not familiar. (See p. 235 under Letpet.)

6. Yunnan and China.—Fortune (Three Years' Wanderings in China, 1847, 68) speaks of the country south of the Yang-tse-Kiang as the region of Chinese *T. viridis*, the tea being shipped from Shanghai and Ningpo. Crawford (Journ. Emb. to Siam and Cochinn-China, 1830, ii., 264) speaks of the plant seen by him having leaves "twice or three times the size of that of Bohea tea."
DISCOVERED IN INDIA

CAMELLIA THEA

Races

Hybrid Tea of India.

Chinese Tea of India.

Malacca Tea.

Var. (8) bohea; Thea bohea, Linne, l.c. 734; Lattessom, l.c. 41; Hayne, l.c. viii., t. 28; Bot. Mag., 1807, xii., t. 998; etc., etc. The Bohea Tea of Fortune and others; the Hybrid Tea of Indian tea-planters.

Fortune (l.c. 197-224) found this as the chief plant in the great black-tea country of Fuh-kien, the tea which is shipped from Canton and Hongkong. It is a small-leaved plant with not more than 12 to 14 veins on either side of the midrib. It is freely admitted by planters to be a cross between viridis and stricta, the plant presently to be indicated.

Var. (7) stricta; this is the form represented in the Linnaean Herbarium by a specimen, No. 1, but which bears no name nor any record. It is also the T. Chusian in Petiver (Mus. Bar. Nat., 1695, n. 983, in Brit. Museum); Thea stricta, Hayne (l.c., 1821, vii., t. 27); Chinese Tea of the Indian tea-planters. This small bush may be seen in Indian seed-gardens flowering and fruiting freely, and though never pruned it preserves all its characteristics and rarely shows any departure toward var. viridis. The leaves are thick and leathery, from 1\(\frac{1}{2}\) to 2\(\frac{1}{2}\) inches long, and vary from \(\frac{1}{2}\) to \(\frac{1}{4}\) inch in breadth. It has rarely ever more than 8 definite nerves, while viridis has 16 and bohea usually 12 to 14. It is essentially a bush, and even if given the chance it rarely if ever takes the poplar-tree form of the other races. No one has recorded the existence of this plant in a truly wild condition; and what is more curious, it is more abundantly represented in herbaria as coming from China than from India.

Var. (8) lasioalyx; T. lasioalyx, Planch., MS.; T. viridis, Wall., Cat., n. 979; f. C. axillaris, Roxb., MS. (Bot. Reg., t. 349, for description). This interesting form appears to have been met with alone in Malacca and Penang, and is perhaps the most tropical of all the forms of Camellia actually cultivated as tea. It seems probable that it may have originated by hybridisation with var. viridis some of the better known forms of tea, such as var. stricta. In this light the suggestion above made that it may be the plant Roxburgh designated as C. axillaris becomes of more than botanical interest. At all events both the locality and description given by Roxburgh suit var. lasioalyx to a remarkable degree. This is the plant seen by Griffith at Pringgett near Malacca. In order to obtain the true value of the characters above indicated that are dependent on the veins of the leaves, it is necessary to examine the shoots which spring directly from old wood, that is to say, shoots low down on the stem. Of the Manipur and Assam plants—those in most favour in India at present—it may be said that the former is much more hardy than the latter and should accordingly be used wherever liability to drought exists. The Assam gives, however, a thinner and more delicate leaf with more flavour, and the value of the tea made from it is decidedly greater. All hybrids, so Dr. Harold H. Mann affirms, should be avoided; in other words, all plants that show from 10 to 14 veins—the intermediates between var. viridis and stricta. [Cf. Pests and Blights (1st ed.), 42-50; Mann, Factors Deter. Quality of Tea, Ind. Tea Assoc., 1907, No. 4.]

EARLY ENDEAVOURS IN INDIAN TEA-PLANTING.

Discovery of Tea Plant in India.—Difficulties having arisen with China, the British Government realised the danger of having no other source of tea supply than China. They accordingly interested the East India Company in an effort to produce tea in India. Sir Joseph Banks, in 1788, recommended Warren Hastings to attempt its cultivation in Bihar, Rangpur or Kueh Bihar. It appears to have been discovered in Assam, perhaps originally by Major Bruce, subsequently in Manipur by Mr. Scott, somewhere between 1821 and 1826, but little attention was paid to that circumstance until some years later. Lord William Bentinck, Governor-General of India, in a Resolution dated January 24, 1834, warmly took up the matter of Indian tea cultivation. A Committee was appointed by him, with Dr. N. Wallich as Secretary, to report on the most hopeful situations for an experimental cultivation. Mr. G. J. Gordon, of the firm of Mackintosh & Co., was dispatched to China to procure seed, to collect information, and to bring to India Chinese cultivators. He was, however, shortly after recalled because wild tea had been re-discovered by Jenkins and Charlton in Assam. But had Bruce and

Early Endeavours.
Scott's discoveries received the attention they deserved, Gordon very possibly would never have been sent to China. As it was, Wallich refused to believe that even Jenkins's plant was the true tea plant until he had a sample of tea made from it and sent to him. In due time a Commission was appointed to visit Assam in order to report on the discovery of Indian indigenous tea. It consisted of Drs. Wallich, Griffith and McClelland. They could not agree as to the plant, but for the purpose of the Government experiments recommended that the Himalaya should be first tried, then Assam, and lastly the mountains of South India. They then added that "the China plant and not the degraded Assam plant" should be experimented with. The controversy about black and green tea and of the separate plants from which these were supposed to be made was doubtless the will-o'-the-wisp that largely influenced Wallich to lay down the dictum that the Indian plant was a Camellia and not a Thea—a distinction, as has been shown, without a difference, and one which greatly retarded the Indian tea industry. Unfortunately for Wallich his so-called Camellia has since proved very much more valuable than the Thea, the merits of which he extolled and which, in his opinion, should have been cultivated. It may be here added that it is remarkable, when so much difference of opinion prevailed and the existence of wild tea in Assam had even been challenged, that no one thought of drawing attention to the specimen of the tea plant from Malabar preserved in the Sloane Herbarium. Had this been done, we should in all probability have been told the history of that sample more definitely than we are ever likely now to learn, and at the same time a fuller conception of the Chinese tea plant would have been obtained than possessed by Wallich and others, who denied that the Assam stock was the true tea-yielding species.

Wallich, Royle and Falconer (Journ. As. Soc., Beng., 1834, iii., 178-88) upheld the Himalaya as the preferable locality, while Griffith and McClelland urged the claims of Assam, which they regarded as the indigenous habitat of the plant. In guarded yet unmistakable language Griffith gave his opinions, even though those were inimical to the views of his superior and colleague, Dr. Wallich. Gordon was in consequence re-deputed to China, and on his return to India with a supply of plants, seeds, etc., he resigned his connection with the Commission without having written an account of his journeys in China. A third mission to China (the expenses of which were partly borne by the Royal Horticultural Society of England) was organised and successfully conducted by Mr. R. Fortune, who wrote in consequence, Three Years' Wanderings in China (1847), Tea Districts of China (1852), and A Residence Among the Chinese (1857). These works contain full particulars of his studies of the Chinese industry, as also details regarding the plants, seeds, etc., conveyed by him to India.

ESTABLISHMENT OF INDIAN GARDENS

CAMELLIA THEA
First Garden

on Ceylon Tea Soils, Colombo, 1900; Schulte im Hofe, Trockenpflanzer, 1901, ii. Beih., 37–117.] These may, therefore, be viewed as amplifying the citation of more or less botanical publications mentioned in the opening paragraph. But it is essential to mention still two other works, viz: — (a) Bretschneider’s History of European Botanical Discoveries in China—a truly stupendous volume which reviews and indeed often quotes very fully most of the scientific authors who have written on the Chinese Tea Plant. And lastly (b) Prof. J. J. Rein’s Industries of Japan, 1889, which gives a delightful sketch of the early history and modern development of the industry in that country.

Numerous reports were issued by the Government of India, from the date of the appointment of Mr. C. A. Bruce in 1836, as Superintendent of their Assam plantations, to the time when they ceased in 1865 to have any direct interest in tea. These made public the discoveries accomplished and the experience gained. It had been freely announced that when the industry no longer required the fostering care of Government, it would be handed over to private enterprise. The progress in Assam was such that long before Government could resign their Himalayan plantations they had retired from Assam. It may be here mentioned that the first sample of Assam-made tea was sent to England in 1838. From that date the progress was rapid. The other day, while examining the numerous papers on tea preserved in the India Office, I came across what purports to have been the first fly-leaf of a commercial sale of tea made by Government. It is signed by Mr. Thos. Watkins, Superintendent of the Government Plantations, and endorsed by N. Wallich, M.D., Superintendent H.C. Botanic Gardens. It is dated Jaipur, Upper Assam, March 5, 1841, and headed, “A Novel and Interesting Sale of Assam Teas—the First Importation into the Calcutta Market.” That circular (reproduced, Journ. Roy. Hort. Soc., 1907, xxxii., 69) announces, in fact, two parcels of tea offered for sale, namely thirty chests manufactured by the Singho chief Ningroolla, and ninety-five the produce of the Government tea plantations. It may thus be noted that the Singhfos were actually manufacturing tea in Assam at the very time apparently that Wallich challenged the production of tea as the evidence necessary to convince him that the Assam indigenous plant was the true tea-yielding species.

First Public Tea Gardens.—The Sibsagar (Jaipur) plantations of the Government were sold in 1840 to the Assam Company—the first tea concern, and to this day very much the largest Company in India. It was anything but prosperous during the first 15 years of its existence, and its shares fell so low that they could hardly be sold. But about 1852 it began to improve, and with that success the tea industry appeared so promising and attractive that speculators eagerly rushed into it. The discovery of the indigenous tea in Sylhet and Cachar gave the impetus for an expansion of the industry into the Surma valley, and in a few years thereafter the whole of the upper portions of the province of Assam (both the Brahmaputra and Surma valleys) might be described as converted into a huge tea plantation. About this time (1853–5) tea-planting was organised in Darjeeling, and shortly after followed Chittagong, Chota Nagpur and the Duras. Ultimately tea cultivation spread over every district of India where there was the least hope of success, but with a rapidity that was certain to culminate as it did in the great disaster of 1865–7. It is needless to dwell on the causes of that disaster, but the reader is referred to Mr. (afterwards Sir) John Ware-Edgar’s full report. It was, briefly, a natural consequence of reckless impetuosity, ignorant supervision and positive dishonesty. Fortunes were made by the few who realised that the tide

Retirement of Government of India from the Industry.

First Sales.

Assam Plantations.

Cachar and Sylhet Plantations.

Darjeeling Plantations.

Disaster, 1865–7.

217
THE TEA PLANT

Government Expenditure

would turn. The better situated gardens were purchased for fewer rupees than they had cost pounds sterling to construct. New companies were formed to work these and with the avowed purpose of growing tea for its own merits, as a commercial article, and not for the purpose of selling gardens at a profit. Out of these trying times the industry rose on a firmer foundation, and the subsequent prosperity is one of the marvels of modern commerce.

It is not known how much money the Government of India actually spent, from first to last, in their efforts to ingraft the tea industry on India, but it would appear that Gordon's missions to China and the expenditure of the Indian Tea Commission came to close on £18,000. If we assume that sum to have represented but one quarter of the total expenditure actually incurred, the result might still in perfect fairness be characterised as one of the most profitable undertakings of the Administration of the Empire of India. There has been organised a new industry the value of which may be judged of from the following circumstances:

Value of the Tea Industry.

Tea now occupies half a million acres of land formerly waste, and of this 64 per cent. are in the province of Assam: the industry now gives lucrative employment to close on 600,000 persons: the capital invested in it comes to well over £20,000,000: the first exports (1838) amounted to 488 lb., and in 1904 they stood at 200 million pounds valued at, say, £6,000,000: still further, it may be claimed that, as an offshoot of the Indian industry, Ceylon has been saved from absolute bankruptcy by the substitution of tea for coffee: and lastly that India and Ceylon have given to England a regular supply of a much purer and infinitely cheaper article than it formerly received from China (see p. 240).

CULTIVATION OF TEA.

Object.—The object to be attained in tea-planting is the production on the tea plants of a constant succession of young shoots throughout the season. The youngest leaves on each shoot only are capable of being made into tea, and hence it is easy to see that the growth of tea occupies a unique position among agricultural industries. Few of these concern themselves, except indirectly, in the production of leaf: still fewer limit the crop on a perennial plant to the youngest shoots. To obtain the results needed, the methods applied have a very special character, which has made tea-planting one of the most technical of those industries which depend on the culture of the land.

Past Failures.—The first years of tea-planting in India were, for the reason just indicated, almost a hopeless failure. A very small crop was obtained, the leaf was plucked when too old, and a large part of the tea was hence all but unsaleable, and the early planters had to buy very dearly the experience which has made the tea industry such a great and profitable speculation. In Assam, till 1848, continual losses occurred; from that time for the next four or five years the Assam Company, the pioneer and only company in the province, just succeeded in paying its way; thereafter, tea culture became exceedingly profitable, and if checks were received, such as the memorable panic of 1866, it was not owing to the character of tea culture, but rather to financial dealings in Calcutta and in England, coupled with certain fraudulent operations on the spot. Though tea culture has been a profitable industry since 1853, yet the
ESSENTIAL CONDITIONS

methods adopted have been continually improved. So far as the plants are concerned, the methods of pruning, of plucking, of cultivation in general, have constantly been ameliorated, and the improvement is still going on. The result is shown in the increase of crop; in 1873 the crop in Assam was roughly from 250 to 280 lb. per acre, and in 1904–5, in Assam, Cachar, Sylhet and the Duars, it ranged between 450 and 500 lb. per acre, and, as a rule, the leaf plucked was finer and more capable of making good tea than at the earlier date. The manufacture of the leaf has undergone a total revolution; the rolling by hand, as also the drying or firing over charcoal (and the attendant evils and risks of these methods) have been entirely abandoned. Since the introduction of the first feeble efforts at manufacture by machinery in the early sixties, stage by stage the older methods have disappeared, and now the work in a tea-factory is or can be made, in a very large measure, an automatic process.

Space cannot be afforded to trace the development of tea culture and manufacture in India from the earliest to the latest stages, interesting though such a story would be: all that can be attempted here is to state the most approved conditions for the culture of the tea plant, to describe the methods adopted in planting and maintaining an estate, and to give some account of the principles of manufacture at present in vogue.

Localities and Climates.—The most suitable localities for the culture of tea have been, from the beginning, a source of fruitful discussion. Already in 1836, of the men best qualified to judge, some maintained that the North-West Himalaya with a temperate climate and occasional frost would be found the ideal situation: others, that Assam, where the plant had been found apparently indigenous, possessed conditions very similar to those of the best tea districts of China: while the equable climate of the Nilgiris was also recommended. Truth to tell, there were elements of vantage in all these localities. The ideal tea climate, however, is probably that of Upper Assam, and perhaps of Cachar—those districts, in fact, where the apparently indigenous tea had been discovered. The hilly colder districts of Darjeeling, Kumaon, the Nilgiris and of the Kangra Valley have produced very successful plantations, but in all these the crop per acre is very considerably smaller than that of Upper Assam, though this smallness of crop is often (though not always) compensated for by an increase in quality in the tea. On the other hand, very satisfactory results have been achieved in the hotter and drier districts of Lower Assam, of Sylhet, and in a less measure of Chittagong; but here the tea produced has always been inferior in character. Tea requires, in fact, neither a tropical nor a temperate climate, but a subtropical one, with a fairly moist atmosphere throughout at least the greater part of the year. In point of temperature the best growth is produced with a daily variation of temperature, say, from 75° to 85° F. If it goes far above the latter point, damage results, unless the high temperature is accompanied by very moist conditions: the highest shade temperature usually reached in Upper Assam is from 95° F. to 98° F., and this always during the rainy season. Only very slow growth, on the other hand, takes place much below 70° F., and though plucking continues in many districts when the daily maximum does not reach this point, yet the intervals between the crops of leaf become very long. During part of the year, almost all over the Indian tea area, no plucking is attempted, and then the temperature may go down almost to freezing
point without damage. Frost, however, always blackens the leaves, and, if severe, damages the younger twigs on the bush. As to rainfall, the distribution is of more importance than the amount. Sixty inches per annum, well distributed, is ample. The best Indian tea areas receive about one hundred inches, though there are many on which a much greater amount falls. This rainfall should, however, occur, as far as possible, throughout the year. A long drought, at any season, is fatal, and this fact has had a good deal to do with the comparative failure of both Chittagong and Chota Nagpur as tea districts.

Situation and Soil.— Equally important with the climate in determining the suitability or otherwise of a locality for tea culture is the character of the situation and of the soil. Early in the history of Indian tea there was a considerable prejudice, doubtless drawn from the accounts of Chinese travellers, in favour of planting on hills or steep slopes. But there was really nothing in the preference: if the soil is suitable, it is better on flat than on sloping land, especially if the latter faces south or south-west; if the land is not suitable, it is certainly no more so on a hillside than on the level. Nowadays it is recognised that the flatter the land the better, other things being equal.

There are two points in connection with the physical texture of the soil which are essential, if tea is to be successfully grown. It must first be well drained, and secondly it must be easily penetrable by the tea-roots. A hard and waterlogged soil are equally fatal to successful tea culture: in the former case the bushes cease to yield, and become the prey of disease; in the latter they die out. It may be said that tea will grow in almost any soil provided it be well drained, but it flourishes best in a light, sandy, deep loam. If the physical texture of a clayey soil is such as to give it the porous and soft character required (as is often the case in South India and in a large area in the Duars), it may form excellent land for tea culture. There are two classes of soil specially to be avoided: first a stiff clay, of any kind or colour, impervious to rain and which cakes or hardens in the sun: and second a very loose soil overlying gravel, which in the absence of regular and very constant rain will ultimately produce a stunted bush yielding little leaf. Wherever the land is deep, moist, fairly porous, well drained or drainable at all seasons, and with a sufficiency of plant-food, the tea is likely to do well, so far as soil conditions are concerned.

Chemically, tea demands a rich soil, and has usually, except in the south (where old coffee land has been employed), been planted on virgin soil, either forest or grass land being utilised for the purpose. Where the attempt has been made to put it out on soil previously used for the cultivation of sugar-cane or cotton, it has almost uniformly grown very badly. It refuses to flourish where houses have long stood, even though the soil may be quite rich, but this is possibly largely due to the hardening and compacting of the soil. Exception being made of special conditions such as that just described, and provided the physical character of the land is equally good, the luxuriance of tea seems to vary directly with the amount of organic matter and nitrogen in the soil. In virgin soils these two constituents seem, in India, to be closely proportioned to one another. Excess of vegetable matter leads to the production of a large crop of weak, watery tea without flavour; on the other hand, a soil deficient in these constituents produces only a small crop, and, moreover, the
TEA SOILS

plants will almost certainly be attacked by blights at an early age. Much controversy has arisen as to the cause of flavour in the tea, produced from certain soils, notably those of Darjeeling, and it now seems, most probably, to be connected closely with the presence of relatively large quantities of phosphoric acid and potash in the land. Other causes complicate the question, but it is almost certain that the mineral plant-food constituents hold a very important relationship to flavour. The presence of more than a very small quantity of lime in a soil seems almost fatal to successful tea culture: the average amount present in India is under 0.2 per cent.

CHEMICAL CHARACTERISTICS OF TEA SOILS.—Assam.—The soils actually under tea culture at present in India are of very great variety. In the Brahmaputra valley (Assam), while all the tea land is alluvium, the best results have been obtained on fairly light, red, rather coarse sand or silt, or on the stiffer, older, and redder alluvium which forms small plateaux in certain districts (Tezpur, Bishnath). The following are typical analyses, the samples having been taken from the surface to 15 inches deep:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Organic Matter, etc.</td>
<td>6.75</td>
<td>5.75</td>
<td>3.76</td>
<td>2.87</td>
<td>7.40</td>
</tr>
<tr>
<td>Oxide of Iron</td>
<td>2.95</td>
<td>3.11</td>
<td>1.72</td>
<td>0.91</td>
<td>5.03</td>
</tr>
<tr>
<td>Alumina</td>
<td>3.74</td>
<td>6.95</td>
<td>3.29</td>
<td>2.13</td>
<td>10.77</td>
</tr>
<tr>
<td>Lime</td>
<td>0.09</td>
<td>0.11</td>
<td>0.08</td>
<td>0.04</td>
<td>0.09</td>
</tr>
<tr>
<td>Magnesia</td>
<td>0.72</td>
<td>0.74</td>
<td>0.47</td>
<td>0.18</td>
<td>0.52</td>
</tr>
<tr>
<td>Potash</td>
<td>0.38</td>
<td>0.26</td>
<td>0.16</td>
<td>0.10</td>
<td>0.58</td>
</tr>
<tr>
<td>Soda</td>
<td>0.19</td>
<td>0.28</td>
<td>0.24</td>
<td>0.02</td>
<td>0.18</td>
</tr>
<tr>
<td>Phosphoric Acid</td>
<td>0.08</td>
<td>0.06</td>
<td>0.05</td>
<td>0.03</td>
<td>0.05</td>
</tr>
<tr>
<td>Insoluble Silicates</td>
<td>83.10</td>
<td>82.74</td>
<td>90.25</td>
<td>93.72</td>
<td>75.38</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Cachar and Sylhet.—The tea in the Surma valley (Cachar and Sylhet) was originally planted almost entirely on small hills (teelas) which occur over almost all these districts, and which were surrounded by low-lying flat land, often swamp. Much of this low land was in later years found to be perfectly capable of drainage, and when drained formed very rich beds, sometimes of peat, sometimes of black soil highly charged with organic matter. Tea has been found to flourish exceedingly on these so-called “bheel” soils, which produce enormous crops of low-quality tea. In Sylhet in addition to these types of land, much tea has been planted on plateau land very similar to that in the Brahmaputra valley. The “teela” and “bheel” soils of Cachar and Sylhet are typified in the following analyses:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Organic Matter, etc.</td>
<td>10.15</td>
<td>5.33</td>
<td>51.76</td>
<td>40.56</td>
</tr>
<tr>
<td>Oxide of Iron</td>
<td>5.19</td>
<td>2.90</td>
<td>0.95</td>
<td>1.26</td>
</tr>
<tr>
<td>Alumina</td>
<td>4.34</td>
<td>6.06</td>
<td>5.84</td>
<td>11.57</td>
</tr>
<tr>
<td>Lime</td>
<td>0.09</td>
<td>0.06</td>
<td>0.10</td>
<td>0.07</td>
</tr>
<tr>
<td>Magnesia</td>
<td>0.72</td>
<td>0.33</td>
<td>0.28</td>
<td>0.34</td>
</tr>
<tr>
<td>Potash</td>
<td>0.50</td>
<td>0.32</td>
<td>0.31</td>
<td>0.53</td>
</tr>
<tr>
<td>Soda</td>
<td>0.22</td>
<td>0.14</td>
<td>0.21</td>
<td>0.20</td>
</tr>
<tr>
<td>Phosphoric Acid</td>
<td>0.11</td>
<td>0.06</td>
<td>0.26</td>
<td>0.27</td>
</tr>
<tr>
<td>Insoluble Silicates</td>
<td>78.08</td>
<td>84.80</td>
<td>40.29</td>
<td>45.17</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Relation of Flavour to Soil.
The tea land of Chittagong resembles that in Sylhet.

Duars, Terai and Darjeeling.—The Duars and Terai, districts lying in a strip 10 miles or more wide at the foot of the Himalaya, south from Sikkim and Bhutan, contain soils of several types. The most characteristic is, however, a huge bank of stiff and yet porous red soil on which lie some of the most successful tea estates in India. In Darjeeling the land differs from the foregoing in not being alluvium, but formed in situ from the rocks of the districts. It is a clayey and yet highly porous soil, which is rich in mineral plant-food constituents. The following are analyses of type soils from the Duars and Darjeeling:

<table>
<thead>
<tr>
<th></th>
<th>Red Bank</th>
<th>Red Bank</th>
<th>Darjeeling</th>
<th>Darjeeling</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>soil, Duars</td>
<td>soil, Duars</td>
<td>Soil</td>
<td>Soil</td>
</tr>
<tr>
<td>Organic Matter, etc.</td>
<td>8.73</td>
<td>11.61</td>
<td>11.78</td>
<td>9.32</td>
</tr>
<tr>
<td>Oxide of Iron</td>
<td>6.27</td>
<td>6.92</td>
<td>7.64</td>
<td>11.98</td>
</tr>
<tr>
<td>Alumina</td>
<td>10.96</td>
<td>11.92</td>
<td>11.78</td>
<td>0.15</td>
</tr>
<tr>
<td>Lime</td>
<td>0.10</td>
<td>0.02</td>
<td>0.40</td>
<td>0.68</td>
</tr>
<tr>
<td>Magnesia</td>
<td>1.16</td>
<td>0.31</td>
<td>0.91</td>
<td>0.65</td>
</tr>
<tr>
<td>Potash</td>
<td>0.76</td>
<td>0.77</td>
<td>0.87</td>
<td>0.13</td>
</tr>
<tr>
<td>Soda</td>
<td>0.18</td>
<td>0.34</td>
<td>0.23</td>
<td>0.11</td>
</tr>
<tr>
<td>Phosphoric Acid</td>
<td>0.16</td>
<td>0.11</td>
<td>0.12</td>
<td>0.23</td>
</tr>
<tr>
<td>Insoluble Silicates</td>
<td>71.68</td>
<td>67.50</td>
<td>66.27</td>
<td>76.98</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>100-00</td>
<td>100-00</td>
<td>100-00</td>
<td>100-00</td>
</tr>
<tr>
<td></td>
<td>0.20</td>
<td>0.26</td>
<td>0.15</td>
<td>0.23</td>
</tr>
</tbody>
</table>

South India.—The soils of the remainder of the districts of North India hardly call for remark. Those of the south country—the Nilgiris, Travancore and the Wynnea—are as a whole characterised by a large proportion of clay, and yet by a very granular texture. They are all hill soils probably formed in situ. The analyses (due to Bamber) of two fairly typical soils from Travancore are shown below:

<table>
<thead>
<tr>
<th></th>
<th>Travancore Tea Soil</th>
<th>Travancore Tea Soil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture</td>
<td>8.60</td>
<td>10.00</td>
</tr>
<tr>
<td>Organic Matter, etc.</td>
<td>16.20</td>
<td>12.00</td>
</tr>
<tr>
<td>Oxide of Iron</td>
<td>8.40</td>
<td>10.92</td>
</tr>
<tr>
<td>Alumina</td>
<td>13.99</td>
<td>18.02</td>
</tr>
<tr>
<td>Lime</td>
<td>0.12</td>
<td>0.46</td>
</tr>
<tr>
<td>Magnesia</td>
<td>0.56</td>
<td>1.04</td>
</tr>
<tr>
<td>Potash</td>
<td>0.11</td>
<td>0.46</td>
</tr>
<tr>
<td>Phosphoric Acid</td>
<td>0.02</td>
<td>0.92</td>
</tr>
<tr>
<td>Insoluble Silicates and Sand</td>
<td>52.00</td>
<td>50.00</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>100-00</td>
<td>100-00</td>
</tr>
<tr>
<td></td>
<td>0.36</td>
<td>0.16</td>
</tr>
</tbody>
</table>

PROPAGATION.—The tea plant is invariably grown from seed. Attempts to propagate on a large scale from cuttings or by layerings have never been very successful. It is difficult, in fact, to get the cuttings to strike, and the method of layering does not allow of rapid enough increase of plants to be ever used. The real reason, however, of the avoidance of these methods is the ease with which plants are grown from seed; and for supply of seed, special bushes or even special seed-gardens are reserved.

Seed.—Plants used for seed-production are allowed to grow naturally, without any pruning. They thus form trees up to 30 or even 40 feet high, more or less resembling a poplar in shape. The "China" plant is, however, an exception, and rarely grows to a height of more than 10 or 12 feet. All the forms flower in North India from September, and the fruits take a year to come to maturity. A second small lot of flowers often
forms in February and March. The seed is procurable about November, collected in the latter half of October, and packed for transmission in almost dry soil. A box containing 40 lb. of shelled seed will usually weigh from 120 to 180 lb. The seed does not keep well, and ought to be sown as soon as possible after being plucked. It has often been upheld that the seeds being rich in oil might be systematically collected and sold by the planters as an additional source of revenue.

Nurseries.—The sowing is now almost universally made in nurseries. The seed, sometimes previously germinated, is deposited at either 4 or 6 inches apart and 1 inch deep. A piece of particularly good land is chosen, and formed into beds from 3 to 5 feet wide. Such a nursery must be well drained and very careful attention given to the preparation of the soil, which should be raked as for a flower-bed. If previously under tea culture, the land must be richly manured with cattle-dung. If the situation is hot and dry, the beds should be covered with grass immediately after sowing; in any case water must be accessible for watering the nurseries. Forty pounds of seed may be expected to give about 10,000 plants, and will put about 2 to 2 ½ acres of land under tea. As soon as the young plants are visible above the surface, the beds should be shaded by raised frames covered with grass or mats, be frequently weeded, and, if the weather be dry, watered in the evenings. As a rule, the plants sown in the nursery in November or December can be planted out in the following May or June (six months old planting), or when a year old in the following November or December.

Preparation of Land.—In order to ensure a good result, it is necessary to bestow much care on the preparation of land for tea. If it has previously been under forest, the whole of the trees should be cut down, the stumps removed as far as possible (since many of them are liable to cause root disease in the tea), and the land hoed carefully all over. If grass land is to be planted, the roots should be carefully removed when the land is being hoed up. If hillsides are to be put out, it is advisable to arrange before planting for terraces, running along the contour of the slopes. If stones exist in the soil, they should be brought to the surface and utilised in making the terraces. On level land the lines of drainage should be arranged, and, where necessary, narrow drains, 3 feet deep, put in before planting out the tea.

Planting Out.—These arrangements having been completed, planting can be commenced. In order to secure regularity, lines must be marked out and the seedlings placed at definite distances apart along these lines. What these distances should vary with the type of plant, the richness of the land, and the method of planting. Speaking generally it is not wise to put the plants nearer than 4 feet apart in any direction, nor wider than 5 feet apart. If planted in rows at right angles to one another (square planting), this means in the one case 2,722 and on the other 1,742 plants per acre. Four and a half feet apart is perhaps the most generally advisable, equal to a little over 2,000 plants per acre. In recent years it has become usual to plant in rows at an angle of 60 degrees to one another (triangular planting), thus making the plants equi-distant from each other. In this case a distance of 5 feet between the bushes gives a number of plants per acre about equal to that obtained at 4 ½ feet apart in square planting, and is thus to be preferred. When the spacing and condition have been decided upon, lines should be formed, and stakes
THE TEA PLANT

Camellia Thea
Cultivation

Planted at definite distances on these lines, to mark where holes are to be dug and the plants to be placed. Prior to planting out a hole should be dug at each of the stakes at least a foot deep and 10 inches wide, and the young plants then removed from the nursery and deposited in the prepared holes.

Period of Transplanting.—Planting may be done either when the seedlings are 6 months old or when they have been in the nursery for a year. Under ordinary circumstances 6-months planting is gradually being more and more adopted. Under this system the plants are taken from the nursery when 4 to 8 inches high, and have a small ball of earth 6 to 8 inches deep attached. They are conveyed to the holes which have been made ready, as above described, but if the ends of the tap-roots are seen protruding or bent they are either straightened or nipped off. Each ball of earth with its plant is then placed in the centre of a hole, loose earth filled in all round, and rammed down moderately. If the rain follows immediately the only attention required afterwards will be to see that weeds are cleared all round the plants, and that the surface earth is kept loose. If rain does not come at once, the plants will need watering. If planting be done with older seedlings in November or December it is necessary to have a very much larger block of earth (at least 12 inches deep and 6 inches in diameter) attached to the root, and correspondingly larger holes in which the seedlings are to be deposited. In this case, as the planting takes place in the dry weather, a considerable quantity of water should be given, and a mulch of dry grass placed around the plants.

In planting, according to one of the best and most recent authorities (C. Bald, Ind. Tea, its Culture and Manuf., Calcutta, 1903, 69), the following rules should be observed, viz.:

"(a) The end of tap-root may be cut clean off, but it must not be bent or doubled up.

"(b) The plant must be placed so that the collar is level with the surface of the ground. If placed too high, some of the roots will be exposed; if too deep, the bark of the stem will be injured by being buried. The plant should be at the same depth in the ground as it was in the nursery.

"(c) The laterals should be spread out, not driven into a clump round the tap.

"The hole should be only one-third filled with earth, which is then pressed round the plant by hand; one-third more filled and trodden or rammed moderately, and the remaining third filled in but left quite loose.""

Drainage.—Mention has already been made of the necessity for drainage on most tea soils. On the flat or nearly flat land, the drains should be at least 3 feet deep, as narrow as possible, banked up a little on the sides to prevent the water running off the surface into the drains, and should follow the natural course of the drainage of the land. For ordinary tea soils they should be from 30 to 60 feet apart. On slopes the object of the drains is not only to cause percolation of the water, but also to prevent wash of soil. They should hence run along the contour of the land, and be slightly banked up on the upper side. At intervals, main drains (running down the slope and thus crossing the contour drains) will be required to carry away the water. [Cf. Mann, Treat. Deter. Tea in Ind., Tea Assoc., 1906, No. 4, 8-12.]

Hoeing.—In all the districts of Northern India it is found that careful hoeing of the land is needed from the early days of the plantation, both in order to prevent the growth of weeds and to keep the surface of the land loose. With young plants the principal cultivation (apart from
GREEN MANURING

keeping the weeds down) is done by frequent loosening of the soil to a depth of 8 inches and for a distance of 12 inches round the bushes. Among tea more than 2 years old, the following hoeings may be said to be usually required:

(a) A deep hoeing at the commencement of the annual dry weather—at least 8 inches deep—should be given. This preserves the moisture in the lower layers of the land, during the drought which follows, as well as softens the soil and thus prevents the formation of a hard pan near the surface.

(b) From 4 to 6 light hoeings per annum. Each of these loosens the soil to a depth of about 4 inches. They should take place at intervals of about 6 weeks.

In South India and Ceylon, owing to the extremely granular character of the soils, and to the fact that there is no long season of drought such as is experienced in Northern India, much less cultivation of the land is done than that above recommended, the hoeing being replaced in a great measure by hand-weeding.

Manure.—Manuring is not usually needed for some years after a plantation is started. Nitrogenous fertilisers are then principally required, best in the form of organic manures, and nothing is better than cattle manure, if it can be obtained. The cattle manure generally to be had in India is extremely poor, and so twenty tons per acre would not be an excessive dressing. Little more than a third of that quantity of good stall-fed dung would be of equal value. With the cattle manure all the waste materials of the tea estate, such as the wood-ashes (if wood is burnt in the factory), the thatch, the sweepings from houses, etc., are mixed and heaped together in special manure sheds and thus made ready for use. This so-called cattle manure is best applied early in the year, before the first hoeing of the season. In default of cattle manure, oilcake—usually from castor or rape seed—has given the best results, and is now used largely both in the districts of North and South India. It is commonly applied broadcast, at the rate of about half a ton per acre. In Ceylon a good deal of artificial manure—chiefly superphosphate and basic slag with or without sulphate of potash—has been and is being used, but the application of such manures has been elsewhere on a very limited scale. [Cf. Pests and Blights, etc., 119–34; Mann and Hutehinson, Heleclaka Exp. St., Assam, in Ind. Tea Assoc., 1907, No. 2.]

In recent years very good results have been obtained by green manuring. The plant chiefly employed in North India has hitherto been Phaseolus Mungo, which is sown broadcast in April or May at the rate of 40 lb. of seed per acre, and is hoed into the land after 6 to 8 weeks. Other plants have been suggested for the purpose, and from recent experiments it seems probable that good results may be obtained with Crotalaria striata and Sesbania cannabina. In Ceylon the best returns have been given by the use of Crotalaria striata as a green manuring crop, but the ground-nut (Arachis hypogaea) has also been employed. Stumps of the dadap tree (Erythrina lithosperma) have been planted and the growth periodically pruned off and buried. It is essential, however, that the stumps should not remain in the tea for more than one year, as otherwise they are very apt to cause stump-rot, due to the fungus Rosellinia radiciperda. The leguminous bush Tephrosia candida has been used similarly in India, but this is grown from
THE TEA PLANT

Cultivation

seed, and the bushes retained in the land for 3 years. [Cf. Mann and Hutchinson, Green Manuring in Tea, l.c. 1906, No. 2.]

Certain trees growing among tea are found to be beneficial. The best of these is Albizia stipulata, but Dalbergia assamica has given similar results. These are planted from 40 to 60 feet apart throughout the garden. The lower branches are annually removed, so that the shade given may be as light as possible. [Cf. Pests and Blights, etc., 136–47.]

Pruning.—The pruning of tea is an extremely technical process which can hardly be adequately described in a general notice such as the present. In nearly all the Indian districts it is an annual operation, and in North India is always carried out between December and March. In South India and Ceylon the time is not nearly so fixed, but if possible it should be always done during the non-growing period of the plant.

Commencing with a tea seedling, one of the best systems of pruning on the plains of India is perhaps as follows:—After the tea seedlings have been on the ground 1 to 6 months (according to whether they have been planted out at a year old or at 6 months old respectively) they should be cut down in December or January. If of the "Assam" indigenous type this should be not lower than 6 inches from the ground; if of the "Manipur," 6 to 8 inches. Each plant ought then to throw out, from the stump, 3 or 4 stems, which are allowed to grow for 2 years before being pruned again. Then when they are 3 years old from seed, they are cut at 14 to 18 inches from the ground. After this, each year’s pruning will be at a point from 1 to 2 inches above that of the previous year (light pruning), until the yield begins to diminish, when it will be necessary to cut back to 12 to 15 inches from the ground (heavy pruning). This ought not to be necessary till the bushes are more than 10 years old. At a later age, if the bushes are found to give a very low yield, it may be necessary to go even lower than this, and even in extreme cases to cut the bush down level with the ground (collar pruning), but this should not be necessary till after many years, if the garden be properly cultivated, manured and plucked.

In light pruning it is important:—

(a) To leave only a small length of new wood, say not more than 2 inches all over the bush.

(b) To cut the shoots at the sides of the bushes to the same length as those in the middle.

(c) To remove everything which is not likely to yield a new vigorous shoot in the following season. For example, remove all dead branches, all gnarled twigs and crow’s-foot formations (clumps of imperfectly formed shoots), all trailing shoots on the outside of the bush, and all small useless twiggy shoots throughout the bush.

At high elevations growth is very much slower than in the plains, and heavy pruning will naturally be much less frequent than under ordinary conditions. And moreover there appears no doubt that growth made immediately after heavy or collar pruning gives a much lower grade of tea than can be obtained after light pruning. As the tea grown at the high elevations of hill districts usually depends for its commercial success on its high quality, heavy pruning is generally avoided as far as possible. [Cf. Pests and Blights, etc., 78–100; Mann, Exper. Heavy Pruning in Assam, in Ind. Tea Assoc., 1907, No. 3; also Factors Deter. Quality of Tea, l.c. 1907, No. 4, 17.]
SEASONS OF PLUCKING

Plucking.—The annual course of plucking, after light pruning, is about as follows:—When the tea has been pruned, new shoots begin to grow, and after 2 to 3 months have attained a length of 9 inches or more. At this stage the bushes can be "tipped," that is to say, the first lot of leaf may be taken off, the object not being so much to get the leaf as to force the production of secondary shoots on the plant. This "tipping" should be done when there are, on the shoots of the centre of the bush, on the average 6 leaves, without counting either the unopened tip-leaf nor the so-called "janum" leaf (really a bud scale) at the base of each shoot. Then the topmost two leaves may be plucked off, the plucking being done not by pulling, but by breaking (or nipping) the shoots with the thumb-nail. The level at which the average shoot, in the centre of the bush, is thus to be plucked is fixed, and it is a plan often followed to let the pluckers have a stick cut to the required height as a measure. Nothing is then plucked under this height at any part of the bush.

This tipping forces a secondary growth from the axils of the leaves on the original shoots, and after about 3 weeks the secondary growth is ready to pluck, the uppermost 2 leaves and the unopened bud only being taken, and 2 mature leaves left on each of these secondary shoots. This plucking brings about the growth of a third series of shoots which rise from the axils of the leaves on the secondary growth, and on these one mature leaf is usually left behind when plucking the youngest "two leaves and a bud" as before. A fourth, fifth, sixth and seventh series of shoots arise in similar manner, and are known as "flushes." Eight distinct series of shoots is usually the largest number given by bushes in one season.

In the early part of the season the pluckings are almost coincident with the growth of the "flushes." After this they are much more frequent, and bushes are usually plucked from 20 to 30 times during the year, at intervals of from 7 to 9 days, during the greater part of the season. As has already been said, 4 mature leaves ought to be left on an average shoot in the first plucking, and nothing plucked below this level in the bush. The use of a levelling-stick is often continued for the first three or four pluckings of the season in order to prevent the premature plucking of the weaker shoots. Two leaves should be left behind in plucking the secondary growth, and one leaf in the next few pluckings at least, after which the shoots can be safely plucked as they grow. [Cf. Mann, Factors Deter. Quality, in Ind. Tea Assoc., 1907, No. 4, 19 et seq.]

Premature Plucking.

Seasons.—It is essential to leave plenty of growth below the plucking-level in the earlier part of the season, and especially so after any heavy pruning. The growth and health of the bush are only secured by allowing abundant leaf to remain. Many fine tea estates have been seriously damaged by plucking off too much of the spring growth.

In Assam, and in fact North-East India in general, plucking commences about the end of March in each year. July, August, September and the first half of October are the months of greatest yield. After that time the crop gradually diminishes, and in Upper Assam plucking ceases for the season about the middle of December, while in Sylhet it may continue till the new year. The yield at each plucking during the height of the season from good yielding mature tea may go up to about 120 lb. of leaf per acre or even more, giving about 30 lb. of made tea. [Cf. Pests and Blights, etc., 101–18.]
stunt the second, third and fourth flushes of the season chiefly, but has
the compensating consideration that the tea made from shoots so stunted
is invariably of higher quality than when they grow freely. No method
of dealing with this pest has yet been devised. [Cf. Pests and Blights,
etc., 286–92; Mann, Factors Deter. Quality Tea, Ind. Tea. Assoc, 1907,
No. 4, 16.]

Caterpillars.—The number of caterpillar pests of the tea plant is
very great, those of the Psychidæ and Limacodidæ being perhaps
the most numerous and most injurious. Little more than systematic
catching has been attempted against these. Scale insects are of little
or no importance in the plains, but become serious at higher elevations.
The brown coffee-bug (Lecanium hemisphericum) has done serious
damage in the Nilgiris, while in the north of India the most common
species are Chionaspis thea, Erichthon thea, and Carteria
decorella. [Cf. Mann and Antram, Red Slug, in Ind. Tea Assoc., 1906,
No. 5.]

Red Rust.—Among blights of vegetable origin perhaps the most
serious and widely distributed is the so-called “Red Rust,” caused by
an alga (Cephalarhus virescens, Kanz.), which attacks tea of deficient
vigour almost everywhere and kills nearly all the shoots on which it occurs.
[Cf. Mann and Hutchinson, Red Rust—a Serious Blight of the Tea Plant,
in Ind. Tea. Assoc., Calc., 1904, No. 4.] Its treatment consists largely in
increasing the vitality of the bushes by manuring, better drainage, and
improved methods of pruning and plucking, but in serious cases BORDEAUX
MIXTURE, applied to the bushes immediately after pruning, is also advised.
[Cf. Pests and Blights, etc., 396–408; Mann and Hutchinson, Red Rust of
Tea, in Mem. Dept. Agri. Ind. (Botany), 1907, i., No. 6.]

Fungal Blights.—Thread Blight, caused by a fungus (Stilbum nanum,
Massæe) on the leaves and twigs of the bushes, has done considerable
damage to individual plants, but can be got rid of by treatment with
sulphide of lime (made by boiling lime and sulphur together in water).
Grey Blight (Pestalozzia guepini, Desmaz.) is the most serious leaf-
blight of the tea plant, and is very generally distributed. Blister Blight
(Ecobasidium vexans, Massæe), another fungus which attacks the leaves
and green shoots, is fortunately restricted to a small area at present in
Upper Assam (Mann, Ind. Tea Assoc., 1906, No. 3). Tea Canker (Nectria
sp.) destroys both young and old tea stems, more especially in damp
situations. Lastly, Root Rot (Rosellinia radiciperda) causes the death of
large numbers of bushes, more particularly round the dead stumps of
certain trees.

Having dealt with CULTIVATION as fully as the available space will
allow, it is now necessary to consider the methods presently adopted for
the manufacture of the leaf into the commercial article Tea.

MANUFACTURE OF TEA.

The methods pursued have undergone a complete change in practice,
if not in principle, by the introduction of machinery. Previous to 1860,
and almost entirely previous to 1870, hand labour was exclusively em-
ployed to prepare the leaf for market; now (except for an occasional
garden at the commencement of the season) the whole work is done by
machinery, much of which is largely automatic. The machines used for
the several processes in Black Tea preparation have been produced by three
or four inventors, and the names of Kinmond, Jackson and Davidson

Manu-
facture.

Introduction of
Machinery.
gradual improvement has taken place, and those now in use leave little to be desired except the making of the process continuous. In principle, all the machines work by rubbing the leaf between two surfaces either rotating in opposite directions or working at right angles to one another. In some cases the pressure on the top of the leaf is supplied by the weight of a large quantity of the leaf itself; in others, and more commonly, by a special heavy lid to the machine. By raising or lowering this lid, the pressure on the rolling leaf may be altered, and the amount of juice expressed diminished or increased. Other things being equal, the lighter the rolling the more juice remains in the cells, and a pungent light-liquoring tea is obtained, in which the whitish colour of the immature tip-leaf is only slightly stained, thus giving a pretty-looking tea, full of “golden tip.” If the rolling be hard, much juice is pressed out, the golden tips largely disappear, and a much darker liquor is afforded by the finished tea, but one with more “body” and less pungency. The time taken by this operation varies from a quarter of an hour to an hour or even more. Often the rolling is partly carried out, and the leaf is then sifted through rotating sieves. The finer portions (containing most of the golden tip) are not again put in the machine, while the coarser portions are subjected to rolling under a greater pressure.

The juice has been brought into contact with the air by rolling; now occurs the so-called “fermentation.” Before the rolling is completed the edges of the leaves and the ends of the stalks have begun to change from a green to a brown colour, and to take on an altered smell. This is the commencement of the fermentation, which is allowed to go on from two to six hours according to the conditions. For this purpose the rolled leaf is spread out about one to two inches thick in a moist, cool, darkened room, under conditions of the greatest cleanliness possible, and allowed to remain there. The material quickly becomes brown, and commences to smell like finished tea. The end of the operation is judged by the eye and the smell, and requires a good deal of experience to decide. The final product should be coppery brown in colour, like a new penny, and should have quite lost its leafy smell, taking on, as has already been said, that of finished tea. The changes which take place during the fermentation are still very obscure, and it will be better to leave their discussion till a little later (see p. 238).

Firing.—Fermentation finished, the leaf must be dried or fired as quickly as possible. Formerly the firing was done over clear charcoal fires; now machines which make use of a current of hot air are exclusively employed. The earliest invented simply placed the leaf in trays through which a current of heated air passed, by natural draught, and as each tray was dried the material was removed and replaced. Now such machines are chiefly employed for finishing the tea-firing, and the greater part of the work is done on large automatic machines working with strong currents of air induced by fans. They are capable, some of them, of drying as much as two hundred pounds of finished tea per hour. The machines used for this purpose are simple in construction, and though ingenious, do not embody any new principle of drying. The “firing” is usually commenced at a high temperature, the air entering the machine being often kept at from 220° to 240° F., though naturally the drying leaf itself never reaches this temperature. After the drying is about three-quarters completed, a somewhat lower temperature is employed, from 180° to
THE TEA PLANT

200° F. It is essential that the whole drying should be carried out as rapidly as possible, since if protracted, much of the pungency of the tea is lost.

Grading.—After drying, the tea is graded. The marks known on the market are—"Orange Pekoe," "Pekoe," "Souchong," "Congou," etc. These are old Chinese terms, but now used somewhat loosely on the supposition that certain leaves on the shoot form the bulk of the grade named. Thus the unopened tip (bud) and the first opened leaf are generally supposed to constitute the "Orange Pekoe," the next in descent is the "Pekoe" leaf, and still lower the "Souchong" leaf. The grades, however, are now merely commercial terms which have little relationship to any particular leaves. There is a corresponding class for the fine particles or so-called "Broken" leaf of each grade, which generally gives a stronger tea than the grade itself, and is hence higher in price. The principal market names in use at present are:

1. Broken Orange Pekoe.
2. Orange Pekoe.
4. Pekoe.
5. Broken Pekoe Souchong.
6. Pekoe Souchong.
8. Souchong.

In addition there is a grade known as "Fannings," composed of the very small and light fragments of leaf not capable of being placed under any of these names, and "Dust," the extremely fine portions got out by sieving through a fine-mesh sieve, but even this has still a market value.

In the Kew Bulletin (June 1890, 109–2) will be found particulars of the Hankow manufacture of the compressed tablets of the common tea-dust. These are said to be used throughout Russian Siberia.

These various grades are obtained from the tea just after being fired and by systematic sieving through sieves of various sizes, generally machine driven, coupled with the passage of the tea through "breakers" or "equalisers" in which the coarser leaf is broken down to a uniform length. After sorting in this way, each grade is packed separately in wooden boxes lined with sheet lead.

Tea Boxes. Packing and Tea Boxes.—Almost all the woods found in the tea districts have been used at one time or another for making tea boxes. Teak has even been imported from Burma for that purpose. For a long time toon or poma (Cedrela Toona) was the favourite, but as this became scarcer inferior woods have had to be employed. In the Brahmaputra valley practically the only timber now used locally for box-making is semul (Bombax malabaricum); in Sylhet and Cachar a greater variety is still employed, most being cut in the forests of the Lushai and Manipur hills and floated down the rivers to the saw-mills. There is, however, an increasing tendency to import boxes from other countries, even from China, Japan and Sweden—chiefly pine. Some patent boxes, made of Russian pine in three layers cemented together in opposite directions to the grain, have in recent years become popular under the name "Venesta," "Acme," "Columbia," etc. Their chief objection is their high price. Steel chests were introduced some years ago, but have been abandoned. It may be mentioned that the wood of which the chest is made is by no means a matter of indifference. Some timbers have the reputation of tainting the tea placed in them, giving it a so-called "cheesy" flavour, and quite a large number of timbers can only be used after long seasoning under water. Chests are always lined with thin sheet-lead, carefully
soldered. It is of the utmost importance that the package should be as airtight as possible, since tea is exceedingly quick in absorbing moisture from the air (up to the amount of 16 to 17 per cent.) and then becomes rapidly mouldy and useless. Before packing, each grade of tea is always reified at a temperature of 180° to 200° F., and packed while still just warm. As put in the boxes, it commonly contains from 2 to 3 per cent. of moisture.

2. Green Tea.—For many years the manufacture of Green Tea in India may be said to have died out except in the Kangra Valley and in Kumaon. It was formerly made in some quantity, but black tea being the more marketable article, the green gradually ceased to be manufactured, especially after the introduction of machinery, since no apparatus had been devised for green-tea manufacture. While the object aimed at in preparing black tea is to change the materials in the leaf, by fermentation, the green colour becomes brown or black, the astringency is reduced, and the aroma altered in character: in manufacturing green tea, the aim is to prepare the leaf without any alteration taking place.

Fermentation Prevented.—The first operation in manufacture is, always, therefore, to heat the leaf, immediately it is received from the pluckers and without any withering, so as to destroy the ferment (enzyme) and prevent any after-colouring of the leaf, and at the same time to bring the leaf into the soft condition required for rolling. When small quantities are dealt with, this result is obtained by panning. The pan is a large cast-iron basin 2 feet wide let into brickwork and with the hinder part about 1 foot higher than the front. This is heated from below. When the pan is “roasting hot” a small quantity of leaf is thrown into it and kept tossed about by hand so that no portion is allowed to rest on the hot iron long enough to get singed. When soft enough it is slightly rolled by hand, then panned again, and so panned and rolled alternately until the edges of the leaf become very slightly crisp. The leaf thus prepared is then dried off as quickly as possible, by methods and appliances similar to those described for black tea.

Where large quantities of leaf have to be dealt with, machines have recently been invented by means of which the panning operation is replaced by a steaming of the leaf, under pressure, in a rotating cylinder. The steaming must be very short or the leaf gets a boiled-cabbage appearance and is then useless, and yet it must be treated long enough to ensure the destruction of the ferment. About 1½ to 2 minutes under a steam pressure of 20 lb. to the square inch is generally sufficient. After steaming, the excess of water is usually got rid of in a centrifugal machine, though much juice is lost at the same time. Then the leaf is rolled slightly in machines similar to those used for black tea. The rolling must only be slight, for broken grades are almost worthless in green tea. It is immediately thereafter dried off as rapidly as possible.

In order to obtain a green appearance in the final product it has been customary in China to “face” the tea by rubbing it, when finished, in a hot pan with a small quantity of indigo and gypsum or other similar mixture. In Kangra the Native manufacturers use a small quantity of greenish-coloured soapstone for this purpose. But the employment of such materials is to be deprecated, and a very fair finished surface can be given to the tea by rubbing it in a hot pan alone without any foreign material, which only too frequently assumes the condition of an adulterant.
for panning. This operation is carried out by keeping the leaf constantly and evenly on the move in a pan about 2 feet in diameter, retained at a temperature of 360° to 400° F. and for about 10 minutes. Rolling follows, and finally firing in the small charcoal stoves used universally in tea manufacture in China and Japan. For further particulars the report of the Indian Commissioner, Mr. J. Hutchinson (Cult. and Manuf. of Formosa Oolong Tea, Calcutta, 1904) should be consulted.

4. Brick Tea.—Hitherto little attempt has been made to manufacture Brick Tea in India, though it is the staple of the Central Asian trade. In view of the possibility that this trade may be opened up in the near future, a careful investigation was made in 1905 of the methods employed in Western China by a special commissioner sent by the Indian Tea Association to the districts in which it is produced. He describes in his report how it can be made either from the young shoots (as with black tea), which gives the highest quality of brick, or from coarse leaf with many stalks and twigs. In some cases, indeed, stalk and twig predominate in the material used.

The manufacture involves (1) Panning, in pans as described under green tea, kept at such a temperature that the leaf emits a sharp crackling sound, due to the bursting of the cells as it is rubbed over the surface. This operation takes from 6 to 10 minutes. (2) Rolling.—This process is carried out by hand in the usual manner, only light rolling, however, being done. (3) Fermenting.—Here the peculiar part of the manufacture comes in, for the leaf spread in heaps 3 to 4 inches deep is allowed to ferment for 3 to 4 days, the temperature rising in the meantime to 105° to 112° F. The resultant product is then dried in the sun. After preparation it has to be formed into bricks, and for this purpose it is first steamed over a boiler (5 lb. at a time) for 2 to 3 minutes, and will then have a temperature of 150° to 170° F. If few stalks are mixed with the leaf it will be found that a fairly firm brick may be turned out without any addition; if not, a mixture of boiled glutinous rice-flour is necessary to give sufficient adhesiveness. The whole is then put into a wooden mould of suitable size and shape and pounded down lightly with a wooden rammer weighing 17 lb. Several bricks are, usually, put in the same frame, separated by a layer of bamboo matting. The whole frame when filled is put aside for several days to set and dry; after which the bricks are taken out, trimmed, wrapped in paper, and put back into the case again. The bricks usually made are 10½ inches in length by 4 inches thick. [Cf. Horace Della Penna in Markham, Journal of T. Manning to Lhasa, 1879, 119, 317.] The manufacture of brick tea differs in quality and material rather than in principle from the compressed tablets of tea-dust to which reference has already been made.

5. Letpet or Leppett Tea and Lao Mieng Tea.—The manufacture of this kind of tea is peculiar to Burma, the Shan States and some of the hills lying between Assam and Burma. A fairly complete account of the whole subject of its production will be found in the Kew Bulletin (1896, 10) and in The Agricultural Ledger (1896, No. 27, 235-66). There seem to be two ways of preparing it, as follows:—The leaves are first thrown into boiling water and allowed to remain for a short time or until they become soft, then are taken out and rolled by hand on mats and allowed to cool. The process which follows consists in ramming the leaves down tight into the internode of a bamboo (the
"Wabo"), a wooden ramrod being used for the purpose. A stopper is then made of jack or guava leaves, and the bamboos thus charged are then kept in the shade for a couple of days with the stoppered ends downwards to allow of any water there may be within to drain off. The bamboos are not filled up quite to the top with letpet, and in the space thus left ashes mixed with a little water are now filled in. The object of the ashes is to prevent insects getting to the tea. The bamboos are now buried underground till the letpet has matured and is required for sale. If not buried the letpet becomes black and spoi[; to be good it should be of a yellowish colour. It is carried to market for sale in bamboo baskets of open wicker-work (kyin) lined with leaves. The tea is taken out of the bamboos, filled into the baskets, and pressed down tight so as to prevent air injuring it.

The above is the method in vogue west of the Irrawaddy. East of that river the method seems to consist in steaming the leaf and then rolling by hand. After this the leaves are allowed to cool and are then deposited in a pit, lined with planks or bamboo matting, and covered over and pressed down by heavy weights. The pit is not opened till a purchaser turns up to buy the whole pitful, but when opened the letpet tea is removed in bamboo crates.

[It may be useful to amplify Dr. Mann's account of this tea (above) by a few quotations and observations:—The earliest mention of it (apparently) is in Hamilton's New Account of the East Indies (1688-1722, pub. 1727, ii., 62), where he says, "They never leave mediating till there be a reconciliation, and, in Token of Friendship, according to an ancient Custom there, they eat Champcock from one another's Hand, and this seals the Friendship. This Champcock is Tea of a very unsavoury Taste; it grows, as other Tea does, on Bushes, and is in use on such occasions all over Pegu." Crawford, Ferrars, Nisbet, etc., all speak of its use at ceremonials.

The account given by Mr. C. E. W. Stringer (Kew Bull., 1892, 221) of the manufacture of Mieng or Lao Tea in Bangkok does not differ in any material sense from the practice in Burma. These may therefore be described as Siloea teas, and their chief peculiarity may be said to be that they are eaten as a pickled vegetable and only rarely used as a beverage. Crawford says the leaves are elliptic, oblong, and serrated like the Chinese plant; and the Burmese, not following the practice of other nations, designate the latter by the native name of their own plant, Lap'tet. There is little doubt, therefore, but that it is a genuine Thea, and most probably a native of the country. Crawford speaks of Wallich as his friend, and yet at the very time indicated the latter disbelieved in tea being indigenous in Assam. Crawford (Journ. to Ava, 1834, i., 199, 236; ii., 147, 214) says, "The Burmese eat the leaf prepared with oil and garlic, and never use the infusion as they do that of Chinese tea, which they call Lap'tet, or tea water." Ferrars (Burma, 1900, 65, 70, 73) speaks of pickled tea as made by the hill tribes to the north. Nisbet (Burma Under Brit. Rule and Before, i., 175, 446; ii., 191) observes, "In Upper Burma and the Shan States a good deal of this tea is consumed as a drink, for which purpose it is sold in a dry state. It is prepared by boiling it in an earthen kettle, and is drunk with salt. The greater bulk, however, is sold by the Mandalay brokers to merchants in Lower Burma, where it is largely consumed in the solid. The leaves are soaked in oil, a little garlic and dried fish, etc.,
BURMESE TEA

added, and the concoction thus formed is eaten and considered a great luxury. Besides being regarded as a dainty, however, the ‘Leppett’ is a traditional food among Burmans. At the important junctures of a man's life, such as birth, initiation into the church, marriage and death, ‘Leppett’ plays an important part, and no ceremony is complete without the consumption of that article. The tea remains in the same basket from the time it is bought at the gardens until it is sold by the merchant to the actual consumer. Large numbers of baskets are to be seen at every wharf along the Irrawaddy banks and in the bazaars throughout the country."

It would seem probable, however, that in Burma the word *lapet* denotes *Camellia drupifera*, and that that species may possibly have been employed in the manufacture of *letpet* tea before the adoption of *C. Thea* as the preferable plant. Further, there appears little doubt that tea was first used as a medicine, then as a vegetable, and finally as a beverage. It was the discovery of this final property that gave the greatest impetus to the cultivation of *C. Thea* in China and Japan, and possibly also in Burma long anterior to any records of the introduction and cultivation of the plant in India. Symes (*Emb. to Ava*, 1795, ii., 255) mentions *lapac* or pickled tea, and Mason (*Burma and Its People*, 1860, 505) has a similar reference.

6. *Jyree Tea.*—Some few years ago a tea was much talked of in the public press as having special merits. This was found to consist of ordinary tea mixed with a certain percentage of the leaves of *Albizia amara* (see p. 45).

CHEMISTRY OF TEA.—Within the scope of this work it is neither possible nor desirable to give a detailed account of all the substances which have up to the present time been found to occur in the tea-leaf. The soluble materials combine to make the liquor produced by infusing the manufactured tea. But it may be observed that both the commercial and the hygienic value of tea as a beverage depend on three or four substances. The first of these is the so-called Essential Oil, the supposed cause of the flavour. It is impossible to deal with this substance here; briefly its character is all but unknown, its quantity remarkably small even in the most flavoury teas, for though Mulder (*Poggend, Annalen*, xiii., 133) obtained 0.6 to 1 per cent., no one since his time has been able to isolate anything like that amount. In fact it has been denied that he was dealing with the oil which was subsequently extracted by Van Romburgh (1895) by the distillation of freshly fermented leaves, the yield being only 0.006 per cent. It is a product of fermentation. The essential oil has, generally speaking, almost entirely eluded investigation. Its connexion with flavour is well known, but the oil itself remains almost unexamined. [Cf. Gildemeister and Hoffmann, *Volatile Oils*, 1900, 501-2.]

The second of the important constituents of tea is the Caffeine or Theine, to which almost the whole of the stimulating power of the tea seems to be due. From a medical point of view it is the most important substance: from a commercial standpoint it appears to have little value. The higher-priced grades of tea certainly contain more caffeine than the lower, but this is simply because the younger leaves (which have a higher percentage) form the bulk of the finer grades. Given two Broken Orange Pekoe, however, the relative quantities of caffeine they contain will bear little or no relation to their prices.
THE TEA PLANT

The total quantity of caffeine present in tea varies from 3 to 5 per cent., and this quantity undergoes no change during the processes of manufacture. On the other hand, the ease with which it is extracted is by no means so great in the fresh leaf as in the finished black tea. Nanninga (Mededeelingen uit 'tlands Plantentuin, 1901, xlvi., 3) gives figures, for instance, where the quantity extracted by the same method increased from 2-51 to 3-77 per cent. in passing from fresh leaf to fermented and finished black tea.

In this connection it might be pointed out that tea refuse is practically the only commercial source of caffeine. From this it is, however, produced at the rate of 30,000 lb. yearly, or thereabouts, the manufacture being carried on in England, Germany, France, and America. Recently successful attempts have been made to extract the caffeine on a commercial scale, from the tea on the spot in India, and it is probable that this manufacture, as an attachment to tea estates, may take a considerable development in the tea districts of the country.

The third constituent of great importance in the tea-leaf and also in the tea is the tannin. A great deal has been written of the evil effect of the tannin in tea, most of which is, however, not based on exact experiment, but rather on general impressions. Whatever be its physiological action it is certain that it is the constituent which gives tea its pungency, and, in its form oxidised during fermentation, it also imparts the colour to infusions of tea. In short, from a commercial point of view the value of Indian tea, in so far as it is determined by pungency and colour of liquor, varies with the quantity of tannin easily extractable by water.

The quantity of tannin is, however, very variable, and during manufacture alters to a very great extent. If we take the quantity extracted by water in ten minutes at 212°F. from finely divided tea as the standard, the following represents the reduction which normally takes place (as determined by hide powder) during the manufacture. All the figures are calculated on the dried material.

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tannin in leaf as rolled</td>
<td>15-51</td>
<td>16-90</td>
<td>16-98</td>
</tr>
<tr>
<td>Tannin in finished black tea</td>
<td>12-94</td>
<td>12-93</td>
<td>13-78</td>
</tr>
</tbody>
</table>

The colour of the liquor given by fermented tea is due to the oxidised tannin produced during the fermentation process, and in practice it always becomes a question of skilful management to know how far to sacrifice pungency to colour; in other words, how much of the tannin is to be allowed to oxidise during manufacture.

In a normal fermentation conducted below about 82°F., the oxidation, produced by the enzyme already mentioned, is a perfectly definite and complete operation. All the tannin pressed out of the cells and brought in contact with the air is oxidised in from four to six hours according to the temperature. The relative colour and pungency of the final product depend, if a complete fermentation is allowed, on the amount of rolling and hence of juice expressed. If the process is conducted much above 82°F., other oxidations take place, independent of enzyme action, and these give the tea a "stewed" taste, while rapidly lowering the tannin percentage without increasing the colour of the infusion. The explanation is probably that the fermentation of the tannin by means of the tea oxidase (enzyme) only carries the oxidation one stage forward, and though the
products are not as soluble as the original tannin, they are still fairly soluble, and have a brown colour. At higher temperatures still more deeply brown oxidation products are formed, much less soluble in water. The result is disastrous to the tea, and hence no fermentation should be conducted at a temperature above 80° to 82° F., if this is possible. [Cf. Mann, *Ferment. of Tea*, in *Ind. Tea Assoc.*, 1906, No. 19, pt. i.; 1907, No. 1, pt. ii.]

The tannin present in the original leaf has been carefully examined and described by Nannings (i.e. 7). He found it to be a crystalline powder, so hygroscopic that an instant’s exposure to the air turned it into a yellowish-brown syrupy mass. It is not soluble in chloroform, benzine or petroleum ether, and very little in anhydrous ether. On the other hand it is very soluble in alcohol, acetone, or acetic ether. It has a very astringent, but not bitter taste. It is precipitated by copper sulphate and lead acetate. Ferric chloride gives a deep blue precipitate. It is optically active.

The other substances present in tea-leaf are of minor importance. A trace of gallic acid can always be found, as well as quercetin. An acid, to which the name of *Robic Acid* was given, has been described by Rochleider (*Ann. Chem. Pharm.*, 63, 202), but its existence as a definite chemical substance is very doubtful. Other constituents it seems unnecessary to describe. [Harold H. Mann.]

TRADE IN INDIAN TEA. — The prosperity of the Indian Tea Trade may be mentioned as one of the many striking results of the British Administration in India. The East India Company enjoyed for many years a monopoly in the Chinese exports of tea, and they were therefore, and perhaps naturally, not over-anxious at first to establish a tea industry in India. In the year 1721 the imports of tea from China into Great Britain became one million pounds, and during the century from 1710 to 1810 the aggregate sales of the Company were 751 million pounds, valued at close on 130 million pounds sterling. It may be useful to recapitulate some of the historic facts already mentioned. In 1788 Sir Joseph Banks suggested the desirability of cultivating tea in India. Little was accomplished, however, until Lord William Bentinck became Viceroy in 1834. But the success shortly after attained was such that in 1840 the Government were able to withdraw from tea-planting, and by 1865 had handed over all their experimental plantations to private enterprise. The first public sales of Indian-grown tea took place in Calcutta during 1841, when 4,613 lb. were sold. A sample of Indian-made tea had, however, been sent to England a few years earlier (1838). By way of contrast with these beginnings it may be added that sales of Indian tea in 1904 stood at 200 million pounds, valued at £6,000,000 (see p. 218).

Area and Localities of Production—Capital and Labour, etc. — The area under tea at the end of 1903 extended over 524,827 acres, nearly two-thirds (64.4 per cent.) being in Assam (viz. 338,278 acres, or 204,702 in Assam proper, and 133,576 in Cachar and Sylhet). In Bengal the area was 135,956 acres (25.9 per cent.). Thus these two provinces (Assam and Bengal) have nine-tenths of the Indian tea area, the remaining tenth being in the United Provinces, Panjab, Madras and Travancore, a total of 49,073 acres, of which one-half is in the Native State of Travancore. In addition to all these there is a small area of 1,520

Gallic Acid.

Trade in Tea.

239
acres in Burma. In the latest report of the Commercial Intelligence Department on the Production of Tea in India, the area for 1906 is stated to be 531,808 acres, distributed thus:—423,828 in Eastern Bengal and Assam; 51,219 in Bengal; 7,997 in the United Provinces; 9,425 in the Panjáb, and 39,339 in South India (Madras and Travancore). Hence the partition of Bengal may be spoken of as having reduced the area in that province and increased that of the new provinces of Eastern Bengal and Assam. It may also be said that the record years in the normal or continuous expansion of the tea area were 1897 and 1898, but recently the low prices that have prevailed have suggested the desirability of curtailing rather than increasing the area, and accordingly in 1903 a decrease of 430 acres was recorded. The policy presently pursued may be described as the abandonment either permanently or temporarily of a percentage of indifferent tea, also the reduction of the quantity taken annually from the plant. Both factors have combined to improve the stock and raise the quality of the tea, and have thus proved beneficial. The reduction of area mentioned is therefore the balance between fallowed tea and new extensions, showing a small net decrease.

Yield.—But a significant feature of Indian tea-planting is the fact that production has increased in a higher ratio than the expansion of the area of cultivation. Since 1885 the area has increased by 88 per cent. and the production by 192 per cent. This doubtless denotes improvement in cultivation and manufacture. But the published estimates of production are usually considerably below the actuals, hence the trade returns show higher totals than the estimates of supply. Obviously there are many explanations, such as the fluctuations in seasons which render averages fallacious and the returns of private concerns not being as a rule furnished. On the average of the last five years the yield per acre (dividing total yield by area) was in the four chief tea localities: Brahmaputra valley, 401 lb.; Surma valley, 503 lb.; Duras, 476 lb.; and Darjeeling, 267 lb. to the acre. But according to the report of the Commercial Intelligence Department for 1906, the total production in this year was 240,411,266 lb., assorted thus:—Assam, 162,468,034; Eastern Bengal, 44,602,885; Bengal, 15,531,692; Northern India (United Provinces and Panjáb), 3,527,863; and Southern India (Madras and Travancore), 14,280,792 lb.

Capital.—The total registered capital invested in the industry comes to 22 crores of rupees (£14½ millions), thus:—companies registered in India, Rs. 3,41,82,985, and companies registered in London, Rs. 18,39,30,135. Divided by the area this capital comes to Rs. 412 (£27) per acre. But there is a further unknown figure representing the capital of private owners (above alluded to), who, as a rule, refuse to furnish any information of their business, so that the total capital has been estimated at £20,000,000 (see p. 218).

Labour.—In 1906 the number of persons employed in the industry was returned at 491,457 permanently and 81,642 temporarily, or just a little more than half a million, and this expressed to the area of cultivation comes to about 1,08 persons to the acre. These figures do not, of course, include those engaged in the carrying agencies nor those concerned in cultivating locally the food, etc., of the special immigrant tea population.

Foreign Trade.—The economies due to the establishment of large plantations, and the discovery of machinery to do all and more than
CAMELLIA
THEA
Trade

Chinese Trade.

Ceylon Started.

Race between India and Ceylon.

Most Recent Returns.

Prices.

India Leads.

Consumption to Population.

Great Britain and her Colonies.

Green Tea.

manual labour could accomplish, cheapened production, and with this arose a rapidly increasing demand. The freedom from adulteration and impurity, incidental to all Asiatic hand labour, also tended to enhance the appreciation of the Indian tea in European markets, and with that success came the downfall of the Chinese trade. In 1859 China supplied England with 76 million pounds of tea, and in 1880–1 with 175 million pounds. In 1864 India commenced to export in sufficient quantity to justify the traffic being recorded separately. In that year the United Kingdom obtained 2,800,000 lb. of tea from India. A decade later the coffee industry of Ceylon began to show signs of the ruin that finally overtook it. Profiting by the experience and knowledge gained in India, Ceylon planters abandoned coffee and took to tea, and to-day Ceylon is India's chief competitor in the tea markets of the world. In 1875–6 the exports from Ceylon were 784 lb. valued at £180, while the Indian of that year were 24,361,599 lb. valued at £1,444,278. In 1885–6 the Ceylon exports became 7,851,562 lb. valued at £382,996, and the Indian 69,666,000 lb. valued at £3,298,000. In 1895–6 the Ceylon exports were 110,095,000 lb. valued at £3,075,000, and the Indian 142,080,000 lb. valued at £4,682,000. Five years later (1900) the corresponding figures were: Ceylon exports, 149,265,000 lb. valued at £3,582,000, and Indian, 176,387,000 lb. valued at £6,118,000. By way of comparison it may be added that the total exports from China in 1900 were 184,533,000 lb. valued at £3,949,000, and Japan, 61,028,000 lb. valued at £1,406,000; the world's increasing demands were thus met by India and Ceylon mainly. This may be still further exemplified by later figures drawn from the report issued by the Commercial Intelligence Department of the Government of India for 1906. The total exports by sea and land routes for that year came to 236,731,623 lb. from India and 170,527,146 lb. from Ceylon, while from China came 108,864,534 lb. black and green tea, with 79,506,133 lb. brick, tablet and dust.

Prices Realised.—During the later years of the period indicated by these returns the price paid for Indian tea fell from 13-33d. to 8-32d. per lb. in 1900; for Ceylon from 11-63d. to 5-40d. per lb.; for China from 7-26d. to 5-14d. per lb.; and for Japan from 7-17d. to 5-53d. per lb. Thus, while India has maintained her position as the leading producing country, she has also preserved, in a remarkable degree, her supremacy in quality and price. Indian teas fetch the highest average price in the world. Expressed to head of population (census of 1900), the consumption of tea is interesting, and throws a flood of light on the influences that have led to the world's increased consumption of tea. The list is headed by Western Australia, 10-07 lb. per head of population; South Australia, 8-87 lb.; United Kingdom, 8-44 lb.; New South Wales, 8-01 lb.; Victoria, 7-38 lb.; Queensland, 7-09 lb.; New Zealand, 6-78 lb.; Tasmania, 6-62 lb.; Canada, 4-29 lb.; Holland, 1-48 lb.; United States, 1-14 lb.; Russian Empire, 0-93 lb.; German Empire, 0-13 lb.; and France, 0-05 lb. Thus India and Ceylon owe their prosperous tea trades, primarily, to the demands of Great Britain and her Colonies, but the low prices that have recently prevailed have led to great efforts being made to open out new markets, and these are held to have been so successful that the average price has improved. The relief afforded, moreover, by the endeavour to produce and sell green tea may also be said to have considerably strengthened the position of the Indian planter, so that it is thought there is now no longer any fear of supply outrunning demand.
CAMELLIA THEA

Exports from India (Black and Green Teas).—It may now be useful to furnish more direct and explicit information regarding the recent Indian traffic in Tea. The following figures show the trade every fifth year since 1876-7:

<table>
<thead>
<tr>
<th>Year</th>
<th>Rs.</th>
<th>lb.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1876-7</td>
<td>2,60,74,251</td>
<td>27,784,124</td>
</tr>
<tr>
<td>1886-7</td>
<td>3,05,42,400</td>
<td>46,413,510</td>
</tr>
<tr>
<td>1890-1</td>
<td>4,72,79,917</td>
<td>78,702,857</td>
</tr>
<tr>
<td>1896-7</td>
<td>5,21,92,335</td>
<td>107,014,993</td>
</tr>
<tr>
<td>1900-1</td>
<td>8,12,45,480</td>
<td>148,908,461</td>
</tr>
<tr>
<td>1906-7</td>
<td>9,55,09,301</td>
<td>190,305,490</td>
</tr>
<tr>
<td></td>
<td>9,85,77,642</td>
<td>233,653,637</td>
</tr>
</tbody>
</table>

An analysis of the traffic for the years 1902-7 may be framed to show the chief provinces of India from which exported and the more important countries to which exported, the figures given denoting the respective shares taken, while the unaccounted for balances, on the total transactions, manifest all other provinces or countries not mentioned. The last three figures have been purposely omitted from each return:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Grand Total</td>
<td>181,423</td>
<td>207,159</td>
<td>211,887</td>
<td>214,222</td>
<td>233,033</td>
</tr>
<tr>
<td></td>
<td>7,36,16</td>
<td>8,55,79</td>
<td>8,46,54</td>
<td>8,84,76</td>
<td>9,85,77</td>
</tr>
<tr>
<td>Share from Bengal</td>
<td>170,943</td>
<td>195,107</td>
<td>197,541</td>
<td>199,737</td>
<td>175,889</td>
</tr>
<tr>
<td></td>
<td>6,76,52</td>
<td>7,88,17</td>
<td>7,69,39</td>
<td>8,29,91</td>
<td>7,36,96</td>
</tr>
<tr>
<td>" " Madras</td>
<td>6,482</td>
<td>8,744</td>
<td>11,069</td>
<td>12,879</td>
<td>13,979</td>
</tr>
<tr>
<td></td>
<td>40,01</td>
<td>51,74</td>
<td>65,20</td>
<td>75,28</td>
<td>82,80</td>
</tr>
<tr>
<td>Share to U.K</td>
<td>152,895</td>
<td>170,186</td>
<td>167,691</td>
<td>166,591</td>
<td>176,169</td>
</tr>
<tr>
<td></td>
<td>6,27,90</td>
<td>7,08,91</td>
<td>6,70,97</td>
<td>6,89,01</td>
<td>7,57,45</td>
</tr>
<tr>
<td>" " Canada</td>
<td>5,554</td>
<td>8,575</td>
<td>12,607</td>
<td>15,018</td>
<td>14,514</td>
</tr>
<tr>
<td></td>
<td>22,00</td>
<td>35,49</td>
<td>54,79</td>
<td>67,10</td>
<td>66,01</td>
</tr>
<tr>
<td>" " Australia</td>
<td>4,568</td>
<td>6,402</td>
<td>5,892</td>
<td>7,146</td>
<td>8,962</td>
</tr>
<tr>
<td></td>
<td>10,36</td>
<td>23,47</td>
<td>22,15</td>
<td>26,53</td>
<td>31,37</td>
</tr>
<tr>
<td>" " China</td>
<td>379</td>
<td>5,70</td>
<td>611</td>
<td>1,709</td>
<td>3,418</td>
</tr>
<tr>
<td></td>
<td>93</td>
<td>20,51</td>
<td>1,37</td>
<td>5,42</td>
<td>8,31</td>
</tr>
<tr>
<td>" " Russia</td>
<td>3,967</td>
<td>4,546</td>
<td>9,331</td>
<td>9,988</td>
<td>13,761</td>
</tr>
<tr>
<td></td>
<td>15,08</td>
<td>17,49</td>
<td>32,99</td>
<td>42,62</td>
<td>56,50</td>
</tr>
</tbody>
</table>

Imports into India (Black and Green Teas).—With such a record of producing enterprise it is somewhat surprising that India nevertheless should continue to import tea from China, Java, etc., and become the emporium of a re-export trade in these teas to Persia, Arabia, Turkey-in-Asia, Africa, Egypt, etc. The following table records the transactions during the past five years:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Grand Total</td>
<td>3,848</td>
<td>3,672</td>
<td>3,734</td>
<td>3,799</td>
<td>2,683</td>
</tr>
<tr>
<td></td>
<td>20,59</td>
<td>20,83</td>
<td>18,96</td>
<td>18,34</td>
<td>14,14</td>
</tr>
<tr>
<td>Share from China</td>
<td>2,111</td>
<td>2,141</td>
<td>1,229</td>
<td>1,306</td>
<td>1,028</td>
</tr>
<tr>
<td></td>
<td>12,71</td>
<td>13,63</td>
<td>8,83</td>
<td>8,29</td>
<td>8,49</td>
</tr>
<tr>
<td>" " Java</td>
<td>2,267</td>
<td>305</td>
<td>190</td>
<td>151</td>
<td>151</td>
</tr>
<tr>
<td></td>
<td>2,14</td>
<td>2,15</td>
<td>1,28</td>
<td>1,15</td>
<td>2,29</td>
</tr>
<tr>
<td>" " Straits Settlements</td>
<td>491</td>
<td>542</td>
<td>532</td>
<td>491</td>
<td>457</td>
</tr>
<tr>
<td></td>
<td>1,75</td>
<td>1,89</td>
<td>1,95</td>
<td>1,82</td>
<td>1,85</td>
</tr>
<tr>
<td>Share to Bombay</td>
<td>3,055</td>
<td>2,838</td>
<td>2,822</td>
<td>2,935</td>
<td>1,990</td>
</tr>
<tr>
<td></td>
<td>17,29</td>
<td>17,30</td>
<td>15,25</td>
<td>14,75</td>
<td>13,26</td>
</tr>
<tr>
<td>" " Burma</td>
<td>503</td>
<td>558</td>
<td>558</td>
<td>518</td>
<td>486</td>
</tr>
<tr>
<td></td>
<td>1,82</td>
<td>1,96</td>
<td>2,07</td>
<td>1,95</td>
<td>1,98</td>
</tr>
<tr>
<td>RE-Exports Totals</td>
<td>1,606</td>
<td>889</td>
<td>926</td>
<td>781</td>
<td>501</td>
</tr>
<tr>
<td></td>
<td>19,49</td>
<td>6,46</td>
<td>6,32</td>
<td>5,20</td>
<td>3,08</td>
</tr>
</tbody>
</table>
THE CAMPHOR TREES

in 1903-4, 2,020,256 lb., valued at Rs. 9,31,943; in 1904-5, 2,314,816 lb., valued at Rs. 10,78,031; and in 1906-7, 2,129,048 lb., valued at Rs. 8,89,068. Turning now to the Exports: these go mainly to Afghanistan, Kashmir, Dir, Swat and Bajaur. The following were the amounts exported—in 1903-4, 2,439,248 lb., valued at Rs. 10,68,916; in 1904-5, 2,731,008 lb., valued at Rs. 12,40,253; and in 1906-7, 2,991,973 lb., valued at Rs. 14,53,888. The chief item in this traffic is India's contribution to the Tibet and Central Asiatic demand for green tea.

In conclusion, it is perhaps scarcely necessary to enter into the details of the strenuous efforts that have been made and are being made by the Tea Association and tea merchants of India and England to extend the area of demand for all grades of Indian tea. The enlightened action which has resulted in securing the services of expert scientific officers to investigate the disabilities of the industry and to improve the methods of production and manufacture deserve the highest commendation. The initial stage in this reform was accomplished by the Government of India in 1895, namely the deputation of the Reporter on Economic Products to the tea districts with instructions to institute inquiries into and to publish a report on the "Pests and Blights of the Tea Plant." In consequence the first scientific officer—Dr. Harold H. Mann—was appointed by the Association. The subsequent history is one of progress. Mann's investigations cover every possible aspect of inquiry, and the results of his labours may be described as both highly interesting scientifically and of the greatest practical importance to the industry.

The vernacular names in India, like the majority of the European names, are very similar, viz. Camphor (Engl.), camphre (Fr.), kamfer (Germ.), canfora (Ital.), kárpúra (Sansk.), káfür (Arab.), and kápur (Hind.), etc., etc. It has been suggested that they may have been derived from the Javanese kápur, which seems to denote both lime and camphor. The Sanskrit medical writers were familiar with the two qualities pakva and apakva. The former would mean prepared by the aid of heat, and might thus be viewed as the Camphor of Cinnamomum Camphora, while the latter would be native or natural camphor, and be accepted as denoting the camphor of Dryobalanops Camphora. The last-mentioned was historically first known. But neither of the plants named are indigenous to India, nor even cultivated plentifully to-day, and therefore the pakva and apakva kárpúra could only have been known to the people of India subsequent to the establishment of the Chinese and Arab commerce. But the history of the names for the clove (and there are many other examples) show that it is not necessarily the case that commercial names, at present in use, originated from the indigenous names of the plants in question, so that the Sanskrit kárpúra might easily enough have given the Javan kápur.

History.—The bhimemī Camphor trees of the Ain-i-Akbari (Blochmann, transl., 78-9) were doubtless Cinnamomum zeylanicum, the wood of which might have been called camphor-wood from its smelling something like camphor, and might easily have been viewed by Abul Fazl as an Indian discovery of the plant that yielded camphor. One of the earliest notices of camphor is that of the Arab merchant Sindbad (who lives to us in The Thousand and One Nights as a hero of fiction rather than of actual adventure and exploration), whom Baron Walekener thought had lived about the time of Solaiman, a Muhammadan merchant of the beginning of the ninth century. Sindbad describes the mode of extracting the camphor by making incisions in the trees that produce it. This was during his second voyage when he visited the peninsula of Riha,
CINNAMOMUM AND DRYOBALANOPS

doubtless the Malay Peninsula. Adams (Comment., Paulus Epineta, iii., 427-9) reviews the early information regarding camphor, and says that Serapion is the first authority who gives a full account of it. Isaac Ebn Amram, one of the writers quoted by Serapion, furnishes a brief account of the method of refining, which is practically that pursued at the present time. Lastly, Adams adds that Symeon Seth is the only one of the Greek authors who treats of camphor (ophthara). [For further information see Cinnamomum zeylanicum, pp. 313-6.] Garcia de Orta discussed in the 16th century the two chief forms of Camphor. These are:

Cinnamomum Camphora, Nees and Eberm., Fl. Br. Ind., v., 134; Grasmann, Mittheil. der Deutsch. Gesellsch., etc., Tokyo, 1895, vi., 277-328; Ind. For., xix., 439; xxiii., 469; Gamble, Man. Ind. Timb., 564; Brandis, Ind. Trees, 534; Lauraceae. The Japan Camphor Tree. A moderate-sized evergreen tree, native of China, Japan, Cochin-China and Formosa, much planted in India, where it grows admirably in suitable places. There are fine trees in the Botanic Gardens of Calcutta and Saharanpur; it grows very well in Demra Dun, and thrives in the Nilgiris, even up to altitudes of 7,000 feet.

This is by far the most important of the natural sources of camphor, and practically constitutes a monopoly of the Japanese Government since the cession to them of Formosa, whence the largest quantity and best quality of camphor is derived. The production in 1900 is said to have been 134 tons in Japan, 98 tons in China, and 2,680 tons in Formosa. But it is affirmed that Japan has effected an agreement with China whereby she exercises a preponderating influence over the export of camphor from Chinchew (Fukien) on the Chinese mainland, which formerly shared the Indian and European trade with the province of Tost in Sisk (Japan) and the Eastern or aboriginal districts of Formosa. [Cf. Pickering, Pioneer in Formosa, 1898, 202, 220.]

For a description of various processes of refinement the reader may consult the article given in the Dictionary. Herren Tschirch and Shirasawa published a careful account of the formation of this camphor, and Bamber (Lecture May 14, 1906, delivered before the Ceylon Agricultural Society) gives particulars of the still that should be used. [Cf. Archiv. der Pharmacie, Berlin, 1902, No. 46; Rev. Bull., 1899, 57-68; 1907, 88-90.]

In the stem are formed coarse crystals which constitute the Barus Camphor called in Indian trade returns bhinamani or baras. The crystals are often found in concrete masses in the heart of the tree, or in the knots and swellings where the branches issue, but camphor is also found beneath the bark. To obtain the product, which is valued by some of the Chinese at from 40 to 80 and even 100 times the price of ordinary camphor, the tree is destroyed and cut into small splinters. An average tree is said to yield about 11 lb., but the old trees are the most remunerative, and only about 10 per cent. of those destroyed really repay the labour. This camphor is used by the Malays for embalming and for ritualistic purposes, and is well paid for. Probably the camphor first known to the world was obtained from this tree, and not from Cinnamomum camphora. [Cf. Flückiger and Hanbury, Pharmacogn., 438; Gildemeister and Hoffmann, Volatile Oils, 370-7, 502.]

Other Camphors are obtained from several plants, as for example thyme, patchouli, tobacco, etc., etc., but the production from these sources would appear not to be a paying industry. The widespread reputation of Blumea Balsamifera as a source of Ngai Camphor is probably delusive, so far at least as India and Burma are concerned, though the leaves would appear still to be employed for the distillation of a powerful camphor in Upper Tonkin. [Cf. Rev. Bull., 1895, 275-7; 1896, 73; Bhaduri, Rept. Labor. Ind. Mus. (Indust. Sec.), 1902-3, 29; Bull. Econ. L'Indo-Chine, 1903, vi., n.s., 512.]

Production.—The camphor monopoly established by Japan had the effect of raising the price of the natural product, and this led to the fairly successful synthetical fabrication of the commodity in America. It would be beyond the scope and purpose of this work to do more than indicate the directions and possibilities of the camphor industry, and it must suffice therefore to state that it can be and is being produced.

CAMPHOR

SPECIES

Two Forms

Japanese and Formosan.

Production.
chemically. But the rise in the price of camphor has had another effect, namely of turning the attention of planters in other lands to the possibility of competing with Japan in the supply of natural camphor. Willis and Bamber in an able article have dealt with every aspect of cultivation and manufacture (Circ. Roy. Bot. Gard. Ceylon, 1901, No. 24). In The Agricultural Ledger (1896, No. 5) Hooper detailed certain experiments which went to show that a fairly large supply of camphor might be obtained from an oil distilled from the leaves of *Cinnamomum Camphora*. It had been supposed that camphor was only obtainable from the timber and roots of trees 50 to 100 years old, and obviously only Governments could undertake to plant such on a large scale and wait so long for remuneration; but as a consequence of experiments made in India, Algeria, United States and some German colonies, it was thought that *Cinnamomum Camphora* might be planted as a catch crop by tea, coffee and indigo planters. The results, however, do not appear to have justified the hopes that were once formed. It would be beyond the scope of this work to deal with the European uses of camphor, but it may be mentioned that one of the most interesting is its employment in the manufacture of celluloid. [Cf. Heuzé, *Les Pt. Indust.*, 1895, iv., 269-72; *Kew Bull.*, 1895, 305; *Trop. Agric.*, April 1, 1904, 659; Komppa, *Pharm. Journ.*, lxxii., 77; Gallenberg (reviewed) in *Capital*, June 4, 1903; Collins, *Scient. American*, lxxxix., 368; *Madras Weekly Mail*, May 9, 1903; March 20, 1905; Hauxwell, *Rept. For. Admin. N. Cir., Burma*, 1904-5, 52; Copleston, *Notes on Cult. Camphor*, in *Agric. Journ. Ind.*, 1907, ii., pt. i., 92-4.]

Commerce and Trade.—India possesses a fairly large industry in the refining of camphor, chiefly at Bombay, Delhi, etc. The refiner sells the article at nearly the same price as he purchased it for, the profit being made on its mechanical absorption and retention of a large amount of water. It appears, however, that an increasingly large proportion of Japanese camphor is sublimed before being exported to India. The imports of Barus camphor are now of little or no consequence, having decreased from 528 lb. in 1899-1900 to 106 lb. in 1903-4, and in value from Rs. 32,898 to Rs. 3,170, and in 1906-7 were nil. The total amount of other camphors imported was 1,071,714 lb., valued at Rs. 9,96,336, in 1899-1900; 1,091,002 lb. at Rs. 12,97,482 in 1903-4; 1,169,238 lb. at Rs. 16,17,043 in 1904-5; 703,716 lb. at Rs. 13,37,938 in 1905-6; and 849,261 lb. at Rs. 22,99,783 in 1906-7. In the first-mentioned year Japan contributed only 135,010 lb., valued at Rs. 1,82,680; whilst in 1903-4 the amount was 671,220 lb. at Rs. 8,42,391; and in 1904-5, 856,130 lb. at Rs. 12,51,846; though it fell off in 1906-7 to 426,007 lb. at Rs. 14,11,926. Doubtless a large proportion of this must be the Formosa camphor, which was previously exported to India *via* Hongkong. The increase in the Japanese trade corresponds with a rapid decrease in the quantities obtained from the United Kingdom (English refined camphor), Hongkong and the Straits Settlements, the totals for these three having been in 1899-1900: United Kingdom, 84,460 lb. valued at Rs. 77,658; Hongkong, 440,458 lb. at Rs. 3,80,598; Straits Settlements, 411,696 lb. at Rs. 3,55,261. In 1906-7 the quantities and values were respectively: United Kingdom, 22,311 lb. at Rs. 76,778; Hongkong, 277,360 lb. at Rs. 5,43,304; Straits Settlements, 74,803 lb. at Rs. 1,61,295. The increased proportionate value of Japanese camphor compared to European camphor may show that more of it is imported in a refined state. The
re-exports manifest an increase from 38,517 lb. at Rs. 38,375 in 1899–1900 to 121,023 lb. at Rs. 2,14,369 in 1905–6. In 1906–7 they fell, however, to 44,776 lb. at Rs. 1,01,132. Bombay and Bengal are the chief ports of departure, and Natal is ordinarily the best customer, though since 1904 the United Kingdom has stood first.

Oil of Camphor. — There are two very distinct substances known by this name. One is the oleo-resin of Borneo, obtained by distillation of the wood or by tapping the trunks of *Bryopetalons Camphora*, which, being unable to resist the pressure of the fluid, sometimes burst open or have their tissue broken into large internal chambers. According to Gildemeister and Hoffmann (*Volatile Oils*, 503) this oil is not obtainable on the market. The other so-called camphor-oil of Formosa and Japan is a brown liquid holding in solution much common camphor, which is precipitated when the temperature of the liquid falls. The crude oil is made by distilling chips of camphor-wood in water. After removal of the camphor which crystallises out on cooling, it represents a transparent bright-yellow to brownish-yellow liquid oil having a penetrating odour. In Formosa it was formerly thrown away as worthless, but the Japanese used and still use it to a considerable extent in connection with lacquer and varnish-work, besides extracting a considerable residue of camphor from it. A long and interesting paper on the various qualities of camphor-oil together with a description of the method of extracting refined camphor therefrom and of manufacturing *safrol* from the "red oil" (crude oil after the removal of the essential white oil and camphor) will be found in *Schimm. & Co.’s Semi-Annual Report* (Oct.–Nov., 1902), being taken in part from the *Journal of the Pharmaceutical Society of Japan* (April, 1902, No. 242). It would appear that the camphor is now extracted in Japan, whereas the oil was previously exported in a crude state, largely to Germany. [Of Shimoyama, Acc. in *Trop. Agrist.* Nov. 1901, xxii.]

CANARIUM, Linn.; Fl. Br. Ind., i., 531–6; Burseraceae.

There are about 9 species in this genus, all large trees, and several of them afford useful resins. Considerable confusion exists, however, regarding their respective products, so much so that the most satisfactory course is to assert the available information geographically.

C. bengalense, Roxb., is the *neroli* of Sibsagar and Sylhet of which Roxburgh wrote, "From fissures or wounds in the bark, a large quantity of a very pure, clear, amber-coloured resin exudes, which soon becomes hard and brittle, and is not unlike calcopyl, yet the Natives set no value on it." "In the Calcutta bazaar, it is only valued at from 2 to 3 rupees for 7 maunds of 80 pounds weight each." Most writers have repeated the above without either correcting or amplifying the information, so that it is not known whether or not the resin is used economically.

C. commune, Linn., is the Java almond and the *rata-tekuna* of Ceylon. A large tree of the Malay, but cultivated occasionally in India and Ceylon.

C. resiniferum, Bruce, is the dhuna, dhula, tekreng, etc. A large tree of Assam, the Khasia and Garo hills. It would seem highly probable that this is the chief source of the *Canarium* resin of Assam which has hitherto been mostly supposed to be afforded by *C. bengalense.* Gamble says it gives a resin which

Oil of Camphor.

THE SWORD BEAN

CANAVALIA ENSIFORMIS
Makham-shim

is used for torches. A sample of Assam resin, weighing over 13 lb., received by the Reporter on Economic Products as "a fairly average quality of the Black Dammar" was sent to the Imperial Institute, London, for examination and report. Dunstan replied that the results obtained "indicate that the resin is of the dammar type although it differs to some extent from the black dammar of commerce, stated to be derived from C. strictum, especially in possessing lower acid and saponification values."

Varnish manufacturers to whom the resin had been supplied reported that it was suitable for the preparation of a hard drying varnish, such as is required for enamel paints, though the dark colour of the resin would prejudice its sale and it was not likely to fetch more than 18s. per cwt.

C. sikkimensis, King, Journ. As. Soc. Beng., lxxii., pt. ii., 187; is the gugal dhup, nar-ok-pa, etc. A very tall tree of Nepal and Sikkim—the inner valleys of the Eastern Himalaya up to altitudes of 3,000 feet. It yields a clear amber-coloured brittle resin that is burnt in incense by the Leperchas. Dymock (Journ.Bomb. Nat. Hist. Soc. 1891, vi., 409) speaks of an amber-coloured resin—"the incense (yokal-dhup)—and he was thus doubtless speaking of this plant and not of C. bengalensis as he supposed. C. sikkimensis has of late years become a scarce tree, due apparently to the demand for tea-box woods. The timber is said not to warp but to decay rapidly.

C. strictum, Roxb., Fl. Ind., iii., 138; Talbot, List.Trees, etc., 1902, 70. The Black Dammar, gugal, kula-dammar, karapu kongilikam, karung kunthrikam, kundrikam, manda dhup, ralldhu, thelli, etc. A tall tree of Western and Southern India from the Konkan southwards. When in young foliage it is almost crimson and is in consequence very conspicuous on the Ghats, up to altitudes of 5,000 feet. It yields the resin known as the black dammar of South India. The timber is worthless, and to obtain the resin the trees are fired. Vertical cuts are made on the bark and a mass of brushwood thereafter fired around the base of the trunk. In about two years' time the dammar is said to begin to exude from the stem and to continue to flow for ten years afterwards, during the months of April to November. This is collected in January and traded in all over Southern and Western India, but owing to its high price is not much exported. The supply comes chiefly from Travancore and the resin fetches about Rs. 3 per 18 lb. It is employed in the manufacture of a bottling wax or for varnish, etc., and in medicine as a substitute for Burgundy pitch in the manufacture of plasters. Full particulars of the chemical properties and medicinal uses will be found in the Dictionary. The substance was examined and reported on by the late Mr. Broughton. [Cf. King, Journ. As. Soc. Beng., 1893, lxxii., 184–5, tt. 10–3; Gamble, Man. Ind. Timbs., 140–1; Cooke, Fl. Pres. Bomb., i., 201–2; Brandis, Ind. Trees., 130.]

D.E.P.,
ii., 97.
Sword Bean.

French-beans.
CANNABIS OR HEMP

The following may be given as the more important names:—Hemp (Fibre), Indian-hemp (the narcotics), Canvas (Coarse textile), English; cannabis, Greek and Latin; canaiba, Keltic; canvas, Modern Breton; chânevre, Fr.; canamo, Sp.; canhamo, Port.; canape, It.; canapa, Ruman.; canep, kerp, Albanian; konopie, Rus.; konopj, penka, pienka and penek, Polish and Old Slav.; hemp, Belg.; hampa, hemp, Swed. and Danish; hanf or hanaf, Old High Germ.; hemp, N. Germ.; knapiois, Pruss.; Hanfar, Iceland; hennep, kennip, Dutch; kenevir, Bulg.; kentyr, Tartar; kant, Erse; kanaq, Armen.; schema, Mughal; sechona, Tanjut; nasha, assarath, malach, Turk.; kiri, kurko, Turk.-Tart.; kirs, Bokhara; kandir, Kashgar; kanabira, Syrian; kifi, Kurd.; kief, Morocco; ba-ma, sei-ma (great or main); sau-teu-ma, chu-ma (seed-bearing or female), Chinese; asa (the plant and fibre), nuo or jofu (the hempen cloth), Japanese; bhemog, vijayi, indrasana, Sanskrit; bhang, beng bang, haschisch, sidhi, sabzi, ganja, charas, majjun, jia, kas, Hind.; Beng., Nep.; C. Prov., Kach, Guj., Deccan; sini, sirin, Sind; ganjaai, korkkar, kalpam, Tam. and Tel.; ginger-lacki-lacki, gynil-achli-lachi, (kalenga canejava or male) or bhangi, etc., of Rheede, gingi of Rumphius), Malay; kinnab, hinh, of younger Serapion, schechedeni in Matthiolus, and aze or assis in Acosta, Linschoten, Rumphius, etc., Arabian (aze, assis are doubtless the Arabic haschisch); dakkah, docha, Hottentot; and riamba, diamebe, or jambo, W. Africa (Negro); darakhte-kinnab, bang., nabatul-gunnab, Persian; bhén, sevas, Burmese; matkansa, ganja-gaha, Sinhalese; ahte-mangha, rongyone, Madagascar.

Habitat.—The Hemp plant grows in a wild or spontaneous state over so wide an area, but at the same time is always so closely associated with places that are or may have been inhabited or used as trade routes, that it is difficult to say where it originated. The widest range claimed for wild hemp covers the area from Trans-Baikal and Dahuria westward and southward to Bokhara, the Trans-Caspian province, Russia south of the Caucasus, and, according to Hooker, the North-Western Himalaya. It is, however, as plentiful in an acclimatised state in Japan and Northern China, and in the Sub-Himalayan zone of Northern India, as in any part of the region indicated, though it is admittedly there only a plant of waysides and waste places. Having regard to the value of the situations it affects, Prain, in his report on ganja, does not regard it as indigenous either in India proper or along the North-West frontier. But even in some of the Siberian districts accepted as part of its original home, it has been noted as occurring near dwellings, and Gmelin (Fl. Sibir. Hist. Pl., 1768, iii., 104) seems to believe it to be wild simply because the Buriats and Krasnoi Tarats do not actually sow it. The arguments against its being wild in Northern and Central Asia are thus almost as strong as in the case of Eastern and South-Eastern Asia. So far as India is concerned, the conclusion of the Hemp Drugs Commission is probably correct, namely that it is not indigenous.

Properties and Uses.—The hemp plant is known to yield three distinct products, or perhaps rather groups of products, separately dealt with in this work:—

A Bast fibre, largely employed in the manufacture of cordage
ropes and coarse textiles.

An Edible Seed, from which a useful fatty Oil is expressed.

A Narcotic resinous substance that appears in trade in three chief

Fibre. Edible Seed. Narcotic.
CANNABIS
Sativa
Hemp

THE HEMP PLANT

forms, known as bhang, charas, and ganja, and which chemically consists of a resin and a volatile oil.

The word bangra is given in Nepal to a coarse cloth made from the nettle Girardinia heterophylla and in Sikkim a similar textile bears the name gunmis, while in Burma the name gun or guon denotes Boehmeria nivea, and in Bengal the fishermen’s nets, made of rhea fibre are called gangaivalu. A coarse cloth made in Mysore from Crotonalaria is also named gunaj. It is thus somewhat surprising that in India the best-known nettle fibres, including hemp, bear names that have the sound of bhangra or ganja (though possibly quite unconnected). Christopher Acosta (Tract. de las Drogas, 1578, 359–61) figures and describes the “Bangue.” Mandelsoo (Travels, 1662, 37) speaks of “Benji,” a drug made from hemp. Fryer (New Acc. E. Ind. and Pers., 1672–81, 126) mentions: “a Fakier drunk with Bang” whom he saw in Surat. On the Himalaya, where Cannabis sativa is grown for its fibre, the male plant is called phil bhang and the female gil—or pur-bhangra. At Indore the male plant is har or the female bhampera. Very nearly throughout the world wherever hemp is cultivated the larger and more prolific plant has been taken as the male (though as a matter of fact it is botanically the female). Pain informs me that he believes, with the Mongolian races, the sexes are not as a rule reversed. The names given to the two forms or sexes are therefore interesting. From Gerarde (1636) we learn that in his time English writers spoke of the one plant as the “Male” and called it “Charlie” or “Steele Hempe” (“p.1083), or “Winter Hempe,” and of the other as the “Female” (or, as he calls it, Femeline, botanically the male), the “Barren Hempe” or “Summer Hempe,” and by more recent writers “Fimbble Hempe.” Gerarde makes an interesting observation in this connection: “There is another, beeing the female Hempe, yet barren and without seed, contrarie unto the nature of that sex; which is very like to the other beeing the male, and one must be gathered before the other be ripe, else it will wither away and come to no good purpose.” The corresponding German names are Fimmel (male) and Maschel (female). It is, however, significant that in none of the prehistoric remains of Europe has hemp been found, though flax is frequent. [Cf. O. Schrader, Reallexicon, etc., 330–1.]

But Gerarde’s observation regarding the necessity to remove the male plants (the “females,” as he calls them) because otherwise the crop may come to no good, is curiously suggestive of the Bengal practice, that will presently be explained. As a matter of fact, however, it is the general custom in Europe to remove the male (or, as it is called, “female”) plants some 20 to 40 days before the female (male) is harvested, the reason being that after the dissemination of the pollen the male plants rapidly mature, so that long before the females have formed their seeds the fibre in the male stems has been ruined. Similarly, if the seeds be allowed to ripen, the fibre of the female plants will also be ruined. It accordingly is the custom to harvest the female crop when in a half-ripe condition, that is to say, the seeds have not been fully matured but they are at that stage rich in oil and thus afford a by-product of no small importance. Still further, it seems the custom, in some parts of Europe, to store the stems for a time before separating and cleaning the fibre. The fibre cleaned in winter is accordingly called Winter Hemp and that setted in spring” and cleaned finally in summer is described as Summer Hemp. But like the names “male” and “female,” the terms “summer” and “winter” are often inverted. Lastly, the greatest possible confusion exists in the literature of this subject as to whether or not the botanically male plant yields a fibre, and, if it does, its relative value to that of the female. [Cf. Crawford, Indist of Russia, Agric. and Forest, 1893, 139–43; Wissmer, Die Rohat. des Pflanzenw., 1903, ii., 320, ii., 300.] Wilson (Farm Crops, 1859, ii., 325–43) gives what is doubtless the complete statement when he observes that the plants flower in about twelve weeks after the date of sowing, and then is seen the peculiarities of the cultivation of hemp as compared with other crops. If the crop be intended for fibre only, the harvesting generally takes place as soon as the process of flowering is completed, and both male and female plants are pulled at the same time and treated in the same manner. When, however, the double produce of fibre and seed are desired, a different method is pursued, by which the full produce of the crop is secured.” The male plants are pulled up by the roots, care being taken not to injure the female, which are left on the field for a further period. “The male plants are collected and tied in small sheaves, and either left standing at a convenient place till dry or once taken to the retting vats.” Morris
ORIGIN OF NAME

(Cantor Lect., Journ. Soc. Arts, 1895, 901) says the fibre of the male plant is tougher and better than that of the female. It is separated by retting, breaking, and stretching as in flax. [Cf. also Dodge, Cult. of Hemp and Jute, U.S. Dept. Agri. Fibre Investig. Rept., 1896, No. 8.] In New Jersey experiments were conducted to test the influence of environment on the relative production of male and female plants. On rich soils twice as many female as male plants spring from the seeds. So also seed collected late in the season was found to give more pistillate than staminate plants.

Turning now to the mistakes made by Gerard and most of the early writers regarding plants supposed to be wild states of *Cannabis sativa*, it may be observed that in the classic literature of this subject in Europe, India and China, exactly parallel examples of error may be cited to those of the 13th to 18th century writers. In India from the time of the early Mughal Emperors, at least two, if not three fibre-yielding plants have been recognized as forms of hemp, viz. *bhangā* or *sana* (*Cannabis sativa*), *patase* (*Hibiscus cannabinus*), and *san* (or *sun*) (*Crotalaria juncea*). The first two are mentioned, for example, in the *Ain-i-Akbari* (1590, Blochmann, transl., I, 87) in such terms as to leave no doubt as to the palmate-leaved *san* having been recognized as distinct from the yellow-flowered *san* of another passage (Gladwin, transl., I, 101). But while *sana* — a fibre — occurs in the *Institutes of Manu* (probably of date 100 to 500 A.D.) and in some of the later Sanskrit works, it apparently denotes *Crotalaria* rather than *Cannabis*.

It would thus seem as if the word *sana* to denote the true hemp had been a comparatively modern usage.

History. — The names *scherma* and *deschama* given to it, according to John Amaw (Stirp. Rar. Imp. Buth., 1730, 174), in Dahurias, are suggestive of the Chinese *tsa-ma* (great-ma), *si-ma* (male-ma), *tsu* (sometimes written *chu*-) *ma* (female and seed-bearing-ma).

Bretschneider says “the character *ma*, which nowadays is a generic term for plants yielding textile fibres, was in ancient times applied exclusively to the common hemp plant *Cannabis sativa* Linn. It would, in fact, seem fairly certain, if the plant be excluded by botanists from the position of being regarded as indigenous to China, it has been frequently mentioned in the *Rāja*, and special characters are employed to denote the fibre plant as distinct from the seed-bearing form. In fact it would seem that so very ancient is the character *ma* that it denotes conjointly fibre and oil (or food). Dr. Henry has pointed out to me that the character in question looks not unlike two plants within a partially protecting line. Whether or not the very character used to denote *ma* was intended to convey the idea of the two forms, the double property was certainly known from the most ancient times. [Cf. Kew Bull., 1891, 247-59.] Bretschneider accordingly observes: — “As hemp-seed was an article of food, hemp in ancient times was reckoned as one of the five, or nine, kinds of grain.” The *Lu Shi* (Sung dynasty) relates a tradition according to which the Emperor Shen Nung (28th century B.C.) first taught the people to cultivate the *ma*.

Discussing the classic names associated with India, G. A. Grierson (Note on the References to the Hemp Plant occurring in Sanskrit and Hindi Literature, in H.D.C.R., iii., 246) mentions *bhangā*, *indrāpina* and *vijāyā* or *jāyā*.

The name *bhangā* occurs in the *Atharvaveda* (say 1400 B.C.). The hemp plant is there mentioned simply as a sacred grass.” It was one of the five herbs offered in oblations, viz. *soma*, *kuśa*, *bhangā*, barley and *saha*. “The first mention of *bhangā* as a medicine which I have noted is in the work of *Suvaru* (before the 8th century A.D.), where it is called an antipleptic. During the next four centuries *bhangā* (feminine) frequently occurs in Native Sanskrit dictionaries in the sense of hemp plant.” “In the 10th century the intoxicating nature of *bhang* seems to have been known: and the name *indrāpina*, Indra’s-food, first appears, so far as I know, in literature. Its intoxicating power was certainly known in the beginning of the 14th century.” The synonym *vijāyā* (the giver of success) often has the alternative meaning of *kariaki* (*Terminalia*). Dutts (Mat. Med. Hind., 1900, 235-41)—a great authority on the Sanskrit names of plants — says a mythological origin has been invented for this plant. It is reported to have been produced in the shape of nectar while the gods were drinking the ocean. In part confirmation of this view it may be mentioned that in the medical treatise that constittes The Bower Manuscript (translated and annotated by Dr. A. F. Rudolf Hoernle) no mention is made of Indian hemp in any form. The MS. was found at Kucha, Khotan, which according to Stein was engulfed towards the close of the 8th century. It is thus

251
very possibly the oldest Indian MS. of a medical work extant. But in the *Pharmacographia Indica* the following occurs, "It is mentioned along with the Vetada or ganja, which has magical and medicinal properties and which is described in the *Aharavvida* (ix., 34, 35) as a protector." "The gods are said to have three times created the herb (ghadhi)." "The intoxicating properties which the plant possesses in its Eastern home appear not to have been discovered until a more recent date, but in the fifth chapter of *Manu*, Brahmins are prohibited from using it, and in the sacred books of the Parsis the use of *bana* for the purpose of procuring abortion is forbidden." It may, however, be pointed out that the authors of the *Pharmacographia Indica* would perhaps have been more correct had they stated that the magic plant was called *sana* not *bhang* and was spoken of as springing from the saps of husbandry—it was therefore a cultivated plant and one possibly of moist soils. On the other hand, Dr. Krishna Garda of Poona, in his evidence before the Hemp Drugs Commission (vii., 173-9), stated in the most emphatic manner that in the ancient classic literature of India there was "not the slightest reference, direct or implied, to the narcotic properties of the plant." Panini, he continues, "refers to it as cultivated in fields (evidently for its fibre and seed). Manu and Kaushitaki Brahmana refer to it as a source of fibre. Later Sanskrit commentators and lexicographers interpret *bhang* as *shana*, the Bengal *sunn* plant (*Crotalaria juncea*), which has been known in India from time immemorial as a plant-yielding fibre." There are no Sanskrit names for *ganja* or *charas*; all the words so used, according to Dr. Parker, have been recently coined. In the "Saba Parva" of the *Mahabharata*, the Sakas (Seythians of Turkestan) are spoken of as bringing presents of thread spun by worms and *patta*. In that reference apparently the fibre of hemp may have been denoted, but it was not called *sana* but *patta*.

Grierson (in his communication to the Hemp Drugs Commission) observes that the first reference to *ganja* which he has noted is about 1300 A.D. He then adds that according to an old Hindu play written in the beginning of the 16th century Siva himself brought down the *bhang* plant from the Himalaya and gave it to mankind. Jogis are well-known consumers of *bhang* and *ganja*, and they are worshippers of Siva. In this connection also it may be explained that Grierson has permitted me to re-submit to him personally the controversy regarding the *bhangâ*, *ganja* and *sana* of Sanskrit literature. While he diffidently urges that comparative philology is out of his line, he points out that if it be accepted that *bhangas* is an Aryan (not a Semitic word as Burton suggests), it is derived from *bhanj*—to break (transitive). In that sense it occurs not infrequently in names of plants other than *Cannabis*, such as *gôra-bhanjâ* (= body-breaking), *kathu-bhangâ* (= pungent *bhang*); so also in certain combinations such as *priyakha-bhangâ* (= back-breaking—a trick in wrestling). But if the derivation from *bhanj* be correct, then the "breaking" might refer to the senses and have the meaning of "to rout." The Indian *bhangâ* and the Avesta *banâ* (the Persian *bang*) have a common origin and the "bh" form is the original. The reverse is improbable if not impossible. The nearest certain common root is the Sanskrit *bhanj* already mentioned (suggestive of a hypothetical *bhranj*, and of *frangere*, *broken*, *break*, etc.). [Cf. Helm, Kulturpf. und Haust., 471-2.] The word *bhang* has both a male and female form, a circumstance suggestive of the botanical male and female plants, and if so that fact might be viewed as removing it from *sana* (which usually denotes *Crotalaria juncea*). Commenting on the word *sana*, Grierson says its origin is unknown to him but that the cerebrals "n" suggests a previous "rn." It can have nothing to do with *indra-sana* (Indra's-food). Praim, on the other hand (*Cult. and Use of Ganja*, 1893, 43), regards *sana* as the most interesting of the Sanskrit names for this plant. Prof. Ranson writes me that it is quite possible the original form of the word was *kara-fis*, hence the numerous Teutonic names like the English "hemp." and the early English "henepe." The Greek and Latin "k" often changes into "p" and the "b" into "p" on passing into English. But if this be so, the final "b" was dropped off in Sanskrit—the *sana* may have been originally *sanab*. The sound-changes involved are quite regular, namely the Sanskrit "s" (the palatal sibilant) passing into the Greek and Latin "k" sound, and then into the English "h." But O. Schrader (*Reallexicon der indogerm. Altertum.*, 1901, 331) observes that the *bis* or *pis* in the Graeco-Thracian *kara-fis* is suggestive of *pis*, *pus*, the (Finnic) Sirienian and Votiai word for nettle, so that the original may have been *kara-fis* and meant hemp-nettle.
CULTIVATED AND WILD

I. THE FIBRE HEMP. (Seed, pp. 256–7, and Narcotics, pp. 258–63.)

Cultivated and Wild States of the Plants.—The remarks already made regarding the male and female conditions of Cannabis sativa have indicated some of the chief opinions that prevail in Europe regarding methods of cultivation. It has moreover been incidentally implied that in India, hemp is grown for either of two main purposes: (a) the supply of the narcotic; (b) the production of fibre. It is, however, very generally admitted that in the plains of India, while the narcotic principle is readily developed, the fibre is as a rule but very imperfectly formed. In many reports it is affirmed that certain forms of hemp contain a stronger or a better flavoured narcotic than others, circumstances explained by some authorities as being consequent on more careful preparation. [cf. Kotah State Mem., H.D.C.R., app. iii., 178.] Prain says, “Bhang is held in very different degrees of estimation according to the locality in which it is grown; that from the plains is valued more highly than that from the submontane tracts along the Himalaya.” On the North-West Himalaya the plant is fairly extensively cultivated, however, as a source of fibre, the narcotic being but indifferently produced. In some localities ganja is said to be obtained, in others charas, in a third bhang, while in Sind it is reported that the plant affords a good fibre as well as a fair quality of bhang. These peculiarities are not, however, by recent opinion accepted as involving conditions that are even racial in value, but are viewed as the direct results of climatic and soil influences. Prain, moreover, remarks, “We must conclude that, having reached India as a fibre-yielding species, the plant developed the narcotic property for which it is now chiefly celebrated there.” So also the H.D. Commissioners in their Report (i., 17) observe, “The function of the Commission is to test by the information they have collected the views therein expressed regarding the probable existence of races capable of yielding as a speciality the different products—fibre, ganja, charas and bhang. The only differences recognised in the plant by the people are between the wild and the cultivated plant, the male and the female and the varieties of the male and female plants already referred to.” Summing up, the Commissioners, however, observe that “there is no evidence of racial speciality or differentiation of the decided sort suggested” by some writers. Similarly it may be pointed out that Roxburgh was apparently much impressed with the absence of distinctive varieties. “Few vegetables,” he remarks, “so widely diffused over almost every part of the known world, and under the immediate management of man, have undergone less change.” (Trans. Soc. Arts, London, 1804, xxii., 385). It is thus certain the plant has varied structurally to a far less extent than might have been anticipated. But racial characteristics are not necessarily botanical manifestations, and that the plant has changed is at once evident by the widely different products which it affords. It has not as yet, however, been critically examined and compared province by province on the
and manufacture were carried on at Rishra, Cassimpore, Maldah, Gorakhpur, Mhow, Rohilkand, Azimgarh, etc., etc. The results were everywhere unsatisfactory. Still, however, inquiry and experiment were re-instituted in 1871, especially with regard to the fibre of the rejected stems from ganja cultivation; but the result was again unfavourable. The area of possible cultivation of hemp fibre was admitted to be that where it has from time immemorial been produced, namely the slopes of the warm temperate Himalaya. But it may fairly well be affirmed that the Himalaya as a possible extended source of supply has not been fully exploited. Recent and future increased facilities of transport may be looked to as giving openings for developing the trade in Nepal, Kumaon, Simla, Kullu and Kashmir hemp fibre. Some years ago the East India Company made contracts for Himalayan hemp (H.D.C.R., app. iii., 26, 27, 231). For this purpose advances were made to the cultivators, and the fibre purchased at a fixed rate. The system worked well, and should a demand arise in the future, it might be resumed as the best mode of dealing with a community of very poor cultivators. [Cf. N.W. Prov. Gaz., x., 799–805.]

CULTIVATION AND CHIEF LOCALITIES.—Cannabis sativa is grown as a source of hemp fibre in two localities: (a) the North-West Himalaya, including Kashmir, and to a much smaller extent in (b) Sind. The wild or fully acclimatised plant is called jangli-bhang, or ganara-bhang. Whether the two conditions—the wild and the cultivated—can be separately recognised seems doubtful; still it is a fact that the wild is useless, or nearly so, for either fibre or drug.

(a) Garhwal.—The fibre-yielding plant grown in this district is met with on rich land having a north exposure. It is believed, moreover, that it would be impossible to give it too much manure. The small plots assigned to hemp are accordingly, as a rule, seen in immediate proximity to the cultivator’s house, and are carefully protected. The crop does not succeed below 3,000, nor much above 7,000 feet in altitude. It is sown in May to June (about 60 lb. to the acre), and during growth the land is once or twice dressed, and where necessary the plants are thinned out so as to stand a few inches apart each way; and September to early in November the crop is ripe, and matures from 10 to 14 feet in height. The plants that bear seed are called ajwango or kalango, and those that do not are phulango. The stems are cut with a sickle and spread on the ground to dry for 24 hours. Those who desire to procure charas (+ganja) now rub the fruiting tops and young leaves between their hands and thus procure the drug. The leaves are as a rule regarded as useless, but a small quantity may be collected, dried, and employed as bhango. The seeds are gathered, and constitute the second valuable product of the plant. The kalango stems are exposed to dry, and are in due course retted and the fibre separated and cleaned, as with the male stems (see p. 50). From the fine fibres of both plants the teoka or sheet worn by the people in Garhwal is prepared. Nearly one-third of the population of that district are clad in hempen garments. While that is so, it is remarkable that a certain odium is associated with the cultivation of the hemp plant, and hence only the low-caste farmers (dômas), or the half-caste Rajputs (Khasia-Rajputs) will grow it. [Cf. H.D.C.R., x., 19, 29, 41–8, 76–8.]

(b) Kumaon.—A highly instructive account of the cultivation of hemp fibre in Kumaon will be found in the Gazeteeer of N.W. Himalaya (1882, 760–7). The system pursued differs in no essential from that just detailed, and the objection to being classed as a “hemp-grower” also prevails. In the Hemp Drugs Report (i.e., 93) mention is made of the manufactures produced, which it would appear are fairly extensively exported from Almora to the plains. Owing to the usefulness of the plant its cultivation is said to have recently been considerably extended. The manufacturers of hemp string and rope are reported to be a special class of people called boras or pajais.

(c) Nepal.—In this State the sowings are usually made a little earlier than in Kumaon and Garhwal—viz. from March to April, and the crop is accordingly

CANNABIS SATIVA

Production.

Seasons.

Two Forms.

Teoka.

Cultivation not Popular.

Manufacture of String.
CANNABIS SATIVA
Oil-seed

Simla Hills.

(d) Simla and Kangra.—A short notice of hemp fibre in Kotgarh will be found in the Asiatick Researches (1825, xv., 474, 478). One of the most interesting and useful accounts of the hemp cultivation of the Himalaya is that given by Baden-Powell (Pb. Prod., 1868, 504–7). Stewart, in a correction on the text of his Panjab Plants, has recorded his final opinion that Cannabis was wild in the Panjab hills, and speaks of it as cultivated up to 10,000 feet in altitude. Coldstream says (H.D.C.R., v., 365) it is not cultivated in the Panjab for the production of charas or ganja. Useful additional particulars will also be found in the Kangra Gazetteer (1897, 78) and in Mr. Anderson’s statement (H.D.C.R., v., 379).

(e) Kashmir.—In 1799 Captain Thomas Hardwicke visited Srinagar, and in the Asiatick Researches furnished an interesting narrative of his journey (vi., 376). He there observes that Cannabis sativa “is cultivated in several parts of the mountains for two purposes: one for the manufacture of a coarse thick cloth, which the poor people wear, and the other in making an intoxicating drug exported to the low countries.” Lawrence (Valley of Kashmir, 69) tells us that about 600 maunds of fibre are annually produced in the country below Srinagar. Further particulars on this subject will be found in the Hemp Drugs Report (app. iii., 128). Many writers allude to the very superior paper that was formerly made in Kashmir from bhang fibre (H.D.C.R., v., 438). Of Kyiyang, the Rev. Mr. Heyde (H.D.C.R., v., 487) informed the Commission that in British Lahul all the zamindars cultivate a small piece of ground, if possible, close to their houses, with hemp, solely in order to obtain fibre. This is made into strings, with which the straw shoes (bulla) are sewn together. Very few people smoke bhang, and those who do, obtain their supplies from traders, who carry it from Yarkand to Hindustan.

Sind Hemp.

(f) Sind.—Wild hemp known as kohi bhang is said to grow on the hills. The plant is cultivated on account of bhang (it does not yield ganja or charas) in this province, but the stems are occasionally utilised as sources of fibre, hence Sind being sometimes mentioned as producing the true hemp; at the same time the seeds are collected and eaten, or oil is expressed from them. Sir H. E. M. James, in his evidence submitted to the Hemp Drugs Commission (vii., 235), stated that the charas used in Sind is imported chiefly from Kandahar. The Deputy Collector of Naushahra (Witness, i.e. No. 4, 243) says, “In order to raise a good crop of hemp, it is necessary that the land should be well ploughed, manured, and copiously watered. The seed is sown in October or November, and the crop is ripe in April.” According to another witness (Seth Vishindas Nihalchand, 291) the fibre is called sini. The stems are steeped in water for 15 days, after which they are taken out and then yield their fibre. But it may be asked—is it possible that Crotalaria juncea is the hemp fibre of at least some of the Sind reports? In South India, at all events, it would appear certain the fibre-yielding plant often spoken of as Cannabis sativa (H.D.C.R., app. iii., 83) is in reality Crotalaria juncea.

Trade in Hemp.—Russia still holds the foremost position in the world’s supply of this fibre. The exports of hemp from India are mainly in san-hemp (Crotalaria), and the imports almost exclusively in Manila hemp. Hemp is regarded as resembling flax, but as possessing a higher tensile strength (30 to 35 as compared with 20 to 25 kilos per square mm.). It resists retting, and on that account is much valued for ropes and sail-cloth.

II. THE SEED AND OIL.

Edible Seeds.—Galen tells us that it was customary to give hemp-seeds to guests as a promoter of hilarity (cum alis tragicematis). Garcia de Orta speaks of the Indian seed being smaller and darker coloured than that of Europe. There is little doubt that the tendency for the seeds (fruits) to become agglutinated with the resinous narcotic is much greater in India than in most other countries, and this would seem to account
HEMP-SEED

for their being described as darker coloured. But it is no stretch of imagination to assume that it was the presence of the very minute particles of the narcotic that, in the story told by Herodotus, made the Scythians shout for joy while in their medicated vapour baths. Hove's description (1787) of the vapour given off by the preparation consumed by his followers at Surat having overpowered him, might in fact be cited as a commentary on the passage in Herodotus. O. Schrader, in fact, says the Scythians never washed in water but intoxicated themselves with the smoke of the seeds of hemp. In Persia the seeds are called Shahdananah, or Emperor's seeds. Tragus tells us that in Eastern France in his time (1539 A.D.) the seed was cooked daily among other foods such as barley, but he adds it was regarded as dangerous if partaken of too liberally or too frequently. Paludanus in a footnote to Linschoten's account of hemp refers (1598) to a mixture eaten in India called bosa or beza which, he says, consisted of the seeds of Lolium and of hemp (see Eleusine, p. 521; also Malt Liquors, p. 758). Mr. W. Coldstream, for example, informed the Commission that the edible preparation known as mira consists of hemp-seeds mixed with parched wheat or bathu (Amaranthus) or of rice. Pandit Gunga Dutt Upreti spoke of the seeds being cooked in Almora along with vegetables. Mr. Dharma Nand Joshi remarked that they make all vegetables palatable and wholesome. Mr. Anderson spoke of the parched hemp being mixed with grain and eaten, although, he adds, the mixture sometimes affects the eyes in the fashion known of charas. Mr. R. C. Artal of Bijapur mentioned that the seeds are employed as an ingredient in chutney. Mr. Minnaken observed that in Bashahr the ripe seed is mixed with spirit to make it more intoxicating, and Sir Walter Lawrence in his work on Kashmir informs us that “the hemp seeds yield an oil which like charras is used for intoxicating purposes.” It may thus be concluded that if the fruits be used without being specially cleaned they may be, and in India apparently often are, so impregnated or agglutinated with narcotic that they are distinctly intoxicating. These fully substantiated facts seem to justify the inference that the Scythians of old, as do the African bushmen to-day (Burton, Arab. Nights, i, 65), became intoxicated by inhaling the volatile narcotic present on the seed-coats and adhering particles of the inflorescence, without for centuries thereafter the drug having been isolated or separately recognised.

Hemp-seed is employed as a food for birds, poultry, etc., and in India especially commended as an occasional diet for milch-cows.

Oil.—Hemp-seed when expressed yields 15 to 25 per cent. of a pale limpid oil. This is at first of a greenish-yellow colour but gradually deepens when exposed to the air. The flavour is described as disagreeable, but the odour as mild. Its sp. gr. ranges from 0·963 to 0·991. It becomes turbid at a temperature of 15° C. It absorbs from 143 to 144 per cent. of its own weight of iodine. Its drying properties are good, but in England it is rarely used for paint, though in some parts of Europe, where procurable in abundance (especially in Russia), it is fairly extensively utilised. It is also largely employed as a lamp oil, but its best use is in the preparation of soft soap. It dissolves in boiling water, and in 30 parts of cold alcohol. It is sometimes difficult to get linseed oil absolutely free from adulteration with hemp-seed oil. The oilcake is used in feeding stock. In the United States hemp is said to yield from 20 to 40 bushels of seed to the acre. The plant requires to be harvested before becoming quite ripe, owing to liability to seeding. The seed loses its germinating power very quickly, hence the stock should be one season old only. It is said that Russia annually produces close on half a million tons.
THE INDIAN HEMP PLANT

III. THE NARCOTIC—INDIAN HEMP.

So much has already been indicated of the narcotic property of Indian hemp that the subject need hardly be further dealt with in this work. Moreover, it has been so thoroughly treated of, in the publications quoted in the opening preamble, that it seems only necessary to refer the reader, who may desire full particulars, to these most useful publications. As already explained, there are primarily three forms of Indian hemp, with, under each, local modifications, special preparations, adulterants and imitations. Chemically, all three are one and the same. They represent different methods of production, different degrees of purity and intensity, and are often so blended into each other that their isolation becomes impossible, or nearly so. They may, however, be indicated briefly, as follows:—

1. Bhang.—This is also known as siddhi, subjü, or sabzi, thandai, patti, etc., and in Central India it is vijaya, butt, and sabzi. It consists of the specially dried leaves and flowering shoots of either or both the male and female plants, whether wild or cultivated. Lt.-Col. Prain dissents somewhat from this opinion, since he would appear to believe that the male plant is inferior to the female in value as bhang. "There is reason for thinking," he says, "that from the best bhang male leaves are excluded." The narcotic principle, though not present in the very young state, begins to form with the growth of the plants, and reaches its greatest abundance about the time the flowers appear. But it gradually diminishes as the leaves pass maturity, and is entirely absent (or nearly so) from leaves allowed to turn yellow and to be dried up while still attached to the plant. [Baden-Powell, Pb. Prod., i, 505; H.D.C.R., iii., app., 153; Prain, Cult. and Use of Ganja, 12.]

The dried leaves as met with in the Indian drug-shops usually consist of a powder known as siddhi, and this may be composed of fragmentary leaves only, or, as already stated, of the inflorescence as well, and even of the seeds. Sometimes this is called patti (the leaf), the word bhang, the most general of all, having more often a wider signification than the dried leaves. Siddhi is collected on the plains and lower hills, frequently from the wild plant, but here and there, all over the country, small plots may be seen near the homesteads in which the plant exists in the condition of semi-cultivation. When prepared for consumption the fragments of the plant are ground to a paste, and of this an emulsion is made which, after being filtered through a cloth, may be consumed in that form, or flavoured with sugar, spices, cardamoms, melon seeds or milk. The simple beverage goes by various names: bhang or siddhi in Bengal; siddhi or thandai in the United Provinces; ghota in the Central Provinces; and ghota, tadhul or panga in Sind. In Madras a similar liquid is called ramras or ramrasam, which in Upper India is sometimes called dudhia. In Poona a beer made with juar and bhang is called bhoja. Occasionally musk or other perfumes are added to disguise the objectionable smell, while to make the beverage more intoxicating and poisonous, opium, dhatura seeds, arsenic, strychnine, aconite, oleander root, and the seeds of black henbane are used. The special employment of the roots of certain grasses such as rice and jurf is frequently resorted to (see Sorgum vulgare, p. 1040). A preparation of Indian hemp and alcohol is called latti, and a drink called madra (used in Baluchistan and the Panjâb) is said to contain hemp, opium, alcohol, and dhatura. Majun is a sweetmeat prepared from the emulsion; it is extensively eaten all over India. The Emperor Baber mentions in his Memoirs (1519) the number of times he had partaken of "majun." John Lindsay (Journ. Captivity in Mysore, 1781, iii., 293) tells of his soldiers having been obliged to eat a "majun." The practice is, therefore, a fairly ancient one. Lastly, it may be pointed out that in Thomas de Quincey's Confessions of an English Opium-eater, "madjoon" would seem to be spoken of (but quite incorrectly) as the Turkish name for opium.

Of all the forms of Indian hemp bhang is the least harmful, and, according to
of coming across, in the ruins explored by him, either samples of charas or of the hemp plant in any form, and further that in neither The Bower Manuscript nor the voluminous records found by Stein is there apparently any mention of the hemp drugs. This is the more significant since, while discussing the modern trade in charas, Stein (l.c. footnote, 133) observes that the heavy import duty now imposed by the Government of India has caused the traders of Turkestan to turn to Khotan silk as a substitute commodity to be conveyed to India and there disposed of in exchange for the return of Indian goods.

The line of separation between what should be called charas and what might be accepted as ganja is, however, a very narrow one indeed. It would seem highly probable, in fact, that on the moister southern slopes of the Himalaya the resinous substance produced by rubbing the fruiting panicles between the hands is more frequently ganja than charas. The definition that charas is the pure resin without any admixture of vegetable tissue is true no doubt, but is perhaps not the whole truth. If both articles were freed from foreign matter, the question might still have to be asked, In what respects do they differ? Physically more than chemically very possibly, and as the direct consequence of production in a cold-dry, or warm-damp atmosphere. [Cf. Marshall, Contrib. to Pharm. of Cannabis Ind., 1899; Holmes, Msa. Rept. Pharm. Soc., 1903, 47.]

Sir Walter Lawrence (Valley of Kashmir, 67) has expressed astonishment that the drug produced in Kashmir is in trade called charas, whereas "recent inquiries show that in the south of the valley the drug known as gourd bhang or churu charras, is extracted from the female plant, and Indians who consume it declare that it is real ganja and utterly distinct from the Yarkandi charras, which is also procurable in Srinagar." "If the-Kashmiri drug is ganja and not charas it is somewhat surprising, and I have taken some pains to verify the statement made by the official, who investigated the subject of hemp drugs. He and the men employed in the trade maintain that the drug made in Kashmir is ganja." Lawrence then adds that contrary to the experience in Bengal, Kashmir ganja is produced from plants that are allowed to mature seeds, the oil from which is also intoxicating. It is thus highly probable that the true charas is a foreign article exclusively derived from Central Asia, and, as it came to India through Kashmir, was in ancient times called Kashmiri. Formerly it came also via Nepal, but at the present day the chief emporium is Hoshiarpur, the supply coming both via Kashmir and Kullu. It would thus seem highly probable that we do not even now possess an accurate account of the production of this substance, nor all the information desirable of the condition under which the dry resin charas or the moist adhesive ganja is produced. Prain holds that the former being comparatively permanent once on the surface, it is not affected by the subsequent fecundation and development of seed.

It may be here observed that there is at least one important difference between the South Himalayan so-called charas and that from Central Asia, namely the former is taken from the green plant before it is reaped, and the latter from the dried plant. The possibility of adulteration with actual dust and with fragments of the plant is very great with the Central Asiatic charas, and this circumstance may account for the higher price often paid for the purer qualities of the Indian so-called charas. For methods of collection consult the Dictionary (ii., 115-7); and Baden-Powell (Ph. Prod., 1868, 293, etc.).

Charas is almost exclusively used in smoking, though some of the finer qualities are employed for medicinal purposes. It is admitted on all hands to be a more pernicious drug than either bhang or ganja.

3. Ganja.—This is the dried flowering tops of the cultivated female plants, which become coated with a resinous exudation from glandular hairs, very largely, it would seem, in consequence of being deprived of the opportunity of setting seed. To secure this result, therefore, the male plants are deliberately removed from the field at an early date, by an expert known as the poddar. (Compare this with the account above of the removal of the males from the fibre-yielding crop.) One or two visits are paid by the poddar, with the result that every male plant is uprooted. As the female plants begin to form ganja, all the large leaves on their
stems and branches are also removed. The smaller leaves and bracts of the inflorescence become agglutinated and the manufactured article is valued very largely by its freedom from leaf. The colour and smell are features of merit, but as a rule the ganja which has the least leaf is regarded as the best.

Ganja is cultivated in several localities such as in North Bengal, on the Malabar Coast of Western India, and in the Tributary Mahals of Orissa (the Gurjar ganja). These may be regarded as the chief centres, but it is also produced in the Central Provinces (Nimar), in Indore, Gwalior, Kishengarh, Mysore, Hyderabad, and in some districts of the Bombay Presidency. It may suffice to give a few practical facts regarding the Bengal cultivation and manufacture. It is grown in a very compact tract of country with a radius of about sixteen miles, and which lies in three districts, viz. Dinajpur, Rajshahi and Bogra. It is for administrative purposes placed under the Collector of Rajshahi, the sub-divisional officer of Naogon being in immediate charge of this, the so-called Ganja Mahal. Seedbeds are formed on high land above inundation, and consist of a light sandy loam. The beds are richly manured and ploughed once a week from the middle of May forward, and are sown in August. Meantime the land on which the crop is to be ultimately raised is being also richly manured and top-dressed from the ditches and ploughed and harrowed once a month. By the middle of September the seedlings are transplanted to the ridges formed in the field. A month later a careful weeding is given, and in November the ridges are hoed down and the plants trimmed by the removal of the lower branches. This admits of a further ploughing between the furrows and of a top dressing with powdered cow-dung and oilcake, after which the ridges are again built up.

At this stage the first visit of the "ganja doctor"—the poddar—is made. Pain, in his paper (Morphol., Teratol., etc., i.e.), explains that the poddar's guide is the early appearance "of the often abortive, solitary female flowers that so frequently, in the Indian male hemp plant, take the place that theoretically should be occupied by the lowest pairs of paniculate male inflorescences." These abnormally placed female flowers, it would seem, are visible long before the inflorescence of male flowers could for certain be recognised. The poddar in consequence breaks the stems of the plants that manifest this peculiarity and the cultivator following behind uproots them, and fills up the vacant places by fresh transplantations from the purposely reserved surplus in the seed-beds. A second or a third visit of the poddar suffices for the complete extirpation of the male plants. But abnormal male flowers are not unusual on the female plants, and these the cultivator keeps a sharp outlook for and removes. By January the flowers begin to appear, harvest is general in February, and by the middle of March is completed.

There are three forms of ganja produced:

(a) Flat Ganja.—The stems are cut with a sickle about 6 inches above ground, tied together by their ends, placed across a bamboo and carried to the selected place of manufacture. The inflorescences are then one by one placed on the ground, and trodden underfoot so as to cause the agglutinated flower-tops and smaller leaves to become compacted into flat masses (chāpta ganja). These heads are then baled as "large flat" or "twig flat," according to the size of heads and length of stalks.

(b) Round Ganja.—Instead of being trodden, the heads are rolled underfoot so that they are less firmly compacted, and are in the form of rounded or sausage-shaped masses. Round ganja is never baled, but is tied up into bundles (goli ganja).

(c) Chur (Powder) Ganja or Rora.—Broken fragments or flower-tops detached from the twigs, whether of flat or round ganja, constitute chur. These are very largely produced through trimming, especially that of the round form.

Bengal Ganja is in other provinces of India usually designated as
"Baluchiar," from the name of a village where it is supposed to have been originally procured. The ganja of Upper India, such as that of Gwalior and the Central Provinces, is called "Pathar." The refuse from the manufacture of ganja is often sold as bhang.

Medicinal and Chemical Properties.—The action of the drug in causing insanity has, by the Report of the Hemp Drugs Commission, been viewed as a greatly overstated belief. The moderate use of the drug is attended with no evil physical effects. If pure and taken in moderation it has little or no tendency to originate insanity. But when mixed with the poisonous substances sometimes employed it becomes most pernicious. Excessive use of hemp in any form, however, indicates and intensifies mental instability. It tends to weaken the mind, and may even lead to insanity. But in the year of the Hemp Drugs Commission only 7-3 per cent. of lunatics admitted to all the Asylums in India were said to be those in which hemp could reasonably be regarded as having been a factor of importance. [Cf. Gibbon, Med. Jurisprudence for Ind.; Walsh, in Journ. Mental Science, 1894.] Moreover, the insanity produced, as a rule readily gives way to treatment, and since the drug creates no craving its discontinuance is possible, and the restoration of the mental faculties almost instant. So much has, however, been written on these subjects that it is impossible to do more than refer the reader to some of the standard works that may with advantage be consulted.

Trade and Fiscal Administration.—In India the cultivation of this plant, where intended for the production of ganja, can alone be undertaken under license; moreover, the cultivation is periodically inspected, and the yield approximately ascertained. While no restrictions are placed on the sales to the trade, the produce when disposed of by the cultivator is stored either in Government warehouses for the purpose, or in approved godowns under double keys, one retained by the owner, the other by a Government official. Removals pay the fixed duty, and are recorded in such a way as to show the relation to the cultivator's estimated production and deed of sale. Both wholesale and retail traders have to obtain licenses. The traffic in ganja is thus under complete control through every stage. With regard to charas, a minimum duty of Rs. 80 per maund is levied on all imports. The drug is stored in approved warehouses and a further duty paid on removal, while inter-provincial adjustments are conducted on permits to carry from one province to another. Bhang, where found possible, is also taxed, but, the plant being wild in many localities, no interference is made with the domestic supplies of the people, the regulations having effect only on actual sales and regular trade. The sale of the narcotic in any form by persons not licensed to cultivate or sell these drugs, is a criminal offence.

Separate licenses have to be taken out for the traffic in each of the three kinds of the drug, and the retail vendor is prohibited from supplying
children or insane persons with any. A limit is at the same time fixed on the amount that may be either sold to, or possessed by, a private person at one time. It is universally believed by both traders and consumers that all forms of the drug deteriorate with age. This is just the opposite opinion to that held with regard to opium. It accordingly follows that every effort is made to dispose of the produce year by year, and not to store it. It is perhaps on this account that such indifferent results have been obtained with Indian hemp as a medicine in Europe as compared with India. Long years ago Honigberger (l.c. 157) deplored this fact. To ensure fresh stuff it has accordingly been recommended by Prain that all purchases by the European dealers should be made direct through the Government official in joint charge of the warehouses.

Area and Revenue.—In 1895, when the Government of India published their Resolution on the Report of the H.D. Commission, the total area in all India under regular cultivation of the plant was estimated at under 6,000 acres. In 1900–1 the Agricultural Statistics of India show the extent of cultivation to have been only 4,096 acres; in 1901–2 it would appear to have stood at 2,496 acres; in 1902–3 at 1,940 acres; in 1903–4 at 2,637 acres; and in 1905–6 at 2,645 acres, with, over and above, 419 acres in the Native States. If these figures denote an actual curtailment of area, not merely more accurate returns, they have curiously enough been coincident with increasing revenue. In the Excise Administration Reports, the Hemp Drugs are shown to have realised a total revenue of £201,344 in 1900–1, of £213,224 in 1901–2, and of £225,582 in 1902–3—later figures are not available. It would therefore seem that official returns may be accepted as exemplifying the continued careful control and restriction pursued by the Government.

Prices and Duty.—The prices of the various forms of Indian hemp vary so greatly that it seems hardly worth while to give a quotation of the figures usually recorded. The price depends upon a multitude of circumstances, such as the quality, method of preparation, degree of taxation, and the like. The Government of India, in their Resolution on the H.D. Commissioners' Report, placed before the various Indian Administrations a table of retail prices per seer (2 lb.), which was commended to their attention with a view to gradually securing a greater uniformity. To manifest the extremes exhibited in that table the following may be abstracted:—GANJA in Assam sells at Rs. 15 lowest price and Rs. 40 highest price; while in Bombay it is sold, lowest price 6 annas and highest Rs. 5. CHARAS in Panjab, lowest price Rs. 4, highest Rs. 15; while in Bengal its lowest price is Rs. 35 and its highest Rs. 40. BHANG in Panjab sells at lowest price 2 annas and highest 8 annas, while in Bengal its lowest price is Rs. 1 and the highest Rs. 6 per seer. These variations to a large extent are the direct expression of the varying incidence of taxation, but there can be little or no doubt that there is a considerable variability in intrinsic merit, not only between the produce of one province and another but even between the different districts of the same province.

For the rates of duty and all other particulars regarding the traffic in hemp narcotics, the reader should consult the provincial Reports of Excise Administration in India. Some of these annual volumes (especially those published by the Government of Bengal) will be found to contain the fullest possible details.
THE CAPSICUM OR RED PEPPER

Matthiolus (New Kreüterb., 1563, 216) gives a good plate of Capsicum and calls it "Calicutt pepper." He says it is a foreign plant lately introduced into gardens in Germany, and subsequently (Med. Comp., 1571, 322) he remarks that it is an obvious mistake to confuse Capsicum with Cardamomum. Lobel (Stirp. Adv. Nova, 1570, 134) observes that within his memory this plant (of which he gives a good plate) has been brought from Goa and the shores of Calicut. There can be no doubt, therefore, that the Portuguese had very early introduced Capsicum into Goa, and very possibly commenced to export it, in competition with the true pepper, hence Lobel as an after-thought may have associated Calicut with the new emporium Goa. Clusius (review of Garcia de Orta) in the Aromaticum, published in 1574, makes no mention of Capsicum, so that it may be inferred the plant had not been seen by Garcia de Orta in India. A little later, however, Clusius (Hist. Exot. Pl., 1605, 340) under Capsicum braziliannum or wild pepper, observes that Spanish or American pepper was brought from the Spanish West Indies and carried to India by the Portuguese under the name of Pernambuco Pepper. Jacobus Bontius (Hist. Nat. et Med. Ind. Or., in Piso, Ind. Uttri re Nat. et Med., 1658, 130-1), who wrote in 1629, describes this pepper under the names of Lada Chilli and Brazilian Ricinus, a fact that led some authors to confuse it with Ricinus communis—the Castor Oil. [Cf. Labat, Nour. Voy. aux Isles de l'Amérique, 1724, ii., 68; Milburn, Or. Comm., ii., 208; Bentham, Notes on Targioni-Toscanetti, Cult. Pl., in Journ. Hort. Soc., 1855, ix., 141; Henry, Econ. Bot. China, 39; Semler, Trop. Agrik., 1900, ii., 284-5; Pharm. Soc. Mus. Repts., 1895-1902, 58.]

With a history so full and so pertinent (many other authors might be cited), it is indeed surprising that one of the greatest of Eastern botanical authors, nearly a hundred years after the appearance of Rheedoe's Hortus Malabaricus, should have affirmed in the most emphatic manner possible his belief that at least certain forms of Capsicum had not only been cultivated in India from the most ancient times, but that it was the siligrostrum of Pliny and Capsicum orientale of Actuarius. Rumphius (Herb. Amb., 1750, v., 247-52, pl. 88, ff. 1-4) advances those opinions without observing that many of the passages in his own most admirable and detailed account contradicted his main assertion. For example, while he completely identifies Rheedoe's Malabar name molago, he deprecatingly observes that no mention is made of its daily and well-known use as a condiment. It never seems to have occurred to Rumphius that Rheedoe's silence on that point, as also the fact that Marco Polo (1286-96) and Garcia de Orta (1563) made no reference at all to capsicum (though they discuss ordinary pepper and the cardamom), might be accounted for by the belief that the capsicums were unknown to the Natives of India in the time of Marco Polo, and even so late as that of Garcia de Orta, while they were but imperfectly understood in Rheedoe's time. Rumphius describes three main forms of Capsicum, which he calls (a) the great red capsicum, the ruteje of the Dutch and receche of the Portuguese in India, the tschili besar or tchili-ayer of the Natives; (b) the lesser red capsicum—a fruticose plant called tchilli-mera; and (c) the yellow Capsicum known as tchilli-cuning. Rumphius then adds that the Portuguese write the West Indian name aki as achi, hence comes the Indian name achar, which the Dutch render atje— a word which has the same meaning as reccehado, namely pickles. It will thus be seen that practically the entire series of vernacular names mentioned by Rumphius, far from their establishing an ancient knowledge in India, would seem to prove that the introduction of the plant may have taken place somewhere about the middle of the 17th century. The names in use in India to-day are clearly of foreign or modern origin, such as chillies, lal-marcha (= red pepper), goa-mircha and the like. There are, in fact, no ancient

265
names for the capsicums in Chinese, Sanskrit, Arabic, Persian, Hebrew, Greek, or Latin. No Indian botanist has ever recorded having found a species of Capsicum in a wild condition. But the rapidity with which the species and races of this pepper became disseminated throughout the tropical and warm temperate tracts of the globe, following closely on the discovery of the West Indies and America, is one of the many examples of the marvellous powers of adaptability and endurance possessed by the plant-cohorts from the New World on their invading the Old.

The following statement is derived mainly from Mr. H. C. Irish's admirable review of the varieties and cultivated races of this species:

(a) Var. abbreviatum, Fingerh.: the Celestial, Etna, Kaleidoscope, Red Wrinkled Princess of Wales, etc.

(b) Var. acuminatum, Fingerh.: the best examples are the erect-fruited Chilli and the pendent-fruited Long Cayenne, Long Yellow Cayenne, Nepal Chilli and the Yellow Nepal Chilli. It includes, in fact, most if not all the long, pointed, pendent forms common as field crops. Recently Mr. H. M. Leake performed some interesting experiments with capsicums at Dalsing Sarai. He selected seed carefully and sowed them in order to watch the tendencies to variation. Nearly half the erect podded stock had pendent pods. Every plant was, however, consistent, either having all its pods erect or all suspended. He further found that chillies will grow on upland land if sown early. Very possibly most of Leake's plants belonged to this variety, but as I have not seen any of his specimens I cannot say for certain.

This would appear to be the Capsicum minus flavum of Rumphius (l.c. 248). Mr. Irish remarks that the seed of the Nepal Chilli had been supplied by the Superintendent of Saharanpur Botanic Gardens, and on being cultivated proved different from other plants seen by him. In the Report of the Saharanpur Botanic Gardens (1894-5, 10) it is stated that the Superintendent had received seed direct from Col. H. Wylie, British Resident in Nepal. The plants grew freely, but the pods produced possessed none of the peculiar flavour and pungency of the pods imported from Nepal. The Superintendent then adds, "In the letter which accompanied the seeds Col. Wylie informed me that that would prove to be the case, as the variety so much in request is the product of a peculiar kind of soil, only found in certain localities, and that in Nepal itself the true Nepal chilli when not grown on the right soil, scarcely differs from the common long red chilli of Indian bazars."

(c) Var. cerasiforme, Miller: Roxb., Fl. Ind., i., 574.—Cherry-pepper is often alluded to by the early authors, such as Miller, Gerard, Parkinson, Tournefort, etc. This includes the Little Gem, Prince of Wales, Cherry, Yellow Cherry Oxheart, Yellow Oxheart, etc.

(d) Var. conoides, Miller: the best-known races are the Coral Gem, Tobacco, Cayenne, Orange-Red Cluster, etc.

(e) Var. fasciculatum, Stirratt: the better known races are Red Cluster, Yellow Cluster, etc.

(f) Var. grossum, Senatt.: Roxb., l.c.—This is the low-free-nurich; is often alluded to and figured by the early European writers such as Miller, Parkinson, Fousch, Gregorius, Bauhin, Morison, Rhodee, etc. Under this form have to be placed —The Emperor, Monstrous, Sweet Spanish, Bell, Ruby King, Golden King, Brazilian Upright, Squash, Yellow Squash. In India the races of this variety may be said to exist mainly as garden plants, though large inflated yellow fruits of this form have recently begun to appear in the markets as a regular article of trade.

(g) Var. longum, Senatt.: C. annuum and purpureum, Roxb., Fl. Ind., i., 573; C. bicolor, Bot. Mag., 43, n. 1835.—This is the plant most frequently described by the early European authors. The best-known races are Black Nubian, Long Red, Country Fair, Cardinal, Long Yellow, Elephant's Trunk, Ivory Trunk, etc. Roxburgh tells us that he found a single plant of C. purpureum in the Botanic Gardens, Calcutta, in 1796 but could not learn whence it came, though he adds, "most likely from the Malacca Islands." Irish asserts all these together as forms in which the calyx rarely embraces the base of the fruit. It seems probable that most of the plants hitherto regarded by writers on Indian garden plants as forms of C. frutescens should be relegated to this position.

This is often called "Bird Pepper." According to the Pharmacographia Indica (ii., 563), C. minimum exists as a weed of cultivation in most parts of India. This I personally have never observed, and hesitate to accept. Owing to the large size of the plant it is the gach-marich of most Indian writers.

Var. bacatum, Linn.; C. minus rubrum, Rumph., l.c., 248, t. 88, f. 2; C. Brasili-anum, Clusius, Hist. Exot. Pl., 340, etc.

Rheede and Rumphius figure and describe forms of C. frutescens, but say remarkably little about the capsicums most prevalently cultivated at the present day. And a thoughtful perusal of the passages used by Roxburgh, in his Flora of India, leaves the impression that, even in his day, the cultivation of no capsicum assumed the magnitude of a regular field crop, such as may be seen to-day in almost every province of India, especially in Bengal, Orissa, Madras and the Deccan. But C. frutescens, far from having become the most abundant form, is usually met with as solitary plants in the grounds around temples and in the flower gardens of the well-to-do classes, but is hardly if ever a regular crop. It is nearly always distinguished as the gach-marich or "long ka morich," as it is called by Buchanan-Hamilton (Stat. Acc. Dinaj., 187-8). In India the most extensively cultivated are the following forms of C. annuum:—var. acuminata followed by longa, and next cerasiformis.

Cultivation.—It is impossible to furnish any statistics of the areas under these plants since they are most frequently raised as borders to fields, or as lines through fields. In Eastern and Northern Bengal, however, capsicum becomes a regular field crop, thriving best on a light sandy loam. The form most frequently seen is a long, narrow, pointed, pendulous red fruit. The seed is sown broadcast, and in Bogra, for example, capsicum assumes the condition of an exceedingly important cold-season crop. In the Settlement Report for Nagpur, Central Provinces, some useful particulars are afforded regarding chillies. The seed is sown about June and the seedlings are transplanted about August. In September the earth has to be banked up against the stems. Irrigation is necessary during the cold weather, and the crop comes into season from January to March. Its value is from Rs. 120 to Rs. 150 per acre. Dry chillies are only about one quarter the weight when green. Very little information exists regarding the red pepper of Assam or of Burma. Of the Kyaukse district of the latter province we read that the lowest estimated yield would be 365 lb. (=100 viss), valued at Rs. 15 an acre, the highest about Rs. 350. Of Sagaing it is said the seed is sown in August, planted out in September and October and the crop ripens from January to March, the green fruit a month earlier. A long and highly instructive account will be found in the Settlement Report for Meik-tiia (1896-8, 8, 23, 69), which shows the high-class cultivation pursued, the labour entailed, and the risks through failure of rains. The crop usually comes into bearing by the middle of December. The trade is entirely in the hands of the Chinese, who rule the market and export all they can purchase. In Myingyan the sowings are not made till September, and the plants come into season about March. Chillies have been recommended as a catch crop among young tea for Assam.
Capsicum Annuum

In the Bombay Presidency chillies are rotated with ordinary market-garden produce. On the black soil of the Deccan (Krishna Valley) is produced a fairly large proportion of the red pepper conveyed to Bombay. But the most important areas of production in Western India are Dharwar, Belgaum, Khandesh, Satara, Poona and Sholapur. Capsicums are usually sown in the rains, but if the land be irrigated they become a rabi crop. Usually they are raised in a nursery and transplanted, and in about three months the first crop may be gathered. [Cf. Mollison, Textbook Ind. Agri., 1901, iii., 206–9.] Speaking of the Panjáb, Dr. Stewart tells us that when grown on the hills, chillies become more pungent, hence no doubt the special merit of the so-called Nepál Cayenne. In the Lahore Gazetteer (1893–4, 164) will be found useful particulars of this crop. It is planted out in June and begins to come into season by October. Thirty maunds an acre for wet and 8 for dry are considered a fair outturn. The cultivators sell it wet at 30 seers or one maund the rupee. In the Gazetteer for Montgomery District (1898–9, 142) it is stated that the crop is sown in January–February; the ground dug about the roots in February–March; watered every fifteen days; and the pods collected May, June and July. White ants and parrots prey on it.

Uses.—It is needless to mention the varied uses of capsicum. The dried fruit reduced to powder forms the Red Pepper or Cayenne of commerce. But cayenne is, as a rule, prepared from the small, very pungent fruited forms only. It is an ingredient in all curries and many other food preparations, and is used throughout India and by every class of the community, so that while of comparatively modern introduction, the consumption of red pepper has now become all but universal. There are various brands of pepper sauce, which are produced as decoctions of the fruits in salt water or vinegar (see p. 1110). Tabasco and Paprika are special European sauces. In Bengal an extract of the consistency of treacle is regularly prepared and sold. The green fruits are pickled or cooked fresh with special dishes or even eaten raw. As a medicine capsicum is stomachic, stimulant and astringent; cayenne pepper is a valued adjunct to gargles, and an ingredient in most medicines that are intended to alleviate toothache. As a rubefacient and counter-irritant, the bruised fruits, in the form of a poultice, act energetically, and added to mustard are often highly beneficial. For the medicinal uses and chemical properties the reader should consult the Pharmacographia Indica and other such works.

Trade in Capsicum.—During the five years ending 1900–1 the foreign exports rose from 8,126,175 lb. valued at Rs. 7,20,925, to 9,485,820 lb. valued at Rs. 12,47,349. These figures represent an increase of 16.7 per cent. on the quantity, and as much as 73.0 per cent. on the value. In 1906–7 the corresponding figures were 11,007,929 lb. and Rs. 14,37,635. During that year Madras contributed 7,677,763 lb., Burma 1,386,739 lb., Bengal 1,567,162 lb., and Bombay 363,060 lb. The most important receiving countries were Ceylon, which took 8,419,713 lb., the Straits Settlements 1,872,738 lb., Mauritius 287,027 lb., Aden 104,356 lb., the United Kingdom 85,428 lb., and other countries the balance of the total.

These figures are, therefore, representative of the normal and present condition of the traffic, and they also denote its thriving condition. This is confirmed by the account of the Trade carried by Rail and River in India during 1906–7. During the five years previous the recorded transactions under the statement of imports were 832,648 cwt. in 1902–3; 760,611
A USEFUL FOREST TREE

cwt. in 1903-4; 763,106 cwt. in 1904-5; 977,801 cwt. in 1905-6; and 883,059 cwt. in 1906-7. But of these very large amounts only about one-third was received by the port towns as the supplies to meet local demands and foreign exports. Turning to the corresponding returns for exports, it is seen that Madras is by far the largest producing province of India proper (that is, excluding Burma, not shown in the returns of rail and river traffic), followed ordinarily by Bengal and the Panjab. All the rest of India (including the Native States) exports usually about the same amount as Bengal, which is commonly only about half that of Madras.

A large deciduous tree of rapid growth, frequent in the Sub-Himalayan tracts from the Jumna eastward and in Bengal, Burma, Central and South West India, ascending to 5,000 feet, also met with in the moist regions of Ceylon. Robinson (Desc. Acc. Assam, 1841, 43) described it as a "tree of immense size. The wood... well adapted for the stocks of match-locks." It is much subject to the defoliating lymantrid moth, Dasychira thurnietu, Moore. The leaves turn red in the cold season.

It appears to yield a gum, and a good fibre for coarse cordage and sacks is made from the bark, the latter part being also employed in tanning and as a dye. Tasar silkworms feed on the leaves. The bark is also used as an astringent medicine; when moistened it gives out much mucilage and is utilised in the preparation of emollient embrocations. The flowers are given as a tonic after child-birth, and the dried calyces (vikumbha) of the flowers are sold in the market as a demulcent in coughs and colds. The fruit, known as khunti, is eaten in the Panjab and is also given to cattle. According to Innes (Jungle Products, 1898, 10) the bark is ground into a kind of flour in Oudh during famine. The seeds are said to be more or less poisonous. The timber, which is very durable and fairly hard, is used for agricultural implements, guns, masts, houseposts, cabin-work, etc., but Kurz says it is too heavy for such purposes (43 to 60 lb. per cubic ft.). It stands well under water, and is much admired for axles. "This is an important tree with a fine wood, which is too much neglected." (Gamble). The fibrous bark is used as a slow-match in Mysore, and has been successfully tried by the Ordnance Department as a substitute for English beech in fuses. In Ganjam it serves for the scanty clothing of Hindus and the English. (Rheede (Hort. Mal., iii., 36) says that wild pigs are very fond of the bark, and that it is used by hunters to attract them.

CARICA PAPAYA, Linn. ; Fl. Br. Ind., ii., 599; Cooke, Fl. Pres. Bomb., i., 524; PASSIFLORE. Most of the vernacular names, papaya, papaya, papia, bappayi, papai, etc., are obviously derived from the Carib ababai, which is still further corrupted into the English papaw. The Burmese name himbaethi means fruit brought by sea-going vessels, and the Panjahi name kharbaus is Castor-oil-Melon.

History. — A subherbaceous almost branchless tree, commonly cultivated in gardens throughout India and in various localities more or less naturalised. The fruit is not mentioned in the Ain-i-Akbari as having been known to Akbar. It was sent to Clusius from Brazil in 1611 (Hist. Exot. Pl., app. 42), who gives good drawings of the male and female plants. George Marcgraf (Hist. Pl., in Piso, De Med. Bras., 1648, 103) furnishes an account of the plant, and a short description, with a figure, is given by Jacobus Bontius (Hist. Nat. et Med. Ind. Or., in Piso, Ind. Uti. re Nat. et Med., 1668, 96). It was figured and described admirably by Boyom in 1656 as an Indian plant introduced into China (Fl. Sin., pl. A), so that it must be regarded as another instance of the rapid dispersion of new plants after the discovery of America. Rheede (Hort. Mal., i., 21, f. 15), 1686, and Rumphius (Herb. Amb., i., t. 50), 1750, also figure and describe both male and female plants, the former observing that the Malabar

Gum and Fibre.
Tan and Dye.
Medicine.
Food and Fodder.
Timber.

Castor-oil-Melon.

History.
Pharmacopoeia did not include the drug. Hughes (Hist. Barbados, 1750, 181, tt. 14, 15) gives a couple of splendid plates prepared by Ehret, while Labat (Nov. Voy. aux Isles de l'Amerig., 1724, ii., 308) contributes a useful account of the plant.

Dr. Dyemock believes that a fibre from the stem is utilised in America and Africa, but the principal value of the tree lies in the fruit, which is both eaten and employed as a medicine. An account of its medicinal properties may here be summarised from The Agricultural Ledger (1896, No. 31). The digestive action of the juice upon meat was probably known in the West Indies at a very early date, and appears to have been communicated to the inhabitants of this country upon the introduction of the tree by the Portuguese. It has long been the custom in India to render meat tender by rubbing it with the juice of the fruit or by wrapping it in papaw leaves. In 1877 the milky juice began to attract attention in Europe as a digestive ferment, and Herr Wittmack of Berlin in 1878 made a careful examination of its properties (Pharm. Journ., Nov. 30, 1878). On the evidence of medical, physiological and chemical experiments made with papaya, the active principle has been separated and given the name of papain or papayatin. It was first separated by Peckolt. This may now be considered almost an article of medical commerce in Europe, and has in fact been extensively used in France and Germany, as well as in England, being given with good results even to children. Notwithstanding all the experiments made with this vegetable pepsin, it has not as yet been introduced into the British Pharmacopoeia, though four preparations of it are given in the "Extra-Pharmacopoeia." Papain is even held by some to compare very unfavourably with pepsin when tested with egg albumen. Mr. J. C. Umney, reporting on a sample of 12 oz. of dried Carica powder, wrote:—“There is no doubt that by repeated precipitation by alcohol a highly active digestive product might be obtained from this crude concentrated papaw juice, valuable for use under those circumstances where pepsin is unavailable.” [Cf. Agri. Ledg., l.c. 310; Bouchut and Wurtz, Comptes Rendus, 1889, 425; 1890, 1379; Bouchut, 617; Wurtz, 1891, 787; also Dict. de Chem., suppl., ii.; Pharm. Journ., ser. 3, x., 343, 383; Chem. and Drugg., 1904, 185.]

A question of importance to be settled is the most serviceable form of commercial popain. And since prolonged moisture is deleterious, the juice should be dried as soon as possible; but heat is said to destroy its activity, hence it should be dried at a low temperature. A preparation of this kind is sold in commerce under the name of "Finkler's Papain." The best method to prepare papain is to collect the juice of the unripe fruit, mix it with twice its own volume of rectified spirit, let the mixture stand for a few hours, and then filter off the insoluble matter and dry in vacuo or over calcium chloride at the ordinary temperature of the atmosphere. After being well-stoppered it should be kept in well-stoppered bottles ready for use. In view of a possible trade either in India or in Europe, manufacturers are recommended to observe carefully the precautions just enumerated. On account of caste difficulties, it might not prove possible to introduce animal pepsin very largely into use in India, but a good vegetable substitute might be of much value and find a ready sale.

The ripe fruit is eaten by all classes and considered innocent and wholesome. A wonderful range in quality is observable. In some localities, such as Hazaribagh in Chota Nagpur and Gauhati in Assam, the fruit is large and very sweet; in others it is small, coarse and hardly edible. The opinion generally prevails that to obtain good fruit it is necessary to remove the majority of the male trees. The better qualities of the ripe fruit are eaten with a little sugar and fresh lemon juice, and by some people with pepper and salt. The use of papaw juice in softening tasar cocoons and thus facilitating their being reeled, has recently received some attention.

270
INDIAN CARPETS AND RUGS

A dichotomously branched bush cultivated for its fruit in most parts of India and said to be wild in Oudh, Bengal, S. India, the Konkan and Kânarâ; distributed to Burma and Ceylon. The tree yields Lac in the Panjâb (Agri. Ledg., 1901, No. 9, 211). The fruit is ripe in July to August. It is mentioned in the Ain-i-Akbari (Blochmann, transl., 1590, i, 87) as sub-acid, and as sold at 1 dam per seck, i.e. 40 seers for Rs.1. It is said to be used as an AUXILIARY in DYEING and TANNING; an adhesive fluid exudes from wounds on the stem. When unripe the fruit is astringent, and when ripe cooling, acid and useful in bilious complaints and as an antiscorbutic. The root is acrid and is made up as a paste with lime-juice and camphor, and used to keep off flies and relieve itch. Just before it ripens the fruit is made into pickles and also employed in tarts and puddings. When fully ripe it makes a jelly equal to red currant, for which purpose it is grown in European gardens. The Natives universally eat it fresh and do not cook it, except as a preserve in curry or chutney. The Trunk is hard, smooth and close-grained, and is used both as fuel and for making spoons and combs, especially at Udayagiri in Nellore. The shrub makes exceedingly strong fences, and its number of sharp spreading thorns render such hedges almost impassable.

C. spinarum, A. Dc.: a small thorny evergreen shrub, wild in most parts of India, especially in the drier zones. The small fruit is eaten and the timber used for much the same purposes as that of C. Corvandus. It is an important element in reforestation, since it persists on the poorest and rockiest soils in spite of being greedily eaten by sheep and goats. Rumphius (Herb. Amb. Auctar.), 1755, vii., 57 describes C. Corvandus, the cultivated plant, whose fruits he says are made into pickles when half ripe. His plate (t. xxv.) is, however, such that its determination is impossible.

History.—Considerations of space forbid any attempt to discuss the Carpet Industry of India in detail. As pointing possibly to their essentially foreign nature, carpets are in India often designated as alcutis (katit = a carpet with long pile, in Arabic). They are mentioned by Pinto (1540 a.d.); Tenereiro (1560); by Linschoten (1598); and by Pyrrard (1608)—the last author gives details of the luxurious habits of the Portuguese ladies of Goa, sitting on costly alcutis. There may be said to be two chief kinds of carpets in India:—(a) Pile Strich (the kalins or galichas), and (b) the Plain Stitch (the daris and shatrajas). The reader will find a fairly comprehensive sketch of Pile Carpets in Indian Art at Delhi, 1903, and with much advantage might consult the special monographs mentioned above as also the article in the Dictiona, while the series of admirable plates given in the Journal of Indian Art (1905) will fully elucidate the subject. In passing it may be said that there is no certain knowledge that the manufacture in India of high-class pile carpets dates farther back than the reign of the Emperor Akbar, of whom we read that in the year 1590 he "extensively encouraged" carpet weaving in Agra, Fatehpur and Lahore, and again that "all kinds of carpet-weavers have settled here (?) Agra) and drive a flourishing trade." [Cf. Ain-i-Akbari (Blochmann, transl.), i, 55; (Gladin, transl.) ii., 30, 41-2; also (Jarrett, transl.) iii., 9.] One of the earliest and best-known carpets from the Imperial factory at Lahore is that presented in 1634 by Mr. R. Bell to the Girdlers' Company of London, and which may be seen in the Com.

D.E.P., ii., 176-82.

Carpets.

Pile Stitch and Plain Stitch.

Origia.
Company's hall. It bears the Company's arms and is Persian in design. It is quite probable, however, that India possessed a carpet industry of its own, though very possibly not in pile carpets, long anterior to the advent of Persian influence (see under Multan, also Ellore). But it would be difficult if not impossible to prove either that India possessed an indigenous art of pile-carpet weaving before the date named, or that the introduced industry made much progress for many years subsequently. It, however, survived and in time absorbed so many local conceptions as to justify the description "Indian Carpets." It has been said that the modern jail-made pile carpets have debased and degraded a system of manufacture that had been "literally and figuratively interwoven with the life of the people." But if the pile-carpet industry was only introduced and fostered by Akbar and practised by his co-religionists, and if it be the fact that it has not to the present day been taken up by any recognised Indian caste, it is difficult to see how it could become as becoming "interwoven with the life of the people." It is much more likely that the modern jail-manufacture preserved from extinction the foreign art, than that it debased and degraded it. Milburn (Or. Comm., 1813, i., 136) says that carpets were formerly an article of trade, but through "the improved state of our own manufactures and the heavy duty on Persian carpets, they are now seldom imported." It would thus seem fairly certain that by the beginning of the 19th century the Indian carpet trade (such as it had been previously), like that of Persia, had suffered greatly through the rise of British manufacturing enterprise. The craftsmen in all countries produce the standard of goods demanded of them; it would therefore be most interesting to obtain any sort of indication of the class of goods in demand immediately prior to the modern jail-made article. So far as Indian records are concerned there is nothing to show that the Natives of India are any material extent ever used, and certainly to-day they do not use, Indian pile carpets. Pyrard (Voy. E. Ind., 1601-10 (Engl. transl.), ii., 248) observes that "They make carpets of the fashion of those of Persia and Ormus, but not so fine or so dear, for they use the rougher and longer wool; the patterns are however the same; they also make cotton carpets with bands of many colours." So long ago as 1655, Terry in his Voyage to East India (ed. 1777, 129) pointed out that the Eastern artists were essentially imitative. He speaks of their cotton and silk carpets, but makes no reference to woollen carpets. Thus, then, for the degradation of Indian art not the Government nor the Natives are responsible, but the people of Europe and America, who ask for and therefore get cheap inartistic productions. And this has possibly been confirmed definitely by an invention recently announced that will enable Oriental carpets to be produced by new and special machinery at a price far below that of the hand-loom weaver.

For the purpose of easy reference the classification employed in Indian Art at Delhi may be pursued in this review:

I. Pile Carpets:

1. Panjab.—The chief centres of the carpet industry in this province are Amritsar, Kashmir, Lahore, Multan, Hubli, Jatala, Bahawalpur, Kohat, and Bannu, and they have been named in their order of importance. But Peshawar has also to be added, since it is the great emporium of the Trans-frontier traffic in carpets brought from Afghanistan, Turkestan and Persia.

Lahore.—It has already been suggested that the manufacture of carpets at Lahore, established very possibly by the Emperor Akbar, soon decayed, and in support of that view it may be pointed out that in Honigberger's Thirty-five Years in the East (a work that deals specially with Lahore prior to 1852) there is no mention of an indigenous carpet industry. In this connection also it may be observed that the Ain-i-Akkari makes frequent reference to the Persian carpets as regularly imported into India (Blochmann, transl., 55). And it would seem probable that most of the Lahore carpets mentioned in the Records of the East India Co. and elsewhere, refer to that Trans-frontier trade and not to Indian woven carpets. A letter to the East India Co., for example, of the year 1617 (Foster, E.I.C. Letters, vi., 250) mentions that "carpets to be well chosen would require a long time: those which are true Lahore carpets are not suddenly to be gotten." It is possible that this may point to the survival of the Muhammadan carpet-weaving industry (introduced by the Emperor some 30 or 40 years previously), or it may simply denote the uncertain Trans-frontier supply, the carpets being picked up in the bazaars, not ordered from the weavers. At the present day, at any rate, the most prized carpets in Lahore Museum are

272
those discovered at Peshawar, and, with the exception of a few looms in the jails, there is no local industry. A beautiful carpet, the property of Mr. G. Saltmg, is figured in the *Journal of Indian Art* for April 1905, and said to have come from a Lahore factory in the 17th century.

Amritsar.—This is probably the most important carpet-weaving centre in India, although the industry would appear to be quite modern. I have not been able to find any references to it, either in the *East India Co.'s Letters* or in the older books of travel. It may be said to be mainly in the hands of Hindus who employ European supervision, and Muhammadan weavers who work (for the most part) on the contract system. It is affirmed that the utmost care is taken in securing the oldest and choicest patterns and in selecting the wool and the vegetable dyes. Pashm (the fine shawl-wool) and camel's hair are used for the best descriptions, and, as with all Indian carpets, the work is done entirely by hand. There are several factories, some of which possess as many as 300 looms, others not more than eight or ten. The industries of Hoshiarpur and Batala may be taken as off-shoots of the carpet-weaving of Amritsar.

In Kashmir there are several factories which turn out extremely beautiful work. The trade is in Srinagar, and the factories are practically all owned by Europeans, and are intended to find labour for the shawl-weavers who were thrown out of employment through the decline in the demand for their hereditary craft manufactures. The plates in the *Journal of Indian Art* (1905), July and October (six in number), fully exemplify this style. The fine old carpets preserved in the Asar Mahal of Bijapur are believed to date from 1657 and to have come from Kashmir. If this be correct the Delhi Emperors may have established a factory in the "Happy Valley." 250 years ago. The carpets in question are fully representative of the styles usually designated Mughal. [Cf. *Journ. Ind. Art.,* i.e. Jan.]

Multan is often spoken of as having an indigenous carpet industry, or at all events one which dates prior to the introduction of the Persian craft. It thus seems probable that the so-called Multan conceptions were modelled on rugs brought long ago from Turkistan, in consequence of the Pawindali trade. The narrow shape, bold yet not clear detail, and vivid colouring are characteristics of both Multan and Turkistan carpets. On the other hand, Mr. Latimer speaks of the household industry of Multan as characterised by names of tools, designs, and methods of weaving that are clearly of Persian origin. Examples of Multan and Dera Ismail Khan carpets are to be seen in the *Journal of Indian Art* (1905), July and October numbers. Bahawalpur carpets differ but little from those of Multan. In passing, mention may be made of a recent attempt to utilise in the local carpet industry the vast supplies of the floss of *Calotropis gigantea* (p. 207).

Peshawar, as has been already observed, the emporium for Trans-frontier rugs, notably Turkoman or Tekke (commonly called Bokhara) rugs and the expensive Herat and Yarkand carpets. In Kohat and Bannu and a few other places along the North-West Frontier a peculiar form of rug is produced named *nakhi*, in which loops of the weft threads are made to protrude an inch or so between each pair of the warp strands. The designs are usually in purple or crimson with black, yellow, and sometimes green. The result is crude but not inartistic.

2. Rajputana and Central India.—From the jail-looms of Jaipur excellent rugs and carpets are produced. Some of the most historic of pile carpets are, it is said, in the possession of His Highness the Maharaja. In the *Journal of Indian Art* is given a coloured illustration one of the gems of that series. Bikanir produces the best carpet-wool in India, and is thus eminently suited to become a great weaving centre. The Central Jail has for some years taken a high place for the quality and artistic merit of its carpets. The patterns followed are mostly those of the famous book on Oriental Carpets published by the Imperial and Royal Austrian Commercial Museum, and the carpets produced have attained a position of great merit, through the enlightened interest taken in the subject by His Highness the Maharaja. Ajmir jail also produces many excellent carpets and beautiful rugs.

3. Sind and Baluchistan.—The carpets manufactured in Sind closely resemble those made in Multan. They are said to be the cheapest, coarsest, and least durable of all Indian carpets. The Baluchistan rugs are in design Turkoman, not Persian. They arrive by camel-caravan at Quetta (and Peshawar also) from Afghanistan, mainly Seistan. They are made mostly of goat's hair, which gives

273 18
INDEAN CARPETS AND RUGS

them their singularly beautiful lustre. But the Baluchistan carpets and rugs have deteriorated sadly from their pristine beauty and excellence.

4. United Provinces.—Several centres are noted for their carpets, such as Agra, Mirzapore, Jhansi, Jabalpur and Allahabad. Agra is one of the three centres at which the Emperor Akbar endeavoured to establish a carpet industry. In the Journal of Indian Art (Oct. 1905) two plates are given of carpets turned out at this centre. To this day the superior designs of its jail-made carpets are a striking refutation of the charge brought against the jails of having degraded the carpet industry. Recently a factory has been established under European management, to utilise the skilled labour outside the Central Jail. It appears from the E.I.C.’s letters that Agra was an important distributing centre for other than locally made carpets. Thus the Company’s servants of Surat purchased Lahore carpets at Agra (E.I.C. Letters, I.c. 250), and the Portuguese merchants of Goa took various carpets from Agra in exchange for jewellery.

Mirzapore.

Mirzapore may perhaps be described as the headquarters of the cheap commercial modern carpets of India. In the Journal of Indian Art (July 1905) will be found a highly typical representation of 90 per cent. of the carpets of this centre. There are numerous private factories (both Native and European) engaged in the industry, but the patterns have of late years been supplied mainly by firms in Europe and America, so that the deterioration in quality noticeable for many years past may be spoken of as a direct consequence of this dictate.

5. South India.—The carpets exported from Masulipatam and Cocomada were those that first attracted attention in Europe as being specifically Indian, and doubtless a century ago they were made at much the same centres as to-day. At Ellore, where the weavers are Muhammadans but very poor, the business is done by advances. Three classes of carpets were shown to me during a visit made in connection with the Delhi Exhibition:—(a) carpets of foreign design, mostly Persian, and defective in every direction; (b) carpets collectively known as of Ram Chandra design. In the Journal of Indian Art will be seen (July and October numbers) examples of these carpets, especially those from Vellore. The same journal (viii., pl. 50) shows a Coromandel carpet which doubtless belongs also to the Ram Chandra group. These, as a rule, were good, the colours being well chosen but the quality very low, not more than 5 or 8 threads to the inch: (c) the third type represented by an old rug which was so woven (by what the weavers call the “velvet method”) as to simulate the fine texture of the old grass-mats. This was probably the original style of Rajamundry and Ellore. Masulipatam once turned out some of the finest carpets in India, but foreign exporters are said to have degraded the industry by supplying cheap and bad material. At the writer’s suggestion the Madras School of Arts reproduced for the Delhi Exhibition two fine Ram Chandra carpets, the originals of which are preserved in the Madras Central Museum. The prevailing features are the rich deep brown-red of the field and the quaint border of rosettes of flowers. Malabar is said to have formerly produced the only pile carpets of pure Hindu design made in India. They are apparently not now manufactured. In the account of Sir George Birdwood—his Life and Work—as given in the Journal of Indian Art (viii., pl. 50), a corner of a beautiful Malabar carpet is shown.

Bangalore.

The jail in Bangalore in Mysore State has for long been noted for the good quality of its carpets. One shown at Delhi was distinctly a Hindu design with a Ram Chandra border.

6. The Deccan.—Hyderabad formerly produced the wonderfully fine silk rugs known as Warangals. The Journal of Indian Art (Jan. and July, 1905) shows three carpets of this school. This charming textile has the property of changing colour according to the point of view. The carpets at present produced, while possessing certain features of their own, are far inferior to the old work. The scheme of colour is scarlet, yellow and white. In the work just quoted will also be found highly characteristic examples of Hyderabad carpets.

7. Western India.—It is probable that the Persian traders very early established themselves along the western coast of India, and there produced carpets under the patronage of the Emperors, Princes, and Nobles of India, very possibly long before they were made in Agra and Lahore. Certainly Goa was one of the earliest seats of the craft, for according to Linschoten (Voy. E. Ind. (ed. Hald. Soc.), I, 47, 60), who travelled in India about 1584, the people of that

274
Carpets and Rugs
Ahmedabad

Ahmedabad.

Poona.

Cotton and Woollen Carpets.

Cotton and Woollen Carpets.

II. Cotton and Woollen Carpets in other than Pile Stitch.—The daris, shatranjis, etc. Just as the pile carpets referred to above (the kalins, kalichas or galichas) are usually in wool but sometimes in cotton, so the daris and shatranjis are mostly in cotton though sometimes in wool.

As already suggested, it is probable that the Indian carpets, prior to the Muhammadan invasion, belonged almost exclusively to the description here indicated. Stein (Ancient Khotan, 1907, xxiv., 337, 398) describes and illustrates a fragment of a woollen carpet found by him in the ruins of the Niya site, which were engulfed by sand about the 3rd century. This appears to be in plain stitch, and recalls in design the embroidered rugs of Hisset and Siras. So also another rug found at the Niya site is described as of the regular Indian dari type, and seems a brocaded cotton textile much closer to the woollen fabrics of Tibet than to anything made in India (I.c. 333-4, 397, pl. lxvii.). Terry, in his Voyage to E. India, about 1615 (ed. 1777, 127, 186), mentions the cotton carpets in "fine mingled colours," but makes no mention of the woollen or pile carpets. Mandelslo (Travels, 1683, in Olearius, Hist. Muscory, etc., 1692, 39) speaks of the floor of the house in which he resided in Ahmedabad as being covered with tapestry and the pillars draped in silk stuffs. Plain stitch carpet and rugs are universally used by the poorer Muhammadans as praying-carpets (jainamas), and in consequence have often more art shown in their composition than might be anticipated. Some of the more noteworthy centres of production are Rangpur in Bengal; Agra, Ailigarh, Bareilly and Bulandshahr in the United Provinces; Jaipur and Bikanir in Rajputana; Bahawalpur, Multan, Gujarat, Sialkot, and Peshawar in the Panjab; Dhawar, Belgaum, Ahmednagar, Kaladgi and Cambay in Bombay; and Vadavadi and Adoni in Madras. Many modern and ancient daris of great beauty were shown at the Delhi Exhibition. One of the most interesting artistic was a shatranji said to have been presented by the Emperor Auranzeb in 1626 to the Jamai Masjid of Bijapur. This has a rich Indian red field with, suspended from the top of each square section, a lamp symbolic of the faith. It would appear to have been woven more like tapestry than an ordinary dari, and to have had the patterns separately made and interwoven in their places on the loom. These and such-like give a lesson that might well be learned by the manufacturers of cotton carpets throughout India, namely, that if they would abandon the striped forms and produce richer and more varied designs, such as those of the Poona Jail daris, a larger market might be found in India itself, and in foreign countries as well, than has as yet been secured. There can be little doubt that neatly and substantially woven cotton carpets would be more acceptable to the inhabitants of tropical countries than woollen ones, because cheaper, cooler, cleaner and (under a tropical climate) more durable. Further, cotton plain carpets would doubtless be preferable to cotton pile carpets. Much, therefore, remains to be done in the direction of developing the Indian trade in cotton carpets and rugs. (Cf. Monograph, Cotton Industries:—Banerjei, Bengal, 1898, 33-4; Silberrad, N.W. Prov., 1898, 24-6, p. 30; Enthoven, Bombay, 1897-9, 11, 33, etc.; Thurston, Madras, 1897, 7-11; Latimer, Monog. Carpet-making Pbs., 1907, 1-3.)

Woollen Daris and Shatranjis, though not met with very abundantly in India, are still made and much admired. The Bhutias of Darjeeling and the people of Nepal and Eastern Tibet weave strips of woollen thick cloth in various designs, which, when sewn together into sheets, closely resemble Kurdish kilims. Mention has already been made of a fragment of a rug found by Stein in the ruins of Niya, Khotan, as recalling the Bhutia woollen rugs. The people of Darjeeling also weave thick chadors of white and blue

275
that are very beautiful and find a distinct place among the art treasures of the residents in the eastern side of India, but are only rarely seen elsewhere. In Bikanir, plain-stitch rugs are regularly woven in wool, but in the same form as the cotton dario. The pattern most often employed recalls the barbaric cross-stitch embroideries of Hissar and Sirsa. In Quetta, rugs and camel saddle-cloths are largely woven in wool and richly ornamented with shells. They are in stripes with patterns worked within, and to all intents and purposes should be classed as khilma.

Trade in Carpets and Rugs.—The only available details concerning the export trade in Indian-made carpets and rugs refer to (a) Mats and Matting of vegetable fibre; (b) Carpets and Rugs of wool. A summary of available statistics on the former subject will be found on page 778, so that it is only necessary to give here such particulars as are available regarding the woollen carpets. The quantities are always estimated by pound weight, not number. The total weight exported from India to foreign countries in 1899–1900 was 1,691,577 lb., valued at Rs. 23,732,289; in 1903–4, 1,878,202 lb., Rs. 26,04,576; and in 1906–7, 1,603,330 lb., Rs. 20,89,516. In the last year, goods to the value of 11 lakhs of rupees went from Bengal, 6 lakhs from Bombay, and 2 lakhs from Madras. The increase in the total quantity and value of carpets, etc., exported in 1903–4 was due to an improvement in the trade in these articles with the United Kingdom. The latter took in 1899–1900, 1,180,779 lb., Rs. 17,21,987; and in 1903–4, 1,549,658 lb., Rs. 19,54,560; but in 1906–7 the quantity fell again to 1,346,144 lb., Rs. 15,66,113. The exports to Ceylon fell from 235,070 lb. in 1899–1900 to 2,980 lb. in 1903–4; and in 1906–7 rose to 4,303 lb. The United States took quantities varying from 223,551 lb. in 1899–1900 to 401,340 lb. in 1901–2; 266,526 lb. in 1903–4; and 174,727 lb. in 1906–7. There is also a fairly extensive import trade in Carpets and Rugs, chiefly to Burma and Bombay, from the United Kingdom and Germany. It amounted in 1899–1900 to 842,716 lb., Rs. 8,46,013; in 1903–4 to 887,192 lb., Rs. 8,96,738; and in 1906–7 to 1,016,065 lb., Rs. 10,56,679.

Wild Safflower (the kusubura, khārea, of the Trans-Indus and karar, poliyan, poli, kantōeri, kandtara, mian kalat, etc., of the Panjāb) is a native of the drier arid tracts of North India. In Peshawar district it is peculiarly prevalent, the spinose clumps constituting an objectionable feature of the grassy tracts. Where met with in fair abundance the seeds (or to be more correct, fruits) are collected on account of the large quantity of oil which they contain. This oil is the chief ingredient in the Afridi wax-cloth presently to be described, and may also be used as a glass cement.

C. tinctorius, Linn.; Cnicus Indicus, Rumph., Herb. Amb., 1750, v., 215–20, pl. 79 (2); Muckerji, Handbook Ind. Agri., 1901, 292–5; Mollison, Textbook Ind. Agri., 1901, iii., 98–101; Abbey-Yates, Agri. Ledg., 1904, No. 11. The Cultivated Safflower, Bastard Saffron, Carthamine Dye, the kusum, kāsumbo, kusumbă, kusũbi, kardí, kābri, ma, suũr, car or karar, sandārgum, aṇmīśiha, hebu, su, suũbã, etc. The Arabic usfûr (Ibn Baithar, 1200 A.D., i., 196) assumed various forms and gave us the English name;—thus asifore (Pegolotti, Pratica di Mercat., 1343, 372), asifore, ASFROLE, ASIFORE, ASIFORI, ZAFFROLE or ZAFFRONE, SAFIFORE and finally SAFFLOWER. Another Arabic name, kurtum (used in the Makhzan), may be used as a glass cement.
have originated the botanical name *Carthamus*. The most prevalent Indian vernacular name *kusum* comes direct from the Sanskrit *kusumbhā*

History. — "This plant is the *kusumbhā* of Sanskrit writers, who describe the seeds as purgative, and mention a medicated oil" (*Pharmacop. Ind.*, i., ii., 80). That is the commonly accepted opinion, but on the other hand Dutt (*Mat. Med. Hind.*, 307) makes no mention of the special knowledge possessed by the Sanskrit medical writers, and it may be added the medical treatise which constitutes *The Bower Manuscript* (Hoernle, transl.) is silent both as to the *kusumbhā* plant and its oil. The Greek *cenicus* (*Paulus Ἐγινετα* (Adams, transl.), iii., 178) by most authors is identified with the Bastard Saffron. The early Greek authors speak of *cenicus* as a spinose plant, but Dioscorides (iv., 187 (ed. Sprengel), 1829, i., 680) mentions that it was a pot-herb and purgative medicine. Galen, Avicenna, Serapion, Rhases, etc., follow Dioscorides, but most Arab writers add the additional property that it is alexipharmic. Mesua, who lived at Baghdad in the 10th century, wrote a great work on the Medicine of the Greeks and Arabs. He opens his account of *cenicus* (Marinus, transl., 1562, 74) by observing that the plant is both wild and cultivated, but that the so-called Indian *cenicus* is not *cenicus* at all. He then observes that the seed is the most valuable, especially the large white kind. The figure given by Marinus is an excellent representation of *C. tinctorius*. Carthamus was retained in European pharmacy down to comparatively recent times. De Candolle (*Orig. Cult. Plants* (Engl. transl.), 164), following Targioni-Tozzetti (*Cenni Storici, Intro. di Varie Piane*, 1853, 88), thinks the determination of the Greek *cenicus* with Carthamus very doubtful. Pliny distinctly says the oil was used in Egypt in place of castor-oil, but he adds the plant was not known to the Romans. It may be added that Pliny writes it *cenicus* and Columella *cenecus*.

The grave-cloths of the ancient Egyptian mummies are dyed with safflower, and fragments of the plant and the seeds have been found in tombs. [Cf. Rawlinson, *Hist. Egypt*, 1881, i., 62–3; Hehn, *Kulturpl. und Haust.* (ed. 6), 261; Wiesner, *Die Rohst. des Pflanzens.*, ii., 678–84.] The Sanskrit authors describe the *kusumbhā* oil as purgative, so that identical properties were assigned to it in Egypt, Africa and India. An Abyssinian so-called wild species (*C. lanatus*, in Schweinfurth, *Fl. Äth.*, 1867, 143) has by some writers been accepted as the original stock of the cultivated plant; so also, and with equal if not greater force, *C. oxyacantha*, the Indian wild species, has been advanced as the source of the cultivated plant. De Candolle accordingly came to the opinion that since an undoubted ancient cultivation had been established for both India and Africa it was probable the true *Carthamus tinctorius* might be found wild in the intermediary country Arabia. He accordingly cites in support of this suggestion the circumstance that an author quoted by Ibn Batitard (the Arab, Abu Anifa) mentions both a wild and cultivated form as met with in that very country. In China there would seem little doubt safflower (*hung-hua* or red-flower) was introduced about the 2nd century B.C. [Cf. Breitschneider, *Europ. Bot. Disc. in China*, 1898, 4; also *Value Chinese Botanical Works*, 1870, 15.] Japan received it from China, but according to Rein (*Indust. Japan*, 176–7) it can hardly be regarded as more than a botanical curiosity in that country—the cosmetic *beni* being manufactured from foreign (mostly Indian) supplies of safflower. [Cf. Milburn, *Or. Comm.*, 1813, ii., 238–9; Buchanan-Hamilton, *Stat. Acc. Dinaj.*, 208; Lacaits, in Maw, *Genus Crocus*, app. v.; *Der Tropenflanzer*, viii., 511; Joret, *Les Pl. dans L'Antiq.*, 1904, ii., 272.]

Cultivated Indian Races. — There are two main conditions, one grown purely and simply for its flowers—the safflower dye of commerce, the other for its oil-yielding seeds, the *kusum* or *carthamus* oil of trade. The former is fairly extensively produced in Bengal, the United Provinces and the Panjáb, while the latter is chiefly met with in the Central Provinces and Bombay. But while these two conditions or properties seem well understood agriculturally, dried specimens of the plant grown for the one or the other purpose are indistinguishable. Moreover several races occur under each of these states, such as with small, very hard spinose leaves (much as in *C. oxyacantha*) or with large, soft, almost non-spinose edible leaves. Some have narrow, hard and sharply spinose bracts, others broad almost entire bracts. Still, however, most of these
CARTHAMUS
TINCTORIUS

Dye

Oil-yielding Forms.

Dye-yielding Forms.

Spiny and Spineless Forms.

Grown as a Pot-herb.

THE SAFFLOWER PLANT

conditions recur again and again with the oil-yielding and the dye-yielding races, so that no set of characters can be given, to separate the groups that belong to the one or the other. Speaking broadly, however, the oil-yielding forms are more spinose than the dye-yielding, and have usually yellow-coloured flowers, the dye forms being orange or even yellow tinged with scarlet. The dye-yielding plants require a rich soil and humid atmosphere, hence the loss of spines may be due to high cultivation and protection. In the young state the smooth-leaved spineless forms are edible, and in some parts of the country, notably Burma, they are mainly, if not exclusively, grown as pot-herbs. But within each of the great centres of production there may be both smooth and spineless forms. Thus in Bengal a spineless dye-plant is known as kuthi or kutela and a spineless dye-state called murdi, murilla (= shaved), bhuti. In the United Provinces the spineless kusum affords both dye and oil, while the spinose form distinguished as kasur, kasur, is grown for its oil-seeds only. In Berar (Sule, Monog. Dyes and Dyeing, 1895–6, 1) the spinous kati kardi yields an inferior dye and good oil, while spineless bodki gives a superior dye. In Bombay two great centres of production exist, viz. on the rich alluvial loams of Kaira and Ahmedabad, in Gujerat, where the spineless red-flowered dye-yielding kusumyachi or kusumba prevails, and the Deccan, with its spinous sadhi or kardai, an oil-yielding crop. [Cf. Fawcett, Monog. Dyes and Dyeing, Bomb., 1896, 25–9.] Briefly Bengal is (or rather was) the source of kusum dye, and the Deccan of the safflower oil. These products may therefore be dealt with separately:

I. THE DYE—Safflower or Carthamine.—So much has been written regarding the cultivation and utilisation of safflower that a brief review of the modern results seems all that is called for. But it may be explained that the various provincial Governments of India issued, in 1896, monographs on “Dyes and Dyeing,” and that these will be found to have special chapters on safflower. So also The Agricultural Ledger (1904, No. 11) may be described as a compilation of the more important passages from modern writers, and it thus amplifies the particulars recorded in the Dictionary. The remarks that follow will accordingly be restricted as far as possible to facts calculated to assist the merchant or cultivator, but will abstain from republishing technical details, especially methods of dyeing. But in this connection it may be observed that safflower has preserved its position in spite of foreign dyes, mainly through the colour being viewed as more or less sacred for wedding garments.

Cultivation.—Safflower, though by no means so important a crop as in former years, is still grown to a fair extent in the Dacca Division of Bengal, and here and there throughout the Province. Taylor (Topog. and Stat. Dacca, 1840, 133–5) gives an interesting account of the production during the prosperity of the industry. The best quality was grown in the vicinity of Pat gott. Safflower is also met with in the Surma Valley and in Manipur, but not in the Assam Valley proper. In the Central Provinces it used to be extensively produced in Raipur and Chhindwara, but the area in recent years has been greatly curtailed. In the United Provinces of Agra and Oudh, though met with now and again, it assumes importance in Meerut only. In the Panjab it is to be seen in most districts, but Hoshiarpur and Amballa are perhaps most spoken of, and the safflower of the hills, especially that of Kabul, has the best reputation. The wild
Preparation of Cakes

Safflower is also a product of considerable value. In Berar safflower is regularly cultivated, though by no means to the extent formerly witnessed. In Madras it may be seen here and there, and in Burma it is more grown as a vegetable than as a dye. But in Bombay there are two centres of production. The cultivation for dye is not extensive, and is confined to Gujarat and the Karnátak, Kaira being perhaps the most important district. Dr. Hove (1787) refers to the dye of *Carthamus* being then used in Gujarat to dye *pagris*. But the Bombay dye is regarded as much inferior to that of Dacca in Bengal.

Methods.—The systems of cultivation pursued are so very similar throughout India that the subject may be treated collectively, the remark being made that it differs province by province, according to the amount of attention given and the local value of the crop. It is sown along with other *rabi* crops such as gram, wheat, barley, tobacco, opium, chillies, carrots, etc., from about the middle of October to the end of November, or in Chittagong as late as January. It requires a light sandy soil, and one which possesses a fair amount of moisture. In the better cultivation the land is lightly manured and ploughed repeatedly from May or June till sowing time. It is either sown broadcast or drilled, the latter in Bombay, 3 drills 18 to 22 inches apart of safflower alternating with the subsidiary crop. In the less important cultivation it forms single drills or surrounds other crops, its spiny character serving the purpose of a protecting hedge. On the central flowering head appearing, this is nipped off in order to cause lateral shoots and a more copious flowering. The prunings and thinnings are eaten as a pot-herb. The crop comes into season in January to April, or even May, and is plucked every second or third day. Delay in collecting the flushings of florets causes loss in dye. Rain during the flowering is also very injurious. The florets being picked after fecundation, the seed ripens and yields a supplementary crop. The average yield of dried florets is in Bengal about 80 lb. (according to Mollison (Lc. 100) from 100 to 120 lb. in Bombay), per acre, and of oil-yielding seeds (fruits) 400 to 600 lb. The first and the last pickings of florets are by most writers considered inferior in dye merit to those in mid-season.

Manufacture.—The day’s collection is carried to the homestead and partially dried in the shade. It is then rubbed between the hands, placed on an arrangement of basket filters, and pure stream (or slightly acidulated) water poured over. This removes the most soluble of the useless yellow dye, but care must be taken that the water is not alkaline, or the red dye also may be washed out and the florets rendered useless. When the water passes through clear the washings are regarded as complete. The florets are then partially dried and pressed into the small characteristic cakes met with in trade; then the drying is completed. According to Taylor the florets in his time were saturated with water in the evening and next morning trodden underfoot, and this was repeated for four or five days until the water ran off clear.

In centres where little attention is given to the crop the florets are not washed, and instead of being made into cakes, are formed into balls or sold as loose powder. The presence of the yellow dye lowers the value and increases the weight. In Bombay a curious system prevails which consists in rubbing into the florets a certain amount of *til* oil (a *tola* weight to a pound of the florets). Mollison observes that this is the practice in Gujarat, but it is known to produce loss of colour. This very possibly

![Dye]

Berar.
Madras.
Burma.
Bombay.

Methods.

Seasons of Sowing.

Thinnings Eaten.
Seasons of Crops.

Yield.

Manufacture.

Florets Washed.
Dried and Caked.

Oil rubbed into Florets.
accounts for the lower price of Gujarat safflower as compared with that of Dacca. Apparently also the yellow dye is not removed until a later stage, and the oil would thus seem to serve no useful purpose. It recalls, however, the practice described by Rumphius (l.c. 217), where the people of the Malay are spoken of as adding the bruised oil-yielding seeds of Aleurites triloba to prevent the florets from crumbling to dust.

Safflower-dye cakes (Gujarat) are sold in Bombay at 2 to 2½ lb. per rupee. The value is estimated according to the colour that a given weight will impart to a pound of cotton.

Trade in Safflower Dye.—Madder in Europe and Safflower in India are the dyes that felt immediately the effect of the discovery of chemical colours. This, in the case of the Indian product, may be exemplified very briefly. Half a century or so ago, safflower became a fairly important commodity. It is curious, however, that none of the early travellers in India mention the dye. The first botanist who describes its cultivation in the East would appear to be Rumphius. Milburn records the exports in 1804 as having been 247 cwt., valued at £1,460, or £5 18s. 5d. a cwt. Four years later the exports were 1,070 cwt., valued at £4,532, or £4 4s. 8d. a cwt. An import duty at British ports was levied of 7s. 4d. a cwt. In 1824–5 the exports from India appear to have been 6,185 cwt., and in 1837 they stood at 7,962 cwt. Passing over a period of close on forty years, we next learn that the Indian traffic had become (in 1874–5) 10,157 cwt., valued at Rs. 6,50,827 (or expressed at the rate of exchange that then prevailed, approximately £60,000); but a sudden change took place, for the very next year the traffic fell to 2,914 cwt., valued at Rs. 1,63,528, and ten years still later (1884–5) had become 1,459 cwt., valued at Rs. 83,083. Within the past six years a revival in quantity seems to have set in, since the exports were in 1899–1900, 1,993 cwt., valued at Rs. 34,572, and in 1903–4 the corresponding figures were 4,313 cwt. and Rs. 67,506. They have since fallen, however, to 3,670 cwt., Rs. 50,389, in 1906–7. A remarkable feature of the traffic thus briefly outlined may be said to be the decline in the prices realised—viz. from £5 18s. 5d. a cwt. to the price in 1901–2, viz. Rs. 20 or £1 6s. 8d. a cwt. Even twenty years previously (1881–2) the price realised was nearly double the rates that rule to-day. It is not, therefore, to be wondered at that safflower has ceased to be an important crop, and that but for the local markets the dye might by now have disappeared from India as completely as has the madder from Europe.

The exports from India go mainly to Hongkong, but a recent demand from Japan has been viewed as a favourable prognostication for the future. The local market continues fairly large in spite of foreign mineral dyes, owing to the fact that safflower is associated with the social customs and religious feelings of the people. The varying quality would seem to depend first of all upon the climate and soil of the locality where produced; next, the care pursued in collection, and the method of preparation followed. With all the finer samples the yellow dye has been washed out and the florets purified. This has naturally the effect of lowering the weight and concentrating the dye. Washed safflower must accordingly fetch a higher price than the impure and adulterated dye. In further purification of the dye a second yellow colour is precipitated and removed by means of acetate of lead. Carthamin, the valuable red colour, may then be extracted in a pure form by making use of its
solubility in alkaline solutions, and insolubility in pure or acetylated water. In India the alkali used is almost invariably that prepared by incinerating bajra (Pennisetum) stems or chir chira (Achyranthes, see p. 49), but crude natural carbonate of soda known as sajji-matt is also employed. It would seem probable that the isolation and utilisation of carthamin is in India a comparatively recent discovery.

II. THE OIL.—The seeds from the dye-yielding plant are collected and form a supplementary return, but, as already stated, in some parts of the country, notably Bombay, an oil-yielding crop is specially grown. Mollison (l.c. 98) says, "Safflower is the most important oil-seed crop in the Bombay Presidency. The area is usually from 500,000 to 600,000 acres annually. The chief centres of cultivation are in the black-soil rabi lands of Ahmednagar, Poona, Satara, Bijapur, Dharwar, and Belgaum." It is subordinate to the crops with which it is associated such as jowar, wheat or gram. "It therefore participates in the general cultivation given to these crops." "Usually three consecutive rows of safflower alternate with 9 or 15 or 21 consecutive rows of the principal crop." In the Central Provinces the area of special oil cultivation has recently been greatly curtailed, so that the Deccan production may be accepted as alone of importance, though of course the oil of the dye crop must not be entirely ignored.

Manufacture.—It has been customary to find Baden-Powell's statement (Ph. Prod., 421) that two oil-yielding forms of this plant exist—the wild and the cultivated—repeated by Indian writers without its being observed that an admission was being thereby made to which only the most cursory attention had been subsequently paid. But in addition to the more distinct sources of the oil there are also two widely different methods of preparation. In the one the seeds (fruits) are simply subjected to cold-dry pressure either before or after they have been husked. The yield is said to range from 20 to 30 per cent., but both the quality of the oil and the value of the cake depends upon the seed being husked. The second process is a hot-dry extraction, or rather a crude distillation. The seeds are placed within an earthen pot, and this is inverted over the mouth of a similar pot placed within the ground, the two pots being separated by a perforated plate. Over and around the inverted pot is piled some fuel, and on this being ignited, the seeds are partly roasted; the oil in consequence drains from them and accumulates in the lower or submerged pot.

The cold-drawn oil has a clear straw colour, with a sp. gr. of 9224 at 15°C. According to Hooper (Agri. Ledg., 1904, No. 11, 160), it "possesses pronounced drying properties. It readily saponifies with alkalis, forming a fairly good soap, and the free fatty acids have some of the characteristics of the linoletic acid obtained from linseed. The oilcake retains 11.55 per cent. of the natural oil, and is not contaminated with earth impurity. The nitrogen amounts to 3.19 per cent., which is equivalent to 19.94 per cent. of albuminoids." It is an oil extensively used for culinary purposes, and to adulterate ghī or til. Moreover, safflower, earthnut, and til are often mixed together and the oil expressed; this constitutes the sweet-oil of Bombay. Safflower oil is also said to be an ingredient in Macassar hair-oil. Inferior qualities are used for illumination. The hot-extraction oil is about one-fourth larger than the cold, but is useless both for burning purposes or for food. It has, in fact, acquired a
new property, and been converted into a substance very serviceable for greasing well-ropes, leather well-buckets, etc., purposes for which the cold-drawn oil is quite unsuited. In other words, the oil has been converted into what is known as roghan—a substance employed to prevent leather from hardening on its being exposed to the action of water or of a damp atmosphere.

Oil of Wild Safflower.—In the Northern Panjâb, more especially Peshawar, a very different process is adopted from that just detailed for the manufacture of roghan. The polli oil (the oil of C. Oxyacantha) expressed by the cold process is placed in earthen vessels and boiled continuously for twelve hours. The vessels are so placed that it is not possible for a flame to reach the boiling liquid, and the temperature is kept low and uniform. In time it emits volumes of white pungent vapour, so exceedingly disagreeable that the manufacturers are compelled to conduct their industry under special license and in a place assigned to them remote from human dwellings. On the oil being cooked to the required extent, and while still boiling hot, it is thrown into large shallow trays containing cold water. It swells up into a jelly-like substance, the roghan of Northern India. This is stored in tin cans and sold to the manufacturers of the so-called Afridi wax-cloth.

Wax-cloth.—It would occupy too much space to repeat the accounts published in The Agricultural Ledger (1901, No. 12, 393-414) and Indian Art at Delhi, 1903 (229-34), regarding this curious little industry. The facts made known in these publications prove that we have been incorrect in affirming that the Natives of India were unaware of the drying property of certain oils in the manufacture of paint with mineral pigments. But in the Afridi wax-cloth the paint is not applied by a brush but by means of an iron style. The rapidity and accuracy with which the pattern is elaborated by threads of plastic and coloured roghan has to be seen to be appreciated or understood. The skilled artist can work from right to left or left to right with equal ease, and, just as in penmanship, the thick downward strokes and the fine upward hair-lines are each made to occur in their proper places in the elaboration of the pattern with which the fabric is being covered. Where two or more colours have to be given, the operator usually applies all the patches or lines of one colour before he proceeds to use the second or the third shade. The half-finished table-cloth or fire-screen may in consequence often appear a bewildering production, since it may be impossible to discover the actual pattern in the operator’s mind.

In passing it may here be added that in Baroda, castor-oil, and in Kach, linseed-oil, are similarly made into the roghan used in the fabrication of the wax-cloths of these localities. Experiments conducted in the Industrial Museum, Calcutta, have revealed the fact that the oil of the wild safflower possesses no special properties over those of the cultivated plant. It would further seem that in the Afridi wax-cloth India possesses the nucleus of a possible large new craft, that of producing wax-cloth, waterproofing materials and linoleum, from local materials and possibly by means of the expert craftsmen who from time immemorial have turned out the goods here indicated. The jute mills of Calcutta prepare and export the cloth required by the wax-cloth and linoleum manufacturers of Europe and America. India, moreover, will be seen to import a by no means insignificant amount of the specially prepared wax-cloth and linoleum (oil-cloth and floor-cloth) made on the jute textiles exported from India.
CARUM

BULBOCASTANUM

Edible Seed.

Cake.

for that purpose. In 1876-7 these imports were valued at only Rs. 17,620; in 1901-2 they came to Rs. 5,74,306; in 1903-4 to Rs. 4,17,788; and in 1906-7 to Rs. 6,20,305. Surely the effort to participate in so prosperous a traffic is worthy of attention.

Edible Seed and Cake.—Carthamus seeds, especially after being roasted, are eaten, but are most valued as a food for poultry, though, as already observed, the tender shoots are prized as a pot-herb or salad. Mollison makes the remark that cattle have to be educated to eat the cake, but that it has the advantage of keeping well and does not get mouldy. It is highly valued as a manure.

CARUM BULBOCASTANUM, Koch.; *Fl. Br. Ind.,* ii., 681;

* Bunium Bulbosostanum, Linn.; Carum nigrum, Royle, *Illust. Him. Bot.,* 229; *Rec. Bot. Surv. Ind.,* i., 154; *Paulus Aeginita (Adams, transl.)* ii., 74; *Umelliferæ.* Black Caraway, siyah, shia, sâjira, shah-zerah, shiyal zarh, kalâ zarah (zerah), zirdi siah, etc., also called guniy in Kashmir and umbh in Ladakh. These names seem to be the most perfect for the former names to be modern adaptations, since the true kâlâyra is the Black Cumin (*Nigella sativa,* see pp. 442, 811).

Black Caraway is a native of Baluchistan, Afghanistan, Kashmir, Lahaul, Chamba, etc., eastward to Garhwal and Kumaon, and westward toward Quetta. It is mainly a weed of cultivated land, but is liable to prove dangerous in fields owing to the fondness of pigs for the root. It also exists truly wild on grassy slopes (at alt. 6,000 to 11,000 feet), whence the shepherds collect it as a valuable source of income; but it is nowhere cultivated. It is probably the *krishna-jiraka,* which Royle maintained was well known to the Hindus before the introduction of the European Caraway (*C. Carvi*). [Cf. Lawrence, *Valley of Kashmir, 67; Aitchison, *Bot. Afghan. Delimit. Comm., in Trans. Linn. Soc.,* iii., 1.]

An inquiry instituted by the Inspector on Economic Products in response to a question put by the Indian Chambers of Commerce, resulted in the collection of specimens of zarah (zira) from the chief towns of India as well as of the fruits (seeds) and plants from all known areas of supply. The fruits in every instance were found to be *C. Bulbosostanum* and not *C. Carvi* (except when stated to be a foreign or imported drug). The examination showed, however, that other seeds are often used as adulterants or substitutes for black caraway. The adulterants were similar in shape, size and markings, but quite destitute of the characteristic aroma. Thus, for example, Mr. L. G. Smith, Forest Divisional Officer of Sambulpur, sent four samples from the local bazârs which were subsequently identified as (1) the true caraway (mita zarah), most probably imported; (2) *C. Bulbosostanum, sa- or shah-zerah; (3) Vernonia anthelmintica, parbat-zarah;* and (4) *Nigella sativa, kala-zerah.* The sample of black caraway was, however, not pure. Pure parcels were received from Yasin in Gilgit and from Hazara. From Kullu and Bashahr were furnished two qualities called "zira" and "sighu." The latter was stated to be an adulterant. "Zira" proved to be *C. Bulbosostanum,* and ultimately, through the assistance of Mr. J. H. Lace, then Assistant Inspector-General of Forests, the adulterant was recognised as *Bupleurum falcatum.* Mr. Lace found the people gathering the seeds in Chamba; he secured a sample and corresponding botanical specimen, so that his material became an authentic type with which to compare the adulterants of commerical parcels. It was in consequence found that the *Bupleurus* was identical with the adulterant sent from most parts of India. Is this the pseudobunium alluded to by Paulus *Ægineta which Adams suggested might be Pimpinella tenus?* Mr. Lace says that *Bupleurus* is known locally as

Black Caraway.

Habitat.

Grades of Zerah.

Adulterant Sighu.

283
THE TRUE CARAWAY

Carum

Caraway

banchak or banskoh, and that before it is mixed with the carum the fruits are coloured with a decoction of walnut bark. It is sold at 9 seers to the rupee, the true article being very much more expensive—say 3 seers to the rupee. Usually 5 seers of banchak are mixed with one seer of zira. The black caraway and its adulterant are therefore respectively the "zira" and "singhu" mentioned in the Panjab Forest Administration Reports from 1894–1900 as obtained from the Kullu forests and sold, the former at Rs. 15 to Rs. 27 ½ per maund, the latter at Rs. 8. Sir Walter Lawrence says that the seeds of Daucus Carota are also used as an adulterant, but this cannot be done to any great extent since carrot-seed is not abundant and is also easily distinguishable from caraway, while the dyed Rapunzel can with difficulty be separated.

The uses of this caraway, so far as can be ascertained, seem identical with those of carum. From Bashahr large quantities of black caraway are conveyed annually to Rampur and thence distributed via Amritsar all over India. Amritsar also receives the Kashmir, Afghanistan and N. Himalayan supplies. Other emporia are Karachi and Cawnpoore; the former obtains its supplies from Hazara and Baluchistan, the latter from Garhwal and Kumaon. The price at Cawnpoore varies according to quality from Rs. 25 to Rs. 44 per maund of 52 ½ seers, but the consumption is very limited and the sales are usually in small parcels of ½ to 2 maunds. In addition to an Indian supply, Bombay imports from Persia. The wholesale price is said to be Rs. 8 per 37 lb. (= Surat maund), and the retail price for cleaned fruit 8 annas per lb. [Cf. Pharmac. Ind., ii., 120; Kaye, Setl. Rept. Baltistan Dist., Kashmir, 1889, 16; Rivett, Assay. Rept. Mazaffarabad, Kashmir, 1899, 10, 12, 50, app. xxy.; For. Admin. Repts. Ph., 1894–5 to 1901–2; Rev. Working Plans, Pangi For., Chamba, 1901, 2; Rept. Cent. Indig. Drugs Comm., 1901, i., 113; etc., etc.]

C. Carui, Linn.: Fl. Br. Ind., ii., 680. The European Caraway, Carve, Kümme, zirah, kuryoa, karawya. The vernacular names are in the main, of course, those given under the foregoing species, though sometimes to the name zerah is prefixed a description, as mitka (sweet), viljatyi (foreign), or safed (white).

As met with in India the fruits are mainly imported, but the plant is probably occasionally cultivated in gardens on the plains as a cold-season crop. The repeated though vague statements of its existence in India "wild and cultivated" seem likely to be due mainly to confusion with C. Bulbocastanum. There is, however, a fairly large import trade in the spice and it may be well to epitomise here a few of the chief uses of caraway, always premising that when such use can be attributed to the Indian-grown caraway, the reference is in all probability to C. Bulbocastanum. The seed is employed both powdered and entire. In the former condition it is an important ingredient in curry powders; in the latter it is put into cakes, biscuits, etc. As a Medicine it is stimulant, carminative and astringent. But it is frequently used in flavouring cordials and certain preparations of Indian hemp (bhang). A valuable essential Oint, obtained from the fruits, is employed in medicine and as a perfume for soaps. The distilled oil is first mentioned in the price ordinances of Berlin for 1574 and in the Dispensatorium Noricum (1589). The two valuable constituents in the oil are carvone (formerly, carred), which is the essential and odour-bearing body and possesses all the qualities of the drug in a pure form; and carvone or limonene, a by-product, not suitable for liqueurs but "can be satisfactorily employed instead of caraway oil in medium and cheap soaps" (Schimmel & Co., Semi. Ann. Rept., April 1892, 12). The percentage of oil varies apparently according to cultivation and country of origin. Of the European sorts the Bavarian wild plant yields the highest percentage, 6-5 to 7, whilst the Russian stock yields only 3-2 per cent. The sp. gr. lies between 0-907 and 0-915; oils of lower sp. gr. rarely occur, and are less valuable as they contain less carvone. [Cf. Gledemeister and Hoffmann, Volatile Oils, 550–8.] A case of poisoning by caraway-seed presented symptoms similar to those induced by other essential oils. [Cf. Ind. Med. Gaz., 1896, 145.] It may be added that caraway from which the oil has been expressed is dried in special apparatus and used as a Cattle Food, being prized for its high percentage of crude protein (23-5 to 25-3 per cent.), and fat (14 to 16 per cent.). [Cf. Paulus Epineta (Adams, trans.), ii., 138; E.I.C. First Letter Book, 201, 480; Bentham, Comment. on Targioni-Tozzetti, in Journ. Hort. Soc., ix., 145; Wiesner, Dic. Rohat. des Pflanzenv., ii., 794.]
AJOWAN OIL

C. copticum, Benth.; Fl. Br. Ind., ii, 682; Cooke, Fl. Pres. Bomb., i, 564; Prain, Beng. Plants, i, 536; Dutthie, Fl. Upper Gang. Plain, i, 394. The Bishop's Weed, Lovage (of Indian writers), ajowan, ajwain, ajowan, jwani (jurni), ajamo, chochara, owa, amam, omami, omu, etc., a herbaceous plant cultivated throughout India, especially in Bengal. It also grows in Egypt, Persia, and Afghanistan, and more recently was introduced into Europe.

This is certainly not the "ami" or "ammi" of Dioscorides (as exemplified in the Codex Vindob., 50, which is Ammi Vianagu), though that opinion has often been upheld. [Cf. Pharmacog. Ind., ii, 116.] It would appear, however, to be Ammi perpusillum, of Lobel (Stirp. Hist., 1576, 414). The fruits are certainly the ajoue of Percival (1773). Pomet, physician to Louis XIV. of France (Hist. Drugs (Engl. ed.), 1712, 3, f. 5), observed that by far the best quality came from Alexandria and Crete. In India it is sown in October to November on ridges, the seed being dibbled every 6 inches; strong manures are deleterious but a liberal supply of water is necessary. The aromatic fruits are much in request for adixture in curries, etc., and in pan supari. The plant is referred to in the Taleef Shereef (Playfair, transl., 1833, 9) as an astringent, aphrodisiac, vermicifuge and diuretic. By distillation a Water and an Oil are obtained, the percentage of the latter being about 3-4. The oil is given medicinally in cholera, colic, etc., being considered, like the fruits, antispasmodic, stimulant, tonic and carminative. Oumam-water is prepared and sold in most Indian bazaars. A crystalline substance or stearoptine separates from the oil and forms on the surface during distillation. This is sold as ajowain-ka-phul ("flowers of ajowan"), and is identical with thymol, which is the principal constituent (45 to 55 per cent.) of ajowan-oil and for which alone the fruits are distilled in Europe. It is prepared on a fairly extensive scale in Ujjain and other towns of Central India and was first made known to Europe by Dr. Stocks. The price is from Rs. 6 to Rs. 12 per lb. [Cf. Rept. Cent. Indig. Drugs Comm., i, 125.] The value of thymol is mainly as an antiseptic, and very large orders have recently been received from Japan. The price in Europe varies with the character of the Indian season: during cholera and plague years it has been high (e.g. 22s. per kilo in 1901), but over-production has tended to keep prices low (e.g. 13s. 6d. in 1897, 13s. in 1903). Besides thymol certain hydrocarbons called thyme are obtained from ajowan-oil and used as a soap-perfume. A sample of the fresh plant itself cultivated at Miltitz (Saxony) yielded 9-12 per cent. oil, but the oil had only 1 per cent. of thymol. Of 8,641 cwt. of the oil exported from Bombay in 1903, 8,443 cwt. went to Germany and the rest to America and Egypt. [Cf. Schimmel & Co., Semi-Ann. Rept., Oct.-Nov., 1903, 104; Apr.-May, 1904, 130.] The distilled dried fruit contains 15 to 17 per cent. protein and 25 to 32 per cent. fat, thus making an excellent food for cattle. [Cf. Gildemeister and Hoffmann, Lc. 557; Craddock, Rept. Land Reiv. Settl., Nagoor, 1890-5; Lawrence, Valley of Kashmir, 1895, 346; Brit. Pharmacop., 1898, 335; White and Humphrey, Pharmacop., 1901, 496, 553, etc.]

C. Roxburghianum, Benth.; Prain, Beng. Plants, i, 536; ajmud, ajmol, randhun, chanu, rojani, etc.

This is extensively cultivated throughout India for the sake of its seeds, which are used in curries and to some extent for its leaves as a substitute for parsley. As a drug ajmud is regarded as carminative and stimulant and has the reputation of being specially useful in vomiting, dyspepsia, etc. (Taleef Shereef (Playfair, transl., 1833, 8). It is probably only a cultivated form of C. sievolcaulym, var. hebecarpus. C. B. Clarke (Br. Ind., ii, 681-2). [Cf. Buchanan-Hamilton, Stat. Acc. Dinajb, 188; Fleming, Ind. Med. Pl. and Drugs, in Az. Res., 1810, x, 157.]

CARYOTA URENS, Linn.; Fl. Br. Ind., vi, 422; Gamble, Man. Ind. Timbs., 729; Prain, Beng. Plants, ii, 1093; Brandis, Ind. Trees, 654; Cooke, Fl. Pres. Bomb., ii, 805-6; Palmee. The Indian Sago-palm, Bastard-sago, mari, bherawa, birumhad, mhur-mardi, conda-panna, khymi, shunda-pana, minbaw, etc. A beautiful palm met with throughout the hotter parts of India from the Sikkim Himalaya and Assam to Ceylon and Singapore, distributed throughout tropical Asia and Malay. Fibre.—The plant is mentioned by almost all the pre-Linnaean physicians. D.E.P., ii, 198-200.
THE INDIAN SAGO-PALM

Sago and Sugar

Authors from Varro (116 B.C.) downwards. The chief commercial value of the palm lies in the fibrous cords or fibro-vascular bundles found naked at the base of the leaf-sheath and within the petioles, flowering stalks and even the stems as well. These constitute the strong kuttul fibre of Ceylon and the salopa of Orissa, a fibre which also comes from Burma and Bombay. It is made into ropes, brushes, brooms, baskets, etc. As a brush fibre it was described in the *Treasury of Botany* (1866) and has been shipped from Ceylon to England since about 1860. Five or more strands, fastened together by special machinery, have moreover been found to make an excellent substitute for whalebone in corsets. Since the discovery that kuttul fibre was not only equal but even superior to, because less brittle than, the Bahia piassava (the fibre of *Attalea funifera*), several brush factories in India, it is believed, have begun to use it instead of bristles in hair-brushes, clothes-brushes, horse-brushes, etc. [Cf. Hooper, *Rept. Labor. Ind. Mus.*, 1903-4, 29.] In this they are following the lead of European makers: Hannan (*Text. Fibres Comm.*, 1902, 155), for example, says that kuttul is now in much request in Europe for brush-making and that some of the finest qualities have been adopted as substitutes for bristles. Jackson (*Comm. Bot. XIXth Cent.*, 1890, 142) observes that as much as forty (now fifty) years ago kuttul fibre was exported to England for admixture with horse-hair (may it not have been *Chamaerops humilis*?). In the brush trade it is steeped in linseed-oil and thus made so pliable that it can be used either with or without bristles in making soft, long-handled brooms which are extremely durable and can be sold at about a third the price of ordinary hair-brooms. Dodge (*Useful Fibre Plants of the World*, 112-3) says it is also made up into machine brushes for polishing linen and cotton yarn, for cleaning scutched flax, brushing velvets, etc. Both in India and Ceylon fishing lines are made from kuttul fibre (Drury, *U. Prov. Ind.*) and strong wiry ropes capable of holding wild elephants are constructed of the fibre, while in Australia the leaves apparently are regarded as a good paper material. Lastly, the woolly substance or scurf scraped from the leaf-stalks is used in Burma for caulking boats. The quotations in London on April 20, 1901, were for *long quality*, 8½ d. to 9 d. per lb.; for No. 1, 6 d. to 7 d.; No. 2, 2½ d. to 3½ d.; and No. 3, 1 d.; *Ike & Christie (Monthly Circ.*, Oct. 15, 1907) give the following returns of present date:—Long, 8 d. to 9½ d.; No. 1, 6 d. to 7½ d.; No. 2, 2 d. to 3½ d.; No. 3, 1 d. to 1½ d.

Mr. J. C. Willis tells us (*Admin. Repts. Bot. Gard.*) that the exports from Ceylon have never exceeded those returned for the year 1898, viz. 3,794 cwt. The exports from India are unimportant.

Sago:

The *Sago* and *Sugar.*—Besides its fibres, *Caryota* yields from the interior of the stem a sago which is mentioned by Roxburgh (1832), by Robinson (*Desc. Assam*, 1841, 56) and by other writers as almost equal in quality to the best sago of commerce. As a matter of fact it would seem to be an inferior article, though quite wholesome (*Yearbook of Pharmacy*, 1903, 328). On the Malabar Coast and elsewhere it is made into bread or gruel and thus constitutes an important article of food with the poorer classes. The “cabbage” or terminal bud is edible, like that of most palms. Connelius (Rheece, *Hort. Mal.*, i., 16, n.) remarks that, according to authors, the pulp of the fruit is bitter and irritates the tongue—a circumstance which doubtless suggested the specific name *wren*. The fruit is certainly very pungent and insipid, but I cannot recollect.
having observed the tingling property just mentioned, though I have
eaten it. Finally a toddy or juice is collected by "training" and "tapping"
the spathes. This juice is either fermented and distilled into an
alcoholic liquor or boiled down into a dark syrup which solidifies into
jaggery or palm-sugar—an important product, especially in Bombay and
Ceylon. Mr. A. M. Sawyer, writing of the "training" and "tapping"
processes in North Travancore (Ind. For., 1896, xxii., 134–8), says that at
the end of the first five days of tapping the yield is about 4 quarts per
day, increasing by degrees to 6, 8, and 12 quarts. In strong, healthy
individuals even 18 or 20 quarts may be obtained at the end of the course.
Sometimes, in an unusually prolific palm, three or even four spathes may
be seen tapped at the same time, while others, in spite of the most careful
training, yield no toddy whatever. An average-sized spathe is tapped in
about four months, and all the spathes of one palm are exhausted in about
two years. According to Roxburgh the best trees give as much as 100 pints
in twenty-four hours. Further details may be found by reference to
Borassus (pp. 170–1).

The Timber is strong and durable, being much used for agricultural purposes,
water-conducts, and for beams and rafters. Not infrequently it is cut into
walking-sticks. The seeds are used as beads by the Muhammadans. [Cf.
Morris, Comm. Fibres, Cantor Lect., 1893, 34; Lushington, in Ind. For., 1899,
xxv., 54–6; Sadebeck, Kultur. der Deut. Kolon., 1899, 313; Junelle, Les
Cult. Colon. (Aliment.), 1901, 25–7; Wiesner, Die Rohat des Pflanzens., 1903, ii.,
208, 411–2.]

CASSIA, Linn.; Fl. Br. Ind., ii., 261–6; Gamble, Man. Ind. Timbs.,
Plain, 1903, i., 290–6; Cooke, Fl. Pres. Bomb., 1903, i., 417–27; Brandis,
Ind. Trees, 253–5; Leguminosæ.

A genus of herbs, shrubs or trees that contains in all about 380
species, mostly tropical, a few only being extra-tropical. India possesses
some 18 indigenous species with three or four fairly plentiful introduced
forms. They have all showy flowers but are mainly of value as
medicines or as tans:—

C. ABAUS, Linn.; châkâši, chinâmar or chinâl, banâr, etc., a herb found fairly
plentifully throughout India. The seeds are used in the treatment of ophthalmia
and as a cathartic.

C. ALATA, Linn.; the dâddmaran (=ringworm-killer), or vidâyati- (or shinnai)
apati (the foreign Sesbania grandiflora), is a small shrub found in gardens
throughout India and supposed to have been introduced from the West Indies.
The leaves rubbed up into a thin paste and mixed with vaseline constitute an
Res., 1870, xi., 163; Bennett, Wanderings N.-S. Wales, 1834, i., 123.]

C. FISTULA, Linn.; the Indian Laburnam, the Purging Fistula, or amalâs,
alâsh, sundâli, sonâli, bâharâ, gurmâla, konâra, kori, etc. A moderate-sized tree of
the Sub-Himalayan tracts ascending to 3,000 feet and common throughout the
plains of India and Burma.

The bark is to some extent used both as a tanning material and a drug.
The pulp of the fruit is regarded as a safe and useful purgative—one of the
commonest of domestic medicines in India—but has the objection of not keeping
well. Adams (Comment. in Paulus Egineta, iii., 429–31) mentions that it was
known to Serapion, Rhasan, Meusa, Ebn Baitâhar, etc.—in fact to most of the
early Arab writers, who speak of it as a purgative drug procured from India,
Arabia and Egypt. It is also largely used in smoking mixtures to flavour
the tobacco used by the Natives, especially in Bengal. [Cf. Meusa, Op. (ed. Marinus),
1562, 52; García de Orta, Coll., xiv.; also Clusius, Hist. Aron., 1667, 136; also
Comment. by Ball, in Proc. Roy. Ir. Acad., 3rd ser., i., 400; Linschoten, Voy. E.
THE TINNEVELLY SENNA

CASSIA ANGUSTIFOLIA

C. obovata, Collat. ; sometimes called Country Senna, Jamaica Senna, Italian Senna. This is the *bhuti-tarwar*, a plant common in many parts of India and occasionally to be seen in the bazaars as an inferior quality of Senna. [*Cf. Greenish, Pharm. Journ., 4th ser., ix., 470-1.]*

C. occidentalis, Linn. : the Negro Coffee or *kāsāndī, kāsūndī, hīkal, kālīkāshundī*, etc. An under-shrub abundant on waste land and roadsides throughout India, though probably originally introduced from America. The leaves, roots and seeds are medicinal. The seeds dried, then ground to powder, are used as a good substitute for coffee, and since they are antimonial are said to be often beneficial. [*Cf. Kew Bull., 1881, 34-5 ; Yearbook of Pharmacy, 1887, 175-6 ; Pharmaceut. Journ., 1900, lxv., 439 ; Ridley, *Mal. Pl. Names*, 116 ; Rev. des Cult. Colon., 1902, x., 63.]*

C. Sophora, Linn. : the *kālī-kasonda, jangli-takla, kālī-kasondā, banar* (the *kāsāmandra* or cough-destroyer)—a closely allied and often much confused plant with **C. occidentalis**. It is cosmopolitan in the tropics and common throughout India. The bark, leaves and seeds are cathartic and the juice of the leaves viewed as a specific for ringworm. [*Cf. Prosper Alpinus, i.e. 35.*]

C. Tora, Linn. : the Fodid Cassia or *chakumūndi, pānēvar, pānēvar, tarotā, kōveriā, kōveriā*, a gregarious annual under-shrub found everywhere in Bengal and throughout tropical India. This is in Sanskrit called *chakramanda* (= ringworm-destroyer), once more confirming the all but universal reputation of the species of Sennas. But in this particular plant a more or less new property has been attributed to the seeds, in that they are largely used along with indigo. For this purpose they are regularly sold to the dyers. They are also roasted, ground to a powder, and used in place of coffee. Mr. William Elborne of Owens College chemically investigated these seeds and came to the conclusion that their activity was due to "emodin, a substance closely allied to chrysophanic acid, in chemical characteristics, and considering the purpose for which the Natives of India use the plant, evidently in medicinal properties." Adams (Comment. in *Paulus Ḗgineta*, iii., 466) identifies this plant with the *kelkel* of the Arabs—a drug mentioned by Avicenna, Seraotion, Rhazes, etc. etc.

C. angustifolia, Vahl. ; the Tinnevelly Senna of Indian commerce, perhaps best known by the following names:—*sanna-mukki, sená-makhi, Hindi-sanna, nilavirai*, etc.

Adams (Comment. in *Paulus Ḗgineta*, iii., 431-3) gives a most interesting sketch of the early knowledge in Senna. He says Serapion was undoubtedly the first author who describes the drug as an article of the Materia Medica. He, however, quotes still other writers, such as Isaac Ebn Amram and Abix. All the Arab physicians, in fact, extol the merits of senna in purging black or yellow bile and in acting as a cordial when mixed with suitable drugs, such as violets. The present species, as also the Alexandrian (*C. acutifolia, Delile*), were introduced to both Indian and European pharmacy through the Arabs. The former species (the only one grown in India) is fairly extensively produced in Tinnevelly, and recently its cultivation has been extended to Madura and Trichinopoly, districts of South India, and to Poona in Bombay. It is sown on red or black clay loams, fairly liberally ploughed and manured, the sowing being in May. Weeding has to be attended to, but irrigation is hardly if ever necessary. The season for collecting the leaves is June to December. The yield is said to be 1,000 lb. (2 candies) an acre, which allows a handsome margin for profit.

Indian senna is either exported coastwise to Bombay and thence to foreign countries, or is consigned direct from Tuticoren. The drug is also imported by India from Arabia, where it is collected from the wild plant and 288
MADRAS TANNED SKINS

accordingly often much adulterated. It would appear that about 5,000 cwt. are usually taken by India and again re-exported under the name of East Indian Senna or Moka or Aden Senna, and is thus no doubt the true sanan (sona) - kokki (maki) or sanan - hajazi. For many years past, however, the imports from Arabia have been declining and the exports of Tinnevelly senna improving. The purity, high quality and low price of the Indian article place it in the front rank. In 1887-8 the total exports from India of locally grown senna came to 21,376 cwt., valued at Rs. 3,18,869. More recent figures are given by some writers, such as 5,000 candies annually from Tuticorin, but the data for an exact and detailed statement of the total trade are not available. Quite recently a new form of senna has appeared in the London markets from India. This has been shown by Barber to be C. montana, but as a drug it has been found inferior to C. angustifolia, and should therefore be discouraged. [Cf. Hooper, Rept. Labor. Ind. Mus. (Indust. Sec.), 1903-4, 30; Gibson, Journ. Agri.-Hort. Soc. Ind., ii., 193; vi. (Select.), 128; Pharmacog. Ind., 1890, i., 526-30; Agri. Leqd., 1896, No. 29, 290; Capital, May 1902; Pharm. Journ., 1901, 397.]

C. auriculata, Linn.; the Tanner’s Cassia, tarvar, tarota, tangedu, tanghedi, tangadi, avala, averi, etc. A tall shrub found plentifully in Central and South India as far north as Rajputana and also in some parts of Burma. It is common on dry stony hills and on black soils.

The bark is largely used in tanning and gives a buff-coloured leather. It has been remarked that Madras is favoured in the possession of this tanning material. But it is feared the discovery of the method of chrome tanning has even already given a totally new turn to the subject of Madras tanned or dressed skins and rendered the special advantage mentioned of comparatively little avail. (See Hides—Chrome Process, p. 637.) It has always, however, been contended that the raw skins of Madras are naturally well fitted for a high-class tannage. They possess some special properties much liked by the curriers into whose hands they eventually pass to be transformed into the morocco leather used for book-binding, furniture, carriage lining, and many other such purposes. Experts have, moreover, reported that the colour of leather prepared with this bark alone changes into murky brown, further that compared to its merits the price is too high (Rs. 20 a candy of 500 lb.). With a view to ascertaining more precise particulars as to supply, price, and property of this tanning bark, the Reporter on Economic Products to the Government of India issued a circular letter to Forest and other officers of India in which samples of the bark and full particulars were called for. The result was rather disappointing, and has been reviewed in The Agricultural Ledger (1896, No. 9). The Scientific Staff of the Imperial Institute also published some of their investigations with the bark (reprinted by Dunstan, Imp. Inst. Tech. Rept., 1903, 184-5), from which it would appear that the samples examined gave extreme variations in amount of astringent principle and therefore of commercial value. Some time subsequently Hooper (Agri. Leqd., 1902, No. 1, 27) pointed out that one source of diversity was in the age of the plant from which the bark had been collected. In young plants he found the bark to contain only 11-92 of tannin and 22-35 extract, while in old plants the corresponding figures were 20-12 of the former and 29-0 of the latter. In another part of his report (loc. 3) he places

Merita.

Price.

Recent Investigations.
CEDRELA TOONA

THE TOON WOOD.

Unsatisfactory Tannage.

Medicinal Uses.

Tooth-brushes.

Toon or Indian Mahogany.

Timber.

Cigar-boxes.

"Moulmein Cedar."

Trade.

Medicine.

Dye.

Fodder.

N.W. Himalayan Form.

cassia bark as the fourth most valuable in a series exhibited by him, the
cassia having 23 per cent. of tanning matter. Prof. Hummel, York-
shire College, Leeds, found the tannin to be 20-5 per cent. On the other
hand, Leather mentions only 15-5 per cent. of tannin, but a high ac-
companiment of soluble non-tannings. So also Prof. Procter (Rept.
Soc. Arts, 1904), who places this bark as one of the catechols, speaks of the
"thoroughly unsatisfactory character of the turkwar tannage, for the use
of book-binding and upholstery," and asks whether there may not be
other more desirable materials. These modern results and opinions
would thus seem to assign a much lower position to the Tanner's Cassia
than seems to be the belief in South India. By way of conclusion it
may be mentioned that in the Northern Division of Madras the bark
(tangheli) or some babul gum is added to sesamum seed when it is
to be pressed for its oil. It is said that this practice enhances the value
of the cake (see p. 986).

The seeds, like those of C. Absus, are valued as a local application in
purulent ophthalmia. An infusion of the leaves is esteemed as a cooling
medicine and as a substitute for tea. The leaves are also eaten as a green
vegetable in times of famine. The shoots are largely utilised as Native
tooth brushes, and the root is spoken of as of great value in tempering iron
metal (see Acacia, p. 5; and cf. Wiesner, Die Rohst. des Pflanzenw., i., 716).

Upper Gang. Plain, i., 158; Brandis, Ind. Trees, 145; Meliaceae. The Toon
or Indian Mahogany, Moulmein Cedar, tìn, lìm, lìd, drawé, pòma, tundà,
thìt-kàd, etc. A large, rapidly growing, deciduous tree, 50 to 60 or even
80 feet high and sometimes as much as 20 feet in girth. It is met with
chiefly near streams in the tropical Sub-Himalayan tracts, from the Indus
eastwards to Sikkim and Assam; also at low elevations throughout
Western and Southern India; less common in Eastern Bengal and Burma.

This important Indian timber tree is extensively cultivated and often self-sown.
It would appear to have been first described, so far as India is concerned,
The roots are surface-feeders, so that it ought not to be grown on the borders of
fields. In the plains of the Panjab the young plant must be protected against
frost. The timber is durable, not eaten by white ants, and not liable to
warp. It is therefore much in demand for furniture and carvings, especially in
Saharanpur (Indian Art at Delhi, 1903, 111), and in Bengal and Assam is
constantly used for tea-boxes, hence its having become scarce. In Assam it was
formerly much employed for boats and canoes, and in South India is very largely
converted into cigar-boxes. It is exported from Burma as "Moulmein Cedar,"
and known under that name on the English market. Col. Seaton gives the
cost of cutting and delivery as Rs. 44 per ton. Specimens sent to London
from Dehra Dun in 1883 realised 4/-d. per superficial foot, and in Malabar in
1902, 4-inch planking fetched Rs. 2 per cubic foot, 4-inch planking was sold at
Rs. 1-14-0, and 1-inch at Rs. 1-12-0. [Cf. Ind. For., 1883, ix., 427; Capital,
July 24, 1902, 118.]

The bark is used, especially along with a powder of the nuts (seeds) of Costus
pinnae Bondellea, as a tonic and antiparalytic in Native medicine. The flowers
afford a red and yellow dye. [Cf. Taleef Shereef (Playfair, transl.), 1833, 61.]
The seeds, young shoots, and leaves are given as FODDER to cattle.

There are several other Indian forms, the properties of which are similar
to those just detailed. The most important are C. utrocarpa, C. sc.,
and C. serrata. [Cf. (the dàri, dàwri, sòm, etc.). The latter is particularly
abundant below Simla and elsewhere in the N.W. Himalayas, where the timber
is in considerable local demand, being employed for beams and sloopers, on
THE HIMALAYAN CEDAR

A very large evergreen tree (often 250 feet) of the Western Himalaya, extending westwards to the mountains of Afghanistan and eastwards to the Dauli river in Kumaon; most common at 6,000 to 8,000 feet, but in the more eastern section of its area it ascends to 10,000 feet in altitude. Said to have been introduced into Great Britain about 1831, and is now cultivated to a considerable extent both in Europe and America. The closely allied species, the Cedar of Lebanon proper, was introduced, so Miller says (Gard. Dict., 1731), into the Physic Garden of Chelsea about 1683, but it is now believed that it was actually being grown in England a few years before that date (1662–70). According to Bentham (Notes on Tarpioni-Tozzetti, Journ. Hort. Soc., ix., 175), that cedar, although apparently well known to the Ancients as a valuable tree, had never been grown in Italy until carried from England to Pisa in 1787.

In the Deodar is usually though not always monoeous, and is roughly distinguishable from the Lebanese and Atlas cedars by its drooping branches and longer needles. Though gregarious it rather forms pure forests, being found with blue pine, spruce, silver fir, oak, yew, poplar, horse-chestnut, etc. Gamble says that good seed years come about once in four or five years, and in suitable localities, where the seeds can get through the grass, weeds and moss of the surface covering, natural reproduction is very prolific. Artificial propagation, however, is not difficult, deodar being easily grown in nurseries, and with care successfully transplanted. Young plants suffer from waterlogging, and it is therefore best to transplant them from April to May. Deodar is probably at its best in good localities when about 12 feet in height, but it can reach a much greater size, trees of 30 to 45 feet in girth, and 100 to 240 feet in height. It prefers a light soil and gneiss, granite or even limestone sub-soil; in the Himalaya it seems to thrive on the northern and western slopes, thus avoiding the rain, and in cultivation does not succeed either at Darjeeling or on the Nilgiri hills, where there is too much clay and too much rain.

This is the chief Timber of Northern India. It is light yellowish-brown, scented and moderately hard. When well seasoned its weight rarely exceeds 35 lb. per cubic foot. It is very durable as well as immune from white ants, hence is extensively used for railway sleepers. It is believed that the deodar timber of certain buildings in Kashmir and Kanawar may be 600 to 800 years old. Accordingly it is held in considerable esteem for bridge-work and house-building (though its scent is by some regarded as too strong for interior fittings). It is rather brittle, however, and does not take paint nor varnish freely. In woodcarving, especially that of the Panjab and Kashmir, deodar is of course pre-eminent. The Muhammadan and Sikh work are directly adapted to it, and the characteristic feature of old Kashmir wood-work may be said to have been the bold and effective paneja or lattice panellings made of this wood. Further details as well as illustrations of deodar-carving may be found in Indian Art at Delhi, 1903 (103 and seq.), and the reader should also consult Lawrence's Valley of Kashmir (1895, 79–80) for further interesting details.

An Oil (kelon-ka-tel), which resembles crude turpentine, is obtained from the wood, and is used in veterinary practice. [Cf. Gildemeister and Hoffmann, Volatile Oils, 1900, 279. It is also employed by the men who float deodar logs down the rivers, to coat the inflated skins by the help of which they pass the rapids. In connection with the arrangements for the Delhi Durbar Exhibition, I observed that certain metallic objects kept in a box of deodar wood were beautifully varnished. On inquiry, I found this was due to the action of the oil. It would seem probable that this property may prove of much value. It should certainly be investigated. The aromatic wood (bhadora-kashta) is employed in Native
OLEUM NIGRUM

Trade in Cedar.

Trade.—It is next to impossible to give a definite statement of the annual supply of this timber. It is floated down the rivers in the form of logs, sleepers, or scantlings. The oil which it contains prevents it getting waterlogged, so that comparatively speaking few pieces get irretrievably lost; nevertheless the obstacle that bars an extended use is the cost of transit from the forests to the markets. The Forest Administration Reports of the Panjab, of the North-West Frontier Province, and of the United Provinces give particulars of the deodar removals from the forests owned or leased by Government, as also of the imports of that timber from Native States or foreign territory. The Statistical Department of the Government of India also gives particulars of the Trans-frontier traffic in which certain facts are given of imported timber. Comparing and analysing all these and such-like returns it may be affirmed that the annual supply obtained by the plains of India comes to approximately from 3 to 4 million cubic feet of this timber. The supplies come mainly from the forests of the Panjab proper (Chamba, Kullu, Kangra, Bashahr, etc.), of Kashmir and Afghanistan, of Hazara, Kagan eastward to Jaunsar—the Tonse, Jumna, Bhagirathi, etc.

[Cf. Paulus Aeginita (Adams, Comment.), iii., 450; Taleef Shereef (Playfair, transl.), 1833, 83; McDonell, Ind. For., 1885, xi., 213-20; Mian Moti Singh, Ind. For., 1892, viii., 268; 1893, xix., 168-70; Wiesner, Die Bohrt. des Pfannenz., 1903, ii., 147, etc.; McIntire, Ann. Rept. For. Dept. Working Plans Phd. For., 1895, etc.; etc.]

CELASTRUS PANICULATA, Willd.; Fl. Br. Ind., i., 617; Pharmacog. Ind., i., 343-5; Gamble, Man. Ind. Timbs., 1902, 175-6; Brandis, Ind. Trees, 1906, 162; CELASTRINE. The black-oil plant, mal-kangri, mal-kungri, sankhu, kuyuri, jiotsish-mati, etc. A scanty shrub of the outer Himalaya from the Jhelum to Assam, ascending to 4,000 feet, also of Eastern Bengal, Bihar, South India, Burma and Ceylon.

The seeds yield by expression a deep scarlet or yellow Oil, which is used in Medicine for external application. It is also burnt in lamps and employed in certain religious ceremonies, but its chief interest lies in the fact that by destructive distillation along with benzoin, cloves, nutmegs and mace is obtained the oleum nigrum of pharmacy, an empyreumatic fluid essentially employed, according to Dr. Herklot, in the treatment of beri-beri. In doses of 10 to 15 drops, black-oil is powerfully stimulant and diaphoretic. It is chiefly manufactured in the Northern Circars, the best quality being that of Vizagapatam and Ellore. The price of the seed is said to be about 2 annas per lb., and the oil about Rs. 20 per cwt. Moodoon Sheriff (Mut. Med. Med., 1891, 106-8), the Taleef Shereef (Playfair, transl., 1833, 148) and other writers say that the seeds are supposed to have the property of stimulating the intellect. The red seeds and the leaves are also employed in Native medicine. [Cf. Gamble, Man. Ind. Timbs., 175-6; Cooke, Fl. Pres. Bom., i., 231; Duthie, Fl. Upper Gang-Plain, i., 158-9; Brandis, Ind. Trees, 162; etc.]

CEMENTS and materials used.—Agri. Ledg., 1902, No. 5, 142-4; Ind. Art at Delhi, 1903, 95-6, 218; Papers relating to Magnesia Cement (a reprint of reports, letters, etc., dating from 1826 to 1837), issued by Madras Government.

Cements are commonly distinguished under five groups:—(a) calcareous; (b) gelatinous; (c) glutinous; (d) resinous; and (e) various materials. Nearly all cements contain lime, the reader is referred to the article on that
subject (pp. 695, 713). The following are the chief vegetable and animal substances employed as constituents in special cements, and mostly along with lime.

Adenanthera pavonina, Linn.: seeds (see p. 25).
Aegle Marmelos, Corr.: wild fruits (see p. 26).
Agave; sap (see p. 35).
Allium sativum, Linn.: fresh juice (see p. 59).
Borassus flabellifer, Linn.: juice (see p. 171).
Carthamus Oxyacantha, Bibl.: oil (see p. 278; also cf. Agri. Ledg., 1904, No. 11).
Cocos nucifera, Linn.: jaggery and milk (see pp. 361, 929).
Comphora Agallocha, Engl.: the gum-resin (see p. 409).
Gelatinous Cements; see Isinglass (p. 696).
Melanorrhoea ustata, Wall.; oleo-resin (see p. 779).
Oryza glutinosa (glutinous rice); (see p. 826).
Sugar; jaggery or jaggery used in chandam (see p. 956).
Triticum; gluten of wheat-flour (see p. 1088).
Typha angustata, Chaba and Bogy: the down from ripe fruits (see p. 777).

The vernacular name gordan or gordan applies to both these plants; and in fact they are not economically distinguished. The former is a small evergreen tree of the muddy shores and tidal creeks of India, especially common in Sind; and the latter a large shrub of similar conditions in the Sundarbans and the coast of Chittagong down to Tenasserim. The barks of both trees yield an important tan.

A sample of tannin-extract prepared in the Sundarbans and examined in England in 1900 was not, however, much valued because of its dark colour. Prof. Trimble of the Philadelphia College of Pharmacy found 23.07 per cent. of tannin in the dry bark of a sample of C. Candolleana sent from Singapore, and 31.56 per cent. in a Bengal sample. Other Bengal specimens were found to yield on the dry bark 30-20 per cent. and 18.30 per cent. (Hooper); 17.71 per cent., 21.54 per cent., 13.23 per cent. (Dunstan). [For further details cf. Imp. Inst. Tech. Repts., 1903, 186-90; Agri. Ledg., i.e.] About ten to twelve thousand mounds of Mangrove Bark are sold annually for tan in the Calcutta market at about 10 annas per maund of dry bark. The extract is also used as a dye to give a brownish-red colour to cloth, but especially a good black and purple in conjunction with indigo. In the Malay the cloth is first dyed in Mangrove-extract, then dried, and subsequently dipped in indigo. [Cf. Kew Bull., 1897, 91-2.] The whole plant is astringent: a decoction of the bark is applied to stop hemorrhage, and on the African coast the young shoots are employed in the preparation of a substitute for quinine. The timber of most of the species is hard and that of C. Candolleana is used for knees of boats. It is a superior fuel, and makes excellent charcoal.

CHENOPODIUM ALBUM, Linn.; Fl. Br. Ind., v., 3; Duthie and Fuller, Field and Garden Crops, iii., 21; Cooke, Fl. Pres. Bomb., ii., 501; CHENOPODIACEAE. The White-goose-foot, bathu-sag, chand-betbi, bunaq, etc.

There are various cultivated and wild forms of this ubiquitous plant, e.g. album proper (chand-betbi), viride (betbi-shak), purpureum (kal-bethi), etc. From the point of view of the present work the interest lies in the fairly extensive cultivation in the higher Western Himalayas as a food-grain and pot-herb. A sample of the seed sent from the Panjab and examined at the Imperial Institute gave the following results:—water 8.3 per cent., albuminoids 18.4 per cent., starch 19.2 per cent., oil 21.1 per cent. The nutrient ratio was 1:377 and the nutrient value 86. Church (Food-Grains of Ind., suppl., 3) says that "an analysis amply confirms the Indian opinion of its highly nutritious character.". The wild plant is regularly collected as a pot-herb and a green vegetable. The leaves are rich in potash-salts. A decoction of the plant is used as an adjunct in indigo-dyeing and the seeds are employed medicinally (see Vinegar, p. 1110). [Cf. Buchanan-Hamilton, Stat. Acc. Dinaj., 169, 194.]
CHICKRASSIA TABULARIS, Adr. Juss.; Fl. Br. Ind., i., 568; Gamble, Man. Ind. Timbs., 156-7; Talbot, List Trees, etc., 1902; 80; Cooke, Fl. Pres. Bomb., i., 1903, 216-7; Brandis, Ind. Trees, 144; MELIACEAE.

The Chittagong Wood or White Cedar, chikrass, lol-devdār, saiphra, sai-propano, pabba, aglay, agil, dalmaru, yinma, etc. A beautiful tree met with in the tropical forests from Sikkim to Chittagong and Burma, and from the Konkan and Deccan to Mysore, Malabar and Ceylon.

It yields a beautiful yellowish-brown, richly veined satiny TIMBER, suitable for furniture, piano-cases, tables, etc. Gamble remarks that it deserves to be better known and exported from convenient localities like Chittagong, where it chances to be plentiful. It also yields a transparent yellow GUM, an astringent BARK (used medicinally), and flowers that afford both a red and yellow DYE. [Cf. Pharmacog. Ind., 1890, i., 339; R.E.P., Circ. Letter, 1894-5, No. 25; Prog. R.E.P. Office, 1894-5, 1896-7, 1697-8, 1900-1; Settl. Oper. Sagaining, 1893-1900, 48.]

CHLOROXYLON SWIETENIA, DC.; Fl. Br. Ind., i., 569; Gamble, Man. Ind. Timbs., 160-2; Talbot, List Trees, etc., 81; Cooke, Fl. Pres. Bomb., i., 1903, 217-8; Brandis, Ind. Trees, 146; MELIACEAE.

The Satin-wood, bhera, bhir, bila, billa, bilu, bilu, madula, sengul, jirhul, sak, haryalu, hoko, etc. A moderate-sized tree of Central and South India, also Ceylon. Is met with in the dry forests of the Circars, Konkan, Deccan and Kārnātak, especially on poor soils, such as sand and laterite; common on the Satpuras and the sandstone formations of Kaladgi and Belgaum. Its most useful product is its TIMBER, the Satin-wood of commerce, which is largely exported from Ceylon and S. India ("Tamil Satin-wood"). It is in much demand for cabinet-work, the backs of brushes, picture frames, turnery (makes good stethoscopes), furniture, etc., and locally is utilised in house-building, carts and agricultural implements, but is not a good firewood, as it smokes too much. The tree also yields an amber-coloured GUM (of which little is known), a DYE, a wood-OIL and an astringent BARK, sometimes used medicinally, as also a paste made from the roots. Trees often destroyed on account of leaves being given as FODDER. [Cf. Forsyth, Highlands Cent. Ind., 464; Pharmacog. Ind., 1890, i., 338-9; Beau, Agri. Lohardaga, 134; Bisson, List Hyderabad Trees, 1895, 5; Ind. For., 1897, xxii., 52; 1899, 181; Cat. des Pl. Econ. Colon., "L'Hort. Colon.," Brussels, 1900, 52; Wiesner, Die Rohst. des Pflanzenr., ii., 953; Imp. Inst. Tech. Repts., 1903, 248.]

This cultivated little herb is of interest mainly because of the fact that from Dinajpur and Rangpur in Bengal, north-east to Assam, it is extensively eaten, and is number 15 in Buchanan-Hamilton's list of sago or pot-herbs. This fact seems to have escaped observation until re-discovered by myself while investigating the areas of successful cultivation of Bannharia nivea—China-grass. In my report on that subject, published in The Agricultural Ledger (1898, No. 15, 517-8), I pointed out that plants of the pea family become scarce, but that a peculiar series of pot-herbs take their places. Among these C. coronarium was found to hold a foremost position, being known as babir in North Bengal, babui in Assam, and jahanbui in the Khasia hills. It may now be added that after an inspection of the collection preserved in the Royal Herbarium, Kew, I am able to add that only one collector would appear to have previously recorded the observation of this plant being eaten. Speaking of Formosa, Walters calls it tan-i-ei-tao and adds that it is a "herb much used by the Chinese as an article of food." Bretschneider (Bot. Sin., 1892, pt. ii., 76) makes mention of two species of Chrysanthemum as known to the Chinese classics, the leaves of one of which are boiled into soup. This would appear to be called ts'iue hua ku, but in another part Bretschneider adds that he does not know.
THE BENGAL GRAM

the edible *Chrysanthemum*. It is, however, remarkable that not a few of the special vegetables of the *rhea* fibre area of India should be more Chinese than Indian plants. For the medicinal and other uses of this plant the reader should consult the works cited in the opening sentence above.

CICER ARIETINUM

Linnae., Fl. *Br. Ind.,* ii., 176; *Duthie and Fuller, Field and Garden Crops,* 1882, i., 33–6, pl. 8; *Agri. Ledg.,* 1895, No. 3, 37, 42; *Mollison, Textbook Ind. Agri.,* 1901, iii., 73–8; *Prain, Beng. Plants,* 1903, 365–6; *Duthie, Fl. Upper Gang. Plain,* 1903, 256; *Cooke, Fl. Pres. Bomb.,* i., 408; *Leguminosae.* The Common or Bengal Gram; Chick-pea; cicer (Latin); *erebinthus, orobus, krios* (Greek); *ceci* (It.); *ziser, kirchanger, ziser, kuchereba* (Ger.); *ciceren* (Belg.); *ciche, pois ciche, pois pechu, garvance* (Fr.); *gravancos, garbanzos* (Castilian); *cicerchas* (Sp.).

History. Most of the modern European names, like the English chick-pea or chiche, have doubtless come from the same root as the Latin *cicer*. Others may be viewed as derived from the Greek name, *erebinthus*, or are descriptive of the shape of the seed (*krios*—the ram’s head). *Hehn (Kulturpl. und Haust.* 1894, 210 et seq.)* identified *cicer* with the Greek *krios* (Dioscorides, ii., ch. 126). Apparently the earliest mention of the pulse in the literature of Europe occurs in *Homer* (Iliad, bk. 13, 889). Some centuries later Theophrastus (about 350 b.c.) assigned the word *erebinthus* definitely to the modern gram. Parched gram is mentioned by *Horace* as an article of food with the poor. *Cicero* took his cognomen from this pulse, as *Fabius* did from *faba*, also *Piso* and *Lentulus* from the pea and the lentil. Gram must, therefore, have been a common article of food with the poorer Greeks and Romans long before the Empire. The name "gram" comes from the Portuguese *grao* (i.e. grain), and was apparently a special appropriation made in India, because of its being in that country the most general grain given to horses. It is, of course, a pulse, not a grain, in the strict sense, but in South India, where *cicer* is but little cultivated, the name "horse gram" is given to *Dolichos biflorus*, just in the same way that "green gram" denotes *Phaseolus Mungo*. These pulses, cicer more especially, are frequently articles of cattle food, hence the expression "gram-fed" applied to the animals reared on them. *Nikitin*, a Russian traveller, who visited Western and Southern India in 1468, was impressed with the fact that in India horses were fed on peas. The old English words calavanses, caravanses, garvances and garvances are derived from the Spanish *garbanzos*, and were apparently given (and to some extent still are given) to several peas or beans largely used by mariners in place of fresh vegetables, hence very possibly the refrain of the mariners who "live on yellow peas." And these names survived till the beginning of the 19th century, for they occur in Act 54 of George III. (1814, ch. xxxvi.). For further particulars the reader should consult the article *Cajanus* (p. 199), also *Dolichos* (pp. 503–10) and *Vigna* (pp. 1107–8). *Cf. Coeck, Diary,* 1620, ii., 311; *Herbert, Travels,* 1677, 333, 347; *Fryer, New Acc. E. Ind. and Pers.,* 1675, 21; *Shelvockey, Voyage,* 1719, 62; *Hamilton, New Acc. E. Ind.,* 1727, i., 392; *Shaw, Travels,* 1757, 140; *Joret, Les Pl. dans L’Antiqu.,* 1904, ii., 249.)

In Sanskrit this pulse is known as *chanaka* or *chennaka*, and in the vernaculars of India—*chana, chunna, chenna, chhona, chana, sanna-galu or senagalu, senagalu, chola*, etc. Occasionally other names are given to it, such as *bhit, bidha, barbara, kaddi, kudalei, karman, dhakam, kudoloy kempa, kudale, kalapai*, etc. The first series are most frequently used in Northern, Central and Western India (down to Gujarat), while the second are specially prevalent in Eastern and Southern India from Bengal, Assam, Burma and west to the Maratha country, thence to the extreme south. In Arabic it is *humuz*, in Kabyll *hamzes*; in Egyptian *hmos* or *omas* and in Persian *nakhid*. Aitchison says that in Khorasan it is known as *nakhind*. *De Candolle* observes that south of the Caucasus it is known in Georgian as *nachuda*; in Turkish and Armenian as *nachius* or *nachzus*—names which De Candolle asks whether they may not be connected with the Sanskrit *chennaka*. In India the Arabic and Persian names are often used by Muhammadan writers. Thus in the *Ain-i-Akbari*, written 1590 by *Kuchmann*, translated, i., 62, mention is made of *nakhid dild as a pulse, the price of which is given, and it is expressly stated not to be met with in Kashmir (Jarrett,
CICER ARRIETINUM

Chick-pea

It is curious, however, that no mention is made of gram in the Memoirs of Baber (written about 1519 A.D.), so that it may fairly be inferred gram was not an important article of food with the army under the first great Mughal conqueror of India. Baber's silence regarding it may, however, have been a pure omission, or a consequence of its not having been a pulse new to him on his arrival in India, for it seems certain it was known to the people of India from a fairly remote period. By Hindu it is invariably described under its Sanskrit name, or some derivation from that. Susruta (Ayur Veda (Hessler, transl.), bk. i., ch. xx., 49), for example, alludes to it under the name of harima no k'ain as one of the specially worthwhile articles of food. The name harima no akalos is very largely given to it by the present Tamil-speaking races. It is mentioned in the Puranas but apparently not in the Institutes of Manu. The vinegar made from the dew found on the leaves is referred to under the name chana-komla by most of the Sanskrit medical writers.

Varieties.—While it is quite correct to say of it to-day, as it was when the Ain-i-Akbari was written, that Bengal gram is not cultivated to any extent in Kashmir, still there is a special form of the plant fairly extensively produced in the western temperate and alpine regions, between 9,000 and 15,000 feet in altitude, such as in Piti, Lahul, Kumaon and Tibet. This has been described by botanists as a distinct species under the name of C. soongaricum. It bears the following vernacular names:—tizhu, jawane, bangtrya, sardri or serri—names apparently unconnected with those given to C. arrietinum; and since C. soongaricum is only met with in Alpine Central Asia, it may be assumed to be there indigenous.

So also a very special variety or distinct species is known as kaful gram. This has been much talked of recently, and even experimentally grown in India, but with indifferent results. It is apparently a form peculiar to the country indicated by its name, though it is specially mentioned by Buchanan-Hamilton as met with by him in Dinajpur about 1809. It is thus a form that has been experimentally grown in India for a century or more. It is a much more robust plant than the ordinary gram, and has large white seeds. But in addition to these special Trans-frontier varieties, India itself has also several fairly distinct cultivated forms indicated by the colour of the pea, viz. red to yellow, brown, creamy white and almost black. But in no part of India or of its mountainous frontier has any botanist recorded the existence of wild or even naturalised representatives of any form of gram. They all exist purely and simply as cultivated plants, and on the plains are usually roti crops. It seems highly probable, however, that the forms of chick-pea originated in the tract of country between the Caucasus and the Himalaya. And if that opinion be accepted they can be regarded as having been carried into Southern Europe, Persia and India in very ancient times. But it seems probable that at least one of the forms may have originated in Persia, so that the chick-pea may have been also indigenous to that country.

CULTIVATION.—Area.—During the five years ending March 1906, the average area shown in the volume of Agricultural Statistics for British India as devoted to this crop, comes to almost 11 million acres, and for the Native States a little under 2 million acres, so that an estimate of 12 million acres for the whole of India would be under rather than over the mark. The most important producing province is that of Agra, which during the period named possessed an average of 3½ million acres, or say one-third of the Indian area. This is followed by Oudh (with 1½ million acres), by the Panjáb (which fluctuates very greatly, the area in 1899–1900 having been only 658,468 acres, and the very next year 3,405,121); by Bengal (with approximately one million acres); by Bombay, the Central Provinces and Mysore (with each normally a little under a million acres); by Gwalior (which has as a rule ¾ million acres); by Berar, Madras and the North-West Frontier Province (with each about 150,000 acres); by Sind, Upper Burma, Alwar, Bharatpur and Kotah (with each about 70,000 to 100,000 acres); and lastly by all the other Provinces and Native States (which have each much smaller areas). It may thus be accepted that the upper basins of the Ganges and the Indus (which correspond with
Indian Area

Upper Bengal, the United Provinces and the Panjáb, also the adjacent portions of the Central Provinces, Central India and Rajputana) constitute the great gram-producing area of India. It has been repeatedly pointed out that a line drawn from Bombay to Patna would approximately divide India into two sections, the northern being the great gram area and the southern that in which gram is a very subordinate crop.

Production and Yield.—The yield of gram to the acre is annually reported by the various Governments and Administrations. It is shown to vary greatly according to suitability of soil and climate; the highest returns are in the provinces of chief production. In Bihar (the upper division of Bengal) the yield comes to 855 lb. per acre, *for land not irrigated*; in the United Provinces, 800 lb.; in the Panjáb, 634 lb.; while in Bombay, under similar conditions, the yield is only 410 lb. and in the North-West Frontier Province still less—406 lb. But *irrigated land* gives a higher yield than unirrigated: in Bombay as much as 1,200 lb. have been recorded; 950 lb. in the United Provinces; 835 lb. in the Panjáb, and 632 lb. in the North-West Frontier Province. Taking the nine chief producing provinces and accepting for a calculation of total production the mean of the published returns for 1901-2, on unirrigated cultivation, we arrive at the figure of 600 lb. as a possible safe average for all India. This, worked out to 10 million acres, or considerably under the present area, would show a total production of 53 million cwt. But that very large amount would in all probability be under rather than over India’s actual supply, since this pulse is largely grown as a mixed crop and also as a garden vegetable, tracts not likely to be fully covered by its recorded acreage as a field crop.

It may be useful to take up the provinces one by one and exhibit the features of their gram-cultivation etc., that may be of interest:

Bengal.—Gram requires the same land as wheat, barley, linseed and peas. It cannot be grown on sandy soils but requires a moderately heavy clay-loam. Five or six ploughings are given, commencing towards the close of the rains. About the latter half of October to the first week in November it is sown, and the crop ripens in February to March. The quantity of seed required ranges from 27 to 36 seers, more being needed when “broadcasted” than when “drill” sown. The plants are pulled up by the roots, made up into loads, and carried to the threshing-floor. The straw and the husks of the pods form excellent fodder. The yield is stated to be about 9-7 maunds (or, say, approximately 800 lb.). The cost of cultivation (according to the *Report of the Dumraon Experimental Farm* for 1902-3) has been put at Rs. 15-1-8, and the money value of the crop at Rs. 44-12-3 an acre. [Cf. Buchanan-Hamilton, *Stat. Acc. Dinaj*, 1833, 174, 184; Basu, *Agr. Lohardaga*, 1890, 34; Barclay, *Fungal Disease, Agr. Ldgy.*, 1895, No. 20, 381.]

Burma.—Cultivation is important only in the upper districts. In Meiktila (*Settl. Rept.*, 1896-8, 10) it is said the land is prepared in October and the seed sown in November after having been soaked in water for a day and then sown broadcast. The crop ripens in February. The plants are tied up in bundles, dried in the sun, and threshed out either by sticks or by being trodden under foot by cattle. The harvest-time, all over the province, is from February to April. One basket of seed to the acre—the yield being 15 to 20 baskets. There are three groups of districts according to date of sowing, viz:—(1) September to October: Lower
Chindwin; (2) November: Shwebo, Sagaing, Mandalay, Pakokku, Myingyan, Meiktila, Magwe and Yamen; (3) January: Minbu and Thayetmyo. The district with the greatest area appears to be Pakokku, followed by Minbu and Sagaing.

C. Prov.

Central Provinces.—In these provinces a rotation of **gram, massur (Lens) or butana (Pisum)** with wheat is much valued since the soil is thereby so improved that it does not require manure. This has been specially investigated at the Experimental Farm of Nagpur. [Cf. Rept. 1900-1, 10, 12; 1901-2, 9-10, 13; 1902-3, 8-9; 1903-4, 7, 8, 9; Voelecker, *Improv. Ind. Agri.*, 1893, 26-7, 234-6.] Gram is sown in October-November and harvested March-April. Two forms are mentioned as specially valued, a grey and a white. It suffers very much from falls in temperature or by hail-storms. In Narsinghpur, Hoshangabad, Betul and Raipur the crop is of special importance, and of Sambalpur it might be said gram is not cultivated. In a “Note on the Outturn of Land Under the Principal Crops,” Sir J. B. Fuller has shown that the average outturn ranges from 377 to 860 lb. an acre, and that the standard there accepted was accordingly 600 lb.

U. Prov.

United Provinces.—Very little of importance has appeared regarding the gram of these provinces subsequent to the publication of the *Dictionary*. Dutrie and Fuller observe that there are two main varieties grown—a large- and a small-grained plant. The former is reddish and the latter light-brown coloured. A black variety is not uncommon and there is also a very large white-grained form known as the *Kabuli*, which is, however, raised mainly as a curiosity. It resembles the Spanish form spoken of as *garbanzos*. Gram is largely grown as a mixed crop with wheat or barley. This would appear to have been the practice in Europe in classic times. Thus, for example, in the *Geoponikon* (a work attributed to the Emperor Constantine, d. 300) there occurs an interesting passage to the effect that *cicer* seeds should be soaked in warm water the day before they are sown, and “some add nitre.” Then follows the observation that if an early crop be wanted it should be sown together with barley. The Indian practice is thus apparently a very ancient one.

Seasons.

The seasons of sowing and reaping are those already mentioned, viz. September to October and March to April or May. It is a dry crop mainly, and will grow on soils too poor for wheat. The outturn is on an average said to be 12 maunds (984 lb.), valued at Rs. 30, and the cost of cultivation Rs. 12 to 13. Within recent years the area under this crop has in many districts apparently been greatly expanded and at the expense evidently of wheat. It may be grown on a heavy clay to a rich loam, preferably the former. The tops of the shoots are nipped off with a view to make the plants bushy and thus increase the outturn.

Rajputana and Central India.—The seasons of sowing and reaping are those already mentioned. Of Bharatpur it is estimated that the cost of cultivation comes to Rs. 6 to 10, the produce Rs. 20 to 10, and the net profit per acre would therefore be Rs. 14. It is said that the average yield in Ajmir is 300 lb. and in Merwara 446 lb. an acre.

Panjáb.—This pulse is by Baden-Powell, Stewart and Aitchison spoken of as largely cultivated throughout the province. Numerous passages regarding the methods of cultivation, seasons, yield, etc., will be found in the Settlement Reports and Gazetteers. One feature of interest may be specially noted, namely that the plant grown is said to succeed fairly
well on the sandy soils of many tracts of the province, especially as a mixed crop with wheat. Of Montgomery district it is observed there are both spring and autumn crops. It is not grown in the hill districts, a fact accounted for by some through the curious belief that the crop has a special affinity for lightning and is in consequence often destroyed by it. In most of the Panjab districts, on the other hand, it is believed that manure is harmful to gram. It is sown in October and reaped in March and April. Christmas rains are beneficial, but if heavy rains fall in spring the crop is believed to be much injured. As a rule gram is not preceded by an autumn crop. The plants are “tipped” by hand in order to cause them to branch. But like other rabi crops it is ordinarily not weeded. The chief districts are Ferozepore, Ludhiana and Hoshiarpur. [Cf. Rept. Exp. Farm, Lyallpur, 1901-2, 17-8.]

Bombay and Sind.—Mollison (l.c. iii., 73-8) gives a useful account of this pulse as cultivated in Bombay Presidency. He mentions four forms distinguished by the colour of the seed, namely black, dark red to brown, yellow to yellowish-red, and white to creamy. He remarks that the first three are often grown mixed but that the yellow of Gujarat is larger than that of the Deccan and when sold pure commands a higher price than the mixed pulse. The white is met with in Ahmednagar and may, Mollison thinks, be the Kabul gram already repeatedly mentioned. The area of production depends on the extent of the rain that falls in September and October—when abundant, the area is increased. It is grown on the same class of soils as wheat, and the two crops are often interchangeable. Gram is a fairly important crop in the Deccan and Karnatak. It is grown in three ways: (a) as a dry crop in deep black soil, and is then usually the sole crop of the year; (b) as a dry second crop following rice, and occasionally (as in the Panch Mahals) as an ordinary dry crop after kharif maize; and (c) as an irrigated crop liberally manured and regularly watered. In Bombay gram is rarely grown as a mixed crop with wheat or barley, though it is often lined with lineseed or safflower. It is everywhere recognised as a valuable rotation, and in addition to nitrating the soil it forms such a dense surface herbage as to kill weeds and in that way improves the soil. The usual seed rate is about 40 to 50 lb. an acre. [Cf. Crop Exper. Bomb., 1895-6, 6.] It is sown in October and November and ripens in February to March and April. Experiments performed at Poona Experimental Farm (1895, 10-11) confirmed the reputation of the advantage in nipping off the early green buds. But too frequent cultivation of gram on the same land causes liability to disease. Cold is harmful, frost fatal. Cloudy weather and heavy rains during the setting of the fruits are alike harmful. Many experiments have been performed (reported under Crop Experiments) to ascertain the cost of production and incidence of assessment. In 1896-7 two fields unirrigated were tested and gave the total value of produce as Rs. 17-12-0 for the one and Rs. 15-15-9 for the other, the assessment showing an incidence of 12-67 per cent. in the one and 16-45 in the other. These fairly represent the average of all results, though no calculation could be applicable to the whole Presidency since the conditions and necessities vary so greatly. [The Experimental Farm Reports team with interesting particulars regarding this crop, and should be consulted.]

Berar.—There is nothing of any material importance to add regarding this province to the particulars already recorded under the
Central Provinces and Bombay. It occupies about 24 per cent. of the area devoted to cold-weather crops and is most abundant in Basim, Buldana and Wun.

Madras.

Madras.—Bengal gram is an unimportant crop in Madras Presidency, its place being taken by the horse-gram (Dolichos biflorus). The manuals of North Arcot and Coimbatore districts contain, however, brief paragraphs regarding it.

Mysore.

Mysore.—The Gazetteer of this State will be found to give some useful particulars in connection with gram cultivation. It is grown on black soil, and as a second crop following *ragi*.

Uses of Gram.

USES OF GRAM.—It would be beyond the scope of this article to afford details of every economic property of gram. The seed is extensively eaten both by men and cattle in every part of India except Madras. [Cf. Elliot, *Farinaceous Grains*, 1862, 294-5.] The pea is often parched and used in that form as diet, especially when cooking may be difficult or impossible. It is in this sense frequently of exceptional value to the Indian Army. The seeds are also steeped in water to remove the husks, then mashed up and boiled alone or with onions, etc. (and thus made into a thick soup), or the split peas may be cooked along with rice. Ground into flour gram is used in various ways, such as in the preparation of sweetmeats or biscuits. Although it is by far the most extensively consumed of all cattle foods in India, the results of the effort to introduce it into Europe as an article of horse food have not been encouraging. It would seem that when given in large quantity to animals not accustomed to it, poisonous effects have been observed. It has not, however, been placed beyond dispute that the grain used in Europe was pure gram. If adulterated with the pulse *Lathyrus sativus* the effects attributed to gram could be easily understood. [Consult the observations on this subject in the *D.E.P.*, ü., 279.]

The young tops are largely collected and eaten as a *pot-herb*. Moreover when sun-dried they may be preserved and used as required. As a *fodder*, gram-straw has the reputation of being inferior to that of other pulses owing to the amount of acid liquid (which contains oxalic, acetic and malic acids) found on the dew-besprinkled leaves. Still the stems, leaves and husks constitute important articles of Indian cattle food. They are specially valued for milch-cows, and are cut up and mixed with common straw.

The property of the green plant in affording an acid liquid often called a *vinegar* has been known from the remotest antiquity. It is systematically collected by spreading clean cotton cloths over the growing plants at night and collecting from these the vinegar with which they have become charged. This is used both *medicinally* and in diet. One of the earliest European travellers who described this vinegar-dew was Dr. Hove, who explored the agriculture of Gujarat in 1787. [Cf., with Birdwood, Baden-Powell, Moodie, Sheriff, etc.; see also *Vinegar*, p. 1109.]

Chemistry.—Church (*Food-Grains of Ind.*., 1886, 128; suppl., 1901, 12) gives the results of his examination of the husked peas:—The nutrient ratio he found to be as 1 : 3.3 and the nutrient value 84. Similarly *C. soon- garicum* gave a nutrient ratio of 1 : 2.8 and the coagulable albuminoids amounted to 19.8 per cent., so that this form of the pulse is rather richer in albuminoids and in oil than are the seeds of the common gram. Leather has critically examined numerous samples of gram from all parts of India and has published in *The Agricultural Ledger* (1901, No. 10, 358-9; 1903,
PRICES IN CHIEF CENTRES

No. 7, 151, 155, 163) the results of his chemical investigations. Mr. Moreland has investigated the question of the extent to which gram may be used in the reclamation of upland usar soils. [Cf. Agri. Ledg., 1901, No. 13, 424.]

INDIAN TRADE IN GRAM.—In a previous paragraph the area has been accepted as approximately 12,000,000 acres and the yield something like 53,000,000 cwt. Gram is consumed very largely locally, so that the returns of foreign trade are comparatively of little value. Gram and millets are very much more the staples of Indian diet than are wheat, barley or rice. A study of the rise and fall in the prices of these grains affords, therefore, a surer indication of the cost of living and of the abundance or scarcity of food than can be learned from almost any other commodity (except perhaps the imports of copper metal). Were it possible to prepare a complete statement of the internal traffic in gram, it would be seen to what extent the resources of one province are drawn upon to supply the necessities of another. Unfortunately the record of internal transactions is very much less complete than the returns of articles received from or delivered to the shipping.

The total exports have rarely exceeded half a million cwt. In 1895–6 they were returned at 633,199 cwt., but the mean of the decade ending March 1904 comes to only 335,000 cwt., or 0·632 per cent. of the estimated total production. In 1906–7 they were 846,583 cwt., valued at Rs. 32,31,744. But of the exports a mean of about 35,000 cwt. goes from Madras, and should therefore be removed from the returns of Cicer arietinum and credited to those of horse-gram (Dolichos biflorus), so that this correction would very possibly bring the exports down to approximately ¼ per cent. on production. A feature of interest in recent returns is the growing importance of Sind (Karachi) as an exporting centre. Still another fact may be added, namely that the major portion of the exports is commonly consigned to Mauritius, but sometimes to the United Kingdom; the traffic with the latter, however, seems subject to extreme fluctuations. By the coastwise trade 692,212 cwt. were carried in 1905–6, of which 370,165 cwt. went to Madras, about half from Bombay, and one-sixth each from Bengal, Sind and Burma. Of the rail-borne traffic nothing can be said, since gram is collectively returned with pulses.

Turning now to the available particulars regarding prices of gram. The years 1896 to 1901 have to be excluded from consideration as these were characterised all over India as years of scarcity and famine. But the effect of the increased facilities of railway communication may be said to have raised the price in centres where it was abnormally cheap and lowered the price where it was abnormally dear. Taking India as a whole the price seems to have been slightly increased, but not disproportionately with other commodities or with wages. In Assam gram sold in 1884 at 12'4 seers to the rupee (or say 1¼d. per 2 lb.), and in 1903 at 11·85 seers. In Bengal for the corresponding years it was 18'1 and 16'71; in the province of Agra 24'12 and 19'8; in Oudh 25'66 and 22'54; in Rajputana and Central India 21'36 and 18'31; in the Panjab 32'22 and 21'06; in Sind and Baluchistan 20'49 and 15'76; in Bombay 18'08 and 14'2; in the Central Provinces 26'81 and 17'75; and in Berar 19'84 and 14'81. The mean of all these returns would be 21'9 in 1884 and 17'79 in 1903. That is to say one seer (2 lb.) would in the former year have cost 0'7306 of an anna (or of one penny), and in the latter year 0'8939. But the selection of single years for comparison, and the striking of means and averages in

301
CINCHONA
Introduction into India

these, can never be seriously advanced as evidence of value. For one thing it seems likely that the full effect of the years of famine was not effaced by 1903, and that better results would be shown in subsequent years. Local and accidental peculiarities are ignored by all such calculations. Still, the figures given are of some interest. Later returns for 1905, which have since come to hand, show the following prices (seers to the rupee):—Eastern Bengal and Assam, 12-61; Bengal, 14-99; Agra, 17-34; Oudh, 17-21; Rajputana, 16-3; Central India, 15-71; Panjáb and N.W. Frontier, 20-63; Sind and Baluchistan, 15-5; Bombay, 13-59; Central Provinces, 16-49; and Berar, 15-14.

D.E.P., ii. 288–316.

Peruvian Bark.

CINCHONA, Linn.; CINCHONA AND PERUVIAN BARK, JESUITS’ BARK; ecorce de quinquina (Fr.); chinarinde (Ger.). RUBİACEÆ.
The species of Cinchona that yield Quinine are the most recently cultivated of all important plants. They are natives of the mountain forests of Bolivia, Peru, and Ecuador, and are chiefly met with in the valleys with an eastern trend from the great Andes, at altitudes between 3,000 and 9,000 feet and also in the western valleys of the central area.

History.—Sir George King,—than whom few persons have a higher claim on the respect of the people of India—opens his Manual on Cinchona Cultivation with the following passages:—“Of the date and manner of the first discovery of the curative effects of Cinchona Bark, in malarious fevers, we know nothing. And we are almost equally ignorant who the discoverers were, some writers claiming that merit for the aborigines of South America, while others assert, and with apparently greater accuracy, that not only did the Indians know nothing of the virtues of the bark, until these were pointed out by their conquerors the Spaniards, but that they still refuse to use the bark as a febrifuge. The introduction of this medicine to Europe is associated with the Counts of Chinchon, wife of a Spanish Viceroy of Peru, who having been cured by its use of an attack of fever, contracted while in that country, brought a quantity of the bark to Europe on her return from South America about the year 1639.” Acquaintance with the virtue of the bark seems, however, to have been disseminated over the world with remarkable rapidity. It was discussed, extolled, and defended by Chiñet in 1653; by Badius in 1656; by Roland Sturm in 1659; by Morton in 1692; and by Fome in 1694. It was known in London in 1655, and became official in the Pharmacopæia in 1677. Fryer, who visited India in 1675, speaks of a “Braquim,” who gave a powder prepared from natural cinnamon in the cure of fever “which works as intollably as the Peruvian Bark.” This curiously interesting anecdote shows the rapidity with which the knowledge of this drug was carried across the globe. A century later it was fully described in an Indian work on the materia medica under the name “Bark.” This was written by Mir Muhammad Husain (Makhan-al-Adwija, 1770), who specially remarks that its virtues had been discovered by a sect of Christians called Jesuits. He adds that it bears the name of kina-kina. This is its name in the language of the Incas, and it gave origin to the French name quinquina, as given by Condamine originally, and to chínca in Spanish. The French obtained the bark in 1679, for it is recorded that Louis XIV. purchased a supply from an Englishman of the name of Talbor or Tabor. Talbor, like many of the Native doctors of India to-day, made his reputation and fortune through a fever mixture the chief ingredient of which was quinine. Nothing, however, was known to the botanical world of the plant from which the medicinal bark was procured until 1739, when MM. La Condamine and Jussieu studied it, during an astronomical expedition to South America. The former sent a sample to Linnaeus from Cajanuma, and in consequence in 1742 it was named Cinchona, and in 1753 Linnaeus established the species C. officinalis. The plant is sometimes now known as var. Condaminea after its discoverer. The first living plant was shown in Europe in 1840, having been raised in Paris from Weddell’s Bolivian seed, namely, C. Calisaya. Thus, briefly, the medicinal bark was discovered in 1640; the plant was named a century later; and still another century later a specimen was grown in the Jardin des Plantes of Paris.
PERUVIAN OR JESUITS' BARK

But if a lady was directly instrumental in the discovery of the great merits of this drug, a no less distinguished lady, the wife of a Viceroy of India (Lord Canning), was closely connected with its ultimate successful cultivation in India. Dr. Ainslie in 1813 lamented the fact that Cinchona was not grown in India. Dr. Royle in 1835 recommended that the Cinchona plants should be taken to India and grown on the Khasia and Nilgiri hills. About the same time Fritze, Miquel and other botanists advanced the claims of Java. No effort was, however, made for twenty years, not in fact until the heavy mortality through fever, during the Indian Mutiny, forced the subject into public attention. It was, moreover, well known that a reckless and selfish process of bark-collection was seriously endangering the world's future supplies of the drug. These circumstances combined to lay emphasis on the final recommendation of the Government of India, viz. that seed and plants should be procured for experimental cultivation in India. In consequence, Mr. (now Sir) Clements R. Markham was entrusted with the delicate and difficult task of procuring supplies. The subsequent incidents and final success which he attained are matters of history, and need not be here detailed. Sir Clements procured the services of several gentlemen whose names are all closely associated with his own, namely Spruce, Pritchett, Weir and Cross. The energetic co-operation of the Director of the Royal Gardens, Kew, guided and controlled all the subsequent efforts. Various consignments of plants and seeds were taken to Kew, and finally carried to India, certain plants having in due course been established on the Nilgiri hills. So far, however, the attempts to introduce the trees into Bengal had been a failure. On the other hand, the efforts of the Dutch botanists and chemists in the naturalisation of C. calisaya and C. pachycaina were crowned with complete success, and in consequence the noble Lady Canning discussed with Dr. Thomas Anderson, of the Royal Botanic Gardens, Calcutta, the desirability of a further effort being made to introduce the most useful species, if possible, from Java into the mountains of Bengal. Shortly after Lady Canning herself fell a victim to the scourge that she aimed at alleviating. Dr. Anderson was, however, deputed to Java, and he brought back with him a fairly large consignment of plants, some of which he left in Ceylon, others in the Nilgiri hills, and finally took a set to Calcutta Botanic Gardens and ultimately to Darjeeling. But many mistakes as to altitude, climate, method of treatment, best stock and the like, had to be corrected before a plantation could be established. Dr. Anderson lived, however, to see his labours brought to a satisfactory conclusion, and then, like the great lady who had sent him to Java, he died suddenly of malarial fever. But his labours were placed in the hands of a worthy successor—Sir George King. It would occupy many pages to narrate even the more striking features of the subsequent achievements. Anderson acclimatised the plants in Sikkim; King made their cultivation and the manufacture of quinine a commercial success. Suffice it, therefore, to say that a department has been so organised that the Government of India have long since discontinued to import quinine; the hospitals have been given a limitless supply of the finest quality at a less per pound than a few years ago it sold at per ounce, and lastly, and by far the most remarkable accomplishment, packets of one dose are now sold in every Post Office, throughout the fever-stricken tracts, at the nominal cost of one farthing. This invaluable medicine has thus been brought to the very door of even the poorest peasant of India, and it is no wonder, therefore, that recurrent vital statistics mark year by year the steady conquest of India's greatest and dire scourge. Truly, therefore, may it be said of Lady Canning that she died to save others.

[Cf. the following works, in amplification of the enumeration given in the Dictionary, may assist the reader to discover the fuller particulars which he may desire regarding the history, botany and cultivation of the Cinchona-yielding plants: —Lambert, Genus Cinchona, etc., incl. Vahl, Dissert., 1797-1821; Bergen, Monog. der Chinea, 1826; Weddell, Hist. Nat. Des. Quing., 1849; Parliamentary Returns E. Ind. Cinchona Plantations, 1852-75; Markham, Peruvian Bark, 1860 to 1880; also Travels in Peru and India, 1862, 483-520; Plancheon, Des Quinquinae, 1864; Howard, Quinology East Ind. Plantations, 1869; Triana, Nov. Etud., Quing. 1870; Campbell Walker, Rep. Govt. Cinchona Planta., 1876; Cross, Rep. C. Condaminus in Ecuador, 1861; also Rep. Mission to S. America, etc., 1877-8; Bidie, Cinchona Cult. in Br. Ind., 1879; Moens, Kinacult. in Aziz, 1882; Gorkom, Handbook Cinch. Cult. (Jackson, transl.), 1883; Holmes, C. Ledgeriana, in Journ. Linn. Soc., 1886, xxi, 374-80; Nicholls, Textbook Trop. 303]
CINCHONA
CALISAYA
Species and Varieties

Species, Varieties and Races.—There are about 30 to 40 species of Cinchona, and also numerous hybrids, varieties, and special cultivated races. Indeed so readily do the species cross and sport that it is impossible to grow two or more side by side and obtain from them uniformly pure seed. On this account grave doubts have been entertained regarding the specific values of many well-known forms. The commercial barks of to-day are obtained from about a dozen forms of which C. Calisaya and Ledgeriana are the most highly valued. To these would have to be added the special hybrid that appeared in Sikkim some few years ago, and is now spoken of as "the hybrid." The following brief abstract of the more important species may be useful:—

C. Calisaya, Weddell; The Calisaya Bark, Yellow Bark, etc.
A very variable species with a trunk, when full grown, twice as thick as a man's body. Largely grown in Sikkim, at moderate elevations (1,500 to 3,000 feet), and one of the most valuable of all forms, but is difficult to cultivate. The seed of this form was originally sent to Europe by Weddell. It was raised in Paris in 1851 and one plant was presented to the Dutch, by whom it was successfully conveyed to Java; and in 1873 Dr. van Gorkum reported that it was the chief form grown in Java—its most important alkaloid being Quinine. It was the species Markham specially charged himself with the task of securing in Bolivia and Peru. But it has many varieties, one of which is of very special merit, viz:—

Var. Ledgeriana.—The story of the origin of this form is very interesting. Mr. C. Ledger was travelling in South America on behalf of Australia in search of an animal resembling the alpaca sheep. His servant mentioned to him that it was difficult for collectors to procure the seed of the finest quality of cinchona because of the suspicion in which all persons interested in that drug were held. Accordingly Mr. Ledger said he would like to get some of the best seed, and in due time he was supplied. This was taken to Europe and sold. The major portion went to Java, but a small quantity found its way to the Nilgiri hills and a still smaller portion to Sikkim. The Java seed yielded 20,000 plants, the Nilgiri either failed to germinate or was neglected and lost, and the Sikkim grew and in time became the parent stock of the plants in the present Bengal plantations. In 1880 Mr. Gammie reported of Sikkim that he had 10 acres under Ledgeriana, and last year's report shows that out of the total 3,306,763 trees in the Government of Bengal's plantations, 2,566,057 were Ledgeriana. This plant was subsequently introduced into the South Indian plantations, and flourishes well in the Wynaad at 3,000 feet altitude. It yields a high percentage of quinine, and is deservedly the most popular of all stocks. But it is comparatively a small tree, and the yield of bark correspondingly less than with the larger forms. In Java some of the richest stocks are never allowed to seed, but are grafted on to other seedlings of this variety, and the high-yielding forms thus carefully developed and conserved. The same plant taken to India will, however, yield less than half the regular produce in Java.
CINCHONA

C. officinalis, Hook.; the LOXA or CROWN BARK, the PALE BARK of commerce. This is a native of Ecuador and Peru, and with C. succirubra was the species assigned by Markham to his colleague Spruce to discover. It is grown at high elevations (above 7,000 feet) in the Nilgiris, Ceylon and Sikkim, but not extensively. It is a weak, straggling tree, attaining at most only 20 feet in height. Its cultivation in Sikkim has, however, been almost abandoned owing to the climate being too moist, but it is perhaps the most important of the species grown in the Nilgiri hills.

C. succirubra, Pasen.; the RED BARK. This is largely cultivated on the hills of South India at altitudes of from 4,500 to 6,000 feet; at higher altitudes the growth is too small to make its cultivation profitable. On the hills east of Toungoo in Burma and in some parts of the Satpura range of Central India it is grown, and also met with in the Government plantations of Sikkim, but is not popular, and is rapidly being replaced by Ledgeriana. It is a hardy plant with a bold sturdy stem. In rich and sheltered situations it grows to the height of 50 feet or more. The leaves are bright apple-green in colour, the plantation in consequence looking light and bright while one of C. officinalis looks dark and gloomy.

CULTIVATION.

Climate and Soil.—None of the medicinal species will stand frost, though they prefer a cool climate in which the contrasts between summer and winter and between day and night are not very great. At Ootacamund, about 7,500 feet above the sea, the minimum lowest temperature in the shade is about 49° and the maximum 69° F.; at Neddiwattum, 2,000 feet lower, the minimum is about 54° and the maximum 66° F. In the Rangbi Valley, Sikkim, at 3,332 feet in altitude the minimum may be given as 40° and the maximum at 88° F. This might be spoken of as ideal for succirubra but rather cold for Calisaya. A more congenial climate for both species would therefore be at an altitude of 2,500 feet. In the matter of humidity, the requirements of the cinchona were at first misunderstood. It has been found in the Nilgiris that all the species (particularly the red barks) withstand longer droughts than were thought possible. All the species assume a yellow tint during the rains, and in the Nilgiris all make their most vigorous growth during the time when sunshine and shower alternate. In Sikkim succirubra makes most progress during the latter half of the rains, but both on the Nilgiris and on the Himalaya the plants continue to grow for two months after the rains cease. The rainfall of Ootacamund is about 44 inches, that of Neddiwattum 105 inches per annum. The rainfall of the Sikkim Plantations of Rangbi is about 166 inches. The species are impatient of stagnant moisture, and therefore require an open gravelly subsoil, a sloping exposure, and a rich loam (especially so if of volcanic origin) to dry clay soil. Accordingly they succeed better on recently cleared forest than on old exposed grassy lands.

Propagation.—They may be raised from seeds or multiplied by cuttings or layerings. The seeds may be sown in open beds of specially prepared soil shaded by a temporary roof, or in shallow boxes. The seeds should be sown somewhat thickly and sprinkled over with fine soil. They should be watered fairly freely, and in six weeks they will germinate. When the seedlings have got two or three pairs of leaves they should be transplanted
in lines about 2 inches apart each way. When about 4 inches high, they
should be again transplanted into lines 4 to 5 inches each way. When
9 to 10 inches high the seedlings will be ready for being placed in their
permanent positions, and should be transplanted in wet and cloudy weather.
They are then placed at distances of from 4 to 6 feet apart, according
to species or local necessity. The red-bark may become a considerable
tree, the crown-bark a medium tree, and the yellow-bark a bush
or small tree. Wide planting would thus obviously be an error, especially
for the two last-mentioned forms. In fairly close planting the
ground is covered quickly; the plants in consequence shade the soil
and check the growth of weeds, protect the surface roots, and produce
straight stems that oppose a more compact and thus enduring face to
destructive winds. If they are found to be too thick they can be thinned
out, and an early crop of bark thus obtained.

Bark Cultivation and Preservation.—The first crop, as already men-
tioned, is usually obtained by thinning out the plantation, when perhaps 25
per cent. may be at once uprooted and barked. This thinning out may with
advantage be continued during the fifth or sixth years of growth, when
perhaps not more than half the original plants may ultimately be left
in the plantation. The bark is richest in alkaloid when the plant is about
four years old. It remains at about the same level till the seventh year;
after that period the proportion of alkali to bark slowly diminishes. The
modern practice accordingly is to completely uproot a patch after the
plants (more especially *Calisaya*) have attained the age of 12 to 14 years.
The roots are carefully washed and barked; in fact the richest of all
barks are those taken from about a foot or a foot and a half on either side
of the theoretical collar. Hence it may be said the roots are of much
value, since they contain even more alkaloid than the stems and branches.
The bark from both root and stem is then stripped off, care being taken to
carry away none of the woody structure adhering. With this object
rings are cut round at 18 inches apart, a longitudinal incision is then
made between the rings, and the bark thus removed in sections. It is
dried in the subdued sun or shade for two or three days, and when quite
dry is stored and packed and exported or conveyed to the factory.

With standing trees the bark may be obtained by one or other of the
following methods:—(a) *Lopping* off branches, and obtaining the bark
from these in the way already mentioned.

(b) *Coppling*.—That is to say, trees when about six years old are cut
down to the ground and barked. Fresh shoots spring up, one or two of
which are allowed to grow, and these in time are again coppiced when
sufficiently thick to afford useful bark. This method is most suitable for
crown-bark.

(c) *Shaving.*—This is a Java system. The bark is shaved off as near
to the cambium layer as possible but without injuring it. This is best
done by an instrument that resembles an ordinary spokeshave. The bark
is renewed quickly unless when the cambium has been interfered with.
The best plan is to shave off two strips on opposite sides of the stem, since
in this way the tree is not materially injured. In dry weather it may
be necessary to protect the wound by tying dry grass over it, but if close
planting be pursued this will not be necessary.

(d) *Stripping and Mossing.*—This is really only a special modification
of the shaving process. The bark is cut off in alternate bands or strips
of 1½ to 2 inches in breadth, the whole stem being afterwards swathed in moss. When the wounds have been barked over, the intervening bands are stripped off and the mossing renewed. This was invented by McIvor in the Nilgiri hills, and is now abandoned in favour of the shaving system. All renewed bark, whether produced by shaving or mossing, is found richer in alkaloid than the original bark, so that the shaving process, being less troublesome and the cambium less liable to injury, has come into fairly general practice; and moreover the yield of alkaloid is higher by this than by any other method. It may, however, be added that the renewed bark is never so thick as the original, and therefore less in weight. It becomes accordingly a question whether coppicing is not, after all, the most profitable system. It is certainly the least troublesome, and if followed by systematic uprooting and felling of the land, allows of complete renovation.

Drying and Packing.—As already indicated, the bark, by whatever process procured, should be dried gradually. In rainy weather this may have to be accomplished in specially prepared drying-hededs, or the bark may be quickly dried in special evaporators. Sun-drying is the best. According to the age of the plant, method of collection and drying, there are various grades of each botanical bark. Thus, for example, root-bark, quilt-bark (that from the branches), shavings, and lastly flat-bark (that from large stems).

Exposure to a high temperature or to prolonged action of direct sun’s rays injures the bark. It is best, therefore, to bark the trees in dry weather, to dry slowly, to turn the pieces repeatedly, and to take every precaution to prevent moulding or fermentation. Once properly dried, the bark will keep indefinitely, or at all events for many months, without deterioration; but in drying, the loss in weight depends on the species and method of treatment—the average is usually from 70 to 76 per cent. of the fresh weight.

PRODUCTION AND MANUFACTURE.—To trace, even in the very briefest manner possible, the history of the discovery and the development of all the methods of manufacture that exist, would take many pages and involve a complete review of the chemistry of cinchona. [Cf. Journ. Pharmaceut. Soc. Gt. Brit.; Journ. Soc. Chem. Ind.; Chemist and Druggist; British and Colonial Druggist; Pharmacog. Ind., etc., etc.] In 1888 the Government of India published for general information the final results of the experiments conducted by Sir George King and Mr. G. A. Gammie that may be said briefly to have resulted in the perfecting of the oil process of manufacture now very largely pursued. This may be said to mark the turning-point of the Indian industry from that of experiment to commercial attainment.

Area.—The area under this crop has been seriously curtailed. In 1897-8 an official publication reviewed the then available information. It was ascertained that there were 4,346 acres under the crop, of which 68 per cent. were situated in Southern India. The Bengal portion was 1,394 acres, of which only 10 acres were not owned by Government. In the Madras Presidency, on the other hand, the State plantations represented but 800 acres out of the total 2,952. But during the twelve years ending 1897-8 the area had fallen from 14,491 to 6,833 acres, and there is reason to believe that a temporary expansion has since taken place. This
remarkable decrease is believed to represent the discontinuance and adjustment of Indian production as a private venture. The reasons usually given for this are the fall in price of quinine, the greater margin of profit in tea, coffee and other commodities, and the more successful production in Java and other countries. According to the Agricultural Statistics, the area in 1898-9 was 6,192 acres; in 1899-1900, 5,006 acres; in 1900-1, 4,903 acres; in 1901-2, 4,930 acres; in 1902-3, 5,260 acres; in 1903-4, 5,014 acres; and in 1905-6, 5,309 acres. Of these areas Bengal had an average of 1,400 acres, of which 70 to 100 acres were private plantations. The area in 1904-5 was 5,269 acres (1,800 acres in Bengal, 3,293 in Madras, and 176 in Coorg). Indirectly certain additional particulars may be learned from the study of the exports to foreign countries. For a good few years past these have fluctuated severely, but manifested a steady decline which more or less corresponds with the curtailment of private interests. In 1899-1900 the exports of bark stood at 3,290,236 lb., but in 1906-7 they had fallen to 494,587 lb., and were made exclusively from South India.

Government Plantations and Factories.—Turning now to the reports of the Government plantations and quinine factories, of which we possess more or less definite information, we learn that in Bengal during 1903-4, according to the report issued by Lt.-Col. D. Prain, the estimated total acreage is not stated, but the expansion is shown to have come to approximately 180 acres. It seems likely that private interests have not, however, materially increased, and that therefore the total area returned by Government in the volume of the statistics of crops may be accepted as representing the Government plantations, viz. 1,400 acres. If doubt exists as to the exact area the number of trees grown is systematically given, and from that a more trustworthy conclusion may after all be drawn. In 1903-4 there were 3,306,763 trees, of which 2,566,067 were *Ledgeriana, 257,602 succirubra, 2,130 officinalis*, while 463,075 were Hybrid No. 1, and 17,899 were Hybrid No. 2. These figures show an expansion on the corresponding numbers for the previous year that comes to 291,163 trees (practically the equivalent of the expansion of 180 acres). The crop taken from the plantations came to 316,757 lb. of dry bark, but to meet the necessities of the factory 461,467 lb. of bark had to be purchased and mostly imported from Madras. The manufactured products of the year came to 16,404 lb., which consisted of sulphate of quinine (12,314), sulphate of cinchonidine (290), and cinchona febrifuge (3,800). The Bengal factory by official arrangement supplies Bengal, Assam and the Punjab. The issues from the factory were quinine 12,021 lb., which included an increase during the year in the form of piec packets that amounted to 1,500 lb. The sales of cinchona febrifuge manifested a decrease of 976 lb., and the final working of the Department showed a net surplus of Rs. 66,320.

In the latest report for 1906-7, by Capt. A. T. Gage, which has come to hand since the above was written, it is stated that "the number of Cinchona trees of all sorts on the permanent plantations on March 31, 1907, was 3,698,777. Of this number 3,006,847 were Cinchona Ledgeriana, there being 1,770,521 on Mungpoo Plantation and 1,236,326 on Munsong Plantation. The remainder consisted of Cinchona succirubra and 77,283 of Hybrid No. 2—both mostly on Mungpoo Plantation." The amount of bark yielded by both plantations was 429,557 lb., of which
376,025 lb. were Cinchona Ledgeriana bark, and the greater part of the remainder Hybrid No. 1 bark. Of the Ledgeriana bark, Mungpoo supplies 286,994 lb. and Munsong 89,031 lb." "The total quantity of bark worked up in the factory was 798,500 lb., made up of 513,180 lb. of Ledgeriana and 85,320 lb. of Hybrid No. 1. The output of Quinine Sulphate amounted to 16,065 lb. 4 oz., being an increase of 287 lb. 8 oz. on last year's output." The manufacture of cinchona febrifuge was suspended for part of the year and only 2,652 lb. were produced; no cinchonidine sulphate was manufactured, so that the total output of the factory was 18,717 lb. 4 oz. The average yield of quinine sulphate in the bark supplied to the factory was 2.68 per cent.

Correspondingly the records of the Madras plantations and factory may be reviewed. The chief districts are the Nilgiri hills, Malabar, Travancore, Mysore and Coorg—but mainly the Nilgiris. Mr. Standen in his Annual Report for 1903-4 speaks of the old plantations having consisted of 832 acres and the new extensions as being 440 acres, a total of 1,272 acres. The production was only 116,289 lb. of bark as against 166,220 lb. in 1901-2, the difference being due to the policy of restraint in cropping during years of cheap private supply. But to meet the demands of the factory 431,185 lb. of bark had to be purchased from private producers. The issues from the factory during the year were 15,040 lb. of quinine and 3,359 lb. of febrifuge. The supplies go to Madras and Mysore, Bombay, the Central Provinces, United Provinces, Rajputana and Central India, Hyderabad and Burma. The net profit of the department during the year was Rs. 83,340, a highly satisfactory state of affairs.

Net Results.—Practically, therefore, the Government of India's endeavours to acclimatise the cinchona plant may be said to come to this; the annual imports of the drug on behalf of the Government have been discontinued; India has been given a liberal supply of an invaluable drug at a remarkably low price; the working of the two sets of plantations and factories have given lucrative employment to a fair number of persons; lastly a net profit has been secured of Rs. 1,39,660 a year (say £2,310)—a truly creditable record. Recently the Government of India took into consideration the desirability of lowering the price of the packets sold at the post offices. It has been resolved that in future seven in place of five grains shall be given for one pice (one farthing). This has had the immediate effect of increasing the demand, and the future must of necessity witness a considerable expansion both of production and manufacture.

TRADE.—It has been shown that the two Government factories in 1903-4 supplied between them 27,061 lb. of quinine to the hospitals, jails, post offices, etc., of India. In addition there was imported during the preceding five years an annual average of 54,000 lb. of quinine—chiefly from the United Kingdom and mainly into Bengal. In 1904-5 the imports were 68,648 lb., valued at Rs. 6,92,329, and in 1906-7, the latest year available, 71,237 lb., valued at Rs. 6,28,430. These are significant figures. They would seem to show that a successful industry might be organised by private enterprise, to meet the demands that create these imports. But it has to be recollected that in Java both the climate and soil are peculiarly favourable to the cultivation of cinchonas with a high percentage of quinine. Java will, therefore, always hold its own against India, and thus lessen the prosperity of any resuscitated industry. The indents on Government
production have for years been steadily increasing, so that the plantations hardly do more than meet half the requirements of the Government factories; but it is probable the extensions that have been made will reduce the demand on private production. In spite of past failures, however, there would seem every hope that the cultivation of the most approved varieties might be made a profitable adjunct to tea, especially in the Darjeeling district. The difficulty is to obtain suitable land in desirable situations. There would also seem every likelihood that private manufacturing establishments, to use up the bark presently being exported, might prove successful. India's demand for quinine is great and increasing. The exports of bark were 3,290,236 lb. in 1889—1900; 2,753,858 lb. in 1900—1; 1,917,259 lb. in 1901—2; 1,579,498 lb. in 1902—3; 1,108,527 lb. in 1903—4; 1,177,394 lb. in 1904—5; and 494,587 lb. in 1906—7. These went almost exclusively from South India and to the United Kingdom. There are said to be in the world 18 quinine factories: 5 in France; 3 in England; 2 in Germany; 1 in Holland; 4 in America; 2 in India, and 1 in Java. But the modern trade centres mainly in Amsterdam. The world's demands for bark average from 14 to 18 million pounds.

D.E.P.

CINNAMOMUM, Blume; Fl. Br. Ind., v., 128—36; Pharmacog. Ind., iii., 199—210; Gamble, Man. Ind. Timbs., 560—1; Prain, Beng. Plants, ii., 898; Brandis, Ind. Trees, 532—4; Lauraceae. Gamble observes that there are about 24 species placed under this genus and divided into two subgenera, Malabathrum taking 20 and Camphora 4 species. It is not intended in this work to discuss at all fully more than two of these, viz. **C. Tamala** and **C. zeylanicum**. A third species, **C. Campphora**, will, however, be found separately dealt with under Campphor (p. 245).

Cassia Ligneza.—This is the plant which in China is regarded as affording the finest quality of **Cassia Ligneza**—the true Cassia bark of the ancients. A sample of this bark was lately sent from the Patkai mountains, on the frontier of Assam, accompanied by fairly satisfactory botanical specimens. These were critically examined by Prain and myself and compared with authenticated specimens of the Chinese plant. There would, therefore, seem no doubt that the best qualities of Assam Cassia are the true **Cassia Ligneza** of commerce. It is possible that to this circumstance is due the improved trade in the Assam bark. [Of. Thisleton-Dyer in Journ. Linn. Soc., xx., 19—24; Pharmacog. Ind., iii., 203—8; Gildemeister and Hoffmann, Volatile Oils, 382—91.]

Nepal Sassafras.

C. iners, Neison: the *hardtin* of Burma. This large tree is met with in the forests of Tenasserim and the Malay Peninsula. Its timber is one of the camphor-woods of commerce, and according to some writers the bark is one of the qualities of **Cassia Ligneza**. It would seem probable that much of the economic information given in the *Dictionary* and in other works on Indian economic botany, under this species, should be transferred to the **C. zeylanicum** of Western and Southern India. [Of. Holmes, Pharm. Soc. Mus. Rept., 1895—1902, 54.]

Karua.

C. macrocarpum, Hook. f.; Fl. Br. Ind., v., 133; Carua, Hum., Trans. Linn. Soc., xiii., 550—9. This is a small tree of N. Kanara and seems to be the plant described by Rheede (Hort. Mal., 1686, i., 107—10, t. 57) as *karua*, bahana and *hui* (tikhi), and which he said differed from **C. zeylanicum** of that region by having large fruits, and by its flowering in January instead of July.
From the root bark, as also the leaves, Rheede remarks, an oil was prepared and used as an external medicine. It would seem probable also that this plant affords the kala-nagkesar or immature fruits that are sent to Bombay from the Malabar forests. Clusius in his version of Garcia de Orta (Hist. Exot. Pl., 1605, 178) gives a picture of tamalapatra, in which he shows unripe flower-buds that closely correspond with the kala-nagkesar of modern commerce. They were probably in ancient times employed in flavouring the wine known as Hippocras. It is hardly necessary to give the warning that they must not be confused with Cassia flowers (see p. 14). The Cassia Bark of Malabar may also come from this plant, though it is doubtless mainly procured from the wild plants of c. zeylanicum. [Cf. Jonston, Hist. Nat. de Arbor., 1662, 164.] Marco Polo gives interesting particulars of the Cinnamon and Cloves of Yunnan which in some respects recall the traffic in the Malabar products. [Cf. ed. Yule, ii., 32, 33, 38, etc.]

C. obtusifolium, Nees; the ramtezpat, kinton, bara-singoli, nupsor, pattihonda, dupatti, krowai, lubinggaya, etc., is an evergreen tree of the outer Eastern Himalaya, Eastern Bengal, Khasia hills, Burma, Andaman Islands, etc. It gives a timber said to be useful for boxes, planking, etc. The leaves are aromatic and used as a spice in place of those of C. Tamala and the bark is one of the scared qualities of Cassia Ligneae, and after C. Tamala is perhaps the best known of all the qualities met with in India; it comes from Assam, Darjeeling and Nepal to Bengal and the United Provinces.

C. Wightii, Meiss.; is recorded as being met with in the Niligiri hills. Holmes (i.e. 55) mentions a sample of thick unscraped bark attributed to this species and sent from Ootacamund. It had a sharp taste recalling the flavour of nutmeg.

C. Tamala, Nees; Agri. Ledg., 1896, No. 38. The Cassia Ligneae or Cassia Cinnamom; the taj, kikra, kirkiria, sinkami, chota sinkoli, nupsor, dopatti, tamdila, thichabo, thit-kyu-bo, zarnab (tree), talipatri, talisha-patteri, tajpat or tejpdt, lavango patte, dieny lotyprat (leaves), etc. The word tamdila occurs in the Raja Nirghanta, and tejpdt is apparently derived from the Sanskrit tuach. A moderate-sized evergreen tree of the Himalaya, rare from the Indus to the Sutlej, but common thence eastwards to East Bengal, the Khasia hills and Burma, between 3,000 and 7,000 feet.

Adams (Comment. in Paulus Eegineta, iii., 238) and other writers have identified the Malabathrum of the Greeks and of the Romans with the tejpdt of India. There seems no doubt that the leaf of this plant has been traded in and exported from India for many centuries. The leaf is, in fact, a more important product than the bark.

History of Cassia Ligneae. — Owing to the confusion which existed in former times with regard to the Cassia barks, it is almost impossible to give a connected résumé of the history of any one of them. It may be observed that even in the heyday of the East India Company the "Cassia" products mentioned in their records are almost invariably of Chinese origin. Hence Milburn (Or. Comm., 1813, ii., 500), who gives a very clear account of the trade, both in the bark and the buds, warns traders against the coarse, dark and badly packed Cassia Ligneae of Malabar. It is, however, interesting to notice that the most recent investigations show such a close connection between the Cassia trees of China and India that the former, which appears actually to extend into Burma and Assam, has been regarded by some authorities as a mere variety of the Indian C. Tamala. As already observed, recent specimens of Cassia Ligneae leave no room for doubt that the better qualities of the Assam bark are derived from the true C. Cassia, and are, therefore, the genuine Cassia Ligneae of the ancients and the bark which is so largely exported at the present day from Canton. Concerning the Indian Cassia Ligneae—the taj—there may be said to be two localities of supply, and thus two main sets of qualities: (a) Western and Southern India—the bark of C. zeylanicum mainly, and (b) Eastern and Northern India and Burma, obtained almost exclusively from C. Tamala and to a small extent from C. obtusifolium and C. Inera. Gamble suggests that the necessary forest regulations of Darjeeling may have interfered with or restricted the trade. [Cf. Malabathrum, Garcia de Orta, Coll., xxiii; also Comment, by Ball in Roy. Ir. Acad., 3rd ser., 1, 409; Polium lindicu.
MALABATHRUM AND DALCHINI

From the root bark, as also the leaves, Rheede remarks, an oil was prepared and used as an external medicine. It would seem probable also that this plant affords the kala-nakkeor or immature fruits that are sent to Bombay from the Malabar forests. Clusius in his version of Garcia de Orta (Hist. Exot. Pl., 1605; 178) gives a picture of tamakapatra, in which he shows unripe flower-buds that closely correspond with the kala-nagkeor of modern commerce. They were probably in ancient times employed in flavouring the wine known as Hippocrepis. It is hardly necessary to give the warning that they must not be confused with Cassia flowers (see p. 14). The Cassia Bark of Malabar may also come from this plant, though it is doubtless mainly procured from the wild plants of C. sepiarium. [Cf. Jonston, Hist. Nat. de Arbor., 1662, 164.] Marco Polo gives interesting particulars of the Cinnamon and Cloves of Yunnan which in some respects recall the traffic in the Malabar products. [Cf. ed. Yule, ii., 32, 35, 38, etc.]

C. obtusifolium, Nees; the ramtepat, kinton, bara-singoli, nupsoor, patihonda, dupatti, kowari, latingyav, etc., is an evergreen tree of the outer Eastern Himalaya, Eastern Bengal, Khasia hills, Burma, Andaman Islands, etc. It gives a timber said to be useful for boxes, planking, etc. The leaves are aromatic and used as a spice in place of those of C. Tamala and the bark is one of the trade qualities of Cassia Lignea, and after C. Tamala is perhaps the best known of all the qualities met with in India; it comes from Assam, Darjeeling and Nepal to Bengal and the United Provinces.

C. Wightii, Neesian; is recorded as met with in the Nilgiri hills. Holmes (l.c. 55) mentions a sample of thick unscraped bark attributed to this species and sent from Ootacamund. It had a sharp taste recalling the flavour of nutmeg.

C. Tamala, Nees; Agri. Legd., 1896, No. 38. The Cassia Lignea or Cassia Cinnamom; the tai, kikra, kirkiria, sinkami, chota sinkoli, nupsoor, dopatti, tamill, thitcabo, thit-kaya-bo, zarnab (tree), talisspati, talisha-pattiri, tajpat or tejpat, lavanga patte, dieng latyrpat (leaves), etc. The word tamali occurs in the Raja Nirghanta, and tejpat is apparently derived from the Sanskrit tvach. A moderate-sized evergreen tree of the Himalaya, rare from the Indus to the Sutlej, but common thence eastwards to East Bengal, the Khasia hills and Burma, between 3,000 and 7,000 feet.

Adams (Comment. in Paulus Egineta, iii., 238) and other writers have identified the Malabathrum of the Greeks and of the Romans with the tejpat of India. There seems no doubt that the leaf of this plant has been traded in and exported from India for many centuries. The leaf is, in fact, a more important product than the bark.

History of Cassia Lignea.—Owing to the confusion which existed in former times with regard to the Cassia barks, it is almost impossible to give a connected résumé of the history of any one of them. It may be observed that even in the heyday of the East India Company the "Cassia" products mentioned in their records are almost invariably of Chinese origin. Hence Milburn (Or. Comm., 1813, ii., 500), who gives a very clear account of the trade, both in the bark and the buds, warns traders against the coarse, dark and badly packed Cassia Lignea of Malabar. It is, however, interesting to notice that the most recent investigations show such a close connection between the Cassia trees of China and India that the former, which appears actually to extend into Burma and Assam, has been regarded by some authorities as a mere variety of the Indian C. Tamala. As already observed, recent specimens of Cassia Lignea leave no room for doubt that the better qualities of the Assam bark are derived from the true C. Cassia, but and are, therefore, the genuine Cassia Lignea of the ancients and the bark which is so largely exported at the present day from Canton. Concerning the Indian Cassia Lignea—the tai—there may be said to be two localities of supply, and thus two main sets of qualities: (a) Western and Southern India—the bark of C. sepiarium mainly, and (b) Eastern and Northern India and Burma, obtained almost exclusively from C. Tamala and to a small extent from C. obtusifolium and C. Terre. Gamble suggests that the necessary forest regulations of Darjeeling may have interfered with or restricted the trade. [Cf. Malabathrum, Garcia de Orta, Coll., xxiii.; also Comment, by Ball in Boy. Jr. Acad., 3rd ser., 1., 409; Foliwm Indicum

CINNAMONUM TAMALA

Ramtepat.

Malabar Cassia.

Cassia Lignea.

Two Chief Qualities.

CULTIVATION.—In The Agricultural Ledger (l.c. 3) particulars will be found of the cultivation of tejpat in the Khasia and Jaintia hills. About six square miles are said to be under the tree. It is usually found in gardens or plantations of mixed jack and betel-nut palms. It grows readily where there is heavy periodical rain followed by brilliant sunshine, but excessive and continued moisture injures the flavour of the leaves. In the Khasia and Jaintia hills the trees are grown in regular plantations seven feet apart; the seedlings are raised in beds, and planted out permanently when the plants are five years of age. The tree takes five or six years to grow, comes into bearing at ten, and may continue to give annual crops for one hundred years. The cultivation is in the hands of the hill-men. In Sylhet the trees are self-sown; the ripe seeds fall from the trees into the soil and germinate. When the plants are about a foot high they are transplanted. Great care is bestowed upon them when they are young and tender. As constant exposure to the sun would kill the shoots, they are planted behind bushes or trees for protection. The undergrowth is kept down twice a year in the plantations for the first eight or nine years; after that the jungle is cleared once a year in April. In some plantations the soil is dressed, but in most it is never manured or irrigated.

The tejpat and cinnamon trees are different. The former are only used for their leaves, and no bark or only a small quantity is collected in the Khasia hills. No information is, in fact, available regarding special *Cassia Lignea* plantations, though a fairly large trade exists in the bark.

Collection and Crop.—“Tejpat is plucked in dry and mild weather, from October to December, and in some places the collecting is continued to the month of March. The leaves are taken once a year from young trees, and every other year from old and weak ones. On an average 15 seers may be obtained from one tree, but the quantity depends upon circumstances; a tree yields from 10 to 25 seers of leaves in a year. The average yield of leaf per acre in the Jaintia parganas is about 30 seers without, and 2 maunds with, twigs. The whole of the crop from 400 acres was worth last year as much as Rs. 1,100. The quantity of leaves from the Sylhet district last year calculated on the turnover of the traders was estimated at 14,470 maunds, and from the Jaintia district 20,000 maunds.”

“In harvesting the tejpat the small branches are cut down with the leaves and dried in the sun for three or four days. The leafy branches are then tied up into convenient bundles ready for the market. In the other case, the leaves are separated from the branches and packed in bamboo nets of a cylindrical shape called bora or jungra, which are four feet long by two feet in diameter. The packages are carried down the ghaut roads of the hills by coolies to Sylhet.” Mukerji (Handbook Ind. Agri., 1901, 437-8) says that for propagation seed had best be obtained from Sylhet.

Uses.—The leaves are commonly known as tejpat or tejpat, but since the Natives call the leaves of any species of *Cinnamomum* by that name there is some uncertainty as to which particular species is meant in certain localities. It appears probable that *C. Tamala* and its variety *intermedium* provide the tejpat of Bengal, the United Provinces and the Panjáb.
CINNAMONUM
ZEYLANICUM
Cinnamon

Arab Influence.

Ceylon.

Oppressive Legislation.

Cultivation.

Soils.

Propagation.

Weeding.

Seasons.

Separation of Bark.

THE CINNAMON PLANT

the Indian as a cheaper quality than their own. The Arabs, through whose hands much of the cinnamon passed, called it kirfut-al-darain, a word corrupted into kirfah and which survives as kohl, the name given to-day for the commercial bark of Malabar. Garcia observes that the Chinese, in order to enhance the value of the bark sold by them, gave it mythical names and stories. Strabo speaks of cinnamon growing in South India—at the beginning of the torrid zone. The name cinnamon is thus considerably older than the time of the Chinese trade with India and was, in fact, intimately associated with the very earliest Arab dealings.

The systematic cultivation in Ceylon does not appear to have been undertaken much before the Portuguese and Dutch conquests of the island (De Candolle). It became a State monopoly, and, as Garcia de Orta tells us, rose in price very greatly in consequence. The most stringent and cruel laws were instituted to protect the monopoly, which, on the island passing over to the British in 1796, were mitigated and finally in 1833 the cultivation was made free and thus ceased to be a State monopoly.

CULTIVATION AND PREPARATION.—The following account of the propagation, cultivation, and method of preparing the bark is mainly an epitomised and annotated version of Nicholls' article (Textbook Trop. Agri., 190–3), and is therefore not a statement of any South Indian industry, for in fact none is known to exist.

Although in its wild condition it grows to a large tree, the plant exists under cultivation as a copiced bush. It is cut down to the ground at about the sixth year, when straight shoots spring up to be again cut down two years after, and in time the stools become of great size. The straight shoots are mentioned by all the early writers and are figured by Jonston (i.e. t. liii.).

The best soil, says Nicholls, is a sandy loam mixed with humus, but the tree will grow in the tropics on almost any soil, though unsuitable soils and climates produce inferior bark. Plants may be raised by cuttings, layerings, or by ripe and fresh seed. The usual way is to plant the seed out in the fields, at distances of 6 or 7 feet apart; the ground being well broken up, and wood-ashes mixed with the soil. Four or five berries are sown in each hole and branches of trees are laid on the ground to protect the seedlings from the sun. But if dry weather follows germination, which takes place in from two to three weeks, many of the seedlings may perish, and it will in consequence be advisable to have a reserve of plants raised in nursery-beds to fill up vacancies. After the plants are established, little more cultivation is needed than to keep the ground free of weeds. By the sixth year the first shoots can be cut, when two or three will usually be 5 or 6 feet high, and in a condition for peeling. Two years afterwards the shoots that grow up after the first cutting may be reaped.

Preparation.—The shoots are cut off and the tops removed so that they are left from 3 to 5 feet long. The leaves and side branches are cleared and two longitudinal slits made with a sharp knife, one on each side of the shoots. When the cutting has taken place in rainy weather the bark comes away easily, but as a rule it is necessary to rub the sticks firmly with a piece of smooth wood, such as the handle of the knife; the rubbing helps to disengage the bark. The pieces of bark thus separated, after an hour or so, are put one within the other, collected 314
CINNAMON AND CLOVE OIL

CINNAMOMUM
ZEYLANICUM

Trade

Scraping.

Quills.

Adulteration.

Oils.

Indian
Trade
in Cassia
Ligneas.

Exports.

Imports.

Re-exports.

Kalfah
Bark.

into bundles, pressed, and bound together. They are then left for a day or so, until a slight fermentation sets in, which allows of the scraping off of the epidermis and the pulpy matter underneath, by means of a curved knife. The barks are then put together as before, but cut into lengths of about 12 inches, placed on wickerwork platforms, and left to dry in the shade until the second day, then finished in the sun. As they dry they contract into the appearance of quills, hence that name was given to them. The dry spice is made up into bundles of about 30 lb., and three bundles are made into a small bale. The bark of the larger shoots cannot be made into quills, but is removed in thick pieces and sold with the bark of the prunings as “chips,” which fetch a low price owing to inferior flavour. The estimated yield per acre is said to be 150 lb., but might probably be increased by high cultivation. The true cinnamon, it may be added, is very commonly adulterated, especially in powder form, with the CASSIA LIGNEA discussed above.

OILS.—Three OILS are obtained from C. zeylanicum: the bark yields essential oil of cinnamon, to the extent of ½ to 1 per cent.; from the leaves is expressed a brown viscid essential oil, sometimes exported from Ceylon as “Clove Oil” (it has a somewhat similar medicinal value to the true oil of cloves); and from the root a yellow oil which is specifically lighter than water and has a strongly camphoraceous flavour. In their report for April–May, 1904, Schimmel & Co. discuss several reactions for distinguishing between Ceylon cinnamon oil and cassia oil, with which the former is not infrequently adulterated. [Cf. Gildemeister and Hoffmann, Volatile Oils, 1900, 377–92.]

TRADE IN CASSIA AND CINNAMON.—Cassia Ligneas.—In Official Statistics returns are given of the imports from foreign countries and of the portions of these re-exported, but no mention is made of the exports of Indian-grown Cassia Ligneas. On the other hand, under the name Cinnamon, returns are given of Indian-grown bark from Madras and Bengal, but no mention of Bombay. It would seem probable that these exports of Indian Cinnamon are, in reality, the exports of Indian Cassia Ligneas. Regarding the IMPORTS of the bark a slight increase is noticeable, viz. from 20,014 cwt., Rs. 5,41,135, in 1899–1900 to 24,075 cwt., Rs. 6,01,906, in 1902–3, and to 23,421 cwt., Rs. 6,92,559, in 1906–7. The most noticeable features in these imports are the extreme fluctuations in the trade from Hongkong (15,024 cwt. in 1899–1900 to 6,173 cwt. in 1903–4, and 10,955 cwt. in 1906–7), and the corresponding expansion in the traffic from Chinese treaty-port. There was also a considerable increase (45 per cent.) in the imports from the Straits Settlements up to 1903–4, when the quantity imported was 5,795 cwt., but since then this has fallen to 467 cwt. in 1906–7. Three-fourths of these imports are taken by Bombay—the great Indian emporium in the drug trade. There is also a re-export which usually amounts in quantity and value to about one-fifth of the receipts. The chief countries to which the drug is re-exported are Persia and Turkey-in-Asia.

The bark known as kalfah (to which reference has been made) is imported by Bombay town, coastwise from Malabar, and is apparently used to adulterate the Chinese bark. It sells at about Rs. 5 per maund of 37½ lb., or say 2½ annas a pound. According to the Report of the Central Indigenous Drugs Committee (1901, i., 119), the price of Chinese
THE WATER-MELON

Habitat.

CITRUS

Orange, Lemon, etc

hindwana, kalingad, kalangari, karigo, pitchapullum, etc.; pateca, Portuguese, and batiec indi (battikh) Persian. It appears to be the Anguria of many ancient herbalists and travellers, and the bathiee, batiec, bitch, etc., of the Arabs. It is the abattichim (melons) sighed for by the Israelites after the exodus.

An extensive climbing annual, cultivated throughout India and all warm countries. Is supposed to be indigenous in tropical Africa. It is usually sown in January–February, the fruit ripening in the beginning of the hot season. In the United Provinces a special form, known as kalinda, is sown in June and ripens in October. In Western India (Sind more especially) the water-melon is a kharifi crop mainly. Very frequently grown on the sandy beds of rivers, where plenty of room and a copious supply of water are available. Mention is often made, by writers on this subject, of a special form grown in Bikani on almost pure sand, the fruits being often practically underneath the sand. There are thus doubtless many cultivated conditions or states, that vary in the colour and flavour of the pulp, and season and locality of production. The wild plant may be either bitter or sweet without any observable structural differences. The bitter form (C. amariss, Schrad.) comes very close to C. Colocynthis, when that species is cultivated. The bitter water-melon is in Sind known as kirbut and is used as a purgative MEDICINE.

The water-melons of the Upper and Central Provinces are the best. They are extensively employed in the preparation of sherbets. The seeds yield a limpid Orr, used both as an illuminant and in cooking. In times of scarcity they are pulvurised and baked into bread. In medicine, they are in considerable demand on account of their cooling, diuretic and strengthening qualities. [C/ Amin-i-Akbari (Blochmann, transl.), i., 65; Garcia de Orta, Pateca, Coll., xxxvi.; also Comment, by Ball in Roy. Ir. Acad., 3rd. ser., i., 653; Linschoten, Voy. E. Ind. (ed. Hakl. Soc.), ii., 35; Mandelslo, Travels, 1638, in Olearius, Hist. Muscovic. etc., 1662, 86; Buchanan-Hamilton, Stat. Acc. Dinao, 196; Lawrence, Valley of Kashmir, 348; Firminger, Man. Gard. Ind. (ed. Cameron), 1904, 230, etc. For the Anguria or Batiec or Pateca —— Rauwolf, Trav., ii., 4, in Ray, Collection Travels, 1738, 124; Coryat, Crudities, 1611, i., 396; Salmassius, Hom. Hylas Italice, in Pin. Ezer., 1689, 37; Rumphius, Batteca or Battich, Herb. Amb., 1750, v., 490–9, t. exvii.; Joret, Les Pl. dans L'Antiq., 1904, ii., 252; etc.]

Var. fistulosus, Stocks; Duthie and Fuller, l.c. pt. ii., pl. 47; the tandus, tendu, tensi, tinda, meho, alcinda, titak, etc.

This seems a peculiar form fairly local and much less known than the preceding. Chiefly met with in the United Provinces, Panjab and Sind, where it is specially designated ditpasand. Cultivated along with other melons from April to October, and eaten as a VEGETABLE, not as a fruit, being cut into sections, the seeds removed, then boiled in water, next in milk. Cut into still smaller pieces it is cooked in curry, and also fairly largely pickled and candied. It is in much demand both by Muhammadans and Hindus, but appears as a rule unknown to Europeans. The seeds are used MEDICINALLY. They are also dried and eaten parched.

The different forms of the Orange, the Lemon, the Citron, the Lime
THE ORANGE AND LEMON

and the Pomelo constitute a tropical assemblage of fruits in many respects comparable with the apple, the pear, the peach, the plum and the cherry—a temperate series—though the former are infinitely more valuable than the latter, because more widely cultivated and more extensively used. Moreover, since the orange is consumed very largely in temperate climes, cultivation in the tropics has to be made on the basis of the foreign as well as the local demands, so that oranges, lemons, etc., have become regular articles of trade all over the world. Until very recently Europe obtained its supplies of these from the warm temperate tracts of South Europe itself and from the islands of the Mediterranean and the Atlantic, adjacent to Africa. For some years the quicker transit of steam navigation has permitted supplies to be drawn from a greater distance than formerly, and both Europe and America have, in consequence, come to be very largely supplied by the West Indies. The great success recently of the fruit trade of these islands has given a useful suggestion of India’s possibilities. There would seem every chance that a large trade may in the future be done in exporting some of the fruits of India to Europe, more especially the thin-skinned Bombay pomelo. [Cf. Ferrari, Hesper., 1646; Jonston, Dendr. Hist. Nat. de Arbor., 1662, 10-27, pl. vi-viii.; Commelín, Hesper., 1683, 1-47; Salmisius, Plin. Exer., 1689, 666-77; Lecomte, Beschr. Keyser. China, 1698, 79; Sterbecke, Citricult., 1712, 1-60, 66-181; Volkamer, Nurnb. Hesper., 1708-14 (2 vols.); Clarici, Ist. delle Piante, 1726, pt. iv., 593-751; Rumphius, Herb. Amb., 1750, ii., tt. 24-35; Forster, Pl. Esc., 1786, 35; Gallesio, Traité du Citrus, 1811; Macfadyen, Citrus of Jamaica, in Hooker, Bot. Misc., 1830, i., 295; Targioni-Tozzetti, Cenni Storici, etc., 1853; also Review of same by Bentham, Journ. Hort. Soc., 1855, ix., 133-81; Riso et Poiteau, Hist. et Cult. des Orangers, 1872; De Candolle, Orig. Cult. Plants (Engl. transl.), 1884, 176-88; Lelong, Cult. Citrus in California, 1900.]

History.—So much has been said on the history of the species of citrus in the works above indicated, that it seems almost superfluous to attempt a review of the more interesting particulars, except such as have a practical bearing on India. The Sanskrit and Chinese records of the properties and uses of these plants carry our knowledge back to a time prior to the first mention of the European tradition of the Garden of Heresides, with its golden-coloured and beautiful fruits, whatever these may have been. [Cf. Suvaruta, Ayurveda, (d’Hanvantare) ed. Hessler, 1844, iii., 179.] It seems fairly certain that the citron fruit had been carried to Europe by traders long before the attempt was made to cultivate the plant there. It was valued as a perfume and also used to protect clothes from insects. Pieces of certain imported coniferous woods were similarly so employed, and the Romans appear to have supposed that the fruits brought from Media were those of the selfsame plant as the scented cedron wood. There can be little doubt, therefore, that the modern word Citrus was derived from Cedron and owes its origin to the circumstance mentioned.

Theophrastus (about 350 B.C.) calls it the Malum Médicum or Malum Assyrianum, and thus may be viewed as confirming the early traditional source of the Citron. But he speaks of it as raised from seed sown in vases and seems to be alluding to that instance from Earsay, as the practice with the Medes, rather than to be narrating a custom followed by the Greeks. There is, however, an amusing story contained in a fragment of the comedy of the Antiphanes, quoted by Athenaeus, which, if it can be trusted, would suggest a possible much earlier cultivation in Europe than can be established by direct historic facts. So again the compilation known as the Geoponica (prepared in the 10th century) is supposed to be quoting certain authors who describe the cultivation of the citron several centuries before Christ, but here again it is perhaps hardly desirable to put much confidence in these writers. It may thus be affirmed that
direct evidence of cultivation in the gardens of the Romans does not exist prior to the first century of our era.

Palladius (De re Rustica, iv, 10), who lived possibly about the fifth century A.D., narrates the methods pursued by him in cultivating the plant in his Sardinian and Neapolitan possessions, so that its cultivation in Italy by the 3rd or 4th centuries may be accepted as having been fully established, though for many centuries the progress made in Europe was but slow, down to the 11th or 12th centuries.

It may be said that while the orange is indigenous to China, and the limes to India, that the citron originated very possibly in Persia and Media, while the lemon is so closely associated with the Arabs as to suggest its having come from them, at all events, carried its cultivation to Africa, Egypt and Europe. In the 10th century, for example, we read of them being conveyed from the gardens of Oman to Palestine and Egypt. So also it is generally accepted that the fruit held in the hand by the Jews during the Feast of Tabernacles has for many centuries past been the citron. Risso has, however, produced evidence which he thinks goes to show that the Hebrews did not very possibly know the citron much before the beginning of the Christian era, hence he contends that it was very likely not the fruit so used by the early Jews. Other writers have, however, contended that the Jews were scarcely likely to have changed the symbol and yet retained the ceremonial. And it is, moreover, well known that a close relationship subsisted for many centuries between the Hebrews and the plant of Media and Persia, so that there is no reason why they should not have known of the citron long before the Romans. There is, however, a long interval between the first European classic references to the plant and the detailed accounts of medicinal and horticultural writers. To bridge over this gap, Loret assumes a knowledge in these plants, possessed by the Arabs, Jews and Egyptians, very much more ancient than the earliest historic record. For example, the earliest Arab and Persian writers who knew of the citron and lemon are:—Serapion (De Simpl., i, 1) and Rhases (Cont., i, ult., i., 219), who describe the former, while the latter is alluded to by Ibn Baithar. Avicenna (De Med., ii, 2, 116, 433)—the author most frequently cited—apparently confused these plants. [Cf. Paulus Aegineta (Adams Comment.), 1847, iii., 472.]

The orange was not long much later than the citron or lemon. Targioni-Tozzetti tells us that it was conveyed from India to Arabia in the 9th century. We have no knowledge of its having reached Europe for a couple of centuries later, when it seems to have been carried by the Moors to Seville. In the 13th century we read of its cultivation at Palermo and Rome. But, according to the most generally accepted opinion, the bitter orange reached Europe before the sweet. Lecomte says that the Portuguese claim to have taken the sweet orange from China to Portugal somewhere about 1545.

It is remarkable that many of the Indian authors, who might be expected to afford useful historic particulars regarding the citron, lemon, and orange, are silent regarding these plants. Marco Polo makes no reference to them, but Varthéma (Travels (ed. Hakl. Soc.), 1803, 190), who in 1510 visited Canaran and subsequently Ceylon, speaks of the sweet oranges (melangoli) of both places, and says of Ceylon that they were the finest in the world. Vertomannus (Voy., in Hakl. Voy., 1811, iv., 577), a gentleman of the city of Rome, who also visited Canaran and Narsinga in 1503, says the “soyle beareth neyther wheate nor wynes, or fewe other fruite, except Oranges and Gourdes.” Baber (Memoires, 1519 A.D., 327—9) mentions nine different kinds of Citrus, as known to him. This is the earliest complete statement regarding Indian cultivation. The Ain-i-Akbari, written 1590, amplifies some of the particulars given by Baber, but adds nothing very material. [Cf. Blochmann, transl., i., 69; also Jarrett, transl., ii, 124.] The Emperor Akbar, we are told, encouraged the cultivation of all fruits and brought expert gardeners for that purpose from Persia and Tartary, who doubtless carried to India with them all that was good and desirable in the way of new fruits from their own countries.

Linschoten (Voy. E. Ind. (ed. Hakl. Soc.), 1598) makes frequent mention of the oranges, lemons, etc., of India, Ceylon and other countries visited, but in such language as to imply that his readers knew everything about them. Rheeoe, on the other hand, who, in 1686, figured and described the plants of Malabar, and thus practically of Canaran, makes no allusion to the orange or the lime, while Herbert (Travels, 1677, 333) speaks in the highest terms of the oranges and lemons of Mangalore: in the case of the oranges, “the rind,” he tells us, “was no less pleasant than the juice.” A century or so later Rheeoe and Herbert were followed by Rumphius, who gives a full description of several
oranges, lemons and pomelos. One or two of these he speaks of as wild. The sweet orange, however, he regarded as a native of China, but adds, "some consider it a native of Amboina." Numerous writers refer to the efforts made in India to improve and increase the orange and lemon supplies of that country. There need, therefore, to be little cause for surprise that the oranges of Cintra should have reached India even before Baber's time. Dr. Hunter long years ago suggested that the name for one of our best-known forms of orange, viz. *sungtura* (of Baber) or *santara* (as it is nowadays called), was but a Hindustani corruption of Cintra, thus indicating its having been brought from Portugal. The name *aurantium* given by botanists to the orange does not come from *aurant* gold, but is derived from the Arabic *nárandj*. This became *nárandj* (narang) in the Persian, and its equivalent in Sanskrit is *nágaranga* and in the Hindustani *nárang*. Names that begin with *nar* generally denote fragrance. The name orange came to English through the Moors, and became *náranjo* in Spanish, *laranga* in Portuguese, *arancio* in Italian, *orange* in French, *orangebaum* in German, and the like. [Cf. Ligon, *Hist. Barbados*, 1657, 69; Terry, *Travels in Ind.*, 1665 (ed. Havers), 343; Ovington, *Voy. Suratt*, 1689, 423; Le Comte, *Mem. de la Chine*, 1696, i., 173; also Bretschneider review, *Hist. Europ. Bot. Disc. in China*, 15; Forster, *Pl. Esc.*, 1786, 35; E.I.O. *First Letter Book*, 81; Wise, *Hindoo Medicine*, 191; Wiesner, *Die Rohe des Pflanzenren.*, i., 653, ii., 584, 631; Joret, *Les Pl. dans l'Antiq.*, 1904, 282-3.]

Bitter.

The bitter (or Seville) orange, though sometimes spoken of as indigenous to India, is there very little cultivated. The so-called wild, or perhaps only fully acclimatised plants that have been recorded as met with, are botanically nearer the sweet than the bitter (or marmalade) orange. It seems highly probable, on the other hand, that at least some of the forms of the Sweet Orange came to India via Assam, the route along which many other Chinese plants have passed westward into Hindustan. There may be said to be four or five chief centres of Indian orange production—Sylhet in Assam; Nagpur in the Central Provinces; the lower ranges of the Eastern and Central Himalaya (Sikkim, Nepal, Garwhal and Kumaon); Delhi in the Panjáb; and the Deccan and South India (Poona, Coorg, etc.).

Bonavia speaks of four chief races of this fruit, viz. (1) the *Santara* (a word which he writes "Siántara" and regards as of Sanskrit origin and not (as stated above) a corruption from Cintra); (2) *Keonla*, or the common *naringi*, produced here and there all over the country in gardens, not special plantations; (3) the *Malta* or *Portugal*—the blood-orange, introduced in 1852 and now fairly successfully produced at Gujranwala and also in gardens at Lucknow; and (4) the *Mandarin* of some writers (*C. nobilis, var. major*), a native of China and Cochín-China and the *Tanjerine* (*C. nobilis, var. minor*). Both these are occasionally met with in gardens but can hardly be regarded as important Indian fruits, although one of them appears to have been crossed with the *santara* in producing an orange commonly met with in some parts of the Deccan and South India, which is sometimes called "Indian Mandarin."

The *santara* or *sungtura* (nágaranga of Sanskrit) is by far the best
THE ORANGE PLANTATIONS OF INDIA

quality, and may be said to be distinguished by its yellow colour and loose skin or jacket. This is the orange of the special Indian plantations where orange-growing becomes an important industry. But there would appear in India to be several very distinct forms of the santara, due very possibly to peculiar methods of cultivation or special climates. The distribution of the races of santara orange might be given as follows:—
in the north, Nagpur, Delhi, Alwar, Gargaon, Lahore and Multan; in the west and south, Poona, Shevaroy, Madras, Coorg and Ceylon; in the east, Nepal, Bhutan, Assam, Khasia and Burma.

The Sylhet or more correctly the Khasia orange is the best of the series, and it may be described as the fruit known in Europe as the China orange. One of the most useful papers on this subject is that by C. Brownlow (Journ. Agri.-Hort. Soc. Ind., 1869, 372, briefly reviewed in the Dictionary). The Sylhet orange, he says, is invariably raised from seed, and the plants come into bearing in four to six years. It is believed that the seedlings do better than grafts or budtings, though the latter come sooner to maturity and afford a more uniform quality. When grafting is pursued the stock usually employed is the lime, and some say the wild plant is preferable to the cultivated.

Since the present article was penned, B. C. Basu has contributed (Agri. Journ. Ind., 1906, i., pt. i., 62-7) a most interesting account of the Khasia hills orange and its cultivation, for which space can only be found for the merest abstract. The area where produced, he observes, is comprised within one hundred square miles. The plantations commence on the plains and rise to an elevation of 1,500 feet. The gardens extend thus for some distance into the interior along the deep valleys which cut up the southern face of the Khasia hills. From that narrow tract of country is drawn the bulk of the oranges consumed in Bengal and Assam. The great earthquake of June 1897 destroyed, however, a large number of the orange gardens, many of the most productive of which lay on the banks of the hill streams and owed their fertility to the silt left by the annual floods. The orange is said to do best on limestone soil. The Khasia people recognise only one variety, though they admit a wide range in quality exists—dependent mainly on soil and the aspect of the garden. The special merits of individual plants are not perpetuated owing to the almost invariable habit of raising stock from seed. The fruits with thick rind are preferred even though the pulp is less juicy, because they stand handling better. So also late ripening is advantageous in point of price.

Basu’s account, it may be observed, differs here and there very slightly from that given by Brownlow. Seedlings, he says, are transplanted when two or three years old, and during May and June. A hole is made and the young plants deposited at distances approximately of 10 feet apart. Manure is never used. By the end of the rains a number of shoots have usually formed, and in time one of these is preserved, and the rest, as also the parent stem, removed. The plants begin to bear in eight to ten years and the duration is uncertain owing to the ravages of the borers insect, which destroys large numbers of plants annually. The orange season commences in November and closes in March. The export is in the hands of Bengali traders, who mostly live in Sylhet, hence the orange being often spoken of under that name. The usual wholesale price is from Rs. 10 to 20 per “hundred,” equivalent to about 2,300 fruits. The supply intended for Bengal is taken down to Chhatak. If carefully
THE ORANGE TREE

arranged on a trellis, no two fruits being allowed to touch each other, and then suspended from the roof of the house, the fruit may be preserved for months.

This orange is conveyed by boat to Calcutta, where it is sometimes spoken of as kamla-nebu, from which circumstance Prain thinks it may be inferred the orange was derived from the kingdom of Comilla to the east of Calcutta, and not from Upper India. There is but one complaint in Bengal against the present supply, namely that it comes in the cold in place of in the hot season. This has led to numerous efforts, with indifferent results, to obtain a second supply of equal merit from other localities. In Kullu, for example, the fruitting season is much later, and an effort has accordingly been put forth to send supplies to Simla in April and May.

Nagpur.—Mr. J. H. Stephen, Superintendent of the Government Botanic Gardens, Nagpur, published in 1899 an instructive account of the production of oranges in the Central Provinces. Mr. A. Ross, in a letter published in Firminger (I.c. 277), furnishes other particulars of interest. Stephen inspected several large orange plantations and found that where carefully cultivated and liberally irrigated the trees were healthy and fruited freely; where neglected, the yield was so low that the gardens were not remunerative. In every instance the plant grown was the Nagpur suntra budded on the sweet lime. This is believed to produce a thinner skin and a sweeter and more luscious fruit than when budded on the citron or jambiri. The Sylhet system of raising from seed seemed nowhere to be followed, because it is believed that such plants take from fifteen to twenty years to come into bearing. The lime is sown in January to March, and when a year old the budding of the orange is made on the seedlings. They mature in the sixth or seventh year, and in about nine to twelve years are in full bearing; after that date they decline. In Nagpur the orange yields (or can yield) two crops a year. The plants flower in February to March, and the fruit is ripe in November to December or January. The second flowering is in June to July, and the fruit ripens in March to April. The oranges of the second crop are the sweetest, and, coming as they do at the beginning of the hot season, are much valued. These are plucked green, and thus are rarely allowed to change into the characteristic yellow colour of the other crop. On this account some writers have regarded them as being bergamot oranges.

About the middle of May the roots are exposed and the plants manured (according to Ross, the roots are exposed and the manure given in October). Pruning is unknown in the Nagpur groves, and, except to be watered freely in the hot season, the plants receive little or no further attention. R. S. Joshi, Rai Bahadur, has just published an account of the orange cultivation of these provinces (Agric. Journ. Ind., 1907, ii, pt. i., 64–9) which will be found to richly repay perusal. In the details of cultivation he makes, to all intents and purposes, the same facts as already exhibited. He urges the necessity for high cultivation, especially on soils with a liberal supply of lime, and reaffirms belief in budding. "The stock generally used," he says, "is the sweet lime (mitha nimbu), but the common citron (zamburi) is also very often utilised. Buds of the orange grafted on the latter stock produce trees which yield fruits with a very loose skin, whilst those on the former stock have a more closely
adhering jacket, showing that the stock has a distinct influence on the
bud. The loose-jacket oranges are preferred for local consumption but
are not so good for export, as they do not stand carriage well. Trees
raised from citron stock come into bearing more quickly and have a
somewhat longer life, but the fruit from the sweet lime is sweeter and
has a thinner skin.”

Speaking of the diseases of the orange, Joshi says that in Nagpur
the most serious is caused by a fungus which results first in the withering
of the tips of the branches, the rot gradually extending down till the whole
tree is destroyed. The produce of the Nagpur gardens goes mainly to
Bombay, but recently Calcutta has drawn on the Central Provinces. If
the late crop could be made a special feature, it seems probable the Nagpur
supply would be much appreciated by Bengal.

Delhi.—The oranges of this locality are inferior to those of Sylhet and
Nagpur. The rind is thick and the juice relatively poor, both in flavour
and quantity. The supply of the so-called Delhi orange, which, in addition
to meeting the local markets of the United Provinces and the Panjáb
is to some extent drawn upon by Bombay, comes from the neighbourhood
of Delhi itself and from Gargaon, Saharanpur and Alwar, etc. Nepal,
Garhwal and Kumaon produce small but sweetly flavoured santara
oranges. Dr. Bonavia tells us that the sweetest orange he ever tasted
was grown in Nepal.

Poona.—Woodrow wrote a useful report of the orange cultivation
of Western India which was published by the Director of Land Records
in 1890, and subsequently epitomised and amplified by Cooke. In
addition to the santara orange, the lādū of the Deccan is largely produced.
This has often a malformation in the form of a supplementary series of
pips near the apex. The Mozambique orange and also the Mandarin,
or what is so called (lādū lādū), are frequently met with. Indian Mandarins
are good to look at but inferior in flavour, and, as already observed, the
lādū lādū is probably only a hybrid Mandarin.

The Coorg, Mysore and Nilgiri oranges are much spoken of, and
constitute the chief supply of the city of Madras. The Coorg is the
form most in demand. It seems a cross between the ordinary santara
127-9) has very recently written a useful account of the “Orange Cultiva-
tion in Coorg.” The method of cultivation he speaks of as very
simple. Seeds are sown in nurseries, where the plants remain till they are
one or two feet high, and are then transplanted 18 to 20 feet apart. The
only subsequent attention given is to protect the plants from damage by
cattle and to keep the fields clean. At six to seven years the first crop is
picked; and if success is to be attained the plants must now be manured,
but very little is usually done in this respect. The flowering seasons are
October to December, and again April to June. The fruits of the former
are of little consequence, as they do not ripen properly and constitute
the so-called monsoon crop, for which there is little demand. The other
crop is of great value, is harvested from January to March, and is known
as the hot-season crop. The average duration of the plants would appear
to be about thirty years. Lastly, Haller discusses the diseases and
pests of the orange, and mentions a Loranthus parasite and the borer
beetle as being the most prevalent.

Trade in Oranges.—It is quite impossible to furnish any particulars Trade.
as to the extent of the traffic in these fruits. They do not appear separately in either of the records of internal traffic or external trade. In the Assam Administration Report for 1901-2 it is stated the exports from that province came to 74,000 maunds, valued at Rs. 2,80,000. But we have no information as to the area and yield for the whole of India, and therefore the total production cannot be even conjectured. The suggestion has been made above that India might with advantage follow the lead given by the West Indies, and look to Europe and even America as hopeful markets for the profitable disposal of surplus fruits. Before this can be seriously contemplated production must be put on a more certain basis than at present, and this is not likely to be accomplished until European planters of India are induced to become orange growers. Some few years ago (1894-5) a few parcels of Nagpur oranges were sent to London. Messrs. W. Hutchinson & Co. reported on these. The brokers pronounced the fruit the best they had ever seen, and valued the oranges at 3d. anapiece. They arrived when the supply of oranges from other countries had come to an end, and were thus much appreciated. The supply was, however, discontinued, and never seems to have been again renewed. To organise and maintain a foreign market an unflagging supply of a fixed quality must be assured. This would mean increased production with the definite idea of export. The demands of the local markets seem to absorb the present supplies, and the profits of production are sufficiently high, it might be conjectured, to have tempted increased cultivation.

C. decumana, Linn.; Fl. Br. Ind., i., 516; Tussac, Fl. And., 1824, iii., 73-4, pl. 17, 18; Bentham, Rev. of Targioni-Tozzetti, in Journ. Hort. Soc., 1855, ix., 172. The Shaddock, Pomelo, Pumelnose (pampelmousse, Fr.); the maha-nibu, batávi-nebu, sadaphal, chakotra or chukotura, bator-nebu, bijoro, papanas, bombalinus, púmplemús, etc. It has no Sanskrit name. It was known to the early Dutch traders as Pompelmöes (= pumpkin-citron), hence some of the modern names. It reached India and Ceylon in the 17th century.

The pomelo is presumed to be a native of the Malay Archipelago. Introduced into India and Ceylon from Java, hence the name batávi-nebu; carried to the West Indies by a Capt. Shaddock. Rumphius, followed by Roxburgh, was the first botanical author who described this fruit, although the suggestion may be offered that the Pomum Adami Commune (or Black Lemon) of Ferrari and also of Commelin bears a strong resemblance to the pomelo. It is certain that neither Baber (1519) nor Akbar (1590) allude to it. Buchanan-Hamilton studied (1807-11) the districts of Dinajpur, Rangpur, Paraniya, Bhagelpur, and Bihar, and the cities of Patna, Shahabad and Gorakhpur. Upon each of these he submitted to the Government a voluminous report," but only one, viz. Dinajpur, was ever published, as written by the author, and that not until 1833. He there says that this plant was known as batabi, but that it could scarcely yet be said to have made its way from the gardens of the Europeans (Stat. Acc. Dinaj., 196). In 1897, I personally explored a considerable portion of the districts of Dinajpur, Rangpur and Bogra, and may safely affirm that no village exists now without its pomelo trees. In India and Burma at the present day, it is, in fact, one of the most common of fruits, but more especially so in Bengal and South India than in the United Provinces, the Central Provinces or the Panjáb. The best quality
THE GRAPE FRUIT

is the thin-skinned Bombay pomelo, hence the South Indian name of bombalinas.

It is a favourite with the Natives of India, the pulp being either white or red, according to the variety grown. The best fruit is to be had about Christmas time, but certain qualities may be got very nearly throughout the year. In Bengal the season is August to December. The name "Pomelo or Pompoles" (in Cape Colony, Pomelos) is usually given to the large-sized fruit, "Shaddock" to intermediate sizes, and "Forbidden Fruit" to small forms. The cells of the pulp are very large and naturally separate from each other—a peculiarity that has led some people to speak of it as the "Grape Fruit" or "Grape Orange." The separated pulp is largely eaten in India as salad. The Bombay pomelo is the one that should be most cultivated and exported. It may be raised from seed sown in February, or by budding in February to March on the common lime, or by layers made in pots supported high among the branches. Seedlings take longer time to come into bearing than layerings or buddings, and are less certain.

The exports from the Bahamas, Cuba, Jamaica and Florida to the United States have recently assumed considerable importance. The traffic from the Bahamas alone was in 1902, 728,000 fruits. This shows what might be done were India to commence to export Bombay pomelos to the United Kingdom.

C. medica, Linn.; Fl. Br. Ind., i., 514. There are many very distinct forms of this species met with under cultivation in India. Of these, the following abstract of the voluminous information available may help the reader to discover the special details desired:—

1. Var. medica proper.—The Citron, Adam's Apple, etc. Bears many names in the vernaculars of India, such as bajauri or bajauri and bijori (suggestive of the province of that name in Kafaristan which Baber tells us was famous for its citrons even in 1519), limbû, nimbu (or bara nimbu) turanj (its Persian name), kusla nebu, beg-pura, balank, mavalung, etc. Its Sanskrit names are mā tulunga, phalapurā and vijapura. Is said to have been found wild in Chittagong (an opinion not alluded to in Prain's Bengal Plants); by others it has been reported as wild in the Khasia and Garo hills and also in Kumaon.

The Citron is cultivated sparingly in the warm moist regions of India, one form being so large as to resemble a pomelo (is possibly the Poncire citron of Europe.) Another is the fingered citron, a curious fruit that Bonavia recognises in some of the decorative designs of Assyria. It seems to be intimately associated with most of the weird fables that gravitate around the Citrus. The citron is best propagated by seeds or layers. Firminger alludes to the fruits being in Assam ripened within earthen jars before being removed from the tree. A similar practice may have originated the stories of citrons in the form of human faces, owing to the fruits having been grown within moulds of the desired form.

2. Var. Limonum or Lemon.—The word lemon comes from the Arabic limûn, and through the Persian became the Hindi limu, limbu or nimbu. It is specifically known to the Indian people as the pahari (hill) nimbu, karna (or korna) nebu, kimti, mato-limbu, thora-limbu, and as the kalamak of Arabic and kalimbak of Persian.

The wild form of the lemon has not been recorded as met with in India—the plant mentioned by Royle, Madden and others was more probably the lime than the lemon. Lemons are, however, fairly extensively cultivated here and there all over India. Still, the true lemon
THE SOUR AND SWEET LIMES

Sour Lime.

is hardly one of the regularly grown fruits, in the gardens of the people generally, but rather of the well-to-do and the curious.

3. **Var. acida**; *Kew Bull.*, 1894, 113-6, 177-82 and pl.; the Sour Lime of India.—This is the lemon of most popular writers, and is undoubtedly a native of India. It is the true *nību* or *nebu*, *nimbu*, *libu*, etc., and is the *jambirī* of Baber, the *jambira*, *līmpāka*, *nimbutka*, *vījapura* and *vījakā* (according to Dutt) of the Sanskrit authors (Susruta (ed. Hessler), 1844, i., 86). This is the plant usually met with in a wild state in the warm valleys of the Himalaya. There are numerous cultivated forms of it, the two chief being a round lime (*pāti-nembu*) and a long lime (*kōgha* (*kagūjī*) *nīmbu* or thin-skinned *nebu*). The thin-skinned limes of Jaipur and Azamghar are celebrated. Then there are in addition the *pāti* or small round lime, the *goră* or oval fruit, the *Chini-gora*, which much resembles an orange, the *kāmurālī*, a very large lime, the *khatta* of Upper India, the Bajoura limes—a sort of citron-lemon, the *gungoli* and *Bihari* and many others.

The Sour Lime is easily reproduced by layers or seeds, the finer qualities being budded on the commoner and hardier wild stocks. The wild lime is, in fact, the chief budding stock for all species of orange, lemon or citron. The juice of this fruit is universally used for flavouring soups, curries, fish, etc., since it imparts a pleasant acid taste and agreeable flavour. It is also largely used in domestic medicine. The small sour limes are extensively employed for sherbets and in the manufacture of lime-juice, and the large ones made into various preserves. Baber refers to several forms of lime, so that we have abundant evidence that they have been known and valued in India for many centuries.

In the West Indies the lime is specially grown in Montserrat, Dominica, Jamaica and Trinidad on account of the juice—the lime-juice of commerce. The reader will find a highly instructive paper on the West Indian Lime Industry, written by A. J. Brooks (*Journ. Roy. Hort. Soc.*, 1907, xxxii., 172-88). It will be found to deal with the following among other subjects of interest:—History, Cultivation, Pests, Fruiting, Essential Oil, Raw Juice, Concentrated Juice, Citrate of Lime, Green Limes, Improvement of the Lime, etc. Brooks informs us that “the juice is exported in its natural or ‘raw’ state, or as ‘concentrated’ juice, the latter being one of the chief sources of citric acid.” There would seem no good reason why India might not participate in this trade.

4. **Var. Limetta** or Sweet Lime of India—the *santara* *nību*, *mitha-nību*, *amratphal*, *elemītchum*, *thanbayā*, etc., and the *madhukarkatīka* of Sanskrit. Wight regarded the sweet lime as indigenous to the Nilgiri hills. It was known to Baber, who apparently did not much appreciate sweet limes or sweet oranges. In the Turki copy of his *Memoirs* there is a footnote written by his son Humain to the effect that Baber's dislike to the *amratphal* was “a consequence of his having been long and much addicted to the use of strong drinks, whence he naturally did not like sweet things.” It has, however, very little flavour except that of sweetness, but being in season in August to October, when oranges are not procurable, it is much appreciated by many persons as a cooling and refreshing fruit. But it seems highly likely that the sweet lime has by many writers been frequently confused with the bergamot or green orange. It is eaten fresh, or after being preserved or cooked.

The sweet lime is very largely employed by the Delhi orange-growers as a stock on which to bud the *santara* orange, and this circumstance may to some extent account for the peculiar flavour of the best Delhi oranges.

Conclusion.—It has not been found possible to afford space for more
LIME-JuICE: OIL OF LEMON
than the merest outline of this subject. Details of cultivation, of the
diseases to which the various species are liable, as well as of their
respective industrial and medicinal uses, have had to be all but omitted (see
VINEgar, p. 1110). Consult the Pharmacographia Indica for therapeutic
facts, and for particulars regarding the perfumes, Gildemeister and Hoff-
mann's Volatile Oils (1900, 460-85); as also the admirable paper by Burgess
and Child in the Journal Society Chemical Industry (December 1901).

The cultivation of oranges, lemons, pomelos and limes of India, if
organised on a more extended and systematic fashion than at present,
would of necessity involve full advantage being taken of each and every
profitable outlet, such as the preservation of the fruit (candied), the pro-
duction of lime-juice, and the manufacture of perfumes and oils (citral,
bergamot, neroli, etc., etc.). The "oil of lemon" is one of the chief
industries of Sicily. The summer crop is exported as fresh fruit, the
autumn or winter crop is manufactured locally into the juice and oil for
which that island is famed. But it is regarded as very injurious to allow
a tree to fruit twice a year, and hence the December crop is, as a rule,
preferred. The lemon begins to yield when five years old. When fifteen
to twenty years it gives 1,000 fruits, and when full grown may afford from
3,000 to 5,000. In the production of oil and juice, the fruit is cut into pieces,
the pulp scooped out from these, the peel soaked in water for an hour
or two, and then pressed by hand over a sponge in order to separate the
oil. If candied peel is to be prepared, only half the oil is so expressed,
otherwise as much as can be squeezed out is taken, and the waste peel
given to cattle. The pulp is pressed for juice and the residue used as
cattle food. Such is in brief the process usually adopted in the preparation
of lemon oil and lemon juice in Sicily.

If an Indian industry were therefore organised, a large share in the
profits of cultivation would have to be derived from these and other
sources. Much care would have to be expended in selecting the best
stock and in ascertaining if the lime, in place of the lemon, would meet
all the necessities of trade. The lime would in all probability be better
suited to the climate of most districts of India, but there exists a wide
range of forms from which to select. To organise an export traffic in fresh
fruit, it would be indispensable to have special shipping arrangements,
since the fruit would be greatly injured if consigned to the hold along
with mixed cargoes. Quick transit, careful packing, and good storage are
essential to success. [Cf. Kew Bull., 1892, 108; 1894, 114; 1895, 266-71.]

CLAYS, BRICKS, POTTERY, ETC.—Ceramic Art and
Wares.—Montgomery Martin, Hist. E. Ind. (compiled from Buch.-
Ham. Repts.), 1838, i., 347-9, 535-6; ii., 165, 167-72, 256-7, 948-55,
pl. xiv.; iii., 208, 681; Mallett, Rec. Geol. Surv. Ind., 1889, xxii.,
The gui, chikni, chikita, mati, sangi-dalam, kali-munnu, tannab, krishna
mirtika, etc.

Sir T. H. Holland, Director of the Geological Survey of India, in his
Review of Mineral Production (1.c. 104), observes that "no statistics
approaching any degree of completeness are obtainable to show the extent
of the undoubtedly great industrial value of the clays in India. They
include the common clays used all over the country for the manufacture
of bricks, tiles, and the cheaper forms of pottery; finer varieties, used

327
for glazed pottery, which in places has obtained a reputation for artistic merit; fire-clays, raised in considerable quantities on some of the Gondwana coal-fields; and fuller's-earth, which is mined in the Central Provinces and in Rajputana." In these brief sentences Holland has furnished the chief kinds of clays met with in India. In the remarks that follow, these will be severally dealt with, except that, as a matter of convenience, the clays used for all kinds of pottery (un glazed, painted and glazed) will be taken up last instead of second:

Bricks and Tile Clays.—Until the middle of the last century it was thought necessary to import bricks from England, and that prejudice served to destroy the hopes of Mr. George Macdonald, who in 1866 became virtually the pioneer of European brick-making and pottery in India. He failed disastrously to interest the Government engineers and the building trade in the products of his factory at Raniganj (Raneegunge). In 1881 Mr. J. H. Glass directed attention to the Jabalpur supplies, and as a consequence the Geological Department deputed Mallet to inquire into the clays of the Central Provinces, the result being that the claims of Umaria were urged very strongly. It was pointed out that Gondwana clays were abundant, coal and fire-clay on the spot, felspar obtainable within four miles, while chalcedony might be collected in the Mahanadi near Chandia. Messrs. Burn & Co. had meantime founded their potteries on the very spot where Macdonald failed. It is said they now turn out about 30,000 bricks a day, including glazed bricks for bathrooms, and blue-chequered damp-proof bricks for stores and godowns. And about the time of Mallet's report they extended their operations by opening out their Jabalpur works.

But bricks were used in India long before the arrival of the English, and some very old edifices, fortifications, etc., seem to have been constructed with large thin bricks not unlike those employed in ancient Europe. Such bricks were recently found, for example, by Dr. Stein in the ruins of the stupas, etc., of ancient Khotan, of a date of the 7th or 8th century. Abul Fazl, the chronicler of the Emperor Akbar's reign, mentions three kinds of bricks, "burnt, half-burnt, unburnt," and observes that the Emperor had fixed the price for these. The first kind, he adds, were usually made very heavy. [Cf. A'in-i-Akbari, 1590 (Blockmann, transl.), 1873, 223.] These three grades are met with to the present day all over India, and in fact most houses, garden walls, etc., of the peasants of India are mainly constructed (when bricks are used at all) of sun-dried bricks. But if Indian fired-bricks have not hitherto borne a very high reputation for strength and durability, it has been upheld that the cause of inferiority should more often be sought in the process of manufacture than in the material used. A writer in Indian Engineering (August 4, 1900) pointed out that in making bricks by hand it was very difficult to get the edges sharp and well defined, the only way to obtain this being to use none but well-made moulds and to reject at once any mould found to be in the slightest degree cracked or damaged. That difficulty is to a large extent overcome by the use of machinery, though an even greater disadvantage at once arises, namely that machine-made bricks have to be transported from the brick-field to the building site, thus materially adding to their cost. In India it is usual to manufacture hand-made bricks near the place where they are to be used, and it is highly
CLAYS
POTTERY-CLAYS

THE INDIAN CLAYS

Yellow mud is eaten medicinally, and sold under the name *Multani matti*. An earth known as *sang-i-basri* is said to be imported from Persia and used in tonic preparations, owing to the iron which it contains. Saucer-shaped chips of partially baked clay are sold in the Calcutta bazar for eating. Montgomery Martin (*Hist. E. Ind.*, 1838, ii., 167) refers to a substance called *khari* eaten by women in Bengal. Hooper (*Rept. Labor. Ind. Mus.*, 1905–6, 37–8) gives particulars of 33 samples examined. Silica was the largest constituent, eight samples having 80, twelve 70, and six 60 per cent. The analysis showed that these clays had no food value. *Cf.* Hooper and Mann, *Memoirs As. Soc. Beng.*, i., No. 12, 249–70. It is probable that all these clays are nearly allied to fuller’s-earth, which in India is employed as an external application to purify the hair and skin, in washing the cloths used in the manufacture of lac, indigo, etc., as also for weighting fabrics. It is interesting to add that the *Institutes of Manu* records the punishment to be meted out to manufacturers who add too great a weight to the textiles they produce. The following are said to be the best-known Indian sources of fuller’s-earth—Colgong in the Bhagalpur Division of Bengal; the Central Provinces; the district near Kolath in Bikanir, Dera Ghazi Khan and Multan in the Panjab. Holland says fuller’s-earth is mined in the Central Provinces and in Rajputana.

Fire-clays.—These clays are capable of resisting a very high temperature without fusing or fissuring. They should be as nearly as possible free from lime, iron or alkaline earths, which promote the fusion of silica as in glass-making. In Europe the best clays for this purpose are found below coal-seams, and in spite of the different age of the Indian coal-fields, the underlying clays are found to be available for the production of a fairly good fire-brick material. Fire-bricks are manufactured in considerable quantities by Messrs. Burn & Co. at Raniganj, the clay being obtained locally. Promising fire-clays are also found at Jhabalpur, at Jowai in Assam, and at the Chanda, Umaria and Gondwana coal-fields. It is probable that with proper manipulation some of the pottery clays, not hitherto used for the purpose, would afford perfectly refractory materials.

Pipe-clay. *Namam, kharra*, etc., so called in English from its being used for tobacco-pipes. It much resembles China-clay, but possesses more silica. Ball makes no mention of the existence of pipe-clay in India, but Moore (*Man. Trichinopoly*, 1878, 67) states that a fine bed of it occurs between Terani and Kárai. Pipe-clay has also been mentioned as a product of the Madras forests. *Cf. Madras Man. Admin.*, 1885, i., 313.] An anonymous correspondent of *The Madras Weekly Mail* (April 20, 1905) stated that the clay used in the ornamental pottery of Karigeri in North Arcot was a form of pipe-clay.

Pottery-clays.—The pottery-clays of India might be popularly assorted according to three degrees of purity, viz.:—(a) *kaolin*, China or porcelain clay; (b) ordinary white or glazed pottery clays; and (c) red or tile and flowerpot clays. The third has perhaps been sufficiently indicated above in connection with brick and tile clays, since most average good brick clays may be used for unglazed pottery. *Kaolin*, besides being employed for porcelain, is utilised in the paper and soap industries. It is sold in the form of large lumps of a white or yellowish-white
ceramic wares

colour. It fills up the pores of the paper and gives a smoother and more absorbent surface. [Cf. Cross and Bevan, *Paper-making*, 1900, 197.] It is formed by the gradual disintegration of felspar under the action of air and water, and consists essentially of a silicate of aluminium. Its quality depends upon its whiteness and freedom from the coarser micaceous particles. Although there is probably nowhere in India an occurrence of the finest porcelain-clay, such as that of the south-western counties of England, yet there are several districts where fine white clays exist and are utilised for pottery. In fact the chief districts where such clays occur are naturally more or less identical with the localities whence the Indian Art potteries are produced. The following brief statement may be useful:

Ceramic Ware.—There are three classes of pottery:—(a) Aboriginal work, (b) Hindu work, and (c) Muhammadan work. Ceremonial usage amongst the Hindus requires that pottery, whether polluted or not, shall be thrown away on certain specified occasions, so that there has arisen a large trade in a cheap material where artistic developments would be superfluous. So far as the production of this everyday domestic pottery is concerned, the potter will probably always hold an important position in village life. But even he is beginning to feel the stress of competition. Glazing is unnecessary unless the ware be meant to hold water, and since artistic ware has mainly been produced in the way of grain or pickle jars, painted or lacquered pottery is equally serviceable and infinitely cheaper than glazed ware. Indeed, with the exception of the few examples discovered in association with the Dravidians of South India and the fragments of old pottery found in the Charsada excavations near Peshawar, there is no reason to suppose that glazed earthenware vessels were at all used in India prior to the Muhammadan conquests. The former of the two exceptions possibly is suggestive of the origin of the apparently spontaneous art of glazing found at Vellore in North Arcot. Beyond the frontier of India, moreover, it has been recently shown by Stein (*Ancient Khotan*) that an advanced knowledge existed from perhaps the second century of our era. It is just possible, therefore, that the discoveries both in the south and north of India of old glazed pottery (and even of glass) indicate Buddhist rather than Hindu work. But that the glazed pottery of India, as generally accepted by European connoisseurs, began with the Muhammadan traffic in coloured tiles for mosques and tombs there can be no doubt. To this day the village potter (*kumhār*) is nearly always a Hindu, and he makes unglazed pottery, whilst the ceramic artist (*kuzagār, kashigār*) is ordinarily a Muhammadan (except in such rare and notable cases as that of the Hindu *kuzagār* of Delhi). Moreover the *kuzagār* often purchases from the village potter sun-dried vessels which he afterwards ornaments and fires. It is a matter of everyday knowledge that the glazed vessels of recent times, so eagerly purchased by visitors to India, are but special adaptations gladly pursued by the Indian craftsmen with the decadence of the demand for tiles. In any case all present-day glazed pottery in India (except perhaps the Vellore work) is Indo-Saracenic in design, is made by Muhammadans, and sold exclusively to Muhammadans or Christians. Mr. Hughes Buller and Mr. Gupte recently discovered a kiln and rude contrivance for making pottery in Baluchistan, which seemed to have been used for making glazed-ware, since fragments of such pottery were found near by. Mr. Buller is of opinion that the fragments in ques-
COAL

Trade in
Earthenware

Deterioration.

Import
Trade.

Contributing
Countries.

Receiving
Provinces.

Exports.

D.E.P.,
ii., 378-95.

Coal.

THE INDIAN CLAYS

tion are Persian in technique, a view supported by the circumstance that there are no records of an indigenous Indian glazing art in Baluchistan. The modern demand for cheap Indian work is rapidly causing a deterioration from the original tile models of former times. Fortunately the shapes of the unglazed and painted wares, platters, cooking-pots, water-jars, etc., are as yet uncontaminated by foreign demands and hence remain graceful and well worthy of study, alike by the antiquary and the artist.

[Cf. Birdwood, Indust. Arts Ind., 1884, 387-418; Mukharji, Art Manuf. Ind., 1888, 283-93; Journ. Ind. Art, 1885, Nos. 9 and 10; 1886, Nos. 12, 14, 16; 1887, Nos. 17, 19, 20; 1888, Nos. 23, 24; 1889, No. 25; 1890, No. 29; 1891, No. 30; 1892, Nos. 41, 42; 1894, No. 52; 1895, Nos. 55, 57, 58; 1897, No. 45; Monographs, Pottery and Glassware:—T. N. Mukharji, Bengal, 1895; Macaonochie, Bombay, 1895; Dobbs, United Prov., 1895; Taw Sein-Ko, Burma, 1894-5; Watt, Ind. Art at Delhi, 1903, 89-98, pl. 26 (a).]

Trade.—The value of the EARTHENWARE and PORCELAIN (excluding earthenware piping) imported in 1899-1900 was Rs. 19,90,369, but it rose in the succeeding years, until in 1903-4 it reached Rs. 28,00,038, and in 1906-7 Rs. 38,99,824. The United Kingdom usually supplies 50 per cent., whilst Belgium, Germany and the Straits Settlements contribute between them about 40 per cent. The chief receiving provinces in 1906-7 were Bengal, Bombay and Burma, which took respectively quantities valued at Rs. 14,22,977, Rs. 12,27,104, and Rs. 8,93,767. A small proportion (Rs. 2,58,929 in 1906-7) was re-exported and sent to Persia, Arabia, the United Kingdom, Turkey-in-Asia, East Africa, etc. EARTHENWARE PIPING (which is mentioned separately in official statistics) is imported from the United Kingdom, and in 1906-7 amounted to 31,347 cwt. (Rs. 2,16,808), most of it being received by Bombay. BRICKS AND TILES are imported by India, principally from the United Kingdom and into Bombay. Both in quantity and value the imports increased by more than 100 per cent. during the five years ending 1903-4. In the first year of that series they were in number 3,641,594, valued at Rs. 2,14,255, and in 1903-4 they were 7,135,872, valued at Rs. 5,16,610. Since then they have continued to increase to 14,922,191 (Rs. 10,64,560) in 1906-7. India also imports a small quantity of CLAY. The amount in 1906-7 was 56,889 cwt., valued at Rs. 96,557, and the country chiefly concerned may be said to be the United Kingdom, the supply being consigned to Bombay, Bengal and Burma.

The total value of Indian EARTHENWARE (except piping) exported in 1906-7 was only Rs. 44,709, consisting of certain small consignments from Madras, Bombay and Bengal to Ceylon and the United Kingdom. EARTHENWARE PIPING, not included in the above, is exported chiefly from Bengal to the Straits Settlements. The amount in 1906-7 was 7,690 cwt. (Rs. 34,368). The exports of Indian bricks and tiles go principally from Madras to Ceylon. In 1899-1900 they were valued at Rs. 68,797, and in 1906-7, Rs. 1,03,314.

D.E.P.,
ii., 378-95.

Coal.
BIRTH OF INDIAN COAL TRADE

1890 to 1904, etc. etc. The koyelah, koyala, kelo, kolsa, kari, simai-karri, boggu, sima boggu, iddallu, misu-e, midtu-ye, etc.

History.—Coal has doubtless been known to the Natives from time immemorial, but was neither mined nor traded in until sought out by the early European residents in India. Even at the present date it is little if at all used in the purely indigenous industries, and hardly ever employed for domestic purposes. But this state of affairs is perhaps little to be surprised at when it is recollected that the first licence to dig for coal in England was granted by Henry III. in 1239; it was then designated “sea-coal.” In 1396 the use of coal in London was prohibited, but in 1325 a trade had been organised between England and France in which coal was exported and grain imported. About this time also Newcastle became (account for its coal), and for a couple of centuries at least fleets of ships sailed from thence to supply London and the other ports of England, as also France, Holland and Germany. It would be beyond the scope of this article to follow the growth of the European knowledge in coal or to narrate the discovery of the other coal-deposits that finally overshadowed the supremacy of Newcastle. By 1776 we read that Sunderland, Blyth, Hartley, Durham and several other centres in both England and Scotland had commenced to export coal independently of Newcastle and of the charters granted to the original seat of the trade. It was only natural, therefore, that the European residents in India, in the middle of the 18th century, should have begun to think of a possible Indian supply of an article that had been proved of so great value in their home countries.

In 1774 Warren Hastings granted a mining license to two of the Company’s servants, namely Mr. Suetonius Grant Healy and Mr. John Sumner. The former gentleman, we learn, had discovered coal in “the districts of Bheerbhoom and Pachete.” Mr. Healy (son of the discoverer and original worker of the Bengal mines) tells the story of his father’s labours, in an article which will be found in the Journal of the Asiatic Society of Bengal (1842, xl., 811–35). Unfortunately the coal Healty produced was reported as being much inferior to that of England, and this circumstance, together with the indifference of Lord Cornwallis to measures calculated to develop the internal resources or promote the external commerce of India, rendered the enterprise a failure.

In 1777 Farquhar and Motte asked permission “to bore cannon and to cast shot and shell in the district of Jherria, lying between the rivers Dummuda and Burraker.” They gave as their reason for the selection of that locality that it “abounds in iron ore and is contiguous to the coal-mines of Messrs. Sumner & Healty.” Williamson (Wild Sports in the East, 1808, i., 7, 8) alludes to Indian coal, but remarks that the Company “finds it easier to send coal from England, as ballast, to their arsenals abroad, where quantities are occasionally used in fusing metals for casting ordnance.” But apparently about this very time the London Directors of the East India Company had actually complained of the heavy charges involved by the indents for the coal made by their Indian representatives, and they accordingly recommended an inquiry whether charcoal could not be substituted; and if not, they further recommended the transference of the ordnance works to England. The Earl of Minto was at the time Governor-General of India, and to his enlightened action may be attributed the birth of the present prosperous trade in coal. He directed that Indian coal should be submitted to actual tests by the military authorities in India. Col. Hardwicke accordingly performed experiments but reported once more very unfavourably (dated May 19, 1809), and the subject of coal for a time dropped out of notice. But in 1814 the Marquis of Hastings once more urged on the Military Board the desirability of ascertaining beyond doubt “whether the coal of India was of a quality calculated for the purpose of the forge.” His lordship announced that a fully qualified person would be appointed to examine the mines, who would be furnished with the necessary apparatus to make borings and who would for experimental purposes procure a supply of coal from such a depth as to ensure that it would represent the average quality. Previous experiments were thus discredited owing to the coal used having been obtained from the surface and therefore much deteriorated. By this time we hear of a Calcutta merchant having commenced to use Bengal coal, notwithstanding the unfavourable reports published by the Military Board. Coal was, in fact, being regularly conveyed by boat down the Damuda river to Calcutta, and it is therefore not to be wondered at that
COAL

History

Expert Report.

Indian used for burning Sylhet Lime.

First Indian Company, 1820.

Jute Mills.

Production in 1857–8.

Coal-mining Assured.

Rolling Stock Mines.

Raniganj.

Jherra.

Giridih.

Imports Shrinking.

Exports.

India’s Position in the World’s Supply.

Indian Coal the Cheapest in the World.

THE INDIAN COAL INDUSTRY

the Viceroy should have once more called for a thorough inquiry. Mr. Rupert Jones accordingly went from England on purpose to examine the Bengal coalfields, and his report (written in 1815) will be found in the Asiatic Researches (1833, xviii., 163-70). Needless to say this gave new life to the Indian mines and proved that indifference and obstruction to the use of a new material had more to say to the unfavourable opinions previously published than the actual inferiority of the coal—at least for many of the purposes for which English coal was being imported. But in passing it may be added that Mr. Jones himself did not realise the full value of his investigations. He foretold increased prosperity to Calcutta, through the coal he had discovered being a better and more economical fuel for burning the Sylhet limestone than the firewood then in use. Jones apparently knew little of the great revolution steam was destined to effect, nor of the imperative necessity of an abundant and cheap supply of coal for commercial and industrial prosperity.

Mr. Jones received an advance from Government of £4,000, on easy terms, to enable him to work the mines, but in 1820 he came utterly to grief. Fortunately a number of Calcutta firms stepped into the breach. The first regularly constituted Indian mine under European supervision and capital was opened in Bengal in 1820 (Raniganj mine). In 1839 the output was 36,000 tons. Still, little progress was made till the construction of the East Indian Railway in 1854 tapped the coalfields. But even then the progress was but slow until the jute mills of Calcutta had been started and the other directions of manufacturing skill originated, that gave vitality to the Eastern capital. Apparently 1857–8 was the first year of specially recorded production, when 293,443 tons were taken from the Indian mines and 92,983 tons imported. From that date the prosperity of coal-mining was assured. It became the direct expression of a rapidly expanding modern commerce. This may be briefly exemplified. In 1868 the output was 459,408 tons; in 1878, 923,494 tons; in 1898 4,608,196 tons; in 1904, 8,548,561 tons; and in 1906, 9,783,250 tons. Of these the Bengal mines supplied 88 per cent. [Cf. Moral and Mat. Prog. Ind., 1905–6, 114.] One of the difficulties experienced in this remarkable trade has been for the railways to keep pace in the supply of the rolling stock necessary. In 1885 there were 95 mines, of which 90 were in Bengal; in 1900 there were 286 coal-mines in operation, of which 271 were in Bengal; in 1906 there were 307, of which 274 were in Bengal. The number of mines only partially represents progress, on account of the tendency for small mines to be grouped together as a smaller number of large ones. The greatest development has taken place in the Raniganj field, owing to the collieries being only 120 to 140 miles from Calcutta. Jherra, some 40 miles more distant, has recently given evidence of having very likely permanently overtaken Raniganj. But no less vigorously have the Giridih fields been pushed forward. It can now be affirmed that India is rapidly approaching the state of being able to meet all her own wants for fuel. The imports have been shrinking steadily for years, and in 1903–4 were one-fourth of the quantity taken nine years previously. And of these imports Bombay—a province remote from the Indian mines—consumes by far the major portion, viz. 148,311 tons out of a total of 179,935 tons in 1905–6. England, Australia and Japan are the supplying countries. But a new trade has arisen, namely, in coal exported to Indian Ocean ports—a traffic that it would seem is instantly stimulated and permanently strengthened by the strikes and other accidental causes which in Europe and Japan tend to raise the price of coal. A vivid conception of the present magnitude and importance of the Indian coal industry may be had from the circumstance that in 1903 the output came to 7½ million tons, while the outputs of both Canada and Australia were each just under 7 million tons; and the Indian production has since risen to almost 10 million tons. But a still more significant fact may be added in conclusion, namely that Indian coal is the cheapest in the world. The average pitmouth price was in 1902, Rs. 2–12 (3s. 8d.) and in 1906 Rs. 2–15 (3s. 12 d.) per ton, while in the United States the corresponding average prices were 5s. 8½d.; in Australia 7s. 9d.; in the United Kingdom 8s. 2½d.; in Germany 8s. 10½d.; in Canada 9s. 3d.; and in New Zealand 10s. 6d. An interesting series of articles on “Dear Coal” will be found in The Textile Journal (May, July and December, 1900).

The annual reports, etc., of the Indian Mining Association and those of the Bengal Chamber of Commerce are usually of the greatest interest and value in setting forth the progress or the disabilities of the mining industry. But it
may be added that none of the early European travellers in India make any mention of coal, prior to the first decade of the 19th century. This is abundantly exemplified by the silence of Milburn (Or. Comm., 1813) and of Macpherson (Hist. Europ. Com. Ind., 1812), two authors who were certain to have had chapters on Indian coal and India’s requirements in coal had these been questions of public importance at the time in which they wrote.

OCCURRENCE AND DISTRIBUTION OF COAL IN INDIA.

Holland (Rev. Min. Prod. Ind., 1905, 1907) has furnished so comprehensive a statement of India’s coal resources that it is hardly necessary to do more than give an abstract of his opinions in order to bring the Dictionary up to date. He confines attention to the coalfields actually being worked or those likely to be worked in the near future. The particulars that follow in this chapter are, therefore, derived very largely from Holland’s instructive and practical Reviews:

“Most of the coal raised has been obtained from the Gondwana system of strata in Peninsular India, where the coal-mines, being nearer the coast and generally within touch of the main railway lines, have been developed more rapidly than those of the extra-Peninsular Cretaceous and Tertiary coal-beds.” The Gondwana mines furnished in 1906, 95-56 per cent. of the total supply. It may be useful to exhibit the chief groups of mines categorically:

(A) GONDWANA COALFIELDS.—1. Raniganj and Jharia in Bengal.—Raniganj was the first to be developed and formerly had the largest output, but since 1906 the lead has been taken by the Jharia mines farther west in the Damuda valley. These mines are tapped by the E.I.R. and by the B.N.R. systems. "The coal from the Raniganj field is mainly derived from seams in the highest beds of the Damuda series, the lowest, or Barakar stage, being less developed in the exposures along the northern margin of the field. In the Jharia field the converse is the case: the uppermost stage has yielded poor coal, whilst in the Barakar series there are some eighteen well defined seams of which the upper eight include enormous supplies of good coal. The two classes of coal present a well-marked and constant difference in the amount of moisture they contain: the older, Barakar, coals, both in the Raniganj field and in Jharia, contain on an average about 1 per cent. of moisture, whilst the average for the younger coal of the Raniganj series is 3-8 per cent. in the lower seams, and nearly 7 per cent. in the upper seams. There is a corresponding, but less marked, difference in the proportion of volatile hydrocarbons, which form a larger percentage of the younger coals than of those at lower stages in the Damuda series.”

2. Giridih in Bengal.—"The small patch of coal-bearing Gondwana rocks near Giridih is practically divided between the Bengal Coal and the East Indian Railway Companies. The chief wealth of the field is stored in a 15-foot seam of good steam and coking coal near the base of the Damuda series. It has been estimated that the remaining workable supplies probably do not exceed 77 million tons. [Cf. Saise, Giridih Coal Fields and Notes on Methods of Working, in Rec. Geol. Surv. Ind., 1894, xxvii., 86-100.]

3. Pench Valley in the Central Provinces.—An interesting development is the opening out of the Pench supplies. In 1905 the production was 1,104 tons, and in 1906, 32,102—in spite (adds Holland) of the imperfect railway facilities. This field is of special value to the mills of Bombay and the Deccan.
COAL
Indian Mines

THE INDIAN COAL INDUSTRY

Mohpani.

4. Mohpani in the Narsinghpur District of the Central Provinces. —This colliery has been worked since 1862 by the Nerudda Coal and Iron Company. It has made little progress, but a new area some two miles farther west has been discovered and operations commenced. Medlicott published in 1872 a paper entitled Notes on the Satpura Coal-basin that should be consulted regarding the coal of this area. More recently Mr. C. J. Dalby of the Bengal-Nagpur Railway submitted in 1892 a report on the Rampur Coalfield. Also Mr. G. F. Reader, Mining Specialist, published (Mem. Geol. Surv. Ind., 1901, xxxii.) a more detailed account of these fields.

Warora.

5. Warora in the Chanda District of the Central Provinces, and about 62 miles south of Nagpur, has been worked since 1871 by the State. About half the coal raised is taken by the G.I.P. Railway, the rest going to the cotton-mills and factories of the Central Provinces. This coal is liable to spontaneous combustion, and a large part of the field has been lost through fire. "The Warora colliery has been worked under distinctly greater natural difficulties than those usually met with in Bengal." "The returns for labour at Warora, notwithstanding the difficulties arising from water and liability to spontaneous combustion, show that the system of mining adopted permits of a satisfactory output per person employed, whilst the deaths due to accidents have been reduced to a low rate."

Another three or four years will probably see the end of the Warora colliery, but, with the extension of the Wardha Valley line southwards, the extensive deposits near Bellarpur will be opened up."
Prospecting operations have recently commenced on the known thick coal-seams in the Wun district, Berar. These coal-fields are fully described by Hughes. [Cf. Mem. Geol., l.c. xiii., 1.]

Singareni.

6. Singareni in the Nizam's Dominions. —"The great belt of Gondwana rocks near the north-west end of which Warora is situated stretches down the Godavari valley as far as Rajamundry, and at one or two places the equivalents of the coal-bearing Damuda series in Bengal are found cropping up from below the Upper Gondwana rocks. One of these occurrences near Yellandu in the Nizam's Dominions forms the coal-field well known by the name of Singareni. The principal seam of coal, some 5 to 6 feet thick, being worked at the Singareni colliery was discovered by the late Dr. W. King of the Geological Survey in 1872, but mining operations were not commenced until 1886." "Coal-mining at Singareni has been accompanied by a heavier loss of life by accidents than in the general run of Gondwana fields." The opinion seems upheld that for steam purposes Singareni coal is considerably inferior to Bengal coal and is not a coking coal. These circumstances would seem largely to account for the slow progress made with this coal in South India. The Reports of the Hyderabad (Deccan) Company, Ltd., afford useful particulars regarding the mine.

Umaria.

7. Umaria, Rewah State, Central India. —The Bilaspur-Katni Branch of the Bengal-Nagpur Railway passes through this small coalfield. "The quantity of workable coal in this field is estimated at about 24 million tons." "The four coal-seams being worked vary from 3 to 12 feet in thickness and dip about 4° to the north-east. The mines were opened in 1882 under the direction of Mr. T. W. H. Hughes of the Geological Survey and were controlled by Government until the 1st of January, 1900, when they were handed over to the Rewah State." Most of the

336

(B) CRETACEOUS AND TERTIARY COALFIELDS.—"The younger coals are nearly all of Cretaceous and Tertiary age, although some thin and poor seams of Upper Jurassic coal have been worked in Kach. The Cretaceous beds occur in the Khasia and Garo hills of Assam, where they are found in small basins resting on the Archaean schists and gneisses. The Cretaceous coals of Assam are generally distinguished by the inclusion in them of nests of fossil resin, and this character was noticed in the coal recently discovered to the north of Shillong."

"Coal of Tertiary age is found in Sind, Rajputana, Baluchistan and along the foothills of the Himalaya, further east in Assam, in Burma, and in the Andaman and Nicobar Islands. The most frequent occurrence is in association with nummulitic limestones, though the richest deposits, namely those in North-East Assam, are younger, probably Miocene in age. Of these extra-Peninsular fields, the only ones producing coal are of Tertiary age."

"On the whole, the younger coals, which are being worked in extra-Peninsular areas, differ from the Gondwana coals in containing a larger proportion of moisture and volatile hydrocarbons, and though as variable in composition as they are in thickness of seam, coals are obtained, as for instance in Assam, with a remarkably low percentage of ash, and having a high calorific value."

8. Makum in North-East Assam.—This is being worked by the Assam Railways and Trading Company, who commenced operations in 1881. "The collieries are connected by a metre-gauge railway with Dibrugarh on the Brahmaputra river, which, being navigable, forms both a market and a means of transport for the coal. The most valuable seams occur between the Tirap and Namdang streams, where, for a distance of about five miles, the seams vary from 15 to 75 feet in thickness. The average dip is 40°, but as the outcrops in many places are several hundred feet above the plains, facilities exist for working the coal by adit levels." "The coal has the reputation of being a good fuel, and forms an excellent coke."

9. Shwebo District in Burma.—Coal occurs in various parts of Burma. Within the past few years it has, for example, been definitely ascertained that in the Namnaw field (30 miles from the Mandalay-Lashio Railway) there are seams of lignitic coal 10 feet thick. [Cf. Jones, Notes on Coal, Upper Burma, in Rec. Geol. Surv. Ind., 1887, xx., 170–93; Hoeting, Upper Chindwin Coal-fields, 1890; Primrose, Rept. Prosp. Oper. in Tenasserim, 1891-2; Bose, Notes on Geol. Tenasserim Valley, in Rec. Geol. Surv. Ind., 1893, xxvi., 148–64; George Scott, Upper Burma Gaz., ii., pt. 1, 230–8; Nisbet, Burma Under Brit. Rule and Before, 1901, i., 389–92.]

10. Baluchistan.—Possibly the most important coal-deposits of the west are those in Baluchistan, where, however, the disturbed state of the rocks makes mining difficult, expensive and dangerous. The best mines are those of Sor (south-east of Quetta), the Bolan and Khost. From the last-mentioned mine the output in 1906 amounted to 32,500 tons.

11. Dandot in the Jhelum District of the Panjab.—The Dandot
plateau of the Salt Range. The only valuable seam varies in thickness from 18 to 39 inches and forms a basin under the nummulitic limestone. The mines have been worked by the North-Western Railway since 1884. [Cf. N.W.R., Ann Rept. Working Mines, 1896–1903.]

12. Bhaganwala.—At the eastern end of the Salt Range—a seam of variable thickness also worked by the N.W.R. [Cf. Baden-Powell, Ph. Prod., 1868, i., 27–34; Morris, Hazara Coal, 1889; La Touche, Bhaganwala Coal Fields, Rec. Geol. Surv. Ind., 1894, xxvii.]

13. Mianwali District, about two miles north of Kalabagh. This is classed as Jurassic coal, but so far regular mining has not been started. More promising Tertiary coal occurs at Maidan, 24 miles further west. [Cf. Simpson, Rept. on Coal, Is Khel, in Rec. Geol. Surv. Ind., 1904, xxxi.]

14. Kashmir.—The Jammu Coalfields—Tertiary; commenced to be worked in 1903. Washed and briquetted Ladda coal would be nearly as valuable as Bengal coal, but could not compete in price. [Cf. La Touche, l.c. xxi., 188; Simpson, Mem. Geol. Surv. Ind., 1904, xxxii.]

15. Bikanir in Rajputana.—A lignite of dark-brown colour, with included lumps of fossil resin, occurs in association with nummulitic rocks at Palana in the Bikanir State. In 1898 mining operations were commenced at a point where the seam was found to be 20 feet thick. “The physical characters of the natural fuel form a drawback to its use in locomotives, but experiments recently made are said to show that satisfactory briquettes can be made in which the proportion of moisture is reduced, and the fuel made less vulnerable to atmospheric action.” The proximity to railway demands seems likely to counterbalance the inferiority of this coal, of which the output in 1906 amounted to 32,372 tons.

WORKING OF MINES: Labour, etc.—Holland may be still further placed under contribution: “Coal-mining in India, from the point of view of labour, is quite adequate of all other forms of mining. The number of persons employed daily has averaged 84,805 for the years 1898 to 1903.” During 1904 the number rose to 92,740, of which 75,749 were employed at the Bengal mines. The Bengal coal-mines thus took 81.7 per cent. of the total labour supply. “It will not be surprising to those who know the habits of the Indian coal-miner to learn that the output per person employed is lower than in any other part of the British Empire except in Cape Colony, where cheap Native labour is largely employed. During the years 1901 and 1902 the outputs of coal per person employed in Indian mines were respectively 70 and 75 tons, whilst for the rest of the British Empire the corresponding figures were 281 and 285 tons.” “An important consideration, naturally, in every mining community is the risk of life involved in the occupation. As far as coal-mining is concerned in India, the industry, so far as it has progressed, has shown not only a very low death-rate from isolated accidents, but also a noteworthy freedom from disasters, which in European countries have done more perhaps than statistics to force special legislation for the protection of workers in ‘dangerous’ occupations.” “The average death-rate from such accidents has been 0.88 per thousand employed, while the average for the rest of the British Empire comes to 1.54 per thousand—in the U.K. 1.24.” But if the death-rate be expressed to the tonnage of coal raised, India is shown up in a much less favourable light. New Zealand heads the list of successful mining from this standpoint with 1.47 persons killed per one million tons of coal raised in 1902; Queensland 1.99; Nova
COMPOSITION OF INDIAN COAL

Scotia 4·35; United Kingdom 4·42; Victoria 4·44; India 10·23; Transvaal 14·47; New South Wales 17·67; Cape Colony 24·16; Natal 26·99; and British Columbia 99·48. India is thus by no means the country in the British Empire that shows the worst result.

“The almost universal practice in Indian coal-mines is to extract the coal on the system variously known as the “bord and pillar,” “post and stall,” or “stoop and room” system. Although this system in Europe is fast being superseded by the more economical “long-wall” method, yet, owing to the thickness of most of the Indian seams, it is not easy to devise any more suitable plan of working. It is undoubtedly wasteful, for the pillars form from 25 to 65 per cent. of the available coal, and at the present time except in certain mines, where local-trained labour and efficient supervision are possible, their extraction is not even contemplated.”

Holland points out that the strong roof in the Gondwana rocks, the freedom from disturbances, and the comparative lightness of the overburden are features of strength and safety not fully appreciated by those who have gained their experience in countries where these advantages do not prevail. In the Giridih coalfield the system of working thick seams there pursued, which is a modification of the South Staffordshire method suggested by Mr. T. H. Ward, allows of 90 per cent. of the coal being removed. Adamson (Trans. Min. and Mech. Engin., 1903, lii, 202) has described fully the “working of a thick coal-seam in Bengal.” “In the Makum field a highly inclined seam, 75 feet thick, is worked also on a modification of the South Staffordshire system of ‘square work.’

The coal is removed in two, or sometimes three sections, the top section being removed first, and a parting of stone and coal being left untouched between each pair of sections. In the Dandot and Khost mines, thin seams are worked in one operation, on a modified ‘long-wall’ system.”

PROPERTIES AND USES.—It is difficult, if not impossible, to give a general statement of the properties of Indian coal: the two great geological groups already established differ in almost every essential, and, moreover, the coal varies not only between mines within the same formation but even within the seams of one and the same mine. Averages are therefore often very misleading. The late Mr. H. B. Medlicott accordingly very rightly observed, “In both regions the quality of the coal varies much, as in all coal-measures; but the best in both reaches a very high standard, almost if not quite up to that of high-class English coals. In the Gondwana (Bengal) coal the general defect is an excess of ash, and also in some an excess of moisture; while in the Tertiary (Assam) coal the percentage of ash is low, but that of the volatile combustible matter high, producing a lighter fuel.” Medlicott then furnished a table to show the results of various chemical examinations, and, as little of material importance has since been learned, it may be here reproduced:

<table>
<thead>
<tr>
<th>BENGAL</th>
<th>ASSAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed Carbon</td>
<td>Average: 53·20 / Best: 66·52</td>
</tr>
<tr>
<td>Volatile exclusive of moisture</td>
<td>Average: 25·83 / Best: 28·12</td>
</tr>
<tr>
<td>Moisture</td>
<td>Average: 4·8 / Best: 0·96</td>
</tr>
<tr>
<td>Ash</td>
<td>Average: 16·17 / Best: 4·40</td>
</tr>
</tbody>
</table>

| | 100·00 | 100·00 | 100·00 | 100·0 |

339
THE INDIAN COAL INDUSTRY

These average results, so far as averages go, will be found sufficiently near the truth for all practical purposes.

The moisture and the ash are the chief detractive features of coal. "Dr. Saise (Rec. Geol. Surv. Ind., 1904, xxxii., 104–7) calls attention, however, to the remarkably constant differences in the percentages of moisture held by coals from the different geological horizons in the fields. In the case of the Barakar stage, which is the lowest in the series, the moisture amounts to only 1 per cent., while in the lower seams of the Raniganj stage it averages 3·81 and in the upper seams 6·86 per cent. There is a parallel but less pronounced variation in the amount of volatile hydrocarbons: in coal from the Barakar stage the average is 26·57 per cent.; in the lower seams of the Raniganj stage it is 31·70, and in the upper seams 32·22 per cent."

In the Records of the Geological Survey of India (1904, xxxi., 237-9) will be found certain results of the coal and coke assays made by Mr. E. P. Martin and Prof. H. Louis at the instance of the Right Hon. Sir E. Cassel, on carefully procured samples from the Jherria and Raniganj fields. It is explained that the samples reported on had been taken from across the entire working face of the seam, and were not picked from a promiscuous pile at the pit mouth or taken from a particular part of the seam. Space cannot be afforded to republish the tables in the original form in which they appeared, but the following averages of the returns may be here given:—

<table>
<thead>
<tr>
<th>COAL</th>
<th>Fixed Carbon</th>
<th>Volatile Matter</th>
<th>Sulphur</th>
<th>Ash</th>
<th>Moisture</th>
<th>Lb. of Water evap. by 1 lb. of Coal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jherria Field (12 samples)</td>
<td>60·5</td>
<td>22·0</td>
<td>0·55</td>
<td>16·49</td>
<td>1·0</td>
<td>12·71</td>
</tr>
<tr>
<td>Raniganj (4 samples)</td>
<td>52·31</td>
<td>31·43</td>
<td>0·47</td>
<td>14·10</td>
<td>1·68</td>
<td>12·88</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COKE</th>
<th>Carbon</th>
<th>Sulphur</th>
<th>Phosphorus</th>
<th>Ash</th>
<th>Moisture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jherria Coke (9 samples)</td>
<td>75·16</td>
<td>0·65</td>
<td>0·17</td>
<td>24·64</td>
<td>0·48</td>
</tr>
</tbody>
</table>

Commenting on these results, Holland observes: "The beds in which the coal is now being mined in the Jherria field were long ago correlated by the Geological Survey with the Barakar series of the Raniganj coal-field, and it is interesting to notice that the low percentage of moisture recorded by Saise in the coal of the Barakar series in the Raniganj field is characteristic also of the Barakar coal in the Jherria field. In the case of the Barakar coal from the Raniganj field the moisture amounted on an average to 1·0 per cent., whilst in the case of these Jherria coals the average for moisture is 0·90 per cent."

A comprehensive report on the composition and quality of Indian coals, by Dunstan, will be found in the Records of the Geological Survey of India (l.c. 1906), where complete analyses of coal from all fields above mentioned (excepting those recently opened) are recorded.

In a recent practical experiment conducted with Seebore coal at the National Jute Mills, Calcutta, by Mr. F. Grover of Leeds, it was found that that particular coal would evaporate 7·97 lb. of water, equivalent,
THE INDIAN COAL INDUSTRY

Patent Fuel during the years 1897–8 to 1906–7 (including Government stores):

<table>
<thead>
<tr>
<th>Year</th>
<th>Imports in Tons.</th>
<th>Exports in Tons.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1897–8</td>
<td>276,407</td>
<td>213,146</td>
</tr>
<tr>
<td>1898–9</td>
<td>379,225</td>
<td>327,207</td>
</tr>
<tr>
<td>1899–1900</td>
<td>481,190</td>
<td>304,887</td>
</tr>
<tr>
<td>1900–1</td>
<td>142,467</td>
<td>542,023</td>
</tr>
<tr>
<td>1901–2</td>
<td>285,786</td>
<td>525,047</td>
</tr>
<tr>
<td>1902–3</td>
<td>228,562</td>
<td>431,801</td>
</tr>
<tr>
<td>1903–4</td>
<td>206,829</td>
<td>493,070</td>
</tr>
<tr>
<td>1904–5</td>
<td>275,205</td>
<td>594,251</td>
</tr>
<tr>
<td>1905–6</td>
<td>186,911</td>
<td>837,251</td>
</tr>
<tr>
<td>1906–7</td>
<td>262,286</td>
<td>940,054</td>
</tr>
<tr>
<td>Average</td>
<td>272,486</td>
<td>520,873</td>
</tr>
</tbody>
</table>

Coke to Coal.
In these returns each ton of coke has been counted as 1½ tons of coal.
It has been urged that the above figures are unimportant when contrasted with present production. That may be quite true, but only so long as it is recollected that the imports are now just one-fourth the quantity of those in 1888–9 and that the exports have now (1906–7) exceeded the transactions of the record year of imports. As illustrative of the normal direction of the foreign traffic, it may be explained that by far the major portion of the imports comes from the United Kingdom. The analysis of the total supply in 1906–7 would be as follows:—from United Kingdom 227,158 tons; from Japan 4,505 tons; from Australia 25,863 tons, and from all other countries the balance. The receiving province is Bombay, which in 1906–7 took 220,751 tons out of the total (262,286 tons). Of the exports, Ceylon and the Straits Settlements are the most important foreign receiving countries. Out of the total exports in 1906–7 Ceylon took 404,149 tons and the Straits 293,788 tons, and these figures approximately represent the relative demands of the countries named during the past five years. Practically the whole of the exports are made from the port of Calcutta, which being near the Bengal fields is the natural centre of distribution.

To dream of a future of greatly expanded foreign export of coal from India does not necessarily involve the acceptance of a literal fulfilment of Horace Walpole’s reputed prophecy that “England will be some day conquered by New England or Bengal.” An export trade has become an established fact and one of great possibilities. His Excellency Lord Curzon, after inspecting a portion of the Jhuria Coalfield, addressed a company of gentlemen interested in the coal-mining industry on January 22, 1903. Speaking of the foreign trade, his lordship said:—“Indian coal can hardly be expected to get beyond Suez on the west or Singapore on the east. At those points you come up against English coal on the one side and Japanese coal on the other. But I wish to point out that there is a pretty extensive market between, and I think that Indian coal should make a most determined effort to capture it.”

Coasting Trade.—The foreign exports represent, however (on an average) but one-fourth the total exports by sea from Calcutta. The other port towns of India itself draw very largely on Bengal for coal. Bombay is by far the most important receiving port: in 1905, 1,067,779 tons were consigned to the western capital. Then comes Rangoon, which in 1905 took 361,572 tons of Bengal coal; Karachi, 343,406; Madras,
LOCAL TRANSACTIONS

199,425; Goa, 21,228 tons, etc. It is by seizing this interprovincial trade that the Bengal mines have so effectually curtailed the foreign imports.

Rail-borne Traffic.—But it must not be forgotten that the figures quoted are neither the total exports from the Bengal mines nor the total receipts of the towns in question. Large quantities are carried by rail and river, and of course from all the other mines besides those of Bengal. The figures reviewed are alone those of the traffic by sea. The total transactions by rail in 1906–7 came to 7,648,688 tons. The corresponding returns for 1899–1900 were 3,921,623 tons. Calcutta drained in 1906–7, 5,353,013 tons, all but 1,868 tons being from the Bengal mines. The United Provinces of Agra and Oudh in the same year received 688,507 tons, chiefly from Bengal. This represents the manufacturing enterprise of Cawnpore mainly. Bombay Presidency obtained Bengal or foreign coal from Bombay town, but over and above fairly large quantities from the Nizam’s Dominions, the Central Provinces, Bengal and Rajputana. Madras Presidency procured its coal from the Nizam’s Dominions and the Madras ports (and therefore very largely Bengal coal). Lastly Mysore State drew on the Madras ports, and consequently consumed Bengal coal chiefly. The bulk of these rail-borne transactions, it may be presumed, are concerned with the internal industries, since the railways derive their supplies direct from the mines, which are often owned and worked by the railway companies.

OUTPUT OF THE INDIAN MINES.—It may suffice the purposes of this abstract of information regarding the location, extent and prosperity of the Indian mines to furnish a collective statement of the production for all India:

<table>
<thead>
<tr>
<th>YEAR</th>
<th>ASSAM</th>
<th>BENGAL</th>
<th>BURMA</th>
<th>CENTRAL INDIA</th>
<th>CENTRAL PROV.</th>
<th>HYDERAB.</th>
<th>PANJAB AND KASHMIR</th>
<th>RAJPUTANA</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1898</td>
<td>200,329</td>
<td>13,372</td>
<td>5,622,090</td>
<td>6,975</td>
<td>134,726</td>
<td>149,709</td>
<td>394,622</td>
<td>83,682</td>
<td>511</td>
</tr>
<tr>
<td>1899</td>
<td>229,627</td>
<td>15,822</td>
<td>4,035,263</td>
<td>8,105</td>
<td>164,569</td>
<td>156,576</td>
<td>401,216</td>
<td>81,833</td>
<td>4,248</td>
</tr>
<tr>
<td>1900</td>
<td>216,736</td>
<td>23,281</td>
<td>4,978,492</td>
<td>10,228</td>
<td>164,489</td>
<td>172,842</td>
<td>469,291</td>
<td>74,083</td>
<td>9,250</td>
</tr>
<tr>
<td>1901</td>
<td>254,100</td>
<td>24,656</td>
<td>8,487,385</td>
<td>12,466</td>
<td>164,582</td>
<td>191,516</td>
<td>421,218</td>
<td>67,730</td>
<td>12,994</td>
</tr>
<tr>
<td>1902</td>
<td>221,066</td>
<td>23,889</td>
<td>6,250,236</td>
<td>13,592</td>
<td>171,558</td>
<td>194,881</td>
<td>435,424</td>
<td>56,311</td>
<td>16,563</td>
</tr>
<tr>
<td>1903</td>
<td>239,328</td>
<td>46,909</td>
<td>6,561,212</td>
<td>9,506</td>
<td>193,277</td>
<td>159,154</td>
<td>562,733</td>
<td>44,705</td>
<td>21,764</td>
</tr>
<tr>
<td>1904</td>
<td>206,765</td>
<td>49,867</td>
<td>7,063,680</td>
<td>1,105</td>
<td>185,774</td>
<td>139,027</td>
<td>419,346</td>
<td>45,564</td>
<td>45,078</td>
</tr>
<tr>
<td>1905</td>
<td>217,965</td>
<td>41,725</td>
<td>7,234,105</td>
<td>1,095</td>
<td>157,701</td>
<td>147,203</td>
<td>454,294</td>
<td>62,622</td>
<td>42,964</td>
</tr>
<tr>
<td>1906</td>
<td>285,490</td>
<td>42,164</td>
<td>8,617,829</td>
<td>1,222</td>
<td>170,292</td>
<td>92,848</td>
<td>467,923</td>
<td>72,113</td>
<td>32,372</td>
</tr>
</tbody>
</table>

With a view to supply the names of the chief mines, to exhibit their classification both geologically and geographically and to demonstrate their output, the following further statement may be given:

Output of the Gondwana Coalfields for the Years 1901–6.

<table>
<thead>
<tr>
<th>Coalfield</th>
<th>1901</th>
<th>1902</th>
<th>1903</th>
<th>1904</th>
<th>1905</th>
<th>1906</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bengal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daitonganj</td>
<td>3,881</td>
<td>19,352</td>
<td>33,557</td>
<td>50,517</td>
<td>71,294</td>
<td>87,768</td>
</tr>
<tr>
<td>Giridih</td>
<td>694,806</td>
<td>776,656</td>
<td>766,871</td>
<td>773,128</td>
<td>829,271</td>
<td>803,321</td>
</tr>
<tr>
<td>Jharia</td>
<td>1,946,763</td>
<td>2,420,786</td>
<td>2,493,729</td>
<td>2,889,504</td>
<td>3,070,588</td>
<td>4,076,591</td>
</tr>
<tr>
<td>Rajmahal</td>
<td>436</td>
<td>219</td>
<td>335</td>
<td>274</td>
<td>414</td>
<td>577</td>
</tr>
<tr>
<td>Raniganj</td>
<td>2,841,699</td>
<td>3,042,223</td>
<td>3,066,720</td>
<td>3,350,257</td>
<td>3,262,536</td>
<td>3,650,563</td>
</tr>
<tr>
<td>Central India</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Umaria and Johilla</td>
<td>164,362</td>
<td>171,538</td>
<td>193,277</td>
<td>185,774</td>
<td>157,701</td>
<td>170,292</td>
</tr>
</tbody>
</table>

Classification of Mines.
The Indian Coal Industry

Output of the Gondwana Coalfields for the Years 1901-6—continued.

<table>
<thead>
<tr>
<th>Coalfield</th>
<th>1901.</th>
<th>1902.</th>
<th>1903.</th>
<th>1904.</th>
<th>1905.</th>
<th>1906.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central Prov.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bellarpur</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>90</td>
<td>148</td>
<td>916</td>
</tr>
<tr>
<td>Pench Valley</td>
<td>—</td>
<td>—</td>
<td>88</td>
<td>—</td>
<td>1,104</td>
<td>32,102</td>
</tr>
<tr>
<td>Mohpani</td>
<td>43,046</td>
<td>43,645</td>
<td>31,443</td>
<td>26,618</td>
<td>22,998</td>
<td>27,503</td>
</tr>
<tr>
<td>Warora</td>
<td>148,470</td>
<td>153,336</td>
<td>127,623</td>
<td>112,319</td>
<td>123,015</td>
<td>32,327</td>
</tr>
<tr>
<td>Hyderabad</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Singareni</td>
<td>421,218</td>
<td>455,424</td>
<td>362,733</td>
<td>419,546</td>
<td>454,294</td>
<td>467,924</td>
</tr>
<tr>
<td>Total of Gondwana Beds</td>
<td>6,264,681</td>
<td>7,083,179</td>
<td>7,076,376</td>
<td>7,808,027</td>
<td>7,993,363</td>
<td>9,348,884</td>
</tr>
</tbody>
</table>

Output of the Cretaceous and Tertiary Coalfields for 1901-6.

<table>
<thead>
<tr>
<th>Coalfield</th>
<th>1901.</th>
<th>1902.</th>
<th>1903.</th>
<th>1904.</th>
<th>1905.</th>
<th>1906.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assam</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Makum</td>
<td>254,100</td>
<td>220,640</td>
<td>239,328</td>
<td>266,265</td>
<td>276,577</td>
<td>285,402</td>
</tr>
<tr>
<td>Smaller Fields</td>
<td>—</td>
<td>456</td>
<td>—</td>
<td>500</td>
<td>488</td>
<td>88</td>
</tr>
<tr>
<td>Baluchistan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Khost</td>
<td>18,431</td>
<td>25,982</td>
<td>36,444</td>
<td>38,574</td>
<td>34,140</td>
<td>32,500</td>
</tr>
<tr>
<td>Sor Range and</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mach</td>
<td>6,223</td>
<td>7,907</td>
<td>10,465</td>
<td>11,293</td>
<td>7,585</td>
<td>9,664</td>
</tr>
<tr>
<td>Burma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shwebo</td>
<td>12,466</td>
<td>13,502</td>
<td>9,306</td>
<td>1,105</td>
<td>—</td>
<td>1,222</td>
</tr>
<tr>
<td>Upper Chindwin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kashmir</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lachka</td>
<td>—</td>
<td>1,138</td>
<td>990</td>
<td>270</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Punjab</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dandot (Salt</td>
<td>67,730</td>
<td>55,373</td>
<td>43,704</td>
<td>45,258</td>
<td>61,618</td>
<td>57,438</td>
</tr>
<tr>
<td>Range</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>336</td>
<td>715</td>
<td>36</td>
</tr>
<tr>
<td>Attock</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>289</td>
<td>15,671</td>
</tr>
<tr>
<td>Shahpur</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Bajputana</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bikanir</td>
<td>12,094</td>
<td>16,503</td>
<td>21,764</td>
<td>45,078</td>
<td>42,964</td>
<td>32,372</td>
</tr>
<tr>
<td>Total of Tertiary Beds</td>
<td>371,046</td>
<td>341,301</td>
<td>362,010</td>
<td>408,679</td>
<td>424,376</td>
<td>434,367</td>
</tr>
</tbody>
</table>

Grand Total of Indian Coal

- **Indian Gas-works**
- **Coal-gas:** Coal-tar.—It is exceedingly difficult to obtain information regarding the gas-works of India. In the *Financial and Commercial Statistics* published by the Government of India for 1904 (more recent figures are not available), mention is made of two gas-works, one in Calcutta, the other in Bombay. These gave employment to 581 persons. It is believed there are other gas-works here and there all over the country, but mostly of a private nature, and therefore not returned under “Larger Industries.” It is understood also that English coal is largely, if not exclusively, employed in gas-making, and the by-products of these works are doubtless disposed of but are not worked up to the extent customary in Europe. The coals most suited are coking coals that burn with a long flame.

In the dry distillation of coal and in the manufacture of illuminating gas, volatile products are obtained that condense and separate into (a) a watery liquid and (b) a tarry mass. The former is one of the chief sources of ammonia and its salts (see *Alkalis*, p. 48), and the latter constitutes coal-tar. (For *Wood-Tar*, see *Pinus*, p. 890.) The average results with good coal are:—gas 16.6 per cent.; ammoniacal liquor 14.1 per cent.; tar 5.3 per
COAL-TAR COLOURS

cent., and coke 64 per cent. From coal-tar may be prepared benzene
(the commercial benzol), naphthalene, anthracene and phenol, also pitch.
Briefly it may be said that benzene can be converted into aniline,
naphthalene into indigotin (indigo), anthracene into alizarine, and phenol
into carboacetic acid. The reader will find numerous technical works that deal
with these substances and their manufacture. [Cf. Blount and Bloxam,
Chem. for Engin. and Manuf., 1900, 55–87; Rawson, Gardner and Lay-
cock, Dict. Dyes, Mordants, etc., 1901, 93–110.]

The coal-tar colours may be spoken of as discovered by Dr. (the late
Sir) W. H. Perkin in 1856. He was then engaged in a study of the syn-
thetic production of quinine, when he noticed that aniline on being oxidised
gave a colouring matter. This he produced separately and gave to the trade
under the name of “Mauve.” This was the first of the long series of
colours destined in a remarkably short time to revolutionise the tinc-
torial industries of the world—the Aniline and Alizarine Colours. The
influence of these modern mineral dyes has been more destructive to the
tinctorial and textile industries of India than is commonly supposed.
They have depraved the artistic feelings of the people, and demoralised
many of the indigenous arts. But it doubtless can be upheld that the
advances of modern tinctorial science have, in their ultimate issues, been
in reality more constructive than destructive. The majority of the Indian
vegetable dyes are fleeting, especially the yellows and greens. The best
colours are the reds and blues. All Indian dyes are relatively expensive
and troublesome, and one of the most imminent modern dangers lies in
the fact that there are good and bad, cheap and dear, fast and fleeting
qualities of the coal-tar dyes. It has been in fact computed that there
are at present about 2,000 distinct colours of this kind offered for practical
use, the manufacturers of which are often prepared to send expert dyers
to the workshops of their customers in order to instruct the operatives
in the technicalities of the dyes they sell. Recently it has moreover been
proposed that a “key-board” of colours should be established, with fixed
numbers for each shade, so that the buyers of Indian goods may be able
to dictate the colours to be used. This may be desirable for certain com-
mercial transactions, but with the art crafts it is likely to prove pernicious.
All the famed natural dyes and tinctorial combinations of India have been
already imitated and their vernacular names given to the fabricated
coal-tar preparations (e.g. Peori dye, p.765), so that nothing is left undone
that could expedite the complete overthrow of the indigenous crafts. This
statement is abundantly upheld by the returns of the imports. The
Anilines and Alizarines received by India were in 1876–7 valued at
Rs. 4,60,266; in 1886–7 they were Rs. 10,08,034; in 1896–7 Rs. 60,63,256;
in 1903–4 Rs. 82,67,010; in 1905–6 a slight decrease, namely to
Rs. 75,71,314; and in 1906–7, Rs. 74,92,704. In another article (under
Indigofera, p. 683) mention will be found of the progress in synthetical
production of indigo.

COAL: Coke.—An inferior quality of coke is obtained as a by-
product of the gas-works. It should not contain more than 10 per cent.
ash; it is useful for burning cement and lime, or for domestic purposes.
When coal is carbonised in ovens for the express purpose of producing
coke, larger quantities are used than during gas-making. Coke is the
main product, not the by-product. The coke is therefore superior because
it has a higher calorific value. Caking coals are those best suited for

345
COAL

Coke

Manufacture.

Two Qualities.

Improved Methods.

Backwardness of India.

Loss of Nitrogen.

Sulphate of Ammonia.

Recovery-ovens.

Sulphur.

Literature of Coke.

THE INDIAN COAL INDUSTRY

coking because they form a compact coherent coke, but mixtures of caking and non-caking coal can be successfully carbonised. [Cf. Blount and Bloxam, l.c. 83.]

For many years past the Raniganj, Jherria and Giridih mines have manufactured coke. Their output was in 1902 returned at 128,910 tons, of which Raniganj produced 86,000 tons. Coke-making is a most important industry, and one in which the future will doubtless record much progress. It means the profitable utilisation of coal waste, and the accompanying prosperity of the metallurgical industries. There are two qualities, "hard" and "soft." Ward (Rec. Geol. Surv. Ind., 1904, xxxi., 92 et seq.) has recently published an interesting paper in which he urges the necessity of introducing improved methods of manufacture of coke with a view to recover the valuable by-products presently being wasted. Commenting upon this paper, Holland has explained that the backwardness of India in this matter proceeds from the limited demand for coke for metallurgical purposes. "At present about 300,000 tons only of Indian coal are converted annually into coke, though a demand will naturally increase with the development of metallurgical industries. Even as matters stand at present Mr. Ward has shown that there is good ground for assuming that the additional outlay necessary for closed ovens of the 'recovery' as well as the 'non-recovery' type would be repaid. Assuming that the coal used for coke-making in India contains on an average 0·75 per cent. of available nitrogen, the present system of manufacture in open ovens means an annual loss of 2,250 tons of nitrogen, sufficient that is for the manufacture of 10,613 tons of sulphate of ammonia, which at £13 a ton is worth £137,969 or more than 20½ lakhs of rupees." As showing the full value of this contention it may be mentioned that it has been ascertained that Java imported in 1901, 21,700 tons, and in 1902, 23,400 tons, of sulphate of ammonia to be used as a sugar fertiliser.

Experiments recently made on a large scale in Germany and America have confirmed the conclusions referred to above with regard to the suitability of Bengal coal for the recovery of ammoniacal by-products, and arrangements are now well advanced for the erection of recovery-ovens on the Giridih, Raniganj and Jherria fields. With a view to improving the local market for the products, experiments are being conducted by the Agricultural Department to test the suitability of ammonium sulphate for Indian sugar-cane and other crops, whilst to meet the probable demand for sulphur the Geological Survey has organised prospecting operations on a large scale in connection with the copper sulphide deposits known to occur within easy distance of the coalfields in Bengal.

But to conclude these remarks on coke, it may be observed that so much has been written on the subject that to give even the more useful references would occupy much space. The Journal of the Society of Chemical Industry teems with descriptions of methods, apparatus and processes in all countries. Similarly, innumerable passages occur in these journals on the distillation of coal; on gas-making; on the gaseous products of coal; on the relation of petroleum to the hydrocarbons of coal; on the influence of lime on coal; on the determination of the nitrogen in coal; on coal-tar; on ammonia, etc., etc., subjects intimately associated with the future of the Indian coal and coke supplies. [Cf. Weeks, Man. of Coke, 1892.]
COCCUS CACTI, Linn. ; Milburn, Or. Comm., 1813, ii., 208 ;
Proc. Board Agri. Madras, Nov. 18, 1895, COCCIDE. The Cochineal-insect, Scharlach-worm, kirmdána, kirmaz, kirand, kirm, etc. A Scale Insect native of Central and South America, Mexico, Guatemala, etc., and distributed by cultivation to the West Indies, Tenerife, the Canary Islands, Algeria, to some extent even to Spain and also to Java, India, etc.

There are said to be two forms or qualities of this insect, the grana fina and grana sylvestris. The former is generally spoken of as the cultivated and the latter as the wild cochineal. The cultivated insect is both larger and more valuable than the wild, but whether these are distinct species or only races of the same insect cannot even now be said to have been definitely settled. The grana fina is reported to be a native of Mexico, whilst the grana sylvestris comes from South America. As against all this confusion only two certain facts can be set, the first being that recent and properly authenticated attempts to cultivate the true grana fina in India have utterly failed; the second that on three occasions a Cocueus (possibly grana sylvestris) has, so to speak, broken loose in India and utterly destroyed the Opuntia throughout large tracts of the country.

The Cochineal insect was discovered by the Spaniards in Mexico in 1518 and made known to Europe in 1523, but it was not until 1703 that Leeuwenhoek exposed the error of regarding the insect as a seed (grana). It is just possible that the Portuguese may have attempted to introduce it into India in the 17th century, since in 1786 Dr. Anderson of Madras sent to Sir Joseph Banks specimens of a dye-yielding Cocueus which may have been a form of cochineal; and this seems to have determined the East India Company to endeavour to introduce the true insect. Accordingly in 1785 Captain Neilson (Royle, Prod. Res. Ind., 1840, 60) brought from Brazil some Opuntia leaves with the insects still adhering. This was apparently, however, the grana sylvestris. But, as already stated, there is no knowledge of the acclimatisation of the grana fina in India. I may express my indebtedness to Major D. G. Crawford, I.M.S., for having called my attention to a passage in Seton Karr’s Selections from the Calcutta Gazetteer (ii., 602) —

"Nov. 10th, 1796. Rishra advertises for sale ‘that pleasant and well-known villa of Rissura, about 50 bighas of ground and 120 bighas of Nepaulry, fully planted and now ready to receive the insect.’ The well-known villa may have been Warren Hastings’ house at Rishra.” It is not known whether a purchaser was ever found, but there is no doubt that about the time indicated, Indian public opinion was greatly concerned with the prospect of a satisfactory acclimatisation of the true cochineal. The chemical achievements of subsequent years completely obliterates, however, all interest in the dye, and Rishra is no more a popular resort but a jungle of Opuntia and other weeds. [Cf. F. Brandt, Cult. of Silk, résumé from Rec. Madras Govt. and Board of Rev., 1871, 2 (Cochineal) 347
GOSSYPIUM
OBTUSIFOLIUM
Indian Wild Cotton

could be called a high-grade kahrami, his nearest approach to that being a specimen that might be described as the wapraia cotton of to-day.

To conclude this account of the forms of G. Sankiing, it may have been observed that I have not attempted to describe the races that might be mentioned as examples of each of the great groups, Xadum, Basi, Ruki and Manlayana. But it is next to impossible to furnish descriptions that would be intelligible to persons who have not a personal acquaintance with the living plants. To the cultivators of India they are, however, often of considerable value. Into one or other of the varieties of G. Sankiing have to be placed all the yellow-flowered perennial cottons with thick leathery, broad, five-lobed, imperfectly cordate leaves, having three glands and large ovate white, thick-toothed bracts.

A shrubby very ramous plant with small leaves, having three, more rarely five, obtuse entire lobes, stipules falcate; bracteoles entire; capsule ovate, cells 3-seeded; seeds free, clothed with firmly adhering short greenish-grey down, under a small portion of ash-coloured wool. A native of Ceylon, but not cultivated. Flowered during the rains and cold season in the Botanic Gardens at Calcutta, where it was cultivated from seed obtained from Ceylon of a plant reported to be there wild.

The above, very slightly abbreviated, is Roxburgh’s original account of this species. The additional information available may be said to consist of a manuscript coloured drawing made under Roxburgh’s supervision and named by him, the original of which is in the Calcutta Herbarium, and an exact copy in the Royal Herbarium, Kew. It is, however, the plant called G. herbaceum by most writers who have described the cottons of India and Africa, and is the G. hirsutum, Linn. Herb., but not of Linn., Sp. Pl. Roxburgh was apparently not aware that it was a wild plant in Khandesh and Gujarat, nor that it was the type of the most important cottons of India. Under the name G. herbaceum he described the plant now accepted as G. arboreum, var. neglecta, and linked that with G. Sankiing (China and Berar Cottons), but kept all three distinct from G. obtusi-folium. [No plant that could be supposed to correspond with G. obtusifolium is, however, mentioned in Linn., Sp. Pl.; in Fl. Zeyl.; in Burmann, Thea. Zeyl.; in Rheedee, Hort. Mal.; nor in Rumphius, Herb. Amb., etc., etc.] Lastly, Trimen says there is no indigenous cotton in Ceylon.

Habitat.—A distinctly Oriental species, the various manifestations of which are met with in India, Ceylon, Malay Archipelago, Philippine Islands, Africa and Upper Egypt. I have in India repeatedly collected a Gossypium in a wild or self-sown condition, and was, I believe, the first person definitely to suggest its identity with G. obtusifolium. It occurs, for example, here and there all over Kathiawar. It is fairly common in the hedges of Gujarat, and was found by me in Khandesh and in the Deccan. If in all these instances it has to be regarded as but a survival of former cultivation, there would seem every likelihood that in some of its known habitats it has existed in the feral condition for a great many years, perhaps centuries. Further, the plant is perfectly easily recognised from all the other Indian cottons, though certain states of G. Sankiing come very near to it indeed, if such instances are not hybrids between the two species. But the plant does not seem to be confined to India and Africa. Vidal collected it in the Island of Ticao, Philippines, and the label attached to his specimen describes it as “wild.” So also Dr. A. B. Meyer found it in the Malay Archipelago.

Cultivated Forms.—To distinguish the cultivated forms collectively, of this species, from those of Africa and other parts of the world, it may be useful to group them as embraced under a special Indian variety as follows:—

One of the most remarkable features of this plant is the circumstance that while it is the most valuable of all Indian cottons to-day, it is the one least understood and last of all to have been described by botanists. It is a cultivated
annual cotton, with seeds much smaller, more definitely and compactly formed than in the wild plant, and fuzz very short, usually ashy-grey in colour. The change in the shape and size of the seed is a direct result of selection intended to lower percentage weight of seed to floss (lint). Varthema (Travels ed. Hakl. Soc., 1510, 107) speaks of the cotton of Cambay being much exported; he also says Bengal cotton is sent to Mecca, and in a footnote mentions the cotton of Burma. Mandelslo (Travels in Olearius, Hist. Muscovy, etc., 1638-40, many passages) makes frequent mention of the cotton of Gujarat and Agra, but not in such a way as to allow any opinions being formed regarding the plant that was then grown. In Milburn's Oriental Commerce (1813, i., 260) special mention is made of the Ahmood being at that time the finest grade of Gujarat cotton.

Habitat.—This is cultivated in a belt of country that fringes the west coast of India from the Rann of Kach through Kathiawar and Gujarat, to the southern Marathá country and South India.

Soils.—The cultivated states of G. obtusifolium are exceedingly difficult to classify, since they blend almost imperceptibly from one type to another, in direct adaptation to smaller and less conspicuous climatic and soil variations than is experienced in the other cotton areas. There are in India three main classes of cotton soils with three corresponding main groups of cotton plants:—

(a) Rich black loamy soils, such as those of Kathiawar, Gujarat, Khandesh or the Karnáta. These are collectively often spoken of as the “Black Cotton Soils.”

(b) Mixed red and black stony soils, such as those of the Deccan, Berar, the Central Provinces, etc.

(c) Alluvial sandy soils such as those in the Ganges and Indus basins.

Within (a) the forms of G. obtusifolium are mainly grown; (b) of G. Sankung; and (c) of G. arboreum. But in each one of these great cotton areas there may be local modifications both in climate, soil, exposure, etc., so that a limited cultivation of all three plants may exist or be possible in any one province. Speaking generally, however, G. Sankung, when met with on the black cotton soils, is of a superior quality to that seen anywhere else and G. arboreum is there very nearly unknown. These soils are too valuable to be used for the inferior grades, and consequently it is within G. obtusifolium itself, as a rule, that the adaptations of plant to environment have taken place. On the red and black stony soils G. obtusifolium rapidly degenerates or becomes hybridised with G. Sankung. In the areas of sandy dry soils G. obtusifolium becomes unknown, and the higher grades there met with are some of the stocks or hybrids of G. Sankung. It is not to be wondered at, therefore, that in regions so eminently suited for cotton as those possessed of black cotton soils, every little variation in soil, climate, altitude, marine influence, etc., should have resulted in the production of special forms adapted, district by district, if not field by field. The most famous red conditions, and the localities according to the best Indian staples, are Surat, Broach, Ahmedabad and Kathiawar. But within even these districts there are well-marked minor areas that have apparently directly originated some of the special forms of G. obtusifolium that have presently to be indicated. In 1891, and again in 1894, I had the pleasure of studying the cottons of Gujarut practically, on the last occasion in company with Prof. Middleton, now of the Board of Agriculture, who was at that time in the service of His Highness the Maharajah of Baroda. We marched over the greater part of the province as well as Kathiawar (when the cottons were in flower), and Middleton's great personal knowledge of the country enabled him not only to point out to me the kaledioscopic blendings of the plants, but the immediate relationship of these to the variations in soil. [Cf. Ann. Rept. Ind. Mus. Calc., 1893-4, 2-5.] The rich, deep black soil of Broach and Navaari is known as the kahnam, and this was observed to yield the finest of all Indian cottons, accordingly known as the kahnami or Broach deshi (= country). The districts south-east of Baroda were seen to produce a considerably lower grade of kahnami cotton. So also both sides of the Dhadar river (between Baroda and Broach) were noted to change into a calcareous loam with the appearance of a distinctive plant known as the goghari. That particular cotton thus occupies an intermediate zone between the plants of the deep black kahnam soil proper and the lighter or shallower soils known as goradu to the north and west. On these lighter loamy soils are to be found the kanei cottons of Bhavnagar, Palitana, Dhola, Amreli and Junagard, the ambli (of Dholera), and the wagría of Wadhwan, Viramgam, Morvi, North Kathiawar and Kach.

A similar classification doubtless prevails in the southern Marathá country.
PLANTS OF THE INDIAN NOPALRY

introduced by Dr. Anderson; also “Nopality” (defined as “Garden for Cultivation of Cochineal Plant and Insect”), 13.)

The favourite (and apparently the exclusive) food-plants of cochineal are various forms of Opuntia or Nopali—the prickly pear (see Opuntia, p. 822). The grana fina feeds mostly on Opuntia coccineilifera, Haw., whilst the grana sylvestris is reported to live on several species, including O. monacantha, Haw., and the common Indian form O. Dillenii, Haw. Considering the prevalence of the species of Opuntia, it may be said there are not many recently collected specimens of the genus from India in the Royal Herbarium, Kew. Five species are, however, represented by the sets present, and these in alphabetical sequence are: O. decumana, O. Dillenii, O. fleus-indica, O. monacantha and O. tuna. There is no specimen of O. coccineilifera, and—which may also be regarded as somewhat significant—there is only one sample of O. Dillenii from Madras, and that contributed in 1886, so that it would almost seem as if that plant had not been known, or at all events little experimented with in South India, much before the first decade of the 19th century. On the other hand, there are admirable samples from Madras of the other species just named, which are stated to have been collected from Dr. Anderson’s garden on April 19, 1809. These are accordingly historic specimens. Of O. monacantha it is said that it was “the food of the wild cochineal.” That same species is known to have been sent from Malabar to the Presidency and once from the Panjub, so that it is probably widely distributed, and completely acclimatised. Of O. fleus-indica another Madras historic sheet bears on the label the following observation: “It is not eaten by the wild cochineal.” The specimen of O. decumana was wrongly named O. coccineilifera in the series from Dr. Anderson’s garden, but there is no mention of whether or not the true cochineal insect fed on this or any other species grown in Madras. O. decumana has more recently, however, been sent from Madras, so that it appears to have become acclimatised. Lastly there is only one sheet of O. tuna, and it also came from Dr. Anderson’s garden in Madras. Most of the Indian specimens of Opuntia preserved in the Herbarium, Kew, bear a parasitic scale insect (possibly a species of Diaspis), but no trace of cochineal. It thus seems possible the sudden extermination of the Opuntias of certain districts (such as that mentioned in Wilks, Hist. Myarea, iii., 89, in connection with Tippu Sultan) might be accomplished by the parasite mentioned, without supposing the sudden appearance and disappearance of a form of cochineal. The fact, however, that certain Indian writers affirm that the cochineal will only feed on red-flowered Opuntia while others say that it prefers the yellow-flowered plant, is perhaps best explained by the supposition that there are at least two races or species of cochineal in India, though as yet not separately recognised by entomologists. Dr. Bourne (Rept., July 26, 1897) obtained grana sylvestris insects from Ganjam and found these, on the yellow-flowered Opuntia; they lived for a short time, and only a little longer on the red. He accordingly inferred that as a measure of extermination of Opuntia the rearing of any form of cochineal was attended with so much difficulty that it was a failure. But it may thus be asked, would similar failure necessarily result with all the other species of Scale Insect seen on the Opuntias?

The cochineal insect at its birth is viviparous and the male and female larvae are not distinguishable even under the microscope. After a few days, however, they fasten to the cactus-leaf, lose the power of locomotion, and become covered—the grana fina by a short white down, and the grana sylvestris by a much longer cottony substance which conceals the insect. The creature destined to become the male is enveloped, along with the females, but in time becomes ensconced within a separate pouch or purse open at the bottom. From this in due time it emerges as a scarlet fly possessed of long transparent wings. It rarely flies, however, to any distance but jumps and flutters about while visiting the females, and shortly after dies. The female, on the other hand, never emerges from her case as a winged insect, in fact never moves again from the position she took as a larva, but becomes absolutely torpid, round in shape, loses her eyes and even all form of a head. She derives nourishment by means of a hollow pointed tube, which she plunges into the fleshy texture of the cactus. She begins to yield her offspring after about three months, and it is at this stage that the process of "nesting" is begun. Some eight or ten females are picked off the cactus and put into a little bag of cotton-gauze or other cellular tissue, which is fastened to the underside of a fresh cactus-leaf by means of a thorn. The young larvae escape, seek out good positions, and when fixed repeat their cycle of birth, growth and death.

348
HISTORY OF COCHINEAL DYE

The female alone produces the dye, and is gathered for that purpose immediately before the birth of her young. It is said that if the insects are stove-dried, their natural white powdery covering is retained, and the more valuable "silver-grey cochineal" produced, but if killed by steam or hot water they lose their covering and "black cochineal" is the result. There is, however, an alternative opinion to the effect that quality depends on choosing the right period to gather the insects. There are three commercial grades, viz. "silver grain," "black grain," and the little valued "granilla."

USES AND COMMERCIAL FORMS OF COCHINEAL.—Cochineal was formerly much employed in dyeing wool, silk, and cotton; to-day it is a colour-ingredient of drugs and confectionery, and an artists' pigment. It is almost entirely replaced by aniline dyes. Two different reds are obtainable from it—a bluish-red called crimson, and a fiery-red called scarlet. The great reputation these dyes enjoyed for many years gave to the English language the expression "in disgraced."

Cochineal is comparatively rich in tinctorial matter compared with most of the other natural dyes; it contains from 10 to 20 per cent. of the pure substance which exists as a glucoside, "carmine acid," from which the true colouring matter, carmine red, is readily produced. The dye-stuff requires no preparation for the market, but before being employed by the dyer the insects are beaten to a powder. As already observed, the most valuable commercial form is "silver-grey" or "silver grain," the white film which is here retained being due to a natural wax suberin amounting to about 1 or 2 per cent. of the weight of the substance. This silvery coating is sometimes imitated by facing the cochineal with talc and other mineral matter. In dyeing, cochineal is almost exclusively used for the production of scarlet shades on wool in conjunction with a mordant of tin. With alum mordant, a crimson shade is produced. The Spanish historian Herrera tells us that alum was the mordant used by the Mexicans, and cochineal as far as Europe is concerned, it was not until 1643 that "Kuster or Kesler, a German chemist," brought to London the secret of using a tin solution in producing the true scarlet. This secret he communicated to a Flemish painter, who in turn told or sold it to the famous Gobelins, whose tapestries embraced practically the first instances of scarlet-dyed hangings.

In connection with painters' colours, red inks, etc., the best-known modern application of cochineal is in combination with alumina and tin to produce Carmine (D.E.P., ii., 167) which is an almost pure lake. The best quality is known commercially as ossax carminis and is insoluble in water, alcohol, ether, turpentine, etc., but soluble in strong mineral acids. Other lakes prepared with cochineal are Florentine and Crimson-lake. None of the preparations retain their intensity of colour when long exposed to light. [Cf. Hurst, Painters' Colours, etc., 1901, 261; Rawson, Gardner and Luycock, Dict. Dyes, etc., 1901, 119; Blount and Bloxam, Chem. for Engin. and Manuf., 1900, 327.]

TRADE.—As a dye, cochineal has been to a great extent superseded by aniline dyes, and this supersession appears to be steadily increasing. Thus the average quantity of cochineal imported by India annually during the five years 1894–5 to 1898–9 was 1,829 cwt. During the seven years 1899–1900 to 1906–7 the average was only 1,933 cwt. In 1903–4 the amount had fallen to 1,156 cwt., valued at Rs. 1,10,417, though in 1904–5 it rose to 1,880 cwt. (Rs. 2,22,914), and in 1906–7 to 1,533 cwt. (Rs. 2,62,568). In the same period of twelve years the imports of aniline dyes had increased by just over 100 per cent., totalling in 1906–7, 6,003,849 lb., valued at Rs. 46,55,054. Cochineal comes almost exclusively from the United Kingdom and France to Bombay. The re-export trade has practically vanished. [Cf. Paulus Agineta (Adams Comment.), 1847, iii., 180; Honigberger, Thirty-five Years in the East, ii., 253; Hoey, Monoy. Trade and Manuf. N. Ind., 1880, 170; Pharmacog. Ind., 1899, ii., 99; De Candolle, Orig. Cult. Plants, 274–6; Kew Bull., 1892, 144–8; Mollison, Rept. on Prickly Pear as Fodder, 1892; Gennadius, Opuntia in Cyprus, 1897; Bourne, Ind. Agri., 1898; Maiden, Agri. Gaz. N.-S. Wales, 1898, 9, 980–1008; Thorpe, Dict. Appl. Chem., 1898, 1, 575.]

COCOS NUCIFERA

Collection.

Grades.

Ingrained.

Carminic Acid.

Carminic Red.

Alum.

Tin.

Painters' Colours.

Red Ink.

Trade.

Imports.

D.E.P., ii., 416–59

Cocoanut.
COCOS
NUCIFERA
Cocoanut

Salt as a Manure.

Yield.

Yield.—Cocoanut palms will bear fruit, according to the locality and the care expended on them, in from five to ten years. They throw out a spathe and a leaf every month, and each flowering spike yields from ten to twenty-five nuts. The yield varies according to the soil, climate, care expended, and also variety grown. It has been placed by some authors as high as 200 to 300, by others as low as 30 nuts per tree per annum, but a safe average might be 80 to 100, or say 5,000 nuts per acre; and at 4 lb. to each fruit this would give a total crop weight of 6½ tons an acre. Lastly, the palm will continue to bear such crops for 70 to 80 years.

Forms.

Cultivated Forms.—Although the Natives recognise many varieties or races, these are doubtfully distinct botanically. Moreover, they are so numerous that it would be almost impossible to enumerate even the better known “sports” and cultivated conditions that are claimed to exist. There are, for example, 25 commonly counted in Java—Miquel especially describes and names 18 of these and calls them varieties; 40 in the Philippines; 5 recognised in Ceylon; 30 in Travancore alone according to Dr. Shortt; lastly, Jumelle (l.c. 92) and Firminger, both compiling from M. Le Goux de Flaise, say of India that it is customary to recognise 7 forms:—(1) Coromandel or Brahmin nut, a yellowish-red form; (2) the Kanara, a very woody ovoid nut; (3) the Malabar; (4) Maldives, small and spherical; (5) Achem, small and ovoid; (6) Nicobar or pointed nut, the biggest of all, and (7) the Ceylon nut. The Brahmin nut is esteemed for its milk but is inferior in kopra and coir. Of Ceylon it is said there are two special dwarf forms: (a) the King Cocoanut, which produces a golden-coloured fruit, but rarely attains a greater height than 20 feet. It is confined to the gardens of the better classes. (b) A still smaller plant much sought after.

Soil.

Soil and Climate.—All writers admit that the palm will grow effectively on sandy soil, but Semler and others point out quite clearly that it must not be dry sand. Many soils otherwise unsuitable can be adapted by adding the necessary manures; thus clay soils can be made porous by admixture of sand and fertilised by the addition of calcareous salts. Jumelle observes that the cocoanut requires heat, moisture, a porous soil, calcareous salts, alkaline salts, a certain quantity of sea-salt, and a fair amount of animal manure. It should be noted, however, that animal manure if too freely applied is apt to encourage a weevil pest (eide infra). The best manure (vegetable) appears to be cocoanut husks. [Cf. Trop. Agri., 1893, xiii., 106-8] Semler observes that the most desirable position is a porous soil sufficiently near the sea that at high tides the sea-water may permeate the trenches cut for that purpose. Cochran (Trop. Agri., 1897, xvii., 173) and Jumelle (l.c. 94) give chemical analyses to show how very important salt is as a manure for this palm.

It is necessary that the temperature should be fairly even all the year round, 75° and 50° F. being the extremes. If the rainfall be evenly distributed throughout the year some 48 to 50 in. will suffice, but if less,
CULTIVATION IN INDIA

the planter must resort to artificial irrigation. [Cf. Baur, Ind. Gard., Dec. 14, 1899; Cochran, Trop. Agri., 1900, xix.]

ADDITIONAL PECULIARITIES OF INDIAN CULTIVATION.—Bombay.—The cocoanut is only common in the south of this Presidency, and its chief value lies in the rich supply of toddy it affords. In Kolaba district, however, the soil and climate are found so suitable that the toddy exceeds the demand. The average annual yield of nips is said to be about 120 per tree, and each palm may be reckoned to have cost about Rs. 9 up to the point at which it begins to yield. In Thana district the annual yield is estimated at 75 nips to each palm. The dry nips are sometimes thrown into a well and left to sprout there, being subsequently put into a nursery; or they are allowed to fall from the tree and then buried. In the Kathiawar district they are planted and grown in pits 3½ by 3 feet in diameter, cut out of solid limestone and filled with mud. In Kanara, Kathiawar and Ratnagiri the cocoanut is abundant, and in the latter district the average annual profit from each tree is said to be about Rs. 1.3–0. During the "Narral Purnima" or Cocoanut Festival of the Hindus, which is supposed to mark the end of the monsoon in August, Bombay Natives throw nips into the sea to propitiate the god of storms. [Cf. Madras Mail, Aug. 23, 1899.]

Madras.—This Presidency, especially the Malabar and Cooromandel Coasts, is the chief seat of the Indian cocoanut industry. The Laccadive Islands also send their contingents to ports on the Malabar Coast, the produce of both being reckoned together. The Maldives are under a Sultan who is subordinate to the Governor of Ceylon; the coir produced is conveyed to India and lost sight of in the customary trade returns. The Godavari district has been called the "Paradise of the Cocoanut palm," the delta of the river showing an abundance of the trees. Mr. Lushington, District Forest Officer of Kistna, stated in the Tropical Agriculturist (Jan. 1, 1895, xiv., 457) that 200 nips per annum was a very moderate estimate for good fruiting trees in the Godavari district, and indeed an even higher average (250 to 300 nips per annum) has been quoted for Ceylon highly manured palms (Trop. Agri., April 1, 1893, xii., 650). In Travancore 800,000 trees were counted during settlement operations in 1902, and it is estimated that 25 per cent. should be added for non-taxpaying areas. [Cf. Capital, Oct. 30, 1902.] In South Kanara, plantations extend along the whole coast-line, the average to the acre being about 120 trees each, yielding 40 to 50 nips annually. The seed-nips are usually not plucked but allowed to fall from the trees.

Mysore there are said to be four varieties of the cocoanut—red, red and green, light green and dark green. Toddy is not made from the palm, as the fruit is more valued. Occasionally a few green nuts are cut for the juice and for their fibre. The Mysore cultivation is to some extent peculiar, and a full account of it will be found in the Dictionary.

On the Nicobar Islands the palm is very abundant, the annual yield being estimated at about 10,000,000 nuts. In the Andamans it is said to be a comparatively recent introduction. In 1901–2 there were estimated to be 42,997 cocoanut trees in bearing and 64,821 not, and in the same year 428,897 nips were received into the oil-factory at Viper.

Burma success would appear to depend largely on the district. Mason (Burma and Its People (ed. Theobald), 1883, ii., 143) says that the palm will not thrive except near the sea, and in many parts the seedlings are believed to damp off. Some years ago it was reported there were 10,000 acres under cocoanuts in the Mrauk district of Pegu alone.

Bengal the cocoanut is plentiful throughout the lower Gangetic basin, but as a rule only in garden cultivation, and the produce is not much in excess of local demand. Phoenix and not Cocos is the palm used in this province as the source of toddy and sugar. In the districts of Barrisal, Backergunge and Noakhali it is extensively grown in plantations by itself or along with the Areca-nut palm. Throughout Bengal the opinion prevails that to fruit well the lower two or three leaves must be removed in September.

In Upper India and the Central Provinces the cocoanut is not cultivated.

ENEMIES TO THE COCOANUT.—The greatest danger to which this palm is subject arises from the attacks of various insects, mostly the grubs of beetles. Of these the Sitoterta rubus, a large insect with a reddish-brown head, appears to attack the root and subsequently to find its way into the stem; it is believed to be especially prevalent when the ground has been too richly manured. Junell's (i.e. 100) says a similar insect lays its eggs in the stem and the larvae bore

353 23
their way to the terminal bud, which they devour. The danger of such pests is averted in the Straits Settlements by sprinkling the young palms with salt water. Another destructive beetle is Calandra palmarum, a species of Elephant-beetle which destroys both the young leaves and the terminal bud, thus rapidly killing the palm. It is especially prevalent in the Malay States. On the Coromandel Coast boring grubs are extracted by means of a barbed steel probe. They are eaten as a delicacy by the Burmans, who are great adepts at extracting them. The Rhinoceros-beetle (Oryctes rhinoceros, Linn.), a large black or brown scarab, has been reported as especially destructive to palm trees in Madras and Singapore. It damages the trees by cutting holes through the young leaf-shoots. The larvae of a large weevil (Rhyynchophorus ferrugineus, Olsh.) kill a great number of trees by tunnelling into the trunks. The only cure for this is extraction, though the use of salt and brine is often beneficial.

The leaves of the palm are also much injured by other insect pests and the life-sap sucked from the plant. Certain of the CoCCIDEA—the Scale Blights—such as Aspidiotus destructor, Signoret, and Dactylopia coccoides, Maskell, are especially destructive in the Laccadive Islands, and are the more dangerous because it is difficult to proceed against them by ordinary methods of spraying.

[Cf. Maskell, in Ind. Mus. Notes, 1896, iii., 1, 66-7.] Semler says (l.c. 645) that a large weep is in the habit of making its nest in the young fruit. The only remedy is the destruction of the nest.

Larger and more easily checked enemies are rats, squirrels, flying-foxes, wild cats, tree-dogs (Paradonurus), etc., which sometimes eat the young fruits and often destroy the terminal bud. As a remedy, Semler suggests that a preparation of cocanaut kernel with arsenic, pulverised glass and strychnine, or the like, should be put into cocanaut shells and hung in the trees. Against rats the mongoose is the best protection. Nicholls recommends covering the trunk of the palm with sheets of tin or galvanised iron for some twelve inches, the rats being unable to climb over these. The young plants must also be protected against the ravages of wild hogs, elephants, cows and porcupines. When a palm has actually been killed by beetles or other pests, care should be taken to destroy the whole stem by fire, as a single palm left lying or utilised for posts, rails, handrails to foot-bridges, etc., may contain and send out enough of the pests to destroy an entire plantation. It has accordingly been suggested that the preservation by planters of infected timber as well as the non-destruction of infected cocanaut-refuse should be made a statutory offence, since such nearly always constitutes a public nuisance and too often involves a public disaster.

[Cf. Ridley, Bept. on Destruction of Cocoanuts by Beetles, Singapore, 1889 ; Tennent, Ceylon, ii., 529 ; Ind. Mus. Notes, 1891, ii., 8-9 ; 1893, 175 ; 1903, v., 127 ; Watt, Plague in Betel-nuts, Agri. Ledg., 1901, No. 8, 140 ; Trop. Agri., 1904, xxiii., 636 ; Butler, Diseases of Cocanaut, in Board Rev. Madras, 1908, No. 786.]

FIBRE. This useful plant yields various fibres or fibrous materials.

A delicate tomentum or cotton, found at the base of the leaf, is employed as a styrptic. The leaves may be used like those of other palms for many of the purposes of paper. The leaflets of two or more leaves are braided into mats that are used in house-construction. They are also often stripped off and made into brooms, or their midribs separated and so used. Again, the leaves are frequently employed as thatch, and dried they may be utilised as crude torches. The half-fruit (nut with adhering pericarp) is largely used as a scrubber.

History. The important fibre, however, is of course the Coir which is obtained from the thick outer wall of the fruit (or husk). This seems to have been known to the early Arab writers as kumbär, being so called, for example, by Albiríúní (cf. Journ. As., ser. iv., tom. viii., 266) in the 11th and by Ibn Batuta (Voyages, etc., Soc. Asiaticque, 1858, iv., 121) in the 14th centuries. Correa (Lendas da India, ii., 129-30) tells us that the Governor (Alboquero) of Cananar devoted much care (1510 A.D.) to the preparation of cables and rigging of coir (cairo), of which there was great abundance. Pyrrard (Voy. E. Ind. (ed. Hakt. Soc.), 1887, i., 250) speaks of the revenue having been paid (in 1610 A.D.) of cairo by the Mal-
COIR FIBRE

COCOS
NUCIFERA
Fibre

First Exported to England.

Coir a
By-product.

Kanara.
Cost.

Course Fibre.

Specific
Variation.

Specially Long
Fibre.

Cochin.
Bleaching.

Preparation of
Fibre.

Shelling.

dives. The word coir did not come into the English language until the eighteenth century. It is doubtless an Anglicised version through Portuguese cairo of the Malayal verb kāyāru = to be twisted (kāyar, Mal. and kāyiru, Tam.). Both the fibre and the rope made from it appear to have been exported to Europe in the middle of the 16th century under the name kānbar, a misrendering, very possibly, of kāyār. But it was actually not until the Great Exhibition of 1851 that coir rope and matting attained commercial importance in England. Thus Milburn, writing as late as 1813, observes that cocoanuts are an article of considerable trade in all parts of India, and that coir ropes are much esteemed there. He says nothing at all of any exports to Europe. It deserves notice, too, that the collections of early letters of the East India Co.’s servants, published by Mr. W. Foster, contain no reference to the cocoanut fibre.

Production.—Taking India as a whole, coir is only obtained as a by-product. As will be seen under the notes on trade, the present-day Indian exports are almost entirely made from Bombay and Madras, and it may be said that Madras, Cochín, the Laccadives and Malabar are the only parts of India that produce coir on a commercial scale. According to the Manual of S. Kanara (1895, ii., 147–8) about 5,000 persons depend for their living on the manufacture and sale of coir in that district. It is further said that 3,000 cocoanuts produce 1 candy of coir. The cost of raw material and manufacture is about Rs. 15 and the selling price about Rs. 20 per candy. Elsewhere in India the fibre is dark and coarse, and not comparable to the fine qualities of the above-named districts or to that of Ceylon or Singapore. There are many reasons for this. Situation is one; the fibre would seem to become coarser as a distance from the coast; but variety, age at which the nut is gathered, care and skill in steeping, beating, and cleaning the fibre, etc., etc., are all factors of no small importance. If the palm be cultivated for the supply of juice or to afford ripe fruit, the fibre usually proves in the one case imperfectly formed and in the other overripe. Such, at least, is the common opinion, although according to Wiesner (l.c. ii., 420) only three varieties of C. nucifera are really suitable for the production of coir, viz. rutila, cupuliformis, and stupposa, and the first named gives the finest and most elastic fibre. These are three out of the eighteen forms given by Miquel. Wiesner, however, would appear to have adopted for general application a criticism which Miquel (l.c. 65) originally intended exclusively for the Dutch East Indies. In many countries such as Guam a specially long fruit is grown for the express purpose of affording the long straight-bleistre fibre. Of Indian coir it has been commonly affirmed that the best comes from Cochín, and that as a result attempts have been made to imitate the light colour of the Cochín fibre by bleaching. But the chemicals used in this process destroy the elasticity of the fibre and render good qualities bad and inferior qualities worthless. Neither does it seem quite clear whether by Cochín coir is meant commercially the produce of the Native State or that of the whole coast of Malabar, or indeed all high qualities from whatever country obtained. It is said that for fibre the nuts should be cut in the tenth month; it would appear, however that a large quantity of ripe nuts are exported to Europe in husk and the coir separated on arrival.

Manipulation.—Concise accounts of the various local methods of removing the fibre from the shell and of separating and cleaning the coir have been given in the Dictionary (l.c. 428–30), to which the reader is referred.
COCOS
NUCIFERA
Cocosnut

THE COCOANUT PALM

Briefly it may be said that for the first process an iron spike is fixed in the ground with point upwards, and that the nut is so struck on this that the point penetrates between the nut and the husk, and causes them to separate. A Native can treat in this way about 1,000 nuts daily. Although many machines have been tried for this purpose, hitherto none have been found which can compete with hand-labour. The husks after being retted in brackish or sweet water for 7 to 18 months are crushed either by hand or by machinery, and the fibre extracted. Fresh water is said to injure the fibre. The retting process is sometimes dispensed with, the husk being steamed till the fibre separates. After drying the fibre is "willowed" or cleaned of dust and refuse, and it is finally separated into various grades or qualities such as "mat" or long fibres (used for spinning purposes); "brush and broom 'bristle'" —the shorter and stiffer fibres; upholstery, the tow or curled fibre; and the dust or refuse employed as a manure and for other purposes. The best bristle fibre done up in small bundles, and with the fibre stretched straight and clean, may fetch £30 a ton. The mat fibre is worth £20 per ton and the waste £10 a ton.

Under a high pressure a cocoanut dust was found to make a rather brittle cardboard which on being touched by water would instantly swell up and close any hole made in it. This was looked upon, some ten years ago, as a valuable discovery for rendering warships practically unsinkable by gun-fire. The ordinary uses of coir, coir-yarn, etc., are so well known in most households, that it seems superfluous to attempt an enumeration. Coir-matting, coir-ropes, cocoanut brooms and besoms, hussocks, hammocks, "bass" for nursery men, bags for seed-crushers, oil-presses, etc., are amongst the many forms of manufactured coir. Coir rope is especially serviceable in India because it does not suffer from the damp climate, and sails are accordingly sometimes made of coarse coir-cloth. In the Laccadive Islands mats made of cocoanut leaves are used as sails. In Ceylon and India the fronds are split and woven into neat baskets. [Cf. Dodge, Useful Fibre Plants of the World, 120-3.]

Yield.—As regards yield of fibre per nut and price, it has been said that 10,000 husks treated in England yield about 50 cwt. of spinning fibre and 10 cwt. of brush fibre. In Ceylon 40 nuts are reported to give 6 lb. of coir (or say 13 lb. cwt. to 10,000); in Madras 18 large nuts and in the Laccadives 60 small nuts give a similar amount; but whereas a pound of Laccadive coir spins to 35 fathoms (210 feet), a pound of the coir from large Madras nuts will only measure 22 fathoms (132 feet).

Prices.—The quotations for Coir on the London market, as published by Messrs. Ide & Christie, October 15, 1907, may be here given. The spot values were as follows:—

<table>
<thead>
<tr>
<th>Description</th>
<th>£</th>
<th>s.</th>
<th>d.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common to good Cochin Roping Dholls</td>
<td>11</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>" fair Cochin Weaving</td>
<td>12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fair to good</td>
<td>14</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Good to extra</td>
<td>20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Common to fair Ceylon Dholls and Ballots</td>
<td>25</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fair to good Ceylon Balloots and Ballots</td>
<td>20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Good to extra Ceylon Balloots</td>
<td>25</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>COIR FIBRE—COCHIN, common</td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>" fair</td>
<td>17</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>" good</td>
<td>20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CEYLON, short to fair</td>
<td>8</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>" clean long</td>
<td>9</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

356
A RECORD OF TRANSACTIONS AND PRICES

<table>
<thead>
<tr>
<th>Coir Rope—4½ to 6 inch</th>
<th>£ s. d.</th>
<th>£ s. d.</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 " 3½ "</td>
<td>15 0 0</td>
<td>21 0 0</td>
</tr>
<tr>
<td>1½ "</td>
<td>15 0 0</td>
<td>21 0 0</td>
</tr>
</tbody>
</table>

For the Month of September.

<table>
<thead>
<tr>
<th>Landed</th>
<th>Delivered</th>
</tr>
</thead>
<tbody>
<tr>
<td>1907.</td>
<td>1907.</td>
</tr>
<tr>
<td>Yarn...</td>
<td>190 tons.</td>
</tr>
<tr>
<td>Fibre ..</td>
<td>90 "</td>
</tr>
<tr>
<td>Rope...</td>
<td>" 13</td>
</tr>
</tbody>
</table>

Stock Oct. 2.

<table>
<thead>
<tr>
<th>1907.</th>
<th>1906.</th>
<th>1905.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,600 tons.</td>
<td>2,923 tons.</td>
<td>1,936 tons.</td>
</tr>
<tr>
<td>254 " 321 "</td>
<td>794 "</td>
<td></td>
</tr>
<tr>
<td>164 " 216 "</td>
<td>88 "</td>
<td></td>
</tr>
</tbody>
</table>

Landed from Jan. 1 to Oct. 2.

<table>
<thead>
<tr>
<th>1907.</th>
<th>1906.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yarn...</td>
<td>3,791 tons.</td>
</tr>
<tr>
<td>Fibre ..</td>
<td>786 "</td>
</tr>
<tr>
<td>Rope...</td>
<td>" 112</td>
</tr>
</tbody>
</table>

Delivered from Jan. 1 to Oct. 2.

<table>
<thead>
<tr>
<th>1907.</th>
<th>1906.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,732 tons.</td>
<td>5,012 tons.</td>
</tr>
<tr>
<td>629 "</td>
<td>1,423 "</td>
</tr>
<tr>
<td>143 "</td>
<td>166 "</td>
</tr>
</tbody>
</table>

COPRA (KOPRA) AND OIL.

The kernel of the coconuts sliced and dried either in the sun or artificially is called Copra (Kopra). It contains from 30 to 50, some say even up to 70 per cent. of fixed oil. The fully ripe coconuts only are used in making copra, but though the quantity is less than expected to be higher in three-quarters ripe than in fully ripe fruits. But the oil may be expressed either from the fresh kernel or from the dried kernel, and by a hot wet or dry cold process. Artificially dried copra is often smoked, and as this colours the oil its value is thereby lowered. Mr. Cochran (Man. Chem. Anal.; also Trop. Agri., May 1, 1893, xii., 665; July 1, 1899, xix., 44) gives the composition of copra thus:—moisture 6 per cent.; oil 67 per cent.; albuminoids 6°69 per cent.; carbohydrates 15°21 per cent.; woody fibre 2°11 per cent., and ash 2°99 per cent. Semler (l.c. 653) observes that sun-dried copra contains about 50 per cent. of oil, artificially dried 60 per cent., and if dried at the boiling point of water it may contain 66 per cent.

OIL.

Dunstan (Edible Oils, l.c. 129) gives his examination of Malabar, Bengal and Bombay samples. The Malabar had an acid value as Koh of 35°21 as compared with Bengal 11°84, and Bombay 9°95; the saponification value of Malabar was 258°2, Bengal being 255°6, and Bombay 255°5; the iodine value of Malabar was 8°54, of Bengal 8°41, and of Bombay 8°25; the Reichert-meissel value of all three was found to be higher than the ordinary standard, viz. Malabar 6°71, Bengal 6°79, and Bombay 6°65; lastly the melting-points were Malabar 23°5 C, Bengal 24°5 C, and Bombay 25°0 C. Blount and Bloxam (Chem. for Engin. and Manuf., 1900, 236) give the saponification of this oil as 209 to 228 and iodine absorption as 7 to 9. [Cf. Greshoff, Rept. Kolon. Mus. Haarlem, 1903; Bachofen, Complete Anal. of Coconut, showing its demands on the Soil, in Times of Ceylon, Nov. 1899.]

Extraction.

Various methods of obtaining the oil are resorted to: for example, when pure colourless oil is required the copra is boiled with water, grated and squeezed, the resulting emulsion being again boiled till the oil rises to the surface. This is thus a hot wet process. If fresh kernels are used this is called dvel oil, and if from copra it is muthel. Moreover there are several special modifications chiefly intended to produce the very

357

Copra.

- **Methods of Preparation.**
- **Composition.**
- **Chemical Property.**
- **Oil.**
- **Trade Qualities.**
- **Extraction.**
- **Bolling.**
pure white oil which has the highest commercial value. Crude or ordinary
cocoanut oil is, on the other hand, produced by crushing the copra in a
native oil-mill worked by oxen. This is a cold dry process, but some of
the most highly prized grades have been cold drawn. The mill is really
little more than an enlargement of the druggist's pestle and mortar, but it is
so efficacious that the extra amount of oil obtained by employing
European machinery does not counterbalance the expenditure involved.
Moreover, the residue of the copra is sold as cocoanut oilcake (poonac), and
the drier the cake the lower its value; the poonac is normally worth 25 per
cent. of the copra.

The best East Indian cocoanut oil is known as "Cochin." This is
remarkable, since it is generally thought that ripe cocoanuts are
necessary for the oil, whilst green nuts are best for the fibre. Yet "Cochin
fibre" and "Cochin oil" both rank highest and possibly from the same
reason, viz. that the name Cochin is given to all high grades. However,
it is possible, as mentioned above, that what is called "Cochin coir" comes
in reality very largely from the Laccadives and the Cochin oil may come
from Cochin. In 1897–8 the Tropical Agriculturist opened its columns
to a discussion as to the reason for the higher price obtained by Cochin
compared with Ceylon cocoanut oil. The difference was then said to be
about 36 per cent. But in January 1904 there was apparently little differ-
cence, and in May 1905 Cochin oil was selling at only 16 per cent. better
than Ceylon; hence it may be assumed Ceylon had improved materially.
During the discussion indicated an "Old Cocoanut Planter" observed that
perfectly clean and dry copra yields an oil which if put in a tumbler is in-
distinguishable to the eye from a similar glass of water. The inquiry, it
may be said in conclusion, resulted in a general agreement on several points,
such as that the purity of colour and therefore higher price of Cochin oil
were due to the greater care taken in the selection of nuts for crushing and
in the preparation of the copra. It was acknowledged that smoke-dried
copra usually resulted in a tainted oil; that none but quite ripe and quite
sound nuts should be used (it was said, for example, that on the Cochin
coast the nuts are allowed to drop off the trees); that great care should
be taken to keep the split nuts free from dust and dirt whilst drying;
and finally, that the excess of stearine in Cochin oil, which makes it preferable for candle-making, is due rather to the superior quality of the nut and
more careful cultivation than to any natural superiority of the soil. Almost
all Ceylon (European) growers, it may be observed, are agreed that one of
the principal advantages of the Cochin climate lies in the fact that the
copra can be dried in the sun. In the controversy above indicated it was
stated, however, that if the copra were dried at an even temperature, where
smoke could not reach it, the result would be equally good with the sun-
dried nut. But it may be added the difference between cold dry and hot
wet expressed oil may be a far more important factor than hitherto
recognised in determining the value of cocoanut oil. All the cocoanut
products seem subject to extreme fluctuations in price. It is generally
accepted that the safest standard to purchase copra or cocoanuts is the
price ruling for the oil.

The Oil is largely used in India both in cooking and for toilet
purposes. Its employment as an illuminant was at one time important
but has considerably diminished owing to the introduction of cheap
American kerosene, the best qualities of which are cheaper than ordinary
VEGETABLE BUTTER

cocoanut oil. It is still, however, occasionally found in some Roman Catholic churches, and in England and elsewhere it is made into candles, especially nightlights. The latter use was a discovery made by Messrs. Price & Co., who introduced candles made with cocoanut oil for public illumination at the time of Queen Victoria's wedding; but in ordinary candle-manufacture the oil has been somewhat displaced of late by palm-oil. [Cf. Board of Trade Journ., Feb. 1898.] In Europe it is extensively employed, particularly in France, where pomades and other fancy toilet articles are produced in great quantity and variety. It is also utilised in the manufacture of salves and lotions of various kinds and to adulterate cod-liver oil. It is considered an effective hair-restorer and is universally so used all over India. The long, black, lustrous tresses of the Filipino women have been attributed to the use of this oil. [Cf. Hides and Leather, June 25, 1904.]

As regards the soap industry, cocoanut oil makes a white, hard soap, which is more readily soluble than almost any other in hard or even saltwater. The form known as "Marine Soap" may be used medicinally in plaster-making and in the preparation of soap liniment, but it has the disadvantage of imparting an unpleasant odour to garments or to the human skin. The Messrs. Lever's Sunlight Soap factories use a large amount of cocoanut oil. A fair proportion of the Native-made soap of India is also prepared by boiling this oil with dhobie's earth, salt, saltpetre, quicklime and water.

Vegetable Butter.—The various methods and contrivances for producing vegetable butter—cocoanut butter more especially—may be said to have originated one of the many new aspects of value in this palm. Pure cocoanut oil has for some time been used in part manufacture of margarine, and with advantage, since it supplies a certain amount of glyceryl salts, of fairly low fatty acids, whose absence from ordinary margarine constitute chemically the principal difference between that product and butter. For this purpose the characteristic odour of the oil is removed by treatment with alcohol and animal charcoal. [Cf. Blount and Bloxam, l.c. 238.] But a far more important industry than the adulteration or fabrication of margarine is the production of cocoanut butter (see Cacao Butter, p. 1076). The process of producing cocoanut butter or, as it was subsequently termed, "palmin," is said to have been discovered by a German professor, Dr. Schlinck, and developed by him at Ludwigshafen. He produced a pure vegetable fat which for culinary and edible purposes was claimed to be much superior to butter, lard or tallow, all of which contain acids that through heat form undesirable products. [Cf. Ind. Agr., Sept. 17, 1887; Kew Bull., 1890, 230–8; Basu, in Journ. Agri.-Hort. Soc. Ind. (Proc.), 1890, ix., 62–3.] Dr. Thernir, Second Physician of the Imperial Hospital, Vienna, pointed out (Centralblatt für die gesammte Terapie, Oct. 1889) that a firm at Mannheim had also produced a cocoanut butter free of fatty acids, such as was suited for persons of impaired digestion. [Cf. Journ. Board Trade, June 1901.] The manufacture of these and such like butters was naturally very quickly extended, and indeed Messrs. Loder & Nucooline, Ltd., of Silvertown, London, claim to have preceded even the German firms in producing cocoanut butter and cocoanut suet, which they called "Nucooline" and "Veju." Their sales are now on a very large scale, so that their goods are coming daily into extended demand. "Vegetaline" is the name of the product as now manufactured in Marseilles. More recently Messrs. Gaudart

COCOS NUCIFERA Oil

Candles.

Pomade.

Hair-oil.

Soap.

"Marine Soap."

Butter.

Margarine.

Cocoanut Butter :
"Palmin."

Free from Fatty Acids.

"Nucooline."

"Vegetaline."
& Co. have commenced making what they call "Cocotine" at Pondicherry. Similar factories have also been established in America and elsewhere. [Cf. Madras Mail, Jan. 23, 1902; Ind. Agri., Nov. 1902, xxvii., 348; etc., etc.]

There is thus an opening for Indian industries in this product which that country will be ill advised to neglect. The importance to Europe of the discoveries briefly indicated lies in the fact that coconut nut butter provides bakers and biscuit manufacturers with a substitute for butter which is not only pure and cheap but even better suited for baking purposes than butter proper. One of its chief advantages is that it does not readily become rancid, and recently the use of this butter has been authorised for culinary purposes in the French army, a fact significant of the future demands of the world. The consumption of this product must in fact yearly expand and the traffic become of infinite value. Confectioners are said to find coconut nut butter an entirely satisfactory substitute for the more expensive cacao butter (see p. 1076), the imports of which into England have in consequence for some years past materially declined. Coconut butter is not, however, strictly speaking, a substitute or even an adulterant of dairy butter, but a substance that commands independent recognition. [Cf. White and Humphrey, Pharamacop., 1901, 331; Revue des Cult. Colon., June 1903, No. 126, 324.]

Adulteration.—It should be added that coconut oil is sometimes used as an adulterant of volatile oils. It may be detected by the fact that oils so adulterated will solidify wholly or in part in a freezing mixture. Coconut oil has thus been found in cananga, citronella and palmarosa oils. [Cf. Gildemeister and Hoffmann, Volatile Oils, 1900, 201.] Coconut oil melts at 68° to 82° F.; its sp. gr. at 212° F. is 0·868 to 0·874 and its saponification from 209 to 228.

Cocoanut Oilcake or Poonac.—As observed above, this is the by-product of copra, after the expression of the oil. Voelcker (Essay on the Influence of Chem. Disc. on Agri. reviewed in Trop. Agrist., 1896, xv., 800) is said to have observed that the cocoanut cake is better adapted for fattening stock than for young growing animals or store-stock. Its analysis is as follows:—water 9·50; oil 8·43; albuminous bodies 30·40 (containing nitrogen 4·50); mucilage, sugar, fibre, etc., 40·95; mineral matter (ash) 10·72. It was very largely taken up in Australia, after the establishment of Messrs. Lever Brothers’ Sydney Oilmills. In the Tropical Agriculturist (1898, xviii., 223) it is stated that cocoanut oilcake is not generally used for milch-cows or other milking stock, or in Ceylon for horses; but it is the common food of working bulls, and is considered an excellent fattener for pigs.

Official statistics of the Indian trade in cocoanut cake are not available, but according to a reply to a correspondent in Capital, Feb. 11, 1904, the price in Ceylon was from Rs. 67½ to Rs. 70 per ton, and from 12,000 to 15,000 tons were then shipped annually from Colombo, mostly to Germany and Belgium. The writer apparently did not consider it necessary to take India into consideration. In fact he says Indian poonac consists of rape-seed, castor-seed and gingelly (sesamum). Hanusek (Micro. Tech. Prod. (Winton and Barber, transl.), 1907, 403–6) gives the appearance of the cake under the microscope. The total exports of Indian oilcake, it may be observed, amounted in 1903–4 to about 60,000 tons, of which Madras contributed 47,500 tons. The exports of oilcake appear, however, under two headings (a) Cattle Food and (b) Manure.
STAPLE ARTICLE OF DIET

The total for 1906-7 came to 105,379 tons, valued at Rs. 75,99,121. Coconuts are chiefly exported from Madras, and consequently constitutes an important item in these transactions. The value of the total traffic and its present prosperity may be inferred from the fact that from all India the exports in 1886-7 stood at only Rs. 1,71,107. This is, however, but indirect evidence of the extent of the Indian exports in coconut cake. [Cf. Kew Bull., 1897, 416; Leather, Agr. Ledg., 1897, No. 8, 159-60.]

Medicine. Very full accounts of the medicinal properties of the coconut are given in the Dictionary and in the Pharmacographia Indica (iii., 511-9). Briefly it may be said that, for European medicine, the most important advantages of *C. nucifera* are the anthelmintic action of the fresh fruit (especially of the volatile oil of the shell); the properties of the milk; as also the possibility of substituting the oil for cod-liver oil, in cases where the latter cannot be taken. For medicinal purposes the olein is separated from the solid fats, as in the preparation of what the Natives call *deel.* (According to some writers this is named *muthel,* the meanings of *deel* and *muthel* being perhaps reversed.) In making that substance the kernel of the fresh nut is pulped and strained and the oil separated from the milky fluid by heating. A preparation of the same kind is now known in Europe as “coco-olein.” Both by Native and European physicians in India the “milk” from the unripe fruit is recommended as a useful refrigerant in fever and urinary disorders, but in Bengal it is commonly believed that the consumption of too much coconut milk tends to cause hydrocele. In dyspepsia and consumption Native practitioners prescribe the pulp of the ripe fruit made up with *ghi,* coriander, cumin, cardamoms, etc. This mixture is called *ndrikela-khando.* The flowers and fresh toddy are astringent. The soft, brown tomentum or cotton found outside the base of the leaf-sheath is an excellent styptic, like the corresponding products of *Borassus* and *Caryota.* For an abstract of the somewhat diverse and conflicting opinions of the Arab physicians—Rhases, Avicenna, Serapion, etc.—the reader should consult Adams (Comment. in Paulus Aegineta, 1847, iii., 438).

Food Products. With a large section of the Indian population the coconut is almost a staple article of diet, and a very wholesome one. Natives of all classes consume the soft creamy pulp and cool refreshing water (milk) of the young nut (dab), and also use the same in cooking curry. The terminal bud or “cabbage,” though esteemed a delicacy, is not often eaten, because its removal kills the palm. The harder pulp of the matured nut is dried either naturally or artificially and the *copra* thus formed is parched with rice, rasped, and put into curries or made into sweetmeats. The fresh or fermented juice of the stem is consumed as a beverage—toddly (*tari*); by evaporation it is made into *jaggery* (coarse sugar), and by subsequent treatment even refined sugar. Rheede (*Hort. Mal.,* 1686, i., 6) states that in his day a coarse reddish sugar was obtained by boiling the juice mixed with lime. When distilled, *tari* becomes spirit or *arak* and finally vinegar (see p. 1111). The methods of collecting the juice and the manufacture of its products differ very little, however, from those employed with other palms. (See *Borassus* *filabellifer,* pp. 170-1; Cleghorn, in *Edinb. New Phil. Journ.,* n.s., 1861, xiv.) Incidentally it should be observed that in Bengal the coconut-palm is not tapped for toddy but in Bombay this is an important industry, although very little sugar is made from it. It may be noted that *jaggery* is not infrequently mixed with lime to make a strong cement which

COCOS
NUCIFERA
Oilcake

The Milk.

Aed and Muthel.

Edible Products.

Copa.

Sugar.

Spirits.

Bomab Industry.

Cement.

THE COCOANUT PALM

COCOS NUCIFERA
Cocoanut

Jaggery.

Desiccated
Cocoanut.

Porecupine-
wood.

Hākāb-bowls.

Carved Vases.

Violin.

Cocoanut Pearls.

Matting.

Trade.

Fibre.

Exports, Raw
Coir.

Manufactured
Coir.

takes a fine polish. This is especially noticeable in Madras. [See Cements, pp. 293, 929.] The word jaggery is the trade name in India for all crude unrefined sugar, though mostly palm sugar. It comes from the Sanskrit sarkara (sugar) through the Konkani sakkarai, the Malayal chakkara and the Portuguese jagara or xagara. [For Indian Palm Sugar, see Phœnix, pp. 886, 929.]

The uses of desiccated and shredded cocoanut in European cookery and confectionery, etc., are well known, and need not be particularised. This trade is comparatively a modern one, and might be almost characterised as the chief aspect of European interest in the edible products of the palm. Many patent machines and processes have been brought out, and large factories organised in Europe and America (none in India) for the production and sale of desiccated cocoanut and the manufactures therefrom. It would appear that the growth of this special trade is so important that it is curtailing the export of cocoanuts (entire fruits) from America.

Timber.—The wood is commercially known as "Porcupine-wood," and is used for rafters and for other building purposes. It makes very pretty and durable furniture, and is also converted into spear-handles, walking-sticks and other fancy articles. [Cf. Gamble, Man. Ind. Timbs., 1902, 739.]

Domestic and Sacred Uses.—By Hindus the dried shell is almost universally used as the water-bowl of their smoking-pipe or hākāb (hence the name sarphili); less frequently it is the sounding-drum of crude violins. In Madras the shells are made into elegantly carved ornamental vases, lamps, spoons, sugar-pots, teapots, and small unripe ones into snuff-boxes, scent-bottles and the like. Entire shells are obtained by filing them with salt water and burying them in sand. By this process the kernel is destroyed and may be washed out, but the shell will rot quickly unless the nut so treated be fully ripe. [Cf. Ind. Art at Delhi, 1903, 133, 169, 196, etc.; Hoey, Monog. Trade and Manuf. N. Ind., 1880, 116.] According to the Emperor Baber (Memoirs (Leyden and Erskine, transl., 327) and the Emperor Akbar (Ain-i-Akbari, 1590 (Blochmann, transl., 1, 71) the shell of the cocoanut was even then used to make a kind of violin or mandoline called ghīchāk. Within the nut there is occasionallal found a small stone of a bluish-white colour called in India kalappa and regarded by the Chinese as a valuable amulet. These "cocoanut pearls" are very carefully described by Rumphius. They appear to be composed almost entirely of calcium carbonate and have a very small proportion of organic matter. The leaves of the palm are serviceable for thatch, screens, baskets, matwork, etc.

TRADE IN COCOANUT PRODUCTS.—No sort of estimate can be furnished of the area under this palm or of the total production. The trade returns are moreover scattered under several separate headings, so that a fairly complete statement of even the exports cannot be framed. It will be convenient, therefore, to take up the more important products of the palm separately:

Fibre.—Fibre, Rope and Manufactures therefrom. In trade statistics the exports are shown under the headings "unmanufactured coir," "manufactured coir" (exclusive of rope), and "cordage and rope" (including hemp and coir but excluding jute). The exports of raw coir to foreign countries manifested a steady increase from 1894 to 1900. In the latter year they stood at 70,016 cwt., valued at Rs. 5,65,625. But since 1900 they have greatly fallen off, having been only 25,500 cwt., valued at Rs. 2,26,626, in 1903-4, and 11,317 cwt., valued at Rs. 1,06,634, in 1906-7. This circumstance may be due to increased traffic in manufactured coir (rope matting, etc.), to increased exports in made-up mats or rugs (not returned as coir at all), or to certain rearrangements in official statistics.

Of the manufactured coir (excluding cordage and rope) the exports manifest a satisfactory improvement, the traffic for 1903-4 having been returned at 483,355 cwt., valued at Rs. 47,90,110, and for 1906-7 at 559,329
TOTAL TRADE IN COCOANUT

cwt., valued at Rs. 56,00,268. Almost the whole trade is in the hands of the merchants of the Madras ports, the receiving countries being the United Kingdom and Germany. Madras Presidency also supplies the other provinces of India with coir and coir manufactures. These internal transactions were in 1905–6 valued at 15 lakhs of rupees. As already indicated, coir cordage and rope cannot be ascertained separately from hemp, but the total transactions for all India in 1905–6 were 139,870 cwt., valued at Rs. 15,21,131; almost three-fourths went from Madras ports, and hence were in consequence chiefly coir (see Ropes and Cordage, p. 924). The imports of coir are unimportant, and come mainly from Ceylon and are consigned to Bengal.

Copro and Oil. — The exports of copra to foreign countries in the five years 1899–1900 to 1903–4 show a remarkable increase. They stood at 97,029 cwt., valued at Rs. 9,89,377, in 1899–1900; and reached 353,724 cwt., valued at Rs. 42,24,614, in 1903–4; but fell to 126,454 cwt., valued at Rs. 18,95,341, in 1906–7. Of this last amount 125,129 cwt., valued at Rs. 18,76,172, went from Madras ports. The chief recipients were France and Germany. The coastwise traffic in copra in 1905–6 amounted in all to 184,066 cwt., valued at Rs. 24,37,736. Bombay sent 47,218 cwt. chiefly to Sind, and Madras 134,546 cwt. chiefly to Bombay. The imports of copra from foreign countries have been steadily diminishing and are now unimportant. Statistics of the trade in Indian cocoanut cake are not obtainable separately from those of other kinds of oilcake. The traffic in cocoanut oil to foreign countries in the five years 1899–1900 to 1903–4 increased from 2,243,502 gals., valued at Rs. 27,79,669, in 1899–1900 to 3,379,631 gals., valued at Rs. 48,81,588, in 1903–4; but the trade is subject to extreme fluctuations, and fell in 1906–7 to 959,772 cwt., valued at Rs. 14,17,794. The United Kingdom and United States are the best customers, and the trade is almost entirely in the hands of Madras merchants. The imports, chiefly from Ceylon and Mauritius, amounted to one million gals. in 1899–1900, but were only 999,556 gals. in 1906–7 and very largely from Ceylon. In the last-mentioned year Bengal received 731,281 gals. and Madras 171,215 gals.

Nuts. — The exports of whole cocoanuts to foreign countries, though still small, show a tendency to increase. In 1899–1900 the total stood at 175,250 nuts, valued at Rs. 5,439; in 1902–3 it was 705,535 nuts, valued at Rs. 24,789; and in 1906–7, 365,890 nuts, valued at Rs. 13,853. Natal and Turkey-in-Asia are the chief receiving countries. The coastwise traffic in nuts is very considerable. In 1905–6 the total for all provinces was 81,920,724 nuts, valued at Rs. 25,50,384. Madras is of course chiefly responsible, having exported to Bombay 61,862,664 nuts, valued at Rs. 18,95,327. The imports of nuts from foreign countries amounted in 1906–7 to 10,975,127 nuts, valued at Rs. 4,98,090, and these came chiefly from the Straits Settlements, the Maldives and Ceylon. Bengal took 4,666,504 nuts, valued at Rs. 1,25,325, whilst Burma received 6,090,728 nuts, valued at Rs. 3,64,546.

India has not as yet figured in the returns of the world’s traffic in either desiccated cocoanut or in cocoanut butter.

COFFEA ARABICA

Coffee

The names given to the plant, its fruits, its seeds and the beverage prepared from these, are mostly derived from either of two words:—“kahweh,” an Arabic term that originally denoted “wine,” and “bun,” the Abyssinian name for the coffee plant or its beans. From these we have *cahwa, kawa, chaube, kapi, kave, kava, café, coffee and caféier*; also *boun, bno, ban, ben, buno, bunya, buncha*. The earliest Arabic writers, however, used the Abyssinian name by itself or in combination: thus Avicenna (11th century) calls it *buncho* and Rhases *bunco*. It was by them viewed as a medicinal plant and one very possibly that came from Abyssinia, so that the appearance of the Arabic name *kahweh* may with safety be accepted as marking the progress into the final development as a beverage. The association with wine may be considered in fact as indicative either of the abhorrence of the zealous followers of the Prophet of anything that savoured of the prohibited alcohol or taken as the direct expression of the curious circumstance that when the coffee beverage was first made known to the Arabs it was in all probability distinctly alcoholic, and thus fully deserved the name *kahweh*.

Habitat.—The true coffee plant would appear to have been satisfactorily established by botanists as indigenous to certain hilly regions of Abyssinia, of the Soudan, of Guinea and of Mozambique. Some doubt still, however, prevails as to its being indigenous to Arabia, though this was claimed by the early writers. Richard throws out the suggestion that it may have been indigenous to Arabia, and carried from thence to Abyssinia. It is certainly extensively cultivated in that country, as for example at Enarrea, Kaffa and Harrar. But Richard adds (as if in part support of his view) that coffee is only used by the Muhammadans, not by the Abyssinians proper. Deflers, on the other hand, speaks of the plant as cultivated in Attara and elsewhere on the mountains up to alt. of 7,000 feet, but as nowhere seen wild in Arabia. These two botanical writers thus take opposite sides in the story of the Abyssinian conquests. Richard believes that coffee was carried back from Arabia, and Deflers that it was conveyed to Arabia, about 100 years before the birth of Muhammad. Raynal, Lecomte, and many authors accept the opinion that the plant was taken from Abyssinia to Yemen.

Distribution.

Roasting the Beans.

History.—If we turn to Arabic literature for confirmation of this view we learn for certain that coffee is not mentioned in the *Koran*, nor of course is there any allusion to it in the Hebrew Scriptures. Thus if the plant be viewed as indigenous to certain tracts of Arabia, it becomes necessary to believe that its merits (if known at all) were appreciated within a very restricted area. Everything, in fact, points to the conviction that the people of Mecca, Medina and Bagdad did not know of coffee till well into the 14th century of the Christian era. Ibn Baithar, born at Malaga and who travelled during the 13th century in North Africa and Syria, makes no mention of coffee. The art of roasting the beans and preparing from these a decoction was apparently a more recent discovery, and one which may have been made in Persia. Prior to that, the *kahweh* that first attracted attention, was a preparation from the succulent rind or pulp of the coffee-cherry. This contains a fair amount of sugar, is often pleasantly enough flavoured, and if a decoction made from it were allowed to stand for some short time it would for certain become alcoholic and might even be distilled into spirit.
COFFEA ARABICA

History

Egypt.

Beans.
Husks used.
Crystallised Coffee-cherries.
Roaster.

India.

Arabia.

Stimulating Drink.

Abbyssinia.

Coffee of Roasted Seed.

Aden.

Kaf.
THE COFFEE PLANT

to Mecca, Medina and Cairo, and finally within the century after its introduction to Aden, it had been conveyed to Damascus, Aleppo and Constantinople. But in due course the more strict in the tenets of their faith objected to public coffee-houses and to the gaming, singing and dancing that there took place. At various times the effort was accordingly made to repress the traffic and to close the coffee-houses. In 1511 the Governor of Mecca (the Viceroy of the Sultan of Egypt) issued a "Condemnation" of coffee as the united opinion of the priests, doctors and learned men of that town, on the ground that it was a form of wine (kāwah) and therefore contrary to the law. It is thus just possible that the beverage then in use was prepared from the pulp of the fruit and was, therefore, actually intoxicating. But the Sultan revoked the condemnation and reproved his viceroy for venturing to prohibit an article of daily food used by the people of the capital of the Empire (Cairo) and by the Sultan himself. Later on (1524), however, the coffee-houses of Mecca had become the scenes of so much rioting that they were closed, by order of the Kadi. In 1553 the people of Cairo were divided into two classes, those who considered coffee lawful, and those who did not. In 1554 the coffee-houses of Constantinople were closed on a new pretext, that possibly marks the more complete establishment of the habit of roasting the seeds. The charred berries (seeds) were considered as charcoal, and thus unlawful as articles of food.

Divergence of opinion exists regarding the first European who saw and described both the plant and the beverage. Ramusio published in 1554 his Raccolta delle Navigazioni e Viaggi, and one of the travellers whom he quotes describes a journey from Aden to Rhada which he made as a prisoner. Incidentally he mentions coffee among the plants observed by him, but speaks of it as if he and all his readers were perfectly familiar with the plant so named. We know by what time it was being used in Constantinople, so apparently it was known some time prior to the actual date of its being chronicled. De la Roque, while characterising the traffic in coffee as quite modern, points out that Peter Belon, who travelled in Egypt and Arabia in 1546-9 and described most of the curious and interesting plants seen by him, makes no sort of allusion to coffee. But about the same time, or shortly after, several other travellers visited both Arabia and Abyssinia, and some mention while others are silent regarding coffee. Similarly John Ray published in 1693 a collection of Voyages and Travels. A few of the authors whose works he gives, deal with Ethiopia and Arabia, and some mention coffee while others do not. Clusiis (Arorn. Hist. (Garcia de Orta), 1574, 214-5) received from Dr. Alphonse Pancius of Ferrara, during the summer of 1573, a few coffee-berries (seeds). These he figured and described, and tells us that they were called buna and by some elkaue (al kae) and that in Alexandria a drink was made from them. Rauwolf visited Aleppo in November 1573 and saw the coffee plant, as also the beverage. He published his account in 1583 (Beschrieht. der Rosse., 103). Thus Clusiis, not Rauwolf, as is commonly affirmed, should be viewed as the first botanist who examined and described the coffee-berries. Prosper Alpinus, as already stated, had a few years still later given a full account both of the plant and of the beverage, and his statements were published time after time for a century subsequently, without any new information of value being made known.

Very few of the early rulers, travellers or botanists of India mention coffee, such as Marco Polo (1290), the Memoirs of the Emperor Baber (1519), the Ain-i-Akbari (1590), Rheed (1678), and Rumphius (1750). Lischoten (1598) described the preparation of tea in Japan, and his contemporary and publisher Paladanus, in a footnote commenting on that passage, observes that in the same way the Turks prepare a beverage from "the fruit which is like unto the bakeloæ (laurel berry) and by the Egyptians is called ben or ban." Pyrrad (Voy. E. Ind., 1610 (ed. Hakl. Soc.), i., 172) speaks of the king and great lords of the Maldives drinking coffee. Tavernier (Travels Ind., 1676, ii., 23-4) says that in his time coffee did not grow either in India or Persia, but that the supplies came from Arabia. He then adds that the principal coffee trade was from Hormuz and Bassora, "where the Dutch when returning empty from Mocha, load up as much as they can with that seed, it being an article which they sell well." From Hormuz it is exported to Persia, and from Bassora to Mesopotamia and other Turkish provinces. (For accounts by Bontius, Mandeslao and Oesting, see Camellia, p. 212.)

Down to the year 1690 the world's supply of coffee came from Arabia and Abyssinia. The following historic data may be accepted therefore as fittingly con-

366
CARRIED TO INDIA

including this brief statement. In 1615 coffee-drinking was carried to Venice. In 1644 Peter della Valle took it to Marseilles. John Houghton (Phil. Trans. London, 1809, iv., 420) says that Rastall, an English merchant, went to Leghorn in 1651, and there found coffee-houses. In the year following Mr. Daniel Edwards, a merchant from Smyrna, brought to England a Greek servant named Pasqua, who made his coffee. Shortly after Pasqua was enabled to set up a public coffee-house in Cornhill. It is further affirmed by Houghton that Dr. Harvey, the discoverer of the circulation of the blood, frequently used coffee. But Henry Phillips (Pomarium Britan., 1820, 112) says that Nathaniel Conopios, a Cretan, made coffee his common beverage at Balliol College, Oxford, in 1641. This same fact is alluded to by Evelyn (Mémoirs, 1819, 7) as having taken place in May 1637. In 1675 Charles II., by an ill-judged proclamation, in which he characterised the coffee-houses as seminaries of sedition, endeavoured to close them, but the Act was suspended a few days later. By 1688, according to John Ray, London rivalled the Grand Cairo in the number of its coffee-houses. Lord Bacon (Sylva Sylvar, 1658, Century viii., 185), speaks of the coffee drink used by the Turks, but he had apparently no personal knowledge of it. In 1657 the Turkish Ambassador Sulaiman Aga made coffee-drinking fashionable in Paris, and in consequence the roasted coffee-berries sold in Paris during 1670 at 55 a pound. It seems probable, however, that through M. Thvenot coffee was definitely introduced about 1667, but that the system of coffee-drinking was not general in Paris until 1680. In 1690 live seeds having been conveyed to Batavia, a plant was shortly after taken to Amsterdam and in 1712 the Dutch presented a seedling from this to Louis XIV., and still later from that plant seedlings were sent to Martinique. Madame de Genlis (La Bot. Hist. et Littér., 1811, i., 193) tells how M. Desclieux, who went to Martinique in 1720, as Lieutenant of the King, in the same ship with the seedlings, gallantly saved them by depriving himself daily of the greater part of his allotted portion of water—the ship's supplies having run short. He had in consequence the good fortune to see the plants arrive in safety and a new source of wealth thereby added to the island. M. de Candolle, M. Edelstein Jardin and many other botanists made use of this incident. In 1723 coffee was taken by the Portuguese to Java; in 1728 Sir Nicholas Lawa introduced it into Jamaica, and in 1770 it was conveyed to Rio de Janeiro.

The history of the introduction of coffee into India is very obscure. Most writers agree that it was brought to Mysore some two centuries ago by a Muhammadan pilgrim named Baba Budan, who, on his return from Mecca, brought seven seeds with him. This tradition is so universally believed in, by the inhabitants of the greater part of South India, that there seems every chance of its being founded on fact. About the beginning of the 19th century there is no doubt coffee had found its way to India, and in 1823 a charter was granted to Fort-Gloster, near Caledutta, authorising it to build a cotton mill, a coffee plantation and a rum distillery. Some of the coffee trees planted in fulfilment of that charter were supposed to be still alive, and about the same time coffee was successfully grown in the Botanic Gardens, Caledutta; but needless to say the industry of coffee planting nowhere found an abiding place on the plains of India but migrated to the hills of South India, in Mysore more especially, and thus into the very region where tradition affirms it had been introduced two centuries previously. The first systematic plantation was apparently Mr. Cannon's near Chikmugur. This was established in 1830. It is supposed, however, that Major Bevan may have actually grown coffee on the Wynaad at a slightly earlier date, and that Mr. Cockburn's Shevaroy plantation bears the same date as Mr. Cannon's. In 1849 Mr. Glasson formed a plantation at Manantoddy, and in 1848 plantations were organised on the Nilgiri hills. In Ceylon it is believed coffee was introduced by the Arabs prior to the Portuguese invasion of that island. It was commenced to be systematically cultivated by the Dutch from about 1660. In 1825 the first plantation by an Englishman was opened by Sir Edwards Barnes. In 1877 it was estimated that the capital invested in Ceylon coffee was close on £14,000,000. The fungal disease (Helminthus castaneus) appeared about 1869 and spread rapidly, steadily weakening the bushes and reducing their yielding capacity, so that by 1887 the Ceylon industry was completely ruined.

It would occupy many pages to give anything like a complete enumeration of even the more important works on coffee. The following are in supplement of those already given in the Dictionary, and of those mentioned above, will be found specially worthy of study:—Thovenot, Travels in Levant, Indostan, etc. (Eng. transl.), 1687, pt. i., 162-3; pt. ii., 11, 21; Dafour, L'Emploi du Café, 1671; also

367
The coffee plant.

Distribution.

The world’s supply of coffee, we are thus justified in believing, came originally from Arabia and Abyssinia, but as the demand increased new localities of production were established. The Dutch East India Company pioneered the modern trade by their experimental cultivation in Batavia. Soon thereafter coffee cultivation was successfully introduced into the warm temperate areas (or hilly tracts) of most tropical countries, and in time these not only produced far more than the ancestral regions, but yielded a supply of an even superior quality. Improvements in quantity and quality of necessity rapidly extended consumption until they made coffee one of the most popular of all beverages, and hence with a large number of the inhabitants of the globe it passed from the position of an occasional luxury to that of a daily necessity, rivaled only by tea —the sister beverage of the breakfast table.

Species and Varieties Cultivated.

After the somewhat detailed account already furnished of the chief historic facts regarding the Abyssinian (commonly called the Arabian) coffee plant, it is perhaps hardly necessary to indicate that particular species any further for the present. It is to this day by far the most important cultivated stock, though its liability to blight has caused planters to seek out other forms, in the hope of being able either to replace Coffee arabica or to use these as strains in hybridisation or as stocks upon which to graft, in the production of blight-proof plants. In this modern aspect of the coffee-planting industry three plants have attracted special attention.

These are:

(a) C. liberica, hiern —a native of West Tropical Africa (Liberia, Angola, Golongo, Alto, etc.). But in its indigenous area it is very indifferently cultivated, at most in but small plots along the banks of the rivers. In trade it is called Liberian or Abeokuta Coffee. Sir J. D. Hooker from 1872 advocated in the Ker Reports the cultivation of this plant—it was then being experimentally grown at Kew; Ferguson published a History of its introduction, progress and cultivation in Ceylon up to 1878; Thurber, l.c. 107-11; Ker Bull., 1890, 107, 245-53; 1892, 277-82; 1893, 25, 294-6; 1895, 12, 273-4, 296-9; 1897, 314; Progress Rept. Bot. Gard. Nigiri Hills, 1881-2; Christy, New Comm. Pl., 1878, i., 1-7; Lærne, l.c. 321; Trinidad Bull., 1894, 267-73; Watson, Cult. Tavoy, 1893; Rept. Govt. Bot. Gard. Bangalore, 1897-8, 11; Vankeirsbick, Rev. Agr., 1896, x., 135-7, 162; U.S. Yearbook Agr. Dept., 1897, 197; Huettenthal, Cult. Liberian Coffee, in Selangor Journ., 1897; Der Tropenpflanzer, 1897, ii., 290-6; iii., 231; Journ. Soc. Arts, 1897, 541; 1903, 461; Cat. des Pl. Econ. in L'Horti. Colom., 1900, 63-4; Edmond Bordage, Revue Agr. de la Réunion, 1901; L'Agri. Prat. des Pays Chauds, 1902, ii., 160, 624; Sadebeck, &c. 145;
PROPERTIES OF SPECIAL CROPS

Coffee

Arabica

Species and Varieties

|---------------------|-----------------------|----------------------|----------------------|--------------|---------|-----------|-------------------|-------------|-----------------|--------|-------|--------|

COFFEA
ARABICA
Area

Trop. Agrik., 1897, i., 217; Der Tropenpflanzer, 1898, ii., 34, 263; Trinidad Bull., etc., 1899, 223; 1900, 315; Agri. News, West Indies, 1902, i., 278; ii., 237; Journ. Soc. Arts, 1903, 461; Trop. Agrist.; Planting Opinion; Madras Mail, etc., etc. “The Highland Coffee of Sierra Leone.” This interesting West African species, Mr. Bentham thought, might be but a variety of C. arabica. The seeds were issued from Kew Gardens, and the plant is now being experimentally grown in Trinidad, Java, Ceylon, Mysore (not successfully) and elsewhere. Hybrids have also been formed between it and C. arabica, as also C. liberica. It grows freely, yields abundantly, but is longer in coming into bearing than C. liberica. It gives a highly flavoured Moka-like berry.

(c) C. Laurentii, Wildem. (C. robusta, L. Lind), is another tropical African species that has attracted some attention, though it is but imperfectly known botanically. It is spoken of as “Congo Coffee.” An article appeared in L’Horticole Coloniale (l.c. 64-6) in the year 1900 that gives a good account of this plant. It is spoken of as prolific, as almost immune from the ordinary diseases of coffee, and as yielding a berry of a superior quality with a delicate aroma. It frequents banks of streams and prefers situations moist and not too shady. The plant is not, like C. liberica, pyramidal in shape, but is rather rounded in outline. Jumelle (Les. Cult. Colon. (Aliment.), 1901, 350-85) adds that it inhabits Sierra Leone, on soils formed of decomposed granite or gneiss. Owing to its having been first made known from the Nunex river it is often called “Rio Nunex Coffee.” In India and Ceylon this plant has so far failed to justify extended endeavours, but in Dominica the results have been most encouraging.

CULTIVATION.

Localties and Area.—In this work it is desirable to restrict observation to India, and consequently to allude only incidentally to the coffee-growing of other parts of the world. Particulars of cultivation in Java, Sumatra, Philippines, Ceylon, Queensland, Brazil, West Indies, Central America, Mexico, etc., will be found in the respective chapters of Thurbur’s Coffee from Plantation to Cup and other such works, to which the reader is referred. The actual area under the crop in India cannot be stated definitely, owing to the unwillingness of certain planters to furnish information. The error that exists is, however, a relative one, and tends year after year to be lessened rather than increased. Taking the official returns as they stand, it has to be accepted that the area shown under coffee, during the past thirty years, has manifested severe fluctuations. With a perennial crop this can alone denote the falling-off or abandonment of certain plots and the resuscitation of old plantations or the opening out of new lands, coincident with variations in the world’s coffee necessities. Thus, for example, the revolutions that took place in Brazil in 1889, 1891 and 1893, followed as these were by small crops during one or two of the succeeding years, had a highly beneficial effect on the Indian coffee-planting industry. The area returned as under coffee in 1885 stood at 237,494 acres, but for the ten years ending 1895 the area in India was 274,000 acres; in 1903, 228,815 acres; and in 1904, 212,964 acres. The latest report of the Commercial Intelligence Department states the area at the end of 1906 to have been 210,688 acres. During the decade ending 1895 prices may also be said to have ruled high, so that the industry was very prosperous.

In addition to the absence of returns as to certain plantations, an estimate of yield to acre could hardly be accepted as even of general application. It accordingly follows that trade statistics almost invariably manifest higher exports than the agricultural data would show as produced. The relation of surveyed areas to actual returns of foreign exports is one of the most profitable aspects of study. Taking 100 to represent the area as also the exports in 1885, the following variations have oc-
COFFEA ARABICA

Soils

be accepted as a method of deriving the yield, though the figures thus produced are suggestive and have, therefore, a certain value.

Climate and Situation.—It has been said, and with much force, that a good deal of land at one time and another has been opened under coffee that was never suited to it. Of this nature are some of the Coorg estates (or portions of them) that have a southerly aspect and are exposed to the full force of the east winds. Situation and exposure are factors of prime importance. It seems to be the Indian experience that coffee prefers land standing from 1,500 to 5,500 feet above the sea-level, the exact altitude being controlled to a large extent by latitude. Far to the south higher altitudes would seem necessary than in the more northern tracts. The temperature best suited would appear to range from 55° to 80°. The total rainfall should not exceed 150 inches but about 100 is the amount most frequently commended, provided it be fairly evenly distributed throughout the year; but December to March may be dry. Coffee distinctly requires a humid atmosphere, and in the opinion of most planters the prevalence of heavy winds are more objectionable than a dry atmosphere or a low rainfall. The climate must be open and bracing and the sky not heavily overcast. With *C. arabica* low-lying and damp situations induce disease. As already mentioned, however, altitudes lower and warmer than those indicated for *C. arabica* are suited for *C. liberica*, but even with that species the higher limits of its production give the most valuable berry.

Soil.—Coffee, although very largely a surface feeder, has a long tap-root which it is most desirable should not be injured during transplanting. The success of the crop depends to a large extent on the depth of the soil. The best soil might be described as a well-drained, ferruginous loam, though certain clays mixed with sand give good results, especially if a fair amount of humus be present or be given as top-dressing. Very chalky soils, as also stiff clays, are useless. It is usually held that soils that contain a fair amount of iron give the best-flavoured berries. But below the subsoil there must rest a bed of very porous material so as to ensure ready drainage. In fact a rocky soil with pouches of loam between the outcropping rocks gives admirable results, as may be seen in many parts of the Shevaroys, the Nilgiris and the Wynaad. The rocks are constantly weathering and thus adding to the soil, while, according to the planters, they also transmit the heat and moisture. [Cf. Robinson, Pringle, Voelcker, Lehmann, Leather, etc.] It is, however, unfortunate that no record has been kept of the conditions of land opened out and of the same fifteen or twenty years afterwards, both in estates manured and in those not manured.

Nursery.

PROPAGATION.—Nursery.—Having selected the site for a plantation, cleared and burned (or piled up in ridges to await natural disintegration) all the trees not deemed necessary for shade purposes, laid out the roads and carried a water supply to the coffee-house, the next most urgent task is to select and prepare the site for the nursery. This must never be on an old coffee plantation, but on virgin ground of sufficient richness that manuring may not be necessary except to add sand with a view to securing its porous nature. But the soil of the seed-beds must be rich in vegetable mould, bear a gentle slope, be well drained, retentive of moisture, and liberally supplied with water for irrigation purposes, since for some time watering is necessary. If not already secured, provision
SPECIAL CULTIVATED STOCKS

should be made for shade against the severity of the sun, but drip from protecting trees must be avoided by seeing that they are at a sufficient distance from the seed-beds. The beds should be slightly raised and of a breadth to allow of hand dressing from the dividing paths. In many cases temporary shelters may have to be constructed over the beds. A deep trench had better also run along the top of the entire nursery so as to check the possibility of surface wash.

The reader should consult the Dictionary, and one or other of the technical reports, cited above, for details of the coffee industry. For example, the varying methods of sowing, transplanting, weeding, pruning, etc., which to some extent are peculiar to each locality, must be sought for elsewhere. All that can be attempted in this work is a review of the facts that are deemed likely to have a bearing on the stability and prosperity of coffee planting.

Selection of Stock.—One of the most important of all tasks is the decision as to the stock to be grown. Even if the choice has been made of Arabian in preference to Liberian, there still remains the selection of the race or hybrid desired, and the source of supply. The reputation of the seed estate, the age of the parent stock (seven to ten years preferably), the method of treatment of seed, etc., etc., are points of vital importance. The seed should be gathered from healthy plants, the cherries should be fully ripe before being plucked, then hand pulped after maturity, and lastly they should be washed and dried in the shade in such a fashion as to avoid both fermentation and undue drying of the kernels. In fact some planters believe that seeds fresh from the trees should be husked and instantly sown to obtain the best results. The talk of “male” plants and the discussion as to the value of peaberry as seed, are themes indulged in at the expense of infinitely more valuable topics, but the greatest mistake of all is to suppose that coffee is coffee and that both seed and seedlings may be picked up anyhow or anywhere.

Races and Hybrids.—M. Jumelle (Les Cult. Colon. (Aliment.), 1901, 352-3) mentions many forms of coffee (apparently all races of C. arabica) and his enumeration may be here quoted as suggestive, since some of the races mentioned are already known to the Indian coffee planters. He treats of Moka as the stock typical form of the species and adds:—

(a) Vermelho.—A red-fruited coffee much grown in Central America: it is more robust than the type.

(b) Amarello of Brazil.—A yellow-fruited plant rich in caffeine but rather bitter in taste.

(c) Maragogipe.—The Upland Brazilian coffee, which has seeds nearly as large as Liberian coffee and is very prolific. This form appears to have been introduced into South India and is often referred to by planters, but no one appears to have furnished a report of its special merits or of the success attained with it in India. According to some writers this is a hybrid between C. arabica and C. laurifolia. [Or. Kev Bull., 1894, 163-4; L’Horti. Colon., 1900, 62-3; Agri. News W. Ind., 1903, ii., 316-7.]

(d) Leuocarpus.—A white-fruited plant found originally in Sierra Leone. Could this be one of the special species of that country and not a cultivated race of C. arabica?

(e) Souffrière.—A very hardy plant that resists insect pests: the leaves are like those of the type but the seeds much larger.

(f) Leroy of Reunion or Pointed Bourbon.—Is more hardy than Moka, has short branches crowded with leaves, and the seeds are pointed at one end.

(g) Mysore.—Commercially described as “Cannon’s high-priced Mysore.” Has round heavy seeds; the branches are ascending; but as the yield is irregular it is being replaced by the next form.

COFFEA
ARABICA

Cultivation

Shade.

Trench.

Varying
Methods.

Selection
of Stock.

Age of Parent.

Seed should be washed.

Pea-berry.

Races.
THE COFFEE PLANT

(h) Coorg Coffee.—This has large flat seeds and is propagated easily. There are several well-marked races such as the "Chick," "Golden Drop," "Nalknad," etc.

(i) Java Coffee.—This bears branches less horizontal than Brazilian, and the two young leaves at the extremity of the shoots are greenish-yellow in the Javan, and brownish-yellow in the Brazilian plant.

The planters of India recognise many more distinct races, but as no one seems to have scientifically described these, and the writer's personal acquaintance with the coffee plant was acquired during one or two very rapid tours of inspection, he is unable to attempt a description or classification of the special Indian races and hybrids. The reader would do well, however, to consult Mr. J. Cameron's various reports on the experiments conducted at the Lal Bagh of Bangalore. He will discover that Cameron discusses the hybrids that have been produced naturally, and explains that their most remarkable feature is their immunity from leaf-disease. But he has apparently not been so successful in the production of crosses as has been the case in other parts of the world. All the same his conclusions on this issue are clear and definite. He is sanguine that hybridisation may be looked to as likely to afford much advantage. The renovation of coffee, he accordingly adds, is "not wholly a matter of soil enrichment." "Next in importance to hybridisation and proper culture, the interchange and special selection of seed must take a high place." It may be here added that much has been said regarding the value of plants formed by grafting, or by inarching, as for example C. arabica on to rooted plants of C. liberica. The seeds from such are said to be superior to pure stocks, and in some respects constitute forms nearly as distinct as the crosses and hybrids already mentioned. The Kew Bulletin (1898, 30) affords much useful information regarding the hybrid coffees now grown in South India—a subject very greatly developed subsequently by the Indian press. But the industry is much indebted to Mr. W. L. Crawford, Mr. J. W. Hockin, Mr. Brook Mockett and Mr. Graham Anderson—the last-named gentleman having read a paper of great merit before the South Mysore Planters' Association that reviews all the practical results attained.

The importance of careful selection of stock cannot, in fact, be overstated, and it is probably not far from correct to affirm that the majority of Indian coffee plantations possess two or more widely different plants treated as if one and the same, the result being irregularity both in quality and yield. The difficulties of the industry preclude any risks being accepted that might be obviated by personal knowledge and care. Hence it is desirable that the nurseries be as near the planter's house as possible, so as to ensure constant supervision, from sowing to picking out and final transplanting. Any departures from the desired type should be instantly removed from the seed-bed, though no opportunity should be lost of studying sports that may appear. Forms directly suited to the climate, soil, and method of treatment pursued in each plantation should be the aim of every planter. But these cannot as a rule be purchased. They must be acquired as local manifestations or crosses specially developed. The study of the seed-bed and the care of the seedlings should be the special charge of the manager himself, not of the overseer or foreman of works. [Cf. Lehmann, Lect. in Planting Opinion, August 8, 1903.]

Planting Out.—During the first few years of a plantation it should be dug all over as deeply as possible. After the coffee plants enlarge, thorough and deep trenching becomes more or less impossible without.
much injury to the roots of the plants. When about a year old the seedlings are planted out into their permanent positions, but if care be taken to select dull weather for this operation, many planters prefer older plants, say two years old. Much difference of opinion prevails as to the distance apart that the plants should be lined in the estate. The question hinges on the following considerations:—(a) the nature of the stock selected; (b) the system of cultivation to be pursued, more especially the size of plants desired; (c) the character of the soil; (d) the degree of shade that exists naturally, or that it is contemplated to afford; and (e) the nature of the climate. In cold countries, where the plants are not likely to attain to any great size, close planting may be indicated, the reverse being the case under influences that might be expected to cause vigorous growth. In India the distances apart usually adopted vary from 4 to 8 feet each way, and 7 feet might be said to be common, or 6 feet between the plants and 7 feet between the rows. This would give 1,037 plants to the acre, but in many estates a considerably larger number exists—in some 5 by 5 feet, or 1,740 trees to the acre. On the other hand, Mr. Leeming of Scotforth, in the Shevaroys, was induced some few years ago to believe that a larger plant and more space would give equal, if not better returns, at a much lower cost than the prevalent system of many small plants. He accordingly removed each alternate bush and reduced his estate to 600 plants to the acre. The result was so very promising that he went still further, and reduced it to 300 or 325 plants to the acre. On the average his bushes now stand 12 feet apart each way. In 1899 I had the pleasure of inspecting Scotforth plantation in company with Leeming, as also most of the other coffee estates of that neighbourhood. And I have to admit that Leeming's plants seemed to me in a healthier condition, and to be fruiting more vigorously, than any coffee seen elsewhere. The yield had been greatly increased, the cost of cultivation lessened, the plants rendered better able to throw off disease, and the produce recorded as fetching a higher price than had been the case under former conditions. These are all powerful arguments. But there may be other considerations and conditions that have to be borne in mind. It does not follow, for example, that plants 12 feet apart each way would give everywhere the same results as on the Shevaroys, nor that each race of the coffee plant would do so. The subject is one, however, that is capable of definite verification, and one moreover that it would seem should be solved by every planter for himself. It would not be a very serious matter to place a plot of a few acres under trial, and if the returns proved unsatisfactory the replanting of fresh stock in place of the old and exhausted plants that had been removed would in time repay the outlay.

Cultural Operations.—It is undesirable to give details of the varied opinions and practices that prevail as to the best systems of "holing" and "planting out." The size and depth of the holes depend very largely on the nature of the soil, the lie of the land, and the amount of money and time the planter is prepared to expend. Where money is not a serious consideration, large holes are made, the removed earth being deposited on the higher side, the holes left exposed for some time to the sun and air, then filled in with surface soil, manure and green vegetation (weeds), but with little or none of the earth previously removed. After a time the fresh soil thus furnished will sink, and this depression must
be made up with fresh surface soil. Farm-yard manure may with advantage be also given until a little mound has been formed, on the top of which the seedling should be planted. Transplanting should if possible be made during cloudy days, and just before the commencement of the most copious season of rain. Temporary shade should be afforded to the seedlings, in the form of small pieces of crude bamboo matting, or simply leafy boughs or tufts of bracken fern. It is also a good plan, especially in exposed situations, to fix a stake to which the stem may be lightly tied. If exceptionally dry weather follow transplanting, it may be necessary to give one or two waterings. In some cases a nursery is dispensed with and two or three seeds are deposited on the specially prepared hole-mounds, the healthiest one being ultimately allowed to grow and the others cut out or transplanted.

Drainage.—Weeding or removal of wild herbage from the plantation, so as to prevent the young coffee from being choked, now becomes an essential operation. If drains have not been provided at the time the estate was being laid out, by this stage they become imperatively necessary. Nothing is, in fact, more important than a good system of drainage. In the Pests and Blights of the Tea Plant (2nd ed., 45-66) it has been urged on the attention of tea planters that the objects of a system of drainage are to increase the depth and improve the condition of the arable soil. Every word of what has been said in that work on the drainage of tea is applicable to coffee. And I may further add that during my inspection of the coffee estates of South India I found few had been drained anything like to the extent practised with tea. I accordingly urged the coffee planters to reform this defect.

One of the great advantages of drainage is the admission of air (oxygen) into the soil. The drainage of agricultural lands differs thus essentially from that of the streets of a town. The removal of surplus water is undertaken with a definite object in view, the fulfilment of which determines the position and number of the drains. The water is drawn below the surface, and thus made to carry with it the materials that the combined action of the sun and the air have transformed into a soluble condition. To permit or encourage surface wash is to render the soil sterile, in fact to afford facilities for soil-removal. The deeper the drains the further apart they may be placed, and the deeper the resulting arable soil. But drains of some kind are indispensable for successful coffee planting. In many coffee estates that occupy steep, hilly slopes, a system of trenching or contour catch draining has come into general use, as a protection against severe and wasteful surface wash. The trenches to some extent answer the purpose of refuse pits for the accumulation of manure. In fact in most instances they assume the condition of parallel chains of pits. If used as pits into which the weeds may be thrown, it is customary to have them cleaned out before the setting in of the rains, so as to afford every means of intercepting the fine soil of the surface wash. The contour drains in the tea estates are usually laid out with a level and the earth removed in their formation thrown on the upper side. This is essential, since the slightest slope downhill would convert them into dangerous surface drains. So again terracing is an additional method practised with great advantage on some estates, though apt, when exposed to the south or south-west, to dry the soil unduly. But as with contour drains so with terraces, they must be laid out as nearly level as possible.
TILLAGE

But when slopes are not too great and the soil fairly light, *bunding* is a third method, superior to even trenching or terracing. Instead of cutting out a terrace, a bank of soil is laid across the slope, and the rain thus made to wash this into a natural wide terrace. In many parts of the country bamboos and prunings are used to form fan-like structures upon which the sitting-up process may be encouraged.

Digging and Mulching.—Lehmann (Bull. Dept. Agri. Mysore, 1902, ii.) has very properly pointed out that coffee is so very different from the majority of the plants cultivated in Europe and America, that it does not of necessity follow that approved Western methods are in every detail applicable to it. "For one thing," he observes, "coffee thrives under the shade of large trees, while in Europe, or at any rate in Canada, the cultivated crops invariably suffer near trees of any sort." He accordingly urges that under the climatic conditions and on the soils that prevail in Mysore, it is essential that knowledge of coffee cultivation should be acquired by direct experiment rather than deduced from general agricultural principles. And in that opinion he is assuredly correct. Coffee is as sensitive, Lehmann tells us, as most plants to the injuries caused by caking or baking of the soil. In Mysore, he continues, most soils after being dug and then exposed to heavy rain, followed by bright sunshine, become quite as hard on the surface as they were before having been dug. But surely that peculiarity is experienced throughout the world, and on the pure sands of the deserts of Rajputana as much so as on the rich loams of Northern Europe or the coffee lands of Mysore, wherever rainfall is followed by bright sunshine. It is to check the parching and baking action of the sun that gardeners mulch or litter certain crops as a temporary measure. It is with the same object in view that weeding at the commencement of the hot months is discouraged by the cultivators of most tropical countries. Cameron points out that the annual weed "Blumea" (_Ageratum conyzoides_) seen in established plantations can do comparatively little harm and that a light covering of weeds might even do good by preventing the surface becoming overheated. To guard against severe caking and overdrying of the soil is a legitimate and rational aspect of all agriculture. But to advance from that position to the condemnation of tillage and the rejection of the fully demonstrated fact that the breaking-up of the surface soil and its exposure to the action of heat, light, air and water has the effect of reducing non-soluble to soluble compounds and the production thereby of plant food, seems utterly unwarrantable. The protection of the soil against surface wash and surface caking by a natural litter of leaves (mulching) is very admirable and may be very useful as an occasional process of fallowing, but to expect that any lands, however admirably drained, weeded and mulched, could continue indefinitely to yield coffee or any other crop without tillage or manure, is to carry a natural law to a perilous and unjustifiable extreme. Lehmann, by his studies of the manures of coffee, has shown that he never contemplated his recommendations for mulching to be the one and only method of treatment of the soil that was desirable. It would indeed be an unwarrantable assumption to affirm that what may be true with a wild plant must be true universally with the same plant under the abnormal demands of cultivation. It is beside the issue to say that mulching has actually been the system with a group of coffee gardens in Coorg for many years (Madras Weekly Mail, March 20, 1902). It might fairly be, and in fact
THE COFFEE PLANT

has been asked:—"Can it be proved that these very plantations could not have done better during the past?" or, "May they not, even now, be approaching the exhaustion that led to the abandonment of many similar and once fertile estates in that very province?" It is doubtless true that with rich primeval forest land, if well drained and carefully mulched, exhaustion may not become manifest for many years. But it is equally true that with indifferent soils or exhausted lands, mulching can never take the place of tillage and manure.

Lehmann concludes his very suggestive report—a most valuable paper even though its main contention may not be accepted as constantly and universally applicable—by the following statement of the advantages of mulching:—"The careful preservation of the natural mulch on pieces on which the coffee has 'closed in':—(a) saves the digging; (b) leaves the soil in a better mechanical condition than the usual amount of digging could do: (c) probably prolongs the life on an estate and increases its general vigour and productiveness after the first year or two; (d) will save a large portion, possibly all the expense of applying bulk manure. Not digging an estate may have the following disadvantages:—(a) it is liable to reduce the crop for a year or two; (b) it has the tendency to increase the risk of fire."

A volume might be written in an attempt to review all the opinions that have been published for and against the tillage of coffee lands. A correspondent, for example, wrote to a Madras paper in 1895 regarding South Coorg—"The change that is worked in a sickly piece of coffee by deep digging is little short of marvellous; in a couple of weeks' time one would hardly know it for the same piece of coffee." That sentence is fully expressive of the opinions of the vast majority of planters.

Manuring and Manures.—Cameron (Rept. Offic. Visit to Coffee Dist., Coorg, 1898) has much to say on the necessity for high cultivation and the manures best suited for coffee. He discusses farm-yard manure; bone; oilcake; nitrogenous manures, and the fixation of free nitrogen by the aid of leguminous catch crops; lime; phosphates; potash; green manures, etc., etc., and commends the use of bracken fern for the litter of cattle on account of its subsequent value as a manure. In his concluding observations he remarks: "The application of proper manure in correct quantity and at the most serviceable time, are things which should be assiduously learned from practical experience." So again, one of the most valuable contributions to our knowledge of the art of manuring coffee is the series of studies conducted by the late Mr. William Pringle, and published in pamphlet form by Messrs. Matheson & Co., of Madras. While we have many similar technical reports, some of which will be briefly mentioned below, very little of a practical nature has transpired of the accumulated experience gained during the seventy odd years of Indian coffee cultivation. The planters prefer, as a rule, farm-yard, or bulk manure, as it is called, and are restricted in its use by the difficulty of procuring enough. Lehmann has recently pointed out that the first and foremost consideration is to see that all the essentials in soil-composition are present, in the right proportion and right condition. Fertilisers may then be given in the direction of crop requirements. He, for example, remarks that "the potash fertilisers have, I fear, not received the attention they require. Judging from the analytical results I have seen, most of your soils are rich in nitrogen but relatively poor in potash,"
MANURES AND NITRIFICATION

phosphoric acid and lime, and, although much more potash than phosphoric acid is carried off in your crop, potash is but seldom added.” So again, many writers have shown, and most conclusively, that if the soil does not possess enough lime, bone and other expensive manures may be worse than useless. Voelcker (Improv. Ind. Agri., 1893, 270), for example, some years ago observed that the differences of practice occur in the manner of applying manures, some planters preferring to throw manure broadcast and to fork it in, others thinking it better to dig a trench round the bush, about a foot or a foot and a half from the stem, and to put back the soil mixed with whatever manure it is intended to apply. “Manures such as bones, oilcakes, etc., are too generally used, because they have always been used, and because there is a general belief in their utility, but it is more than probable that in some cases large sums are needlessly expended on them, while in others lack of lime, potash, or other soil-constituent may be responsible for a diminishing yield.”

The manures and the methods of applying them to one plantation are not always applicable to another, so that no general rule can be laid down, and the indications afforded by the soil itself must be closely followed. In some parts of the coffee area, fish manure is much appreciated as a crop fertiliser, cow-dung being viewed as strengthening the wood. Mixed bone and fish manure produce an abnormally heavy crop. Oilcake (poonac) is believed to strengthen the leaves against blight. [Cf. Voelcker, l.c. 104–5.]

The season for applying manure is also a subject of much difference of opinion, but is possibly best solved by a careful study of the particular manure that it is contemplated to be given. Stem and leaf-forming manure should naturally be given just after the crop has been gathered; those supposed to increase the yield would, on the other hand, best be supplied just before the flowers appear, say in February and March. So again, bone and other manures that take some time to decompose require to be given early and soluble manures much later. Many writers seem, however, to condemn immediate or chemical manures and regard these as possessing few, if any, advantages for coffee.

Assimilation of Free Nitrogen.—So much has been said of the advantage of growing (as a sort of rotation) leguminous crops along with coffee, that a volume might be written on that topic alone. The subject is by no means new nor confined in its applicability to coffee. A rotation of clover with grain crops became a principle of all early European agriculture, long before the correct explanation of that system had been discovered. Its application to coffee has been urged by all writers, more especially by Mr. B. Nelson. The use of leguminous shade-trees such as the sau of the Assam tea planters (Albizia stipulata) and the Erythrina lithosperma of coffee planters are good examples of both shade and nitrogen assimilation. (See below the para. on Shade-trees.) [Cf. Pests and Blights of the Tea Plant, 136–47.]

Nitrification.—Allied to the study of free nitrogen, though perfectly distinct, are the methods by which the combined nitrogen of the soil or of manures is prepared for plant use and the processes or vehicles of its transmission into the roots. This is defined as the nitrification of the soil. Nitrogenous matter is oxidised and the nitrogen developed into a nitrate chiefly of lime or of potash. Until quite recently it was believed to be a simple chemical process. But it has been ascertained to be a consequence

379
of the vital activity of certain organisms, chiefly bacteria. Ammonia compounds are found by the agency of uro-bacteria and other putrefactive organisms before the nitrates are produced. Dr. A. B. Frank (Lehrb. der Botanik, 1892, i., 259–75) gives details of some studies of symbiotic fungi found on the roots of certain plants, such as on a few species of Cypripedium and Orchidaceae. These would seem to aid in nitrification. A long series of articles from the pen of Mr. H. B. Evans will be found in Planting Opinion of 1900, in which he advocates that “Nitrogen Hunger” is one of the chief maladies of the coffee plant. He seems to have assumed that the nitrogen of the soil and of the manures of coffee estates does not exist in an assimilable condition. In other words, that the agents of nitrification are absent to a ruinous extent. This, he would further believe, proceeds from the deficiency of a necessary symbiotic fungus, the function of which (Evans affirms) is the transmission of nitrogen from the soil to the roots of the coffee. Should the existence of a symbiotic fungus be actually established for coffee, the conditions that would favour its extended production might become of supreme importance. But the issue, so far as present knowledge goes, is a pure hypothesis. The presence of a fungus on the superficial roots of the coffee was discovered by Janse in Java. [Cf. Ann. du Jard. Bot. de Buiten., xiv., 113–8.] That fungus was most prevalent in soils rich in humus, and was also found on the roots ramifying among the litter of dead leaves on the surface. But no one has as yet proved that Janse’s fungus is actually beneficial to the coffee plant, and Janse himself, like all other investigators, failed to specially cultivate it. Although there are possibilities in this direction, the subject is infinitely less known than the action of the bacteria contained in the root tubercles of the leguminous plants indicated above. [Cf. Percival, Agri. Bot., 1902, 764–6.]

Concluding this brief review of coffee manures, it may be remarked that Voelcker observes very truly that “a sure sign of the land being too highly manured is the appearance of shoots all up the stem. The indication of a good bush is, on the contrary, the healthy growth of new wood on the branches.” [Cf. Wall, Manuring of Coffee Estates; Burgess-Brown, Coffee Planting (17 years’ experience in Ceylon), 1877; Hughes, Ceylon Coffee Soils and Manures, 1879; Munro, Soils and Manures; Lawes, Corresponding regard to Coffee Manures, in Planting Opinion, Aug. 1896; Kramer, Mededeelingen Pl. Java, 1899, 3, 73; 1900, 64; 1901, 1, 56; Clarke, Prize Essay, Management of Soils under Coffee, 1883; Elliot, l.c. 350–52; Pringle, Madras Mail, 1891; Revue des Cult. Colon., 1901, viii., 198, 294; Lehmann, Lect. before N. Mysore Planters’ Assoc. (reprinted in Planting Opinion, Nov. 1900; also subsequent lecture in Planting Opinion, Aug. 1903; Cultura Rational du Cofeeiro, in Journ. dos Agri. Rio., 1902, ii., 57; São Paulo, Boletim da Agri., Jan. 1902.]

Pruning.—Within the past few years, thanks to the enlightened energy of Mr. Leeming of Scotforth, Shevaroys, there has come into existence two diametrically opposite schools. These may be characterised as the non-pruning and the severe-pruning systems. Having studied the latter for some time, and formed the opinion that certain departures were urgently needed, I became a partial convert to the non-pruning system so ably advocated by Leeming. It would seem, at all events, very possibly preferable to the system of severe pruning that presently prevails. Judged from the purely botanical standard of the state of health and vigour of
the plants, the non-pruning system seemed superior to the customary form of severe pruning. But I am disposed to add that I can easily conceive of climatic conditions and stock plants where a pruning system would be indispensable, so that I by no means think non-pruning is of universal application. It is, moreover, not new but has for many years been followed in other countries, and even in India has been the practice in vogue with most Native coffee-growers. Leeming would, however, appear to be the first European planter in India who has had the courage of his convictions, and who has not only uprooted two-thirds of the plants on his estate, but allowed those that remained to grow in obedience to soil and atmospheric conditions.

It is customary to speak of coffee-pruning as consisting of three stages, or operations—viz.:—Topping, Handling, and Pruning (proper). The first consists in nipping off the top shoot, so as to check the upward growth. This is done at various stages, usually when the plants are 3 years old, the shoots being then cut at a height of 5 feet; at other times the nipping off is done much earlier, at 18 months to 2 years, the stem being left at from 2 to 3 feet in height. When the short process is pursued, a sucker (as it is called) soon arises near the top pair of branches and renews the upward growth. This is allowed to continue for a foot more and is then in turn nipped off. A second sucker in consequence rises up and is in like manner checked, when the desired ultimate height of the main stem is attained, namely 4 to 6 feet (usually 5).

In the first instance (3-year-old stems) there is a terminal snag produced. The topmost pair of branches, below the snag, having the best advantage as to light and air, lengthen horizontally and in due course become so weighted with fruit that the terminal snag of dead wood is split open, and this cleavage increases year after year until many bushes become literally elet in twain. Admission is thereby given to damp and weather action, also to disease and vermin of all kinds. The aim of the planter in this system of "topping" is to produce a crown or umbrella of primary branches. By what is called "handling," all undesirable suckers and "gormandisers" are systematically removed and every effort made to restrain the bush severely on fixed lines of growth supposed to favour fruiting and be most convenient to the pluckers. [Cf. Pierrot, Cult. Prat. et Ration. du Caféier, in L'Agri. Prat. des Pays Chauds, 1905, v., pt. i., 180-93, 282-301, 411-25, 467-79; v., pt. ii., 34-49, 101-8.]

In the second system (largely followed in Coorg), in addition to the terminal snag, with all its possibilities of evil, the growth of the stem is twice checked and snags of dead wood thereby interposed within the stem, which must have the immediate consequence of disarranging and intercepting the circulation of the sap. Nothing could be conceived less advantageous. Moreover, the effort is made by the growth of the secondary branches, ultimately produced, to convert the topmost three or four pairs of primaries into a completely ramified umbrella, that must of necessity render the branches below a useless burden on the resources of the plant. M. Edouard Pierrot recommends a system of pruning that does not seem to me to differ from that followed by the Indian planters. His account of coffee-planting is, however, most instructive, and should be consulted by all interested in the industry.

So far as could be learned from personal observation, few subjects are perhaps more urgently calling for reformation, both as an aid against
disease and as a means of enhancing returns, than the system of pruning. Any pruning seemed accordingly preferable to that usually practised. By encouraging a vertical rather than a horizontal growth, the fruiting area of the estate is (if one may so express it) immensely increased. But where, from the nature of the soil, the peculiarities of the climate or the character of stock grown, "coffee trees" could not usually be produced (such as those of Scotforth), it would seem that a pyramidal bush might nevertheless, and with advantage, be aimed at rather than a fruiting umbrella. This might be accomplished in various ways that doubtless would instantly occur to the practical planter.

Without desiring to dictate, one method that suggested itself to me while inspecting the coffee estates of the Wynaad may be here mentioned. Plants 4 feet in height, or when they possess 6 or 7 pairs of branches, might be taken in hand. In some plantations, however, bushes only 2½ to 3 years old were seen to possess 15 to 20 horizontal branches, within a height of 4 feet. It is very unlikely that these could all bear fruit, hence perhaps half may have to be removed. But when the approved number of primaries had been secured, the green terminal shoot, containing a pair of leaves and a bud, might be nipped off, and at the same time the terminal buds of the topmost three or four primaries similarly destroyed. Care would have to be taken, however, that this plucking off of the terminal buds was done on green not woody shoots. Delay till wood is formed almost invariably involves a snag, and moreover the cutting back of finally matured shoots requires great care and a study of the best age and most favourable season for each locality. The object aimed at by the system suggested would be the production of a pyramidal bush, and if sufficient space were allowed such might ultimately be expected to fruit from the ground to the topmost twig. The check given to the growth of the upper primaries would prevent their attaining the size and weight sufficient to split the stem (in the way already mentioned). The secondaries borne by each primary would in time become fan-shaped, and through the regulation of the lengths of these fans the bush would become completely pyramidal. It is the secondaries borne on the primaries that are the fruiting shoots, and the purpose of the recommendation here offered would be to produce a maximum of such, fully exposed to light and air. Similarly a vertical pyramidal bush might be formed by the development of upward-growing suckers in place of horizontal branches, the main branches being trained to ascend from the stem or its primaries, like those of a poplar. But I need not enlarge on this theme. What seems imperatively necessary is greater spacing, a better-shaped and a more healthy bush. Mr. Leeming's "coffee trees" in these respects, at all events, are as nearly perfect as seems likely to be attained; and where trees are not possible, bushes of a tree shape might be secured in preference to that of an umbrella. (See the remarks above on the tendencies of certain races to produce ascending and of others spreading branches.)

To conclude these observations, it may be said that pruning as presently practised is done about March after the crop has been collected, and consists in removing all shoots that have borne fruit and in selecting and protecting those that are intended for next year's crop. But the pruning must be completed before the flowers begin to form, and in pruning it is often recommended to leave alternately the opposite laterals. All tertiaries, as also diseased branches, are usually cut off. A handling is often given just after the flowers appear, in order to remove useless flushing. During a second handling suckers and crosswise shoots are rubbed off, without injuring the bark, and, in carefully worked estates, even a third handling is often given. It seems to be an accepted rule that September and October shoots should be preserved, and that as many of those formed in February as can be spared should be removed; but during fruiting the plants are never interfered with. In many estates removal of moss and cleaning the bark is regarded as of great service to the plant and obviates the harbourage of pests and blights.
SHADE-TREES

Shade-trees.—When Arabian coffee is grown upon lands of low altitude, shade becomes imperative; necessary, but in these positions Liberian may be successfully grown without any shade. As the upper limits of Arabian coffee cultivation are reached, shade may be largely dispensed with. Much difference of opinion prevails as to the extent and nature of the shade best suited to each region. Cameron (Rept. Tours in Coorg, 1898) very properly urges that a mixture of different shade-trees is preferable to one particular tree all over an estate. The balance of soil is thereby secured and a better shade attained. In Mysore tall original trees are generally preferred to the leafy bushes specially resorted to in other localities such as the Shevaroys. If protection from wind be the object aimed at, shelter belts of strong densely branched trees are indicated, but if shade from the sun be the object, much will depend on the severity of the sun and the liability to borer. It is the accepted belief that shade gives a certain protection from that pest, and this circumstance, more than protection from the sun, often determines the nature and extent of the shade-trees desirable. As little shade as possible is necessary during the rainy months, and the maximum shade during the hotter months. The study of the season of new leaf in shade-trees is, therefore, all-important.

Dal (Cajanus indicus) would make an excellent shade-bush for young coffee, and by its root tuberous and copious supply of leaves it would enrich the soil at the same time, but its liability to fungal disease (see p. 198) might be viewed as rendering it undesirable. Another Leguminous plant has been much appreciated by coffee planters—viz. one or other of the species of Erythrina such as indica, lithosperma and suberosa. Mr. B. Nelson (Planting Opinion, 1896 to 1899) wrote a series of articles and showed that the use of E. lithosperma as a shade-tree gave a material increase to the yield of coffee. The Silver Oak (Grevillea) is much commended by many planters, but while useful for shade it can have no manorial value. The other trees, fairly extensively employed, may be here mentioned in alphabetical sequence, viz.:—Acrocarpus fraxinifolius; Albizzia lebbek; meliaceae, procera and stipulata; Angocarpus Chaplasha; integriifolia and Labuchoa; Bisehoia jaranica; Cedrela Toona; Dalbergia latifolia; Ficus asperrima; glomerata; hispida; infectaria; and myosorensis; Grevillea robusta; Pithecolobium Saman; Pterocarpus Manupium; and Trema orientalis. Many other trees might also be mentioned, such as one or two exotic plants, for example India-rubber (Manihot Glascivri) and Eucalyptus. As catch crops Indian corn has also been tried, and with fair success; and in Coorg, pepper and cardamoms are much resorted to, especially by Native cultivators. [Cf. Kew Bull., 1895, 306; Graham Anderson, For. Trees in Coffee Lands Mysore, 1888; Rept. Agri. Chem. Mysore, 1901-2, 29-35; Journ. d’Agri. Trop., 1902, ii. 124-5; Trop. Agrist.; Planter; Madras Mail, etc.]

ENEMIES—PESTS AND BLIGHTS.—To give even the most general outline of this subject would occupy many pages. Having studied with some care the enemies of the tea plant, the first impression left on my mind, on visiting the coffee plantations, was the comparative absence of pests. An ordinary tea garden when compared with a coffee plantation would afford the entomologist ten to every one for his special study. Even the blights or fungal diseases are far less numerous, though one is very much more prevalent and widespread than any of the blights of tea. At the lowest possible estimate there are 200 insect pests on the Indian tea plant, and perhaps not twenty all told on the coffee. But the few that are present are often disastrous to the industry, and thus make up for their specific panacity by their individual voracity. In fact it may be said that two or three insect pests and one or two fungal blights have practically baffled both planter and scientist and have proved so disastrous as to have

383
ruined the industry over large tracts of country. This is significantly true of Ceylon, the leaf-blight having there proved so completely incurable as to have caused the planters to substitute tea for coffee, as their only escape from ruin. Numerous reports and monographs have been published by Morris, Marshall Ward, Nietner, Bidie, Harman, Cooke, Massee, Barber, etc., so that it cannot be said the subject has been neglected, but so far little progress has been made of a practical nature.

The more important diseases of the coffee plant are the following:

1. Leaf Blight, *Hemileia vastatrix*, Berk. & Broome, Gard. Chron., Nov. 6, 1869, 1157; Abbay, Journ. Linn. Soc., 1878, xvii., 173-84; Morris, Coffee Leaf Diseases Ceylon and S. Ind., 1879; Harman, Coffee-Leaf Disease Bangalore, 1880; Jardin, Le Café, 1895, 264-6; Taber, Plant Diseases, 1897, 352; Philip MacMahon, Queensland Agri. Journ., April 1898, ii., 301; Massee, Textbook Pl. Diseases, 1899, 27, 231-2, 407; Lecomte, Le Café, 193-203; Junelle, Les Cult. Colon., 376-7; Massee, Rev. Genus Hemileia, in Kew Bull., 1906, 35-42. This fungal disease appears to have been first observed on coffee in Ceylon, about the year 1869, and in South India two years later. It has since appeared in Burma, China, Java, Sumatra, the Philippine Islands, and been identified as met with in the coffee districts of Africa (even at Victoria Nyanza), and probably wherever coffee is cultivated in the Old World.

Distribution.

Origin.

It has been assumed as probable that *H. canthii*—a parasite found on *Cathodium cumanunatum*—was the parent source of *H. vastatrix*, the differences observable between the two fungi being in all probability the result of growing on slightly different hosts. So in the same way leaf-blight, seen in Natal and other African plantations, may have originated from *H. Woodii*—a parasite found on two species of *Vangueria* and even on *Coffea*. Massee accordingly writes: "It is not at all necessary to assume that the coffee disease has been imported along with the coffee plant from one country to another, taking into consideration the wide distribution of different species of plants attacked by *Hemileia*, *vastatrix*, or *H. Woodii*, both of which are capable of infecting species of *Coffea*." In India there are some six or seven species of *Coffea* fairly abundant wild plants in the coffee area, also a species of *Vangueria* both in Kanara and the coffee tracts of Burma. If, therefore (as pointed out by Massee), a practical lesson is to be drawn from these considerations, to start a plantation in a district where these and other allied plants to the coffee are abundant would probably mean disaster. To grow for the purpose of shade, plants belonging to that family would also very possibly be dangerous. All rubicaceous plants should therefore be watched for any appearance of leaf-blight, and exterminated as far as possible from proximity to coffee.

Practical Lesson.

The leaves of coffee are the parts most frequently attacked by *Hemileia*, though spots are sometimes present on the young shoots as well as on the fruit. These expand in size irregularly, and are at first pale yellow, but in time become bright yellow and orange coloured. Though showing through on both surfaces, the spots appear on the under-surface only. These are formed in dense clusters, and emerge from the tissue by the breathing mouths (stomata) of the leaves.

Treatment.

While touring through the coffee districts of South India I observed the grub of a minute insect feeding on the spores of this fungus. I was told this had been seen by the planters for some years. It would appear of importance that the life history of that little creature should be worked out, since it may be the planters’ greatest friend. When leaf disease is at all serious it is so prevalent as to render most of the methods of treatment, that have as yet been suggested, quite impracticable. Spraying with fungicides, such as the Bordeaux mixture, sulphuring the leaves, removing and burning the leaves, tearing off or punching out the diseased portions, have each and all been advocated and tried with varying, though never with complete, success. The best results as yet recorded have been attained by producing a stronger, more vigorous plant, through increasing the spacing, lessening the shade, improving the drainage, manuring liberally, and restraining the pruner’s knife. Under some such treatment
liability to borer may be increased, but leaf-blight brought under control. On some soils, under certain climates, or with particular exposures, leaf-blight never has been serious, and, moreover, either the plants are now better able to withstand the disease or its virulence is being attenuated, because in South India coffee-planting is by no means impossible, in spite of blight and borer. The low prices, through overproduction in South America, are far more serious than all the blights at present known. There would seem little doubt that had the Ceylon planters cultivated and manured their estates more thoroughly and systematically than they did their industry might have been saved. When the disease appeared both soil and plant were exhausted. The rapidity of the destruction that ensued may be thus demonstrated: average yield for the years 1866–8, all over the island (that is, before Hemileia appeared), was 4-28 cwt. per acre; in 1872–4 it had fallen to 2-93 cwt. per acre, and in 1875 to 2 cwt. per acre.

2. American Coffee Disease, Stilbum flavidum, Cooke; Massée, l.c. 445; Lecomte, l.c. 204; Junelle, l.c. 377.

"This disease is almost as destructive to the coffee industry in the New World as Hemileia vastatrix is in the Old World." The symptoms of the disease are unmistakable; circular whitish blotches occur on the leaves, often in considerable numbers, and are equally marked on both surfaces. Using a pocket-lens, very minute fungi resembling a miniature pin in shape, and of a clear yellow colour, can be seen grouped on the spots on the upper surface of the leaf. The berries are also sometimes attacked, being marked with circular spots. On the young shoots the pale diseased spots are elongated." (Massée). As this disease has not appeared, so far as is known, on the coffee of Asia, we have the somewhat significant fact of two coffee blights, the one confined to the Old and the other to the New World. A species of Stilbum does considerable injury to the tea, being the Thread Blight of tea planters. [Cf. Pests and Blights of Tea, 392.]

3. Leaf-rot.—This leaf-blight was described by Cooke under the name Pellicularia koleroga, the specific name being the vernacular for the disease. [Cf. also Tobeuf, l.c. 518; Lecomte, l.c. 203.] It is said to be prevalent in Mysore during July; the leaves, flowers and berries become covered with a shiny gelatinous substance which turns black about the time that the affected parts fall from the plant.

Cameron thinks that continuous or heavy rainfall, dense shade, drip, and stagnation of drains favour the development of this blight. Improvements to combat these defects are beneficial. All affected leaves should be burned or dusted with flowers of sulphur. As seen in the Kew Herbarium the leaves are covered with a simple mycelium much as in Stilbum, but without any fructifications. Samples of it have come from the coffee plantations in Venezuela, Costa Rica and Jamaica, as well as Mysore, so that it is fairly widespread and should it commence to assume its complete form, may become a serious pest. It should therefore be kept under control and carefully studied.

4. Coffee-twig Disease, Necturus deceretus, Massée, l.c. 327. This Twig Disease is said to be a destructive parasite on coffee trees at Selangor. It commences at the tips of the young branches and extends downwards. Bursting through the epidermis of the shoots are minute white spots, which soon become orange-red in colour and gelatinous in texture. The twigs thereafter turn black and thus appear as if syringed with acid, while at the same time the bark splits as in canker.

During my tour through Coorg and the Wynaad I was shown a disease that brings to mind the Malay twig disease or canker just described. The tips of the fruiting shoots, including a large number of leaves and berries, become withered and dried up, and in due course turn black. I was unable to discover on these any fungus, but obviously should have visited the plantations at a much earlier season of the year in order to study the distressing disease indicated. The withered fruits, if gathered along with the ripe cherries, greatly lower the value of the crop, so that they are not only a serious loss but a source of danger through their being inadvertently collected. The Indian planters regard the blackened and withered shoots as a want of general tone and vigour, and as proceeding from poverty of soil rather than being due to any specific disease. An inspection of the specimens preserved at Kew leads me, however, to suspect
THE COFFEE PLANT

that it is due either to the self-same species, or an allied fungus to that just described as the coffee-twig disease of Selangor.

5. Borer; *Ind. Mus. Notes*, ii., 153. This pest used to be known as "Worm" or "Coffee Fly." It is most troublesome in Mysore, South Coorg and the Wynaad, where in 1865–6 it destroyed whole estates. It has also appeared in the small coffee gardens of Assam and Burma. It is the grub of a beetle, *Xylophagus quadripes*, Chev., and is yellowish-red with black transverse lines. It damages the tree by boring holes into the stem, usually a few inches from the ground. These passages are at first transverse, but soon ascend spirally to the growing tip, where the larvae are matured. The plant early shows signs of death and ultimately withers down to the point where the beetle entered.

This pest is most prevalent in hot, exposed gardens, and may be kept in check by free irrigation, good tillage and the growth of large shade-trees. Cameron speaks of *nim* oil, poured into the openings made by the borer, as being useful in either expelling or killing the grub. As a preventative it is believed also desirable to encourage rather than interfere with the nesting of insectivorous birds in the plantation. If the stems of injured trees are collar pruned, new suckers are thrown out and the plants thus renewed, while the borers with the channelled stems are destroyed.

Another borer is the larvaee of the moth *Zeugera coffeae*, Nietner. [*Cf. Ind. Mus. Notes*, ii., 157; Watt and Mann, *Pests and Blights of Tea*, 200–1.]

6. Bugs.—Various insects are by planters all called bugs. They belong for the most part to the family known as the *Coccidae* or Scale Insects. There are four chief pests of this kind, known as Brown, Green, Black and White Bug.

Brown Bug.

The Brown Bug, *Lecanium hemisphericum*, Takei; Green, *Coccidea of Ceylon*, 232–4, pl. 85; *Ind. Mus. Notes*, ii., 168. "This insect was formerly known as the 'Brown Bug' of the coffee plant, and before the advent of the 'Green Bug' was considered the most serious insect pest of that plant." "For some years before the coffee failed, the bug—as a pest—had practically disappeared." It is met with now and again all over the coffee area of India, but nowhere to a very serious extent. It is perhaps most harmful in the Shevaroy, Nilgiri and Mysore plantations. [*Cf. Agri. Journ. Ind.*, 1906, i., pt. i., 77–8.]

Green Bug.

The Green Bug, *L. virida*, Green; Lc. 199–203, pl. 69; *Ind. Mus. Notes*, ii., 168. This proved such a scourge in Ceylon that it was practically responsible for the final abandonment of coffee cultivation over the greater part of the planting districts. It first attracted attention in 1882, and by 1886 had been dispersed all over the coffee districts of Ceylon. It attacks weakly trees and almost completely denudes them of all but the two or three terminal leaves. On healthy plants the leaves become black through the attendant fungus, but do not fall off, and the bushes make a vigorous effort to grow. In Ceylon the plants had been weakened by *Hemileia* when they became infested with green bug. In 1881 the exports were 452,900 cwt., but ten years later they had fallen to 88,780 cwt., and in 1902 were only 10,000 cwt. [*Cf. Agri. Journ. Ind.*, 1906, i., pt. i., 78.]

Black Bug.

The Black Bug, *L. nigrum*, Nietner; Green, Lc. 229–31, pl. 84; *Ind. Mus. Notes*, ii., 168. This bug, though found on coffee, is not so serious a pest as either the brown or green bug.

Mealy Bug.

The White or Mealy Bug, *Pseudococcus adoniensis*, Linn.; *Ind. Mus. Notes*, ii., 168. This is a flat oval creature covered with white down arranged in parallel ridges and running across its back. It prefers hot, dry plantations and would seem to be harboured by the species of *Erythrina* now so largely grown for shade purposes. In a plantation in the Wynaad where the trees had been cut down, I observed white bug very prevalent on the underground portions of the stems, as also on the roots, and swarming to the neighbouring coffee. Whether or not this observation is of invariable application cannot at present be affirmed, but plants seen to favour the growth of any species of bug should be discouraged in coffee plantations even although the present species has not been recorded as doing serious damage.

Every effort has been made to exterminate these pests. But in the case of green bug, the insect, being green in colour and small in size, was not noticed.
THE LIFE OF AN ESTATE

until it had been established in Ceylon in such force as to defy all subsequent efforts at extermination. It usually decreases during both very wet and very dry weather. The most hopeful method of dealing with it, as also with all other scale insects, is through their natural enemies. The larvae of certain ladybird beetles (Chilomenes circumdata for brown bug, and Scehymus volundatus for white bug) live on them, and a minute chalcid wasp breeds within the body of the mature Leecanium. So also a parasite fungus (Cephalosporium lecanii) kills these insects by living on their bodies.

7. Grub.—The larve of the moth Agrotis ypsilon, Rott.; Ind. Mus. Notes, ii., 161; iii., 21; Watt and Mann, Pests and Blights of the Tea Plant, 1903, 220—3; Maxwell-Lefroy, Memoirs, Dept. Agri. Ind., 1907, i., 169. The Cutworm, Black Grub or Ringer are very destructive to the seedlings of coffee, as much as 25 per cent. being often found destroyed by this pest. It seems to have been specially destructive in Mysore.

The larvae of the cockchafer, Lachnosterna pinguis, Walk., often do much damage by eating the roots of the young coffee plants. [Cf. Ind. Mus. Notes, ii., 149; Watt and Mann, l.c. 167—9.]

8. Other Insects that occasionally attack the coffee may be here enumerated:—

Ariches destructor, Nieter; a weevil that eats the leaves; P arasa lepidea, Cramer; a moth that defoliates the bushes; Narosa conspersa, Walker; Aloa lactinea, Cramer; Euproctis virginula, Walk.; Trichia exigua, Feld.; Gallericormorpha tichenoides, Feld.; Epithecia coffearia, Feld.; Boarmlia leuconigriaria, Feld., and B. zeugianaria, Feld.; Tortrix coffearia, Feld.; Capua coffearia, Nieter [cf. Ind. Mus. Notes, v., 187], and Gracilariia coffeaficola, Motch. (recalling Elachista coffeae, G.M. in Jardin, l.c. 258—9 and pl.), are all moths reported to have been occasionally met with on coffee in Ceylon. So also Anthomyia coffee, Nieter, is the coffee leaf borer; Stachia geometrata, Motch., a species of Rhynechota that attacks the coffee cherries; Aphis coffearia, Nieter, the coffee louse (parasitised by Micronous australis); and Acaerus coffee, Nieter, the coffee mite. So far as presently known, none of these pests have given any cause for anxiety to the Indian planters.

9. Other Pests.—Locusts, Weevils, Rats, Squirrels, Monkeys and Jackals often do much injury—the animals mentioned being very fond of the ripe cherries.

Life of the Estate.—The late Mr. William Pringle very rightly observed that "no matter how healthy a coffee tree may be, no matter how carefully pruned, handled, tended, and nourished, its life will end sooner or later. Under favourable conditions, the tree may live for fifty or sixty years; as a rule, it will seldom last thirty. It will, under favourable conditions, be in full bearing in the fifth or sixth year, and may go on for twenty to twenty-five years giving paying crops. Many trees are exhausted in ten to fifteen years by unskilful treatment, borer, and attacks of Hemileia vastatrix, etc., and must make room for a new generation. If the vacancies can be successfully supplied and the plants developed in a healthy and vigorous manner, there is no reason why an estate should be limited as to age. If we can so arrange matters as to have a continual succession of young plants coming on and developing into healthy trees to replace those taken out, a coffee estate may be considered as a permanent investment. In suitable localities efficiently drained and manured this can be done; and an estate may be considered to be working under the best possible conditions of perpetuation where from 4 to 5 per cent. of vacancies occur every year that are successfully supplied. It is upon the success of the supplying that the life of the estate depends, and practical planters consider this question one of the first importance in Southern India. It is only when supplies cannot be got to grow that there is a necessity to abandon the estate. With many aspects and under some conditions the plants cannot be raised, except at a ruinous cost."

387
THE COFFEE PLANT

MANUFACTURE.

Terms Employed.—The ripe coffee fruit is called the "Cherry"; the contained twin seeds are the "Berries." When only one seed is developed it is spoken of as "Pea-berry." This is often upheld to be richer in flavour, and accordingly much has been said about the possibility of producing a plant that would yield mainly, if not entirely, pea-berries. The succulent outer coat of the fruit is the "Pulp," and the inner adhesive layer is known as the "Parchment." The seed-coat within the parchment which adheres closely to the seed is called the "Silver-skin." The pulp is commonly removed at the plantation, but it is frequently the case that the berries are sold in parchment and either submitted to treatment in the coast towns or exported in that condition to Europe, where they are hulled and finally prepared for the market. The machinery for this purpose is expensive, and the operation of final cleaning can be as effectually if not better accomplished in Europe than at the plantation. It is believed moreover that the coffee carries best in parchment, so that the extra freight charges are more than compensated for by the quality of the coffee turned out in Europe. [Cf. Kew Bull., 1893, 128-33.]

The preparation of the berry from the cherry is effected by certain distinct operations that may be here indicated very briefly. It would, however, be impossible to describe all the methods and appliances used without devoting many pages to this subject.

Seasons and Crops.—The blossoms as a rule appear in March and the fruits commence to ripen in October and continue till January. The more gradually the blossom fades the better; a superabundance of flowers is not considered a good prognostication, since only a small percentage form fruits. Rain during flowering is unfavourable, but after the fruit has set a shower or two is beneficial. It is usually advocated that none but fully ripe fruits should be collected. In Arabia a cloth is placed below and the bushes shaken, when the ripe cherries fall into the cloth. In India they are hand-picked, and it is believed not necessary that they should be pink-coloured all round; the slightest tinge is sufficient, and in fact with the appearance of colour the sooner picked the better. The berry (seed) inside will be found to be of a fine dark-greenish or bluish-green colour. It is the endeavour of the planters to preserve this greenish tint as much as possible. Berries that have dried into a reddish or chocolate colour are spoken of as "foxy," and the presence of such lowers very greatly the price. Berries that have fallen to the ground are collected at the end of the season and are known as "Jackal Coffee."

Pulping.—The operation known by this name is the removal of the pulp which surrounds the "berries" (seeds). This is best done day by day on the collections being brought to the factory. If unavoidably delayed it may be necessary to produce fermentation before the cherries can be pulped. There are two chief forms of the pulper, viz. the disc or the cylinder, but a long list of special machines, mostly developments of these, might be given. The principle in both is a grater, working against a smooth chop, adjusted according to the size of cherries. The disc-pulper is the simplest contrivance, and this may be either single or double and worked by hand or steam. A single pulper will accomplish 20 to 25 bushes an hour, a double one 40 bushels, or twice that amount if driven by steam. In design it is somewhat like a cotton- gin: it tears off the pulp and drops the seeds through a sieve kept in position so as to carry forward the pulp.

388
HULLING AND MILLING

or tails. The best design for a factory is a three-storied building placed against the hillside and so arranged that the cherries are conveyed to the top story without requiring a lift. From there a hopper carries the cherries and water, in a continuous stream, on to the grater. Space cannot be afforded to discuss the other numerous inventions that exist for pulping; suffice it to say that most Indian factories are behind the standard of those in other countries, and that the defects of much of the Indian coffee are due mainly to the imperfections of the factory.

Native coffee is mostly dried with the pulp attached, then pounded in a mortar. It is thus practically the system followed in Arabia in ancient times, and which is still to some extent pursued in that country.

Fermentation and Washing.—On the beans (seeds or berries) passing through the sieve they are found to be covered with a sticky mucilaginous material. If the contained saccharine matter be not removed it is difficult to dry the berries. This is accomplished either by washing or fermenting, or more generally by both. The period necessary for fermentation depends greatly on the temperature of the atmosphere, but from 12 to 18 hours usually suffice. Mr. Graham Anderson has shown that the amount of saccharine matter depends on the exposure, and that the produce of young trees will not ferment as readily as that of mature plants. The berries, after thorough washing, are spread out to dry on specially prepared platforms which constitute the lowest portions of the factory.

Hulling or Milling.—This consists of the removal of the parchment and silver skin from the beans. As already stated, this operation is usually performed by the traders and not by the planters. Many firms, especially at the coast towns, do the milling, such as Staines & Co. of Coimbatore, but a large proportion of Indian coffee is milled in London. The Indian planters seem to be of opinion that this operation might be much improved by better machinery than exists in India. [Cf. Planting Opinion, Aug. 1899.] A bushel of parchment coffee will usually give half the quantity of clean beans. The coffee is then assorted into various grades according to size of berries. This not only meets the necessities of various markets, but has the effect of furnishing a uniform berry and one that will roast to the same extent throughout. Nothing injures coffee more than a percentage of small berries that become charred before the others are sufficiently roasted. Charcoal absorbs completely the aroma of coffee, hence charred berries are positively destructive of merit.

Packing.—It is of the greatest consequence also that attention be given to the art of packing. If berries be exposed to the drying action of the atmosphere beyond a certain extent, their value may be thereby greatly depreciated. All the best coffee is accordingly packed in casks, the utmost care being taken that the wood used may not taint the coffee. Packing in sacks or bags is much inferior, and if shipped with mixed cargoes, coffee in bag may be so tainted as to be next to useless.

Adulteration and Substitutes.—This subject has attracted much attention for many years. It may be confidently affirmed that although much difference exists between the coffee of one estate and another, dependent very largely on the process of manufacture and the care bestowed in drying, assorting and packing, direct adulteration never takes place at the plantation. While that is so, there is perhaps no other dietary article so much and so persistently adulterated as coffee. This is very largely a consequence of the legislative measures that prevail in the countries of
consumption. When taxed abnormally high, adulteration prevails. But this is often safeguarded by special legislation such as the French enactments that prohibit the vendor from mixing. In England, on the other hand, mixing is so much in vogue that it is often difficult to procure pure coffee. "Our Coffee Mixture" may contain any adulteration conceivable, with perhaps not more than 5 per cent. of coffee. This is the natural consequence of legalising mixtures. Criminality consists alone in selling as "pure coffee" an article that contains anything but coffee. Legally "Chicory" may be the roasted chicory root itself, or the root of an allied plant or other vegetable substance applied for the same purpose.

The substances mostly employed in adulteration of coffee are the roots of chicory, dandelion, mangold-wurzel, turnips, parsnips, and carrots. The seeds of beans, peas, date-stones, malt rye, burnt sugar, biscuits, locust-beans, figs, etc., are all used. Roasted flour coloured with ferruginous earth and flavoured with the grounds of exhausted coffee or of other even more objectionable substances are often sold as coffee. There seems every reason for believing that the decline of the demand for coffee throughout the world is largely a consequence of the difficulty in obtaining the pure article. For further particulars regarding coffee adulteration confer "Chicory and Coffee," a lithographed report by J. D. Hooker, John Lindley, Thomas Graham, John Stenhouse, Dugald Campbell, William B. Carpenter and A. S. Taylor, issued by the Inland Revenue office in 1853. This gives the microscopic structure and chemical tests by which the adulterants of coffee may be recognised, and although more recent publications exist on this subject, hardly any are more accurate and authoritative. [Cf. Food Journal, March 1870, Dec. 1873; Clifford, Journ. Soc. Arts; and Hanaucek, Micro. Tech. Prod. (Winton and Barber, transl.), 1907, 271-4.] The seeds of several species of Cassia are used as coffee substitutes under the name of Negro Coffee. [Cf. Hooper, Rept. Labor. Ind. Mus., 1900-1, 23-4.] For "Malt Coffee," consult Hanaucek (Lc. 354).

TRADE IN INDIAN COFFEE.

Commercial Tests.—The value of coffee depends upon many circumstances, such as form of the berry, its size, colour, smell, flavour, age, and uniformity. One of the greatest difficulties is to discover a standard by which merit may be definitely determined. Were it possible to fix a standard, the planters could aim at a definite article. Much has been done in India by Mr. Leeming, Dr. Lehmann and others in this direction, and it is believed their efforts may soon be rewarded. Lehmann found that the quantity of the alkaloid Caffeine was no evidence of quality. Caffeine (as shown by M. Bertrand) varies greatly. In Coffea arabica it ranges from 0.83 to 1.60 per cent.; in C. liberica between 1.06 and 1.45 per cent.; and in C. stenophylla between 1.52 and 1.70 per cent. In a series of specimens specially analysed, those that had the highest specific gravity and contained the most nitrogen and phosphoric acid brought the highest price. Colour seems to depend more on the degree of ripeness when collected, and the care taken in manufacture, than on the nature of the soil or the class of plant grown. As a general rule the Old World coffees are inclined to turn yellow, and the New World green. Weight decreases with age and by overdrying. Odour is perhaps the most important criterion, and apparently it can alone be determined by expert opinion.

Yield and Cost of Production and Price Realised.—Under the paragraph devoted above to "Localities and Area" will be found all the

390
PRICES

particulars on these topics for which space can be afforded in this work. The regions of Indian cultivation, the average production, and the estimates of yield per acre have thus been exhibited. These facts have to be re-read in connection with the returns of trade that have presently to be furnished. It has been shown that an average of 3 rising to 7 cwt. an acre would fairly express the better-class European plantations, but there is a large number of small Native concerns that lower both the average yield and the quality of Indian coffee. It is believed that the Native plantations yield from \(\frac{1}{4} \) to 1 cwt. an acre. The cost of cultivation has been variously put, but it seems probable that Rs. 120 per acre for the best European and Rs. 40 for Native coffee would be safe estimates. The former would include manuring, as also all factory charges. It is generally stated that the lowest cost of production on European plantations is Rs. 80 yielding 2½ to 3 cwt. an acre.

The net cost of coffee has been taken as Rs. 27 a cwt., and since the cost of production is 60 to 70 per cent. wages paid, a fair computation of the value of the industry to the inhabitants of the coffee area may be arrived at by multiplying the European and Native acreage by the estimated cost of production. The mean of all the figures usually published shows one person to be employed on every 2½ acres of coffee. But such calculations are tentative in value only, as there is perhaps no other Indian industry more obscure and misleading, so far as its statistics are concerned, than that of coffee-planting. There are, however, three fairly certain aspects, viz. that the cultivation (see p. 370), production and price have all three seriously declined within recent years. Thus taking the price obtained in 1874 as being 100, we have the following relative prices for Indian coffee down to 1902:

<table>
<thead>
<tr>
<th>Year</th>
<th>Price p.C.</th>
<th>Variation</th>
<th>Year</th>
<th>Price p.C.</th>
<th>Variation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1877</td>
<td>110 0(\frac{1}{4})</td>
<td>120</td>
<td>1894</td>
<td>101 0</td>
<td>110</td>
</tr>
<tr>
<td>1879</td>
<td>100 10</td>
<td>110</td>
<td>1897</td>
<td>94 8</td>
<td>103</td>
</tr>
<tr>
<td>1882</td>
<td>85 4</td>
<td>93</td>
<td>1898</td>
<td>78 1</td>
<td>85</td>
</tr>
<tr>
<td>1884</td>
<td>76 4(\frac{1}{4})</td>
<td>83</td>
<td>1899</td>
<td>65 2(\frac{1}{4})</td>
<td>71</td>
</tr>
<tr>
<td>1887</td>
<td>94 9(\frac{1}{4})</td>
<td>103</td>
<td>1900</td>
<td>47 0</td>
<td>51</td>
</tr>
<tr>
<td>1889</td>
<td>99 10</td>
<td>108</td>
<td>1901</td>
<td>47 2(\frac{1}{4})</td>
<td>51</td>
</tr>
<tr>
<td>1890</td>
<td>106 2(\frac{1}{4})</td>
<td>115</td>
<td>1902</td>
<td>60 1(\frac{1}{4})</td>
<td>65</td>
</tr>
<tr>
<td>1893</td>
<td>105 4(\frac{1}{4})</td>
<td>114</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

During the past five years the actual prices realised were:—1901-2, Rs. 49-0-4 (variation 65); 1902-3, Rs. 49-1-5 (65); 1903-4, Rs. 46-15-2 (62); 1904-5, Rs. 50-6-2 (67); 1905-6, Rs. 48-12-4 (65); 1906-7, Rs. 43-11 (58) per cwt. As with estimates of average yield, so with prices: the average may be quite misleading as a factor of possible results. But, as already observed, competition with the cheap production of Brazil has proved the most alarming feature of the Indian industry.

Foreign Transactions.—In Milburn’s Oriental Commerce is given a statement of “the East Indies” coffee imported into England from 1802 to 1810. The total was in 1807, 2,721 cwt. “Company’s” and nil “Private,” while in 1809 there was nil Company’s and 213 cwt. Private. Throughout the years indicated the imports fluctuated so greatly that the returns are of little value. It is, however, explained that it came from Moka, Java, Bourbon and Ceylon. No mention of India. About ten years later we read of a charter granted for an Indian plantation, and

COFFEE ARABICA Trade

Wages.

Labour to Acreage.

Decline.

Prices.

Competition with Cheap Brazilian Coffee.

Imports into England.
WORLD'S PRODUCTION OF COFFEE

by 1853-4 coffee figured among the standard exports from India. In that year the supplies drawn by the United Kingdom from India were valued at Rs. 4,75,980. Ten years later (1863-4) they were Rs. 38,43,910; in 1873-4 they were Rs. 73,98,530; in 1883-4 they were Rs. 1,06,21,380; by still another decade (1893-4) they had begun to shrink, being then valued at Rs. 99,61,631. Turning now to the returns of the total trade for the past six years: the exports in 1901-2 were 255,042 cwt., Rs. 1,25,02,200; in 1902-3, 269,165 cwt., Rs. 1,32,12,628; in 1903-4, 291,254 cwt., Rs. 1,36,73,773; in 1904-5, 329,647 cwt., Rs. 1,66,09,757; in 1905-6, 360,182 cwt., Rs. 1,75,67,240; and in 1906-7, 228,094 cwt., Rs. 99,64,778. The Madras ports furnished the entire amounts, less a fluctuating quantity of from 1,000 to 10,000 cwt. exported mainly from Bombay. Of the receiving countries the United Kingdom heads the list, the consignments thence having been in 1901-2, 116,584 cwt., Rs. 64,25,838; in 1902-3, 155,501 cwt., Rs. 85,10,903; in 1903-4, 152,452 cwt., Rs. 82,71,186; in 1904-5, 187,344 cwt., Rs. 1,05,02,674; in 1905-6, 172,384 cwt., Rs. 96,74,780; and in 1906-7, 82,358 cwt., Rs. 41,22,420—a valuation about equal to that of the supply taken by the United Kingdom in 1883-4. These returns thus allow a comparison to be made with the valuations quoted above of the Indian exports since 1853. After the United Kingdom, France has to be mentioned as the next most important receiving country of Indian coffee; during the past five years the exports to that country have averaged a little over 100,000 cwt. And after France comes Ceylon, which during the same period has taken on average over 20,000 cwt. of Indian coffee a year.

The world’s production of coffee has been estimated as close on 15 million bags (132 lb. each), of which 11½ million bags are furnished by Brazil. The greatest coffee-consuming countries are Holland (18-82 lb. per head, calculated on population of 1900), Belgium (10-53 lb.), and the United States of America (10-60 lb.). After these come Germany (6-6 lb.), France (4-79 lb.), Austria-Hungary (2-17 lb.), and the United Kingdom (0-90 lb.).

Conclusion.—For further details of the Medicinal Properties, the Chemical Composition, the Fiscal Regulations (in India and England) and other such topics, the reader is referred to the library of technical works that exists on these and kindred subjects. Practically every report or book of importance has been consulted in preparing the present brief account, and the citation of publications, paragraph by paragraph, should therefore prove helpful to those who desire fuller details.

COIX, Linn.; Agri. Ledg., 1904, No. 13; Fl. Br. Ind., vii., 99-100; Gramineae; Job's Tears, gurqur, jargadi, sankru, jhonki, ka-si, kessi, kessi, etc., etc.

History.—So much attention was given by the early botanical writers to the subject of coix that the inference might be drawn that it must formerly have been a plant more extensively cultivated than at the present day. It is generally believed to be the Lithospermum of Pliny (bk. 27, ch. xi. (Holland, transl. 1601, ii., 284). In most of the early works Lithospermum or Coix is spoken of, however, as a wild plant, or one cultivated as a curiosity only. Gerarde, Parkinson, Miller, etc., all allude to the use of the seeds as beads (bedes). The circumstance mentioned by some of the more directly botanical authors, such as Rumphius and Loureiro, that coix was regularly cultivated in Eastern countries as an article of food, seems to have escaped consideration.

One of the most beautiful of the early drawings of this plant is that given
by Besler (Hort. Eystett., 1613, i., 13, fol. 6, f. 1).—So accurate, in fact, is Besler's picture that it might be reproduced as a modern sketch. But this is not the only feature of it, for in the text the grain is described as striated, a peculiarity, it may be added, that is possessed alone by the cultivated edible forms of the plant, although no mention is made of its being edible. The plant is also figured by Jacobus Bontius under the name of Milium Soitis (Hist. Nat. et Med. Ind. Or., 1629, in Piso, Ind. Utr. re Nat. et Med., 1658, 152). Turning from these European records to those of the East, we are informed by the authors of the Pharmacographia Indica that the seeds are "mentioned in Vedic literature and appear to have been one of the cereals which were cultivated by the Aryans on the hill slopes of the Himalaya." "The Arab travellers in the East became acquainted with the seeds and named them Damu Daud—"David's tears," and afterwards Damu Ayub—"Job's tears." Es-Saghani, who died about the year 1660, mentions them in the Obab as a well-known strengthening and diuretic medicine. The Arabs introduced the plant into the West, and it has become naturalised in Spain and Portugal, where it is still known as Lagrima de Job." It is significant that the word kasi (or some very similar word) should appear and reappear all over India as the vernacular name for one or other of the forms of this plant. Thus we have the ka-si of the Nagas on the north-east frontier of India, kesi in the Central Provinces, kessai in Gujarath, kesari in Berar, and the chek or kyeit, kulese, and kaline of Burma, and kosen in Japan. The word kasi or kesi in India most frequently denotes a cultivated edible form. The cultivation of the grain is at the present day closely associated with the Mongolians, and its introduction and distribution in India may have been a consequence of the influence of that people; hence very possibly the explanation of the name ka-si. [Cf. Joret, Les Pl. dans L'Antiq., 1904, ii., 247.]

Habitat and Distribution.—There are two undoubtedly wild forms of this plant and several cultivated states. By far the most widely distributed is Coix Lacryma-Jobi proper. This is met with in the Himalaya, Rajputana, the Central Provinces, Bombay, South India, Bengal, Assam, Burma and the Shan States. But its area extends to China, Japan, the Malaya, the American Continent (North, Central and South), the West Indies, Polynesia, the Macarene Islands and Tropical as also Northern Africa, and it is cultivated as a garden curiosity in South Europe. It is thus met with throughout the tropics and in all warm temperate countries. The other wild species, C. gigantea (and its variety C. aquaticus), has a much narrower distribution, is a distinctly tropical plant, and is practically confined to India and Burma. Of the cultivated (or semi-cultivated) special forms of C. Lacryma-Jobi the cylindrical-fruited stenocarpa has been recorded as met with in the Naga hills, Burma, the Shan States, Tonkin and New Guinea. The flattened—spheroïidal—form, the connecting link between C. Lacryma-Jobi and var. stenocarpa, is the special bead form. It is a wild plant met with chiefly in Burma, the Malaya, China and Japan, and has been named by me var. moniftfer. Lastly, the fully cultivated and edible form, Ma-yuen, is grown (so far as India is concerned) in the Central Provinces, Sikkim, the Khasia hills, Burma and the Shan States, and outside India it appears to be cultivated in Tonkin, China and the Malaya, but apparently nowhere else. Grisebach in his review of Botanical Geography (Roy. Soc., 1846, 86) refers to the edible coix as a special feature in the most important area of production of that grain, viz. Eastern Bengal, Assam, Burma and the Malaya. In fact were a statement prepared of the geographical features of interest in the cultivated plants of British India, Coix would have to be commented on as characteristic of the tract of country that stretches east by south from Nagpur to Sikkim, Assam, Burma, the Malaya and China, and be regarded as an important food grain with some of the most ancient aboriginal inhabitants, especially those of Mongolian origin.

Species and Varieties.—In the Flora of British India, Coix gigantea has been treated as a variety of C. Lacryma-Jobi, while C. aquaticus has been regarded as a form imperfectly known. It seems probable, however, that all three are fairly distinct plants, separable from each other by constant characters. Whether they should be treated as but one species, with several fairly well-marked varieties, or two or more distinct species, may be open to doubt. It would seem the safer course, however, to accept them as constituting two species with several varieties under each. The best names, if not the most ancient ones (as already indicated), would be C. Lacryma-Jobi for the one and C. gigantea for the other. The latter is preferable to C. aquaticus since it has become better known. The
species thus isolated are certainly very distinct. They differ in structure of leaf, flower and fruit, etc., as well as in habitat and economic properties. The wild states of *C. Lacryma-jobi* have the capsular-spathe generally more or less spherical, and only slightly drawn out at the apex into a pyriform shape and obscurely angled and universally bluish-white (never chalky-white). The leaves are broad, often distinctly auriculate, quite glabrous, except for the double row of ascending teeth, along each of the veins of the upper surface—a peculiarity that gives the texture of the leaf the appearance of being embroidered and makes it backwardly hispid.

The *gigantea-aquatica* series of coix are always wild plants; *gigantea* is found on the lower hills—dry soils—a robust erect plant, the *aquatica* in swamps and most frequently as a floating weed, 20 to 100 feet in length. The capsular-spathe is invariably pyriform, much drawn out on the apex, the actual mouth cut obliquely into an elongated lip, which is often somewhat serratulate, ripe fruits prominently angled, and having two or three furrows along its flattened face of a dull greyish-white to brown colour and very hard. The leaves are much shorter than in *C. Lacryma-jobi*, most frequently only faintly auriculate, and the upper (inner) surface is often marked by curious transparent glands, which in the young leaves are tipped with hairs; on the outside the leaves are quite glabrous except near the extremity of the sheath, where a few glands of an exceptionally large size are generally present.

The forms of *C. Lacryma-jobi* in the wild state have the capsular-spathe invariably bluish-white, a colour which rapidly disappears under cultivation. In the variety known as *stenocarpa* the capsular-spathe is elongated until it becomes cylindrical, but when cultivated the tubes (so formed) change in colour to chalky-white or become almost straw-coloured. In other forms, instead of elongating, the capsular-spathe becomes short and spherical, until fruits often not more than an eighth of an inch long are found and others more than double that size, but always broader than long; hence the development in these examples may be said to be in the opposite direction to that in *stenocarpa*.

When they exist as wild plants the shell in all forms of *C. Lacryma-jobi* remains hard and polished, and, while it may darken in colour and become pink, brown or even black, is never found soft in texture nor chalky-white in colour. But under cultivation the spathe loses the bluish-white colour, becomes soft-shelled, and of a chalky-white or straw-colour to deep blue, brown or black; but in all these cultivated states it assumes a new character—viz. the leaf-sheath, being transformed into what I have called the capsular-spathe, retains its veins as pronounced striations, so much so as to give the grain (in husk) a striped appearance. In the elongated semi-pyriform states of cultivated *C. Lacryma-jobi* there is also a further peculiarity—viz. that a portion at the base of the fruit-spathe becomes constricted into a well-marked annular disc. The condition with a soft and striated shell and basal annulus appears to constitute the variety known to botanists as *Ma-yuen*—a name given in honour of the Chinese General who is supposed to have first pointedly directed attention to the plant.

Cultivation as Food.—This curious edible grain might almost be said to be unknown to the inhabitants of India generally, except as a weed of cultivation. To many of the aboriginal tribes, however, such as those of the Central Provinces, Sikkim, Assam and Burma, it is an important article of diet. The plant grown as a regular field crop is invariably one or other of the many forms of the variety *Ma-yuen* already sufficiently described. But in times of scarcity the wild forms of these plants are (all over India) resorted to as articles of food. The grain is held to be sweet and wholesome, the only objections to it being the smallness of the supply and the hardness of the shell. In the forms specially cultivated the shell is soft and amenable to ordinary methods of milling.

India.

Roxburgh was apparently unaware that coix had to be included among the edible cereals of India, though doubtless he had read Rumphius's description (1750) of its cultivation in the islands of the Malayas, also Loureiro's account of it in Cochin-China. In the *Agr. Horticultural Society of India (Trans., 1841, viii., 348* mention is made of the grain being sent from Amherst. Mr. Riley, who presented the sample, said the
plant was of a "very hardy nature, and thrives upon almost any kind of soil, yielding a good amount of produce and in taste resembling wheat." Wallich identified the plant as C. Lacerma. J. D. Hooker, in his Himalayan Journals (1848, ii., 289), gives some interesting particulars regarding its cultivation in the Khasia hills. "Each plant," he tells us, "branches two or three times from the base, and from 7 to 9 plants grow in each square yard of soil; the produce is small, not above 30 or 40 fold." Mason, in his Burma and Its People (1860), published much useful information, and this has been brought up to date in the new edition by Theobald (1888, ii., 107). We there read that "Coix affords a good example of the results of cultivation of a wild plant the seed of which is of a stony hardness, but which is soft in the cultivated form and the kernel sweet. It is much cultivated by the Red Karens, and may be often seen for sale parched in the bazaars."

In the article published in The Agricultural Ledger I have given a full account of the collections recently furnished to the Reporter on Economic Products from very nearly every important locality of India; I have quoted, under the special forms, the practical observations of the local authorities. This course was deemed preferable to a compilation of data into a common paragraph on cultivation, of facts and opinions that would seem in many cases only applicable to the individual forms of the plant. It may, therefore, be accepted as undesirable to republish that information in order to support the statement that there exists in India a fairly extensive and certainly a widely dispersed cultivation of the plant. There are great diversities in size, shape and colour of the grain, as also in quality and purpose to which put. These diversities, confirmed by the existence of many vernacular names, establish belief in an ancient knowledge, as possessed by the aboriginal (especially Mongolian) tribes of India.

It has been affirmed that very possibly the pastoral Aryan invaders grew this grain on the slopes of the Himalaya, anterior to their becoming localised and assuming cultivation as a craft. But it is much more probable that the grain was distributed over the plains of India in close association with the Mongolian conquests. From Darjeeling and through Bhutan to the mountains of Upper and Eastern Assam, the Khasia, Garo and Naga hills, etc., to Burma and the Shan States, coix might be described as not only a fairly plentiful crop but an exceedingly important article of diet. Certain forms of the grain are roasted, then husked and eaten whole, being either parched (as with Indian corn) or boiled as with rice. Other forms are so very different that the grain may be milled and ground to flour (đat), and thereafter baked into bread. It seems probable that the properties that necessitate so very different methods of treatment and preparation involve a diversity chemically and structurally quite as great as that which exists between the hard and the soft wheats or the glutinous and the starchy rices.

Romanet du Caillaud (Bull. Soc. d'Acclimat., 1881, viii., 442-4) tells us that in the 1st century A.D. the Chinese General Ma-yuen conquered Tonkin and became so fond of the Annamite grain bo-bo (the y-dzi of the Chinese) that he carried away several cart-loads of seed, and thus introduced its cultivation into China. Bretschneider (Bot. Sin., 1895, pt. iii., 384) says of coix that it is cultivated near Peking under the name ts'ao-te'. He then adds that there are two varieties, one with white, the other with grey coverings to the fruits. "I have also observed," he adds, "in
the druggists’ shops a variety (or species) with small oblong, pointed fruits.” The oblong, pointed fruit might be C. gigantea, and, if so, it would be most interesting to find that species in China. Many writers have given their opinions on the coix grain of China. It is often spoken of as the ee-jin or ee-yin, and is reputed to be one of the most remarkable of foods. Dr. Smith wrote that it is larger and coarser than pearl barley but equally good for making gruel.

In a small book on the Useful Plants of Japan (issued by the Agricultural Society of that country) it is called the tomoqui or hatomagi. “It is an annual cereal grass cultivated on common dry land. The stalks grow to a height of 4 to 5 feet. The grain, pounded in a mortar and cleaned, is consumed as meal and mochi. An infusion of the parched and ground grain is used instead of tea and is called kosen. A Chinese variety of larger grains, greyish brown in colour, with thinner shells is more easily crushed and cleaned.” A gruel of the flour is specially commended by Du Caillaud for use in hospitals. The Chinese use the grain in soup, as pearl barley is employed in Europe.

Manufacture of Beer.—The references to the Japanese habit of drinking a decoction of the grain, and to the preparation of gruel and tea from it, necessarily suggest the more extended use in the manufacture of a kind of malted beer which in the Naga hills is called dsu (p. 758). But a surprising feature may be said to be the circumstance that the dsu made from one grain is of a much superior flavour to that from another, and, further, that the dsu of one grain may be kept for months, while that from another goes bad in a few weeks. I have personally experienced much pleasure, while travelling in the Naga hills, in partaking of the fresh dsu offered in friendly salutation. It is something in flavour between that of butter-milk and cider, and on a hot day at the termination of a long march is most acceptable. Some of the forms of coix (like many rices) have a rich perfume, and such grains when used in the preparation of beer are said to give it a fruity flavour and delicate aroma (see Eleusine, p. 520).

Medicinal Properties.—A missionary, writing of Tonkin to M. Du Caillaud, said that “Job’s tears” made a refreshing drink, was a good blood-purifier and excellent diuretic. The gruel prepared from the ground seed, he observed, as also Eau de Larmes-de-Job, was extensively employed in the summer to cool the body. By the Tonkin people it is spoken of as the “grass of life and health,” is believed to neutralise the miasma of the air, and to purify water when boiled like tea with a quantity of coix flour and set by to cool before being used. In India coix can hardly be said to enjoy any reputation for medicinal virtues. The Rev. Dr. Campbell tells that among the Santals the root is given in stranguary and in the menstrual complaint known as silka. Dymock (Veget. Med. 1885, 853) says the seeds are sold in the drug-shops of Bombay under the name of kassai-bij. The authors of Pharmacographia Indica add that the wild form only is used medicinally, and that it is considered strengthening and diuretic.

Chemical Properties.—The grain of coix, both wild and cultivated, has been subjected to chemical tests, and the somewhat conflicting results obtained are possibly due to the botanical position of the particular plant under examination not having been previously ascertained. In Church’s Food-Grains of India (1886, 60) occurs the following remark: “In the sample of this grain which gave” the under-mentioned “analytical
figures it was found that the edible seed after the removal of the hard and shining grey husk did not weigh more than one for every four parts by weight of the whole grain operated upon." In the Kew Bulletin (1888, 267) is published Church's second examination—and this a specimen, admittedly, of the cultivated grain. "From four parts by weight of the sample," he says, "three parts of husked grain were obtained—three times the quantity yielded by *C. Lacryma*" (presumably the comparison drawn is to the sample reported on in the Food-Grains, which I have assumed may have been a wild grain). Subsequently Church gave his third analysis in the Supplement to the Food-Grains (1901, 3), the grain examined having been cultivated coix of the Khasia hills. The following sets forth the practical results of the first and third of these examinations:

<table>
<thead>
<tr>
<th>Nutrient Ratio</th>
<th>Nutrient Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:3.8</td>
<td>89</td>
</tr>
<tr>
<td>1:4.4</td>
<td>90</td>
</tr>
</tbody>
</table>

Commenting on his final results, Church says that the quantity of albuminoids approaches to that of some kinds of pulse, and that the proportion of oil or fat is larger than that present in the great majority of cereals. In The Agricultural Ledger will be found the chemical results obtained by several other investigators.

Industrial and Domestic Uses.—From a remote antiquity both in Europe and in India, the grains or seeds, especially of the wild plant, have been used as the beads of rosaries. By the aboriginal tribes of India and Burma they are employed in personal adornment. Necklaces, earrings, head-dresses, etc., are often largely composed of them, and dresses, bags, baskets, etc., are extensively ornamented with them. For these purposes a semi-cultivation has been pursued, possibly for centuries, that has resulted in the development of special grains, in cylindrical or spheroidal forms, and in a rich variety of colours. In Nepal, Oudh, and among the hill-tribes of the central tableland of India generally, they are employed either by themselves or in conjunction with cowrie-shells in the decoration of baskets, agricultural implements and cattle. By the Karens of Burma the cylindrical grains cover certain portions of dress, and are elaborated in designs that simulate (or perhaps may have suggested) some of the patterns seen in embroidery. With the Angami Nagas, earrings are constructed that consist of a rosette of the elongated seeds surrounding the metallic green wing-cases of a beetle.

Trade.—The possibility of a profitable expansion of the industrial uses of these seeds to a large extent suggested the inquiry, the practical results of which have already been set forth. A fairly large trade exists in the seeds, and they are used in the construction of Japanese bead door-curtains. An exceptionally large kind—a form of *C. aquatica*—was discovered by me in Poona, utilised in the construction of such curtains. It seems probable that *C. gigantea* and *C. aquatica*, together with some of the larger forms of *monilifer*, are most likely to be worked up in that manner. But in discussing possible future industrial developments it is essential that the separation indicated into the forms of *C. Lacryma-Jobi* that are cultivated and those that are wild should be clearly kept in mind. Cultivation destroys very rapidly the hard pearly shell, upon which to a very large extent the industrial demand depends. It also changes the colour of the grain and produces dull chalky whites and straw-colours, utterly devoid of the rich glossiness of the wild grains. By the selection and partial cultivation of spontaneous varietal forms or sports (such as those named *stenocarpa* and *monilifer*) these dangers are ever present. This fact is fully appreciated by the Burmese experts, and the cultivation, partial though it be, is abandoned for a time or fresh stock secured from the jungles, when regression has been observed. It is thus difficult, if not impossible, to guarantee a continuous supply of any one shape, size, or colour of grain, and this may at a once be admitted as (from the European point of view) a serious obstacle to a
COLOCASIA ANTIQUORUM
Kachú

greatly increased demand. The smaller and more gracefully formed examples of *monilifer* and of *stenocarpa*, it would seem, stand a fair chance of coming into use in Europe as beards, especially in the construction of bugle-trimmings and as buds and other special portions of artificial flowers. They would be cheaper, more durable, than the glass at present used, and since they may be dyed any desired shade of colour, they might be extensively employed in dress-trimmings. And doubtless the difficulty of producing and maintaining certain sizes and shapes of grain would soon be overcome were a profitable demand to arise for a larger production than at present exists.

Colchicum.

Two Forms.

Poisonous Seeds.

COLCHICUM LUTEUM, Baker; Fl. Br. Ind., vi., 356; Liliacææ. A small plant found on the grassy slopes of the Western Temperate Himalaya.

The corms (or bulbous roots) constitute the bitter *hermodactyl* of the later Greeks, and are the *surijan* of the Indian bazars. The true *Colchicum* (c. *autumnale*) does not occur in India, but in the bazars there are two forms sold, the bitter and the sweet. The latter is imported from Persia. European physicians in India consider the sweet root as inert, but they would seem to hold that the bitter one possesses similar properties to the true colchicum and may be substituted for it. Recently a few children were reported to have been poisoned at Bothkhan, Ramnagari, through eating the seeds of this Indian colchicum. The seeds were accordingly chemically analysed at Calcutta (as also the roots), and tested physiologically. It was found that both possessed colchicine, of which the hundredth part of a grain proved fatal to cats. [Cf. Hooper, Rept. Labor. Ind. Mus. (Indust. Sec.), 1902-3, 28.]

Kachú.

COLOCASIA ANTIQUORUM, Schott.; Fl. Br. Ind., vi., 523; Jacobus Botiius, Hist. Nat. et Med. Ind. Or., 1629, in Piso, Ind. Utri. re Nat. et Med., 1658, 144; Rumphius, Herb. Amb., 1750, v., 313, t. 109; Forster, Pl. Esc., 1786, 57; Arum Colocasia, Roxb., Fl. Ind., iii., 494-5; Taleef Shereef (Playfair, transl.), 1833, 12-3; Nicholls, Textbook Trop. Agri., 290-3; Duthie and Fuller, Field and Garden Crops, iii., 8, t. lxxv.; Mollison, Textbook Ind. Agr., iii., 191-3; Rec. Bot. Surv. Ind., i., 86, 377; ii., 25, 147; 1905, iii., 296; Prain, Beng. Plants, ii., 1112; Wiesner, Die Rohst. des Pflanzenr., i., 566; Aroiëæ. The Taro, Eddoes, Scratch-coo, Tania, Egyptian Arum; in the vernaculars kachú or katchú, kachchi, arvi, avos; dvu (cultivated) and kirth (wild) Naga hills; ráb (Pb.); dīu, terem (Bombay); shándam-thúmpa (Tel.); Tahitian tallo or tarro, Malayon tallas, etc.

Habitat.—A tall, coarse, tuberous herb, wild and cultivated both in moist and drys habitats over the greater part of tropical India and Ceylon up to 8,000 feet (in the Himalaya); cultivated, in fact, in all tropical countries.

The plant has large heart-shaped leaves, borne on long footstalks which rise from a short farinaceous underground stem or corm. The corm constitutes an important article of food with the Natives of India, and the young leaves are often eaten in the form of spinach. The plant is in consequence fairly extensively cultivated, and special races have been evolved to suit every condition of soil and climate, from the swamps of Lower Bengal to the moist hills of Assam and Madras, to the dry uplands and lower hills of the Deccan and Rajputana and even to the temperate tracts of the Himalaya.

Wild and Cultivated Forms.—The wild plant, which is extremely plentiful in the moist tropical regions, produces but rarely an edible tuber though its leaves are often eaten. Roxburgh describes three special wild forms:—*kalla kachū*, a plant with purple leaves found on the edge of ditches—the leaves and leaf-stalks are eaten; the *char-kachū*, which has the leaves clouded with bluish-black; and the *ban-kachū* with green leaves. These are found on roadsides and homestead lands, but above inundation level.

Roxburgh also mentions two cultivated forms, the *guri-kachū* and the *un-kachū* (or early *kachū*). Small corms of these are planted in May or June, the *guri* being reaped towards the end of the year and the *guri* not until February or March. Lastly Roxburgh mentions, as a distinct species, a special form of
C. antiquorum, viz. nymphaeifolium, the sar-kachu, which frequents aquatic situations and produces corms that attain the length and thickness of a man’s arm. Engler (in DC., Monog. Phaner., ii., 491) refers the forms of C. antiquorum to seven varieties, three of which are met with in India. Duthie and Fuller say that two varieties appear to be grown and distinguished by their roots, viz. dholi ki gogli, the white- and kili ki gogli, the dark-coloured. The word gogli, they observe, refers strictly to the young off-sets, the main root being known as dundu. Nicholls (i.e. 292) says that there are two principal varieties, one with green stems and leaves and the other with purplish ones, but that the tubers are identical in both kinds. Numerous vernacular names are given to cultivated races of this plant all over India, but in the present state of knowledge it is impossible to assign them any more distinctive positions than those indicated above.

Cultivation.—The following account of the method of propagation usually adopted is given by Nicholls:—“The best soil is a sandy loam with an abundance of organic matter in it. The plant does not do so well on clayey soils, and it does not thrive on pure sands. . . . The plants are propagated in the same way as are yams. That is, when the crops are reaped, the head of the tuberous rhizome is cut off and the leaves are detached, leaving a few inches of the lower part of the leaf-stalks. These heads are then planted, and soon a number of plants bud forth from the top of the head and produce a crop of tunias. The heads may be kept some time before planting without suffering any harm, and thus they may be carried to long distances.” Nicholls also observes that the tubers may be left in the ground without deterioration for a considerable time after they are ripe, so that they can be dug up as they are required. Mollison, speaking of Bombay, says that the crop is rarely grown over a large area. Patches are raised in the back yards of houses, and in the garden lands of Gujarat it is common to find a patch near a well, with single plants at the corners of beds of other irrigated crops. “When grown alone,” he continues, “the land is carefully prepared as for other garden crops, and laid out into beds 12 feet by 6 feet for irrigation. Forty plants occupy each bed. The crop should be freely manured and watered, also weeded as required. Off-sets should be removed before they root, unless it is desired that the whole surface should be covered with plants. This is, perhaps, advisable when the crop is grown under sewage irrigation for the value of its leaves and leaf-stalks. If grown for its corms, the plants should be 12 inches apart. It takes ten months for the corm to reach maturity. When the crop is planted four or five months, the leaves and stalks may be gathered every three or four days. They should be cut off close to the ground whilst young and tender. A few older leaves should always be left to preserve healthy, vigorous growth.” Duthie and Fuller state that in the Cawnpore district the average outturn is only 50 maunds (less than 2,000 lb.) per acre. In Coimbatore, however, the yield has been recorded as 6,250 lb. per acre.

Utilisation.—The corms contain much starch and constitute an important article of food throughout the country, especially with the lower classes, and in some districts, such as Travancore, the corms are of very special value. They are usually scraped or partially peeled, cut up into small pieces, and boiled like potatoes. After boiling, the soft pieces are often fried in butter (ghil) or oil and the usual Native condiments added. Sometimes also they are pounded into a paste, and in New Guinea they are said to be ground into flour and made into biscuits. A pickle prepared from the main root (dundu) with chillies, salt and lime-juice is sold in the bazars. The bazar rate for the vegetable is said to be about 1 maund for one rupee. Mollison observes that the stalks and leaves are cooked either separately or together. If separately, the fibrous cuticle of the stalk is removed and the inner part cut into short pieces and cooked with condiments and gil.
COMMIPHORA

Indian Baelium

INDIAN AND IMPORTED BALSAMS

To this preparation is added boiling oil (phodini) in which mustard, turmeric and spices have been mixed. The prepared dish is a sweet curry. The leaves are used as a sāg or are chopped fine with the stalks and made into a curry. There are numerous other preparations of kachu leaves and stalks. Nicholls says that the mature leaves and stalks are an excellent fodder for cattle and food for pigs.

All parts of the plant contain an acrid principle which is commonly supposed to be extracted by boiling. Thus on account of this acidity the juice of the petioles is often employed as a domestic remedy, being regarded as styptic and astringent. But this acrid principle was investigated in 1888 by Pedler and Warden in the case of the species C. virosa, Kunth. (bisam kachu), which alone is regarded by the Natives as poisonous and never eaten. The results of the above investigation were recorded in the Dictionary, and it may suffice to say that the poisonous principle was discovered to be due to very numerous bundles of crystals of oxalate of lime, and thus to mechanical irritation similar to that produced by cowhage (Mecuna pruriens) or chopped hairs administered in food. The crystals, it may be observed, are indissoluble in boiling water, but are rendered inert by water slightly acidulated with hydrochloric or nitric acid, and to a less extent with acetic acid. Hence in preparing Arum tubers for food the Natives almost always add an acid vegetable or fruit such as tamarind.

D.E.P., l. 365-70. Myrrh.

Assam Baelium.

C. Agallocha, Engl.: Amyris COMMIPHORA, Bozh., Fl. Ind., i., 245; B. Rozburchi, Arn.; gugal, gugal, mahaobala, gupar, gukul, etc. It bears, in fact, the same names as the next species. A native of Eastern Bengal, Sylhet and Assam. It was formerly supposed to yield Indian baelium or gugal, but its gum is now said to be used only as an adulterant of, and not as a substitute for, myrrh.

C. Mukul, Engl.: Indian Baelium, gugal, gugal, gugal, gugal, mukul, markis or koushik, koushikha, etc. A tree found in the arid zones of Sindh, Kathiawar, Rajputana, Berar and Khandesh. A gum exudes from incisions on the bark made in the cold season. It occurs in uniform pieces of a brown or greenish colour, and is put on the market as a substitute for African baelium. The Indian supply comes very largely from Amraoti and is used in Bombay, mixed with mortar, as a fine cement (p. 293). It is employed medicinally in leprosy, rheumatism, etc. Dutt (Mat. Med. Hind., 1900, 132-5) says that "the old gugal is dry and without flavour or colour, and should not be used in medicine." Moodeen Sheriff (Mat. Med. Mad., 1891, 93) remarks that the wholesale price is Rs. 4 per maund and retail 3 annas per lb.

The commercial interest in the products of this genus centres around the foreign supply largely imported into Bombay. Of these mention may be made of Baelium and Byasabol from Africa; Balsam of Mecca (mor, baldesin), an aromatic oleo-resin from Arabia; and Myrrh, both which come from Africa (Somali-land) and that from Arabia. The best is the karam or banda karam, and the second quality the meetiya or chenai-bol. Recently Europe has begun to import these products directly instead of via Bombay. The value of bandar karam at Bombay is given as Rs. 34 per maund of 37 lb., meetiya Rs. 16 to 25, refuse Rs. 8. In 1898 the East India Co. imported into England 53 cwt. of myrrh valued at £1,014 = £10 2s. 7d. per cwt. The present-day price is about £5 per cwt, but exact particulars of the import and re-export trade are not available. It is possible that some portion of the transactions mentioned under Boswellia (p. 174) belong in reality to COMMIPHORA. [Cf. Keew Bull., 1896, 91-4; Keew Mus. Guide, 1907, 39-40.]

Red Zanzibar.

Holmes (Pharm. Journ. (ser. 4), iii., 506) says that myrrh now reaches London direct from Arabia and Abyssinia. When it comes from Bombay it is called Red Zanzibar. He has also urged that it would be preferable to retain the name BALSAMODENDRUM in preference to substituting COMMIPHORA. [Cf. Teichrich, Die Harze und die Harzbehüller, 1906, i., 391-410.]

400

COPPER AND BRASS: Occurrence and Production. — For detailed information regarding the Indian mines and sources of copper ore, the reader is referred to the publications mentioned above. The indigenous industry of copper smelting may be said to have been dormant in India for many years, though some short time ago expectations of its revival were entertained in connection with two localities in Bengal, viz. Singhbhum and Darbhun. More recently discoveries of some value have been made in Darjeeling, Chanda, Garhwal, Assam and Baluchistan, etc. An elaborate historical account of the Chota Nagpur copper-fields is given by King and Pope in the work cited above, and will repay perusal. Holland says that copper was formerly smelted in considerable quantities in South India, Rajputana, and at various parts of the outer Himalaya, where a killas-like rock persists along the whole range and is known to be copper-bearing in Kulu, Garhwal, Nepal, Sikkim and Bhutan. He adds that all attempts by European companies to open up the deposits have proved unsuccessful and the Natives no longer work the ore themselves. Nevertheless mining leases are still held and prospecting licenses are frequently granted for copper-ore. It will be seen from the statistics of the imports of foreign copper and brass that if a paying deposit could be opened there is a large annual demand in India which might be contested. It may be said of the ancient workings that they very rarely reached the pyritic ore because with their simple and inefficient appliances they were unable to cope with the flow of water which followed their mining operations. Hence the ore smelted was principally oxides and carbonates.

Indian Copper and Brass Workers. — There may be said to be three classes of operatives concerned in the copper and brass trade, viz. smelters, foundrymen, and coppersmiths. Every village has its trade in copper vessels, and most have, in addition, their coppersmiths. The iron and brass foundries are often treated conjointly, so that separate statistical returns cannot be furnished. Thus in the Moral and Material Progress of India (1905–6, 178) the number of workers for 1905 is stated to have been 24,300. It has been repeatedly pointed out that there is a tendency for the copper and brass industry to become more and more concentrated in the towns, a movement which must contribute to its better organisation. Certain centres having become famous for their copper and brass manufactures are securing a large proportion of the total trade and drawing the best workers away from the villages. Nevertheless the industry as a whole is said to be in a secure state compared with many of the other indigenous crafts, and this result is largely a consequence of the essentially hand-labour character of much of the goods turned out.

Statistics of the Indian outturn of copper are not available, but in the
concluding paragraph will be found full particulars of the foreign trade, and these give the most accurate conception possible of the Indian copper-smith's craft.

Copper and Brass Wares.—The tambá (Copper), pital (Brass), jasta (Zinc), rangá (Tin and Pewter), and sisa (Lead). Each province has two or more centres noted for copper and brass works, hence the diversity of art designs in the ornamentation of these metals. Brass is an alloy of copper and zinc usually in the proportion of 2 to 1 or 4 to 3, but it is rarely made in India, being generally imported as sheet-brass. A cheaper but inferior alloy of copper, zinc and tin is called bharat, kasakt, or kanâi. But phât or kanaí is the most constant of Indian alloys and corresponds to the bell-metal or white brass of Europe. It is a bright metal, takes a high polish, and is composed of copper and tin in the proportion of 7 to 2. Hoey mentions the kasbharas are the vendors (not themselves the manufacturers) of ornaments made from an amalgam of copper and zinc. The actual manufacturers are dhaliyas or bhariyas, the former casting in stone moulds, the latter in clay.

In the Hindu order of purity gold is followed by copper, silver, brass and iron. Brass is detestable (makrâh) to the Muhammadans, who prefer earthenware, but copper may be tinned and approved in that form. The Hindu ceremonial law prohibits phât or bell-metal as containing pewter (rangâ). This is unfortunate, since phât is by far the most sanitary metal in India, and in it acid materials may be cooked and milk and curds kept, whereas such is not the ease with copper or brass.

Casting.

Indian craftsmen manifest a wide knowledge of the technique and utilization of these metals and their alloys. The large brass idols of Burna are cast with appliances and by a staff of operators absurdly inadequate when judged by European standards. Chain bangles and anklets (santh), often worn by the peasants, are moulded in Raiputana and elsewhere and sold at a few annas a pair that could not be manufactured in Europe or America at so small a price. [Cf. Textile Journ., 1891, i., 78.] Between these extremes in magnitude and intricacy may be said to lie the long range of domestic and sacred utensils, in the production of which the craft has drawn to its ranks men of nearly every caste in addition to the hereditary workers, the kaseras and thatheras.

Domestic Vessels.

Domestic vessels are rarely ornamented because, by ceremonial law, they must be secured with mud before being washed with water. The commonest copper or brass vessel of the Hindus is the globular melon-shaped lotâ, which is flattened from the top and possessed of an elegantly reflexed rim. It is doubtless modelled after the expanding lotus-flower (*Nelumbium speciosum*). The Muhammadans have given the lota (or, as they call it, the tonti) a spout, in order to secure an approach to the running water ordained by the Koran for their ablutions. The spouted water-pot has given rise to a totally different series of metal-work, both domestic and decorative, from those connected with the Hindu lota. And perhaps to this may also be traced the broader (transverse) developments of Hindu and the narrower (more longitudinal) designs of Muhammadan art.

Artistic and Ceremonial.

Ceremonial implements and the vessels elaborated from these are richly varied in shape and ornamentation. Examples are the kosa or panch-pat, a spade-like vessel used in raising water; the kusi or achmani or spoon used by the priests in sprinkling holy water; the dhupâni or censer; the eknhasan or idol-throne of lotus-leaf pattern; the hanging lamps (artî); the bells (ghanâ); and in particular the chains by which these are suspended in the temples; and the designs usually adopted for idols, especially those portraying the youth and pastoral existences of Krishna, are all highly artistic and have contributed very greatly to Indian conventional art. The following publications will be found useful in reviewing the chief centres and styles of Indian copper and brass work:

PANJAB AND NORTHERN INDIA: Kipling, Journ. Ind. Art, 1884, i., pt. 1; Old Kashmir Copper Ware, i.e. pt. v.; also Copper and Brass, Delhi, i.e. 1885, Amritsar, and Lahore, 1888; Johnston, Monog. Brass and Copper Pl., 1885; C. H. B. in Civil and Military Gaz., Jan. 5, 1902. UNITED PROVINCES: Benares Ware, Journ. Ind. Art, 1885, i., pt. 7; Moradabad Ware, i.e. Crookes, Copper and Brass in Mirzapore, i.e. 1892, No. 44; Dampier, Monog. Brass and Copper U. Prov., 1894. RAJPUTANA AND CENTRAL INDIA: Hendley, Jaipur Mus. Cat.; Brass, Copper and Mixed Metal-wares of Jaipur, Journ. Ind. Art, 1886, i., No. 12; Jaipur, Lucknow, Kashmir, Copper and Brass, etc., i.e. 1891, No. 35. BOMBAY: Hammered Copper in School of Art, Journ. Ind. Art, 1886, i., No. 11; Brass and Copper Bum-
SALTS OF COPPER

COPPER SALTS.—The most important is the Sulphate—Blue-stone, nila-thúthia (nila-tutin), mor-tuttá, mayil-tuttam, turichu, galqand, doutha, etc., etc. Speaking of this salt, Holland observes: “For many years pyritous deposits in India have been turned to account for the manufacture of soluble sulphates of iron and copper,” as also in the manufacture of alum—the double sulphate of alumina and potash. He then discusses the importance of the manufacture of sulphuric acid (see pp. 50-1) as a link in the chain of production of many of the most important chemical and metallurgical industries—such as soap, glass, paper, oils, dyes, etc. He further points out that it is a by-product of such value as to admit of the smelting of ores which it would be impossible otherwise to undertake. But in Europe the price of sulphuric acid has been reduced, during the past 100 years, from £30 to £2 a ton, and in consequence this originated such activity and far-reaching competition as to have all but exterminated the ancient Indian manufacture of alum, copperas, blue-stone and the alkalis and alkaline earths, reduced the export trade in nitre, rendered the smelting of copper and several other metals no longer profitable, robbed the country every year of nearly 100,000 tons of phosphatic fertilisers, and compelled India to pay ten million sterling for products obtained in Europe from minerals identical with those lying idle in India. Under the account of Alkalis and Alkaline Earths (pp. 50, 55) it will be found that this subject has been incidentally discussed already. So again under Coal and the Manufacture of Coke (p. 347) mention will be found of the loss to India of a valuable manure. Hence it may fairly be said that a more important and more immediate direction for developing India’s productive resources could hardly be mentioned than the utilisation of her pyritous deposits by the modern economical methods pursued in Europe. As exemplifying this contention it may be pointed out that the production of sulphuric acid from iron pyrites was in Germany 358,149 tons in 1882 and 754,151 tons in 1898. Of that large quantity only 25,000 tons were exported; the balance was used up in the German chemical industries which within the past three-quarters of a century have expanded from a mere nominal value to a capitalisation of £50,000,000.

The manufacture of copper sulphate as pursued in India at the present day is on a very small scale. The knowledge of its possible production from pyrites has been possessed by the people of India from a remote antiquity. The pure salt is, however, imported extensively from Europe. Medical writers, such as Dutt, give particulars of the methods of refinement pursued with the salt that is to be used for medicinal purposes. These are very possibly of questionable advantage. Blue-stone is extensively used in medicine, in dyeing, and as an ingredient in one of the best-known and most valuable fungicides—the “Bordeaux Mixture.” (See Camellia, p. 229.)

Copper Acetate, Verdigris (zangár), is manufactured by the siríkakash or vinegar makers. They buy up copper filings from the coppersmiths. These are put into a jar and covered with distilled vinegar (arug). The pot
is closed at night but open during the day. After twenty-four hours the
arag is poured off and mixed with water and left to evaporate until only the
zangdr remains. Copper acetate and the arsenite of copper are used
as insecticides and as colouring reagents. Zangdr yields a blue-green of
great beauty. [Cf. Hoey, Monog. Trade and Manuf. N. Ind., 1880, 195.]

Trade.

Indications of Famine.

Fluctuations in Price.

Economic Barometer.

Imports.

Imports in Cwt. of Copper.

<table>
<thead>
<tr>
<th>Year</th>
<th>Quantity</th>
<th>Year</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1896-7</td>
<td>240,648</td>
<td>1901-2</td>
<td>103,822</td>
</tr>
<tr>
<td>1897-8</td>
<td>322,340</td>
<td>1902-3</td>
<td>395,850</td>
</tr>
<tr>
<td>1898-9</td>
<td>251,301</td>
<td>1903-4</td>
<td>433,091</td>
</tr>
<tr>
<td>1899-1900</td>
<td>90,846</td>
<td>1904-5</td>
<td>427,333</td>
</tr>
<tr>
<td>1900-1</td>
<td>159,971</td>
<td>1906-7</td>
<td>211,559</td>
</tr>
</tbody>
</table>

To the returns quoted by O’Conor have been added (as a matter of
certainty) the figures for the years 1902 to 1906.

Price.

Decline.

Robertson (Rev. Trade Ind., 1904-5, 8) remarks, "After five years
of steady progress the imports of copper have fallen by 1-3 per cent. in
quantity and 2-7 per cent. in value." "Owing to the rise of prices in
Europe, caused by large demands for America and China, imports of both
unwrought and wrought copper were greatly restricted during the last
quarter of the year. The sensitiveness of the Indian demand to price
changes is always noticeable, for besides its increasing use for industrial
purposes, copper as the material for household utensils is an article of
great importance in the domestic economy of the people, and their ability
to satisfy their requirements is regulated first by their material prosperity,
which is principally a question of good or bad crops, and secondly, by
the commodity being cheap or dear." The ominous decline thus briefly
indicated became even more marked in 1905-6, when it amounted to 36.5
per cent. of the quantity and 32 per cent. of the value. [Cf. Noël-Paton,
Rev. Trade Ind., 1905-6, 10.]

Brass.

But to obtain a full conception of the traffic it is necessary to add to
the above imports of copper those in brass of all kinds. These fluctuate
from 10,000 to 12,000 cwt., valued at from 6 to 8 lakhs of rupees. The
grand totals for the years 1902-7 thus became:—1902-3, 407,494 cwt.,
valued at Rs. 2,03,28,458; 1903-4, 444,188 cwt., Rs. 2,23,37,805; 1904-5,
437,043 cwt., Rs. 2,16,65,705; 1906-7, 223,097 cwt., Rs. 1,46,88,946.

The major portion of the imports come from the United Kingdom.

Of the supply (copper only), 433,091 cwt., secured by India in 1903-4,
the largest quantity imported in the last five years, the United Kingdom supplied 293,595 and each of the following countries furnished from 18,000 to 25,000 cwt., viz. Ceylon, Hongkong, Belgium, Germany and Japan. Bombay takes by far the largest share (228,874 cwt. in 1903-4), followed by Bengal (163,908 cwt.) and by Madras, a long way third (34,501 cwt.).

COPTIS TEETA, Wall. : Fl. Br. Ind., i., 23; Hobson-Jobson, (ed. Crooke), 1903, 548-9; Ranunculaceae. Coptis or Gold Thread, titi, māmirā (tī māmirā), mahmira, pita-karosana. A small stemless herb, with perennial root-stock, met with in the temperate regions of the Mishmi hills, east of Assam. The plants are said to grow on the ground among the moss around the stems of trees.

Very little, if any, additional information is available since the publication of the *Dictionary*, and the original article should therefore be consulted. Four reasons, it will there be found, were given for questioning the absolute identification of the tonic drug prepared from this plant with the "māmirā" of early European writers.

The Bengal supply comes through Assam, but a Chinese root, the identity of which must be regarded as uncertain, is also imported into India. The latter may possibly be a different species of *Coptis*, for it to be observed that *C. anemonoides* affords a medicinal root in Japan, whilst *C. trifolii, Satib.*, yields both a medicinal root and a yellow dye in North America. [Cf. Wiesner, *Die Rohst. des Pflanzen.*, ii, 477.] But the thicker Chinese rhizome as described by Dymock seems to recall some of the forms of *katāk* or *kuru*, such as *Pierorhiza Kurrou, Gentiana Kurrou, Corenium fenestratum, Sueria Chiruta*, etc. It is just possible also that one or other of these roots may be sold as titi in the Upper and Western Provinces. Indeed J. D. Hooker was actually presented in Sikkim with a handful of the so-called "teeta", which he identified as *Pierorhiza*. It would thus seem highly likely that that, being the most abundant Indian equivalent, may have been at an early date identified with the classical māmirā, and called māmirā. At all events it is largely sold throughout India and is frequently mentioned in *The Bower Manuscript* of date 5th century. Moreover it is worth noting that *Coptis, Berberis*, and doubtless many other yellow bitter drugs contain berberine, which, it would seem, constitutes their efficacy as eye-salves. For example, from Mussourie and other localities on the N.W. Himalaya the roots of *Thalictrum foliolosum* are collected and sold under the name māmirā. Aitchison speaks of the roots of both a *Coptis* and a *Gentiana* being used in Afghanistan as a drug, which is there called māmirā. Two samples were examined by Mr. Bhaduri and found to contain 6·85 and 6·5 per cent. berberine respectively (Rept. Labor. Ind. Mus., 1902-3, 29). In conclusion it may be noted that *C. Teeta* and the use of māmirā as an eye-salve were unknown to the Sanskrit medical writers—they are doubtless of Muhammadan introduction. (See Berberis, p. 130.)

Apart from the utilisation of *Coptis* as a collyrium or eye-salve, the root makes a valuable tonic in the debility following fevers, etc., but it is not a febrifuge. There appears, however, to be a considerable demand for it in India, and it might be found profitable as a cultivated plant. But it may be here added that the Mishmi poison consists of a mixture of powdered titi with the pulp of an acid glutinous fruit such as *Bilimbi speciosa*. It is generally employed by hunters for killing wild animals. (Cf. *Pharmacog. Ind.*, iii, (app), 92-3.)

The Mishmis gather the roots of the titi, towards the end of the rainy season, and carry them, packed in tiny wicker-work baskets, to Sadiya, where they are bought by Assamese and Bengali merchants, apparently at about 4d. per oz. The drug found in Bombay comes from China via Singapore in bulk, the better and thinner root fetching about Rs. 3½ per lb. and the second kind Rs. 2.

CORCHORUS, Linn. ; Fl. Br. Ind., i., 396-8; Tiliaceae. The Jute Fibre of commerce, Jew's Mallow; the patta, juta, jata, kālasaka of Sanskrit authors (according to Skeat, Dutt and others). It is, however, by no means very clearly nor fully indicated in the classic literature of...
chief forms of *C. capsularis*. These are the *Tarla*, the Bombay and the *Deswal*. The first grows the tallest (10 to 12 feet) while the last attains to only 7 feet, and the Bombay to 9 feet. The *tarla* stands waterlogging better, i.e. it does not get so "rooty" if late in the season there is an accumulation of 4 or 5 feet of water in the field. The Bombay and *deswal* both get rooty under these circumstances. The *deswal* comes to maturity early in July or even late in June, and has not, therefore, much time to get rooty, but it branches freely. The Bombay, though it gets rooty does not branch much, and bears very little fruit. The *tarla* is the form preferred where there is liability to much inundation.

Habitat.—Breitschneider (loc. 441) observes that a species of *Corchorus* is grown to a large extent in the plain of Ning-po. In China this fibre is used in the manufacture of sacks and bags for holding rice and other grains. So again, he says, jute (*Corchorus sp.*.) is the most important fibre plant of the plain of Tientsin. It grows to a great height. The *Board of Trade Journal* (Oct. 29, 1903) speaks of the exports of 40,000 cwt. of jute from Tientsin. The specimens in the Kew Herbarium show that the *Corchorus* of Tientsin is the present species. Further, Roxburgh tells us that a reddish-stemmed form of *C. capsularis* had been successfully acclimatised in Bengal, the seeds of which came from Canton. This, he adds, yields a better quality fibre than the *C. capsularis* of Bengal. So far as India is concerned to-day, *C. capsularis* is grown mainly in Eastern and Northern Bengal and Assam, and thus in a country that possesses many strongly Chinese peculiarities : seen in the people who inhabit it, in their articles of food and nature of some of their social customs, as also in the climate and soil of their country (see *Bohmeria nivea*, p. 148). If, therefore, were pressed to give an opinion, based on botanical data, as to whether or not jute was indigeneous to India, that position might have to be conceded for *C. olitorius*—the least important of the two jute plants, but very probably would have to be refused for *C. capsularis*, unless an exception were made in favour of Eastern and Northern Bengal, a tract of India with strong Chinese characteristics. In fact at least one of the best varieties, *C. capsularis*, has already been indicated as derived from China, though in connection with the earliest published drawing of that species the author (Plukener) speaks of it as the American plant with long leaves and striated sub-rotund fruits.

I have in the *Dictionary* (l.c. 536) discussed the specimens of this species seen by me in the Calcutta Herbarium. It may be useful to give here some particulars of the examples in the Kew Herbarium. No specimens in either collection is stated by the contributor to have been found wild in India, in the Malaya, in China, or in Japan. With the exception of a specimen from Natal (of which little is known) there are no examples of this plant from Africa, Arabia or America. The following may be specially mentioned:—From *India*—Upper Assam (by Jenkins); Bengal; Sikkim Terai, a remarkable example collected by Hooker and which has long narrow linear, deeply and uniformly serrate leaves; other examples of the typical form from Moradabad; Saharanpur; Kanara, and Mysore. From *Ceylon*—a few sheets. Many examples from *China*, most of them stated to be cultivated and one accompanied with samples of the fibres and fragments of the textiles made of it, viz. that from Ningpo (Hosie's collection); Foochow (Carles); Kiu kiang (Shearer); Yangtze-kiang (Faber); Hongkong (Champion, cultivated). [Cf. Hemsley, *Journ. Linn. Soc. (Bot.)*, 1886, xxii., 94.] From *Japan*—two samples, one said to be cultivated, the other no record. Lastly from *Perak, Tonkin* (Balansa's collection); *Sarawak* and the Celebes—fairly complete sets, but none of them stated to have been found in a wild condition.

Not a few authors have, however, affirmed that this plant is wild in China, the Malaya and India. I repeat there are no botanical specimens either in the Calcutta or the Kew Herbaria to support the opinion that it is indigenous to India, and in my personal experience it nowhere exists there, even in a state of acclimatisation. It is a cultivated plant of a very restricted area, and one subject to greater racial modification than the next form.

CORCHORUS
OLITORIUS

Jute

f. 2810 (but fruit a little too pointed); Richter, Codex. Bot. Linn., 1840, 525 (shows that Linn. first included Plruk., t. 127, f. 3, under this species and subsequently placed it under C. aestuans, Sp. Pl., 1762, 746; but Linn. cites in addition Browne, Triumphetta, in Nat. Hist. Jam., 232, t. 25, f. 1—a plate that in my opinion is rather C. acutangulus); Martius, Fl. Bras., 1842, xii., pt. iii., 126; Prain, Beng. Plants, i., 286; etc., etc.

The vernacular names usually given to this species cannot be accepted as separately distinguishing it, though ban-pdt is its most general name—a circumstance indicative of its frequency as a weed of cultivation. So also the fibre of this form is perhaps that very generally designated as desii pdt or tosha. Moreover the plant is (even in India) the edible species of authors, and it is just possible that it corresponds with the Jew’s Mallow and even the melochia of the early writers. Mukerji (Handbook Ind. Agri., 1901, 298) would, however, seem to think C. capsularis is the vegetable and C. olitorius the medicinal form. It is thus possible that the tender shoots of both species are eaten. The Indian names—nditha (a corruption of the Sanskrit nadika), nutia, nanich, sag, etc.—may, however, be accepted as mainly denoting the present species. It is, therefore, somewhat surprising that the plant figured by Rumphius as the sag of Bengal should have been C. capsularis. This was most probably a mistake due to his not having personally investigated the Bengal plant. The Ganja sativa of Rumphius (his cultivated species) is undoubtedly, however, C. capsularis, while his Ganja agrestis (or the wild form) is not a species of Corchorus at all. It would thus seem fairly certain that Linneas was in error when he identified the latter as C. olitorius, and to this error very possibly is attributable the statement, made perhaps more emphatic than the facts justify, viz. that C. olitorius is indigenous to India. But it is curious that Rumphius should have regarded C. capsularis as the special cultivated form, since in Egypt, Africa, America and India, C. olitorius is the edible and hence the cultivated plant of most non-Indian authors. Sir William Jones while discussing the sand (Crotalaria juncea) incidentally speaks of the “Capsular Corchorus,” so that by 1795 the two forms may be assumed to have been accepted by Indian botanical authors as distinct.

Description.

The leaves of C. olitorius are usually glabrous, except on the petioles and veins of the undersurface; the flowers are seemingly larger than in C. capsularis; the capsule is elongate, cylindrical, usually not materially tapered at either end, glabrous, smooth; beak long, straight, cells and valves generally four but five not uncommon. It would seem that the fruits are longer, thicker and smoother in the African than in the Indian forms, though apparently the fruit is smooth when collected mature and warty when immature. Some of the African and Egyptian forms have the fruit tapered at both ends: this is not true of the Indian plant.

African versus Indian.

Habitat.

Habitat.—In the Flora of British India (l.c. 397) it is observed of this species that it is indigenous in many parts of India, and distributed by cultivation to all tropical countries. The chief centres of its Indian cultivation are the districts of Bardwan, Khulna, 24-Parganas, Hughli, etc., but it is met with here and there completely acclimatised on roadsides and margins of fields all over India and Burma. Its claim to being strictly speaking indigenous, however, rests on doubtful evidence. It is certainly more frequently and more widely met with in India than is C. capsularis. It seems also fairly certain that in India it is a much less variable plant than the "Capsular Corchorus." But it may be said that while all the forms met with in the Indian jute area do not (on the botanical standard) amount to more than cultivated races, there are numerous allied forms met with in Africa, Egypt and America that perhaps deserve to be recognised as definite varieties. But on the other hand several plants described by botanists
as species might very possibly be more accurately treated as varieties of the present. But it is hardly matter for surprise that a pot-herb, met with throughout the tropical regions of the globe, and which has existed at least for centuries under garden cultivation, should have assumed a multiplicity of varieties and races; in fact the comparative paucity of Indian forms is a significant circumstance. In India it is invariably found on high and dry land, hardly ever under the inundation indispensable with \textit{C. capsularis}. It is admittedly inferior as a source of jute, and is never cultivated where \textit{C. capsularis} is possible. But it occasionally grows taller than even some of the forms of \textit{C. capsularis}, such as the \textit{desert}; it prefers sandy loams, and takes a longer time to come to maturity (September and October, the \textit{desert} season being July).

In the Kew Herbarium there are numerous interesting specimens of this species, the labels of which occasionally bear instructive notes, a few of which may be here quoted:—From \textit{India}—Madras, cultivated in gardens; Mysore (Rottler's specimen has the note that paper is made from it in Bengal); Lower Bengal, many; Burma, Ava (Wall. herb.); Belgaum, Ritchie's, said to be eaten but not cultivated, though always found near cultivation; Moradabad; Ambala, in cornfields; Kurnool, up to 4,000 feet; Nepal; Simla, up to 4,000 feet in fields. Afghanistan, roadsides and fields; Sind, occasionally. From \textit{China}—Yunnan. From \textit{Ceylon}, up to 3,000 feet. From \textit{Africa and Egypt}—Liberia (Sir H. H. Johnston contributes a plant with very large smooth fruits, and narrow, thick, and sharply serrated leaves); Angola; Sella Camambia; Sierra Leone, cultivated; Zambesi (vernacular name \textit{terere} = eaten); Niger river, in fields; Kordofan, edges of fields; Khartoum; Lake Nyassa; Cross River, Old Calabar. From \textit{Madagascar}. In the \textit{West Indies}—Cuba and Jamaica, cultivated from Calcutta seed. From \textit{Mauritius}, introduced before 1864, now a weed. From \textit{Java, Philippines, etc.} From \textit{Australia}—Alligator River (leaves very narrow), etc., etc.

\section*{CULTIVATION IN INDIA.}

\textbf{History.}—The history of the modern jute industry is exceedingly interesting and at the same time closely associated with the British rule in India. There can be little doubt jute fibre has been known in India from comparatively ancient times, but the confusion that existed, almost down to the middle of the 19th century, in the use of the words \textit{san}, \textit{bhang}, \textit{pdt}, \textit{gani}, \textit{gania} (gummy), hemp, etc., renders it often a matter of supreme uncertainty what particular fibre may have been indicated by the majority of writers who use one or other of these names. It would seem more probable that \textit{san}-hemp (the fibre of \textit{Crotalaria juncea}, see pp. 430–7) was better or earlier known to the ancient Hindus than were jute or even the true hemp (Cannabis \textit{sativa}, see pp. 251–5). Moreover, it is almost safe to assume that for many centuries the names mentioned were used almost synonymously, just as in modern commerce there are various fibres all called hemp. Perhaps a dozen widely different fibres all called hemp. Hence also the expression, frequently met with in Indian modern trade returns, of “hemp other than jute,” which shows that jute was viewed as but a form of hemp that it had been found desirable to record under a separate heading. The first commercial mention of the word “jute” occurs apparently in the returns for 1828, and it seems fairly certain the vernacular name \textit{pdt} had by then been fixed as the equivalent of jute. In the Bengal Board of Trade, consultations for January 14, 1793, for example, we read of the continued efforts made to establish Indian hemp as a recognised trade fibre. This is reproduced by Robert Wissett (\textit{Treatise on Hemp}, 1808, 23) and again in Milburn's \textit{Oriental Commerce} (1813, i., 283; ii., 209–11). The returns quoted in the last-mentioned work are for the years 1780 to 1803. It is pointed out that there were various qualities of hemp such as “\textit{sann}, \textit{ghore-sann} and the \textit{paut},” which last, as “\textit{it does not grow to the height of above 4 feet . . . is not a profitable article to the landholder.””. “The leaves and tender shoots are used as an article of food.” The plant in question was in all probability \textit{C. olitorius}. But, farther on, allusion is made to “\textit{cooch-morden-paut} and \textit{amlech-paut};” the former may have been \textit{C. capsularis}, and the latter no doubt was \textit{Hibiscus cannabinus}. About the period indicated the East India Company made a great effort to discover a good substitute for Russian hemp, to be employed in the manufacture of ropes and sail canvas. This led to many practical and useful discoveries. Roxburgh wrote in the \textit{Transactions of the Society of Arts} a paper on the culture, properties and comparative strength of hemp and other vegetable fibres, the growth of the East Indies (1804, xxii., 363–96; 1806, xxiv., 143–56). In a letter to the Court of Directors of the Company (dated 1795) he used the word “jute.”

\section*{History.}

\textbf{Confusion in Names.}

\textbf{Early Trade Records.}

\textbf{First Mention of Jute.}
Col. Sir R. Temple has pointed out (Ind. Antiq., 1901) that that name occurs, however, in the log of a voyage made in 1746. It has been suggested that the gardeners employed at the Botanic Gardens, Calcutta, were in Roxburgh's time, as they are to-day, natives of Orissa, and hence that the word "jute" may have been but an Anglicised form of their name for it—viz. *jhut*. But the incident mentioned by Temple carries the word back forty years before the date of the foundation of the Royal Botanic Gardens, though it is quite likely all the same that it came from *jhut*. The origin of the word *gunny* is curious. It now doubt comes direct from the Sanskrit *gani*, "a sack," but in modern usage, in the form of *ganja*, it denotes the narcotic of *Cannabis sativa*, and has thus been transferred from a fibre to a resin. Whether or not goni exclusively denoted the sacking of the true hemp (*Cannabis sativa*) need hardly be discussed in this place. It was early applied to sacking made of *Crotalaria* fibre and even to that of *Corchorus*, hence Rumphius (L.c. 212) gave the jute plant the name of *ganja* (*gania*) *sativa*.

The early references to the jute plant down to the middle of the 18th century may be said to be very largely concerned with identifying the pot-herb which Pliny (79 A.D.) describes as being used by the Egyptians. Considerable uncertainty prevails as to its being the *melochia* (*melokoy*) of the Arabs. Simon Jamness (1473), for example, speaks of the leaves as being hawked in the streets of Babylon. Rauwolf (1583) was apparently the first traveller who critically examined the *melochia*, which he found being cultivated on the banks of the Euphrates, and which he says was largely eaten by the Jews near Aleppo. Cameronis (L.c. 47) was perhaps the first botanist who figured it, and his engraving is an excellent representation of one of the African forms identical with or closely allied to *C. ollitorius*. It had been prepared by Gesner but never published, and he lays stress on the fact that it shows the beard of the leaf and the cylindrical fruit—characters which had not been previously made known.

Corchorus, as accepted by modern botanists, was thus in the sixteenth century definitely determined to be *melochia*. But although this pot-herb of the Arab writers and Eastern travellers (from perhaps 1000 A.D. onwards) was unquestionably an edible *Corchorus*, it is fairly certain that the *melochia* cloths of Greek and Latin authors (Arrian, Pausanius, Pollux, Navigius, etc.) were not jute textiles. Yates (Text. Antiq., 303–4 et seq.) is of opinion that the *melochia* cloths brought from India were made of *Hibiscus* fibre. In the *Peripitus* the *melochia* were said to be procured from localities identified as Ujain and Junnar. The fibre of the former locality could hardly have been other than *Hibiscus cannabinus*, while the latter most probably was *Crotalaria juncea*, if guessed at purely and simply on modern experience of the distribution of the fibrous plants of India.

In the *Ain-i-Abbari* (1590, Jarrett, transl., ii., 123) mention is made of sackcloth (ṭāṭ), but whether of jute, *san-hemp*, or even of the true hemp cannot be ascertained; but Jarrett, in a footnote, identifies it with jute and the district of Rangpur. That the jute was, however, manufactured at Ghoraghat in Eastern Bengal, and thus in the very heart of the jute country, so that it may perhaps be assumed to have been the jute textile in which, about the time in question, it is believed the poorer people were clad. For two centuries after the date of the Ain no mention is made of any fibre or textile that could with certainty be taken as having been jute, though all coarse textiles appear by that time at any rate to have been spoken of as *gunnies*. W. Foster, for example, has drawn my attention to a passage (in Eng. Factories Ind., 340) of date Surat 1621 in which packages are spoken of as "gunned." This could not have been jute cloth, but was probably a textile of *Crotalaria* or *Hibiscus*, since even to the present time jute is not produced in the Bombay Presidency. Curiously enough, the coarse textiles made in England, about the time here indicated, were characterised in Persia as "Sackcloth London" (Fryer, New Acc. E. Ind. and Pers., 1572–81, 224), and it is thus even questionable how far the simple use of the word "sackcloth" or its vernacular equivalent "tal" can be accepted as denoting jute fibre. Frequent mention is made by Foster (L.c. 76) of "gunny" among the articles to be sent from Surat to Persia.

In this connection also it may be regarded as significant that Rheede (India's earliest scientific botanist) is silent regarding the species of *Corchorus*, although both *C. esculenta* and *C. ollitorius* have been repeatedly collected subsequent to his time on roadsides and as weeds of cultivation, not only in Rheede's special country—Malabar—but here and there throughout both Southern and Western India. On the other hand, Rumphius, as already pointed out, gives a most
instructive account and figure of *C. capsularis* (*Ganja sativa*). Its common name, he says, is *Sajar Bengala*, "either because it is plentiful in Bengal or because it is the chief pot-herb" of that country, where it is known as *padlac*. Presumably *padlac* may be a variant of the present-day name *pât*. But Rumphius adds that it was much cultivated in Bengal, Arakan and South China, from which last country the seeds had been obtained by Amboine via Butona. He does not say whether in Bengal it yielded a fibre as well as being a pot-herb, but of China he remarks, "Fine white thread is made from the bark which is stronger than cotton, but rather apt to curl up. It is used in the raw state or may be separated by aid of lime water, then bleached in the sun." The silence preserved by Rumphius regarding the Bengal fibre, and his having laid special stress on its being a Chinese fibre, are features of his remarks regarding *Corchorus* which, when viewed alongside of the statement of its being the chief *saj* or *soaj* (pot-herb) of Bengal, are certainly very significant circumstances. All writers seem agreed, however, that if *C. capsularis* be not indigenous to Southern China, it has been known and cultivated in that country for many centuries—has, in fact, an antiquity far greater than can be shown for it in connection with any other country. Plukener's description which identifies it with America must be dismissed as one of the numerous enigmas of the literature of jute, if it be not accepted as yet another of the many evidences of the close association of India and America accomplished by the Spaniards and the Portuguese.

Early Production.—It is a somewhat curious circumstance that Buchanan-Hamilton, in the first decade of the 19th century (Stat. Acc. Dinaj., 188-9), should have expressed the hope that jute (or, as he called it, *pât*) fibre should under no circumstances be allowed to divert the attention of the public until a fair trial had been made with *sun*-hemp. At that time both Roxburgh and Hamilton were engaged in the search after useful substitutes for hemp, to be employed for the ropes and cordage of the Company's ships. For this purpose Hamilton deprecated an extended utilisation of jute. It was not, however, till 1833 that his account of the jute cultivation of Dinajpur was published, and he there mentions that large quantities of the cloth called *tat* or *chota* were being produced. With the enhancement of manufacturing enterprise in Europe came the demand for foreign food supplies. This necessitated an increasing provision of sacking and packing materials, which it was early recognised could be best met by an extended production of jute. In consequence, a foreign demand for this, the cheapest and most easily manufactured of all fibres, was created and responded to by the cultivators in Eastern and Northern Bengal. The production of gunny-bags thus rapidly became a recognised part of the Bengal peasant's work. By and by, however, European machinery began to compete with manual labour, and, as in all other parts of the world, in due time gained the day. Practically every homestead in the jute tracts may be seen to have a few bundles of jute suspended from a beam in the roof of the verandah. That amount of the fibre is annually spun into yarn and worked up, as required, into string and rope, or is woven into *gunny* cloth or bags. Year by year, however, this domestic craft has decreased, and it may safely be affirmed that the decline in hand-loom jute-weaving is far greater than of cotton-weaving. In fact, at the present day hand-loom gunnies have practically disappeared from the markets of the world, and yet so late as 1880-1 the returns of foreign exports from India had to be divided into two sections: (a) power-loom; and (b) hand-loom. But that the loss of the hand-loom industry has not impoverished the jute districts may be inferred from the fact that in no part of Bengal are the poor now clad in coarse jute sackcloth—all are able to procure cotton garments.

Area.—It is impossible to give exact particulars of the total area under

411
production. Complaints have been heard of the expansion not being as rapid as could be desired. If this be the case it seems possible there may be some other causes than the indifference of the cultivators. In fact with improved rail and river facilities of transport the expansions of the past stand every chance of being not only maintained but even enhanced materially.

Soil.—Jute seems to be capable of cultivation on almost any kind of soil. It is least successful and almost unprofitable, however, on laterite and open gravelly soils, and most productive on loamy soils or rich clays mixed with sand. As already observed, C. olitorius requires higher land than C. capsularis, but there is something as yet unexplained that controls the production of these two forms of jute and restricts them to their respective areas. Speaking generally, the finest qualities of C. capsularis are produced on homestead lands (suna) such as that required for aus-rice, pulse and tobacco, which crops are accordingly rotated with the finer qualities of jute. The coarser and larger kinds are grown chiefly on soli lands, that is to say the chars or mudbanks and islands formed by the rivers, and on completely submerged (bil) lands or even salt-impregnated soils, such as those of the Sundriabans, but most of such inferior lands are better suited for C. olitorius than for C. capsularis. It has been said that the best quality of jute is obtained from loamy soils. Clay soils give the heaviest yield, but the plants of such soils do rot uniformly. Sandy soils produce coarse fibre. Plants grown on inundation lands produce surface roots that injure the fibre of the portion of the stem from which they arise. Leather is disposed to think geographical and climatic influences are possibly of more value than the composition of the soil.

NEW AREAS.—A hot damp climate, in which there is not too much actual rain, especially in the early part of the season, seems the most advantageous meteorological requirement. Both climates and soils apparently identical with those of the Gangetic and Brahmaputra valleys have on more than one occasion been pointed to as hopeful new Indian areas, but still failure has so far resulted from the efforts made to extend cultivation into these. Mr. R. S. Finlow (Jute specialist to the Government of Eastern Bengal and Assam, to whom reference has been made above) has published an account of a tour conducted with a view to investigate the possibility of extending the cultivation of jute in India to new areas. Bihar, he thinks, holds out the best prospects of success. But the efforts in this direction have passed beyond the experimental stage, as the crops obtained have been good and the area an expanding one. Outside Bengal, the climatic conditions in Madras he thought more favourable than in other parts of India. The Malabar coast, South Kanara, and the deltas of the three great rivers, the Godavari, Kistna and Kauveri, were ideal centres. Bombay was less favourably situated but the experiments with the irrigated fields of Sind would be looked to with interest, and it was possible that the irrigated districts of Poona, the most westerly portions of the Deccan, and the Karnātak, and the higher lands in the Konkan might be found suitable. Lastly, in the Central Provinces, experiments made at Nagpur had given indications of success and were well worth persevering with. [Cf. Bull. Agri. Research, Inst. Punjab, 1906, No. 3.] Jute has been and is being tried in America (Dodge, Useful Fibre Plants of the World, 1897, 125-33), in Mexico (see below under Trade), in Africa, Algeria, Formosa, etc., among many other countries, with but indifferent results. Of Persia, Lord Curzon (Persia and the Persian Question, 1892, ii., 497) says that it is cultivated and used for making sacks, but the amount of fibre available, he adds, is insufficient, hence a steady import from India takes place. Fresh efforts are, it is understood, being contemplated in the Congo valley and in the Gold Coast, and these may be successful if cheap labour with the required knowledge and indispensable perseverance can be ensured. The alarm recently expressed regarding commercial production of jute in Hongkong may possibly be explained through the supplies.
CULTIVATION

Tillage.

Seasons.

Seed.
Not Selected.

Sowing Seasons.
Thin Sowing preferable.
Spacing 4 to 6 Inches.

Rotation.
Recent Experiments.
Conclusions.

For Bardwan.

For Cuttack.

THE JUTE PLANT

of Tonkin and Annam being exported via Hongkong. But it may be added that perhaps the foreign areas of which India need have any serious anxiety are China and Cochinchina. [Cf. Sly, Extension of Jute Cult., in Agri. Journ. Ind., i., pt. iii., 251; Finlow, in Rept. Agri. Dept. E. Beng. and Assam, July 25, 1907, app. ii.]

Preparation of Soil.—It may be stated that, when the crop is to be raised on low lands, where there is danger of flooding, ploughing commences earlier than on the high lands. The more clay in the soil, the more frequently is it ploughed before sowing. The preparation thus commences in November or December, or not till February or even March. The soil is generally ploughed from four to six times, the clods are broken and pulverised, and at the final ploughing the weeds collected, dried and burned.

Seed and Sowing.—It would appear that no special attention is paid either to the selection of superior fibre-yielding seed or to the attainment of stock specially suited to the fields on which it is to be raised. The cultivators, as a rule, neither buy nor sell seed, and there is consequently little or no exchange of stock. In the corner of a field a few plants are left to ripen seed, and the supply thus obtained is sown broadcast. The sowings, according to the position and nature of the soil, commence about the middle of March and extend to the end of June, but bid land is usually sown in February to March. About 8 lb. of seed to the acre is the amount generally employed. Broadcasted sowings would appear to be the rule, but Mukerji recommends drill sowings, the lines being 9 inches apart, thus allowing of wheel or bullock hoeing. Thin sowing gives better yield but coarser fibre. The spacing most approved is when the plants are 4 to 6 inches apart. Irregular branching shortens the length of the fibre. Long cultivation on the same soil results in the plants becoming much branched. For results of experiments in thin and thick sowing, consult the Experimental Farm Report Sibpur (1901–2).

Rotation.—Since passing to press the present review of information on the subject of jute, an instructive report has come to hand on certain experiments performed at the farms of Bardwan and Cuttack. This has been written by F. Smith (Agri. Journ. Ind., 1907, ii., pt. ii., 140–60), and deals with the results obtained during the past three years in Bardwan and the past year in Cuttack. He tells us that the following experiments were carried out: (a) manure tests; (b) cutting at different stages; (c) variety experiments; (d) spacing experiments; (e) thick versus thin sowing in the production of seed; (f) drill versus broadcast sowing; and (g) rotation experiments with paddy. Space cannot now be made available to deal with the details exemplified, but it may be useful to furnish Smith's general conclusions (loc. 160) regarding the rotation of jute with paddy:

"1. On aman paddy land, both jute and paddy can be grown in rotation with each other on the same land in the same year.

"2. For the Bardwan district, the third week of April should see the jute sown to enable the jute crop to be harvested in the last week of July and the aman paddy to be transplanted in the first week of August. The land should be cultivated for eight to ten days between the harvesting of the jute and the transplanting of the aman paddy.

"3. For the Cuttack district, the jute seed should be sown in the last week of March and the jute crop harvested in the end of July.

"4. The jute seed-bed can be well prepared by eight ploughings with the ordinary country plough, and by three ladderings with the ordinary country ladder.

414
YIELD TO THE ACRE

5. For paddy the land is well prepared with three or four ploughings with the ordinary country plough, and one or two ladderings.

6. An application of 100 maunds of cowdung per acre to the land before sowing jute, and a top-dressing of one or two maunds of saltpetre per acre to the paddy crop when the land is just moist (i.e. when the soil is beginning to dry), will be found very efficacious.

7. The raiyat's food-supply is not only assured, but the extra jute crop gives a handsome profit.

Howard and Weeding.—In about fifteen days after sowing the weeds should be uprooted and the unduly thick sowings counteracted by the less healthy plants being removed and the desired spacing secured. This is repeated three or four times at intervals of two or three days, the soil being at the same time loosened.

Manuring.—Very little manure is given to jute, especially where silt deposits take place. In fact the superiority of certain districts over others is largely a consequence of the heavy annual deposit of silt. When available the cultivators employ farmyard manure at the rate of 150 maunds per acre (the maund = 82.3 lb.). It is freely admitted this produces fine glossy and strong fibre. In fact, conversely, seed of the finest stock when grown on poor soil, especially if not manured, yields very inferior fibre. Under such conditions the plants, moreover, flower early, and it is a maxim that whatever will prolong growth and retard flowering will improve the quality of the fibre. But there are practical difficulties: in many cases there are no carts available to carry manure to the fields, and no roads along which heavy loads could be conveyed. Bone-meal, castor-cake, saltpetre and superphosphates have all been tested at the Government farms, but cowdung gave by far the best result. For experiments in manuring jute at Bardwan and Cuttack, the reader should consult the account published by Smith.

Harvest.—The time for reaping the crop depends entirely on the date of sowing; the season commences with the earliest crop about the end of June and extends to the beginning of October, the average season being thus from middle of August to end of September. The crop is considered as coming into season (as is the case with most fibres) whenever the flowers appear, and as past season when the fruits are all formed. The fibre from plants that have not flowered is weaker than from those in fruit; the latter is coarse and wanting in gloss, through strong. Success lies in the mean between these extremes, namely when the plants are in full flower and beginning to set fruit. Late harvest gives a high weight, and advantage being taken of this fact might account to some extent for the complaints of deterioration, though it seems that avaricious buying, either from necessity or on purpose, has taught the cultivators that rejections formerly deemed worthless have now a distinct market value.

Crop.—The average crop per acre is a little over 12 maunds, but the yield varies considerably, being as high as 36 in some localities and as low as 6 to 9 in others. It is probable, therefore, that 14 might be a safer figure to accept as the average, and it is one borne out by last year's officially recorded area and yield. The yield is much dependent, however, on the season and the class of cultivation pursued—hence the severe fluctuations in supply characteristic of the transactions in this fibre. It has been estimated that with high-class cultivation costing as much as Rs. 30 an acre (or Rs. 2 a maund) the net profit should be from Rs. 20 to Rs. 30 an acre or more, according to the prices ruling, but
it is feared that the actual amount expended is very frequently much below that figure.

Diseases and Pests.—In a paper on the Insect Pests of Jute, Maxwell-Lefroy (Agri. Journ. Ind., 1907, ii., pt. ii., 109–15; also Memoirs Dept. Agri. Ind., 1907, i., 160, etc.) says that our knowledge of these pests, though not extensive, has been considerably enlarged and, while there was reason to believe that this crop, grown on a large scale, suffered little from pests, there is now abundant proof that this does not hold good for small areas of jute or for jute grown in new localities. He then proceeds to describe the insects hitherto recorded as pests, viz. the Indigo Caterpillar, the Jute Semi-looper, and the Jute Weevil.

Separation of Fibre.—The process pursued in Bengal may be described as one of simple and inexpensive retting. But it is modified here and there to such an extent as very possibly to originate, at least in some measure, the various qualities of fibre recognised in trade. Sweet water is essential and stagnant is preferable to running, presumably because in the latter the germs necessary for the decomposition of the tissue are not developed so copiously. The most general practice may be thus briefly described—the stems are cut near the ground, tied into bundles, and carried off to a tank or roadside pool of clear, not muddy water. The bundles are laid the one on the top of another, and if need be are weighted to cause all to be submerged. In that position they are left until the decomposition of the connecting tissue has been accomplished and the fibres liberated. The period required for this purpose depends upon the nature of the water, the kind of fibre, and the condition of the atmosphere. The germ concerned in the fermentation (corresponding with that for hemp and flax) does not appear to have been as yet studied in connection with jute, and it seems, therefore, probable that great improvements are possible in this direction.

So far as present practice and experience go, the retting period may be said to vary from ten to twenty-five days, but is largely dependent on whether or not the bundles of stems have been stacked to allow of drying before being retted. It would seem to be the case that partly dried stems ret more expeditiously, and, moreover, the removal of the leaves during the drying process is believed to prevent the discoloration of the fibre. It would also appear that in some localities the stems are even left on the fields for three or four days, being covered up with leaves, weeds and earth. They are then shaken out, the tips removed and thrown away, tied into bundles and carried off to the retting-pools. The use of sods and mud to cause the bundles to sink into the retting water is doubtless a fruitful cause of the dark colour often seen in certain parcels of fibre. It is on this account that logs of timber are used as weights, when at all procurable. It has also been affirmed that the red colour, often seen in the fibre, is due to the retting water having contained iron, but by others this is held to be a peculiarity of the race of jute plant (altapati), the colour being possibly imparted from the decomposing red pulpy tissues of the stems and leaf-stalks or inherent in the fibre itself. Mukerji does not think that a red-stemmed plant need necessarily afford a red-coloured fibre. He may be right, but this point needs confirmation. In many of the experiments conducted by chemists it has been found that the fibre manifests a tendency to assume a red colour under certain reagents. And it is sometimes affirmed that the red-stemmed forms give inferior fibre to the green-stemmed. It is essential that the operator should visit the retting-
tanks frequently in order to ascertain when the decomposition is complete. When this is the case the fibre is found to separate easily from the stem. But the exact period must not be exceeded, otherwise the fibre becomes rotten and useless.

Separation of Fibre.—The cultivator then proceeds to separate and clean the fibre. Standing up to his waist in the now foetid water, he seizes a handful of stems and beats the thick ends of these with a mallet. This assists in the separation. He then strips one after the other from end to end, and thus withdraws the canes entire. Taking up a large bundle of these ribbons, he now lashes them on the surface of the water and draws them towards himself by a sharp jerking motion which causes the adhering particles of tissue to be brushed off. Lastly with a dexterous action he spreads out the handful of cleaned fibre on the surface and thus exposes the still adhering particles, which he picks off by hand. The water is finally wrung out, and the clean fibre thrown over a bamboo which has been fixed near by as a drying-rack. During the drying process (which lasts for two or three days) the fibre is also bleached in the sun.

There are numerous minor modifications of this operation that need not be here detailed. But Leather (Agri. Ledg., 1896, No. 37, 384–9) has pointed out that in Serajganj district a modification of this process is in his opinion of special value. "A bundle," he says, "of about twenty stems is taken in the left hand and most of the adventitious root removed with the right hand. Then the man takes a small wooden "beater" about a foot long with a 6-inch handle and flat sides, and after striking the bottom ends of stems until they are all level, he beats the lower portion of the bundle so as to loosen the fibre, turning it in the left hand at the same time. He next breaks the bundle at about the centre, first one way, then the other. Then clasping it, still in the left hand, just above the point of fracture, he strikes at the stems, with the beater, just below the fracture in a downward sort of way, and this knocks the wood stem outwards, so that after a few sharp strokes, and a little violent agitation in the water up and down, he can take hold of the stems and pull them out from the fibre, leaving it almost free from wood" (I.c. 388). The subsequent cleaning is the same as that detailed above. In fact the only difference between the description given by Leather and that of all other writers appears to be the more liberal use of the mallet as a first operation. He does not make it sufficiently clear that the stems are retted before the special treatment he has described is begun, but that doubtless is the case. Were it affirmed that less retting was pursued where beating was practised, there might be an advantage in the Serajganj system, but this does not seem to be the case. Still, the method of treatment is said to be the cause of the superior quality of the fibre for which Serajganj is noted. Banerjee (Agri. Cuttack, 1893, 83–6) says that in Orissa the stalks are often beaten against a platform until the pith within is removed. But he adds, "this mode is not to be recommended as the pith sticks get broken and mixed up with the fibre, which itself gets knotted so that the whole fibre has to be repicked." Machinery has also been frequently suggested and tried, but the retted fibre, if carefully prepared, is held to be softer and better than the machine-separated. Moreover, the retting process costs only the labour it entails. It involves no expenditure of capital—an all-important consideration with poor cultivators. Primitive it may be, but the retting process is eminently suited to the people and
THE JUTE PLANT

to the country, and is moreover quite sufficient for the majority of the purposes for which the fibre is required. On these and many other such considerations, machinery does not seem likely to come readily into use in Bengal. Colour, lustre, length, softness, uniformity and cleanliness are the attributes of superior jute.

Grading, Baling and Qualities, etc.—The produce is gathered together at various local centres: is sorted, packed and pressed for shipment. The sorting resolves itself into "cuttings," which consist of the woody and hard ends; "rejections," the lowest quality of fibre; and "jute" proper. But of jute there are trade qualities, denoted for the most part by the traders' marks more than by any special properties. These are chiefly characterised by colour, glossiness and softness. It is generally held that late flowering forms (e.g. those flowering in September) give finer and stronger fibres than the early races (those that flower about July), but the figures of yield that have been published would seem to point to environment exercising a powerful influence. It would appear, as Mr. Burkill has pointed out, that there is a tendency for jute to become early in the northern and late in the southern districts. This tendency, if confirmed, should be seized upon as one of value in seed-selecting. But the late flowering forms of one district do not apparently yield as much as the early flowering forms of another. Whilst that may be so, within any one district, the late forms are distinctly superior to the early ones. The variation in prices obtained is remarkable. Some of the forms of C. olitorius yield as much and fetch as high prices as some of the forms of C. capsularis. But when all is said there is a distinct advantage in the late forms, namely that the cultivators are then free to devote the required time for harvesting operations.

According to the reports currently issued, the finest grade is said to be the "Uttaria," which is strong, long and easily spun, brilliant in colour and of fine texture. In point of softness, however, it does not compare with "Deswal," the next most valuable grade. The quality classed as "Desi" (Deswée) is that most generally used in the gunny trade, and "Deora" (Dourah) in rope manufacture. Other qualities that may be specially mentioned are Naraienganjí, an excellent fibre, being long and soft, and the Serajganjí, which comes from Pabna and Maimensingham. The geographic value is one, therefore, that demands close study. Praiseworthy, referring apparently to this subject, observes that a strain natural to or acclimatised in a particular district gives better results in that district than any freshly imported seed. At present there are districts that would seem to produce very much better jute than others even when the same seed is used and identical methods of treatment are pursued. The bales of jute consist of 400 lb., and are made up at the jute presses ready for export.

Prices.—These are subject to very considerable fluctuations, as may be seen from the following prices ruling in Calcutta during January for the years 1900–1906:

<table>
<thead>
<tr>
<th>Year</th>
<th>1900</th>
<th>1901</th>
<th>1902</th>
<th>1903</th>
<th>1904</th>
<th>1905</th>
<th>1906</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rs.</td>
<td>Rs.</td>
<td>Rs.</td>
<td>Rs.</td>
<td>Rs.</td>
<td>Rs.</td>
<td>Rs.</td>
<td>Rs.</td>
</tr>
<tr>
<td>Finest quality jute bales</td>
<td>35-8</td>
<td>34</td>
<td>32-8</td>
<td>37</td>
<td>36</td>
<td>41</td>
<td>33</td>
</tr>
<tr>
<td>Ordinary</td>
<td>32-8</td>
<td>30</td>
<td>28</td>
<td>33</td>
<td>31-8</td>
<td>40</td>
<td>47</td>
</tr>
</tbody>
</table>

Deterioration of Fibre.—Much has been heard recently of the supposed deterioration of the fibre, though the subject is by no means a new one. It was discussed by Mr. Hem Chunder Kerr thirty years ago. The conclusion he arrived at closely corresponds with the particulars adduced.
to-day. The cry of deterioration, as already hinted at, is largely, in fact, a scapegoat. Kerr remarked: "I believe I am justified in inferring that in proportion to the increase of the cultivation, the quantity of medium and inferior jute has been greater season after season. When the demand is great and the price high, as they have been for some time, people find a ready market for whatever they can produce, and naturally become careless; whereas a glutted market leads to the rejection of inferior articles, and consequently cultivators are driven to the necessity of care in improving the quality of their goods." There would seem very little more to be said to-day on this subject except to make the commonplace observation (true of all branches of trade) that, whenever an attempt is made to "corner" a particular article, a rise of price must be closely accompanied by a fall in quality. Some few years ago (1887–8) my attention was specially directed to the subject of jute deterioration, and I accordingly took steps to have samples of the jute plant collected from all the districts of India where the plant was grown for its fibre. These came to hand during 1901–3, and may be now regarded as fairly complete. My object was primarily to discover if the recognised trade qualities could be traced to racial forms of the plant, or to climatic and soil conditions, or to methods of separation and drying of the fibre. It seemed probable there were two explanations of deterioration, assuming for the moment that the trade is correct in affirming deterioration, viz. (a) substitution of a prolific though poor stock plant, and (b) actual deterioration through exhaustion of soil. Since my departure from India many experiments and investigations have been continued by the Inspector-General of Agriculture, by the Superintendent of the Royal Botanic Gardens, by the Agricultural Chemist, by the Director of Agriculture, Bengal, and by the Reporter on Economic Products, in co-operation with the Committee of the Baided Jute Association. There have been brought together in consequence an extensive series of botanical specimens, of fibres, of soils on which the plant is grown and of waters used in retting, and these have all been critically examined and analysed, with the result that no direct confirmation has been obtained of a deterioration attributable to the cultivators. Moreover, the existence of botanical varieties under C. capsularis and C. olitorius has also been denied: the distinctive features based on colour of stems, etc. (upheld by agriculturists) have been viewed as alone justifying their acceptance as crosses, sports or races, not varieties. In passing it may be here repeated that Roxburgh says the reddish-stemmed forms of C. capsularis were imported from Canton, and then gave a superior fibre to the Bengal forms of that plant.

A feature of considerable importance in the controversy of deterioration has been established, namely that over and above occasional flooding of the markets with waste (that formerly would have been regarded as having no market value), the fibre is often nowadays deliberately damped in order to increase its weight. This would seem to be done by the middlemen (beparis), and not by the cultivators. N. G. Mukerji and R. S. Finlow, in a joint note on a tour of inspection, say "the raigat produced good dry jute, but the article never reached Calcutta or Dundee as it was produced. The bepari would not buy damp jute." Nothing could be more injurious; for, once dried, if subsequently moistened, the fibre rapidly loses both strength and colour and has its value thus materially lowered, besides necessitating its having to be opened out and dried before it can be baled with any
safety. It has been reported that the traders often add as much as 20 per cent. to the normal moisture of good clean fibre, as also a large quantity of sand, and thus are able to sell at less than they purchased, and still make a good profit. It has been urged by the Committee of the Baled Jute Association that so serious has this practice become that it would be advantageous to have a law passed that would penalise the sale of jute containing more than an accepted percentage of moisture. This matter was discussed at a meeting of the Bengal Chamber of Commerce, and it is understood steps are being taken that may result in the passing of a Bengal Jute Frauds Act.

The cumbrous nature of the channel of jute sales and the difficulties that exist in checking this criminal moistening of the fibre, may be learned from the following extract from a note on Fraudulent Watering by D. N. Mookerji:

"Between the raiyats at one end and the home market at the other there are the following middlemen:—beparis or dealers, mahajans or aradars, buyers, balers, and shippers. Sometimes the last three functions are combined by the same firm that bale and ship off at Calcutta what their agents buy in the country. But the business at Serajganj may be said to be practically in the hands of the mahajans or brokers. They are well-to-do people, being mostly Marwaris. They advance money to the beparis or sellers, the condition being that the latter must bring to the mahajans all the jute they can get from the raiyats. The money is not realised from season to season, but is allowed to be in the hands of the bepari, one bepari sometimes having an advance of Rs. 5,000 or Rs. 10,000, and occasionally no less than Rs. 20,000. When the jute is brought to the mahajan he settles the price with the buyer secretly, the bepari having nothing to do with it and often not knowing at all what his jute sells for. He has only a general idea of the state of the market from the price other beparis receive for their jute. I witnessed, on several occasions, the way the price is settled between the mahajan and the buyer. The mahajan throws a corner of his dhuti over the hand of Mr. X. and makes a sign on his palm. The latter exclaims in surprise it is far too high and he cannot possibly pay more than so much, making an answering sign on the palm of the mahajan, still under the dhuti. After some haggling the negotiations terminate. The mahajan now at once settles with the bepari, who goes home with his money, he (the mahajan) being paid by the buyer a few weeks (generally three weeks) later. The mahajan gets a brokerage of 2 to 4 annas per maund, but over and above this we may be sure he leaves a margin between what he pays the bepari and what he himself gets from the buyers. Plainly he is entitled to some discount for the ready cash he pays in advance, but the rate might be definitely settled, and the transaction might be aboveboard. The price of jute is subject to violent fluctuations. Probably there is no other article the price of which varies so much in the course of a few days in the same season. Both the buyers and the mahajans have daily wires from all the important jute marts, telling them of the state of the market, but the information is carefully kept to themselves. It might be an advantage to have some agency for making it public. At Chandpur there are no mahajans, but the beparis deal directly with the buyers. The raiyats also to some extent sell their own jute to the purchasing firms, without the intervention even of the beparis." This remarkable story illustrates but one aspect, though a striking one, of the jute market.
THE JUTE FIBRE AND JUTE MANUFACTURES.

Industrial Properties.—Jute is a bast fibre. As found in commerce it consists of fibre-vascular bundles. These contain six to twenty ultimate fibres firmly coherent along their contiguous walls. The ultimate fibres are of the normal fusiform type and 1.5 to 3 mm. in length. In section they are seen to be thick-walled and polygonal. Jute is, moreover, an aggregate fibre and consists chemically of two substances, cellulose and non-cellulose. Cotton is pure cellulose, a substance that withstands very considerably the action of heat and moisture, and is even little affected by the ordinary chemical agents employed in the treatment of textiles. Jute, on the other hand, is highly susceptible, and is readily acted on by water and by even feeble chemical agents. It is the type of the fibres now spoken of as consisting of lignified-cellulose or, as it has been called, bastose. Dunstan (Imp. Inst. Tech. Repts., 1903, 60–8), while contrasting pure cellulose with ligno-cellulose, says the most generally accepted view is to regard the latter as resulting “from the overlaying of normal cellulose by non-cellulose matters.” He then explains that this overlaying weakens the cellulose. Another theory, however, is that ligno-cellulose is not encrusted cellulose but a distinct compound. Cross and Bevan (Journ. Chem. Soc., 1889) were the first authorities to study jute critically. Their experiments and conclusions are too technical to be fully discussed here, but it may be said that they resulted in certain practical experiments having been conducted in India with a view to ascertain:—

(a) the stage of growth at which the fibre was in its best condition, and
(b) to discover whether by chemical treatment it was possible to ward off the tendency possessed by the fibre for a continuance of the retting, or rather rotting, process within the bales. It was admitted freely that the fibre as produced by the cultivator was very much superior to the same when delivered at the factory, more especially if it had passed through the damp heat to which it is unavoidably subjected in the hold of a ship during the voyage from India to Europe or America. It was felt, in other words, that if the fibre could be put through some simple chemical process, the effect of which would be to protect it against incipient fermentation, much would thereby be accomplished towards placing jute on a more certain and higher platform in the textile world than it at present occupies. It was, in fact, just possible some such treatment might even improve the quality as well as the durability of the fibre, without adding materially to its cost of production. Unfortunately, however, the treatment recommended proved unavailing, and Dunstan was thereby led to affirm that “the logical conclusion is, that attempts at special treatment of the fibre in India, before being supplied to the jute mills, or before shipment, are not to be advocated. The most hopeful directions for further experimental inquiry are these:—(1) of improving the stock by selection, and (2) of determining the most suitable time for reaping, the object being to secure that the fibre is cut at the best time.”

From the brief account already given, it may have been discovered that for some years past the scientific officers of the Government of India...
have been studying the plant botanically, chemically and agriculturally, so that it is just possible improvements may yet be effected that will give a greatly extended interest to the fibre. Meantime a destructive tendency seems to have been established within the trade, namely: fraudulent sprinkling of the cleaned fibre with water and sand in order to increase its weight. And it may well be said that if an enhanced price was the only consequence of this practice, the matter might not be more serious and vexatious than would be involved through having to impose rules of "refraction," but unfortunately the watering directly facilitates the injurious tendencies of the fibre, so that the commodity not only requires to be dried and rebaled before it can be shipped, but may have been seriously injured if not utterly ruined. In the opinion of some of the best-informed persons, this new phase is so serious as to threaten the very existence of the industry. The merchants and manufacturers are helpless.

It cannot be said that the last word has been uttered in favour of machinery as a process of jute-fibre separation. If the weakening consequences of retting could be removed, that alone might prove of much value. No experiments of a satisfactory nature have as yet been undertaken with mechanical methods of jute production. But it is quite true, as often urged, that the Indian raisat is too poor to purchase machinery, and that the inundated tracts of jute cultivation are not the most hopeful localities in which to anticipate the establishment of a complex mechanical and technical industry. Still, if by a mechanical or chemical process a greatly improved fibre were secured, the possibilities might be considerable. The Natives of India have by no means shown themselves averse to material departures from their time-honoured systems, whenever personal advantage is involved. But this has to be fully demonstrated before they will advance into new phases of old industries.

Batching and Spinning.—An important feature of jute fabrication is the fact that in an initial stage it is crushed by special machinery, and sprinkled the while with water and oil—"batching," as this is called. This lessens the harshness and brittleness of the fibre and thus prepares it for spinning. In the Anglo-Indian Review (Oct. 1903) there will be found an instructive article on the Indian Jute Industry, from which the following may be abstracted:—"The three main purposes for which jute is used are:—(a) for making cloth of different qualities, ranging from substitutes for silk to shirtings, curtains, carpets, or gunnies; (b) for paper, which is chiefly prepared from the "rejections" and "cuttings"; and (c) for cordage, which is made from the coarser and stronger qualities. The methods employed in spinning are in the main identical with those used in dealing with the heavy manufactures of flax, the fibre being either hacked or submitted to the breaker and the finishing card, thence passing through the roving frame on to the spinning frame in the ordinary way, though in certain very coarse yarns the material is spun direct on the roving frame."

In this connection it may be explained that in China, it would seem, lime is largely used in certain stages of the separation and cleaning of jute. No one appears to have described, with any degree of care, the method pursued, so that I am unable to furnish the particulars that would likely prove suggestive to the Indian cultivator and manufacturer. The subject is, in fact, alluded to here very largely in the hope that the admission of defective knowledge may call forth a fuller account.
than we at present possess. It may be mentioned, however, that there are samples of jute cloth from China, in the Kew Herbarium, that seem so different from the Indian article that they might be mistaken for linen. These, it is stated, have been treated with lime-water, but whether as an after-bleaching process or during the retting has not transpired. The fibre seems, moreover, to have been spun into much higher counts than the twenties customary in Indian high-class jute textiles; accordingly it appears finer and more beautiful than in the Indian fabrics. Every aspect, therefore, of the Chinese and Cochin-Chinese jute production and manufacture are well worthy of careful consideration by those interested in the Indian industry.

Indian Jute Mills.—In 1820 jute fibre was first experimented with by Europeans, the result being a most unfavourable opinion—so much so that the brokers were for some years subsequently required to give a guarantee that sales of fibre effected by them were free from adulteration with jute. In 1828, 3,644 cwt. of raw jute, valued at Rs. 620, were exported to Europe. The manufacture of gunny bags and cloth was at that time entirely in the hands of the Bengal peasants, but the traffic could not have been extensive since there is no record of exports. In 1832 an enterprising Dundee manufacturer experimented once more with the fibre, with the result that he was able to show that it might be used as a substitute for hemp. This success, it is understood, was largely a consequence of the use of whale-oil to soften the fibre. From that date, however, jute gained rapidly in popular favour. It was recognised as capable of the most minute separation or subdivision, but only within the past few years has this fact been utilised for the finer textile purposes. In time the difficulties of bleaching and dyeing the fibre disappeared, and the success of jute was assured. Thus was the foundation laid of the manufacturing enterprise both of Calcutta and Dundee.

With the establishment of the jute mills in Dundee, a large export traffic in the raw fibre from Calcutta sprang into existence. But until the year 1854 little or no effort was made to organise mills in India or to improve the village hand-loom production, with a view to participation in the new demand of foreign countries for jute sacking. In that year, however, the Ishara Yarn Mills Company was established in Serampore. Three years later the company known as the Barnagore Jute Mills was formed, and in 1863–4 the Gouripore Jute Factory was built. Soon thereafter factories sprang up rapidly in and around Calcutta, until the banks of the Hugli literally teemed with their smoking chimneys. In 1891–2 there were 26 jute mills with a capital of Rs. 1,375,50,000 plus £1,757,000. These had 8,295 looms, 172,696 spindles, and gave employment to 65,423 persons. Ten years later (1901–2) there were 36 mills with a capital of Rs. 4,35,08,040 plus £1,741,358. These possessed 16,119 looms, 331,382 spindles, and gave employment to 114,795 persons. In 1903–4 there were 38 mills with a capital of Rs. 4,03,55,000, plus a sterling capital of £2,263,358. These possessed 18,406 looms, 376,718 spindles, and gave employment to 123,869 persons. In 1904–5 there were 38 mills, capital Rs. 4,66,80,000 plus £2,283,358, possessing 19,991 looms, 409,170 spindles, and employing 133,162 persons. It will thus be observed that while the English capital of the Bengal jute industry has not progressed very greatly, the Indian has advanced from a valuation of 1½ crores to over 4 crores of rupees. I am unable to discover returns
of a later date than 1904–5, but the following statement from the *Moral and Material Progress and Condition of India* (1905–6, 177) may be given:—

"The number of jute mills in 1905–6 was 39, containing about 22,000 looms and 453,000 spindles, and employing a daily average of nearly 145,000 persons." "The paid-up capital employed by these mills, excluding one which had not reported its capital, was £7,142,000, including debentures issued; of which nearly 2½ millions are sterling capital. About £600,000 was added to the paid-up capital and debentures during the year under report."

In the *Dictionary* a calculation will be found as to the comparative value of the Indian and the European operative. Briefly this may be expressed as 3 to 7. That is to say it requires 7 Indian operatives to work one loom as against 3 in a Scotch factory. It is believed that estimate will be found fairly correct. The late Sir John Leng, M.P. for Dundee, paid a visit to India in 1896 and contributed to the *Dundee Advertiser* a series of articles, one of the chief purports of which was to exhibit the relative advantages of Dundee and Calcutta. The reader will find these highly instructive, and as the articles in question appeared subsequently in pamphlet form, they should not be difficult to procure. It has been claimed that the Indian Factory Act is more favourable to our manufactures than is the English Act to Dundee. This contention has, however, been replied to by the Indian Jute Manufacturers' Association, which among many disadvantages claimed that in India from 25 to 35 per cent. more hands had to be employed than in Europe with mills turning out the same goods. The difficulty in all such calculations is to express the two sets of mills on the exact same standard, but it seems probable the claim just mentioned errs on the side of under rather than overstating its case.

Jute Presses.—In addition to jute mills the presses are important, and are concerned with the foreign trade in raw jute. In 1896–7 there were 88 presses that gave employment to 9,890 persons; in 1900–1 these had expanded to 133 presses and 20,387 persons; in 1903–4 there were 156 presses and 23,736 employees; and in 1904–5, 163 presses and 23,991 employees.

TRADE IN JUTE.—**Consumption of Jute and Value of the Industry.**—It will be recalled that in 1828 the recorded exports were 364 cwt. It has already been stated that the Indian area in 1905–6 under this fibre was 3½ million acres and the produce 8½ million bales of 400 lb. each, or say 29½ million cwt. The estimates of the crop of 1906 are 3,386,400 acres and 8,736,220 bales. The exports of raw jute from India in 1905–6 were 14,480,407 cwt., valued at Rs. 17,12,56,641. This would represent about 48 per cent. of the total crop of that year, so that there would have remained in round figures 52 per cent. of the production as available for the Indian mills. In previous years, however, the quantity remaining in the country was ordinarily a little less than the production. Thus, as with cotton, so with jute, the Indian mills and handlooms, etc., have hitherto used up a little less than half the quantity produced; but as a mark of industrial prosperity, let it be added that India's share is steadily increasing. Speaking of jute, therefore, if we accept a ratio based on the declared value shown at the Custom House for the jute exported, as applicable to the share that remains in the country, a conception of the total value of the crop may be obtained that would not be seriously inaccurate. In round figures, and to err on the side of under rather than
overstating the case, a value of Rs. 33,00,00,000, or say £22,000,000, was the contribution of European manufacturing enterprise, paid in 1905-6 to the agriculturists and traders of Bengal for raw jute.

Exports.—Of the exports of Raw Jute in 1905-6, 42 per cent. was conveyed to the United Kingdom; 19 per cent. to Germany; 14 per cent. to the United States; and 10 per cent. to France. In 1906-7 the actual figures in value were Rs. 26,83,86,810. Of the supply drawn to the United Kingdom, a fair amount is reshipped to the Continent—France being the chief recipient, while from the jute secured by the Indian mills, goods are manufactured of which a very large portion is annually exported as jute manufactures and the balance used up in the local markets. In 1906-7 these foreign exports were valued at Rs. 15,68,34,740. The wages and profits of this manufacture, to a large extent, are realised in Calcutta, and the mills gave in 1905-6 an average daily employment to 145,000 persons. The exported manufactures ordinarily represent approximately about two-thirds of the turnover. An estimate, for example, was made of the total value of the manufactures of the Indian mills during 1901-2, and the figure arrived at was 1,150 lakhs of rupees. The exports to foreign countries were that year Rs. 8,71,14,174, which thus left a balance of manufactures to meet the Indian market of Rs. 2,78,85,826. By way of contrast with these stupendous attainments it may be mentioned that some thirty years ago the foreign exports of jute manufactures were returned as valued at Rs. 71,94,776 (or £479,651).

Recently the exports of jute cloth have been progressing in a higher ratio than those of bags, which is possibly to some extent the outcome of the cloth finding new purchasers, such as those of the linoleum manufacturers (see Carthamus, p. 282). The United States of America ordinarily take over 70 per cent. of the jute CLOTH made in India (479,387,950 yards out of 696,067,945 in 1905-7). Australia is the largest single purchasing country for Bags, though within recent years it has been followed closely by the Argentine Republic. The total exports in 1905-7 were 257,683,115 bags, of which 37,002,300 went to Australia and 22,890,500 to Chili, with 33,882,485 to the United Kingdom.

This brief review of some of the more striking and practical aspects of the jute trade may now be fittingly concluded by the following statistical abstract of the total value of the traffic:

<table>
<thead>
<tr>
<th>Statement of Jute Trade.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw Jute</td>
</tr>
<tr>
<td>Twist and Yarn</td>
</tr>
<tr>
<td>Bags</td>
</tr>
<tr>
<td>Cloth</td>
</tr>
<tr>
<td>All Others</td>
</tr>
<tr>
<td>TOTAL EXPORTS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw Jute</td>
<td>1,179</td>
<td>7,007</td>
<td>3</td>
<td>840</td>
<td>926</td>
<td>501</td>
</tr>
<tr>
<td>Twist, Yarn, etc.</td>
<td>75</td>
<td>20,170</td>
<td>97,508</td>
<td>1,04,570</td>
<td>1,21,782</td>
<td>1,30,812</td>
</tr>
<tr>
<td>Cloth</td>
<td>8,252</td>
<td>68,235</td>
<td>2,13,521</td>
<td>5,12,541</td>
<td>4,60,184</td>
<td>4,40,204</td>
</tr>
<tr>
<td>Bags</td>
<td>33,372</td>
<td>2,31,301</td>
<td>4,27,750</td>
<td>6,45,585</td>
<td>7,65,652</td>
<td>7,49,624</td>
</tr>
<tr>
<td>TOTAL IMPORTS</td>
<td>45,347</td>
<td>2,47,203</td>
<td>7,57,692</td>
<td>11,63,942</td>
<td>13,48,344</td>
<td>13,20,559</td>
</tr>
</tbody>
</table>
To the figures of exports would have to be added the value of the fibre and manufactures consumed locally. It has been already explained that about one-third of the produce of the mills is used up in India itself. It may be a surprise, however, to learn that India actually imports raw jute. It comes from Ceylon, and is received by Bengal. Of the manufactured jute the cloth comes from the United Kingdom, Hongkong, the Straits Settlements and Italy. Then again, under the heading of jute canvas Bombay imports a fair amount annually from the United Kingdom.

Economic Aspects.—But prosperous though the jute trade is, and although it is perhaps the most valuable single crop—other than food crops—possessed by the people of Bengal, it cannot be upheld that the extreme cheapness of the fibre has been an unmixed blessing. It seems highly likely that its absurdly low price has enabled the manufacturers in their competition for weavers to raise the wages of the operatives until it has come about that they have rendered it all but impossible for other textile industries to exist in the Lower Provinces. And what is more surprising still is that in spite of high wages a sufficiency of desirable labour is not attainable. It has been estimated that jute can be produced at Rs. 2 a maund, and that with freight and agency charges it might be landed at Calcutta at Rs. 3 a maund, or Rs. 82 a ton (or say £5 10s. a ton overhead, or for the first marks say at £7 10s. per ton f.o.b.). The London quotations of Messrs. Ide & Christie, July 15, 1907, are, spot values—Good White to best, £27 to £34; Good, £22 to £24; Medium, £19 to £21; Common, £15 to £17; Rejections, £10 to £13; and Cuttings, £6 to £8. In view of this remarkable state of affairs it has been recently suggested that an export duty might easily enough be placed on jute without doing any harm to the industry, since Bengal enjoys an absolute monopoly and no other fibre can be produced anything like so cheaply.

The Bengal Chamber of Commerce issued on March 12, 1897, a flyleaf on procedure rules for jute arbitrations between mills and sellers. These, it is believed, are still in force and are ordinarily recognised; but, as already intimated, a bill to prevent fraudulent watering seems earnestly desired by all those most interested in the trade.

In the Dictionary and other publications will be found details of the classes of goods produced both in India and Europe. In the Consular Reports (more especially of the United States) jute-sacking usually appears under the name "Burlaps," the traffic in which is very considerable. Of Vera Cruz Mills. (Dipl. and Cons. Rept., Sept. 1905, No. 3, 503, 20), mention is made of two highly successful jute mills that hitherto have depended for their supply of raw jute on supplies drawn from Calcutta. They manufacture the bags used for coffee, sugar, grain and minerals. Recently attempts have been made to grow the fibre locally, and high expectations are held of ultimate success in that direction. It is somewhat significant that in the Indian trade statistics no mention is made of exports to Mexico, though the United States last year received nearly 2 million cwt.

Speaking generally it would seem that the Indian mills run for the inferior, and the European for the superior goods for which jute has been found suitable. It is often affirmed that the Indian mills would perhaps hold a more secure position against the future were they less exclusively concerned in the gunny and sackcloth trades. It has, moreover, been often pointed out that a rise or fall in the price of raw jute.
and wonderful garden.” “When the flowers are collected the real work of extracting saffron commences. The flowers are dried in the sun, and the three long stigmata are picked out by hand. The stigma has a red orange tip, and this tip forms the shakli sófran, the first-quality saffron. The long white base of the stigma also makes saffron, but it is of inferior quality to the tips. The saffron thus collected in a dry condition is known to the trade as mongla, and fetches one rupee per tola. When the mongla saffron has been extracted the sun-dried flowers are beaten lightly with sticks and winnowed. Then the whole mass is thrown into water, when the petals swim and the essential parts of the flower sink. The parts which have sunk (nisal) are collected, and the parts which have risen to the top are dried and again beaten with sticks and then plunged into water. The process is repeated three times, and each time the nisal becomes poorer. One form of adulteration is to mix nisal of the third stage with nisal of the first process. The saffron obtained in this way is lighter in colour and of fainter scent than the mongla, and is known to the trade as lacho and sells at twelve annas per tola. The saffron when made is sent to Amritsar and other trade centres by registered post.” It has often been suggested that the cultivation might be extended to other parts of India. [Cf. Journ. Agri-Hort. Soc. Ind., 1899, 1054-60; Planter, April 21, 1900; etc.]

Uses.

Dye.

It is too expensive to be extensively employed in India, but is in request at princely marriages, and for the caste markings of the wealthy. Its supposed medicinal properties are discredited, its position being an element in “black magic.” [Cf. Hertodt, Crocolologia, 1670, 274-8.] As an auspicious colour its use survives in the “Saffron Cakes” of many parts of Europe. For full particulars of the economic and domestic uses consult the Pharmacopoeias of Flußig and Hanbury and the Pharmacopoeia Indica (iii., 453-61). Indian cheap substitutes are Carthamus and Narthana.

Food.

Trade.

The foreign imports of saffron into India amounted in 1899-1900 to 29,974 lb., valued at Rs. 5,43,038; in 1903-4 to 38,141 lb. at Rs. 6,05,208; and in 1906-7 to 43,727 lb. at Rs. 6,27,333. Almost the whole traffic is from France to Bombay. A small quantity is re-exported to Hongkong and Arab ports. The total amount in 1906-7 was 6,234 lb., valued at Rs. 61,702. No particulars of the Trans-frontier supply are given in the official publications of the trade of British India by land routes.

History.—The later Sanskrit authors allude to the sana fibre in such terms as to leave no doubt that a fibre of that name has very possibly been known in India from the most ancient times. Jones (Select. Ind. Pl. in As. Res., 1795, iv., 296-7) says that the “threads, called paiviraca, from their supposed purity, have been made of sana from time immemorial; they are mentioned in the laws of Manu.” But the confusion that to-day is associated with the English word “hemp,” it is feared similarly prevailed for many ages with the name sana. The account already given of the true hemp (Cannabis sativa, pp. 249-56) should, therefore, be consulted, as also that on jute (Corchorus capsularis, pp. 409-11), and the observations recorded contrasted with the present description of the san or sun fibre. A very extensive series of vernacular names might be given as denoting this plant, such as san, sana, san, sanbu, shanul, shanambe, sanob, sonalla, tag, awa, swála, jumab, junoppa or janaopa (shoanopam), chosen, wucku and hana or sana. It was customary in India, in ancient times, and in fact is so to-day, to distinguish the various forms of san or pot by qualifying apppellations. Thus, for example, the present plant (to distinguish it from the true hemp) is called phul-sunan, bhága-sunan, bódál-sunan, arjha-saan, san-báq, or chunpát, the last name separating it from jute. The names ambidi or ambi usually denote Hibiscus cannabinus, but pálsan, mesiapát are intended to separate that fibrous plant and its fibre from Crotalaria and Corchorus. Sun or san-hemp is the commercial name of the present fibre, but it is also known as
CROTALARIA JUNCEA

Indian Hemp, False Hemp, Brown Hemp, Bombay or Salsette Hemp, Travancore Flax, Jabalpur Hemp, etc. The names Deccan Hemp or Amba Hemp are sometimes, though incorrectly, given to this fibre; they usually denote Hibiscus annuus var. arabicus.

Though found throughout the plains of India and Ceylon under cultivation (either as a source of fibre or as a special crop to renovate the soil or to be used as a food for milch-cows), it has not very authoritatively been recorded as met with in a wild condition. C. tenuifolia, however, by modern botanists, has been reduced to C. juncea, Linnaeus. His plant, Roxburgh says, was indigenous to Jemmura to Coromandel. It has since been identified as the special form of C. juncea grown in Jubbulpur (and thus apparently affords a recognisable trade quality of flax), but it nowhere has, as yet, been recorded as wild or even as cultivated anywhere between these widely remote localities. It is thus more than probable that either the determination of C. tenuifolia as the special Jubbulpur hemp is incorrect, or that Roxburgh was in error in regarding it as wild in Coromandel. If it be the Jubbulpur hemp plant, it would seem, from the economic standpoint, desirable that it should be kept distinct from ordinary C. juncea, Kurz says of C. juncea that in Burma it grows "like wild, along the banks of the larger rivers."

There are numerous purely indigenous species of Crotalaria met with all over India and Burma, many of which are weeds of cultivation, tolerated because of their value as green manure. In its connection it may, however, be added that recent experiments conducted at the Royal Botanic Gardens, Calcutta, support the belief that all the trade qualities represent seasons of growth or methods of separation of fibre, and not botanical forms. Thus botanical and historical evidence concur in the acceptance of this plant as indigenous to India, even although it has not strictly speaking been found truly wild.

But it is very remarkable that hardly any of the early European travellers and botanists in India describe this fibre. Rheedoe gives an admirable picture of the plant but says nothing of its fibre. Rumphius challenges the accuracy of the statement that a fibre is prepared from the bark, and supposes that the persons who say so had confused this with his Ganja Satta—"the Capsular Corchon," as Williams calls that plant. On the other hand, the Anis-Abbati (1590, Gladwin, trans.) distinguishes two fibre plants—one with flowers like the cotton and the other with yellow flowers. The former was doubtless Hibiscus, and the latter can hardly have been anything else but Crotalaria. In the Taleef Shereef (Playfair, transl., 1833, 98) we learn that the bark of sah is used as hemp. Ironside (Phil. Trans., 1774 (ed. 1809), xiii., 506) gives a full description of the cultivation and then adds, "From the bark are made all kinds of rope, packing cloths, nets, etc., and from these when most of the paper in this country is prepared." Trew mentions that it was introduced into the Physic Gardens of Chelsea in 1744. Howe (Tours in Gujerat, etc., 1787, 92) says that he saw, near Surat, Crotalaria growing to a height of ten feet. Roxburgh (Trans. Soc. Arts, L.C.) gives full particulars of his experiments with both Coromandel and Bengal sah-hemp. Wissett (Treatise on Hemp, 1808) collected together the available information from all parts of the world regarding the better-known forms of hemp. Naturally sah takes a prominent position in his work. In fact nothing new of importance has been discovered and next to no progress made in the utilisation of this fibre, during the century that has come and gone since Wissett extolled its merits. But it is significant that in his great work only an incidental allusion is made to the jute plant. Jute was at that time viewed as a fibre of little or no importance. Buchanan-Hamilton gives interesting particulars of sah-hemp cultivation in Dinaipur (Stat. Acc. Dinaip., 200-1), and by Symes (Acc. Emb. to Asia, ii., 233) mention is made of Hamilton's having observed it to be growing spontaneously." Macpherson (Hist. Europ. Comm., 1812, 241, 391) gives the history of the efforts made by the East India Company to have sah-hemp introduced into England as a substitute for Russian hemp. The Company procured their supplies from Salsette, near Bombay, and sold these for less than they cost and even gave consignments away for nothing, until they had expended £45,000 in the effort to introduce the fibre into European commerce. Yates (Text. Antiq., 1843, 318 et seq.), while discussing the Spanish broom or Spartium (Spartium junceum) of the ancients, contrasts it with the sah-hemp of India. Linnaeus explains (Plant. Pl., 1773, 459) that he gave the name juncea (or rushy Crotalaria) to this plant because of its resemblance to the Spartium junceum. Clusius was of opinion that there were two spartums known to the ancients, one the modern Spanish broom,
and the other the modern esparto grass (Stipa tenacissima), the junco of dry soils alluded to by Pliny. Etymologically the word sparton denotes something twisted, and since both the Spanish broom and the esparto have from very ancient times been twisted into string and rope, both might easily enough have been called sparton. It is curious that the sparton of the Greeks should have denoted (in one of its meanings) a plant so closely akin to the sama of classic India. [Cf. Hanasek, Micro. Tech. Prod. (Winton and Barber, transl.), 1907, 84-5.]

CULTIVATION.—Seasons.

It is not possible to obtain returns of the area under this crop, nor of the extent of the traffic in the fibre, since it is placed under the heading “other fibres” or under “hemp.” It is usually grown by itself in small plots or in long strips through fields, but is never apparently produced as a mixed crop proper. Throughout India as a whole it is a kharif crop—that is to say, it is sown about the commencement of the rains and cut at the end of September or beginning of October. It is thus off the ground in time to allow of its being followed by a rabi crop in the same year. But in some parts of India it would seem there is another crop of san. Thus in the Thana and Kolaba districts of Bombay it is sown in November on moist fields near the sea-coast, following early rice. The stalks are pulled up by the roots in March. Hove speaks of the crotalaria of Surat as sown in November. In Khandesh it is sown in June and reaped in October; in Kolhapur the seasons are August and December; in Poona, July and October.

In the Central Provinces and the United Provinces it is a kharif crop, being sown with the advent of the rains, and in Bengal a little earlier, namely from April 15. Roxburgh speaks of it as sown in May and June and as flowering in August. He tells us that Coromandel and Bengal seed were sown in the Botanic Gardens, Calcutta, at the same time in June, but that the former did not commence to flower till October, the latter having been in ripe fruit in September. He accordingly called the Coromandel “Winter Sunn.” In the Ain-i-Akbari, sanan is mentioned as bearing its yellow flowers in spring. Royle (Fibrous Pl. 274), speaking of Commercally, says there are two kinds—one sown in June and cut in August, the other sown in April; but this latter kind, he adds, is in Daeca sown in October. In Madras the sowings would appear to be even still earlier, namely February 15.

Thus while the mean period of sowing is about the beginning of the rains (or in June), san-hemp may be sown in almost any month, and occupies the ground from four to five months. This is an important feature, and doubtless accounts for the varying colour and quality of the fibre in market. It seems, in fact, of vital importance to bear this in mind, in view of future efforts at extended production. It is difficult to believe that, as with rice, so with san, a wide range of sowings could be possible unless the plants are accepted as representing different races and hence very possibly different qualities of fibre produced after centuries of adaptation to various environments. In fact it would seem fairly certain that these climatic conditions, though they cannot be identified by the botanist as separable varieties or even races, are nevertheless industrially quite distinct. To grow a rabi crop during the kharif season or vice versa may be to destroy entirely its distinctive merit. This subject has not as yet received the degree of attention that it deserves. We have been content to read of special qualities of fibre without any attempt having been made to ascertain whether these are due to superiority in stock, to climate, to seasons of cultivation or to method of preparing the fibre. It would
VALUE AS GREEN MANURE

seem from the Calcutta experiments that all the forms hitherto grown from seed procured from such remote localities as Vizagapatam, Jabbalpur, Phillibit, etc., have resulted in plants of varying stature, size of flower, etc., but in no structural departures that could justify even varietal positions being assigned to them.

Soil.—When grown as a fibre crop it requires a light and not necessarily a very rich soil. It cannot be grown on clay nor on inundated lands. It flourishes on moderately deep and fairly retentive soils, such as those used for irrigated crops. But when raised with a view to soil-improvement it might be grown on almost any soil. The practical experiments that have been performed would seem to show that when cultivated on too rich soils the merit of the fibre deteriorates. Wissett, for example, remarks that it will not grow at all on clay soils, that on rich soils the fibre becomes coarse and on high and dry soils it is best of all. On the other hand Roxburgh, speaking of C. tenuifolia and of the North Circars, affirms that strong clay soils suit it best.

Green-manuring.—The cultivators of India have all along recognised this plant as a useful aid in soil-improvement. It may for that purpose (more especially when employed exclusively as a green manure) be grown on all sorts of garden soils and rice-fields, especially if infested with weeds (see Vitis, p. 1116). For this purpose it is usually uprooted when two to two and a half months old and then ploughed in, especially when followed by potatoes. The cultivators regard renovation in this manner as preferable to a manure of one to two maunds of oilcake per acre. It is therefore surprising that the practice is not more general. Early ploughing is of course involved and more labour than is customary has to be given. Muckerji (Notes on a Tour in the Jute Districts) says:

"The cultivators were asked why they did not grow san-hemp more largely as a rabi crop and a preparatory crop for the jute when they themselves asserted that by doing so they got two maunds of jute more per bigha. They replied that they must grow kalas and other food-crops, and that one special objection to the san-hemp was the retting of it produced a most filthy stink which was unbearable to them, and as there is water only in tanks and khals at the dry season when san is retted in this district, fish die off if retting of san is done in the tanks and other places where there is fish. Owing to these objections, they cannot grow san-hemp extensively, but the cultivation of this useful crop is evidently extending. Kalas and mustard are the standard rabi crops here, but a good deal of san is grown chiefly with the object of benefiting the succeeding jute crop.

"Why a short variety of san (called ghati) should be chosen for feeding cattle and afterwards ploughing in as green manure does not appear clear. The taller variety, though better suited for extraction of fibre, also seems to be more valuable for manurial purposes, as it has far more organic matter in it and the root residue must be also larger. The raiyats recognise that the growing of the larger variety for fibre also has a beneficial effect on the soil."

Tillage.—San-hemp is most in favour as a catch crop. The seed is sown thickly, hence the value of the crop as a weed-exterminator. In some reports as much as 80 to 120 lb. of seed to the acre are spoken of, in others 40 lb., and in still others half that amount. The plants should be from 3 to 4 inches apart each way. Mollison (Textbook Ind. Agri., iii., 226) observes that a luxuriant crop cannot be grown without careful tillage. Quick growth is necessary whether raised for fibre or as a green manure. "A smooth friable bed is, therefore, required, and this can only be obtained by ploughing and repeated harrowings. The seed is generally drilled in July; in the Deccan with a four-coultered drill, first lengthwise then
across the field. The drill coulters are 12 to 14 inches apart, and the double drilling secures even distribution of the necessary heavy seed rate (about 70 lb. per acre). If the seed germinates properly, no further culture is required until the crop is ploughed in as green manure or reaped for fibre."

Diseases and Pests.—Very little is known regarding the enemies of this plant. Maxwell-Lefroy (*Agri. Journ. Ind.*., i., pt. iii., 187-91; also *Memoirs, Dept. Agri. Ind.*, 1901, i., 158, etc.) gives particulars of three moths, the caterpillars of which often do much harm to the crop.

Harvest.—It is customary to read that the crop is harvested after the flowers have appeared, but in certain localities the plants are left on the field until the fruits have begun to form, and in some instances even until they are ripe. "The finest, strongest and best fibre may possibly be got from plants which are not dead ripe, but very good fibre as well as seed are got from a ripe crop" (Mollison). In most cases the plants are pulled up by the roots, in others the stems are cut with a sickle close to the ground. They are left on the field for a few days to allow of withering, and are then stripped of their leaves; these are regarded as a necessary return to the soil. The stems are tied into neat bundles that may be easily handled, each containing not more than 100 stalks. The bundles are then preserved for two or three weeks until they are thoroughly dried, and the remaining leaves and seeds are thereafter threshed out. But as with jute so with san fibre, much difference of opinion prevails regarding the nature and extent of withering necessary before subjecting to retting. Mukerji (*Handbook Ind. Agri.*, 307) says that in the damp climate of Bengal stacking before retting injures the fibre. Stacking is therefore very little practised in that province.

Separation of Fibre.—The dried bundles are tied into larger bundles, then placed in pools of water and weighted with stones or logs of wood, until they are completely submerged, much after the fashion detailed regarding jute, only that since the steeping takes place usually in the hot months, a period of five days is ordinarily sufficient, but in cold weather eight or nine days may be required. In some instances retting in damp mud on the margins of tanks or lakes seems to be the system followed; in others complete submergence in water is deemed essential. By some writers stagnant water is condemned as destroying the colour and lustre of the fibre, running water being advocated as preferable. But this seems a mistake, as longer retting would certainly be required in running water. It is also sometimes customary to set the lower and thicker ends of the stems into water for twenty-four hours, so as to secure for these a longer retting than is necessary for the upper portions. In deep water longer retting is required than in shallow. In Salsette there is said to be very little retting, and this circumstance is claimed as the reason of the superiority of the fibre there produced. In many localities the complaint is made that sufficient water does not exist at the harvest season to allow of an extended production. This difficulty, it would seem, might be easily and conveniently disposed of by drying the stems and stacking them till a more convenient season. Districts with a limited supply of water are those where stacking would be easy. The stacking of hemp is moreover believed, if anything, to improve the fibre, and should be tested with san-hemp.

The process of stripping and washing the fibre is very similar to that pursued with jute, but more difficult and laborious. The strips of fibre
CROTALARIA JUNCEA
Trade

Better Quality not
Procurable.

Chemical Examination.

Ultimate Cell.

Utilisations.

Fishing-nets.

Tanned.

Exports.

Imports.

THE SAN-HEMP PLANT

bast fibres." "During the Colonial and Indian Exhibition numerous inquiries were made as to why it was that so little of the better qualities of san-hemp were procurable. Mr. Collyer and several other brokers and merchants stated that their only difficulty in pushing the trade in san-hemp was their inability to procure a uniform and a large enough supply." Dunstan (Imp. Inst. Tech. Repts., 1903, 70) similarly observes, "The literature on this fibre is extensive, betokening much interest in its qualities, but up to the present the material has been exported only to a small extent." Two sets of samples were sent to him for examination, viz. from Burma and Calcutta. The results of the chemical analyses of these are given, and it may be said that the ash in the Calcutta sample was considerably higher than in that from Burma, but all the features brought out were regarded as indicative of high quality. Microscopically the ultimate fibres were found to be rather long—5 to 8 mm.—and seen to end abruptly instead of tapering, while the walls were rough and irregular in outline.

As to the utilisation of the fibre, these may be briefly stated as identical with those of true hemp—namely the production of cordage and canvas, the waste or tow going to the paper mills. But in India by far the most important use is the employment of san-hemp for the cordage of fishing-nets. In this connection it may be mentioned that Mr. V. P. Ribeiro, Sub-divisional Forest Officer, Bassein, West Thána, contributed to the Report on Economic Products a most interesting account of the deep-sea nets used by the Koli fishermen (since published in the Agri. Ldgy., 1905, No. 7). These are huge traps 160 feet long and 70 feet in diameter. They are constructed entirely of san-hemp, and may cost as much as Rs. 250 each. The mesh decreases from 6¼ to ½ inches progressively, from the mouth to the apex of the net. The fibre is carefully tanned. The repairing and tanning of the net cost about Rs. 8 a month. The inference from this is that the fibre is only durable under sea-water when fully tanned. The woodwork of these deep-sea nets, it may be added, is preferably that of Adina cordifolia. Throughout India fishing-nets are largely made of san-hemp, though not exclusively so. Those of Kashmir are chiefly madar or akanda fibre (Calotropis gigantea, p. 207) and those of Assam and Eastern Bengal rhea fibre (Boehmeria nivea, pp. 146, 157).

TRADE IN SAN HEMP.—As already observed, nothing of any value can be said authoritatively regarding the extent of production or utilisation of this fibre, since it is not separately recorded in the Trade and Agricultural Statistics. It is grown in every province, and nearly universally used by the people of India. It seems probable, however, that of the exports to foreign countries shown as "Raw Hemp" of Indian produce, a large proportion is san. The only other fibre of importance (and that of comparatively recent origin) is indicated by the exports of Indian Agave fibre (Sisal hemp). Of the imports of raw hemp the major portion is doubtless Manila (Musa textilis), and lastly of the imports of hemp manufactures the major portion is doubtless canvas and rope of Russian hemp. The traffic under these headings may be here exhibited:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manufactured</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>7,66,891</td>
<td>16,41,646</td>
<td>23,11,194</td>
<td>54,19,756</td>
<td>68,73,635</td>
</tr>
</tbody>
</table>

436
THE PURGING CROTTON

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw</td>
<td>1,32,990</td>
<td>1,71,795</td>
<td>2,93,157</td>
<td>6,52,777</td>
<td>6,94,623</td>
</tr>
<tr>
<td>Manufactured</td>
<td>3,108</td>
<td>42,029</td>
<td>69,930</td>
<td>45,066</td>
<td>32,330</td>
</tr>
<tr>
<td>Totals</td>
<td>1,36,098</td>
<td>2,13,824</td>
<td>3,63,087</td>
<td>6,97,843</td>
<td>7,26,953</td>
</tr>
</tbody>
</table>

It will thus be observed that while both the exports and the imports have increased very considerably within the past twenty-seven years, a scrutiny of the details reveals the fact that the most important improvement has taken place within the last six or seven years and is due mainly to the expanding supply of Indian Aloe Fibre (see Agave, 44-5).

CROTON TIGLIUM, Linn.; Fl. Br. Ind., v., 393; Pharmacog. Ind., iii., 281-6; Gamble, Man. Ind. Timbs., 1902, 614; Euphorbiaceæ.

The Purging Croton, *jaya-pala*, *jaypál*, *kanakaphála*, *jamál-gota*, *nepál*, *neródam*, *kanako*, *bori*, *dand*, etc. A small tree met with under cultivation throughout the greater part of India; said to be naturalised in Eastern Bengal, Assam, and elsewhere.

Gamble states definitely that it is not indigenous. It was apparently first described by Acosta in 1578, and subsequently by Rheede in 1679, then by Rumphius in 1743. The purging croton grows on the poorest soils, such as waste lands, from the sea-level up to about 3,000 feet. Under cultivation no special care is necessary, and it will fruit in the second year. It has been spoken of as a shade-tree for coffee. A little of the powdered oilcake forked into the soil has been recommended as a protection for tea and other plants from grubs and white ants. The nuts yield a large amount of medicinal Orz, which may be administered as a violent purgative, or applied externally as a vesicant. An inquiry made by Prof. W. R. Dunstan and Miss L. E. Boole into the nature of the vesicating constituent resulted in their obtaining "a small quantity of a yellow oil which, after a time, became a transparent resinous mass, intensely active and burning without ash. It was found that crotonoil acid owed its vesicating properties to a small proportion of this resin, to which the name of 'croton resin' has been provisionally given" (Imp. Inst. Journ., 1896, ii., 264). It is said that croton oil is used by fraudulent manufacturers as an adulterant of tincture of iodine. [Cf. Brit. and Col. Drugg., 1901, x., 176.] The seeds have similar properties to the oil, and are fairly largely used by the Natives of India. Kino-like exudation has been discussed by Hooper (Rept. Labor. Ind. Mus., 1903-6, 54). Messrs. Hearson, Squire & Francis say that if the London price be taken as 25s. to 35s. per cwt., the freightage, insurance and brokers' commission would have to be borne by the shipper. It is better to express the oil before transit since much is lost on the voyage. For kino see *Pterocapus Marsupium* (p. 98).

CUCUMIS, Linn.; Fl. Br. Ind., ii., 619-20; DC., Orig. Cult. Plants, 258-62; Cogniaux, DC., Monog. Phaner., iii., 479-507; Cooke, Fl. Pers. Bomb., i., 534-6; Duthie, Fl. Upper Gang. Plain, i., 371-4; Prain, Beng. Plants, i., 522-3; Cucurbitaceæ. A genus of climbing herbaceous plants which embraces twenty-eight species, of which more than half are recognised as African and only three or four Indian. It is noteworthy, however, that of the Indian forms, two are the Melon and Cucumber (economically very far the most important of all) and the third is *C. trignonum*, Roxb.—a truly wild plant, never cultivated nor its fruits eaten.

C. Melo, Linn.; Duthie and Fuller, Field and Garden Crops, pt. ii., 51, pl. 1; Sweet Melon, kharbúja, karbuz, kharmúj, tarbúj, dungrá, chibúda, gidhó, záphín, sára, vellari-verái, mulam-pandú, remó, etc.

Most of the early travellers speak of the best melons of India being grown from imported seed. The Emperor Baber makes, in fact, no mention of Indian melons, but extols those of Samarkand. So also in Akbar's time none of the
CUCUMIS

MELO

Melo

five sorts spoken of in the Ain-i-Akbari (Blochmann, transl., 65) were Indians; all are stated to have come from Badakshan or Kabul. Linschoten (Voy. E. Ind. (ed. Hakl. Soc.), ii, 35) observes that the Indian melons are not so good as those of Spain, and have to be eaten with sugar. Tavernier speaks of the Indian melons as grown from Persian seed. Firminger (Man. Gard. Ind. (ed. Camer., 1904, 225-9) mentions several kinds of melons as specially excellent. The best or first class is the sarda, a native of Kabul, which does not succeed in India; the second is also a Kabul melon successfully grown in India. Atchison (Prod. W. Afghan. and N.E. Persia, 49-9; Kew Bull., 1894, 75) is of opinion that the sarda failed because it was not understood. The early supply consists of ordinary good melons, but the later, when ripened with frost, is the sarda proper. It is covered over and left to mature slowly. Some sarda melons sent to Kew in 1894 arrived in excellent condition, and from the seed that obtained good fruits were grown at the Royal Gardens at Froome and elsewhere. It is believed that sarda melons might be exported to Europe, where they would fetch good prices as winter fruits. The third and perhaps the finest of the Indian melons is the safedah or white melon of Lucknow, which is grown in sandy loam along the banks or in the dry beds of the Gumti. It is the size of a very large orange, flattened at both ends and white inside and out. It would appear, however, that so far back as 1866 the Lucknow melon had been allowed seriously to deteriorate, so that perhaps its present condition might be considerably improved. In The Indian Agriculturist (June 12, 1867) E. Bonavia gave an interesting account of this deterioration, and urged that efforts should be made to improve the stock of the "chila" or "speckled" melon of Lucknow.

The melon from an agricultural point of view is the most important species of the genus Cucumis, and is extensively cultivated for its fruits on the sandy banks of Indian rivers. So soon as the water has fallen from the white sandy banks of the Ganges and Jumna, for example, pits are dug and filled with manure within which the melon-seed is deposited. These pits act as forcing-beds and are protected against sand-drift by grass and thorn hedges constructed around them. Less manure is required when the silt of the river is of fairly rich quality and contains organic matter. Sometimes, as at Ahmedbad, the plants are sown in trenches instead of pits. They continue to fruit as a rule from April until the rising of the water in June overwhelm and destroy them. A popular account of the Indian melons may be found in Indian Planting and Gardening (Oct. 3, 1904), and interesting descriptions of the growth of melons on the floating gardens of Kashmir are given by Moorcroft (Agri.-Hort. Soc. Ind. Trans., i, 70), by Rivett (Assess. Rept. Mir Bahri, 1898, 16), and by Lawrence (Valley of Kashmir, 345-8).

The flattened and elliptic seeds yield a sweet edible Orr. Semler says the quantity they contain is about 30 per cent. and that a considerable trade in them exists from the Chinese port of Chefoo. It is a light thin oil, which dries slowly and in addition to being eaten is employed in the soap industry. According to Semler a considerable quantity was formerly exported from Sierra Leone and Lagos, but the low prices offered have killed the trade (Trop. Agr., 1900, ii, 525). The seeds are also used as a cooking medicine, though it is doubtful if those of the various species are distinguished. In fact the seeds of C. Melo are commonly sold all over India as a cooling medicine in admixture with those of C. sativa, var. utilisima, Benincasa cerifera and Citrullus vulgaris. Melon seeds are also commonly used as a flavouring ingredient—bhanga-masala. [Cannabis sativa, p. 258.]

Pests.—Particulars of the cultivation of Afghan and Baluch melons in the Lower Provinces, together with a description of the life history of the troublesome melon-fly, may be found in Jas. Clegern's most useful paper (Journ. Agri.-Hort. Soc. Ind., n.s., 1891, ix, 63-82). The melon is also attacked by the other cucurbitecious fruits, by a small red beetle. [Cf. Ind. Mus. Notes, i, pt. ii, 92-3; iii, pt. v, 57-8; iv, pt. i, 32-4, pt. ii, 92-3.] The wood-ash preventative, usually adopted by the Natives, must be detrimental, and probably a wooden frame would be found more effective, since only the young seedlings suffer as a rule.

(a) var. Momordica, Roxb., sp.; Duthie and Fuller, l.c. 50, pl. xli.; Banerjei, Agric. Outcalt, 1893, 116. The phut or phanti, phasti, kachra (unripe fruit), tut, kakuri-khi, pedda-kai, thakkha huwey, etc, Mentioned as phooth in the Tuljeef Shereef, and according to Dutt has a Sanskrit name, vecarv. Although now much reduced by

438
THE CUCUMBER

Cucumis sativus, Linn.; Duthie and Fuller, L.c. ii., 55, tt. lii., liv. The smaller cucumbers are known as Gherkins.

Botanists to a variety of C. Melo the fruit is cylindrical, smooth (not fluted), mottled yellow and green and more like the cucumber, except that it is less scabrous and larger. There are several distinct forms met with in the hot and rainy seasons. It is cultivated in cotton or maize fields, etc., here and there throughout India, and when the fruit has burst, which it does spontaneously, the flesh is mealy but not sweet, though palatable when eaten with sugar. When young the fruit is a good substitute for the cucumber, and kachra is in fact a valuable vegetable.

Cultivation. Food.

Kakri.

Cucumber or Khaira.

Habitat.

Forms.

Gherkins.

Cucumber seed is sown in drills in February or March, and a garden climber is grown on the latter; or rain-season varieties have much egg-shaped fruits (mangi kakuri) of light-green or creamy-white, changing to rusty-
brown when full grown. The rain-season varieties are the most common, being eaten either raw or cooked in every variety, and generally known under the names of the cucumber, the melon and the gourd in South India. [Cf. Cucurbita, which seems to be the most of the old names for the uses of certain forms of these fruits; as water and oil bottles.]

There are two primary forms of cucumber seed: one hot weather variety, and a garden climber. The latter or rainy-season varieties have much egg-shaped fruits (mangi kakuri) of light-green or creamy-white, changing to rusty-
brown when full grown. The rain-season varieties are the most common, being eaten either raw or cooked in every variety, and generally known under the names of the cucumber, the melon and the gourd in South India. [Cf. Cucurbita, which seems to be the most of the old names for the uses of certain forms of these fruits; as water and oil bottles.]

There are two primary forms of cucumber seed: one hot weather variety, and a garden climber. The latter or rainy-season varieties have much egg-shaped fruits (mangi kakuri) of light-green or creamy-white, changing to rusty-
brown when full grown. The rain-season varieties are the most common, being eaten either raw or cooked in every variety, and generally known under the names of the cucumber, the melon and the gourd in South India. [Cf. Cucurbita, which seems to be the most of the old names for the uses of certain forms of these fruits; as water and oil bottles.]

The rainy-season forms are generally sown in drills being one foot apart. In dry soil, water is given every ten days, but not too much; the plants thrive with little care, and are always sure of

439
yielding a good crop. The creamy-white kind ("White Turkey") is regarded as one of the best forms. European cultivation has recently completely changed the character of the plant met with in Indian towns. [Cf. Ind. Gard., Dec. 21, 1893.] Still it is a curious fact that although the cucumber is now fully acknowledged to be a native of India, most of the fine English forms cannot be grown in that country.

The name *Indrauyan* sometimes given to it more correctly denotes *Citrus colocynthis*, but I strongly suspect these two plants, and also the so-called wild states of *C. aurantium* (v. *Hardwickii*, *Royce*) have been much confused by economic and even by some botanic writers. The character of simple bifurcated tendrils would, if rigorously applied, almost of necessity involve the transference of one-half the sheets in most herbals from *Citrus colocynthis* to *Cucumis trigonus*. Indeed, all the examples of *Citrus* with small deeply dissected leaves have simple tendrils, and care with difficulty be separated from *Cucumis pseudo-colocynthis*, *Royce*. It is necessary to draw attention to this circumstance since the properties of the kārit do not differ materially from those of the true *Colocynthis*. But the plant of the sandy deserts is very different from that of the Himalayas, and there may be two or more species; but if so, then they have been very indifferently described and identified. Roxburgh pointed out that his *C. trigonus* resembles very much *C. Melo, Linn.*, var. *utillissima*, and Prain says *C. trigonus* is sometimes considered the original source of the melon, and may equally be a form of that plant which had become feral.

The seeds yield a fixed Oils by boiling, which is used in lamps by the poorer classes. The pulp of the fruit is bitter and similar in quality to *Colocynthis*. It is not, however, possible to ascertain definitely the exact industrial and medicinal value of this species until the ambiguities above indicated have been removed.

History.—Considerable confusion appears always to have existed as to the history and nomenclature of most cucurbitaceous plants. It seems probable that European pre-Linnaean names are suggestive of the first uses to which the fruits were put, but can hardly be accepted as separately denoting the modern genera and species. Thus, for example, Pliny (*Hist. Nat.*, bk. xii., ch. 5) observes that cucurbitaceous fruits had long been used as wine-bottles, but in his day were just coming into fashion as water-pitchers at the baths. Hehn (*Kulperd. und Haust.*, 6th ed., 304-14) derives conjecturally *Cucumis* and *Cucurbita* from *cumera* and *corbita*, low Latin words, the one meaning a covered vessel, the other a basket (Germ. korb). Hence perhaps the remark by Columella (*De re Rust.*, ed. Geanero, 1773), xi., 3, 49); these fruits "are well suited for employment as vessels." Incidentally it is worth noting that many of the early glass bottles recovered from the Thames, Tiber and Seine are obviously modelled on the bottle-gourd (*Lagenaria* *vulgaris*), and some of the bottles used for Italian wines are to-day of that shape. It is thus not surprising that statements sometimes applied to *Cucurbita* should have to be transferred to *Lagenaria* or *Benincasa* or vice versa. Still more frequently are the various species of *Cucurbita* confounded one with the other and their vernacular names in all countries interchanged. Brief botanic diagnoses for the purpose of facilitating distinction become accordingly almost imperative.
CUCURBITA PEPO

Vegetable Marrow

Duthie says that the evidence obtained from historic research favours an Asiatic origin for this plant, C. Sprenger (Bull. Tosc. Ortic., 1893, 333) says a wild form, *C. maxima* (*syntaxis*), has been found in the Himalaya which is supposed to be the parent of all the large-fruited gourds in cultivation. [Cf. Kew Bull. (add. ser.), 1900, iv., 120.] Asa Gray is disposed to accept it as American, and in support of that opinion mentions that its name "Squash" is American. It produces the largest known cucurbitaceous fruit; examples weighing as much as 240 lb. have been recorded. The principal varieties have already been denoted by the citation above of European names. It is cultivated in most warm and temperate parts of the globe. In Upper India the seed is sown in the rains and the vegetable eaten in the cold season; but in Bengal it is often sown in October, and Banerjee says that in Cuttack it is sown in February-March. Both the seeds and the Oil expressed from them are used in medicine. The fruit when young is used as a VEGETABLE, and when mature will keep for months if hung up in an airy place. It is, like most other forms of Cucurbita, extremely valuable as a vegetable during camping expeditions, since it will keep for months and withstand severe handling. It is largely used by the Natives in curry. In German East Africa the young leaves are eaten like spinach. [Cf. Berichte über Land-und Forst., 1903, i., 419.] In Assam the young leaves of *C. Pepo* are similarly eaten as a pot-herb.

**C. moschata, Duchesne; Duthie and Fuller, Field and Garden Crops, pt. ii., 58-9, pl. lxviii-1x1. The Musk-melon, Melon Pumpkin, sitaphal, saphari khumra, mithá-kaddu, kali-dudhi, etc.

Leaves as in the preceding, but very often marbled with whitish blotches; petiole hairy but not prickly; fruiting peduncles angular and furrowed; calyx segments of the female flower larger foliaceous. The Musk-melon is described in the Aín-i-Akkari (Blochmann, tranal, 64-5) as distinct from the melon, so that it appears to have been known in India from fairly ancient times. Baber (Memoirs, 1519, 328), for example, in his description of the citron, compares it with the Musk-melon. There are two primary forms of this plant, one bearing smooth and the other fluted fruits; the former is oblong in shape (*C. moschata* proper); and the latter a flattened spheroid (*C. melopepo, Roxb.).

The plant is now widely cultivated in both hemispheres and requires a warmer climate than either *C. maxima* or *C. Pepo*. It is grown as a field crop in Northern India, and the yellow flesh is extensively cooked and eaten as a vegetable throughout India. There appears to be a small form, about the size of a turnip, which is grown under the names tendús (Bignor), tendú (Duab), tendá (Panjáb), and which makes a delicious vegetable when young or half ripe. This is mentioned in the Aín-i-Akkari (1590, l.c. 66) as a sweet fruit.

Leaves 5-palmate, sinus broad and segment pointed; petiole as long as the blade, the hairs of the lower surface hardened into prickles; corolla narrow towards the base and lobes erect; calyx-segments linear lanceolate; fruiting peduncle woody, strongly grooved, and marked with ridges.
CUMINUM CYMINUM
Cumin

The *kumra* is mentioned in many of the ancient Sanskrit works, but *C. pepo* and *Benincasa hispanica* were possibly confused or not distinguished. The Pumpkin is often mentioned as a native of America, though this opinion rests on Lindheimer's observation "apparently indigenous." Asa Gray (loc. cit. 333), commenting on that, says "no wild specimen has since been received from all that region (nor from any other)." It is grown in vegetable gardens throughout the greater part of India, and is often seen scrambling over the cultivators' huts. It is nowhere, however, extensively grown, and rarely as a field crop. The following notes on Indian cultivation are taken mainly from Firminger (loc. cit. 171):—In South India the improved custard and patty-pan marrows are delicious vegetables, but they only succeed when sown in the early rains. They should be sown in boxes or pans at the end of May. When the first pair of rough leaves appear the seedlings may be transplanted into rich manured pits, at 5 feet apart, in the kitchen garden. The hardier long-fruited varieties will succeed all through the rainy season. In Lower Bengal the seeds should be sown in the open ground about the end of October to middle of December, and the plants must have plenty of space to trail over. The best plan is to sow two or three seeds in pits 16 inches deep and as many wide, filled with richly manured soil. If many seeds germinate, eliminate all except one. When the plants have formed about four of their rough leaves they will almost certainly be attacked by a red beetle, but if they can be preserved at this stage they do not seem to be liable to attack later. When they have set as many fruits as the vines will bear the flowers should be removed. The plants require constant and copious watering, and occasionally with liquid manure. The gourds must be gathered when tender, say in May–June, as they rapidly become hard and woody. Both Taylor and Sen speak of the pumpkin as a garden and field crop characteristic of certain parts of Bengal. In the United Provinces the sowing of the seed must not be made before the end of February as the plants will not live in the cold season in that part of India. On the hills, sow in April and the vegetable will be in season in July. Duthie says that in these provinces it is a garden, not a field crop. From Missourie a scarlet pumpkin has recently been reported as brought originally from Kashmir. [Cf. Journ. Agri.-Hort. Soc. Ind., 1902, xii., 116–7.]

As a field crop in Europe and America the pumpkin and vegetable marrow are grown 15 feet apart with 12 feet between the rows. Three seeds are deposited in each spot, and 2 lb. per acre will therefore suffice. The yield on rich, well-manured vegetable soil is from 15 to 20 tons an acre. In India the seeds are preserved; they yield a clear edible oil, supposed to be of medicinal value. The use of the fruit as a vegetable is of course well known, and the raw fruit is said to be an excellent food for cows. The fruits of several species of melon, gourd, etc., are candied and sold all over India both as a luxury and in medicine. Similarly the seeds of these fruits are largely used for flavouring certain preparations of Indian hemp, and the root for a nefarious purpose, viz. to make the preparation more potent (Rept. Ind. Hemp. Drugs Comm., iv., 425, 491). [Cf. Produce World, Feb. 1896; Planting Opinion, Feb. 5, 1898; Journ. Soc. Chem. Ind., 1901, xx., 1003; Pharm. Journ., 1901, 67, 253; Hanasek. Micro. Tech. Prod. (Winton and Barber, transl.), 1907, 369–70.)

CUMINUM CYMINUM, Linn.; Fl. Br. Ind., ii., 718; Pharmacog. Ind., ii., 113–6; Duthie and Fuller, Field and Garden Crops, pt. iii., 40; Duthie, Fl. Upper Gang. Plain, i., 397–8; Cooke, Fl. Pres. Bomb., 1., 573; Umbelliferae. Cumin, *zira, jiraka, ajají, kamin, zirá, ziya*, etc. This plant is more or less cultivated in most provinces of India, except Bengal and Assam. There is, however, fairly conclusive evidence that it is nowhere indigenous, though in several districts it would appear to be so far naturalised as to have been regarded as "wild" even by competent observers.

History.—Considerable confusion exists in Indian publications through the vernacular name *zirá or jirá* being given to both cumin and caraway (see Carum Carvi, pp. 283–4). A similar mistake is made with regard to *Nigella sativa*. Black Cumin (p. 811). (The authors of the Pharmacographia Indica point out that *jirá or jirana*, the Sanskrit names for cumin, as well as the Persian *zhirak* or *zirah* and all the Indian vernacular names, appear to be derived from the root
THE YELLOW AND BLACK ZEDOARIES

jri and to allude to the digestive properties of the seeds). The true cumin is generally regarded as a native of Egypt or of the Mediterranean regions, and according to Somler (Trop. Agric., 1900, ii, 584) the best sort comes from Malta.

The historical records of the use of cumin go back to early times. It was a common flavouring spice during the 17th century in England, as it still is in Germany; it was extensively employed all over medieval Europe and was known even in the dark ages. With the Greeks its small size originated a proverbial reproach—kuminopristes (cumin-skinning). It is referred to in very much the same sense in St. Matthew, xxiii., 23. In Europe, however, it has been displaced to a very great extent by caraway, but is largely used throughout India. The seeds (fruits) afford from 3 to 4 per cent. of an oil which has the sp. gr. of 0.91 to 0.93. The oil is chiefly employed in Europe in the manufacture of liqueurs. [Cf. Gildemeister and Hoffmann, Volatile Oils, 1900, 544–5.]

In India considerable importance is still attached to the medicinal properties of cumin, which is held to be astringent and cooling.

Trade.—The available information regarding the Indian acreage of this crop and the average yield are unfortunately not sufficient to justify an attempt at estimating the total production and consumption. The United Provinces and the Panjab are the chief producing provinces. There is a large internal trade. Madras, for example, gets its supplies from Bengal. One of the earliest references to foreign trade in Indian cumin is that given by Milburn (Or. Comm., 1813, i., 136). "The plant," he observes, "which produces these seeds somewhat resembles fennel, and grows in various parts of India, Persia and Egypt; it is an article of trade with Surat. The seed is a kind of caraway... they are to be chosen fresh and of a greenish colour. There are several sorts of cumin seeds to be met with, but they are seldom imported from India." At the present day the exports of cumin from India show a steady increase. Thus they were 11,304 cwt., Rs. 2,22,161, in 1899–1900; 17,385 cwt., Rs. 4,03,875, in 1903–4; and 22,308 cwt., Rs. 5,09,535, in 1905–6. The modern traffic is almost exclusively from Bombay and Bengal, and the best customers are Ceylon, the Straits Settlements and British East Africa. The United Kingdom takes only from 20 to 50 cwt. yearly. But there is a considerable import of cumin across the N.W. front and from the Red Sea and Persian Gulf ports. The chief trade centres are Jabbalpur, Gujarat, Ratlam and Muscat. [Cf. Paulus Epineta (Adams, trans.), iii., 203; Tavernier, Travels (ed. Ball), ii., 20; Birdwood and Foster, E.I.C. First Letter Book, 199, 317, 480.]

J. G. Baker has described (in Fl. Br. Ind.) twenty-nine species under this genus. Some ten of these are more or less of economic value and two of considerable importance. It may suffice, therefore, to give a few jottings regarding the unimportant economic species, under the present introductory note, and to thus concentrate attention on the two chief plants:

C. Amada, Roxb., in As. Res., 1810, xi., 341; the Mango-Ginger, am-haldi, amhad, etc., which is found wild in Bengal and on the hills, the tubers being used medicinally and as a condiment and vegetable.

C. aromatica, Salisb.; Cooke, Fl. Pres. Bomb., ii., 730; Pharmacog. Ind., iii., 396–8; the wild or Cochin Turmeric, Yellow Zedoary, jangli-haldi, ban-haldi, amb or rân-hald, etc. This plant, which is a native of Bengal, is practically a substitute for the true turmeric, and was not distinguished from it by Arabian physicians. Used medicinally by the Hindus in combination with astringents or with bitters and aromatics and exported to Europe for use as a substitute for turmeric in dyeing. It is chiefly grown at Alwary, north-east of Cochin, and is also collected in Mysore, Wynad, etc. The unpeeled root fetches Rs. 24 to 25 per catty of 51 cwt.

C. cæsia, Roxb.; the Black Zedoary, kâlâ haldi, is wild and cultivated in Bengal and chiefly used as a cosmetic. It is one of the two zerumbods of modern Persian writers. [Cf. Aitchison, Notes on Prod. W. Afgan. and N.E. Persia, 15; Pharmacog. Ind., l.c. 403–5.]

C. cauliina, Graham; the chavar, chowar or Mahableshwar; C. leucorrhiza, Roxb., of Bihar, often specially designated tikor or tikhor; C. pseudo-montana, Graham, the sindewani or sindbar of the Konkan; and C. rubescens, Roxb., of Bengal, are all said to yield arrowroot that is regularly eaten and which

443
CURCUMA ANGUSTIFOLIA
Narrow-leaved Turmeric

becomes important in times of scarcity or is used to adulterate that of C. angustifolia. [Cf. Cooke, l.c. 730.]

Long and Round Zedoary.

C. Zedoaria, Rose.; Cooke, l.c. 732. The long and round Zedoary, kacha, soti, shori, zurambād, uruk-el-kāfūr, kich-chitik-kīshānū, thanu-ven, etc. This plant is wild in the Eastern Himalaya and cultivated here and there throughout India. Roxburgh observed that it was a native of Chittagong, whence the Bengal supply was derived. The round zedoary of the shops is greyish-white and compact. It has a bitter and strong camphoraceous taste. The long zedoary has the same odour and flavour. The red powder, abīr, used by Hindus at the Holi festival was formerly largely made from the rhizome of this plant. The powder is purified, dried, and mixed with a decoction of sappan-wood. The rhizomes constitute one of the most important articles of Native perumery, and a considerable supply is sent from Ceylon to Bombay, the price being about Rs. 20 to 30 per catty of 7 cwt. [Cf. Ain-i-Akbari (Gladwin, transl.), i, 104; Milburn, Or. Comm., 1813, i., 293; Montgomery Martin, Hist. E. Ind., iiii., 241-2; Paulus Kepineta (Adams, Comment.), iii., 434-6; Pharmacog., l.c. 399-403; Firminger, Mon. Gard. Ind. (ed Cameron), 1904, 378-9.]

Indian Arrowroot. Habitat.

C. angustifolia, Roxb.; Pharmacog., l.c. 405-7; Wiesner, Die Rohst. des Pflanzenr., i., 612-3. East Indian Arrowroot, Narrow-leaved Turmeric, the tikkur, tikar, tankir, tavakhrira (tavakhri), ararut-ke-gadde, ararut-kishangu, kúva, etc. A native of the central tracts of India from the mountains of Bengal to Bombay and Madras and, according to some writers, of the N.W. Himalaya as well. It is particularly abundant in the Central Provinces, especially the Upper Godavari district; a considerable trade in the tubers exists at Raipur and Malabar. The arrowroot of the wild tuber is said to be largely prepared and traded in from Cochin and Travancore to Kanara (Malabar arrowroot). [Cf. Hanousek, Micro. Tech. Prod. (Winton and Barber, transl.), 1907, 46.]

According to Madras experience the sets are planted late in autumn in properly prepared soil, are watered occasionally during the dry season, and cropped in January. Owing to the dryness of the soil the tubers have, as a rule, to be dug up, not ploughed up, and this process is somewhat tedious. The yield on the prepared soil of the Sydapet Experimental Farm, Madras, was found to be 3,944 lb. of tubers, or 493 lb. of prepared flour per acre. A plot cultivated in the college Experimental Garden yielded at the rate of 7,500 lb. of tubers or 937 lb. of flour per acre. In preparing the flour, the tubers, after being well washed, are pulped on a grater and the starch and fibre separated by the use of water. It is then strained through a cloth and the fibre thereby separated; the starch is again washed, then sun-dried, and finally broken into fine flour. If sold at 4 annas per lb. the profit per acre would be about Rs. 400. The resulting starch is fine, and the best specimens of it have been even compared to the true arrowroot (Maranta arundinacea, p. 773), but the granules are flat and always stratified. Mr. Nibaran Chandra Chodhury in 1901 wrote an instructive note describing the cultivation of this tuber in Bakarganj, which does not, however, differ materially from the Madras experience and results briefly indicated.

Cultivation in Bengal. Trade.

A fairly large trade exists in tikkur or tankir arrowroot all over India. It is used as a substitute for ordinary arrowroot, but regarded as less desirable medicaally. It is, however, a favourite article of food among the Natives, especially for children. The Travancore arrowroot is reported to be not infrequently mixed with the starch of cassava or tapioca (Manihot utilissima, p. 766). In Upper India it is said the starch of the sweet potato is sometimes employed as an adulterant, and in Bombay the colourless young tubers of the ordinary turmeric are mixed with those of this plant. Of the trade, though known to be extensive, no details are available. In Bombay, Malabar arrowroot is said to fetch from Rs. 3 to Rs. 4 per maund of 23 lb.

The late Dr. Lisboa (Notes on Mahableshwar and Other Indian Arrowroot-yielding Pl. in Journ. Bomb. Nat. Hist. Soc., 1887, ii., 140-7) gives much useful information regarding this arrowroot. He would appear to think that much of the East Indian Arrowroot of Western India (especially that of Mahableshwar) is derived from the tubers of Hithenia cautila, Baker. [Cf. Cooke, Fl. Pres. Bomb., ii., 728.] He then mentions as substitutes and adulterants to the true

444
THE TURMERIC

C. longa, Linn.; Fl. Br. Ind., vi., 214; Duthie and Fuller, Field and Garden Crops, pt. iii., 41, t. Ixxvii.; Nicholls, Textbook Trop. Agri., 248-9; Mollison, Textbook Ind. Agri., iiii., 186; Mukerji, Handbook Ind. Agri., 1901, 359; Cooke, Fl. Pres. Bomb., ii., 732. Turmeric, haldì, halde, halada, halut, halja, manjal, pasupu, mannal, arishina or arshana, kahâ, sana, hsa-nuen, haridrâ (Sanskrit = yellow-wood), and karkâm (the Hebrew from which kurkum and Curcuma have been derived), (Lacaita, Appendix in Maw, The Genus Crocus, 1886, v., xiii.), etc. Turmeric is regarded by some botanists as a native of India, but the finest qualities were introduced from China or Cochin-China.

History and Races.—Ibn Batîthar (1200, ii., 370), quoting a writer of the tenth century, says that the Persians call this root al-hard, and the inhabitants of Basra name it al-kurkum or saffron. Garcia de Orta (Coll., 1563, xvii.) gives its chief Indian names, and says that while abundant in Cananor and Calicut, it is only known in Persia and Arabia as obtained from India. He speaks of it as a form of saffron known to the Arabs as habet. The Ain-i-Akbari gives the prices of the qualities of turmeric, saying that it was possibly as well known in India in 1590 as it is to-day. The plant is nowadays extensively cultivated all over India for the sake of its rhizomes. There are two main conditions: one in which a fairly soft rhizome is used as a condiment, being one of the indispensable ingredients in curries; the other in which the rhizome is harder and much richer in colour, hence employed for dyeing purposes. Certain qualities of the rhizome are also fairly largely prescribed in medicine. So very different are some of the so-called forms of turmeric that it has often been urged they must be produced from botanically distinct varieties, if not species, quite independently of C. longa. In European trade, for example, there are known the following:—China, Madras, Cochin, Bengal and Java. The first mentioned is the best. 'Cochin turmeric is a globular tuber, and usually appears in market cut into slices. It is an edible tuber, and is possibly to some extent often C. angustifolia or C. pseudo-montana rather than C. longa. But according to some writers the special qualities of the dye rhizome are more a question of age than of specific distinctions. If left in the soil for a longer period, or if dried and stored for some time before being used, the tubers assume the dye condition. There are, however, special dye stocks known as lok-handi-haladi, mesta-haladi, jovula-haladi and amba-haladi. These, very possibly, have been produced by the careful selection of centuries of cultivation. The vernacular names of indigenous turmeric could easily have been transferred to an imported plant, just as the foreign arrowroot is displacing the indigenous.

Cultivation.—1. Bengal.—The description of cultivation in Bengal given by Roxburgh is held by most writers to be in the main applicable to the greater part of India. It may, therefore, be quoted here in full. "The ground," he says, "must be rich, friable and so high as not to overflow during the rainy season such as the Bengalese about Calcutta call danga. It is often planted on land where sugar-cane grew the preceding year, and is deemed a meliorating crop. The soil must be well ploughed and cleared of weeds, etc. It is then raised in April and May, according as the rains begin to fall, into ridges, 9 or 10 inches high and 18 or 20 broad, with intervening trenches 9 or 10 inches broad. The cuttings or sets, viz. small portions of the fresh root, are planted on the tops of the ridges, at about 18 inches or 2 feet asunder. One acre requires about 900 such sets, and yields in December and January about 2,000 lb. weight of the fresh root." From more recent publications it may be learned that in Bengal two varieties are grown, the deshi or country and the Patna; the latter is of a richer colour and gives a better outturn. The crop is often lifted the first year, but the produce is inferior both in quality and quantity to that obtained when left in the soil for a year.

Two Forms:
(a) Condiment.
(b) Dye.

Grades in Trade.

Cochin.

Qualities of Dye.

Ancient Cultivation.

Bengal.

Soil.

Planting.

Two Forms Grown.

Twelve to Twenty-one Months' Crop.
and nine months. The cost of cultivation, which is in the main the same as that of ginger (*Zingiber officinale*), is estimated at from Rs. 7 to Rs. 15 per bigha (one-third of an acre), and the yield is variously stated at from 8 to 18 maunds. The former estimate (8 maunds) appears to refer to dried roots. Another estimate for Bengal (*Ind. Planter*, Feb. 14, 1903) gives the cost of planting one bigha as Rs. 22-8-0, and the net profit—allowing 16 maunds of fresh turmeric to the acre) as Rs. 25-8-0. Banerjee (*Agri. Cuttack*, 1893, 102-3) speaks of Cuttack having three locally grown roots, collectively designated country turmeric, and one imported from the Tributary States known as *kuarpuria*. Of the local forms *dānsa* is most highly prized for its flavour, and like the *gangakuria* is long in shape, while *hadva* is round. The last mentioned is strongly flavoured and discarded for cooking purposes. The *kuarpuria* is said to be often left in the fields for five years before being dug up, and is sometimes manured with buffalo-blood. Mukerji says the outturn of turmeric boiled and dried comes to about 16 maunds per acre and of fresh ginger about 50 maunds, but as much as 150 maunds have been sometimes obtained.

2. *United Provinces.*—In these provinces the crop is very extensively cultivated in Kumaon and Garhwal and constitutes an important article of export from the lower hills. It is grown in jungles where nothing else can be raised, as well as in the open Duns and Bhabar. It is planted in April–May and gathered in November. The cost of cultivation is calculated in Kumaon at Rs. 36 per acre, the crop being worth Rs. 75. In the Cawnpore district it is grown with *ghuían* (*Colocasia antiquorum*) and requires abundant irrigation. It is planted in June and gathered in January, the yield being 2,000 lb. fresh roots to the acre.

3. *Panjab.*—Turmeric is not often cultivated in this province, though in the Kangra district it is considered quite as remunerative as sugar-cane, and in addition only occupies the soil six months (May–June to October–November). It requires much care and a liberal supply of manure.

4. *Bombay.*—Mollison (*I.c.* 186) observes that there are two forms, the hard, highly coloured rhizome, used as a dye, and the large, soft, pale-coloured edible root. Turmeric, he says, does best in the medium black soil of the Deccan, especially where naturally well drained. In Gujarat, on garden lands, it is rotated with sugar-cane, ginger, onions, garlic, etc., or (as a subordinate crop) with ginger. Where mixed with yams it is the chief crop, and about 1,800 to 2,000 lb. of turmeric with 600 to 700 lb. of yams are required to plant an acre. If planted in May the crop may be collected in December–February, but neither the turmeric nor the yams are damaged by being left in the field after maturity till convenient, since in the Bombay Presidency turmeric enjoys a practical immunity from disease. Two crop-tests (1896) in Surat, of mixed turmeric and yam, gave an average to the acre of 14,200 lb. (127 cwt.) of green turmeric, worth about Rs. 1 per 60 lb., and the cost of cultivation per acre Rs. 159-8-0, thus leaving a net profit of about Rs. 77 an acre, with the yams over and above.

5. *Madras.*—In Coimbatore it is said that turmeric is grown with yams, maize, castor, *brinjal*, etc., the rhizomes being planted on ridges in June–July and dug up in March–April. As a rule turmeric is not grown more than once in three years and is followed by *ráji* and *paddy*. The cost of cultivation seems to be about Rs. 116 per acre and the produce from 3,000 to 5,000 lb. of prepared turmeric (value Rs. 120 to Rs. 200) and of yams 6,250 lb. (value about Rs. 200), but the actual yield of each crop
The Turmeric Plant

Mordants are rarely required with turmeric since the dye attaches itself readily to wool, silk or cotton. Calcutta dyers, however, obtain a brilliant yellow by mixing turmeric with saji matti (carbonate of soda, p. 51). The use of borax (see p. 172) in Kumaon is dependent on an important chemical feature of the dye. The dye is fleeting, but Fawcett (Monog. Dyes, Bomb., 1896, 16) says that the colour can be made more or less fast by adding to the alum solution a preparation of pomegranate rind. The use of vegetable acids to clear dyes is common all over India, and these are often spoken of as making them permanent, though that is not so. Thus, for example, Duncan (Monog. Dyes Assam, 1896, 22–3) observes that in Cachar a light yellow dye is produced by boiling turmeric with a "sour lemon-like fruit called thai kar." Alkalis deepen the colour, making it almost red, while alum purifies it. For this reason a common test in India for alkalis is paper saturated with an alcoholic solution of turmeric. The action of the alkalis turns the paper brown. In Europe turmeric is still employed in dyeing compound shades of wool, usually in conjunction with orchil (a purple lihen-dye from Roccella tinctoria) and indigo extract. It is rarely used on silk (Rawson, Gardner and Laycock, Dict. Dyes, etc., 1901, 339). Lastly, turmeric is said to be employed in the adulteration of mustard and to colour varnishes. For the uses of turmeric in medicine the reader is referred to the Dictionary or to the Pharmacographia Indica (iii., 407–14), where also will be found a long discussion of the Indian ceremonial utilisations of the dye. As a food adjunct turmeric is chiefly employed in curries, of which it is an indispensable ingredient, and in colouring food-stuffs, etc. The leaves are used as a condiment, especially with fish, which are wrapped up in them and then fried.

The reader will find much useful information regarding commercial turmeric in Hanusek's Microscopy of Technical Products (Winton and Barber, transl., 1907, 262–6), the appearance under the microscope of the various grades, their adulterants, and methods of examination of the same being fully exemplified.

Production and Trade.—Recent returns do not show the total area under this crop. Mollison speaks of 5,300 acres as the Bombay portion in 1898, and the official statistics for 1905–6 show the area to have been 5,581 acres, of which 4,414 acres were in Satara district alone. Some years ago the total for all India was estimated at 56,500 acres, but the extensive use of the tuber and the remunerative character of the crop would suggest that the total Indian acreage may be considerably larger than that mentioned, though, as stated, it is impossible to furnish the exact acreage.

The exports of turmeric to foreign countries show considerable fluctuations. Milburn (Or. Comm., ii., 542–3) gives the imports into England by the East India Company in 1805 as having been 422 cwt., valued at £1,032, and the duty £2 16s. per cwt. The exports from India amounted in 1899–1900 to 48,000 cwt., valued at Rs. 5,781,999. In 1901–2 the figures were 82,436 cwt. and Rs. 9,40,215; in the following year they rose again to 126,076 cwt. and Rs. 9,87,577; but sank in 1903–4 to 68,254 cwt. and Rs. 4,52,653; in 1906–7 to 62,246 cwt. and Rs. 7,08,967. The bulk of the trade goes to the United Kingdom, the Straits Settlements, Aden, Ceylon, Germany, Arabia, Persia and Turkey-in-Asia. Of the foreign traffic Bombay contributed 33,477 cwt. in 1906–7; Madras 16,231; and Bengal 11,988, but ordinarily Madras supplies more than Bombay. The total amount of turmeric exported coastwise in 1903–4

448
was 121,540 cwt., valued at Rs. 9,15,556, of which Bengal took 53,308 cwt.
and Bombay 43,661 cwt.; the coastwise exports, however, have since
taken to 63,122 cwt. in 1908-6. The Bengal supply came from Madras
and the Bombay from ports within its own presidency. Madras is thus
the presidency most concerned in the external supply, and Bengal the
most dependent of all Indian provinces on external production. The
total traffic by rail and river was in 1906-7, 641,662 cwt., against
526,009 cwt. in 1904-5. The chief distributing provinces are usually
Madras, Bombay and Bengal, and of the ports, Calcutta followed by
Bombay are those most concerned. But the rail-borne traffic from Cal-
cutta is a direct consequence of the large receipts by sea from Madras.

With regard to commercial qualities, Semler (Trop. Agrik., 1900, ii., 639)
says that the best turmeric is considered to be the Chinese, especially
Fromosan; the next the Indian, produced in Bengal, Pegu, and Madras;
while Bombay and Sind afford the worst qualities. As a rule turmeric
is sold in Europe in powder-form, but if the solid be desired, the rhizome-
fingers should be chosen big, hard, heavy and difficult to break, deep-
coloured, with warm aromatic taste and a distinct aromatic effluvia. In
these directions for selection, Semler practically repeats the advice given
by Milburn in 1813 (l.c. 542), but it is possible they are quite applicable
to the modern trade. The price on the European markets varies from 12s.
to 26s. per cwt.

Stat. Dacca, 1840, 139; Journ. Soc. Chem. Indust., 1895, xiv., 1079; Woodrow,
Gard. Ind., 1890, 479-80; Russell, Monog. Dyes, C. Prov., 11-5; Holder, Madras,
3; Giles, Note on Karini Dyes; Andrews, Ind. Text. Journ., viii., 59; Hurst,
Silk Dyeing and Printing, 84; Dutt, Mat. Med. Hind., 1900, 255-6; Thorpe,
Chem. Indust., 1902, xxii., 1559-60; Greenish, Micro. Exam. of Foods and Drugs,
1903, 286-7; Joret, Les Pl. dans L'Antiq., 1904, ii., 265; Blyth, Foods, Their
Comp. and Anal., 74, 86-7, 141, 490; Leach, Food Inspection, etc., 1905, 350-3;
Hannasek, Micro. Tech. Prod. (Winton and Barber, transl.), 1907, 262-6.]

CYAMOPSIS PSORALIOIDES, DC.; Fl. Br. Ind., ii., 92;
Duthie and Fuller, Field and Garden Crops, pt. ii., 24-5, pl. xxxv; Church,
Food-Grains of Ind., 124; Mollison, Textbook Ind. Agri., iii., 84-5; Duthie,
Minsse. The Cluster-bean, gudar, gauri, guwar, kuwara, kauri, kachhur,
kuri, darabhi, mutki, buru raker, pat-pansoon. A robust annual pulse
cultivated in many parts of India from the Himalaya to the Western
Peninsula, and never found truly wild in any part of India.

Mollison mentions three forms met with in Kaira and Baroda Territory,
viz. (1) pardeh; sown sparingly amongst kharj cereals; (2) sotia gudar, growing
eight to ten feet high and sown extensively in Gujarat. It is raised as a shade
plant to ginger and the leaves are left on the ground as green manure; in the
garden lands of Surat it is grown with cucumbers, being planted in May and
irrigated till the rains. The pods are used as a vegetable and served like French
beans; (3) deghi, the common form, with violet seeds, sown as an ordinary
dry crop and extensively used as cattle-fodder. Duthie and Fuller mention a
form known as deoband kawara, which is often cultivated in the United Pro-
vinces as a hedge or shade plant. They observe also that when the plant is
cultivated as a vegetable it is grown on highly manured land near villages, but
when raised for cattle-fodder is cultivated on light sandy soils. It is sown
at the commencement of the rains and cut in October. The average yield of
dry pulse is about 10 maunds to the acre. Gudar is specially suitable as a green
manure or green fodder crop owing to the amount of nitrogen it contains and its
comparative freedom (when young) from fibre. Church gives the nutrient ratio

449
of the dry beans as 1:1.7, and the nutrient value 70. In certain districts, such as Meerut, where this plant is regularly and largely grown as cattle food, the breed of animals met with is remarkably fine—a high testimony to the care taken of them.

D.E.P.,

1, 244-52.

I have decided to retain Cymbopogon as a separate genus instead of placing it under Andropogon, but I confess to being influenced more by industrial than botanical considerations. While engaged writing the brief account that follows, of the Indian economic species, certain specimens were received at Kew, which necessitated a re-examination of the genus or rather the sub-genus Cymbopogon. Dr. O. Stapf entered on this study energetically, and his report which has since appeared deals with the botanical aspects more thoroughly than can be attempted in this work. He has, however, most obligingly permitted me to consult him freely, and has done me the favour to read through the brief abstract of the subject here given, and to offer useful suggestions. It may be said that the practical result of his studies is the definite establishment botanically of the plant that yields the Lemon-grass Oil of India as distinct from the Citronella Oil of Ceylon.

The present may be described as a genus of grasses that contains some forty species, widely dispersed in the tropics, principally of the Old World, rare in the temperate regions, as also in America. The species that are of chief economic value are aromatic, but it would almost seem as if that property had been acquired, or rather was dependent on environment for its existence or its intensity. There are four essential oils recognised by the chemist and in trade. These are Palmarosa (Russa), Citronella, Lemon-grass, and Ginger-grass Oils. While that is so, a few writers have affirmed that these are not necessarily the produce of separate plants, but may be a consequence of climate and soil or of methods of cultivation and seasons of collection, or systems of preparation if not even degrees of adulteration. It is certainly the case that a species or variety that will yield the oil for which it is noted in one region, may not do so (or only to a very small extent) in another. But while environment doubtless exercises a powerful influence, it seems certain that the properties recognised by the chemist can alone be secured by the cultivation of particular forms that are known to yield these. It accordingly follows that the selection of stock with this (as with other cultivated plants) becomes a question of supreme importance. In India one or more species of Cymbopogon occur from the extreme north in Afghanistan, Balistan, Tibet and Sikkim, to the extreme south at Cape Comorin. And what is more surprising, some of the forms are dispersed from the tropical plains to the temperate alps. One exists in the vegetable gardens of the well-to-do from one end of India to the other (a few roots, at most, in each garden), the leaves being plucked and used in cookery (Firminger, *Man. Gard. Ind.*, 329). That particular plant appears, however, to flower very rarely, and it has accordingly not as yet been satisfactorily described. In the *Dictionary* I assumed, as others had done, that Andropogon citratus, DC., might be the Indian garden plant. The name citratus suited its properties and popular reputation. De Candolle has nowhere, however, described the plant to which he gave that name, but Nees [*Arch. Gartenzeit.*, 1835, 265] accepted A. citratus, DC. Recently a fairly extended cultivation of what is spoken of as Lemon Grass has taken place in Travancore and Cochin. The oil obtained from that plant has been pronounced different from and very much superior to either the citronella of Ceylon or the rusa of the Deccan. The rapidly expanding trade in this Cochin oil has caused an inquiry to be instituted with a view to extending its cultivation in the West Indies. The oft-repeated statement that it exists in India both "wild and cultivated" is, however, distinctly misleading. In Ceylon *C. nardus* might be spoken of as systematically cultivated, but there is no production of it in India for commercial purposes.

Economic Species.

Influence of Cultivation.

Distribution.

Edible Grass.

450
C. Martini, Staf., l.c. 335-41, 359-60; Andropogon Martini, Roxb., and the A. Schoenanthis of most recent authors, but not of Linnaeus; Fl. Br. Ind., vii., 204-5.

This is the Rusa Oil plant of Northern, Western and Central India, which in European commerce has received various names, such as “Palmarosa,” “East Indian Geranium,” or simply “Indian-grass Oil,” “Nimar Oil,” etc., etc., the inferior qualities being sometimes returned as “Ginger-grass Oil.” The vernacular names are numerous, but since it seems probable that no form of C. Nardus exists as an abundant wild plant on the plains and lower hills of the region where the rusa oil is mainly produced, the names given in that country must be viewed as denoting the present species, except where they may embrace one or other of the forms of C. Schoenanthis as well. In South India wild forms of both C. Nardus and C. Schoenanthis are met with abundantly, and the vernacular names for the grass oils of that portion of India hopefully confuse the species. It has been suggested that the most general name “rusa” or “rusa-katel” (abbreviated into “roshel” and rose oil) is in reality a corruption from “rose,” seeing that the most important use of the oil is the adulteration or fabrication of rose oil. But as opposed to that view it may be mentioned that until very recently (if not even to-day) the people of India were not aware that the oil they sell goes mainly to Turkey to be used in admixture with rose oil. The most general names are—rusa, rosa, rauns, rhausa, rhauns, roinsa, roshagvat, rohish, also gundhabena, mirchiagand, miricha, makora, gandi, panni, chiper bhor, tikhari, tikadi-moti, etc. According to Dutt (Mat. Med. Hind., 271) and the authors of the Pharmacographia Indica (l.c. 557), it is bhutrina, bhutrina or Earth-grass of the Rajā Nirghanta and is the rohisha of the Sanskrit authors and the aurosa—the “well flavoured,” and the su-gandha—the “agreeable odour,” of recent classical writers.

Varieties and Races.—It is a perennial grass plentiful throughout the warmer tracts of India. There is no very direct evidence, however, of its being anywhere cultivated, though certain tracts of country are more or less protected and regularly leased out for the supply of the grass employed in the manufacture of the oil. There are six varieties of the species, described in the Flora of British India, two of which are Burmese plants not apparently utilised industrially, and a third would appear to be unimportant. Staf. has raised to specific rank the following of these varieties; but while the first mentioned affords the true rusa oil, the others may be and in some instances have been used apparently for the same purpose:—

This is the plant collected by General Martin in Ballaghat, Mysore, in 1791-2 and cultivated by him afterwards at Lucknow. There are specimens of it in the Kew Herbarium from Kashmir, Panjāb Hills, Simla, Almorah, Garhwal, Nepal, also the Black Mountains, etc.; of Bengal from Rajmahal and Singbhum; of the Central Provinces, from Chanda district; from Bombay; from Raiputana; and lastly from South India.

(b) C. casius, Staf.; A. casius, Nees (in part). The majority of the specimens of this form seen by me in the Kew Herbarium came from South India. It is evidently the plant of which Herbert de Jager wrote, in 1683, that he found whole fields fragrant with it when travelling in Coromandel, and of which he found the people of Golconda preparing a perfume.

(c) C. polvneuros, Staf.; A. vericolor, Nees, in Wright, Cat. n. 1705; Lisbon, l.c. iv., 120; 1891, vi., 65; A. polvneuros, Steud. A South Indian plant,
RUSSA OIL

Cymbopogon

Martini

Production

Collection of Plant.

Expanding Production.

Yield.

Bombay. Khandesh Oil.

Distillation Special Feature.

Redistillation.

Packaged in Skins.

Berar. Distillation.

Yield of Oil.

cold water. At the conclusion of the process the condensed fluid is poured into a large wide-mouthed vessel and permitted to stand for some time, when the oil may be skimmed off the surface with a small spoon.

The plant is cut across when it begins to flower and bound into small bundles or maniples, 250 to 300 of which are placed in the boiler and so much water poured over them as to leave a sufficient space for ebullition. The process occupies about six hours, and there is a succession of attendants so that the charge is repeated about four times every twenty-four hours, and about one seer of oil is thus obtained. In passing through the hands of the traders this oil is largely adulterated with gingelly oil.

From the various reports that have been published by the Forest Department it would seem that a great improvement has taken place, with a corresponding expansion of the production, in the Central Provinces. In the Annual Report of that Department for 1903 it is stated that the industry appears to be extending in Nimar, whilst it has been carried to Betul, Hoshangabad, Mandla and Seoni. It is then added that there is no reason why it should not become an important industry. A. D. Brote gives in the Indian Forester (1901, xxvii., 602) an interesting account of the rusa oil industry of Hoshangabad. He says that 500 lb. of dry grass yield 2 lb. of pure oil. Schimmel & Co. mention a case where 373 lb. of grass from Khandesh distilled in Bombay gave 1 lb. 5½ oz. of oil.

Bombay.—The production of this oil was fostered by the Muhammadan rulers of the Deccan, hence Khandesh oil came to be more spoken of than that of Nimar. Some writers in Europe would appear to have thought Nimar and Khandesh were one and the same place. [Cf. Sawyer, Odorography, 46.] Speaking of the Khandesh industry, the Gazetteer affords useful particulars. It would seem that the original seat of the industry in that province was Pimpalner, but the manufacture has spread to Nandurbar, Shahada and Taloda. The makers are Muhammadans, who, at the close of the rains (about September), as the grass is maturing, buy it from the Bhils, stack it, and set furnaces on the banks of the brooks where wood and water are plentiful. The distillation pursued is in all essential points the same as that of Nimar, except that when the cauldron which serves as a condenser begins to vibrate, it is removed from the stream, emptied and refixed. The fluid from the condenser is stirred until the oil begins to form. To make very strong oil, the contents of the condenser are redistilled; the oil which forms on the surface is then skimmed off and the distillate used as the water for a fresh charge of the still. The oil is packed in skins and sent over the Kundabari Pass to Surat or via Dhulia and Mammad to Bombay.

Berar.—While touring in Berar (Ellichpur district in 1894) I devoted some attention to the rusa oil manufacture at Muktargiri. Four stills were found by me fitted into a furnace with their condensers submerged in a stream. The plant used was C. Martini, Stapf, found on the dry hilly slopes around the distillery. The crop had been cut and stacked, pending the termination of the rains. During the time of my visit in December it was being distilled. The flowering tops had been cut and tied into pulis or bundles, each containing from 60 to 80 stalks; five of these were tied into a larger bundle; 20 of these larger bundles were counted as 100. Into the boiler from 230 to 350 pulis were placed, and packed transversely. Over this was poured four kerosene tins of water. Each charge was said to yield 3½ chataks, or one-fifth seer of oil. The di
tillate (or fluid obtained from the condenser) was decanted on cooling, the water being allowed to strain off slowly, and thrown away, and thus not used a second time as in Khandesh. But before decanting, the owner skimmed off with a feather certain globules of oil that had formed on the surface. This was said to be the finest and most highly valued oil, and though troublesome it was profitable to remove it by itself even although only a few drops were obtained from each distillate. After the greater proportion of the water had been strained off, the mixed oil and water was placed in a clear glass bottle, and, the hand being held against the mouth, it was inverted. The water was then allowed to gradually escape, and the oil thus purified. It is at first dirty brown in colour, but clears as it is kept. According to the estimate made by me on the spot, from the data furnished by the owner of the distillery, the cost of working each still, including labour, rent of land, hire of apparatus, etc., would be Rs. 1–12 and the net profit Rs. 1–10, even were the oil sold pure; but it is largely adulterated with kerosene oil. It is sold at about Rs. 9 a seer (2 lb.). I was told that Jamod, in Akola, had the best name of all the localities in Berar for its rusa oil.

Madras.—Mention has been made in the concluding remarks under *C. polynueros* (above) of a new supply of what would appear palmarosa oil having been organised in South India. But let it be here repeated that Stapf regards that as a distinct species, and, therefore, very possibly the oil may have distinctive properties of its own, though classed in trade as a quality of rusa or in some cases of lemon-grass. The subject will be found dealt with more fully below under the trade of lemon-grass—*C. flexuosus*. Instead of being exported from Cochin along with the lemon-grass oil, this is conveyed to Bombay and shipped from there to Europe and America, in direct competition with the Khandesh and Nimar oils. This has so materially increased the supply that a serious decline in the price paid has taken place. Schimmel & Co. (Semi-Ann. Rep., May 1904, 54) say, “The producing districts have been extended so largely, that it is difficult to arrive at a proper estimate of the market, and it is an extremely difficult matter whether to advise buying at present low prices or not.” “An excellent selection of qualities of so-called East Indian geranium and palmarosa oil of the last harvest is available, and is quoted lower than at almost any previous time.” It seems fairly certain that the increased production and high-class degree of oils offered is the direct result of the South Indian supply, and of the endeavours of the Forest Department in the Central Provinces.

Properties.

Properties and Uses of Rusa.—According to Gildemeister and Hoffmann (Volatile Oils, 281–5, 433–4), the chemical examination of Rusa oil led to the discovery of geraniol, which is present in good qualities to the extent of 76 to 93 per cent., the greater proportion in a free state. Of *citronella*, if present at all, there are traces only. It is thus an oil widely different from that obtained from *C. Nardus*, the citronella. It is a light-coloured oil, soluble in three or more parts of 70 per cent. alcohol. Its saponification number lies between 20° and 40°, but after acetylation between 230° and 270°. It is frequently adulterated with various fatty oils, as also with turpentine and kerosene, which latter lowers the specific gravity while the fatty oils raise it.

It is chiefly used for admixture with rose oil, and, since it does not solidify by cold, it prevents the crystallisation of the rose oil. Sawyer
Pangiri Maana.

This is the pangiri maana grass of Ceylon, and is there only known in cultivation. It now seems possible that many of the vernacular names given in the Dictionary under this species belong in reality either to the plant given below as C. flexuosus or to one or other of the forms of C. Martini. The present plant does not appear to have been known to the Sanskrit, Arabic or Persian medical writers. It owes the botanical name Nardus very possibly to a confusion. Linnaeus assumed (Mat. Med., n. 32) that it was the nard of India: it was early known in Europe as spica indica or spigo nard. But it is surprising that there is no very distinct early record of the wild plant having been systematically distilled in South India as C. Martini is in the North, although it is probable that Ainslie may be alluding to it, since botanically the cultivated stock would appear to have been derived from a plant that is wild in South India.

CITRONELLA Cultivation in Ceylon.—It is cultivated chiefly in Ceylon and Malacca. Winter (Chem. and Drugg., lxxi., 646)—one of the largest distillers of citronella oil—says there are two varieties. These are (1) a form known as lana batu, which appeared naturally in 1885; and (2) another, known as maha pangiri, which represents the older stock—a more delicate plant than (1). There is no specimen in the Kew Herbarium specially labelled as maha pangiri, but there is one of lana batu. This is C. Nardus proper, but it is attacked by a form of Ustilago or Smut—a parasitic fungus—that lives within the tissues of the plant throughout its life, and may thus possibly influence materially the yield of the essential oil. This might (if so desired) be completely eradicated by the seed being previously washed in water at a temperature of 120° F. In the Administration Report of the Royal Botanic Gardens, Ceylon, for 1903, mention is made of the appearance of Ergot (Claviceps) as a disease on the maana grass.

It is said that the lana batu is the most widely distributed form of this species and can be produced on soils of a much poorer quality than those required for the maha pangiri. The plantation once established needs little attention further than to cut the shoots systematically so as to prevent flowering. There are two seasons, the first and principal in July and August; the second from December to February. The yield averages from 16 to 20 bottles (according to some writers 22 to 28 lb.) per acre for the first crop, and 5 to 10 bottles (7 to 14 lb.) for the second. But with age the plant yields less and less, so that by fifteen years the plantation has to be renewed. The yield also varies greatly with seasonal conditions. In the Ceylon report above mentioned particulars will be found of test experiments on the yield of different forms of the plant, as also different seasons of collection. The variability will be seen to be remarkable, especially the lower yield of the indigenous as compared with the introduced and cultivated forms.

In Ceylon the distillation is accomplished by direct steam without the addition of water to the grass. A charge of dry grass is distilled in about six hours, and the exhausted grass, after being dried in the sun, is used as the fuel for the works. Citronellol is the principal bearer of the citronella.
TRADE IN CITRONELLA

odour. The *lana batu* variety yields an oil that contains citronellal (28.2 per cent.), is relatively poor in geraniol (32.9 per cent.), affords methyl eugenol (8 per cent.), and has a high specific gravity. It constitutes the bulk of the citronella oil of commerce. The oil of *maha pangiri* contains 50.45 to 55.34 per cent. citronellal, 38.15 to 31.87 per cent. geraniol, and only 0.78 to 0.84 of methyl eugenol. The low percentage of the last-mentioned substance accounts for its low sp. gr. The *maha pangiri* is the first quality, and is often in trade called "Singapore Citronella," while the *lana batu* is the second quality. Citronella is mainly in demand by the soap manufacturers on account of its geraniol, one of the chief constituents of rose oil.

Trade in Citronella.—The traffic in this oil first attracted attention about 1887, when the exports from Ceylon were returned at 551,706 lb.; in 1890 they became 909,942 lb.; in 1895, 1,182,255 lb.; in 1900, 1,409,056 lb.; in 1901 they stood at 1,430,168 lb.; and recently (1902) suffered a serious decline to 1,294,750 lb.; and in 1903 still further to 1,062,594 lb. But the decline in the production has caused a satisfactory rise in the price from 9d. to 1s. 2d. per lb. Schimmel & Co. say the demand at present exceeds the supply, and that a decline in the price is inconceivable. The oil goes mainly to England, America, Germany and Australia. The industry centres chiefly in the southern parts of Ceylon, where there are said to be 50,000 acres under the crop, and over 600 stills at work. As compared with this the production in Singapore is reported hardly to exceed 30,000 lb., obtained from about 2,000 acres.

The Ceylon traffic has suffered, however, very greatly through adulteration with kerosene, fixed oils, and more recently alcohol, as also in consequence of overproduction. Of late the vigorous development of the cultivation in Java and the rise of the Travancore industry in lemon-grass oil are circumstances that have operated unfavourably on Ceylon production. Mr. Bamber (the Ceylon Government Chemist) has interested himself in this subject and has invented a process by which the adulteration of the oil that is being exported may be readily and effectively detected. Satisfactory endeavours are being made by the Ceylon Government to improve the methods of production and manufacture presently pursued by the Natives and to discourage if not to check adulteration.

(b) *C. flexuosus*, Stapf. The Malabar or Cochin Grass. This is the Lemon-grass plant of Travancore. Stapf draws my attention to the fact that an excellent figure of this plant was given by Rheede (Hort. Mal., 1703, xii., 107, t. 57), who calls it kodi-pullu. It is the ginger-grass oil (*sukkanaru pillu*) of some writers, such as Ainslie (*Mat. Med.*, ii., 401), spoken of as procured from the Courtallum hills and from Tinnevelly district. It has been distributed by Wight to herbaria under the name *A. flexuosus*, Nees (*Steudel. Syn. Pl. Gram.*, 1855, 385).

LEMON-GRASS OIL Cultivation.—Very little of a definite and trustworthy nature has been published of the production of this grass as distinct from several others that are known to be grown. Every writer on the subject of the grass oils of India speaks of LEMON-GRASS Oil as being used by the Natives of India in the treatment of rheumatism and cholera. It seems fairly certain that these passages have little to justify their retention under the present plant except where they make exclusive reference to the extreme South of India, and especially to the Travancore and Malabar oil. [Cf. Gildemeister and Hoffmann, *Volatile Oils*, 1900, 285; Wiesner, *Die
LEMON-GRASS OIL

CULINARY LEMON-GRASS

D.E.P.,

1, 242-4.

(c) C. citratus, Stapf, Kew Bull., 1906, 392-30; Andropogon Schoenanthus, Linn. Syst. (10th ed.), 1759, 1304, Sp. Pl. note; Roxb., Fl. Ind., i., 274-5; Dalz. and Gibb., Fl. Bomb., 1861 (suppl.), 99; A. citratus, Trim. & Hook., Handbook Fl. Ceyl., v., 246; Ridley, Journ. Roy. As. Soc. (Straita Branch), 1891, 3. Lemon-grass of Indian vegetable gardens. This is the ool-chaa, nili or lili-chaa, hirn-cha or green tea, vasahanap-pulla or vasana-pilla, nimma-yaddi, dyga-sans or amin ghada. The name cha (tea) is doubtless Chinese in origin but has been used in India for centuries, and indicates doubtless the use of the leaves as a flavouring ingredient with tea. The employment of such terms denotes, however, recent knowledge—or rather European knowledge of the grass. It is thus the edible lemon-grass or Indian verbena of Europeans.

Stapf informs me that he makes the sereh of the kitchen gardens of the Malays, which is identical with the Lemon-grass of Singapore, correspond with the vegetable garden plant of India. It was probably first mentioned by Franc. Martinelli (1604), and the earliest unmistakable description of it was given by Eusebius Nieremberg (Hist. Nat., 1635, lib. xv., ch. 19, 343), who called it tanglat, a name still in use in the Philippines. It is next mentioned by Bontius (Hist. Nat. et Med. Ind. Or. in Piso, Ind. Utri. re Nat. et Med., vi., 148), but Herbert de Jager in a letter to Rumphius, published by Valentini (Hist. Simplic., 1732, 392), points out that Bontius was wrong, and that Schoenanthus does not grow in Java; Jager calls the plant sire, and this is apparently the first occurrence of that name. Rumphius, in a letter to D. W. ten Rhynse, also employed the name sire but added that it might be called the sterile Indian Schoenanthus in order to distinguish it from the Arabian (Herb. Amb., v., 181, t. 72, f. 2). Sam Browne (E. Ind. Pl. in. Phil. Trans., 1792, xxiii., 1251-2) remarked that this grass was in his day used by the Portuguese women at Fort St. George, but was little esteemed by the Natives.

It was met with in gardens near the sea coast, and had been introduced from Batavia about 1666 A.D. Lemon-grass was conveyed to England by Sir Joseph Banks in 1786. Roxburgh gave A. Schoenanthus the Bengali name of gandha-bená, but the description and the drawing made by him leave little doubt that the plant in question was the present variety of Nardus.

CULINARY LEMON-GRASS.—From the observations already made (see p. 450) it may be inferred that this herb the very greatest possible obscurity has prevailed regarding the botanical sources of the lemon-grass oils of modern commerce. Before having seen Stapf's interesting report I had written that if not a perfectly distinct species (for which the name Citratus had been accepted in the Dictionary and might with advantage be continued), the present plant would prove one of the many races of C. Nardus. Apart from the fact that there is a plant widely cultivated in Indian gardens which is generally designated lemon-grass (Lisboa, Bomb. Grass, 1896, 87), and that a grass oil (named lemon-grass) is in South India obtained from a wild and apparently distinct plant (see C. flexuosus above), there is the still further surprising circumstance that the trade recognizes "lemon-grass oil" as produced in Ceylon in addition to citronella. [Cf. Goldmeister and Hoffmann, Volatile Oils, 288-9; Ann. Rept. Roy. Bot. Gard. Ceylon, 1903, 15.] It would thus appear that the Ceylon planters have for some time been regularly growing the lemon-grass oil plant.

To obviate possible confusion between the edible lemon-grass of India (C. citratus) and the lemon-grass oil of Malabar (C. flexuosus), Stapf uses for the latter the name Malabar or Cochin grass. Unfortunately, however, lemon-grass oil is by no means exclusively obtained from Malabar, and "lemon-grass" is likely, therefore, to be continued to designate the oil in commerce, irrespective of the local Indian usage mentioned. But has it been proved that the lemon-grass (C. citratus) might not itself afford, or that it is not actually affording, an odoriferous oil? It is understood that the lemon-grass oil of Ceylon is less valuable than the lemon-grass oil of Travancore. But has it been definitely

Malabar and Cochin Grass.
CUMBOPOGON
NARDUS
Culinary Lemon-grass

proved that both these are obtained from one and the same species, the differences being climatic, not racial? In other words, has it been established beyond dispute that the peculiarities in the grades of lemon-grass oil denote the species of plants used? With such uncertainty it is perhaps permissible to think that at least some of the grades of lemon-grass oil are obtained from the culinary lemon-grass—the oleum siree of Loehner (Ephem. Acad. Nat. Cur. Cent., 1717, v–vi., app., 157); and if this be so the name must be retained.

The extraordinary anomaly is thus presented of an important plant, such as C. citratus, known possibly to a large number of the inhabitants of India and Ceylon, not having been systematically studied. This subject should, therefore, commend itself as worthy of attention to those who may have the opportunity of contributing either new material or fresh information.

Rumphius says the leaves were used in cooking fish and in flavouring wine, but he throws doubt on the roots being medicinal. In India as a whole (excluding the modern Travancore and Cochin industry) the CULINARY LEMON-GRASS does not appear to be distilled. Wallis (Pl. As. Rav., 1832, iii., 48, t. 280) under the name Andropogon Schoenanthus gives an illustration of what is possibly a distinct species but which has by Hackel, followed by Hooker, been treated as A. Nardus, Linna., var. grandis, and with that East Himalayan plant Wallis has associated the economic information of the garden lemon-grass. He quotes, for example, from Fleming (As. Res., 1810, xi., 156), who says, “Many Europeans with whom tea does not agree, use, instead of it, the infusion of this plant, to which they have given the name of lemon grass.” Dr. Wallis then adds, “Dr. Maton, one of the Vice-Presidents of the Linnean Society and Physician Extraordinary to the late Queen Charlotte, tells me that he has repeatedly been treated with a dish of lemon grass tea by Her Majesty, who used to be very fond of it, and was supplied with the plant from the Royal Gardens, Kew.” “There are few people,” Wallis concludes, “who have experienced the influence of an Indian climate, who have not found benefit from the wholesome and refreshing beverage prepared from this grass.” It might almost, however, be said of India, as it can certainly be said of England, that Queen Charlotte’s lemon tea has become completely forgotten. The lemon-grass is occasionally added to certain soups or used while cooking fish and curry, but as affording a refreshing beverage it is unknown to the people of India to-day.

Lastly, in this place mention may be made of Mrs. Lisboa (Journ. Bomb. Nat. Hist. Soc., 1889, iv., 123) having figured and described a new species, viz. Cymbopogon odoratus, found wild at Lonowli, Poonia, which is said to yield an oil “soft, sweet and more agreeable than that of C. Martini.” It is thus evident that even if C. citratus be excluded from consideration as an odoriferous oil-yielding species, there are very possibly several distinct plants that afford oils, many of which are treated as lemon-grass oils.

GINGER-GRASS

C. Schoenanthus, Spreng. According to Stapf (l.c. 303–13, 352) there are at least two fairly distinct plants commonly assigned by authors to *Andropogon Schoenanthus, Linn.* These are as follows:

Ginger-grass.—This is the *Schoenus, Schoenanthus, or Squinanthus,* and to some extent also the *Juncus odoratus,* etc., etc., of Greek and Roman writers, as also of most of the early writers on Materia Medica. An oil prepared from it would appear to be known as *Ginger-grass.* The Oriental names for the plant have been so much confused with the next species (if not with several other species) that it would be a bold step indeed to separate them and to affirm that *izkhir* (Arab.), *gārqiyyah* (Persian) and *bhustrina* (Sanak.) denote this particular species and no other. It follows accordingly that the modern vernaculars of India cannot be arbitrarily separated. In fact it would perhaps be the safest course to call in the aid of geographical distribution and to assign the names in common use for perfume-yielding grasses in the respective areas where the spices abound, as being the names proper to these species. The present form, according to Stapf, is met with “from Morocco to the Panjab and Ladakh.”

“In the Panjab it is common in some of the desert tracts from Karachi to Peshawar and Ludhiana, growing on rocks, in sand or in hard loamy soil.” The Indian vernacular names best known for it within that area are *khavi* and *ghatyari.*

It would appear that an oil is actually produced in the Panjab from this plant, though only very occasionally. In fact the reports that have appeared on the diversified properties of such oils are very possibly due to incorrect determinations of the plants concerned. In a few instances records of oil exist, however, that leave little room for doubt of having been actually obtained from the present species. Edgeworth (Journ. Linn. Soc., 1862, vi., 208) describes under the name *Cymbopogon Ariana* the plant met with in Multan—the country where the Malli resided in the time of Alexander the Great. Stapf has pointed out that on the label of one of his specimens Edgeworth wrote; “An essential oil expressed from the roots, manufactured only at Kasür in the Panjab.” This, adds Stapf, “is probably the same kind of oil which Vigne records from Hassan Abdal (between Attok and Rawalpindi) with these words: “A stimulating oil is extracted and used in medicine.” Mr. J. R. Drummond confirms Edgeworth’s report by the information communicated to Stapf that a family of priests at Kasür produced this oil quite recently (see *Rosa*, p. 926).

It perhaps need hardly be reiterated that the oil in the above passages is spoken of as expressed from the roots, not from the leaves and shoots.

The fact of there being a medicinal root, or rather two species of roots—the *nard* of the early explorers of India—known to all modern Indian medical writers is of great historic interest, and the botanical evidence would support belief that when dealing with the Western Panjab, Sind, Baluchistan and Persia, the plant in question may be accepted as *C. Schoenanthus, Linn.*, but when dealing with the Eastern Panjab and the United Provinces, it is in all probability the species presently to be discussed, viz. *C. Jwarancusa, Schult.*

C. Jwarancusa, Schult.—*Schult., Mant.*, 1824, ii., 458; *Nardus indicus,* Blume, Phil. Trans., 1790, lxxx., 234, t. 16, f. 1; *Andropogon Jwarancusa,* Jones, As. Res., 1795, iv., 109; *A. Jwarancusa,* Dierbach, Fl. Apiciana, 73; *A. Jwarancusa,* Roxb., 461.
MEDICINAL GRASS

Nardus Indicus.

Sweet-scented Medicinal Grass.—Of this plant—the Nardus indica of early writers—Stapf observes that it occurs on the outer hill-zone of the United Provinces, Kumaon, Garhwal, and westward as far as Peshawar—mainly in the neighbourhood of watercourses. This is, therefore, a much more abundant Indian form than the preceding. It frequents, as a rule, colder and moister regions. But the name juvarankusa, which Stapf treats as Sanskrit, is so in derivation very probably, but was apparently never used by even the most recent of Sanskrit authors as the specific name for this or any other grass. Dutt (Mut. Med. Hind., 1900, 271) gives the Sanskrit name lamajjaka as denoting _A. Jwaranceusa_, Roxb.—the lamjak of Hindi and the karankusa of Bengali. But according to him, the _A. Schoenanthus_ (the bhustrina, Sanskrit, and ganda bena, Bengali) was the plant we now call _C. citratus_, so that the Sanskrit and vernacular names above very possibly denoted both _C. Jwaranceusa_, Schult., and _C. Schoenanthus_, Linn. [See _Cyperus rotundus_, p. 466.]

Duthie gives it the following vernacular names (some of which may, however, denote _C. Schoenanthus_):—sirghurat, soldara, bur, khur, gandhi, khav, gander, runa, dabu, bahan, jaramusk, azchir, khavi, gandel—none can be said to be derived from its supposed Sanskrit name. Roxburgh, who rendered the name juvaranceusa as jwarancea, gives as its synonyms vbharankusha, uvarankusha, karankusha, and says these are Bengali, but makes no mention of Sanskrit names. So also Dutt accepts karankusa as Bengali, but does not give juvarankusa as a Sanskrit name. Moreover, Roxburgh very properly observes that as stated by Blane, the virtue of the plant resides entirely in the root. Duthie, speaking doubtless of this grass under _Andropogon laniger_, Def., says it is one of the sweet-scented grasses, “the roots of which are sometimes used like khas-khas in the manufacture of tatties.” “As a fodder grass it does not rank high in regard to its nutritive qualities. It is, however, largely made use of by cattle when it is young and tender. Its scent is said to affect the flavour of their milk. It is often stacked and forms a useful supply in times of scarcity. Mr. Coldstream says that it will keep good in stack for upwards of ten or twelve years.” “The khaïr grass grows in hollows where water collects, and seems to prefer Kullar, that cows graze upon it if hard pressed, but not otherwise; also that bir houses use wisps of this grass to clean out vessels used for churning and holding milk.”

The perfume being chiefly resident in the root, not in the stems and leaves, justifies the association of the _Nard_ (perhaps more _C. Schoenanthus_ than _C. Jwaranceusa_ with the story of the Phoenician followers of the army of Alexander the Great in Lus and of the confusion that long existed regarding the _spikenard_ of the ancients. This, doubtless, is the plant spoken of by Pliny and in more recent times by Garcia de Orta as found on the banks of the Ganges.

The preceding observations may be accepted as setting forth the separation of the two forms of _Nard_, both of which industrially have been treated as one plant. It has also been affirmed that the chief property of the plant is its sweetly scented roots. But apparently the leaves and shoots of one or other (or of a third species not separately recognised from them) yield by distillation an oil with slightly different properties from _rusa_. In some
parts of the country the present plant is more sweetly perfumed than in others, as, for example, in the vicinity of Rawalpindi. Duthie tells us that it is "perfume in manufactured from it, and the aromatic oil is sometimes used as a cooling medicine." The authors of the *Pharmacographia Indica* (iii., 558) mention that in the time of the Tuhfat-el-muminin (about 1669 A.D.) a distilled water was made from *izkhir* and apparently the oil of *C. Martini* was then unknown, if the name *izkhir* was not used indiscriminately for *C. Martini* and *C. Schenchantus*. Indeed it is believed that the variability of *rusa* oil may to some extent be due to this grass being mixed with *C. Martini* and both distilled together, or to the oil of the present plant having been mixed with that of *rusa* (palmarosa). In fact, according to most authors on essential oils, this is very possibly the chief source of some of the "ginger-grass oils" of commerce (Gildemeister and Hoffmann, *Volatile Oils*, 285). If pure it is valued at 2s. 3d. per lb. Schimmell & Co. say, "Our examinations have proved that it is a pure distillate deserving absolute confidence. Never has this oil been on the market in such fine quality as at present" (Semi-Ann. Rept., 1904, 44–8). Gildemeister and Hoffmann (ib. 300) say it has the sp. gr. of 0·915 at 15° and its odour recalls that of elemi. It distils between 170° and 250°. The statement that an oil is not prepared from *C. Jun- nus* would, therefore, appear incorrect. But the roots and lower stems which constituted the *Schenchantus* of the ancient would seem to be collected in India to any material extent at the present time. Garcia de Orta (1563) was the first European writer to refer to that product in connection with India. He tells us that it came from Muscat, was known as "Herba de Mascate," and was used by the Portuguese in India, but not by the Natives. He makes no mention of any of the essential oils derived from this or the allied grasses.

But in spite of the fact that so great an authority as Sir William Jones repudiated hotly Blanka’s opinion that the *Nardus* of many authors was in reality *C. Junnus*, I am strongly inclined to agree that a too literal acceptance of Jones’ view may be misleading and has possibly in the past induced error. Pliny (*Hist. Nat.*, bk. 12, ch. 12 (Holland, transl.), 364) says the "*Nardus* spreads itself in certain spikes and ears whereby it hath a twofold use both as a spike and as a leaf." Apicius speaks of the *epica indica* being used in sauces and costly dishes, but this may have been *C. citratus*—the plant that I have spoken of as the edible lemon-grass. *Paulus Aegina* (Adams, transl., iii., 265) derived his information mainly from Galen, who draws again on Dioscorides and speaks of it purely as a drug and ointment. It seems highly probable, therefore, that the *Nardus* of the ancients was different from the *Jatamansi* of the Sanskrit authors, though the plant known to botanists as *Jatamansy* *Jatamansi* doubtless is the *spikenard*. Garcia de Orta (Coll., 1; also in Ball, *Proc. Roy. Ir. Acad.*, 674), followed by most of the older Indian travellers, speaks of the *Nardus* as obtained from the plains of India, and can only be referring to one or two species of *Cymbopogon*, certainly not to the alpine *Nardostachys*.

CYNODON DACTYLON

Lisboa says this grass is now generally spread in the settled parts of Australia, where it may have been introduced with cultivation. According to Vasey (*Rept. Grasses U.S.*, 1883, 54–6, t. 59) it takes the place in the Southern States of the famous blue grass of the more northerly States of America. In India it is particularly abundant on roadsides and delights in an admixture of sand, gravel and ordinary soil, and is one of the first grasses to appear on the partial recovery of old soles. It ascends from the plains to 8,000 feet in altitude, but varies in habits and nutritive qualities according to soil and climate. Is readily propagated by cutting up the shoots and roots and spreading these over the surface of the field.
CYPERUS
BULBOSUS
Edible Tubers

It is the commonest and most useful grass in India, since its stems and roots form a large proportion of the food of horses and cows; it has great fattening and milk-producing qualities. Makes good hay, which if carefully stacked will keep for years. Voelcker (Improv. Ind. Agri., 175) says of dib grain in India that "in many parts it comes up naturally or may be easily propagated from cuttings simply stuck in the ground. As a crop for irrigation it gives a great yield, and is about the only grass that keeps green in the hot weather. To one coming newly to the country it is surprising to notice how from an apparently burnt-up and dead surface a crop of fresh grass will spring up on the first fall of rain." According to the Madras Experimental Farm Manual, dib, like most other meadow grasses, should be cut for hay directly the flowers appear, since under these circumstances the juices are more nutritious and the plant will produce another crop much sooner. The great object should be to retain the green colour of the grass by drying it as quickly as possible; two or at the most three days should suffice for making the hay, and if the dews are heavy it should be put into haycocks at night. The richness of the saccharine juices renders the hay more liable to heat and ferment, but excess in this direction may easily be checked by the ordinary methods of putting pipes from the centre to the outside of the stack, or building in two or three layers of dry paddy or cholam straw.

It is necessary, however, to notice that C. Daucylon, while very easy to grow, is very difficult to eradicate. In the Farm Rept. Bombay (1898–9, 6) it is said to be a persistent weed in black soil and to require deep hand-digging in the hot weather to destroy it. The plant is used medicinally and a cooling drink is said to be prepared from the roots. Dib is also used fairly extensively in Hindu religious ceremonies, but it is necessary to distinguish carefully dib, dib, dib and dib, which denote separate grasses.

D.E.P.,
ii., 682–9.
Sedges.

This genus of sedges contains some 60 Indian species. Most of these are fairly valuable forage plants, especially when young, others are dangerous weeds of cultivated lands. A few yield culms and leaves that are employed in thatching and in grass-matting, and others afford tuberos rhizomes that are either eaten (especially in times of scarcity) or are collected and sold as perfumes or medicines. The greatest possible obscurity still prevails, however, as to the determination of the Indian economic species, so that it may for the purposes of the present work suffice to discuss them under two groups, those of value because of their tuberous roots and those with culms and leaves utilised in mat-making.

(A) Tuberous Rooted Forms:

This small sedge is often very plentiful in sandy situations, as for example in Sind and Baluchistan, the Upper Gangetic basin, the Deccan, Malabar, the Coromandel Coast and Ceylon. It is distributed to Arabia, Abyssinia, Central and North Africa. The characteristic (economic) feature of the plant is the tuberous rhizomes (often called bulbs) that it produces. These are not much larger than grains of rice, and since they are borne on long, thin, non-persistent shoots they are found in great abundance in the soil, free from each other and free from the parent plant. They are accordingly collected by sifting the sandy soil. They are encased in several easily separated scaly coats and, after removal of these, are roasted and eaten or are soaked in water, washed, pounded into a flour, and baked into bread or cooked into puddings, etc. They have no aromatic property, and are strictly speaking edible not medicinal tubers.

464

If the determination here suggested should prove correct, the Chinese would have to be accepted as having known the edible sedge from as early a date as can be shown for any other country. But it so closely resembles \textit{C. rotundus} that it is highly probable the reputed discoveries of it in India and elsewhere are in some instances at least due to mistaken determinations. It has, however, been recorded as found in one or two localities in the Panjab and in the Nilgiri hills, but nowhere common. It thus no doubt exists in India, but until fresh investigations have been made it is perhaps desirable to leave the matter in this position. Repeated efforts have, however, been put forth (so it has been affirmed) to introduce the cultivation of this plant, but with absolute failure everywhere. The present species, therefore, contributes no known portion of the supply of edible
\textit{Cyperus} tubers in India. Of other countries it is reported the tubers are often roasted, then ground to a powder, and used in the preparation of \textit{chufas} coffee or \textit{chufas} chocolate. [Cf. Kew Mus. Guide, 1895, No. 2, 59.]

3. \textit{C. rotundus}, Linn.; Fl. Br. Ind., vi, 614; Hove, Tours in Gujarat, etc., 1787, 25, 45, 112, 120; Dymock, Math. Med. W. Ind., 1885, 844–5; Buckland and King, Offic. Corresp. Beng. Govt., Apr. 21, 1892; Pharmacog. Ind., iii., 552–3; Dewey, U.S. Dept. Agr., 1894, 1–4; Bretschneider, Bot. Sin., 1895, pt. iii., 126; Woodrow, Gard. in Ind., 1899, 547; also Fl. W. Ind., l.c. 431; Bull. Haarlem Mus. Pl., 1903, ii., 1145; Gage, Rec. Bot. Surv. Ind., iii., 112; also Prain, l.c. 303; Hosie, Rept. Ssu'ch'uan, China, 1904, 45. This is the mothá, muthá, bata-biýr, tandí sura, mutá, diýa, gundra, korai, koréki-jhár, bimbál, etc. Bretschneider points out that the Chinese name for the odoriferous tubers of this species (which occurs in Buddhist books), namely \textit{mu ts'ui ta}, comes from the Sanskrit \textit{mustuka}.

This is a very troublesome weed of fields, gardens and waste lands, plentiful throughout India from the sea-level up to 6,000 feet in altitude. Its occurrence as an enemy of cultivation has been recorded in nearly every tropical country. The underground shoots that bear the economic rhizomes or tubers are persistent and become woody, the plant being in consequence difficult to eradicate. The best results at extermination have been attained by low shade and repeated mowing down of the herbage. But \textit{C. tuberosus}, \textit{Reb}, is a plant so closely allied to it that the late Mr. C. B. Clarke informed me it might quite safely be viewed botanically as a variety of \textit{C. rotundus}. Economically the two plants are identical, and are therefore treated here conjointly. One of them is possibly \textit{C. perennis} (or nágár-moth) of economic writers (Dutt, Dey, Dymock, Liotard, Buck, etc.), which yields an odoriferous medicinal root but is not \textit{C. perennis}, Nágár-moth. Dymock speaks of two kinds of nágár-moth met with in the Bombay markets, viz. Surat and Kathiawar. Gammie informs me of two kinds—a small tuber common in the Deccan, and a large one that does not extend beyond the heavy-rainfall zone of the Konkan and the Ghatas. Clarke, who most kindly perused this article and made useful suggestions, asked the question—Could the medicinal root alluded to by Dymock and others be \textit{Mariscus bulbosus}, \textit{B.C.} ? \textit{C. scariosus} has not at all events been recorded as found in Western India. Woodrow writes me that it does not occur in Western India as far as he knows. It is thus hardly likely to be the economic plant \textit{C. perennis}, Dymock.

The rhizomes of \textit{C. rotundus}—\textit{C. tuberosus}—are very much larger than those of \textit{C. bulbosus}, are highly aromatic, and when mature are so woody that they could hardly be eaten. Ground into a powder, however, they are used medicinally, especially for external applications. They have been regarded as diaphoretic, stimulant and astringent. The Scythians are said to have em-
CYPHERUS

EDIBLE TUBERS

ROTUNDUS

ployed them in their special embalming preparation. They are also used in
perfumery, particularly in giving a required aroma to certain fabrics and in the
preparation of oud-bati—the fragrant sticks burned in Hindu houses to disguise
offensive smells. They doubtless constitute much of the so-called juncus or
radix junci and koperos of the Latin and Greek authors, and which was
ex-tolled by mediaeval herbalists, being sometimes, but erroneously, called Indian
jatamansi. [See Cymbopogon Jwarancusa, p. 462.] It is desirable to bear in
mind the hard woody nature and aromatic property of these tubers in order to
distinguish them from certain edible tubers to which they bear some resemblance.
There would thus seem to be two chief forms of the medicinal and perfumery
tubers—the motha (C. rotundus-tuberosus) and the nágár-moth (C. pertanis
of Dymock, non Roxburgh).

Many writers, however, affirm that the tubers of C. rotundus and C. tuberosus
are eaten, especially in times of scarcity and famine. They are, certainly, greedily
eaten by pigs, and in famine times may therefore be eaten by men. But it
would almost seem as if either of two conditions were necessary:—(a) that the tuber
of certain localities or particular stages of growth are more palatable than the
tubers described as medicinal, etc.; or (b) that some altogether different plant
affords the edible tubers attributed to this sedge.

Throughout India an edible tuber bears very frequently the vernacular name
kaser; in fact it is mentioned in the Ain-i-Akbari. Roxburgh described Scirpus
Kysoor as the keeur, common in Bengal and growing on the borders of lakes,
ponds, etc. It possesses, he says, tuberous roots, but curiously enough he makes
no mention of these tubers being edible. Most Indian writers who mention
C. rotundus as yielding edible roots, speak of the plant, to which they refer,
as frequenting the margins of tanks (Beng. Office. Corresp., i.e.). It would thus
appear highly probable that the so-called edible tubers of C. rotundus of many
writers may have to be transferred to Scirpus Kysoor, Roxb., which Clarke made
a variety of S. grossus, Linnaeus’s Note on Plants used for Food during Famine,
e.g., in Bombay, while it gives C. bulbosus, makes no mention of C. rotundus
nor of C. tuberosus as having been eaten, but enumerates the following species
of Scirpus as affording edible products:—(a) the bulbs of S. grossus, the kyoor
or kachura, and (b) the seeds of S. maritimus, the chid (the miraj of Woodrow).
In passing it may be added that so far as can be discovered Gammei’s allusion to
the “seeds” is the only record of the grain of a Scirrus being eaten. But
thinking that Woodrow (formerly Professor of Botany at the Poona College
of Science) was likely to be able to throw some light on this question, I asked
for his views. His reply was briefly as follows:—“I found tubers in the markets,
carried these off to Poona, and produced from them S. Kysoor. The tubers are
globular, the size of a marble, have a brown fibrous covering and inside are
white, farinaceous with an agreeable flavour.” In a similar communication Gammei, the present Professor of Botany at Poona, informs me that the
tubers of S. grossus are the favourite vegetable of the Parsis during the cold
weather. The plant grows abundantly in the fresh-water tanks of the Konkan
but not in the Deccan. Lastly, Mr. I. H. Burkhill writes me that the Calcutta
supply of these edible tubers comes from Patna, Allahabad, Aligarh, etc. In
Nowgong the plant is called ghogul; in Ganjam, santra; and in Prame, mirthu
nyang. Burkhill then adds that another cyperaceous root is edible. This
is believed to be Eleocharis. It is known in the Santal country as chokker, and
in Central India (Tonk) it is kasuara. There can thus no longer be any doubt that
S. Kysoor is at least one of the edible tubers of India. Hooper (Rept. Labor. Ind.
Mus., 1906-7, 11) speaks of kesahur tubers from Singapore, which it would appear
are regularly imported and sold in the Calcutta market.

(E) Fibrous or Mat-making Forms:—

4. C. corymbosus, Rothb., C. semi-nudus, Roxb., Fl. Ind., i., 187 ; Fl. Br. Ind.,
vi., 612. A glabrous rush-like sedge which often grows to the height of two
to three feet. It is met with from Kumaon to Assam and Burma, and is distributed
to Ceylon, Africa and America. It is known in India as gol-methi, muha, gadda
tunga, kodu, kurai, berhula, nwa-mjet-yin. Var. B. Pangorei, C.S.C., is founded
on a specimen furnished by Dr. Bidie from Tinnevelly, which had been originally
obtained from Madagascar. This removes, therefore, any doubt regarding the
material of the finer mats of that locality.

5. C. malaccensis, Lam.; C. gangeticus (M.S.), incurvatus, Pangorei and procurs.
Roxburgh’s Fl. Ind., i., 203; Prain, Beng. Plants, ii., 1144; Fl. Br. Ind., vi., 688.
A native of brackish mudbanks from Bengal to Sind and distributed to Singa-

D.E.P.,
ii., 685-6.
GRASS-MATS

pore and the Persian Gulf. It is in Bengal known as chumati pati, and apparently by popular writers has been much confused with *C. corymbosus*. Hance (*Journ. Bot.*, 1879, viii., 99-105) gives a most interesting account of the matting trade and floor-mats of China. The former are not exported, but the latter constitute an important item of traffic from Canton to the United States of America. Hance identified the plant as *C. tegetiformis*, Roxb., but C. B. Clarke informed me that he regarded it as being more correctly *C. malaecensis*.

6. *C. tegetiformis*, Roxb.: *C. nudus*, Roxb., *Fl. Ind.*, i., 209; *Fl. Br. Ind.*, vi., 612; Prain, *Lc.* 1144. This form is closely allied to *C. malaecensis*, and the two plants seem to have often been confused by economic writers. It is a native of Bengal (Central and Eastern—the Sundribans), Chittagong, Assam, Bandelkhond and Madras, and is distributed to China and Japan. A tall glabrous rush-like sedge known as *gola-methi* or *sura*.

7. *C. tegetum*, Roxb.: *Fl. Br. Ind.*, vi., 613; Prain, *Lc.* 1144; the Sedge or Grass-matting Plant of Calcutta, the *mudr-kati*, veda, korai, mandri, yeruti, etc. An extremely abundant and widespread sedge. It occurs throughout the plains and ascends the hills to 6,000 feet in altitude from Kashmir to Burma.

GRASS-MATS: Calcutta-mats: Madras-mats.—Here and there throughout the greater part of India mats are made of the culms of certain species of sedge. Some are coarse, being woven of the entire culms, and others exceedingly fine, the triangular culms being split into two, four, eight, twelve, etc., pieces. These strips of culms are carefully dried, when it is found they have rolled round on themselves lengthwise, thus carrying the polished epidermis uniformly on the outside of the rush-like strands. The process of splitting the culms is perhaps the most difficult and laborious part of the grass-matting art, especially when exceptionally fine mats are to be woven. The collection of the culms and the splitting and drying of the same are duties entrusted to the women, whose patience and delicate fingers are in consequence important factors in success. The men do the weaving. The species of sedge most largely used is *C. tegetum* (No. 7 above), but Nos. 4, 5, and 6 are (according to some writers) each and all employed in the localities where procurable abundantly. In fact, as already stated, the finest mats are those produced in Tinnevelly from *C. corymbosus*, var. Pangorei. But the question whether the production of the finer mats necessarily depends on the special properties of the sedge used or on the patience and skill of the operators has never been definitely investigated. In certain regions species of sedge are used in the mat trade that in other countries are never so employed, though plentiful. The greatest uncertainty still pervades the literature of the grass-mat trade, more especially as to the particular forms of sedge used in the centres of special repute. But the exceedingly fine mats of Tinnevelly, Cochin, Pallampett, Palghat, Vellore, Indrawatty, Servy, Talpier, Midnapur, etc. Mats, though often marvellously fine, very beautiful and highly artistic, are commercially much less valuable than the ordinary grass-mats, the so-called Calcutta-mats or *muddr*-mats, which are made mainly, if not exclusively, of *C. tegetum*.

Manufacture.—The method pursued in the fabrication of grass-mats, however coarse or fine, is the same with all the Indian grass-mats, and may be here briefly detailed. Threads of ordinary country twine (more rarely cotton) are stretched along the surface of the floor of the factory or workshop, one inch or an inch and a half apart, and extending for the length of the desired mat. If intended for a large-sized room they may cover, or nearly so, the entire floor of the workshop, or may be placed in one corner, being only a few feet in length and breadth, or many yards in length and only a few feet in breadth (the last being a

D.E.P.

ii., 688.

D.E.P.

ii., 688-9.

Calcutta-mats.

Splitting the Culms.

Tinnevelly Mats.

Palghat and Midnapur Mats.

Manufacture.
sort of piece-goods form which has recently been sent to Europe and America very largely). The lengthwise strings constitute the warp of the mat. Previously they have been threaded through a crudely formed weaver's comb or beam of the desired breadth, and they have also been attached to bamboos at both ends, which are so adjusted that they may be tightened as desired and the warp raised an inch or so above the floor of the room over which they are stretched. The operators commence at the far end. They sit in a row across the breadth of the fabric and on the top of it. Each possesses a crudely formed wooden needle (which takes the place of the shuttle), and through the eye of this is inserted the end of the split and carefully prepared culm. This is passed alternately over and under the threads of the warp and thus placed in position by each operator along his allotted portion of the weft. Simultaneously the comb is beaten home and the next street of the weft commenced by being threaded above the warp, where the previous street went below. If colours or patterns are desired they are inserted by the hand at the proper positions. Thus slowly the work progresses. It is hand labour from beginning to end, for so far machinery has not invaded this peculiarly tropical craft, the prototype very possibly of the weaver's art.

As already indicated, the finer artistic and coloured mats are mainly derived from Madras; the plain white mats, or mats with coloured borders only, come from Calcutta. In Western India grass-mats are never made, though several of the plants required appear to be fairly plentiful. The mats of Bombay are made from the leaves of Phoenix robusta, Hook. f.

Statistics of the trade in grass-mats cannot unfortunately be given. It is known that large quantities are regularly exported, and within recent years the trade has greatly expanded. But the grass-mats are returned conjointly with all other Mats and Matting Materials (see p. 776).

DAIRY FARMING AND DAIRY PRODUCE.—In its modern comprehensive signification Dairy Farming embraces not only milk but many other substances, the production of which can be economically combined with the supervision of milch-cows. These may be classified as follows:—Live Stock—such as oxen, buffaloes, sheep, goats, pigs, poultry and bees. Produce—meat, milk, dahi, butter, ghi, cheese, fowls, ducks, eggs, honey, bees' wax, hides, skins, wool, horns, hair, feathers, bristles and farmyard manure. Requirements—capital and stock, technical knowledge, suitable buildings, grass lands, a supply of cattle food and fodder, appliances and machinery, and easy, quick and cheap transport to large markets.

So far as known, no one in India has as yet attempted Dairy Farming in anything approaching the degree of thoroughness necessary to ensure complete success. While that is so, the larger towns have recently begun to receive some portion of their supplies from establishments usually designated Dairy Farms, and for some years past the necessity for a large and pure supply of milk and butter for the British troops resident in India has induced the military authorities to organise special dairy farms of their own. In Thacker's Directory (1905, 28–30) mention is made of the
THE BUFFALO AND THE GOAT

Dairy Farming

History

following Dairies: — Bengal, 4; United Provinces, 11; Central India and Rajputana, 2; Panjáb, 6; Assam, 1; Burma, 1; Bombay, 18; and Madras, 5. Still, the problem of the protection of the public against disease through the supply of impure and adulterated milk has hardly been even contemplated. For kindred subjects consult: — Bees and Honey (see pp. 123-9); Poultry and Ducks, etc., (pp. 134-6); Feathers (pp. 138-43); Eggs (p. 137); Hides and Skins (pp. 632-40); Horns (pp. 644-6); Manure, Farmyard (p. 768); Pigs and Bristles (p. 752); and Wool, Hair and Pashm (pp. 1121-31). In the present article Dairy Produce, such as Milk, Butter, Ghee, Cheese, etc., will be dealt with in such detail as space will admit.

History. — Voelcker (Improv. Ind. Agr., 1896, 206-11) has very properly observed that "the two most striking features of Indian dairying are, the small yield of milk given by the cows, and the richness of the milk of the buffalo. In Bengal the ordinary country cow will not give more than 2 lb. of milk a day. In Madras it may yield from 2 to 4 lb. a day. As a rule, the cows will only milk for six months, and often have but one calf in the course of two years. The milk of the buffalo, on the other hand, is very much richer than the average cow’s milk in England, for, whereas the latter may be said to contain 3 to 4 per cent. of butter-fat, and 12 to 13 per cent. of total solids, buffalo’s milk has no less than 7½ per cent. of butter-fat and 18 per cent. of total solids.” These are exceedingly important facts which cannot be overlooked. No conception of the value and extent of dairy farming in India could be formed were the part played by the buffalo and the goat to be omitted.

Another highly significant feature is the extent to which milk and the preparations derived from it are boiled before being eaten. Milk, butter and cheese have been boiled preparations from the most ancient classic times of India, (confer with the references below to the Institutes of Manu)—a direct and practical adaptation doubtless to the greater danger in the East than in the West of consuming articles of food so liable to contamination as milk and its derivatives. Buchanan-Hamilton (Journ. Mysore, etc., i., 6, 116; ii., 14-5, 382) wrote in 1807 an account of the milk and butter of Mysore that is fully corroborative of the extent to which in India boiling is and has always been an essential feature. His description is not only true to-day (and not of Mysore only, but of the greater part of India), but it is one of the most concise and accurate that has been penned. It may, therefore, be interesting to give here an extract from that historic work:— “The cattle in this country are milked by men who carry the produce home to the women; for they prepare the butter. The milk on its arrival, is immediately boiled for at least one hour; but two or three hours are reckoned better. The earthen pots, in which this is done, are in general so nasty, that after this operation no part of the produce of the dairy is tolerable to an European; and whatever they use, their own servants must prepare. The Natives never use raw milk, allsow that it has no flavour. The boiled milk, that the family has not used, is allowed to cool in the same vessel; and a little of the former day’s Tyre, or curdled milk, is added to promote its coagulation, and the acid fermentation. Next morning it has become Tyre or coagulated acid milk. From the top of each potful, five or six inches of Tyre are taken, and put into an earthen jar, where it is churned by turning round in it a split bamboo.” . . . “After half an hour’s churning some hot water is added and the operation is repeated for about half an hour more; when the butter forms. The Natives never use butter but prefer what is called Ghee not only as that keeps better but also as it has more taste and smell. In order to collect a quantity sufficient for making Ghee the butter is often kept for two or three days and in that time a warm climate renders it highly rancid. When a sufficient quantity has been collected it is melted in an earthen pot and boiled until all the water mixed with the butter has been evaporated. It is then taken from the fire. . . . It is eaten when even a year old.” Buchanan-Hamilton (Stat. Acc. Diney, 277) gives the following:—“Ohana or curd is prepared by boiling the milk, and by adding to it while hot, some acid milk, which coagulates the whole into one mass. This is put into a cloth and the whey expressed, and that it is a kind of cheese.” In his Gazetteer of Bihar and Patna (published by Montgomery Martin) Buchanan-Hamilton speaks of two distinct classes of milkmen: the one, he says, churns the milk as it comes from the cow, Indian Dairies.

Kindred Subjects.

Produce.

Boiled Preparations.

Boiled for at least One Hour.

Curdled Milk (Tyre).

Ghee.

One Year Old.

Two Classes of Milkmen.
DAIRY FARMING

and the other boils and curdles it before attempting to separate the butter. The former thus produces fresh butter and mahuya-dahi, the other boiled milk-butter and mitha dahi. To the present day Monghyr and Bhagalpur enjoy the reputation of producing high-class butter from fresh (not curdled) milk. But in India as a whole the manufacture of butter from fresh (not boiled) milk is only occasionally practised, and mostly in response to European demand. The high death-rate of Europeans from typhoid fever may to some extent be a result of their objection to Native boiled milk and boiled butter. The Natives, when they do make fresh butter, never attempt, however, to set the fresh milk aside to allow the cream to rise to the surface, since it would most certainly, under the tropical conditions, sour and be thus ruined. In fact it may be said the Natives of India do not know cream, the substance they skim from dahi being rather crudely formed butter than cream. But sometimes the boiling of milk is continued until it is reduced to a kind of extract called khuyir—a substance largely employed by the sweetmeat makers. The milk of goats, cows and buffaloes, when available, is invariably mixed before being treated in the manner above indicated.

I have given these passages from one of the most observant of Europeans who ever resided in India, not only because they are fully expressive of modern Indian practice but because they were penned long before the discoveries that in Europe have revolutionised dairy practice and knowledge and recently begun to modify Indian methods. Thus then it may very nearly be said that the milk, butter, cheese, etc., of India are all cooked, if they might not be called sterilised, articles of food.

1. MILK AND CREAM.—Composition and Properties.—It may be explained that in Upper India there are two main castes who are dairymen. These are the ghosis and the qedillas. The former have no other occupation, and sell their milk and dahi (khoya) to the halwais. The latter are cultivators as well as milkmen, but they rarely sell their produce to the halwais but to the actual consumer direct. Dutt (Mat. Med. Hind., 1900, 281-3) gives many interesting particulars regarding the properties attributed by the Hindus to the various kinds of milk and the preparations from it. He discusses cow's milk, buffalo's milk, goat's milk, ewe's milk, mare's milk, ass's milk, camel's milk and human milk. He then mentions the following preparations, of which he gives the Sanskrit and sometimes the vernacular names:—butter-milk (takra), curd-milk (dadi or dahi), whey (mastu), curd (kilataka, vern. chhenä), cream (santanikā), butter (navanita), and clarified butter (ghrita, vern. ghi),

470
MILK AND CREAM

After the buffalo and the cow, the goat is the most important milk-giving animal, but its milk is poor in butter-fat and thus not of much value in the manufacture of ghee. The sheep, while not much employed in the supply of milk, is so used in some districts of the Panjab, as for example Montgomery and in many parts of Rajputana, and the butter is made into ghee which fetches the same price as cow's butter. It is said that in Rajputana a flock of 100 sheep can be maintained at the same cost as ten buffaloes and yet the yield of milk and butter is nearly treble.

A fair amount of information has been published in recent years on the composition of Indian as compared with European milk. Leather (Agri. Leafl., 1900, No. 19, 195) says "the composition of cow's milk has been found in England to be very regular for different breeds, and to possess a relationship between the several component parts of all breeds. It is of importance to know whether these relationships hold good for Indian breeds of cows and to what extent they vary in the case of the buffalo."

"It has been found in England that (a) there exists a relationship between the solids-not fat, the fat and the specific gravity, and (b) between the proportions of proteids, lactose and mineral matter (ash), and that these relationships are constant, within certain limits, for all the several breeds." The proportions of proteids, lactose and mineral matter were found to be as 9:13:2 in English, and the same with Indian milk. "In the case of the buffalo milk, however, the relationship is different, that of the proteids being distinctly higher and that of lactose lower, than in cow's milk." Leather gives numerous tables showing the analyses of cow's and buffalo's milk (and these should be consulted); he then concludes by observing that generally it may be said:

(a) The milk of the Indian cow contains a high proportion of butterfat, varying from 4 up to 6 per cent. Buffalo's milk contains usually much more, varying from 5 or 6 per cent. up to as much as 10 per cent;

(b) The percentage of proteids (albumen and casein) usually varies in cow's milk from 3:1 up to 3:5; in buffalo's milk from 3:5 up to 4:3;

(c) The percentage of milk sugar (lactose) in the cow's milk varies from 4:4 to 5:0, and in buffalo's it is present in about the same proportion;

(d) The percentage of mineral matter in cow's and buffalo's milk varies from about 0:7 to 0:8, as it does in the English cow's milk.

Mollison (Agri. Leafl., 1895, No. 5, 53) observes:—The quantity and quality of the milk varies greatly by the nature of the food given. "The morning's milk is usually not so concentrated as the evening's milk, but on the other hand the morning yield is greater." But so constant is the composition and sp. gr. of milk that extreme variation from the standard must be accepted as denoting adulteration. The milk-sugar present in Indian milk to the extent of from 4:6 to 5:05 exists in a state of solution, and hence it very easily undergoes decomposition and is in consequence converted into lactic acid and the milk is then spoken of as sour. This fermentation at once becomes active when milk rises in temperature above 15° C. (59° F.). To ensure the preservation of milk it must therefore either be cooled below that temperature or retained at 50° C. The curdling of milk is the result of lactic fermentation, but this may be accomplished by means of organic or mineral acids or is simulated in cheese-making by the precipitation of casein by means of rennet. But rennet (the digestive agent of the stomach of a calf) has induced other changes than the mere precipitation of the casein, and its action is far greater than
that of lactic fermentation. This is the difference between sour milk and curds. But milk and cream are soured by a large number of different forms of bacteria which are communicated by the udders of the cow, the hands of the milkers, the vessels into which milked, or simply through permeating the atmosphere of the byre and the store-house. In many ways, therefore, they may be conveyed to and absorbed by the milk when kept in open vessels. The reader will find many highly important suggestions on this subject in an article recently contributed by C. Bergtheil (Agri. Journ. Ind., i., pt. iii., 233). "Milk and Cream," he observes, "are naturally ideal media for the development of organisms, so much so that a sample of cream ripe for butter-making has been found to contain as many as 1,500,000,000 bacteria per cubic centimetre, far more than those found in sewage or any other natural material which has been examined. It, therefore, becomes a matter of great industrial importance to preserve milk from harmful fermentations, particularly those occasioned by pathogenic organisms."

Sterilised Milk.—The greatest cleanliness is imperatively necessary, for even proximity to offensive smells will taint the milk. Some of the fermentative germs immediately start growing and commence the souring process, but these are instantly killed if subjected to a temperature of 50° to 75° C.; and should the milk also contain pathogenic germs (i.e. the germs of such diseases as typhoid fever) these will at the same time be destroyed. But other fermentative germs are latent and little affected by such temperatures as mentioned. In fact they are only killed either by continued boiling for some hours or by repeated heating and cooling. While left in the cool stage they are induced to assume the active condition, and are then killed by the succeeding heating. Repeated heating will thus serve the same purpose and more effectively (though more troublesome) than continued boiling, and it avoids the undesirable changes in flavour caused by prolonged boiling. When once completely deprived of the germs of its fermentation by heat, milk is described as sterilised or "pasteurised." Even if not protected it will now remain wholesome for some considerable time, but if kept in airtight vessels or bottles may be stored for months without undergoing any injurious change. The success of the Aga, Aiglarb, Allahabad, Cawnpore, Darjeeling, Jabalpur, Lucknow, Ootacamund, Poona, etc., dairy farms in supplying sterilised milk is being followed by many other institutions, so that supplies of good and safe milk may be now had in all the larger towns. The trade is a prosperous one with immense possibilities for the future.

Preserved or Condensed (Desiccated) Milk.—This is made by boiling fresh (whole) milk, to which sugar has been added, until it attains the consistency of syrup. This is called khir (khýr) and in some parts of India rabbí, but sugar is not always added. Of Bengal districts, Tippera is spoken of as producing khir of special quality. Sen, discussing Dacca, says, "The flavour of this preparation of milk depends on (a) the quantity of milk boiled at a time, (b) the care with which the milk is stirred at the time of boiling, and (c) the nature of the heat applied. (a) To obtain khir as white as possible, and possessed of the best flavour, not more than half a seer of milk should be boiled at a time. (b) All the time the milk is boiling it should be stirred with a wooden rod. Some prefer to stir with a number of rods. (c) A strong and steady heat should be applied. Tamarind wood is considered the best fuel for this purpose. Khir of an inferior quality is sometimes made from fresh butter-milk," Banerjee remarks. "In order to get the khir or thickened milk of a fine white colour, a little flour is added. In private houses arrowroot is used instead. When thick enough it is removed and allowed to cool, when it is ready for sale."
This is, therefore, a different substance from desiccated or strained dahi, although both are largely used by the sweetmeat makers. It has been recently upheld that the khir or khowa (mava) made from separated milk is as good and marketable as the khir and the butter. It has also often been urged that India might do a large trade in the production of condensed milk and in milk boiled down to powder. Sweden, with its population of five millions, is believed to produce annually and export £2,000,000 worth of preserved and dried milk, a large share of which comes to India, instead of India itself exporting these preparations of milk. Thorpe and others have pointed out that the action of sugar in desiccated milk is preservative, but for this purpose 12 per cent. of the weight of the milk must be sugar. [Of. Fleischmann, The Book of the Diary (Aikman and Wright, transl.), 1896, 282-6; Thorpe, Dict. Appl. Chem., ii., 615.]

Reputed Preservative Agents.—In this connection also reference may be made to the passage above where Buchanan-Hamilton remarks that it is very nearly the universal practice to boil the milk immediately it is drawn from the cow, goat, etc. This fact cannot be reiterated too frequently. It has been observed also that the earthen pots into which the animals are milked are often so nasty, to European taste, as to be regarded as destroying the milk. It may be explained that in many parts of India it is customary to smoke the milking-pots, but whether this is done to directly impart the smoky flavour or from the belief that it has a protective action, does not appear to have been investigated. When milk is to be carried for a distance it is placed in earthen pots with fairly large open mouths. These are swung over the shoulder by means of a bamboo, and a swift runner carries the milk to its destination. Within the mouths of such earthen or brass pots it is customary to find a few twigs or leaves—such as rice straw, date-palm leaves, twigs of Cecconius vill organis or leaves of Pedalium Murex. The milkmen affirm these prevent the milk turning sour, but it is much more likely that their action is mechanical in preventing the milk from lapping over or being churned. Cecconius and Pedalium are known to have the excretory property of thickening water, and may be added to the milk with the object of preventing the detection of water adulteration. Any one who will take the trouble to go to a railway station in the early morning and witness the arrival of Calcutta’s daily supply of milk will not be surprised at the danger of direct and accidental adulteration, but rather at the rarity of outbreaks of disease being attributed to the impurities of milk. Speaking of Bombay experience, Lisbon (Journ. Bomb. Nat. Hist. Soc., 1887, ii., 143) mentions the fact that arrowroot is employed to thicken milk which has been watered. [Of. Agri. Ldgy., 1893, No. 17, 144-5; Pharm. Journ., Lc.]

In concluding these observations on the preservation and manipulation of milk it may be added that boracic acid, carbonate of soda, carbonic acid, salicylic acid, oxygen and saltpetre, as also several other substances, are all spoken of as milk-preservatives, because they retard the action of the bacteria.

Separators.—Some few years ago (1889), at the suggestion of the Bombay Government, the Dairy Supply Company sent Mr. Howman to India in order to ascertain by trial whether the cream separator is needed in India, and whether it can be profitably utilised in the manufacture of ghi. After an extended tour in several provinces, and after having made various trials, the following conclusions were published:

1. Tak, a bye-product of ghi-making, can be prepared perfectly well from separated milk.
2. Mawa or Khowa, which consists of desiccated milk sweetened with sugar, can be made from separated milk, and the cream saved for butter or ghi.
3. As much Ghi can be made from separated cream as by the Native process.” [Agri. Ldgy., Lc. 111.]

There are many designs or patterns of separators, but the principle is the same in all. They take advantage of the fact that cream or butter-fat is lighter than milk. By centrifugal force the liquid revolving within a
cylinder at once, therefore, separates into cream in the middle and milk on the outside, and these two portions are conveyed away by separate pipes into the vessels placed for their reception. The milk can be separated immediately on its being taken from the cow. It is not required to be exposed in a large number of shallow basins; the milk as drawn from the cow may at once be placed in the separator. By a hand separator from thirty to forty gallons may be disposed of per hour. Obviously such results and advantages were of interest to every one in India, and it is no matter for surprise, therefore, that the new system attained almost immediate popularity. In June 1890 the late Mr. Ozanne, then Commissioner of Settlements and Agriculture, Bombay, obtained permission to employ Mr. Keventer, who had been Mr. Howman’s assistant, and to purchase two separators. In a remarkably short time dairies, managed on the European system, sprang into existence here and there all over India. The fact of the double produce, \(a\) butter (ghi) and \(b\) milk, from which mava could be manufactured, was sufficient justification. All the larger towns of India are now rapidly being supplied with superior butter, also with sterilised milk and cream, conveyed in sealed cans or bottles. As might have been anticipated, however, the greatest progress has been made in the Bombay Presidency where the experiment originated.

Trade in Milk.—Absolutely no information can be given regarding the internal trade in milk. Within the past few years the foreign traffic has been officially recorded. In 1902-3 the imports of condensed milk were 1,490,154 lb., valued at Rs. 4,08,251; the following year, 1903-4, they had suddenly expanded to 4,137,066 lb., valued at Rs.11,34,187; and in 1906-7 became 6,196,492 lb. and Rs. 17,68,347.

[Cf. Dutt, Mat. Med. Hind., 1900, 281-3; Leather, Europ. Dairying Ind., Agric. Ledg., 1893, No. 17; 1900, No. 19; Mollison, Milk and Milk Products, l.c. 1895, No. 5; Fleischmann, l.c. 6-159; Dairy Farms, Bengal Command Admin. Rept., 1899-1903; Collis Barry, Legal Med. Ind., 1903, 562; Meagher and Vaughan, Dairy Farming in Ind., 1904, 80-8; Imp. Gaz., l.c.; Watt, Journ. Pharm. Soc. Gt. Brit., Oct. 6, 1906.]

2. DAHI OR CURLED BOILED MILK.—The names most generally given to thickened or coagulated or specially soured boiled milk are dahi, dadhi, khoyá, mává, tyre, etc. It is usually prepared by throwing boiled and partially evaporated milk into a vessel that has contained dahi, but has not been subsequently washed. At other times a certain quantity of dahi or some other acid substance is added to the boiled milk, or a vegetable or animal rennet is employed. Sen, speaking of Dacca, observes that, “To understand the method of preparation of dadi of superior quality, we should remember that its formation depends on a fermentation of milk, and that milk undergoes a number of other fermentations besides that of dadi, and that the particular fermentation it will undergo depends on the conditions under which this takes place. It is only when the milk is kept at a certain temperature, when a given quantity of dadi of a particular degree of sourness is mixed with it, and when the extraneous germs of which the atmosphere is full are excluded from it, that the dahi fermentation takes place properly.” “A preparation of sugar, batasha and spices is sometimes added to the milk which is set to undergo the dahi fermentation.”

As a rule Muhammadans only will use animal rennet, and the vegetable rennets such as *Withania coagulans* are not very widely known. Hence dahi differs from curd, as prepared in Europe, in being practically sour.
boiled milk, the fermenting agent being added when it is nearly cold. And the milk, being boiled immediately as obtained from the cow, contains all its fat or butter. In this form it is called sara, and if kept hot may be accumulated for some days till sufficient has been collected to form it into dahi. This, as Banerjei explains, is therefore basa-dahi. If butter be removed from the dahi by churning, the liquid that remains is butter-milk or ghod-dahi (máthá, lassi). But a top layer of the dahi may be simply skimmed off and used in the manufacture of butter. Hence there may be whole-milk dahi (basa-dahi), skimmed-milk dahi, as well as butter-milk (ghod-dahi). Dahi in the liquid state is largely consumed; hence its whey (mastu) contains all the milk-sugar and its curd (chhena) may or may not have embedded in it all the butter-fat. Whole-milk dahi thus contains too much fat to be made into cheese. It is, in fact, cream-cheese, and some localities such as Bandel near Hugli and Dacca in Eastern Bengal are famous for their cream-cheeses. When curds are intended to be prepared the acid or rennet is added to the hot milk. This is called dud-chhena, but dahi is often heated and allowed to cool in order to prepare imitation curds known as dahi-chhena. The whey (as it may be called) of dahi is separated by pressing the curd within a clean cloth, but if it be completely dried the chhena crumbles to a powder. All qualities of dahi and also of chhena are largely used in cookery and with khir constitute the chief ingredients of sweetmeats, which may thus be regarded as possessing all the elements of food and are not merely luxuries like the sweetmeats of Europe.

Trade.—The trade in compressed (or partially compressed) dahi is very extensive, and within a radius around the chief cities immense quantities are daily conveyed by rail and road from the country to the towns, the curd being wrapped in damp cloths and deposited in open baskets. Dahi and ghi are therefore the products of greatest value in Indian dairy farming. Although every resident in India will readily admit that the traffic must be enormous, no sort of computation is possible of the total production of either the one or the other product.

But in conclusion it may be pointed out that the fermentative agents concerned in the coagulation of sour milk (not boiled), of boiled milk (dahi), of soured cream and of the various forms of curds (chhena), are probably all different and that success in the production of the manufactures named, to a far greater extent than as yet appreciated, depends on the use of the correct agent for each fermentation. [Cf. Sen, l.c. Dacca, 1889, 54-7; Banerjei, Agri. Cuttack, 1893, 128-30.]

3. BUTTER.—Of India it may be said that two kinds of butter are known:—nani or the butter of fresh or only scalded milk, and makhan or the butter of soured milk (dahi). The former is held to be inferior and more difficult to prepare than the latter, but valued because the butter-milk obtained may be sold as dahi, and khir may even be made from it. Fresh milk is hardly ever set on one side to allow of the rise of the butter, and in consequence cream (shar) can hardly be said to be known in India. The article sold as cream (except that obtained by the modern cream separators) would more correctly be described as liquid (boiled) butter mixed with dahi. But the so-called Indian cream (as with the cream of Europe) is set aside to mature or ripen (as it is called), and when sufficient has been collected and matured it is churned and made into butter. Terry (chaplain to Sir Thomas Roe) (Voy. E. Ind. (ed. Havers), 1665, 359)

475
DAIRY FARMING

Butter

observes that "butter is obtained by beating their cream into a substance like unto a thick oyl, for in that hot climate they can never make it hard, which though soft is very sweet and good." Fresh cream (that is to say whole milk) yields a smaller quantity and an inferior flavoured butter than matured cream. The peculiar flavour of butter is, in fact, very often a question of the method and degree of ripening that has been pursued. Moreover the best butter-makers lay stress on the necessity for the cream being repeatedly stirred during the ripening process. The time required depends on the temperature of the atmosphere. It will be sufficiently ripe in from 12 to 24 hours if the temperature average from 60° to 70° F., according to Fleischmann, but 90° F. according to Meagher and Vaughan; below 60° it will take 48 hours, but cream should never be allowed to fall below 55° F.

The study of the exact germs concerned in the production of recognised flavours of butter is by no means complete, but is engaging the attention of experts. In the near future pure cultures for the maturing of cream may be demanded but the subject is at present not understood, and both in Europe and in India empirical rules prevail. Cream is not pure butter-fat, but is a mixture of that substance floating in milk. The milk sours, the lactic acid precipitates the casein, and thus forms butter-milk. Butter, however, always retains some proportion of the sour curd mechanically mixed with it, and upon this depends the souring of the butter and its rancid flavour.

Churning.—Butter consists of the consolidated oil globules present in the milk. These are collected together and compacted into butter by various contrivances that may be called churns. As already fully explained, a small proportion only of butter is made in India from the milk as it comes from the cow. There is very little or no cream-butter made by the ordinary Indian milkmen, for the reason that the climate will not allow of the milk being set on one side until the cream rises to the surface. Recently, however, cream separators have been introduced at the larger centres and cream-butter has in consequence to a certain extent come into use. The bulk of the Indian butter is of a kind practically unknown to Europe, namely boiled soured-milk butter. It has been estimated that Indian milk yields butter at the rate of one pound to every 14 pints of best cow's milk or 9 pints of buffalo's milk; with separators very much smaller quantities will, however, suffice. The amount of butter nowadays made from separated cream is fairly large, and Bombay and Aligarh might be spoken of as the centres of the trade.

In The Agricultural Ledger (1895, No. 23) I have described the churns most commonly met with in India. The simplest contrivance of all is a wide-mouthed bottle or bamboo joint into which a quantity of milk is placed and shaken in the hand until the butter forms. Methods of preserving milk and of preparing from it special articles of human diet, that would wholly or partially withstand climatic tendencies, must have early become axioms of household economy in India. But in the consequent development of this knowledge it would seem that the introduction within the liquid of a contrivance intended more fully to agitate it, than could be attained by shaking in a bottle, would be a natural and simple one, which might fairly well have suggested itself spontaneously to the most remote and diverse races. The first conception of this would most probably be a beater worked by the hand. The step from that to a rotatory whisk would be a direct and necessary one. But a vertical plunging action might not so readily suggest itself. This is the position in India. The rotatory churn is common, the vertical rare, though both forms exist. Whether or not the Aryans introduced the rotatory churn, the one most generally used throughout India,
may be left as a question for ethnology to solve. What can be affirmed of the people of India to-day is that the principle of that churn is known and practised all over the country, and among Aryan as well as non-Aryan races. The most frequent name for the churn is mathani (from matha to stir or churn). It becomes mahab, mahab, mathan, matka, madhani, mahaindi, matki, mathi, math, madhuma, mathu, etc. But every part of the contrivance has its own special name, and sometimes the complete apparatus takes the name of the agitator, at other times of the vessel in which the milk is churned. The simplest of all rotatory churns is that used by the ladies of the upper classes: it consists of a shallow basin or plate in which the milk is placed and a whisk made to rotate on the surface of the milk by its handle being rubbed between the hands. Vertical churns are usually made of bamboo and are most frequently used by the hill tribes.

The Art of Churning.—Great skill is required in judging when the churning is complete. If stopped too soon much may be lost in the butter-milk; if too long protracted the butter may become greasy. The almost universal Indian practice of adding hot water, during the middle of the churning process, prevailed in some parts of Europe also, but it is now much condemned by scientific writers. [Cf. Fleischmann, Lc. 188.] After straining to remove the butter-milk the butter is washed once or twice in order to remove the curd and other impurities, as also as much of the butter-milk as possible. The butter is worked up, squeezed and beaten until it attains the desired consistency, and is then ready for the market. Water is, however, one of the chief adulterants of butter. As much as 25 per cent. may be present, though good-quality butter may sometimes contain as much as 10 to 15 per cent. As already observed, the presence of butter-milk impairs the lasting quality of the butter, and by turning sour makes it rancid. The melting-point of butter is a feature of some importance as it affords a means of readily detecting impurities. Indian butter, curiously enough, has a higher melting-point than European, a fact urged in favour of its great suitability to India. The food given to milk-cows also affects the melting-point of the butter. Cotton-seed, pulse meal, pea straw, ground-nut cake, etc., produce firm butter, whilst most other oilcakes soften it or make greasy butter. The cream from buffalo milk can be churned at a higher temperature than that of the cow and yet produce equally firm butter, and hence one advantage claimed for the churning of mixed cow and buffalo milk. If the mixture be thought to show too strongly the pale (bleached) colour of the buffalo or sheep butter, the colouring ingredient used should be added before churning. The best substance for this purpose is the pigment of the seeds of Arnott's (Bixa Orellana). Three ounces of the seeds soaked in 8 oz. olive oil, then strained, makes a good staining preparation. One teaspoonful to 40 lb. buffalo milk will usually suffice.

Trade in Butter.—Very little of any importance can be furnished regarding India's trade in butter. The article is in daily use by the well-to-do of all castes and communities, but, India being an agricultural country, the supply is home-made. As an indication of the progress in modern dairy farming, it may be mentioned that in the Administration Report on Dairy Farms in the Bengal Command for 1901-2 it is stated that 101,402 lb. of butter, 1,119,216 of whole milk, and 182,799 lb. of cream were produced and disposed of at the dairy farms of Allahabad, Jhabalpur, Lucknow, Cawnpore and Agra for that year.

The returns of foreign transactions give, however, certain particulars of value. The imports of butter were in 1875-6, 76,658 lb., valued at Rs. 65,433: in 1885-6, 184,183 lb., valued at Rs. 1,65,335; in 1895-6,
211,516 lb., valued at Rs. 2,43,439; in 1903-4, 277,112 lb., valued at Rs. 3,16,536; in 1905-6, 782,738 lb., valued at Rs. 3,12,510; and in 1906-7, 244,577 lb., valued at Rs. 2,66,636. To what extent this may be margarine is not at present known. The exports of Indian butter appear to have only begun to be separately returned in official statistics about the year 1890-1, when 1,118 lb., valued at Rs. 472, were sent to China and the Straits Settlements. In 1895-6 the exports were 152,462 lb., valued at Rs. 94,780; in 1905-6 they were 307,765 lb., valued at Rs. 2,16,614; and in 1906-7, 298,344 lb., valued at Rs. 2,09,292. It would thus appear that the export traffic is steadily improving. It goes almost exclusively from Bombay, and the countries that take the greater proportion of the Indian butter are Ceylon and Aden, and after these British East Africa, followed by the United Kingdom. This improved export trade is apparently the direct result of the recent endeavour to establish dairy farming on modern lines.

[Cf. Ovington, Voy. to Suratt, 1689, 324; Terry, Voy. E. Ind. (ed. 1777), 133, 198; Paulus Euginoeta (Adams, transl.), 1847, iii., 74-6; Sen, Lc. 56-7; Banerjea, Lc. 129-30; Mollison, Lc. 59-63; Fleischmann, Lc. 106-99; Meagher and Vaughan, Lc. 93-108; Imp. Gaz., Lc.]

4. GHI (GHEE) OR CLARIFIED BUTTER.—Manipulation.—It may be said that the three great products of milk in India are khir, dahi and ghi. The first two have already been disposed of. It is perhaps hardly necessary to describe the preparation of ghi (neyi) in great detail, since so much has already been said that has a direct bearing on the subject. Ghi is clarified butter. That is to say the butter is heated for about twelve hours or until the greater part of its moisture is evaporated. An oil is at the same time formed that rises to the surface, and the refuse (mostly casein) forms below as a sediment. Too much heating is said, however, to cause the ghi to assume an acid taste, while imperfect heating renders it liable to putrefaction. Great skill is thus required, but the ghi sold in the market has usually been undercooked owing to the loss in weight which takes place when fully cooked. Butter loses about 25 per cent. in the process of clarification. The yield of ghi from the butter of the buffalo is higher than from that of the cow. The boiling butter is allowed to be partially cooled, when the ghi may be decanted from the top of the sediment. The ordinary ghi of the bazars is principally derived from buffalo milk. One quart of buffalo milk yields about 3 oz. of ghi, while the same quantity of cow milk may only afford about half that quantity, or with extra fine qualities, three-quarters of the ghi mentioned. Ghi from goat milk is very inferior owing to the disagreeable odour it possesses, while that of sheep milk is often spoken of as superior even to buffalo butter.

Old Ghi.

Old and New Ghi.—So much has been written on the subject of clarified butter or ghi that a special volume might have to be written before even the more important historic and trade facts had been exemplified satisfactorily. Ghi is mentioned in some of the most ancient of the classic works of the Hindus. It is the ghrita of Sanskrit authors, and according to ancient medical opinion the ghi of cow milk is superior to that of buffalo or goat. As manifesting the antiquity of the knowledge in this article, it may be mentioned that in the Periplus (80 A.D., McCrindle, transl., 12, 113) ghi is spoken of as exported from India. It may thus be said to have been closely associated with the life and social customs of the Aryan races, but curiously enough has never been of much value with the people of Mongolian blood. Here and there all over India, especially along its
ADULTERATION

mountainous frontier, certain races, such as the Kashmiris, are said not to eat ghi (Lawrence, Valley of Kashmir, 339). In the Ain-i-Akbari (Blochmann, transl.), 130 mention is made of the allowance to the State elephants. [Cf. also Jahangir, Memoirs (Price, transl.), 63, 71, etc.]

If carefully enclosed in skins while still hot it may be preserved for many years without requiring the aid of salt or other preservatives. It is somewhat significant, in fact, that medical writers should speak of purana ghrita (old ghi) as being superior to fresh. Dutt, for example, observes that ghi ten years old has a strong pungent taste and is of the colour of lac. "The longer this butter is kept the more efficacious it is said to prove as an external application. Clarified butter a hundred years old is often heard of. The richer Natives always have a stock of old ghrita of this description which they preserve with care for their own use as well as for distribution to their poorer neighbours." Fryer (New Acc. E. Ind. and Pers., 1672-81, 137), in his description of Surat and a journey into the Deccan, speaks of "the granaries hewed out of stone" and of "several tanks filled with butter of 400 years standing, prized by the Gentiles as high as gold, prevalent in Old Aches and Sore Eyes, one of which was opened for my sake, and a present made me of its black stinking and viscous Balsam." Butter preserved in skins has been known to remain for many years without deteriorating very materially. It usually, however, dries and becomes almost like wax instead of changing colour and assuming the condition of the purana ghrita or medicinal ghi of the Hindus and the rohan of Persian travellers.

Food.—Ghi has been for many centuries at least an important article of food in India. Linschoten and most of the early travellers allude to its extensive employment in all forms of cookery. It is, in fact, used for all purposes to which butter is put in Europe—such as the cooking of meat, fish, vegetables, curries, rice, etc., or utilised in the preparation of sweetmeats, and is also eaten uncooked with bread and rice. With the poor it is a luxury for feast days, and in everyday life its place is taken by sweet vegetable oils.

Adulteration.—The chief articles used in the adulteration of ghi are vegetable oils such as cocoa-nut, ground-nut, cotton, safflower, poppy, sesameum, niger and kokam. These are all harmless enough, though cheaper than ghi; but injurious oils are also used, especially mahua, Salvadora (kakhan) and castor-oil. Other animal fats, especially mutton, are largely utilised. Starches, such as rice, baija, plantains, potatoes and yams, are frequently resorted to in order to thicken oily compositions. Impure or adulterated ghi is also often remade with milk or curd, to render detection difficult. The simplest method of ascertaining adulteration, and to purify the ghi at the same time, is to boil a given quantity, and when it is in a state of complete ebullition to dash cold water on it. The oil will rise to the surface and part from its admixtures. One of the most valuable papers on the adulteration of ghi is that written by Mr. Shroff, who states that the Bombay ghi trade is in the hands of a dozen merchants, and that adulteration is effected, not by the dairymen, but by the traders. The fats used are often most offensive and deleterious substances, at times even obtained from the carcases of diseased animals. Numerous complaints have been made and even legal proceedings recently taken regarding the adulteration of ghi. In consequence the necessity for protecting the poor and helpless has been urged as justifying special legislation.
DAIRY FARMING

Ghi

Packing.—Formerly all ghi was packed in earthen jars (matkas), or for transport to a distance in leathern cases (kuppas), but in recent years old kerosene-oil tins or specially made tins have been employed.

Production and Consumption.—The chief ghi-producing tracts are the United Provinces, Bengal, Rajputana, Central India, and the Panjab. It has been estimated that about one-fourth of the total population of India use 8 lb. per head per annum. Assuming these figures to be correct, this would represent a consumption of about 300,000 tons a year, or at a valuation of £45 a ton, say 13½ million pounds sterling. There are no data by which to verify these estimates, but as they stand they are suggestive of India’s necessities in this direction.

Trade in Ghi.—Prices.—No doubt by far the greater proportion of the ghi produced in India is consumed locally, and never appears either in the trade returns of internal nor of external traffic. It has been ascertained that the retail price of superior ghi ranges from 4d. to 1s. a pound. In the statement of Prices and Wages published annually by the Government of India, particulars are given of the prices of ghi in certain localities of Western India since 1855. These would seem to show ghi selling at a lower price than the figures just mentioned, but the difference between pure first-class and adulterated lower grade ghi is such as to render averages misleading. Still, the official returns as they stand manifest a considerable enhancement of price. Thus the average for all the Bombay centres in the quinquennial period of 1855–60 was 19·19 rupees per maund, and in 1903, Rs. 35·32; in Sind, Rs. 17·12, and in 1903, Rs. 33·28; in Central India and Rajputana, Rs. 24·3, and in 1903, Rs. 28·38. But taking the quinquennial average of 1871–5 as 100, Bombay is now 112; Sind 124; and Rajputana and Central India 110. In a further series of tables, Prices and Wages gives returns of the wholesale rates of ghi. These, for the year 1903 (and reduced for purpose of comparison to rupees and decimals of rupees per maund), would be as follows (in sequence of price):—Bengal, Rs. 34·3; Mysore, Rs. 34·1; Sind, Rs. 32·3; Madras, Rs. 31·4; Panjab, Rs. 30·6; Berar, Rs. 30·4; United Provinces, Rs. 29·9; Central Provinces, Rs. 28·8; and Rajputana, Rs. 27·8. In a still further series of tables the prices of ghi are shown for selected centres such as Calcutta, Benares, Allahabad, Lucknow, Bareli, Cawnpore, Meerut, Agra, Ambala, Lahore, Rawalpindi, Multan and Peshawar during the years 1875–6 to 1902–3. These are divided into buffalo ghi, cow ghi, and each of these again subdivided into 1st sort and 2nd sort. But the provincial averages just given approximate very closely (as the mean between all four classes in each centre), so that it is not necessary to furnish other estimates.

Internal Trade.—The total internal trade in ghi, as manifested by the railway returns, shows certain interesting peculiarities. The chief exporting provinces are the United Provinces, Rajputana and Central India, the Central Provinces, Madras and Bombay (enumerated in order of importance). But it is significant that the exports of the United Provinces and of the Central Provinces have manifested extreme fluctuations for some years past. Thus from the United Provinces the exports in 1899–1900 were 236,718 cwt.; in 1902–3, 161,670 cwt.; in 1903–4, 140,617 cwt.; and in 1906–7, 164,222 cwt. The exports of the Central Provinces manifest a decline; thus in 1899–1900 they were 86,187 cwt.; in 1903–4, 63,079 cwt.; and in 1906–7, 42,665 cwt. So also the exports of

TRADE IN GHI
Rajputana and Central India have shown corresponding fluctuations. In 1899-1900 they were 63,736 cwt.; in 1902-3, 151,451 cwt.; in 1903-4, 130,296 cwt.; and in 1906-7, 88,035 cwt. An expanding proportion of these Central India and Rajputana exports are consigned to the United Provinces, thus making up apparently the deficiencies of these provinces. A large percentage of the total exports are, however, consigned mainly to the port town of Calcutta, followed by Bombay, and appear again in the foreign exports from these towns.

Turning now to further provincial details, mainly IMPORTS: Assam, with its great herds of buffaloes, exports no ghi but draws upon Calcutta and the Province of Bengal for about 9,000 to 31,000 cwt. Bengal Province drains its foreign supply chiefly from the town of Calcutta. The United Provinces, as already said, import largely from Rajputana and Central India. The Panjáb annually exchanges about the same amount, namely from 11,000 to 34,000 cwt. Sind buys largely from Central India and Rajputana and Bombay, a quantity varying from 29,000 to 50,000 cwt. The Central Provinces are self-supporting, since they practically import little ghi but export a large amount. The traffic to and from Bombay Presidency is subject to extreme fluctuations. The imports in 1900-1 were 121,257 cwt.; in 1903-4, 10,376 cwt.; and in 1906-7, 10,348 cwt. The exports, on the other hand, were in 1900-1, 16,134 cwt.; in 1903-4, 54,157 cwt.; and in 1906-7, 97,166 cwt. Bihar takes little or no part in the traffic in ghi, but its imports are double those of its exports. Madras Presidency is self-supporting, since it imports very little, but exports very largely to its own ports and to Mysore and Bengal. It has already been observed that Rajputana and Central India export very largely, chiefly to the United Provinces, Sind, Bombay and the Panjáb, in the order named, but in years of famine or scarcity these States also import. Lastly, it is significant that Mysore has its herds of fine cattle exports no ghi to speak of, but is a fairly large receiving centre, the imports averaging about 14,000 cwt. derived from Coimbatore district in Madras.

The most noticeable feature of the Coasting Trade is the traffic, chiefly from Bengal (followed by Madras), to Burma, which in 1905-6 was valued at Rs. 17,01,609. [See Sesamum, p. 986.]

Trans-frontier Trade.—A fairly large quantity of ghi is brought across the land frontiers of India. The imports and exports by these routes during the years 1902-7 were as follows:

<table>
<thead>
<tr>
<th>Year</th>
<th>1902-3</th>
<th>1903-4</th>
<th>1904-5</th>
<th>1905-6</th>
<th>1906-7</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMPORTS</td>
<td>[Cwt.]</td>
<td>[Rs.]</td>
<td>[Cwt.]</td>
<td>[Rs.]</td>
<td>[Cwt.]</td>
</tr>
<tr>
<td>130,638</td>
<td>53,08,689</td>
<td>164,262</td>
<td>64,05,129</td>
<td>165,463</td>
<td>71,93,973</td>
</tr>
<tr>
<td>EXPORTS</td>
<td>[Cwt.]</td>
<td>[Rs.]</td>
<td>[Cwt.]</td>
<td>[Rs.]</td>
<td>[Cwt.]</td>
</tr>
<tr>
<td>1,588</td>
<td>90,043</td>
<td>2,135</td>
<td>1,20,682</td>
<td>1,49,448</td>
<td>1,37,773</td>
</tr>
</tbody>
</table>

The import traffic is thus exceedingly valuable, and Kashmir stands unmistakably first. Lawrence observes, "It is by far the most important article of the export trade of Kashmir." The supply of ghi sent to India from that State was in 1906-7, 74,096 cwt. valued at Rs. 36,235,577. This may fairly be called a prosperous trade, since the figures just mentioned are nearly four times those of twenty years previously. Then come Dir, Swat and Bajaur, which furnished India with 50,544 cwt., valued at
DAIRY FARMING
Trade in Ghi

ANIMAL FATS AND OILS

Nepal.
Rs. 23,57,459; and lastly Nepal sent 42,765 cwt., valued at Rs. 22,09,334.
The Kashmir ghi goes to the N.W. Frontier Province and the Panjab;
the Dir, Swat and Bajaur also into the N.W. Frontier Province; and
the Nepal into the United Provinces and Bengal.
The re-exports of foreign ghi are unimportant, but have ranged from
a valuation of Rs. 1,037 up to Rs. 2,07,185.

Foreign.

Foreign Trade.—The Imports being the least important may be disposed
of first. This traffic is subject to extreme and sudden fluctuations. In
1876 the imports of ghi were valued at Rs. 2,76,395; in 1880–1, Rs. 16,486;
in 1886–7, Rs. 7,03,432; in 1890–1, Rs. 4,13,299; in 1896–7, Rs. 4,28,432;
in 1900–1, Rs. 10,71,024; in 1901–2, Rs. 4,17,476; in 1902–3 they
were 21,370 lb., valued at Rs. 8,515; in 1903–4, 127,868 lb., valued at
Rs. 50,722; and in 1906–7, 492,493 lb., valued at Rs. 2,13,861. The supply
comes from Mekran and Somniani, Turkey-in-Asia, the neighbouring
pastoral tracts of Southern Baluchistan, and recently from East Africa.
It is consigned mainly to Sind and Bombay.

Exports.

Turning now to Exports, these for many years past have manifested a
continuous expansion. In 1876–7 they were 1,004,681 lb., valued at
Rs. 3,57,250. Twenty years later (1896–7) the figures were 3,672,349 lb.,
valued at Rs. 15,00,990, and during recent years for which returns are
available they were in 1902–3, 6,418,045 lb., valued at Rs. 27,26,750; in
1903–4, 5,390,865 lb., valued at Rs. 22,90,825; in 1904–5, 6,097,917 lb.,
valued at Rs. 26,67,350; and in 1906–7, 4,884,252 lb., valued at
Rs. 22,65,443. By far the most important centre is Calcutta, followed
by Bombay, and the receiving countries may be said to be the Straits
Settlements, Natal, Aden, Ceylon, Hongkong, Mauritius, British East
Africa, Aden, etc. An effort was made some few years ago to foster the
traffic in Indian produce sent to Australia, and ghi at that time attracted
considerable attention. But the trade cannot be said to have materially
expanded.

Other Animal Fats.—In conclusion it may be desirable to extend
this brief review of the traffic in ghi so as to include all animal oils and
fats, since these are often closely associated with ghi. The Imports are
Animal Oils, Butter, Ghi and Tallow. The traffic in the last mentioned
is a large and prosperous one. In 1876–7 the imports of Tallow were
305,088 lb., valued at Rs. 62,671; in 1903–4, 2,352,224 lb., valued at
Rs. 5,93,127; and in 1906–7, 4,125,744 lb., valued at Rs. 9,14,884. Next
in interest are the Animal Oils, which in 1876–7 were 3,246 gallons, valued
at Rs. 10,664; in 1903–4 were 389,256 gallons, valued at Rs. 4,45,217;
and in 1906–7, 584,428 gallons, valued at Rs. 5,70,655. The lard and
animal oils to some extent doubtless manifest the demands of the soap and
and candle works of India. The butter trade has been already noticed (p. 477),
and need not be further mentioned. It is not known to what extent the
imports of butter may in reality be margarine. But by adding the tallow,
animal oils and butter to the ghi, the total imports of these substances
were in 1903–4 valued at Rs. 14,05,602, and in 1906–7, Rs. 19,65,986.
Similarly the Exports may be briefly discussed. These are Animal Oils,
Ghi, Lard and Tallow. In 1903–4 these were valued collectively at
Rs. 25,52,340 (ghi being, as will be seen from the figures above, by far
the most important article); in 1905–6 the corresponding total was
Rs. 30,75,319; and in 1906–7, Rs. 23,84,765.

[Cf. Institutes of Manu, ii., 29; iii., 274; iv., 39, 233; v., 37, 144; viii., 121]

482
CHEESE

DAIRY FARMING

Cheese

5. CHEESE.—Cheese as known in Europe can hardly be said to be made in India (except at the modern dairy farms under European supervision). Curd or chhena is prepared by boiling milk and throwing into it, while still very hot, some acid milk or other acid substance (such as lime- or tamarind-juice) or a vegetable rennet; after a time it in consequence coagulates. The curdled milk is put into a cloth and the whey (masut) expressed or drained away, the result being a kind of soft cheese (often called in India cream cheese). Many localities are noted for their cream cheeses, such as Hughli, Dacca, etc. Sen gives the following account of the Panakona, Sylhet, or so-called Dacca cheeses:—"As soon as the milk is taken from the buffalo, it is put in an earthen vessel and rennet is mixed with it at the rate of a seer to a maund of milk. About two hours after the curd is broken with the hand and put in small quantities in shallow bamboo baskets known as dalas. Next day it is mixed with a little salt and repeatedly cut across with a knife, and at the same time the knife is passed through it the curd is pressed with the palm of the hand. This process is repeated for three consecutive days, and altogether 2½ seers of salt are used to a maund of curd. The cheese is then left to cure. This cheese is sent to Dacca, whence it is exported as Dacca cheese. A maund of milk gives 10 seers of cheese. The price of buffalo milk here is from Rs. 3–8 to Rs. 4 a maund. The whey is kept aside for a day or two, when the oily matter floating over it is removed and made into ghi, and the rest of it thrown away."

Lawrence says the Gujarats and Pathans of Lolab make a kind of cheese they call milk-bread. He mentions an experiment in the manufacture of European cheese, and affirms that Kashmir might supply the British troops with good cheese and butter. At the Dairy Farms of Poona and Aligarh excellent cheddar cheeses have been produced (Agri. Ledg., 1895, No. 5, 64). For cheese made from peas, consult Pogson (Man. of Agri. Ind., 1883, 186); also see Glycine (p. 565). The following are the better known Indian vegetable rennets:—Withania coagulans, Crotalaria Burhia, Leucas Cephalotes, Rhazya stricta, Streblus asper, and apparently also Carthamus tinctorius.

Trade in Cheese.—The Imports of cheese are much larger than might at first sight be realised, and seem on the whole to be increasing. In 1899–1900 they stood at 872,296 lb., valued at Rs. 5,34,278; in 1902–3, 1,123,260 lb. and Rs. 6,18,577; in 1903–4 they had slightly decreased to 966,492 lb. and Rs. 5,34,158; but rose again in 1904–5 to 1,228,707 lb. and Rs. 6,29,274, and in 1906–7 to 1,275,111 and Rs. 7,04,487. Bombay and Bengal each receive on an average cheese to the value of 1½ lakhs. Sind takes about a lakh and Madras and Burma each half a lakh. About two-thirds of this supply is drawn from the United Kingdom, the balance from Holland, Belgium, Italy and Australia. The Exports

D.E.F., ii., 265; iii., 491-8.

Cream Cheese.

Chief Centres.

Method of Manufacture.

Kashmir.
Poona and Aligarh.

Imports.

United Kingdom.
of Indian cheese are at the present unimportant. In 1903-4 they were 4,980 lb., valued at Rs. 2,625, and in 1906-7, 4,543 lb., valued at Rs. 2,784.

[Cf. Montgomery Martin, Hist. E. Ind., ii., 942-3; Mad. Exp. Farm. Rep., 1883, 76; Sen, l.c. 57; Mollison, l.c. 63-8; Lawrence, Valley of Kashmir, 1895, 360; Collis Barry, Legal Med. Ind., 1903, 562.]

1. **D. assamica**, Benth., is the medowea of the tea planters (Watt and Mann, Pests and Blights of the Tea Plant, 1903, 141). 2. **D. cultrata**, Graham, yendik or yandik, is a fair-sized tree common in deciduous forests throughout Burma. It is said to exude a red resin, to furnish a useful oil, and to be utilised by the Karenis for propagating the lac-insect. The heart-wood is blackish and ebon-like, often streaked with red. It is exceedingly durable, and is used for making wheels, agricultural implements, spear-handles, etc., and sometimes for carving.

3. **D. lanceolata**, Linn., f. is the takoli, bituba, chakeminda, angaria, piri, chapot sira, genyri, dandou, tanoom, nal valanga, pedda soppa, etc. A deciduous tree of the Sub-Himalayan forests from the Jumna eastward, ascending the hills to 2,500 feet; also in Central and South India and Bombay. An oil is expressed from the seeds, and the leaves and bark are reported to have medicinal properties. The timber is said to be useful in building.

4. **D. Oliveri**, Dambie, is the zamakan or tabauk tree of the engaing forests of Upper Burma (Wuntho and Bhamo). It attains a height of about 60 feet and girth of 4 to 6 feet. The wood is handsome, reddish, hard, close-grained, and takes a fine polish; it is very like some of the South American rosewoods. It is largely used for axe-handles, dogcart shafts and other purposes for which great strength is required and is employed in the Royal Indian Marine dockyard at Mandalay for bushing to propellor-shafts, in place of Lignum-vitae (Gummaim officinale).

5. **D. latifolia**, Roxb.; Prain, l.c. 80-1, pl. 62; Thurston, Ind. For., 1894, xx., app.; Koorders, in Ind. For., 1894, xx., 282; Watt, Ind. Art at Delhi, 1903, 100, 126-34. The Blackwood or Rosewood of Southern India, siusal (or sweet-sal, white sal), shiamam, sisu, sissu, satisiar, rute, ruzeap, tali, kalarukh, iti jiyeni, eruwadi, yerugudo, jyandi, bii, thodagatti, etc. A deciduous tree fairly plentiful from the submontane forests of Nepal, Sikhim to Chota Nagpur, Oudh, the Central Provinces, Central and Western India to Southern India. It attains its greatest size in the Western Ghats, south to Wynaad and Travancore, and ascends the hills to altitudes of 3,500 feet. Gamble (l.c. 250) says it is found in dry forests with teak and bamboo, as well as in moist evergreen jungles. It may reach a height of 80 feet and a girth of 12 to 15 feet, but it is of slow growth, especially at first. It is easily propagated by seed and is readily self-sown. The wood weighs from 50 to 66 lb. per cubic foot, and sinks in water before being seasoned; it has a fine handsome grain, and is exported from the forests of Kanara, Malabar and Travancore to Bombay, Kathiawar, Kach, Karachi, London, Havre, Hamburg and Chinese ports. The planks when not well seasoned have a tendency to split longitudinally.

In India it is extensively used for furniture, cabinet-work, knees of vessels.
tree with tea planters of Dehra Dun. The seed on germinating at once makes a great length of root compared to its growth above ground, a circumstance that greatly minimises the chance of its being swept away when spontaneous germination takes place within the sandy and stony beds of rivers.

Propagations.

Sissoo coppices well and reproduces itself freely from suckers. Artificially it is best grown from seed deposited in suitable positions, because transplantation is sometimes difficult and the young trees have to be protected till fairly established. It grows most luxuriantly on low-lying sandy tracts and has been successfully raised on irrigated lands, e.g. at Changa Manga in the Panjāb, at Shahdera near Lahore, etc. But it is reputed that the timber of trees raised under irrigation is of poor quality and subject to serious damage by fungi. When young the growth of *sissoo* is very quick; it is said to attain 2½ feet of girth in twelve years, but as it gets older its growth gets slower. The full height of a tree is about 60 feet or so, and in girth it is rarely more than 6 feet. It is very successfully grown in Sind, and is said to be the best hardwood of the Panjāb.

Uses.

The wood is very durable, seasons well and does not warp or split. It is highly esteemed for all purposes where strength and elasticity are required, as, for example, in agricultural implements, wheelwrights' work, frames of carriages, boat-building, etc. At one time it was extensively employed for gun-carriages, but owing to the limited supply of the timber it is now very little used for that purpose. It is one of the finest timbers in India for furniture and wood-carving, and is in regular demand all over the North of India. In Upper India the *shisham* wood (*D. Sissoo*) replaces very largely the rosewood (*D. latifolia*) of Western and Southern India. It attains its position of greatest importance in the United Provinces, the Central Provinces and the Panjāb, being replaced on the north by *deodar* and to the south by *söl* and rosewood. The wood-carving of Saharanpur, Farakhabad, Lucknow and Nagpur and the inlaid work of Chintoi, Hoshiarpur, Jallandhar and Mainpuri are largely on *shisham*. In Rajputana also, this wood is to a considerable extent employed by the wood-carvers, but for particulars of the methods of treatment and styles of carving the reader should consult *Indian Art at Delhi*, 1903 (103, 108-9).

Owing to the fact that the *sissoo* very rarely grows straight, the timber is not of much use for beams though it is in much demand for knees of boats. It has been successfully tried for railway-sleepers, is an excellent fuel and makes very good charcoal, but it is too expensive to be utilised for these purposes. The wood is said to yield an empyreumatic medicinal oil, and the rasplings of the wood are official, being regarded as alternative. Near towns the tree is largely lopped for fodder and the fallen leaves collected and valued as fuel by the sweet-meat makers.

D.P., iii., 19-28.

Nepal Paper.

Daphne, Linn.; Fl. Br. Ind., v., 193-4; Collett, Fl. Sim., 1902, 435; Gamble, Man. Ind. Timbs., 577; Thymelaceae.

There are two or three shrubs of economic value which belong to this genus:—1. *D. cannabina*, Wall., is the most important and may be spoken of as one of the best Nepalese Paper Plants. It occurs on the temperate Himalaya from Chamba to Bhutan, at altitudes of 3,000 to 8,000 feet. It is the *sebura*, *seburosa*, *satpura*, *dunkotah kaghuti*, *dhak chamboi*, *chamboi*, *bura*, *nighi*, *júnak*, etc. 2. *D. involucrata*, Wall., is the *chota arīlī* and is met with in Sikkim, the Khasia hills and Tenaesserim, and in the countries where at all abundant it is used similarly to *D. kannabina*. 3. *D. Mezerium*, Linn., is not indigenous to India, but is often mentioned by Indian medical writers and is perhaps imported and sold by the drug dealers. 4. *D. oleoides*, Schrè, is a small plant met with in the Western Himalaya from Garhwal to Afghanistan, etc. At the best known by the following names—*kūtūlī*, *kanthan*, *gandālān* (*gandaλina*), *lāghuma*, *pech*, *pīrka būtia*, etc. The roots are boiled and given internally as a purgative; the bark and leaves are also said to be used medicinally; the berries are reputed to induce nausea, and according to Brandis, a spirit is distilled from them in the Sutlej valley. It is just possible, therefore, that this may be the *Mezerium* of Indian medical writers. It is commonly reported that camels will not eat it and indeed that it is poisonous to them.

5. *Edgeworthia Gardneri*, Meiss.; Fl. Br. Ind., v., 195 is a closely allied plant to the species of *Daphne*, and one which would seem to be an even more important
source of Nepal paper than D. cannabina. It is a large elegant bush of the Central and Eastern Himalaya from Nepal to Bhutan, Manipur and Burma—distributed to China and Japan. It is known in India as the kaghuti, arjili, etc., and might be called the true Nepal paper plant. The tetumata of Japan, and, according to Hemslcy (Journ. Linn. Soc., xxvi., 401), is Edgeworthia chrysantha. It is regularly cultivated in that country for its paper bark.

NEPAL PAPER.—Quite recently Stein (Ancient Khotan, 1907, 426) has announced the discovery of an actual specimen of Daphne paper, the date of which has been determined as the middle of the 8th century. This was found in the ruins of Endere and was examined both microscopically and chemically by Prof. J. Wiesner. The material was found to be a well-macerated fibre of the Thymelaeaceae, presumably Daphne. From the fact of no Daphne being known to occur in Eastern Turkestan, it has been inferred that the paper had been made in Tibet. [Cf. Wiesner, Denkschr. Akad. Wiss. Wien., Math.-Nat., lxxii., 17-8.] It is thus permissible to regard this as the oldest recorded sample of paper to be commonly spoken of as "Nepal Paper." But even during the beginning of the 19th century, Nepal did not produce enough Daphne paper to meet the demands of India. Buchanan-Hamilton (Acc. King. Nepal, 1819, 232-3) tells us that the local supply did not suffice and that Nepal had to import both the paper and the raw material from Tibet. Kirkpatrick (Acc. King. Nepal., 1811, 80) speaks of one of the two species seen by him as being the paper-plant of Tibet. It would thus be more correct were the paper in question called "Tibet Paper," and this change in name would be in direct accord with the discovery narrated by Stein. [See Paper and Paper Materials, p. 862.]

It is perhaps hardly necessary to repeat that there are two important plants from which the so-called Nepal paper is made:—(a) E. Gardneri and (b) D. cannabina. Perhaps the earliest account by a botanist of this paper-material is that given by Wallich, who figures and describes three species and tells us that Edgeworthia was regularly cultivated in Nepal for its paper-yielding bark. In 1837 Lord Auckland, while Governor-General of India, called for further information, and various reports were in consequence prepared and submitted to the Government of India. Atkinson and other more recent writers repeat the statement that the Bhot country sends to this day large supplies into Nepal. Still, however, no material progress has been made, and Nepal paper is no nearer than it was a hundred years ago to becoming a commercial commodity. In fact it may be doubted whether any bark fibre is ever likely to be of value, unless for very exceptional purposes; it is too expensive as a modern paper-material. Nepal, Kumaon and Sikkim are the chief regions where India's supply of the so-called Daphne or Nepal paper is obtained. The reader should consult Brousseotia, p. 186, and Paper Materials, p. 868, for further particulars. [Cf. Wallich, As. Res., 1820, xiii., 383-90 and 3 pl.; Lase, Journ. Linn. Soc., 1891, xxvii., 312; Morris, Cantor Lect. in Journ. Soc. Arts, 1895, lxxii., 938; Dodge, Useful Fibre Plants of the World, 1897, 146; Kanjilal, For. F. U. Prov., 1901, 281; Wiesner, Die Rohst. des Pflanzenrs, 1903, ii., 432; Hanusek, Micro. Tech. Prod. (Winton and Barber, transl.), 1907, 121-2.

History.—The vernacular names given to the species of this genus can hardly be said to distinguish the various forms that exist. The Sanskrit names

487
Datura
Stramonium

POISONOUS PLANTS

Dhustura or dhatura and unamatta mean "insane," and hence might have been
given to an introduced plant (on its properties being recognised); in fact might
be upheld as not necessarily involving an ancient knowledge. The better known
vernacular' names are either derived from the above or have meanings in the
languages to which they belong that denote the well-known properties of the
drug. As met with in India the species of Datura have the appearance of
introduced plants. They frequent waste lands near human dwellings or invade
the borders of fields or cover abandoned cultivation. They do not exist as
individual plants that take their own positions in a blended vegetation, but ap-
pear as invading cohorts and here and there become so abundant as to exter-
minate all other plants. No form of Datura exists, in fact, under such conditions
as to justify the emphatic opinion that it is indigenous to India.

It is customary to read of "the white-flowered datura" and of "the purple-
flowered kala-datura" as if these conditions implied specific distinctions. Not
only so but many writers affirm that the purple-flowered form is a more deadly
poison than the white, but that belief doubtless rests mainly on the theory of
signatures. Any of the Indian forms may have white or purple flowers, may
have single or double flowers, and may have thorny or smooth fruits. How far
the chemical properties of these plants are affected by cultivation, by soil or by
climate, it is at present impossible to discover. One thing, however, is certain,
that the Daturas have been, and to some extent are still, cultivated plants, so
that the differences recognised between the so-called wild plants of one region
and of another may be due to their being more recent escapes from a special
cultivation. Possibly all the Indian forms constitute but one or at most two
species. D. Stramonium might be called the type of the temperate and alpine
series and D. fastuosa that of the tropical assemblage.

But if the Daturas are only introduced plants, their properties have in India
been fully understood for many centuries. The account published by García
de Orta in Goa during 1563 of the criminal uses to which they are put, might be
reprinted as a statement of the nefarious practices of to-day. So also the in-
vestigations of the Hemp Drugs Commission might be summarised as the dis-
covery that if taken in moderation bhang is harmless, but when mixed with
Datura, that intoxicant becomes most reprehensible and even dangerous to life.
Moreover the seeds are known to enter into the composition of certain alcoholic
beverages and render the consumers of these literally mad. Some years ago I
witnessed a remarkable process of making arak (country spirit) potent. A few
seeds of Datura were burned on a charcoal fire, an empty earthen pot was held
the while over the flames. When full of smoke arak was poured into the jar,
the result being its adulteration with the active principle of Datura in a form
that would most likely escape detection by any ordinary process of examina-
tion (see Spirits, p. 1047). The extent to which Datura seeds are used
criminaly in India can be readily judged of by the perusal of the annual reports
of the medical examiners to the various Governments and Administrations of
India. These literally teem with particulars of Datura-poisoning.

The following particulars of the chief forms may assist in their
recognition:

Datura fastuosa, Linn.; Hummatu, Rheede, l.c. 47. The kala
dhatúrā, khunuk, toradana, udah-dhatúrā, karu-unmat, nalla-unmatta, kechu-
bang, etc., etc. A small shrub found all over the tropical parts of India; the
most common and abundant species. The capsule is retained in a nodding
attitude and opens irregularly near the apex. There are said to be several
recognisable varieties of which D. alba, Nées (the safèl-dhatura) is
that most frequently mentioned and most highly approved medicinally.
It has the flowers often creamy-white, but is doubtfully separable from
the type.

D. Metel, Linn.—This is found chiefly on the N.W. Himalaya and
the mountains of the Deccan.

D. Stramonium, Linn.—Is met with on the temperate Himalaya
from Baluchistan and Kashmir to Sikkim. The capsule is erect
and deeply four-valved. This seems far more likely to be the white Datura
CRIMINAL USES

of medical writers than var. alba above. It is described as the tattur of the Panjāb and the kachola of Afghanistan. Lawrence (Valley of Kashmir, 1895, 77) mentions that Kashmir exports the seeds largely to the Panjāb and that they fetch Rs. 5 a maund. The var. Tatula appears to be the plant of which the dried fruits (strung on thread) are sometimes imported into India from Persia. These imported fruits are sold under the name gharbhālī in Bombay and maratia mūgā in Madras. Poisoning from eating tatuleh is recorded in the Kew Bulletin (1889, 275–8; 1896, 233).

The medicinal uses of the species of Datura centre chiefly in their poisonous property and in the pernicious and criminal advantage often taken of these all too prevalent plants. Barry points out that the seeds of Datura may be mistaken for those of Capsicum. Reduced to a powder they are criminally mixed with food and can often only be detected through the microscopic structure of the fragments of the seed-coat that may be discovered in the food or the contents of the stomach.

Habitat.—A native of Kashmir and the Western Himalaya at altitudes of from 5,000 to 9,000 feet. It is also commonly held to be a native of Europe (except the extreme north), of Abyssinia and North Africa, of Madeira and the Azores, and of North Asia eastwards to Siberia and Kamschatka. Throughout India it is cultivated by the Europeans, mostly from annually imported seed, and by the Natives from an acclimatised if not indigenous stock. In many parts of the country a greenish-white carrot is preferred as being very hardy and productive. This rises some two or three inches above the soil, is a coarse root which possesses little of the flavour of the European carrot, but is able to withstand the extreme heat of summer, and may be raised in some parts of the country throughout the year. It thus produces a return at seasons when other tubers or roots are scarce or not available. This is particularly the case in Bihar (Patna) and some parts of the United Provinces.

History.—Sir George Birdwood (Memo. Carrot for Famine Relief in N. Ind., 1896) gives a detailed and learned account of the history of this plant. This occupies many pages, and can hardly be abbreviated without greatly lessening its value. The carrot appears to have been regularly used in India from fairly ancient times. The Emperor Baber (Memoirs, 1519 (Leiden and Erskine, transl.), 1826, 347) narrates his having eaten a dish of fried carrots. In the Ain-i-Akbari (Blochem, transl., 63–4, 67) mention is made of "wild carrots" (shaqaqul) and of cultivated carrots. Terry (Voy. E. Ind., 1655 (ed. 1777), 91–2) speaks of the good carrots of Surat, and Fryer (New Acc. E. Ind. and Pers., 1672–81, 119) makes special mention of those of the Deccan. While much reliance cannot be placed on names of plants as historic evidences, it is significant that throughout the languages of India, indeed from Central Asia to Cape Comorin, there should prevail in every language a name for the carrot (gāger, gōjār, gūzāra, garjāra, etc.) which seems to have come from a common source. To that name is frequently added a further word meaning "root" or "tuber." Thus in Tamil it is the
THE CARROT

gajjara-kellangu. The derivation of the Latin name *carota* and of the French *carotte* is probably direct from the Greek *karoton*. The Sanskrit *garjaryu* originated the Persian *zardak* and the Arabic *jegar*. In fact, the evidence of cultivation would lead to the inference that the carrot spread from Central Asia to Europe, and if so it might be possible to trace the European names from the Indian and the Persian. Indeed the carrot seems to have been grown and eaten in India while in Europe it was scarcely known as more than a wild plant. In Anglo-Saxon it was *wael-mora*, *wald-mora*, *wolcok-mora*, *clap-wythe*, but it was confused with the parsnip till about the end of the 11th century. These names recall the German *mohre*, *moraha*, the Russian *morok*, the Sanskrit *mula*, *mulaka*, and the Kashmiri *mor-mujh*, and they all denote "root."

Cultivation. —Bengal.—A writer in *Indian Gardening* (Oct. 27, 1898) says in his experience (in Chumparan) the seed should be sown broadcast early in November. Of the imported varieties the Large White Vosges and White Belgian succeeded best. The crop continued to yield till the end of May. Other writers in the Northern and Central portions of the province speak of sowings in August and the crop coming into season in January and February. Mukerji (*Handbook Ind. Agri.*, 1901, 357) observes that the carrot has a special value as a nourishing famine food and fodder. The Red Mediterranean variety grown at the Cawnpore Experimental Farm seems to be the best. The Yellow Mediterranean is most highly spoken of as a cattle food. The yield of the White Mediterranean carrot is almost equal to or even higher than that of country carrots, but the roots are hard, coarse and insipid. When grown without manure the country carrot gives a much larger yield than any of the European varieties. The proper time for sowing carrot seed in the plains is from September 15 to October 15. It is best to sow in drills and ridge the drills after the plants have appeared, then thin out. The quantity of seed used is 8 to 12 oz. an acre. The yield comes to 200 to 500 maunds per acre, if loose soil near the village be chosen, deeply cultivated, well pulverised, weeded and irrigated. The seed had better be mixed with wood-ashes at the time of sowing, and unless the soil is quite moist, water should be poured in the drills immediately after sowing. [Cf. Farninger, *Man. Gard. Ind.* (ed. Cameron), 1904, 166–7.]

U. Prov.

United Provinces.—Duthie and Fuller (*Field and Gard. Crops*, 1893, pt. iii., 9) say the area occupied by the carrot is not separately estimated in the agricultural returns, but the average under carrots, turnips and radishes for the three years ending 1889–90 amounted to 41,463 acres. The carrot is generally sown in September or October; the roots are ready for use after two months, and may last for three or four months. A loamy soil is preferable. Under favourable conditions an outturn of over 200 maunds is possible. At Cawnpore 60 maunds is said to be the average, but at Basti only 33 maunds. The bazár price in ordinary seasons is from 8 to 16 seers an anna.

Panjáb.—Brief notices are made of carrot cultivation in the Panjáb. In Jhang it is said "the zamindar's food consists largely of carrots." (*Replies Famine Comm.*, 228). In Sialkot (*Gaz.*, 68) the carrot is spoken of as grown all over the district, and the superior European kinds are little known.

Bombay.—Of Gujarát it has been said that carrots of two kinds are cultivated—"the long-rooted" and the "blunt spindle form." They are grown at various times in different parts of the province, generally in garden beds from seeds sown broadcast, but are sometimes transplanted from nurseries during the *rabi* season. They take three months to mature,
CULTIVATION—TWO CROPS

though by nipping off the heads growth may be prolonged. The young plants are also taken up when half grown and sent to market. The produce is from 5,000 to 10,000 lb. an acre. The carrot is also grown in Gujarat from August to May, and the crop gathered four months later. In Kach it is much raised as a field crop. In Poona and Khandesh the carrot is cultivated very largely on black soil, with the help of manure. Of Ahmednagar a curious process is reported of obtaining carrot seed: When the crop is ready the husbandman cuts off a thick slice from the crown end of the carrot. This he puts two fingers deep below the soil in any place where there is a liberal supply of water. After a few weeks the roots produce a vigorous flower stem, the seed of which is gathered four or five months after having been thus transplanted. There are accordingly two crops in the year—one, the root produced from the seed, the other the seed produced from the root (see Raphanus sativus, var. caudata, p. 912). In the Deccan, according to Woodrow (Gard. in Ind., 1889, 340), the carrot may be grown as a culinary vegetable where the rainfall is not over 25 inches annually, during the rainy season. Large sowings for fodder should be made in October and November, and if late rains are favourable good crops may be grown on a deep retentive soil without irrigation.

Mysore is stated to produce a very good quality of carrot, but in Madras and Burma the root seems to be raised only as a garden vegetable. Food and Fodder.—The so-called root constitutes an important vegetable in the markets frequented by the European community. Although certain classes of Hindus in Bengal object to eat the carrot, on account of some fanciful resemblance to beef, still the Natives of India, as a whole, are year by year taking more kindly to it. At the same time it must be added that, though by the Muhammadans and certain Hindus the carrot has been cultivated for ages, it is only within recent years that it has become a recognised article of diet. By certain classes the young carrots are used only as pickles. By others “the root is first boiled in water, then squeezed out and cooked in ghī.” In Europe it has become a recognised article of cattle food. Carrot-tops afford a useful fodder, and the contention that the roots might be resorted to in times of famine is strengthened by the fact that the tops would be of value to the cattle. [Cf. Agri. Lebd., 1898, No. 12.]

Seed.—The seed yields by distillation a medicinal oil. [Cf. Talcet Shareef (Playfair, transl.), 113.] In the Hemp Drugs Commission Report (iv, 415) mention is made of the seeds constituting one of the spices used in flavouring bhang. Lawrence (Valley of Kashmir, 67) says carrot seeds are employed to mix with caraway. The chemical constituents of the root are crystallisable and uncrystallisable sugar, a little starch, gluten, albumen, volatile oil, vegetable jelly, malic acid, saline matters, lignin and a peculiar crystallisable, ruby-red neutral principle, without odour or taste, called carotin. [Cf. Pharmacog. Ind., ii., 136.]

DELPHINIMUM DENUDATUM, Wall.; Fl. Br. Ind., i., 25; Ranunculaceae. The nirbis or jagwar of certain writers (names that more strictly speaking denote species of Curcuma or of Aconitum, which see); is also the múnila of the North-West Himalaya. D. saniculifolium, Boiss., has been supposed by some, but incorrectly, to afford the askarg dye and medicinal flowers.

D. Zallii, Aitch. & Hemal., an abundant larkspur in Khorasan at altitude of 3,000 feet, where its spikes of golden flowers give a wondrous

Indian species and varieties—The account given in the Dictionary of this very difficult and imperfectly known genus of edible plants was written in 1888. It was subsequently arranged by the Government of India that a concentrated effort should be made to secure fuller and more accurate information. Collections of live tubers, accordingly, began to arrive in 1894, and continued to be received during the subsequent years. It was agreed that the yams as received should be cultivated in the Royal Botanic Gardens, Calcutta. They are therefore being systematically studied. A preliminary and unofficial report has already appeared, written by Prain and Burkhill, and descriptions of certain species have been given in the Journal of the Bengal Asiatic Society, but further material and more detailed information are deemed essential before the final report can be given to the public, and this seems likely to assume the form of a monograph of the Indian species of the genus. All that need be attempted here, therefore, is to abbreviate the Dictionary article, and to abstract and incorporate from Prain and Burkhill's preliminary report (and all other recent publications) such additional information as seems calculated to bring the present account abreast of existing knowledge.

Prain (Bengal Plants, i.e.) sketches very briefly the classification that seems likely to be followed in the future. The Bengal species are referred to two great groups according as the stems twine to the left or to the right of the observer. This brings the following together as those that twine to the left—D. demoeta, pentaphylla, fomentaria, bulbifera, delta, and fiscellata; those that twine to the right, D. anguina, auenda, nummularia, Hamiltoni and alata. Within these groups the species are assorted according to the characters of the leaves, inflorescence, capsules, seeds and aerial bulbs. It may be useful to set forth in alphabetical sequence of their names the economic information of the chief Indian species and varieties:

D. aculeata, Linnaeus; Prain, l.c., i., 1067; D. glabra, D. E. P.; D. Wallichii, Hook., Fl. Br. Ind., vi., 295. A plant cultivated in Bengal, Assam, the Deccan, South India and Burma; in the last province it is apparently also wild.

D. Batatas, Desfauts.

This is the commonest of all the Indian cultivated yams. It is a large climber with quadrangular winged stems which twine to the right. The capsule is broader than long and the seeds winged all round. Leaves rather sharply angulated. Inflorescence only occasionally produced and often zig-zag in structure. Tubers frequently very large, sometimes four to eight feet in length and as thick as the thigh (Conserv. For. Repts. S. Circ. Mad., 1889), at other times small and globular like an average-sized potato. One or two species of yam are frequently alluded to in Sanskrit literature, and this would appear to be perhaps the form most often mentioned. Roxburgh assigned four or five tubers to sepa—
WILD AND CULTIVATED FORMS

RATE SPECIFIC POSITIONS, CHIEFLY ON ACCOUNT OF THEIR SHAPE AND COLOUR. HE, HOWEVER, ADMITTED THAT HE WOULD BE QUITE PREPARED TO ACCEPT ALL THE RACES (FOR THEY APPEAR TO BE LITTLE ELSE THAN RACES) AS BELONGING TO THE SAME SPECIES. THESE WERE D. ATROPURPUREA, GLOBOSA, PURPUREA AND RUBELLA (ROXB., FL. IND., III., 797-801). THEY ARE CLASSIFIED INTO TUBERS, ELONGATE, AT TIMES CLUB-SHAPED, THE FLESH BEING WHITISH THROUGHOUT IN ATROPURPUREA, PROPER, PINK UNDER THE SKIN IN RUBELLA, PURPLE THROUGHOUT IN PURPUREA; TUBERS SHORT, ROUNDISH, AND FLESH WHOLLY WHITE IN GLOBOSA; ROSE PURPLE UNDER THE SKIN IN GLOBELLA, AND ROSE PURPLE IN ATROPURPUREA. J. D. HOOKER PLACES THESE NAMES AS DENOTING "IMPERFECTLY KNOWN AND UNDERTENABLE SPECIES." PRAIN AND BURKILL, HOWEVER, AFTER A CAREFUL STUDY OF THE LIVE PLANTS, HAVE RECORDED ROXBURGH'S FOUR FORMS ABOVE NAMED UNDER D. ALATA, LINN., AND HAVE FORMED VARIETAL POSITIONS FOR EACH (NOTE, L., 1903-4, NO. 846). THESE ARE AS FOLLOWS:

(a) Var. alata proper; D. Hamiltoni, Hook., f. (in part). THE WHITE YAM. THIS IS S aid TO BE A LARGE CLIMBER, FAIRLY ABUNDANTLY CULTIVATED IN BENGAL, ASSAM, AND THE CENTRAL PROVINCES, THE DECCAN, SOUTH INDIA, BURMA AND CEYLON. IT VARIES GREATLY, HOWEVER, IN SOME OF ITS AREAS.

(b) Var. globosa; D. globosa, Roxb., Duthie and Fuller, Field and Garden Crops, Pt. III., 11; D. globina, D.E.P., III., 131; THE COMMON YAM. THIS ALSO IS A LARGE CLIMBER THAT IS FAIRLY EXTENSIVELY CULTIVATED, MORE ESPECIALLY IN THE CENTRAL PROVINCES AND MADRAS. IT IS THE CHUPRI-ALU, JEGO-NARI.

(c) Var. rubella; A LARGE CLIMBER, EXTENSIVELY GROWN, ESPECIALLY IN BENGAL, THE CENTRAL PROVINCES, WESTERN INDIA AND THE DECCAN. IT YIELDS A LARGE TUBER, RED OUTSIDE, KNOWN AS THE GURANIGA-ALU.

(d) Var. purpurea; THE DARK PURPLE YAM: THE MALACCA YAM, OR LAB-GURANIGA. A LARGE CLIMBER FAIRLY EXTENSIVELY CULTIVATED.

D. ANGULNA, Roxb.; Fl. Br. Ind., VI., 293; Prain, Beng. Plants, II., 1066. A large climber met with occasionally in the forests and jungles of the lower hills in Nepal to Bhutan, also Chota Nagpur and Assam. The tuber is only eaten by the poor, or in times of scarcity, and is called KUKUR-ALU.

(a) Var. bulbifera proper. THE AGRICULTURAL STATES OF THIS VARIETY ARE OFTEN DESIGNATED IN INDIA AS D. SATIVA, AND THE RECENTLY INTRODUCED FORMS ARE OFTEN DESIGNATED AS THE OTAHEITE POTATO. THE WILD TUBERS ARE REGULARLY EATEN, THOUGH MORE BITTER THAN THE CULTIVATED. AN INTERESTING OFFICIAL CORRESPONDENCE RECENTLY TOOK PLACE REGARDING THE SUCCESSFUL CONVEYANCE (BY CAPT. H. D. LARYMORE) OF SEED TUBERS OF THE SO-CALLED OTAHEITE POTATO FROM THE ANDAMAN ISLANDS TO WEST AFRICA.

(b) Var. pulchella; D. pulchella, Roxb.; D. sativa, Linn.; Fl. Br. Ind., VI., 295 (in part); D. bulbifera, D.E.P. A CLIMBER FAIRLY GENERALLY MET WITH IN CULTIVATION. IT IS IN INDIA OFTEN KNOWN AS THE RÁT-ALU.

(c) Var. crispatula; Roxb., FL. IND., III., 802. A FAIRLY PREVAILING CLIMBER IN INDIA AND BURMA, KNOWN AS ZAMIN-KAND.

D. DELTOIDEA, Wall.; Prain and Burkhill, Journ. As. Soc. Beng., 1904, LXXIII., Pt. II., Suppl., 1-2, 5-6. THIS IS A COMMON SPECIES IN THE N.W. HIMALAYA AT ALTITUDES BETWEEN 3,000 AND 8,000 FEET—FLOWERING TIME IN MAY. IT IS AN EXTENSIVE CLIMBER, OFTEN COVERING TREES MORE OR LESS. STEWART GIVES A LIST OF VERNACULAR NAMES WHICH IN THE DICTIONARY IT WAS SUGGESTED BELONGED TO ALL THE SPECIES MET WITH IN UPPER INDIA. EVEN TO THE PRESENT DAY A DISTRIBUTION OF THESE NAMES HAS NOT BEEN ACCOMPLISHED. THE TUBERS ARE OFTEN VERY LARGE, BUT APPEAR NOT EATEN. IN KULU THEY ARE CALLED SHINGLI, AND USED FOR WASHING WOOL. STEWART SAYS THAT IN KHAYKHAN THEY ARE CALLED KRISE AND USED IN DETERGENT TUBERS.
Dioscorea Pentaphylla

Yams:

Washing silk. Lawrence (Valley of Kashmir, 75, 78) calls them kritis (or kritz) and remarks that they are much used in washing wool and also in medicine. The same tubers, according to Atkinson, are in Kumaon known as gun. Some writers appear to regard them as poisonous.

D. dachona, Roxb.: Fl. Br. Ind., vi., 289; Rec. Bot. Surv. Ind., 1898, i., 274; 1903, ii., 143, 189. A large climber of the tropical forests of India and Burma. Stems twining to the left, sometimes prickly; leaves digitately 3-3 nerved; capsule longer than broad and seeds winged at the base only. This wild yam is extensively used as a famine food, chiefly in Burma and the Central Provinces and Central India. It appears never to have been cultivated. Some writers, however, say the roots are highly poisonous and cause intoxication but are rendered edible by boiling and steeping in running water, this treatment being repeated two or three times. Gammie (loc. 190) says that when tiger kill cattle, the villagers insert a quantity of the flour from the pounded roots of the yava kand into the body of the "kill." The poison permeates the flesh to such an extent that when the tiger returns and eats the carcass it becomes infatuated and mad, and the villagers then make short work of it. Ridley (Malay Pl. Names, in Journ. Roy. As. Soc. (Straita Branch), 1897, 90) speaks of the tubers being used in the manufacture of dart poison. (Yearbook of Pharmacy, 1898, 62-3).

D. fasciculata, Roxb.: Prain, Beng. Plants, 1903, ii., 1066. The kidney-shaped yam, Karen Potato. A small climber somewhat like D. alata but more graceful; of a vivid green colour, the stem twining to left and dotted over with small wart-like prickles. Leaves pubescent reniform or orbicular with sharp stipular thorns. Tubers fasciculate, numerous, usually white, but in Burma and the Malay Islands a form exists which has reddish-coloured tubers. This is obviously derived from the wild D. spinosa, which differs only in the fact that the upper rootlets are spinose. Much confusion seems to exist regarding the name pindalu. In some localities of South India it denotes the white round tubers of one or two races of D. alata. In other provinces it is restricted to the present plant. I found during special investigations conducted in 1894 the latter usage throughout Berar, where the clustered yam is fairly plentiful and popular. It is ordinarily grown as a garden crop near the homestead, on stakes 8 feet high and 2 to 3 feet apart, around pan-leaf houses, or in fields, along with the besinjal. In some localities, as for example Nirmal and Bassein in Bombay, it is cultivated as a pure field crop. Roxburgh tells us that in his day it was grown to a considerable extent in the vicinity of Calcutta not only for food but to make starch. Being, in some respects, more like a potato than a yam it is often called the potato of this and that place—e.g. "Karen Potato."

D. glibra, Roxb.: Fl. Br. Ind., vi., 294; Prain, Rec. Bot. Surv. Ind., 1903, iii., 288; D. nummularia, Lamk.; Beng. Plants, ii., 1067. So far as India is concerned, however, it would appear to be rarely if ever cultivated, though the tubers are occasionally consumed and eaten by the hill tribes, more especially in times of scarcity and famine. It occurs on the lower North-West Himalaya, in Nepal, Sikim, the hills of Bengal to those of South India and Burma, distributed to the Malay Peninsula and China. It is very often called jhon (wild) alu or ara (yam), shora-alu. [Cf. Wood, Rec. Bot. Surv. Ind., ii., 143.]

D. variabellya, Voigt (sp.); D. sagittata, Royale; Prain, Lc. 1064. It seems probable that this species should be regarded as a distinct species. It is a large climber met with on the lower Himalaya and mountains of Bengal (Parinath). The tubers are edible but the plant is not recorded as met with under cultivation.

D. opposifolia, Linna. ; Roxb., Fl. Ind., iii., 804; Fl. Br. Ind., vi., 292. A large climber with tereate unarmed branches and with the leaves almost opposite. It is a native of tropical India from the Deccan to Assam, Sylhet, Chittagong, Burma, Ceylon and China. It is wild in India but appears to be cultivated in the Malay and Java. It is one of the most important wild tubers with the people of the Deccan and Central Bengal. The root and aerial tubers are eaten as well as the young flowering spires.

D. pentaphylla, Linna.; D. triphyllo, Roxb.; Fl. Br. Ind., vi., 289; Rec. Bot. Surv. Ind., ii., 143; iii., 288; Prain, Beng. Plants, ii., 1066; Nuren-Kelengu, Rhodes, Hort. Mal., vii., tt. 34, 35. The Kawan or Fiji Yam. Met with throughout tropical India on the lower hills from Kumaon to Burma, Ceylon and Malacca. It is an
extensive climber, the stem prickly below and sometimes bulbiferous. It affords large edible tubers that are eaten practically all over India, especially with the Katholis of the Konkan, the Savaraha of Ganjam and the Lepchas of Sikkim. The flowering stems and young leaves are also eaten, especially in times of scarcity. But it is said to afford both poisonous and innocuous forms, the latter being made edible by repeated boiling and washing. It is apparently, however, never cultivated in India, except perhaps in Pondicherry. [Cf. Circ. Roy. Bot. Gard. Ceylon, 1905, iii., 16-7; Achat, Quinze Cents. PL dans L'Ind., 1905, 206.]

D. spheno, Roxb.—This plant has been confused with _D. fasciculata_ and _D. aculeata, Linn._ It is, in fact, placed by Prain (i.e. 1066) as a variety of _D. fasciculata_. Its most generally accepted names are _madhural_ in Sanskrit and _maudalu_ in Bengali, but these are also assigned to _D. aculeata, Linn._, so that it seems probable the two plants are often confused by the people of India as also by most botanists. The tubers are largely eaten in the countries where procurable.

CULTIVATION.—Of the yams above briefly indicated three species are very generally grown in India as subsidiary foods. These are _D. alata, D. bulbifera_ and _D. fasciculata_. Under each of these species, however, there are several varieties and even a large assortment of cultivated races, so that the yams are not only varied but abundant plants. It is, in fact, only within the very driest tracts (such as some portions of Rajputana, Sind, the Western Panjáb and the Deccan) that yams are not to be found. Wild yams are also very prevalent and constitute an important article of food with the poor, more especially the inhabitants of uncultivated tracts, and in times of famine they often become of the greatest possible value. Lewin (Wild Races S.E. Ind., 1870, 27) says that in the hills of that country wild yams are so plentiful that no man, able to search for food, need starve. Speaking in general terms, a line drawn from Kathmandu and Lucknow to Ahmedabad would sever India into two portions—the Southern (more especially its south-eastern tracts) might be described as the yam-producing area of India, and the Northern (more especially its north-western tracts) the non-yam-producing division. Through Bengal and Assam the yam country extends to Burma, Siam, the Malaya (Peninsula and Archipelago) to China and Japan.

In the _Dictionary_ a few passages from De Candolle were quoted and the contention advanced that the historic importance of the Indian cultivated yams had been depreciated owing to no work of sufficient merit having recorded their Sanskrit and vernacular names. "Roxburgh," says De Candolle (l.c. 77), "enumerates several _Dioscorea_ cultivated in India; but he found none of them wild, and neither he nor Piddington mentions Sanskrit names. This last point argues a recent cultivation or one of originally small extent, in India, arising either from indigenous species as yet undefined, or from foreign species cultivated elsewhere." . . .

"The absence of distinct names in each province also argues a recent cultivation." A very extensive assortment of vernacular names for each species has been recorded, however, by Prain and Burkill, and these amplify materially the names given in the _Dictionary_. They thus abundantly substantiate the opinion of India being one of the great centres of original production (if not the chief Asiatic centre) for yams. It seems likely that both the sweet-potato and the ordinary potato, being more tractable, have not only largely supplanted the yams but usurped their classic names and history.

Asa Gray (Scient. Papers, i., 322) says that Columbus when he discovered Cuba and St. Domingo, found the Natives cultivating two kinds
of edible roots. "These were called in the language of the islanders of St. Domingo, Ages (Ajes) and Yuca." The last mentioned is Manihot and may be dismissed from further consideration, but the former (it is nearly certain) was a species of Dioscorea. This the Spaniards (being ignorant of the language of these islands) called name, niame, inhome—corruptions, it is supposed, of an African name (with which they were already familiar) for a similar edible tuber. Clusius (Hist. Exot. Pl., 1605, 237–8, reprinting Garcia de Orta, 1563, Coll., xviii., 3) speaks of the African slaves of Portugal eating the tubers of a Colocasia which they called inhome. Hence that name had, at an early date, reached Europe and India. Some of the companions of Columbus had doubtless seen the inhome tubers of Africa, and were thus ready to assign that name to the West Indian tuber when their attention was drawn to it. To this circumstance is accordingly due the constant use (by 16th and 17th century writers) of inhome (or, as it ultimately became, thame and finally yam) as a generic denomination for any and every edible (starch-yielding) tuber.

There would seem little doubt that the Indian word ḍalu (in Sanskrit and Hindi and ala in Sinhalese) originally denoted a starch-yielding edible tuber, possibly in its earliest signification the edible species of Dioscorea, though in later usage it came to mean Amorphophallus and even Colocasia. A prefix was employed to denote the separate species. Hence we have in Sanskrit the dandalu (elongated ḍalu), madhvardalu (sweet ḍalu), pindalalu (round ḍalu) and rakdalalu (red ḍalu). In the Sanskrit vernaculars we have similarly chupriḍalu, guraniyaḍalu, kanta-ḍalu, kham-ḍalu, mav-ḍalu, pindalu, ratḍalu, and sawodalu. But in the aboriginal languages there is a vast assortment of names not only perfectly distinct from each other and in no way traceable to the Sanskrit, but which have either a direct specific or in some cases even a generic signification:—ato sang, bongo-nari, bir sang, gun, genasu, kalangu, kullo, kniss, kris, myauk, piska, taguna and tar (or tarar). Most of these names (many others might be given) denote knowledge prior to the Aryan conquests of India and thus have no room for doubt that the cultivation of yams is quite as ancient (if not more so) in India as in any other country. Indeed from the fact that names are given in the West Indies and other tropical countries, traceable to the Sanskrit, or to some Indian vernacular, there would seem no doubt that some of the best-known cultivated forms in other regions were derived originally from India. And what is more curious, not a few of these are being brought back to India to-day as special West Indian plants, oblivious of the fact that, just as with the improved rice brought from Carolina and the superior wool-sheep from Australia, they had been procured in the first instance from India.

Propagation.—The yam may be propagated either by means of aerial tubers or small underground tubers or portions of large tubers. If the former be employed, the first year's crop is poor but the second excellent. It is preferable to use sets of the underground tuber weighing about half a pound. The best soil is a deep friable sandy loam. Stiff heavy soils are unsuited, as the tubers cannot expand properly and good drainage is essential. The selected land should be dug to a considerable depth and fairly well manured. It is then lined, 3 to 4 feet apart, and the seed tubers set on the ridges at distances of 18 inches. Some cultivators prefer to start the seed tubers in a nursery and to transplant to their permanent position when a foot or so in height.
Diospyros Kurzii

The Ebony Tree

Diospyros, Linn.; Fl. Br. Ind., iii., 553-72; Gamble, Man. Ind. Timbs., 453-63; Cooke, Fl. Pres. Bom., i., 98-107; Prain, Beng. Plants, i., 651-4; Brandis, Ind. Trees, 428-36; Ebenaceae. A fairly important genus which embraces about 59 species of Indian forest trees. They occur chiefly in South India, Ceylon, Burma and Eastern Bengal. Only four extend to Northern India, while the genus may be said to be not represented in the Eastern Himalayas. All the species yield useful timbers, of which the best are the various forms of Ebony (D. Ebenum and D. melanozylon), known in the vernaculars of India as ebani or tendu. The most important are:

D. Ebenum, Koeng.; Rozh., Fl. Ind., ii., 529; Trimen, Fl. Ceyl., iii., 94. The EBONY, ebans, abnás, tendu, khenda, temrás, tai, acha, nulláti, shengán, kalatāti, tuki, kare, balé, mushtimbi, karunkāli, mallái, kalivērā, etc., etc. A large tree not very common in India, where it is found in the Deccan and Karnátak, chiefly in dry evergreen forests in the Ceded Districts. In Ceylon, however, it is one of the chief woods, very common in the dry regions of the Northern Provinces. [Cf. Herbert Wright, The Genus Diospyros in Ceylon, its Morphology, Anatomy and Taxonomy, 1904.]

Timber.

This species is perhaps the best ebony-yielding tree and the only one which gives a black heart-wood without streaks or markings. Gamble says 74 lb. is the average weight per cubic foot for the heart-wood. In Europe it is extensively used for ornamental turnery, cabinet-work, piano keys, rulers, etc., and in China for chopsticks, pipes, carved stands and vases. Ebony does not appear to be exported from India to any material extent, but in Ceylon the average sales for 1892-1902 were 300 tons yearly. The average price Gamble gives at 185 Rs. per ton. The Indian Forester (1905, xxxi., 37, app.) gives £6 to £10 per ton as the price of East Indian Ebony.

D. Embryopteris, Pers.; Roxb., Fl. Ind., ii., 533; Rec. Bot. Surv. Ind., ii., 30, 115, 240, etc.; iii., 233; Talbot, List Trees, etc., 211; Trimen, t.c. 93. The gōb, makur-kendi, kūsi, timbori, tumbika, pani-chika, karunthali, kuri-kutti, hollet-upra, tumil, tenduki, nitta-tumm, kusharta, hige, bantha, vananchik, etc., etc. A dense evergreen tree found throughout the greater part of India in shady wet places and near streams. It is frequently cultivated both for ornament and for its large red, velvety fruits.

Gab.

Many writers speak in general terms of a gum obtained from this plant, but do so in such a manner as to suggest a confusion between a true gum and an extract prepared from the fruit, the pulp of which is used in book-binding, and in place of tar for paying the seams of boats. According to some writers the pulp is used direct; others say an extract or decoction is prepared. Buchanan-Hamilton (Stat. Acc. Dinaaj., 1833, 152) thus describes the process pursued in Bengal:—"It (the fruit) is beaten in a large mortar and the juice expressed. This is boiled, mixed with powdered charcoal and applied once a year to the outside of the planks." Duncan (Monog. Dyes and Dyeing in Assam, 1896) observes that the half-ripe fruits are pounded in a mortar and then kept six or seven days in water until they have decomposed. A gummy solution results, which is poured off and the sediment thrown away. The brownish liquid thus obtained is used in dyeing and tanning. It is made into a good black by being combined with myrobalans (Terminalia Chebula) and proto-sulphate of iron (bhiru-kash). The infusion is largely employed for tanning fishing nets and lines, and it makes them more durable.

D. Kaki, Linn.—A small tree met with in the Khasia hills and perhaps also in Upper Burma. It is cultivated here and there over the moister tracts of India as a fruit tree, but is only suited to very large gardens. It is the Chinese Date Plum or Persimmon, and in Burma appears to be known as tāy, thā. The fruit ripens during August and is about the size of a large apple with twin almond-like stones. The rind is of a rich, ruddy colour. It has a rather disagreeable odour, and in flavour is suggestive of an overripe apple. A fine preserve is said to be made from it by the Chinese. [Cf. Roxb., Fl. Ind., ii., 528; Firmainger, Man. Gard. Ind. (ed. Cameron), 1904, 221-2.]

D. Kurzii, Hiern.—One of the most important trees of the Andamans, termed in English Marblewood; in Burma tekah, thitkya, and in the Andamans pecha-da. Gamble remarks that this wood would be of great value in the
DIPTEROCARPS
TUBERCULATUS

THE WOOD-OIL TREES OF INDIA

Eng.
The former is sold in the bazars mixed with dammar (the produce of Vateria indica) as varnish at 5 annas a bottle. The latter also makes a fair varnish. It has a strong copaiba-like smell and would probably be useful in medicine.

One at least of these oils must be regarded as afforded by the present species, whether it be accepted as distinct from D. turbinatus or only a variety of it.

D. levis, Hem., Mem. Wern. Soc., 1832, vi., 298–9; D. turbinatus, Roxb., Fl. Ind., ii., 612 (in part); Fl. Br. Ind., i., 295 (in part). Prain speaks of this as a tall tree met with in Tippera, where it is known as teika-garjan. He remarks that as so accurate an observer as Buchanan-Hamilton separated his levis from turbinatus, on account of their different economic properties, it seems better to leave the two trees as distinct species. In a letter to Roxburgh dated Oct. 16, 1798, Buchanan-Hamilton speaks of four species of "gurjan" found by him in Chittagong, which doubtless included the present species.

D. obtusifolius, Tegn.—A large deciduous tree of the eng forests of Prome and Martaban. It is the kanyingok, inbo, in-kohe.

D. pilosus, Roxb., Fl. Ind., i., 615. A tall evergreen tree of Assam, Chittagong and Burma. It is best known as the hollong. Brandis observes that it yields a semi-fluid resin, and it is described by Hooper as white (Rept. Labor. Ind. Mus. (Indust. Sec.), 1904–5, 24). Gamble speaks of the wood as good but not suited for tea-boxes. Peel refers to it as employed for canoes. This is possibly the tree mentioned by Robinson (Desc. Acc. Assam, 1841, 62).

D. tuberculatus, Roxb., Fl. Ind., ii., 614. The Eng Tree, eng, in, sooahn. A large deciduous, gregarious tree forming the "in (eng) forests" of Burma, Chittagong and Siam. It is said to be very characteristic of laterite soils and to take the place of the sal in Northern and Central India.

Wood-oil.

Oleo-resin.—It was for some time thought that the eng tree did not give a wood-oil, but Mr. J. W. Oliver explained that it yielded a thick oil or rather oleo-resin. The reader will find Mr. Oliver’s most interesting report in the Dictionary (iii., 160–1). The method of extraction is very similar to that for garjan-oil, explained below. The congealed resin which remains behind, after the removal of the oil, is scraped off and used for torches which are made of rotten wood, mixed with the resin and rolled up in the leaves of the satthwa, a species of screw-pine. In some localities, however, the rotten wood is soaked in the oil itself and wrapped up in the leaves of a palm-salu (Licuala peltata). Nisbet (Burma Under Brit. Rule and Before, 1901, 365) says that “twenty years ago the chief illuminant used after dark through the rural tracts, except those of the dry zone within easy reach of the central petroleum fields, was a small torch about a foot and a half long made of chips of dead wood and the resinous oil of the kanyin or wood-oil tree D. turbinatus rolled in palm leaves. . .”

“ These kanyinsi torches were sold in bundles in every bazar. While burning they emitted incessant smoke and a strong oily smell, pungent and differing vastly from the European idea of fragrance. At one time the manufacture of these torches formed an industry wherever the wood-oil trees abounded; but now, in consequence of improved communications and of large imports of kerosene at low rates, torch-making is only betaken to in jungle tracts in order to eke out the means of livelihood during bad years, when the shadow of misfortune darkens the threshold.”

The oil is used for waterproofing bamboo baskets, etc. With regard to the wood, Gamble (l.c. 72) says, “The Eng is probably the best of the woods given by the species of Dipterocarpus, and it is in considerable demand and use for building and boats.” In point of weight it would seem to average 54 lb. [Cf. Brandis, Ind. For., 1875, i., 365; Semler, Trop. Agric., 1900, ii., 536–7.] Hooper (Agri. Ledg., 1902, No. 1, 15) mentions a tannin extract obtained from the bark of this tree.

500
DIPTEROCARPUS TURBINATUS
Kanyin

THE GARJAN OIL PLANT

that the extraction of the oil is not pursued there because it is not remunerative enough.

Very little is known for certain of the industrial uses of the oil, still less of the resinous concretion as distinct from the liquid oil. The former is fairly extensively employed by the Burmese for torches, and the oil is largely used in preserving bamboo wickerwork and in paying the seams of boats. As a varnish it is believed to protect woodwork from the ravages of insects. In Europe it has been in fact made into a varnish, and is reported to be a useful ingredient in lithographic ink. It was in the Dictionary pointed out that an important way of utilising the article might be found in taking advantage of Mr. Laidlay's discovery that it acts as a solvent to caoutchouc. Sir W. O'Shaughnessy remarked fifty years ago that it would likely be found a perfect substitute for the expensive balsam of copaiba. In the Journal Chemical Society (1902, xxii., 1404) it is affirmed that "Chinese wood oil" is not suitable to replace linseed oil in the preparation of varnishes. It cannot be heated above 160° C. Capital (April 1904) gives useful particulars regarding Chinese wood-oil—a substance which cannot possibly be mistaken for garjan (see p. 46).

Chemistry.—In the Dictionary will be found an abstract of the results obtained by the distinguished authors in the Pharmacographia. More recently Hooper has published his examination of the samples procured by the Reporter on Economic Products, from which the following passage may be furnished:— "Eighteen samples of garjan balsam from Bombay, Madras, Tippars, Chittagong, Assam and Burma had been submitted to analysis. The specific gravity ranged from 0.957 to 0.999, the percentage of volatile oil from 36.9 to 71.1, and the acid number from 3.12 in a Chittagong sample to 21.9 in one from Rangoon. These oils, procured from D. turbinatus, D. lavis, etc., were very irregular in composition and physical contents, and would lead one to believe that adulteration is practised in certain quarters. The balsam secreted by D. tuberculatus and known in the trade as 'Jusi' is more uniform in composition. It has a thick honey-like consistency with a high sp. gr. and acid value, but a low proportion of volatile oil. Samples of the oleo-resin of D. Griffithii and D. turbinatus, var. andamanicus, collected from botanically authentic sources from the Andamans, were of exceptionally good quality. The chemical examination of a series of balsams of this character enables one to recognize their peculiar reactions, so that it is easy to detect substitutions and adulterations. During the course of the inquiry a sample of oleo-resin from South India, although labelled Dipteroxarpus, was found to be the product of the 'yen nemaram' (Hardwickia pinnata). . . . To thoroughly understand the differences of composition of gums, resins, and oleo-resins, samples should be collected from the trees and the conditions of age, climate, soil, etc., studied on the spot." [Cf. Wiesner, Die Rohat. des Pflanzenr., 1900, i., 236–7; Tschirsch and Weil, Acc. Gurjun Balsam, in Proc. American Pharmaceut. Assoc., 1904, liii., 700–1; Pharm. Journ., 1905, lxxiv., 722; Tschirsch, Die Harze und die Harzhäler, 1906, i., 489–512; Hooper, Rept. Labor. Ind. Mus. (Indust. Sec.), 1907–8; Pharm. Journ., 1907, lxxviii., 4.]

Medicine.—This substance is not very largely used in Indian medicine, and does not appear to have been known to the early authors. It is apparently alluded to in the Makhzan, but it is not mentioned by Dutt in his Materia Medica of the Hindus. The most recent opinions on the subject only need be here quoted. Dr. Dougall and subsequently Mooden Sheriff (Med. Med. Med., 1891, 49–50) drew attention to the properties of the oil. The latter says, "The best medical properties of this oil are its usefulness in gonorrhœa and gleet, and in all forms of psoriasis, including lepra vulgaris." Again: "With regard to its usefulness in psoriasis and lepra vulgaris, I am not aware of any other local stimulant which is more efficacious in those diseases than this drug." But in the Pharmacographia Indica (i., 192) mention is made of the investigations conducted by the Government of India, and it is then added that "as far as we have heard the new treatment has not been a success." [Cf. Dymock, Med.
TRADE IN GARJAN OIL

Med. W. Ind., 1885, 88–9; Waring, Bax. Med. Ind., 1897, 70–2; Ponder and Hooper, Mat. Med. Ind., 1901, 32.

Gamble (l.c. 71) remarks that the Wood of the *garjan* tree is used in house-building and for dug-out canoes, as also for packing-cases, but that it is soon destroyed by white ants. Its large size, however, makes it valuable for temporary purposes; logs 40 to 60 feet in length are sometimes procurable. With regard to weight he tells us that the specimens he had examined averaged 50 lb. per cubic foot. [Cf. For. Admin. Rept. Burma, 1899–1900, 18; Working Plans Rept. Pyinmana, 1904, 16–7.]

Trade.—Milburn (Or. Comm., 1813, ii., 315) mentions wood-oil, and explains the uses it is put to. Royle, writing in 1840 (Prod. Res. Ind., 77), speaks of wood-oil, but says it has never become an article of commerce. Flückiger and Hanbury (PharmacoG.) state that the world’s supply is obtained from “Singapore, Moulmein, Akyab, and the Malayan Peninsula and that it is a common article of trade in Siam.” Dymock (l.c. 91) remarks—“Garjan Balsam is not an article of commerce in Bombay; small quantities may be sometimes obtained in the Native drug-shops. The Government supplies have been obtained from the Andaman Islands.” Moodeen Sheriff (l.c. 49) writes that in Madras wood-oil is common in most large bazaars; he describes several forms and gives their prices. A firm of Calcutta merchants, in a letter dated October 25, 1900, undertook to supply *garjan* oil in 40-gallon casks at Rs. 47 per cwt. delivered in Calcutta. An official correspondence in 1901 resulted in the discovery that some objection existed in the minds of European merchants in Rangoon to engage in the trade in *kanyin* (garjan) oil. One firm reported that the quality of the oil varies very much, and the price accordingly. The quotation given by them at that time was Rs. 60 per 100 viss—equal to about Rs. 20 or £1 6s. 8d. per cwt., but this does not include casks or drums. The Conservator of Forests in a communication of same date was of opinion that if an assured demand arose, there would be little difficulty in procuring local persons willing to supply the oil in Pyinmana Division, the Ruby Mines Division and Tenasserim Circle. It will thus be seen that very little of a satisfactory nature can be furnished regarding the Indian supply of this article. There are four chief centres of production—Burma, Andaman Islands, West and South India and Chittagong. The last mentioned, though formerly perhaps the most important, is the least valuable at the present day, and therefore it may be said that the supply, such as it is, comes almost exclusively from Burma and the Andaman Islands and is exported from the port town of Rangoon chiefly. The returns in one province appear as lb., in another as viss, in a third as gallons, so that a combined statement is impossible. Moreover, in official statistics it is sometimes grouped with “resin,” at others with minor forest produce. One point only seems indicated, namely that with the growth of the Chinese wood-oil (*Aleurites Fordii*, p. 46) a decline in both the supply and demand of *garjan* has taken place.

DOLICHOS BIFLORUS

Horse-gram

Timber

Objections to Trade.

Commercial Importance.

Demand Insufficient.

Centres of Production.

DOLICHOS, Linn.: Leguminosæ. A genus of twining herbs of which there are 20 species, six natives of India and two of economic value:—

DOLICHOS
BIFLORUS
Kûlthî

THE HORSE-GRAM PLANT

i., 391; Duthie, Fl. Upper Gang. Plain, i., 229; Cooke, Fl. Pres. Bomb., i., 382. Horse-gram, kûlthî, kurthî-kalai or kurthî or kurti, kalath, khûlî, kolatha, kulat, gahat, horec, bardât, roiong, goâîî, botang, wulavali, ulas, huratî, hulga, hulle, papadi, múthera, simbi, beji mûh, khàrêk, pé-ngapi, etc.; guàr, sometimes given to this plant, more correctly denotes Cyamopsis psoralioides.

Varieties and Races.—According to Baker (Fl. Br. Ind., l.c.) there are two forms of this plant, D. unifloras, a sub-erect annual, and D. bifloras, a more or less twining plant. The habits of these forms are not separately recorded. He apparently treats of both when he says it occurs on the “Himalayas to Ceylon, and Burma, ascending to 3,000 feet in Sikkim, sometimes cultivated. Distributed everywhere in the tropics of the Old World.” The writer, however, is of opinion that a mistake may have been made in linking the Himalayan with the plains plant. Roxburgh refers to two forms, one with grey, the other with black seeds, both of which he implies are cultivated in Bengal and Madras. The grey-seeded plant, D. bifloras, is erect, has twining branches, and is about 2 to 3 feet high. Roxburgh then adds—“I have never found it but in a cultivated state.” As already observed, there would appear to be room for doubt as to whether the grey and the black-seeded forms of Roxburgh are the two forms of modern writers, or whether both of Roxburgh’s plants constitute but cultivated races of one of these forms. In popular works on economic products the horse-gram of Madras is viewed as D. unifloras, and under either of these names (D. unifloras or D. bifloras) a pulse is described as grown in almost every district of India, but chiefly in Madras and Bombay. It is a little difficult to believe that the plant of the tropical plains is the same as that of the temperate Himalaya, but of course this is by no means impossible. Duthie, however, says that as grown on the Himalaya it is more robust, the pods larger and broader, and the seeds grey. Mollison (Handbook Ind. Agri., 1901, iii., 82–4) speaks of two varieties: one, grown sparingly in the Ahmednagar and Kaira districts, has creamy white seeds; the other, commonly cultivated, has grey variegated seeds. But that this cultivated pulse should be regarded as a native of India is abundantly confirmed by the existence of a Sanskrit name—kulattha—from which no doubt many of the above vernaculars (kûlthî, etc.) have been derived.

CULTIVATION.—Of the plains it may be said that this pulse is grown either as a green manure or as a cattle food and fodder. Mr. Robertson (Saidapet Farm Repts.) deals with the advantages of using it as a green manure. Since then, however, the subject of the influence of leguminous crops on the soil has undergone a complete revolution. Their chief value, it is now believed, lies in their power to fix the nitrogen in the soil through the agency of the organisms contained in their root warts. Few Indian crops are perhaps more valuable in this respect than the horse-gram, especially when grown as a fodder plant, or still more so as a green manure. The advantages of growing the crop as a source of fodder are extolled by various writers. Robertson, for example, says that it produces from 2,000 to 4,000 pounds of fodder in two months, at a cost of about Rs. 3 per ton, and thrives with a minimum rainfall in very hot weather. The ease with which it may be cultivated recommends it most highly as a catch crop for forage purposes, either to be grazed on the land or fed in the stalls. The plant may be made to grow at almost any season of the year. It requires but one shower of rain to start its growth, but even if this be not obtained, the seeds have the power of remaining alive for months in the soil and of germinating when rain does fall. After the removal of the rabi crop it is contended that a highly advantageous course is to rapidly dress the soil, sow horse-gram, and in a month’s time commence to use the stems and leaves as fodder. By this means the soil is saved from becoming baked with the advancing heat of summer, and the roots left in the soil greatly improve it, even should the cultivator be unable
to devote the entire crop as a green manure. The following brief account, province by province, may be found instructive:

Bengal and Assam.—Horse-gram is very little cultivated in the Lower Provinces. It is said to be grown to a limited extent in Shahabad, and fairly abundantly in Chota Nagpur, both as a grain and a fodder crop, but not in Lower Bengal. Muckerji (Handbook Ind. Agri., 1901, 263) observes that the time for sowing kulthi for grain is October or November, and for fodder June, August and November, three times on the same field. It may be reaped during several months, according to the purpose for which required, but the general harvest is December-January. The quantity harvested per acre Muckerji gives as 300 lb. of grain, or 5 tons of green fodder per crop. Banerjee (Agri. Cuttack, 1893, 80–1) discusses its merits as a rabi, while Basu (Agri. Lohardaga, 1890, 34) calls it a kharif crop. Speaking of Assam in a subsequent report (Agri. Ledg., 1903, No. 5, 135), he says that kulthi-mah is grown to a small extent in Kamrup and Darrang. In the Tezpur Sub-division it is cultivated by Nepalese and coolie settlers, and in Upper Assam and Nowgong is unknown. Only one variety is grown. The method of cultivation and time of sowing and reaping are very much as with madi-mah. About 5 seers of seed are sown per acre; thin seeding is desirable, the object being to allow the plants to creep and spread over the ground. A good crop may yield up to 6 maunds of pulse per acre.

Upper India.—Duthie and Fuller (Field and Garden Crops, pt. iii., 2, t. lxxxi.) say that in the United Provinces D. biflorus is grown mostly as a rainy-season hill crop, ascending the hills to 7,000 feet. Atkinson (Himal. Dist., 343, 460, 696) and Stewart (Pb. Plants, 1869, 68) make very similar statements. According to Sir J. B. Fuller, Dolichos biflorus is grown in the southern districts of the Central Provinces as a cold-weather crop, but is of importance only in the Chanda, Bhandara and Balaghat districts.

Bombay.—Mollison (Textbook Ind. Agri., 1901, iii., 83) observes that kulthi takes the third place among the pulses of the Presidency, and according to statistical returns occupies over 500,000 acres annually. The Agricultural Statistics give an average for the five years of over 2,700,000 acres under "other food grains including pulses." Briefly stated, it may be observed that Gujarat and the Konkan are unimportant sources of supply, but that the Deccan and the Karnatak are fairly important (especially the districts of Ahmednagar, Satara, Poona, Dharwar, Belgaum and Bijapur). The principal cultivation is in the kharif season as a row or mixed crop, subordinate to bajri, hemp (ambadi) and niger seed; only rarely is it a pure crop. Occasionally, however, it is grown in the rabi season as a second crop in rice fields. It is very sparingly cultivated in Bombay as a green manure. Of the Deccan, Mollison says kulthi participates in the general cultivation given for bajri (Pennisetum typhoides). The fields in which it is grown are rarely manured oftener than once in three years. The land is usually prepared by working a heavy-bladed harrow (rakhbar) two or three times in the hot weather, and again two or three times after rain in June. As a mixed crop it is sown in July, and may occupy every fourth row. The crop is generally bullock-hoed twice a year. If sown in July, the crop will be ripe at the end of October or early in November.

Madras.—The crop is very important in this Presidency. Nicholson
DOLICHOS
BIFLORUS
Kūlthī

(Man. Coimbatore) tells us that it grows on the poorest soils, and with
the minimum of rainfall. Horse-gram land is seldom manured, otherwise
than by casual droppings of cattle: it is usually ploughed, sown,
and the seed covered by a second ploughing; or the seed is simply
scattered broadcast over the natural surface and then ploughed in. As
it requires only one good rain after appearing above ground, it frequently
gives a fair crop when nothing else can live. When the south-west monsoon
rains are too late for kāmbu (bdjra) it is frequently sown as a substitute
in September, but it is also sown largely in November after the first burst
of the north-east monsoons. It is pulled up by the roots, thrown into
heaps, and then trodden out by cattle. The yield is up to 1,200 lb.
Nicholson (l.c., 1898, ii., 176) gives 194,777 acres as the average under
D. biflorus for the years 1888–93. Mr. H. Goodrich, Collector of
Bellary, says a mixed soil is best suited for the crop. The fields should
be ploughed and harrowed once or twice, but not irrigated nor (generally)
manured. Several other Madras writers, however, give very different
accounts of the requirements of this plant, so that the practice seems
to vary considerably within the Presidency. In the Survey Settlement
Report of South Arcot, for example, it is said: "The land is ploughed four
or five different times after the month of May, and the gram sown be-
tween the latter part of August and the end of September. It is
gathered in the middle of March." So again, Moore (Man. Trichinopoly,
72) speaks of it as a precarious crop. In the North Arcot District,
Cox (Man. North Arcot, 1894, ii., 184) gives 48,897 acres as the average
under D. biflorus for the years 1887–93. Unfortunately, while several
writers mention figures of area for the districts with which they are
familiar, no definite statement of the Presidency as a whole can be
furnished, for the reason that horse-gram does not appear to be sepa-
ratey returned. The official figures under "gram" for Madras come to
an average (for the five years 1900-5) of almost 150,000 acres. But
under "other food grains including pulses" 7,992,389 acres are shown
as the area in 1902-3, though it has since contracted to 5,753,913 in 1904-5.
It is thus fairly certain that "horse-gram" must be included under
the latter, and that the former denotes Bengal gram (the true gram)
grown in the Madras Presidency. As indicative of the possible regions
of greatest cultivation of this pulse, it may be here added that Bellary
had in 1902-3 (when the largest area for the period 1900-5 was re-
turned), 822,685; Anantapur, 771,267; Karnul, 708,877; Kistna, 554,757;
and Salem, 590,619 acres devoted to the combined food crops mentioned
above.

MYSORE.

Mysore.—Rice (Mysore Gaz., 1897, i., 119–20) says the horse-gram
is of two kinds, black and white, sown intermixed. In the east the worst
qualities of soil are generally used, and on the same fields sāme (Panicum
Crus-galli, var. frumentaceum), hāraka (?Curcuma longa), and
huchellu (Guizotia abyssinica) are cultivated, without one crop
injuring the other, or a rotation being even considered beneficial. For
horse-gram plough twice, in the course of a few days, any time in October–November. Then, after a shower, sow broadcast; or, if rain does not
fall, steep the seed for three hours in water and plough into the soil. It
requires no manure, and in three months is ripe for harvest.

FOOD AND FODDER.—The interest in this pulse is mainly as an
article of cattle food, the green stems and leaves being a valued fodder,
when grown for that purpose. Although not deemed a superior pulse it is largely used by the poorer classes, being perhaps the cheapest of pulses. The pea is generally soaked for twelve hours, then husked, thus reducing it to the form of dal or split-peas. The husk obtained is regarded as a valuable cattle food. The split peas may be reduced to meal, or boiled, or fried and eaten with rice or other articles of diet. The flour is fairly extensively employed in the preparation of sweetmeats. In some parts of the country the grain is dry roasted (parched), then sold to the consumers, who boil it in the preparation of dal.

The pea is boiled entire and given when cold as an article of cattle food. It is one of the chief pulses so used in Madras and Bombay. Some years ago Robertson performed a series of experiments to test the merits of boiled as compared with steeped horse-gram both on draught cattle and horses. The verdict was in favour of the steeped grain. [Cf. Rept. Agri. Dept. and Exp. Farms Mad., 1871, 4-7.] It is most important that in any attempts that may be made to extend this use to other parts of the world, the distinction should be clearly observed between the horse-gram of Madras (the article here dealt with) and the far superior pea known as Bengal gram (Cicer arietinum, pp. 295-302)—the true gram of India. It is also extremely important that both these and all the other peas and beans of India should be recognised as distinct from the khesdrī (Lathyrus sativus, p. 703)—a pulse with an evil reputation that has on more than one occasion injured the prospects of a foreign demand for Indian pulses.

The fodder is either a by-product of the cultivation of the pea (bhusa) or it is a special crop grown and reaped at successive intervals, the plants not being allowed to form fruit. For fodder purposes it may even be sown on the same land two or three times within one year, and the soil is thereby improved rather than injured, as the pulse both cleans it of weeds and adds largely to its nitrogenous property.

Chemistry.—With regard to the chemistry of horse-gram, Church (Food-Grains of Ind., 162) gives the following analysis. In 100 parts, unhusked:—water 11.0; albuminoids, 22.5; starch, 56.0; oil, 1.9; fibre, 5.4; ash, 3.2. The nutrient ratio is 1.2.7, and the nutrient coefficient 83. [Cf. Leather, Agri. Ledg., 1901, No. 10, 360.] The seeds are used medicinally in the Panjāb. Arjun (Bomb. Drugs, 40) says a decoction of D. uniflorus is employed by the Natives in certain diseases of women. [Cf. Kanny Lall Dey, Indig. Drugs, 1896, 118.] The seeds are moreover reputed to yield an oil.

Area.—As already explained, the official statistics under which this pulse should be recorded are referred to two sections:—“Gram” and “Other food-grains including pulses.” It seems likely that the former denotes Cicer arietinum and that the latter includes the horse-gram. In 1905-6 the total area in British India under gram came to 11,024,170 acres, and the others to 28,022,722 acres. The available information regarding the production of gram will be found under Cicer. It need only be added that of the area devoted to the “others,” a fair proportion, especially in Madras and Bombay, would be the present pulse. The following may be given as an analysis, province by province, of the areas under “others”:—6,284,192 acres were in Madras; 4,451,000 in Bengal; 4,248,816 in Agra; 2,417,785 in Oudh; 4,743,321 in the Central Provinces; and 2,575,116 in Bombay. These returns give, therefore, the only possible
relative indication as to the production of horse-grain, but in Bombay the actual area was 545,738 acres.

Cultivated Forms.—Wild and cultivated throughout India; it ascends the Himalayas to 6,000 or 7,000 feet in altitude. De Candolle (*Orig. Cult. Plants*, 346) says its culture dates perhaps from three thousand years, but that he can find no trace of its being early diffused in China, Western Asia or Egypt. *Hone* (*Rept. Prov. Sou’ch’uan. China*, 1904, 11) says it is called *sou chi lou* (four-seasons bean) because it is cultivated throughout the year. *Henry* (*Econ. Bot. China*, 12) remarks that its Chinese name is *pien-lou*, and that there are two varieties, one with purple, the other with white flowers. So also in India there are two cultivated varieties, though these have not been distinguished in the *Flora British India*. Prain defines them as follows:—

Var. Lablab proper; pods longer, more tapering at point, seeds with long axis parallel to the sutures. This is *D. Lablab*, *Linn.*, *Sp. Pl.*, 1019; *D. lignosus*, *Roxb.*, *Fl. Ind.*, iii., 305 (*non Linn.*).

Var. Lablab (*Linn.*, *sp.*, *non Roxb.*); pods shorter, more abruptly truncated at end, seeds with long axis at right angles to the sutures. Roxburgh, it will thus be observed, reversed the incidence of the Linnaean names.

Prain (*Journ. As. Soc.*, Lc. 430) remarks that the epithet *lignosus* is much more appropriate when applied to *"Lablab"* than when given to the plant to which Linnaeus assigned it. "Roxburgh identifies with his 'Lablab' the plant figured by Rumphius (*Herb. Amb.*, v., t. 136), in an identification that is obviously just; Linnaeus gives this very figure as one of the types of his *D. lignosus*.

History.—Adams (*Comment. in Paulus Egnatia*, 1847, iii., 470) observes that Seraquin, on the authority of Aben Mesuai, describes the properties of a climbing plant which he calls *lebleb*. Adams accordingly adds that there is every reason to suppose the *lebleb* of Seraquin and Avicenna was *Dolichos*. De Candolle (Lc. 347) gives, on the other hand, an account of the origin of the word *lebleb*. He remarks that it possibly comes from the Greek *lobos*, which means any projection, like the lobe of the ear, a fruit of the nature of a pod, etc. *Asa Gray* (*Scient. Papers*, i., 353), reviewing De Candolle, comments that "the name (lubia) seems to be clearly referable to the Greek. It has not been traced earlier than to Jahia Ebn Seraquin—an Arabian physician of the 9th or 10th century—whose work 'De Simplicitibus,' compiled chiefly from Dioscorides and Galen, was translated into Latin in the 15th century." The word "lubia (king of beans)" occurs among the list of autumn (kharif) crops known to Akbar, and lexicographers would seem to regard the word lubia as of Persian origin. At the present day, in Upper India, it would appear to be applied to two plants, *Vigna* and *Dolichos*. Considering the time these plants come into season, it seems probable that the *lobiyâ* of the *Ain-i-Abbâri* (Blochmann, transl., 63) was *Vigna Catjang* (p. 1107). I accordingly restrict the word *lobiyâ* to that plant; and, if this be correct, it is probable that none of the species of *Dolichos* were known to the Persian writers of classic times. Moreover, no species of *Dolichos* would seem to have the properties attributed to the *lebleb* of the Arab writers. This reasoning would accordingly assign to the species of *Dolichos* an Indian origin, an opinion confirmed by the fact that both *D. biflorus* and *D. Lablab* are met with as wild species, the cultivated races of which bear many purely indigenous names. In the *Taleef Shereef* (Lc. 147) "Lobêia" is mentioned as a common culinary grain.

CULTIVATION.—**Bengal and Assam.**—*Lablab* is not a regular agricultural crop in any part of India. It is more correctly speaking a garden plant, and is trained to form arbours over the doorways of village huts. For example, the Director of Land Records and Agriculture says that different varieties are cultivated all over Bengal as garden vegetables. The Rev. Dr. A. Campbell tells us of Chota Nagpur that it is largely cultivated

Wild in India.

Bengal.

508
but that he never found it wild. Basu (*Agri. Lohardaga*, 79) remarks that it is sown in July to August. It is allowed to climb on trees or hedges, and the green pods are procurable in January to March. Mukerji (*Handbook Ind. Agri.*, 1901, 263) writes that the time for sowing is July (the quantity of seed per acre being 5 to 8 lb.) and that the time of harvesting is January and February, the yield being 250 to 400 lb. per acre. Banerjee (*Agri. Cuttack*, 1893, 118-9) observes that it is planted in specially prepared holes or pits about the middle of June. The plants flower in November-December and the crop is obtained in February-March. Speaking of Assam, it is met with not only in the valley proper but also in the Naga, Garo, Khasia hills and Manipur—each locality having distinctive indigenous names for it. About 45 seers of pods are obtained from each plant in the year, and the average price is six pice a seer.

United Provinces.*—Duthie and Fuller (*Field and Garden Crops*, pt. ii., 23) observe that in these provinces this pulse is commonly grown along the borders of tall crops and allowed to twine itself on the plants standing on the margin. Castor-oil is a favourite support. It is never grown as a field crop by itself, as it requires artificial support. Duthie (*Fl. Upper Gang. Plain*, 229) remarks that it is extensively cultivated for its pods, which are harvested in the cold season.

Central Provinces and Berar.*—It is often met with as a field crop in these provinces. Two forms are seen, one with white, the other with dark purple flowers. They are usually grown in lines through the fields, special supports being furnished, or they are left to crawl and to take such support as they can from the stubble of the associated crop.

Bombay.*—There are several very distinct varieties or races of this pulse met with in Western India. These might be grouped into garden and field varieties. The former (as with the other provinces) can be spoken of as late *kharif* plants, since they come into season about December to January. Mollison (*Textbook Ind. Agri.*, 1901, iii., 80) furnishes an interesting account of this Bombay crop. He says that the form known as *surti pâpdi* is grown extensively in gardens in the Surat district. The beans are plucked early and eaten like French beans. The field variety of Surat is a second crop, bitter to taste and called *kadeva vâl*, but in Southern Gujarat there is still another field form that has smaller pods and is drilled with rice and *tucer* (*Cajanus indicus*) during June-July. The principal crop is the *rabi*, which usually follows rice. It is sown alone or with castor-oil (the dwarf variety). *Vâl* is also grown among other pulses subordinate to *juar* or *bâjri*. When the *juar* is reaped, a long stubble, 3 to 4 feet high, is left. This, with the vigorously growing castor-oil and *tucer*, affords support to the climbing *vâl*, and heavy successive crops of green beans may be plucked from November to March. The most suitable soil for *rabi vâl* is a heavy black clay retentive of moisture. When the leaves turn yellow and begin to drop off, the crop of ripe beans may be gathered. Mollison adds that on good soil and with careful cultivation 1,300 lb. of pulse and an equal weight of useful fodder per acre may be obtained, off the same field from which a crop of rice has been previously harvested. And this is supplementary to the supply of green pods that may have been collected as a fresh vegetable in the early months of growth. The Department of Land Records and Agriculture, Bombay Presidency, in their *Season and Crop Report* for 1903-4, gave 94,993 acres as the total area under this crop; and for 1905-6,
DURIO
ZIBETHINUS

Durian

52,969 acres, with, in addition, 232 acres in Sind. The chief localities are usually—in Gujarat, Surat; in the Deccan, Poona; in the Karnatāk, Belgaum and Bijapur; in the Konkan, Thāna and Kolāba.

Madras.

Garden Crop.

Madras and Mysore.—Very little can be said regarding this crop in South India except that it is grown in gardens, being sown from June to August, and reaped from October to March. In the *Dictionary* will be found a selection of passages from the *Madras District Manuals*, and these may be consulted. Rice (*Mysore Gaz.*, 1897, i., 112) says it is always cultivated with *vdi* (*Eleusine coracana*). When the plant is cut it is exposed for one day to the sun and then beaten with a stick to separate the seed. [Cf. Buchanan-Hamilton, *Journ. Mysore*, etc., i., 103; ii., 229, 290, 314, 323, 384.]

Burma.

Burma.—Mason (*Burma and Its People*, 1860, 466, 768) says *"the Burmese and Karens grow several varieties of one or two species of Labeo*, which occupy the place of kidney beans in Europe."

Food.

FOOD AND FODDER.—It is difficult, if not impossible, to estimate the actual area under a garden crop such as the present. It is grown all over India more or less, but is comparatively rare in Northern India, becomes abundant in Central, Western and Southern India, and is extended through Bengal and Assam to Burma. As already indicated, it is grown as a green vegetable (corresponding very largely with French beans and as a ripe pulse with the broad bean) and also as a fodder crop. The ripe pulse is eaten by certain classes only or is employed as a cattle food. Church (*Food-Grains of India*, 1886, 161, t. 31) gives the following, deduced from the chemical analyses of the ripe bean:—Nutrient ratio 1:2.5; nutrient value 80. The percentage of albuminoids is rather variable. Leather, in an article on Cyanogenesis in Plants (*Agri. Journ. Ind.*, 1906, i., pt. iii., 224), states that he has obtained prussic acid from the seeds of *vd* by simply allowing the crushed seeds to remain a few hours in cold water. [Cf. Leather, *Agri. Ledg.*, 1901, No. 10, 361; 1903, No. 7, 152, 155, 166.]

D.E.P.

iii., 198.

Durian.

DURIO ZIBETHINUS, DC.; Fl. Br. Ind., i., 351; Gamble, Man. Ind. Timbs., 1902, 92; Brandis, Ind. Trees, 78. MALVACEÆ.

The Durian, *duren, duuyin*. A large tree native of the Malay Peninsula, though wild and cultivated in Tenasserim.

The earliest European mention of this fruit appears to be that of Nicolò Conti (*Ind. in the 15th Century* (ed. Hakl. Soc., Major, transl.), 9), and the first botanical drawing of it would seem to be that given by Jacobus Bontius, 1629 (*Hist. Nat. et Med. Ind. Or.*, in Piso, *Ind. Utr. re Nat. et Med.*, 1658, 118), though a crude representation of the tree and its fruit was given by Aconsta (*Tract. de las Drogas*, 1578, 231). Garcia de Orta (1563, *Coll., xx*) very correctly describes the fruit as agreeable to some, repulsive to others. Linschoten (*Voy. E. Ind.*, ed. Hakl. Soc., 1598, ii., 51—3, 68) remarks that no fruit in the world is to be compared with it, and Pyrard (*Voy. E. Ind.*, ed. Hakl. Soc., 1601, ii., 366) affirms that the Indians "esteem this fruit to be one of the best and daintiest in the Indies." A similar opinion is given by Mandelslo (*Travels in Olearius, Hist. Muscovy, etc.*, 1639, 149), while Herbert (*Travels Ind.*, 1677, 334) mentions it among the fruits of Mangalore.

In size it is 10 inches by 7, has a cream-coloured fleshy aril or pulp enveloping the seeds. The smell is most offensive, but the fruit is highly prized, even by Europeans, when the prejudice against it is once overcome. [Cf. Wallace, *Malay Arch.*, 57.] The plant thrives well in Burma, where it is cultivated both in gardens in or near the villages and on the hill-sides. The garden cultivation is largely in the hands of the Chinese, but the fruit produced is inferior to that from the hills. It sometimes sells in Moulmein at Rs. 20—30 per 1,000. [Cf. Rept. Sett.
UTRASUM OR RUDRÁK BEADS

Operations, Amherst Dist., 1893, 46–7.] It is very successfully grown in Ceylon, and attempts made to cultivate it near Calcutta, on the Nilgiris and at Madras, with little or no success. Herbert's reference to it in connection with Malabar may perhaps indicate an early traffic in the fruit along the western coast of India, a circumstance that might account for its being described by García de Orta and other early European explorers. [Cf. Tavernier, Travels (ed. Ball), 1676, ii, 287; Byeun, Fl. Sin., 1666, O (drawing after Acosta); Alexander Hamilton, New Acc. E. Ind., 1727, ii, 81; Crawford, Journ. to Aza, 1834, ii, 219; Collingwood, Rambles, etc., 1888, 271; Max and Bertha Ferrars, Burma, 1900, 87.]

ELETTARIA CARDAMOMUM

Cardamom

ELÆOCARPUS GANITRUS, Roxb.; Fl. Br. Ind., i, 400; Gamble, Man. Ind. Timbs., 113; Tiliaceæ. Utrasum Bead Tree, rudrāk, rudrākya, rudra-chalulu, rudrāksha. A large tree found throughout various parts of India.

The hard tubercled nuts are cleaned, polished or even stained, then made into the rosaries and bracelets worn by Brahmins and Sinyāsīs, and sold at such places as Benares, Allahabad and Hardwar. An effort has recently been made to organise a European trade in buttons and hatpins, etc., made of these nuts. In a letter from the Deputy Conservator of Forests, Lakhimpur, Assam, to the Reporter on Economic Products in 1900, the price for a maund of nuts in Dibrugarh was said to be Rs. 10, and Rs. 12–8–0 landed in Calcutta. Cooke (Fl. Pres. Bomb., 1901, 152) remarks that the stones are imported from Singapore, where the tree is abundant.

E. serratus, tins.; Fl. Br. Ind., i, 401; falpai, periṅkara, merula, uttraccham, etc. A rather small tree, occurring on the North-East Himalaya up to 3,000 feet in East Bengal, and in the evergreen forests of North Kanara and the west coast down to Travancore; also the low country of Ceylon. The fruit is known as "wild olives," the fleshy outer portion of which is eaten in curries by the Natives, and picked in oil and salt like olives.

ELETTARIA CARDAMOMUM, Maton & White, Trans. Linn. Soc., 1808, x, 229–55, tt. 4, 5; Fl. Br. Ind., vi, 251; Sittamineæ. This is often designated The Lesser Cardamom or The Malabar Cardamom, though it perhaps would be more correct to speak of it as The True Cardamom, the so-called Greater Cardamom of most writers (Amomum subulatum, p. 65) being in reality a substitute for the true spice. The Cardamom is in the Indian vernaculars—elāchī, ilīyechi or choti—(small) elāchī, ilāchī, elechī, vellooda, elātari, elākai, elāchē chettu, vittula, yālakkī, yelaki, panlāt, pala, bhādā, ensul, ensai, etc. In Sanskrit it appears to bear the following names—upakunchika and elā. Hence elā-tari means the grains or seeds of elā, and elākai the elā plant or root.

Habitat.—It is a perennial herb, with thick fleshy rhizomes, having erect leafy stems 4 to 8 feet in height, and long much-branched inflorescences which arise near the ground. It is indigenous to West and South India, growing in the rich moist forests of the hilly tracts of Kanara, Mysore, Coorg, Wynaad, Travancore and Madura. It is fairly extensively cultivated, within the regions indicated, at altitudes of from 500 up to 5,000 feet. Although there are no botanical specimens in the Kew Herbarium to support the opinion held by some writers, namely that it is also wild in Burma, there would seem little doubt that it is cultivated in that province, especially in the Bhamo district.

Varieties and Races.—There are apparently two well-marked cultivated plants which it seems must be regarded as deserving of separate recognition as at least varieties. In Rees' Cyclopaedia (1819, xxxix., suppl.), the subject of Elettaria is discussed and divided into two sections (a) E. Cardamomum, the
ELETTARIA CARDAMOMUM

Cardamom

Lesser or Malabar Cardamom, and (b) *E. major*, the Greater Oblong Cardamom. The authorities mentioned for the second form can hardly be accepted as definitely denoting any particular plant, but rather one or other of the many cardamom substitutes. Moreover, the so-called form designated *major* is spoken of as a native of Java. This subject might not have been here mentioned but for the fact that Schumann (in *Engler, Pflanzenr.*, 1904, iv. (48), 269) describes the Ceylon *Elettaria* as a distinct species, and cites the above authority (Smith in *Rees, l.c.*). Hooker (in *Handbook Fl. Ceyl.*, iv., 261) makes reference to *var. major* and gives it the Sinhalese name of *enasil*, the Malabar plant being *rata-enasil*. But Thwaites tells us (*Enum. Pl. Ceyl.*, 1861, 318) that after a careful comparison of growing specimens, he was satisfied that the round and long fruited cardamoms of commerce were not obtained from distinct species. The forms above indicated may therefore be stated thus:—

Var. *a minor*—Leaves linear-lanceolate (much smaller and narrower than in *b*), the under-surface with a more or less complete coating of short white silky hairs. Inflorescence arising from the very base of the stems and creeping on the surface of the ground around the clumps, bracts shorter than the spikelets, acute. Fruits white, sub-globular, angled, somewhat coarsely veined.

This is the Malabar cardamom of Indian planters, and is admirably figured and described by Bontius, Rheede, Somerat, Maton and White, and also by Ludlow. An unpublished plate by Roxburgh shows the creeping inflorescence, bracts shorter than the flowers and fruits elliptic. It is, therefore, typical of this plant. He gives no drawing of the next form. Bontius claims to have been the first person to study in Java the living plant and to distinguish the lesser from the greater cardamom. There are good examples of the present form in the Kew Herbarium from Kanara, the Wynnad and Ceylon—the last mentioned being less hairy than the Indian, but said by Trimen to be "the Malabar cardamom of Ceylon planters." The present plant is, however, the lesser cardamom; the one which follows, being much larger fruited, is very possibly, in consequence, the greater cardamom of the early writers, though as already stated that name has been frequently assigned to the Nepal cardamom (*Amomum subulatum*).

Var. *b major*, Thwaites, l.c. 318; *Fl. Br. Ind.*, 251.—Leaves oblong lanceolate (broader and larger than in *minor*), usually quite destitute of silky hairs (one Ceylon sample in Kew is sparsely hairy). Inflorescence at first erect, bracts larger (longer) than the spikelets and obtuse or apiculate. Fruit oblong-fusiform, minutely veined, twice the length of that of *minor*.

This is the Mysore cardamom of planters, who speak of two forms of it, viz. *uru* (cultivated) and *kadu* (wild). It is a larger, more robust plant than the so-called Malabar. In the Kew Herbarium there are, however, examples of it from Malabar, Palghat, Ceylon, Mauritius and the Gold Coast. Thwaites and Baker say it is indigenous in Ceylon. Bontius observes that it occurs in the woods of Java, and he figures it as differing from the lesser cardamom by having an erect scape, longer pods and more hairy leaves.

Some few years ago a large cardamom was regularly seen in the European markets and known as "Ceylon Cardamom." At the present day the Malabar form is grown in Ceylon and has displaced the former plant. Thus a large-sized true cardamom has been a well-known plant for many years, and it would almost seem as if it had been carried even further afield by cultivation (perhaps because harder) than the smaller and finer spice. This, therefore, very possibly may have to be accepted as the Greater Cardamom proper.

Origin.—Whether both these forms exist as wild plants and whether they originated respectively in Malabar and Mysore, as the planters' names would denote, are points which more careful study in the future can alone determine. It has been suggested that the Malabar is simply a higher state of cultivation than the Mysore and Ceylon. The plants are at all events sufficiently distinct to justify belief that they have been known to the Indian people for many years. It is significant also that the earliest faithful illustrations (such as the admirable plates given by Rheede) denote in every particular the Malabar, not the Mysore plant. So far as can be judged, the Malabar Cardamom, three centuries ago, differed no respect from those of to-day. But no botanist (if Bontius' somewhat doubtful figure be disregarded) appears to have illustrated and described the Mysore form even down to the present time. These circumstances are opposed to belief in the ancestral stock of the Malabar having been the long-fruited Mysore plant.

Lastly, Rheede makes no reference to either having been cultivated in Malabar.
rhizome, it should be seen that each cutting contains at least three perfect shoots. Holes a foot deep and six or seven feet apart each way are now dug all over the specially cleared plot or garden, and the seedlings or sets are deposited within these, but they must not be buried too deeply as they are liable to rot off. The flowering season is April to May. It is a good plan to bank up around the clumps all leaves and rubbish obtainable, since this helps to support and encourage the growth of the creeping racemes. If at this stage the flowering branches (racemes) get submerged, the soil is washed away, the roots exposed, and the flowers and fruits ruined with the water and mud. The fruit should not be allowed to ripen fully, as the capsules will then burst and the seeds be lost. They should be collected just as they begin to turn from green to yellow. In August and September, the first half of October have usually attained the desired degree of ripening. The crop is accordingly gathered in October and November, and in exceptionally moist weather the harvest may be protracted into December. A dry day is best for harvest. The scapes or shoots bearing the clusters of fruits are broken off close to the stems and placed in baskets lined with fresh leaves. At night time they are carried to the temporary hut used by the men. After partaking of a meal and often working far into the night, the men separate carefully the capsules from the shoots, placing them as removed into a pit dug on purpose in the middle of the hut. In the morning the women arrive and carry the produce off to the homestead, where the further treatment is conducted. The fruits are spread out on carefully prepared floors, sometimes covered with mats, and are then exposed to the sun. At night they are carried within doors, as also during showers. Four or five days of careful drying and bleaching in the sun are usually enough, but in rainy weather artificial heat may be necessary, though the fruits suffer very greatly in colour when this course has to be resorted to, and are in consequence sometimes bleached with steam and sulphurous vapour or with ritha nuts (see p. 793). The sun-dried cardamoms are the best, and in trade are spoken of as "green cardamoms." The capsules are now rubbed by the hand or shaken within mats, in order to brush off the pedicels, calyces, particles of dust, etc., then are winnowed, hand-picked and assorted according to size, colour and degree of ripeness, etc.—for on the racemes there must always be a percentage of overripe and also of underripe fruits.

2. Agricultural Production.—Very little of a satisfactory nature can be learned of the systems pursued or of the extent of agricultural production in India. Mollison (Textbook Ind. Agri., iii., 262) gives a brief but instructive account. He there speaks of the crop being extensively grown in the betel-palm and pepper gardens of the Siris and Siddapur Taluks of Kanara. It thrives under the same conditions of soil, etc., but by preference is grown in a cool, very shady garden with soil kept continuously moist. In Kanara the crop is chiefly raised from seed. The sowing season is September—October. But the beds require both shade and shelter from the sun and rain. If the seeds germinate too thickly they should be thinned out, and the seedlings transplanted into rice seed-beds, but shaded by a temporary protection of palm-leaves. When four feet high and fifteen to eighteen months old, they may be carried to their permanent positions and finally transplanted from March to June, or again from September to October. Pits 18 inches square and 18 inches deep are dug in the same lines as the betel-palms and intermediate between two trees. Into these pits the cardamoms are deposited and supplied yearly, in March and April, with leaf-manure. They come into bearing but do not yield much during the first year after transplanting. The flowers appear somewhat irregularly in April and May, and the fruits form in June and July. The capsules are in season in September and October. Each should be severed from the scape and not plucked. If plucked, the pressure of the fingers may burst the capsule. After being dried in the sun for two or three days, the fruits are hand-rubbed to remove the attached stalk and calyx. A too hot sun or too long exposure to the sun may dry the fruits (capsules)
too quickly and thus cause them to burst and thereby to be lowered in value. In a fully stocked betel-nut garden there can be 300 to 400 cardamom plants to the acre. A well-grown plant may yield up to half a pound of dry cardamoms. Light showers in April and May are favourable. The fruits are dried and bleached in particular ways, according to the market for which destined. The waters of certain wells are moreover supposed to produce particular colours and flavours. The system above briefly reviewed is that also followed in Mysore—viz. production in betel-palm plantations.

Yield.

AREA AND YIELD.—Ludlow observes that when from one stem four scapes are thrown out, the crop is regarded as full; if only three, it is a three-fourths crop; if two, a half crop; if only one, a quarter crop. "One raceme will have from eight to fourteen branches, and each branch from three to six pedicels. When the crop is good, the branches are close together; when bad, the racemes are long and the branches far apart." "Fruit is occasionally borne on the upper part of the stem, but this is very rare." He further estimates that a garden of 484 square yards in area would give on an average 40 seers of green cardamoms or 10 seers of dry fruits. The actual yield, as published, by plantations is variously stated, and seems to range so greatly that the differences would be best accounted for by supposing that returns of green fruits had been contrasted with dry, or that they denoted diversities in stock rather than of soil or methods of cultivation. In Mysore 28 lb. are spoken of as the yield per acre, and in Ceylon 170 lb., although even as much as 400 lb. have been mentioned. In a circular issued by the Madras Government in 1903, the yield per acre is recorded as from 11 lb. to 700 lb. Omitting the extremes, the more important returns given in that circular were Dindigul, 93 lb.; Palni, 125 lb.; Kodaikanal, 250 lb.; Wynad. 42 lb.; Calicut, 50 lb.; Uppinangad, 49 lb., and Kasaragod, 56 lb. The difference between green and dry pods has been expressed as four to five bushels shrinking to one.

Area: Madras.

Very little can be stated regarding the total area under cardamoms. There may be said to be two Indian areas, viz. the Madras and Bombay Presidencies. The former, which is often given the wider signification of South India, may, so far as cardamoms are concerned, be split up into (a) under British Indian Administration, or Madras proper; (b) the British Administration of Coorg; (c) under the Native State of Mysore, and (d) under the Native State of Travancore. Such particulars as are available regarding these areas are disjointed, and often do not refer to one and the same year. Cardamoms are of course returned under "spices and condiments," and it is only occasionally that the provincial details for these are forthcoming. The Madras Government published, however, in 1903, a statement of the cardamom area for the year previous. This showed Madura (Dindigul, Palni, Periyakulam, and Kodaikanal)—as possessing 3,714 acres with a yield of 649,281 lb. Malabar—(Chirakkal, Kottayam, Kurumbranil, Wynad, Calicut, and Ernad)—with 1,586 acres and 24,496 lb. yield. South Konara—(Cundapour, Uppinangad, and Kasaragod)—with 1,260 acres and 68,828 lb. yield. These give grand totals of 6,560 acres and 742,605 lb. In the small British Province of Coorg there are said to be about 60,000 acres retained for cardamom growing, with, in 1902-3, 1,107 acres actually under the crop and say 50,000 lb. production. Turning now to the Bombay Presidency: in the official Seasonal Crop Report it is stated that the area in 1903-4 under cardamoms in the Konara district came to 3,537 acres, or roughly half the area devoted to it in South India. If, for the purpose of comparison, the yield be accepted as on the same ratio, the production of Bombay should be 370,000 lb. In 1905-6 the area had increased to 4,573 acres.

The available information regarding Mysore and Travancore output is even more unsatisfactory than for the British districts. A few years ago the Travancore Cardamom Hills Planters' Association was established, a direct indication of the industry having in South India (as in Ceylon) passed to some extent into the hands of European planters. Of 1903 it has been said that 4,000 acres of cardamoms were owned by European planters. According to Mr. Bourdillon there are some 26,000 acres returned in Travancore as the cardamom area. Doubtless only a small proportion of that is in any one year actually under the spice. The produce of the Travancore plantations has been given as 650,000 lb. or just a little under that of Ceylon, which is obtained from an area of 10,000
PRODUCTION AND TRADE

ELEUSINE CORACANA
Rágí

All India.

TRADE.—In the European markets cardamoms are spoken of under the terms "Shorts," "Short-longs" and "Long-longs." The "shorts" are from a quarter to nearly half an inch in length, and the "long-longs" an inch and over in length. The "long-longs" of modern commerce, it has been contended above, would seem to be the greater cardamom of early writers and the produce of the plant designated by planters the "Mysore or Ceylon cardamom." They are finely ribbed, of a pale colour, and the seeds are grey or almost white, and shrivelled when dry. The "shorts" are the Malabar or Wynaad cardamoms, and accepted as the finest grades, the ripe seeds of which are black.

In most recent reports the statement occurs that overproduction has lowered very seriously the price. It would appear that in many of the abandoned coffee plantations of Coorg, cardamom and orange cultivation has been attempted, and with some degree of success. There has all over the cardamom area been for some years past a steady expansion of production, so that no doubt there is some truth in the story of overproduction. Still, it cannot be exactly said that the limits have been reached of the world's demand for this spice, and a fall in price is naturally the first incentive to increased consumption. The exports to foreign countries during the mentioned years have at all events shown an expansion in quantity and a shrinkage in price. They were in 1899–1900, 191,120 lb., valued at Rs. 3,27,750; in 1902–3, 302,940 lb., valued at Rs. 4,16,242; in 1905–6, 295,390 lb., valued at Rs. 2,97,513; and in 1906–7, 202,374 lb., valued at Rs. 2,19,172. Of that traffic Bombay and Madras are the chief distributing ports. The coastwise returns, moreover, show that Bombay drew on Madras for its supplies. Of receiving countries the United Kingdom usually takes the first place, and is followed by Arabia, Aden, Germany, Turkey-in-Asia, Persia and Egypt. But perhaps the most surprising feature of the traffic is the fact that India imports cardamoms very largely from Ceylon. In 1903–4 these imports came to 269,132 lb., valued at Rs. 1,98,710, and in 1905–6 to 435,407 lb., valued at Rs. 2,58,083—as much in weight, but comparatively less in value than the corresponding exports. We thus learn that India is itself by far the most important consuming country for cardamoms in the world.

ELEUSINE CORACANA, Gaertn., Fl. Br. Ind., VII, 294; Dutchie and Fuller, Field and Garden Crops, ii., 10, pl. xxviii.; Gramineae. It has been established by Sir J. D. Hooker that E. indica, Gaertn., is the wild form of which E. coracana is the cultivated state. There would therefore seem no urgent necessity to discard for the present the time-honoured name by which this millet has been known to those interested in the food supply of India. The wild plant is said to occur all over the low country and to ascend to altitudes of from 5,000 to 8,000 feet on the Himalaya. It is distributed throughout the tropical regions of the Old World, but only introduced into the New. As an Indian cultivated plant, however, it

517
ELEUSINE CORACANA

Rági

might be more correctly spoken of as met with chiefly on the hilly tracts. With the hill tribes of Southern, Western and Northern India it is an important article of daily food. It is mentioned in The Bower Manuscript, of the 8th century, and is the rájika and rági of Sanskrit, and known in almost every vernacular language by names either derived from these or from what are possibly even more ancient aboriginal names:—maru, manduá, makra, mandal, mandwa, meruya, nángli, náchui, nachiri, náphi, kodé, kodou, koda, kodra, kayur, kévar, kelvarágú, kutra, kurakan, roth, rági, rágulu, tamidelu, taindulu, bóte, etc.

Names.

Origin. Varieties and Races.—There is perhaps little or no doubt that as a cultivated crop this originated in India. There are at all events three or four allied wild species regularly resorted to as articles of food in times of scarcity and famine. And moreover, of the cultivated plant there are in India several fairly distinct forms which almost of necessity denote antiquity of cultivation. *E. stricta*, Roxb., has the spikes quite straight and more numerous; is in consequence a very productive plant. Roxburgh, speaking of Rajamundry (*Fl. Ind.*, i., 344), describes this as the *pedda* (or great) *solu* and says it is a later crop than the ordinary *ponasa* (or early) *solu*. He then adds that there is still a third and even more productive form than either, namely the *maddi ruba solu*. It requires a rich soil but gives an increase of 500-fold.

Forms.

Early and Late. Other writers refer similarly to early and late forms of this millet. Mollison (*Textbook Ind. Agr.*., iii., 56-60), for example, observes that in the Konkan and the Ghats districts the early crop is *halei* and the late *gare*; the former ripens about the end of September or early October, the latter at end of October or early November. It is therefore a rainy-season crop, and is usually sown on land that is too shallow or too poor for rice or too steep for terracing. But if the rainfall be well distributed it succeeds even on clay loams. The variability of the plant may in fact be regarded as a direct consequence of the class of soils on which grown. On stony and sandy soils the form that approximates most nearly to the wild state (*E. indica*) can alone be produced, and it is an inferior early crop. From that to the large and vigorous late forms of richer agricultural regions, an endless series of adaptations may be chronicled.

Adaptations.

Bengal. CULTIVATION.—Bengal.—Until it is recollected that Bengal has large tracts of mountainous country it cannot be realised why this province holds the second position of importance in the cultivation of the present millet. The Bengal districts of production may be given here in sequence of value:—Darbhanga, Bhagalpur, Hazaribagh, Muzaffarpur, Patna, Gaya, Shahabad, Saran and Monghyr have each from 250,000 down to 40,000 acres under the crop. The normal total acreage under it is about one million acres, and the outturn has been put at 10 maunds an acre. Buchanan-Hamilton (*Stat. Acc. Dinaj.*., 1833, 173, 182) describes the method of cultivation as a mixed crop with summer rice and *cajanus*. In connection with Bihar he says it is grown as a summer crop broadcasted or transplanted, but of Bhagalpur there are two crops, one gathered in November—December, and the other three months earlier. Basu (*Agri. Lohardaga*, 1890, 63-5; also *Palamau*, 28-9) calls *mará* an upland cereal. There are two main varieties, an early red *lól* and a late white *charka*; the former is a *bhadoi* crop which is harvested from August 15 to November 15, according to the season of sowing, the race of plant grown, the nature of soil, and degree of rainfall. It is usually transplanted and has this advantage, that harvest can be deferred to suit the convenience of the cultivator. Col. J. J. Wood speaks of the *mará* as widely and extensively grown in Chota Nagpur. Banerjei (*Agri. Cuttack*, 1846, 74-5) remarks that the *mandia* is an upland cereal and attains a height of 4 to 5 feet and bears grains of a reddish colour. The fields are prepared in May to July and the plants

Varieties. Transplanted.
CULTIVATION IN INDIA

raised in a seed-bed and transplanted with the first good showers. The crop is ripe in August—September. The ears alone are cut off and the stems left in the ground to be browsed by the cattle. It will not grow on land that is inundated, nor even where the water lies for any time. It is essentially a crop of undulating well-drained soils.

United Provinces.—This millet is unimportant in these provinces. The normal area under it does not much exceed 200,000 acres. It is, in fact, within the hill tracts only that it assumes importance. Of Allahabad it is said marda or makra is sown on good soils near the villages sometimes with judur, more often alone and on manured land. The seed is broadcasted and ploughed in, but it may be transplanted from a nursery. Dutthie and Fuller (i.e. 10), on the other hand, say of Jaunsar Bawar that it forms the chief article of food of the hillmen and is grown on the very poorest soil, often yielding a crop from mere stones and shingle. It is very rarely raised on the hilly country to the south of these provinces, where its place is taken by kodon. It grows, however, to a greater or lesser extent all over the provinces, and in the more fertile districts its cultivation is often attended with considerable care which results in a very large weight of produce. It suffers much from heavy rain, so much so that a good year for rice is generally a bad one for mandua. In Garhwal mandua is sown in April and reaped in October. It is often thinned out from one field and planted in another. In Kumaon it is cultivated both in ordinary agricultural lands and freshly cleared jungle. By October—November the crop is ripe and the ears are cut off, tied in bundles, and stacked for some twenty to twenty-five days, when they begin to ferment, and when warm are spread out and dried, then threshed. In Nepal there are two forms cultivated: one sown broadcast in May and June, the other raised in seed-beds and transplanted in June and July. Both forms grow and ripen in the rains. The broadcasted form is reaped in October, then transplanted in November. It is never, as a rule, sown on land suited for wheat, rice or sugar-cane.

Panjâb.—In this province Eleusine holds a very subordinate position among the foods of the people, since the normal area under it does not exceed 40,000 acres. Baden-Powell (Pb. Prod., 1868, 245) says this is principally a hill product, but is also cultivated in Sialkot and a few other districts. In the Memoirs written by the Emperor Baber occurs a reference to buzech, a kind of beer consumed by him on December 28, 1525, in or near the district of Sialkot. Mr. W. Coldstream, in a communication to the writer, says the grain of this pulse lasts in store much better than other grain. It is extensively grown in the Simla Hill States and comes into season in October. In the Kangra district it is an important food crop. In the Panjâb plains it is most frequently met with in the Karnal district, but chiefly in the Khâdâr. It is not uncommon in Jhang, especially in Chiniot. It is valued as a fodder crop, and may be cut two or three times in the rains.

Bombay and Sind.—Western India having extensive hill tracts, this millet becomes of considerable value. The normal area under it is about half a million acres. Dr. A. Gibson wrote a series of notes on the Agriculture of Western India (Journal Agri.-Hort. Soc. Ind. (Corresp. and Select.), 1845, iv., 54–5), and the remarks he makes under this plant are well worthy of careful consideration. The form E. stricta, he says, is met with in gardens below the Ghats, where alluvial soil and stream water are available, while E. coracana is the hill form, a smaller plant and much less productive. Mollison says that nöghi occupies the fifth place among the Bombay cereals. In Kaira, Ahmedabad and Baroda districts of Gujârat, heavy crops are produced on highly assured alluvial soil. Elsewhere the cultivation is chiefly confined to the poorer uplands of the Ghats. It is grown in districts of heavy rainfall, on land too light for rice. In Gujârat it is sometimes drill-sown, but is usually a mixed crop and most frequently transplanted. In the uplands of the Konkan and the Deccan it is often raised on steep land and is then broadcasted. For this purpose the soil is often burned with the brushwood (râb), and the seeds are sown along with the ashes. The outturn varies so greatly that no general figure can be quoted. It may range from 700 to 1,600 lb. of grain and 2,000 to 2,400 lb. of straw.

Madras, Mysore, and Coorg.—South India is the chief region of nöghi production. The normal area under it in the British districts comes to close on two million acres, but in Mysore State alone the area is usually well over two million acres, so that the total for South India might be put at 4½ million. The British
districts of greatest importance are Salem, Coimbatore, Cuddapah, North Arcot, South Arcot, Trichinopoly, Nanaptops, Visagapatam, in the order enumerated. The Mysore districts are Mysore, Tamkuri, Bangalore, Kolar, Hasan, Chiliadurg and Kadur. As with other economic products so with this millet, Buchanan-Hamilton (Journ. Mysore, etc., 1807, i., 100-3, 285-6, 297, 369, 375-7, 403; ii., 103-4, 254) is a valuable writer. The Deccan Mussulmans, he says, call it राजी, the Tamil people keevir, and the farmers say there are three varieties—the kart, kempu, and hulupara. It is, near Seringapatam, customary to sow all three kinds in the same field. When the rains begin in June the field is drilled and Eleusine and Cajanus sown as a mixed crop. To appreciate the value of Buchanan-Hamilton's account of this millet, the passages indicated above must be consulted. They have, however, been reviewed and amplified by Lewis Rice (Mysore Gaz., i., 1897, 107-12, a work which is probably more accessible than the original). राजी is by far the most important single food crop of this State, especially on dry soils. It supplies the lower ranks of society with their chief food. The total area under food crops is usually 54 million acres, of which राजी alone occupies fully half.

Very little, however, can be added regarding the South Indian cultivation of this millet, to the account given in the Dictionary. Stuart (Man. N. Arot, 1895, i., 267-8) says it is a favourite four-month crop, the grain being largely used by the labouring classes. It is not a dainty food, but very nutritious. There are four varieties. It is grown both on irrigated and unirrigated land, but most commonly in that which is commanded by the monsoon. When dependent upon rainfall alone it is sown so as to get the benefit of one or other of the monsoons, that is from May to June and from October to December. Under wells and tanks it is sown and reaped throughout the year. Only the ears of राजी are cut as they ripen, and, being heaped together for two or three months, the grain is beaten out with sticks or trodden underfoot by cattle. It should be kept some months before being used.

Milked.

Husked Grain.

Beer.

Kim.

Drinking-parties.

Utilisations.

Preserving Quality.

Paying Crop.

THE RÁGÍ MILLET

ELEUSINE CORACANA

Rági

Dry Soils.

Four-month Crop.
WHITE SILK-COTTON TREE

ERIODENDRON ANFRACTUOSUM
Kapok

intoxicating liquor of it, called bouzah, the same, probably, with the oinos krithinos of the ancients. This is very copiously drunk by the lower rank of people." (See remarks regarding bezs and mura under Cannabis sativa, p. 257).

In the Marāthā country the fermented liquor of Eleusine is called bōjāh or bōjālī, and 100 years ago it was perhaps more extensively made than to-day. Howe (Tours in Gujarat, etc., 1787, 21) speaks of the adulteration of mowra liquor with Acorus root. The liquor in question may have been the mowra (Eleusine), or of course it might have been mahua (Bassia), which Howe in another passage calls mowra. In Kumaon it is called daru (Bassia, see p. 119). A similar beer is made here and there all over the Indian area of Eleusine, and throughout the Himalaya from Kashmir to Sikkim. It is, however, displaced in Assam and the Naga hills by the beer made from Coted (dau, see p. 396), also more recently by European Malt Liquors (see pp. 757-8).

Area, Yield and Trade.—The total area for all India devoted to this crop averages from 5½ to 6½ million acres, of which nearly two-thirds are in South India. It is possible that were it returned for Hyderabad (Deccan) and other States (not at present obtainable) added to the returned area, the grand total would not be far short of 7,000,000 acres. The yield is variously stated at from 5 to 10 or more maunds per acre. If a yield of 400 lb. be accepted as a safe mean average, expressed to the estimated acreage that would show an annual production of 25,000,000 cwt. of edible grain—a by no means insignificant item in India's food supply. To South India, which approximately consumes two-thirds of that amount, it is an exceedingly important article of diet. There is no mention of this millet in the foreign trade of India, so apparently the produce is entirely consumed within the country.

ERIOBOTRYA JAPONICA, Lindl. ; Fl. Br. Ind., ii., 372; Firminger, Man. Gard. Ind. (ed Cameron), 250; ROSACEAE. The loquat or Japan Medlar.

A tree indigenous in China and Japan; cultivated in Northern and Eastern India, and, like the litchi and other Chinese plants, is most successfully grown in Assam. The fruit is much appreciated and comes into season about the middle of March, and may be purchased almost everywhere in India for six weeks or two months thereafter.

ERIODENDRON ANFRACTUOSUM, DC. ; Fl. Br. Ind., i., 350; MALVACEAE. This is the White Silk-cotton Tree, the Kapok Tree of the Dutch, and in India is the safed simal, sensial, katan, hatan, shamsula, katasawar, ulavam, buruga, pur, kadami, dudhi mara, pamia, etc. Is a moderate-sized tree fairly plentiful in some parts of Western and Southern India and Burma, but doubtfully indigenous. Largely planted around villages and temples, and if a demand arose for it, of sufficient importance, its production might be greatly extended.

History.—Jacobus Bontius (Hist Nat. et Med. Ind. Or., in Piso, Ind. Utr. re Nat. et Med., 1658, 105) was perhaps the earliest author to figure and describe this tree. He lived in Batavia in 1629, but it is not quite clear whether his Abor Lanigera (which he identifies with the Gossampines of Pliny (bk. 12, ch. 10, 11) had been seen by him in the Malay or in India. His engraving though quaint, is unmistakable, but he describes the tree so minutely that without his figure even, there would be little difficulty in identifying the plant as Eriodendron. The oblong pods produce wool that cannot be carded as it is too short, but throughout India it is sought for as a material with which to stuff couches and cushions. It is in passing worthy of remark that Bontius makes no mention of the true cotton, nor of the red-silk-cotton tree, both of which he must have seen in India at least. From this silence it may be inferred that the Abor Lanigera was a Batavian tree. Rheede (Hort. Mal., 1682, iii., tt. 40-51) gives a sketch of it not unlike that of Bontius, but his other pictures might be described as quite as
ERIODENDRON
ANFRACUTUSUM
Kapok

WHITE SILK-COTTON TREE

Good as many others produced up to two centuries later. He tells us that it occurs everywhere in Malabar and bears fruit in January and February and pods on fresh leaves in March and April. Hence if it be not indigenous to India it must have been introduced at a very early date.

Properties and uses.—From the bark a medicinal Gum is obtained; the wood is employed as a TANNING material for leather, and from the bark an inferior bast Fims is sometimes prepared. The seeds yield 28 per cent. of an Oil that much resembles cotton-seed oil, and the cake is found to be a highly beneficial cattle food. The oil is used in Holland as food and in the manufacture of soap. It dries more rapidly than cotton-seed oil. The Wood is of poor quality, and is only of use in the construction of toys. But interest in the plant may be said to be concentrated in the Floss or SILK-COTTON obtained from the fruits. This is known to commerce as kapok, a Dutch-Malay word derived apparently from the Sanskrit karpasyi just as the most general Indian name for the tree is hatian, a word derived from the Arabic katan, and thus its names suggest the similarity of the floss to cotton. Gamble (quoting Trimen) very properly remarks that the kapok cotton is obtained, not from the tests of the seed but from the wall of the capsule. This is perhaps more than a botanical peculiarity, and doubtless accounts for some of the characteristics of the floss, which is used in nature as a packing material for the seeds, but is not, like cotton, formed from the seeds themselves. Kapok is of better quality than the corresponding cotton of Bombax as it is more elastic, and when used for upholstery is less liable to knot. Both Boerhaaves and Rheeze (as already shown) mention that the cotton is used in stuffing couches and cushions and is held in great esteem because of its softness. Rumphius (Herb. Amst., i. 196, t. 80) tells us that in his time (1750) the tree was very abundant in Java and had been carried from thence to most of the Malayan islands. He further remarks that although the fibre is too short to spin, it is largely used for filling cushions and has the advantage of not being, like ordinary cotton, easily rolled into balls. During the Colonial and Indian Exhibition of London (1885–6) I showed samples of Indian kapok and other silk cottons and urged the claims of this particular fibre to attention. It is only within the past decade or so that the subject seems to have attracted the notice of Indian merchants as being something more than a curiosity. It would thus almost seem as if the plant had been in India more highly esteemed over two centuries ago than to-day. And it is precisely in upholstery that the fibre has in Europe come into prominence. Fairly largely exported from Java. In 1898, for example, the traffic came to 51,919 bales, and in 1901 to 74,123 bales. Of the last-mentioned year’s consignments 45,631 bales went to Holland, 23,192 bales to Australia, and 5,300 bales to the United States. The supply received by Holland in 1903 was 51,918 bales. Ceylon would also appear to have commenced to export this fibre. India exports none, and the local demand even is insignificant, Bombax floss (see p. 168) taking its place.

According to some writers the increasing demand for this floss in Europe necessitates belief that it is being used for textile purposes. But it is too fine, light, smooth and slippery to be easily spun, unless used as an admixture with other flosses. It is reputed to be employed in Bordeaux for the manufacture of soft non-conducting felts. Attempts have unsuccessfully been made to blend it with the fur fibre of the coney and hare, in the production of the “nap” of silk hats. The Kapok Supply Company of London announce that they are using it very largely in the construction of life-belts, life-buoys, etc., and that it is regarded as superior to cork or hair since much more buoyant, softer and cheaper. Life-jackets may be padded with kapok and rendered waterproof by being lined with waterproof cloth. It is, however, as already mentioned, in upholstery mainly that kapok has found its most important use. It is largely worked up for cushions, pillows, chairs, bedding, etc., in Holland, Germany, Australia and the United States, but only to a comparatively small extent in England. For these purposes its non-hygrosopic character, its softness and resiliency render it peculiarly suitable. It is also less absorbent, less liable to harbour insects, and can be sterilised by heating at least three times without being seriously damaged. With so much to recommend it, the apathy preserved in India is remarkable; but there is this to be said of it as possibly explanatory, viz. that so far the Indian floss has fetched less than that of Java. This is by some believed to be due to defective methods of collecting, cleaning packing, pressing, etc.; by others and perhaps with greater reason, as due either to climate or stock of plant grown. Certainly the opinion advanced by some writers (in the Indian press particularly) that

522
VALUABLE SHADE-TREES

kapok is but a Dutch name for the well-known semal cotton—the floss of Bombax—is quite erroneous; the floss of Eriodendron is far superior to that of Bombax, and the two must never be confused with each other. The best qualities of Java kapok are said to fetch from 7d. to 9d. per lb., the Indian not much more than half these sums. The double profit of floss and oil-seed should make the cultivation of kapok profitable in all hotter moist tracts of India that possess an insular climate. The subject is being vigorously taken up in both the French and German colonies, and is well worthy of special consideration in India. [Cf. Watt, Select. Rec. Geot. Ind., 1888, 329-39; Moudeen Sheriff, Mut. Med. Med., 1891, 66; Cameron, For. Trees Mysore and Coorg, 1894, 30-1; Morris, Kew Bull., 1896, 204-7; also Cantor Lect. in Soc. Arts, 1895, 897 et seq.; Dodge, Useful Fibre Plants of the World, 1897, 160; Gamble, Man. Ind. Timb., 1902, 91-2; Talbot, List Trees, etc., 1902, 40; Hannam, Textile Fibres of Comm., 1902, 71; Cooke, Fl. Pres. Bomb., 1903, 4, 121; Wiesner, Die. Rohat. des Pflanzenr., i., 264-6; Perrot, Prod. Bombax et Kapok, in L'Agr. Prat. des Pays Chauds, 1905, v., pt. i., 22-39; Hanausen, Micro. Tech. Prod. (Wintton and Barber, transl.), 1907, 68, 368.]

ERYTHRINAA, Linn.; Fl. Br. Ind., ii., 188-90; LEGUMINOSAE. A genus of trees with prickly branches, large pinnate 3-foliate stipulate non-glandular leaves and conspicuous racemes of papilionaceous flowers, the petals being very unequal so that the standard is much the largest. There are some seven or eight species indigenous to India and widely cultivated remote from their truly wild habitats. They are the Coral Trees (or Mochi-wood trees of Madras), the parijata of the Sanskrit, and their generic vernacular name is mandar or madar.

E. indica, Linn.: a native of Bengal near the sea, cultivated elsewhere; is the pālīta-mandar, paringa, etc., and may be recognised by its blackish prickles. Perhaps this is the species figured and described by Bontius (in Piso, Ind. Utr. Nat. et Med., 1658, 135) in 1629. E. lithosperma, Blume, is a native of Burma, Java and the Philippines. It is a favourite with some of the coffee planters. It has large broad leaves and is often almost devoid of prickles. E. suberosa, Benth., is a native of the more interior tracts. It is characterised by having a thick corky bark and is the pāngrā (or pāngrād, mandal, muns, etc.).

These and other species have from the most ancient times been employed in Indian agriculture as shade-trees and as supports for climbing plants. The belief is universal that they exercise a beneficial influence on the soil, though the explanation of this circumstance, like the employment of clover in Europe, remained inexplicable till the discovery had been made of the value of the root tubercles of these plants in harbouring nitrogen-feeding bacteria. The following crops may be mentioned as those specially noted in which these trees are used—Arca palm (p. 84), Coffea (pp. 379, 383), Pepper-vine (p. 899), and Tea (p. 228). [Cf. Agri. Journ. Ind., 1907, ii., pt. i, 83.]

ERYTHRAXOYON, Linn.; LINNE. A genus of shrubs or trees of about fifty species, natives of warm countries, six of which are Indian.

E. Coca, Linn.; De Candolle, Orig. Cult. Plants, 1884, 135; Warden, Erythroxylon grown in India, Journ. Agri.-Hort. Soc., 1888, viii., n.s., 127-57; Hooker, Bot. Mag., 1894, 7334; Cat. des Pl. Eom. pour les Colon., "L'Hort. Colon.," 1900, 75; Rusty, Drugg. Circ. and Chem. Gaz., Nov. 1900; Greenish, Pharmaceut. Journ., 1904, 493-6; Nicholls, Textbook Trop. Agri., 1892, 234-7; Heuzé, Les Pl. Indust., 1895, iv., 251-5; Wright, Coca, 1907, 75, 109, etc. This is found in various parts of South America, but according to De Candolle is indigenous only to Peru and Bolivia.

Introduction into India.—The Coca plant was introduced into Ceylon from Kew in 1870. At a committee meeting of the Agri.-Horticultural Society of Madras in May, 1876, a letter was read from Mr. Joseph Stevenson in which he suggested the propagation of the plant, in view of the probability of its becoming an important article of commerce. No steps, however, were taken till 1885.
Trade and Cocaline Legislation.—The records of the traffic in the drug are very meagre. The world's supply comes chiefly from South America, but recently Ceylon has begun to export a small amount. India is thus mainly interested in the import traffic, and the repressive measures of the Government. The quantity imported was returned in the official statistics for the first time in 1903, when it amounted to 1,400 oz.; valued at Rs. 18,442. In 1904-5 it was 5,431 oz. (Rs. 59,916), and in 1906-7, 1,771 oz. (Rs. 19,990). Hooper has published a graphic sketch of the growth of the Indian habit of cocaine indulgence. This has also been fully discussed by Dr. K. C. Bose and other writers (Ind. Med. Gaz., Oct. 1901; March 1903). The Bengal habit seems to have originated in Bhagalpur, and spread to Calcutta. Shortly after it was carried to Bombay and Rangoon. So rapidly and alarmingly was this new vice being taken up that the Government of Bengal, with most praiseworthy zeal, in which it was also followed by the other Governments and Administrations, adopted repressive measures. In a notification of October 24, 1906, cocaine was included in the definition of "intoxicating drugs." In February 1902 the sale of the drug without a license became illegal. A further enactment of December 1, 1903, limited the amount that could be held or sold at one time. In consequence importations that would have exceeded the limits of possession were seized by the Customs authorities, and returned to the countries from whence procured. It can thus be affirmed that a wholesome check has been given which it is hoped may in time completely repress this most pernicious utilisation of an otherwise valuable medicinal agent.

The Bastard Sandal or Red Cedar, dévadáram, ná-tá-deódár, simpuliccaí, sammanathi, thasodaram, chembulícan, bendáe, huli, kuruwakumára, jivadá, kumbulkay, dévadárú, adavigóránta, gathír. A shrub or small tree found in the dry forests of the Deccan, Karnátak and Ceylon.

The wood is said to yield an Oill, used as a preservative for Native boats. It resembles tar, and is known in Ceylon under the name of dummele. It is extracted by packing pieces of the wood in an earthen pot inverted over a similar pot which is surrounded by fire.

As a Medicine, Moodoon Sheriff (Mat. Med. Mad., 73) describes the plant as possessing stomachic, diaphoretic and stimulant diuretic properties. In several parts of India the leaves and fruits are used as food in times of famine; in fact they might almost be said to be regularly eaten as a green vegetable. It is reported (Ind. For., 1900, xxvi., 619) that during a recent famine in the Mysore Province the leaves had been largely eaten by the poorer classes. The time for gathering varies from June to December. They are boiled and mixed with salt and chillies. Dr. Bidie suggested that "probably the leaves contain some principle like that of E. Coca," but specimens analysed by the Government Quinologist in Madras were proved to have no anaesthetic property, but to possess a bitter tonic principle which might serve to mitigate the pangs of hunger. [Cf. Cameron, For. Trees. Mysore and Coorg, 1894, 44; Bisooe, Hydrobad Trees, 1895, 6; Ind. Pharmacol., 1896, 55.]
THE CLOVE PLANT

Company were trading in cloves (Birdwood and Foster, E.I.C. First List Book, 36), and a little later we read of the cultivation being very extensively all over the tropics. Rheede does not, however, apparently describe the plant, so that very possibly it was not being cultivated in India during 1688—the date of his great work—the Hortus Malabaricus. About that time, however, the spice was an important article of trade with India. Tavernier (Travels Ind., 1676 (ed. Ball), ii., 17), for example, discusses the Dutch monopoly and the clove traffic of Surat. [Cf. Acosta, Tract. de las Drogas, 1578, 30-4; Thevenot, Travels in Levant, India, etc., 1687, pt. iii., 109.]

Rumphius figures and describes the clove plant (Herb. Amb., 1750, i., 1-5, t. 11), and gives a long list of its vernacular names. He lived and died in Ambon and was, in all probability, familiar with every aspect of the clove plant and trade. The Chinese, he says, called it thenghio (= sweet-smelling nails); the modern Malay name is tejianke and the old Malay name bukalawan; in Ambon it is buhulawan; in Ternate boholawa, and in Tidora gomode. Filet (Plantkundige Woordenboek) gives it the name bobolawa. Crawford (L.C. 101) says, "It is very difficult to understand how the clove could have come first to be used as a condiment by foreign nations, considering the well-ascertained fact that it has never been used as such, and indeed hardly in any other way, by the inhabitants of the countries which produce it." He then proceeds to explain that the earliest names in the Moluccas for the clove are connected with the foreigners who came to their shores to procure the spice. The most frequent name, he says, is komplit, which sounds not the sound of a native word, but is a corruption of the Chinese teng-hia. There seems no doubt the Chinese procured the clove from its island home for several centuries before it had reached Europe. There are records that point to this traffic as early as 260 B.C. Crawford, however, mentions none of the names given by Rumphius, but if these be actually the local names of the tree they have not apparently accompanied the clove into the commerce of the world. Little astonishment need, however, be expressed at these names not having accompanied the clove, when it is recollected that it was not regarded by the inhabitants of the "spice islands" as of any value until the Chinese desired to be supplied with the "little sweet-scented nails." In that circumstance alone lay the interest taken by the people of Moluccas in the plant, and "nail" or "clove" became its name in most countries.

Sonnerat (Voy. Nouv. Guin., 1776, 195, tt. 119-20) tells us that he found the clove being grown in New Guinea, and it is well known that in 1770 M. Poivre, of the Isle of Bourbon, sent M. Prevost to Ceram in order to procure live plants of both the clove and the nutmeg. This enterprise was completely successful, and shortly after the plants flourished so well in their new home that seedlings were sent to Cayenne about 1784, and in an incredibly short time the plantations were extended and cloves regularly sent into market of such quality that they were pronounced equal, if not superior to those of the "spice islands." Very shortly after the date mentioned the clove was carried to the West Indies (Dominica in 1789), in fact throughout the tropical world, and was even cultivated by Sir Joseph Banks at Kew in 1797. It had been successfully acclimatised in Zanzibar and Pemba. Migration became imperative, through the short-sighted policy of the Dutch, who sought to secure for themselves an absolute monopoly in the world's supply. For this purpose they ruthlessly destroyed the trees in all the islands except those specially set apart by themselves for clove-production. Having trampled on the rights of the people, retribution became a natural consequence. It is not much to be wondered at, therefore, that when in time a more liberal policy prevailed, the new countries of clove-production had so securely established their positions that a restoration or concentration of the traffic in the original home of the clove became an impossibility.

Cultivation.—Colves are the dried unexpanded flower-buds of this tree. The corolla forms a ball on the top between the four teeth of the calyx, and the stalk is the immature ovary. They are at first green, then turn yellow, and finally bright pink or scarlet. In this last stage they are ready to be picked. If allowed to remain longer on the tree the flowers expand, become fertilised, and the stalk of the clove then develops into a succulent purple-coloured berry containing one or two seeds.

This is known technically as the "mother clove." These are sown in

Ambon
Names.

Chinese Names.

Migration.

Retribution.

Cultivation.

Bud.

"Mother Clove."
CULTIVATION AND PREPARATION

rich mould about 12 inches apart, and the fresher the better, since the seed when dried soon loses its vitality. They germinate within five weeks and when 4 feet high are transplanted from the nursery into their final positions, 20 to 30 feet apart. The soil must be porous, well-drained, and consist of mould with a fair proportion of sand. The plants will not thrive on clay nor pure sand, and marshy land is fatal. Even in the Malayu the clove tree does not luxuriate alike on all the localities on which grown, and seems to prefer a soil formed from volcanic rock (Craw- ford, l.c. 101). In Pemba the soil most suited is a dark loam, having underneath a layer of dusky yellow earth intermixed with gravel, also a yellowish or reddish stiff clay (Kew Bull., 1893, 17-20). Although indigenous to islands it does not succeed well when exposed to the direct sea-breezes. It prefers confined valleys, though dense overhead shade is highly injurious. Protection from high winds is essential, and a tree hedge along the windward side of the plantation is very desirable. But in place of seed the plant may be raised by layering. Young branches laid across the ground take root in about six weeks. The young plants should be transplanted at the beginning of the rains. Shade is necessary for the first two or three years, and watering occasionally is advantageous during exceptionally dry weather, both before and after transplanting. By the end of the third year the shade should be removed, and by the sixth the plants will have come into bearing and be in full crop by the twelfth. By 20 to 25 years they are usually too old to be profitable, though they may yield up to 150 years. It is accordingly customary to renovate certain portions of the estate every 8 years. In the Moluccas the trees are topped at 8 or 9 feet, so as to secure low plants easy of being picked. Each tree should give about 6 to 7 lb. of dry cloves. The best course is to hand-pick the clusters of buds, but occasionally they are beaten off the trees and caught on cloths spread below, or the ground is swept clean, so as to allow of the cloves being picked up without being injured. Every third or sixth year a heavy crop is obtained, and now and again (especially if over-cropped or injured) the trees bear next to no flowers.

In the spice islands the cloves are sometimes cured by being smoked over a shallow wood fire, until they assume a deep brown colour, when the further drying is accomplished by the sun. Occasionally the buds are scalded in hot water before being dried. But if bright sunny days prevail artificial heat may be dispensed with and the buds sun-dried from first to last. The crop loses about 60 per cent. in drying.

Nicholls (Textbook Trop. Agri., 1892, 184-9) gives useful particulars of clove cultivation. A most interesting and instructive account of the production, manufacture and trade in this spice was also written by Mr. J. C. Sawyer in The Produce World (May 1896). Mr. J. R. N. Lyne of Dungu, Zanzibar, published a valuable report on the plantations of that island, now by far the most important single country of production. [Cf. Trop. Agriat., July 1901, 11-2; Der Tropenpflanzer; Journ. Soc. Chem. Indust.; Pharmaceut. Journ.; Chem. and Drugg.; Dipl. and Cons. Repts.; etc.]

Uses.—It is needless to say that the clove, though not held in such high esteem as in former times, is still a spice of considerable commercial importance. Oil of Cloves will be found dealt with in great detail by Gildemeister and Hoffmann (Volatile Oils, 1900, 512-8). It would appear that it was first distilled in the 16th century. The cloves of Pemba are those chiefly used for this purpose. Those of Amboyna and

529 34
POSSIBLE GUTTA-PERCHA

rubber contained in the present species. His samples were sent to Europe and reported on in such terms as to discourage further effort.

E. plullifera, Linn.—A small herb found throughout the hotter parts of India from the Panjab southwards. It is the dudhi, duduki, burakera, pusitco, gordon, mayeti, etc. Used in the affections of children—bowel and lung complaints. A fluid extract has been employed in asthma and in dysentery (Rept. Cent. Indig. Drug. Comm., i., 154).

E. Royleana, Bals.—A large shrub common on dry rocky hillsides of the outer Himalaya from Kumaon westwards, and also in the Salt Range. It is a most conspicuous and characteristic plant in the tracts of country indicated. Its ascending fleshy branches (or stolons) are five-angled and thorny. It is the thor, shakar paul, soti, chalta, chun, sura, tesi, suru, shukhad, etc. The milk contains a large amount of gutta-percha. When fresh it has a sweet odour and does not blister the fingers, but it is very injurious to the eyes and flavours anything handled even after the greatest care may have been taken to clean the fingers. Some few years ago a fairly extensive series of experiments were conducted with this milk, having in view its utilisation as a waterproofing material or as a paint for ships. The subject is alluded to because sufficient evidence was obtained to satisfy belief that (without contemplating the utilisation of the milk as a gutta-percha substitute or the establishment of factories beyond both the means and the capabilities of the inhabitants of the country where E. Royleana is an abundant and at present useless plant) there might still be directions in which it might be possible to convert the limitless supply into a source of wealth. (See Gutta-percha, p. 627.)

E. Tirucalli, Linn.—The Milk-hedge or Milk-bush or sekund, shir, shera, lamba esj, esj, nevi, neval, kadau-neval, jenudu, thwur, yele-gulla, tirukkali, sha-shaung, etc. A small tree with round stems and smooth branches. It is generally believed to be a native of Africa, but has been for many years completely naturalised in India, especially in the drier tracts of Bengal, the Deccan, South India and Ceylon. Heyne (Tracts, Hist. and Stat. Ind., 1814, 243) discusses fully the possibility of utilising the milk of this and other Euphorbias. Drs. Siddon, Cheek and Falconer devoted much time and attention to the self-same subject about 1850. It was observed that after boiling, the milk of this species becomes brittle, though whilst warm it is ductile and elastic. Gibeon (Ind. For., 1899, xxv., 84–5) has urged the desirability of the milk of this and other species of Euphorbia being put to some useful purpose. He found that nitric acid caused the separation of the rubber. Mixed with mud the milk is employed in North Arecot in the construction of the flat roofs of houses. It is, in Ganjam, said to be used to intoxicates and poison cows: for this purpose a little is mixed with boiled rice and given to these birds. The acrid juice is in India generally, well known as a purgative and counter-irritant (especially in the treatment of animals), and it is so very painful when applied to wounds or to the eye that cattle are fully aware of this fact and will not attempt to break down a hedge of it. (Consult the controversy regarding Angola (Almeidina) Rubber—E. rhopaloides versus Tirucalli.)

EXCECARIA AGALLOCHA, Linn.; Fl. Br. Ind., v., 472; Roxb., Fl. Ind., iii., 756–7; Gamble, Man. Ind. Timb., 626; Brandis, Ind. Trees, 585; Prain, Beng. Plants, ii., 955; Euphorbiaceae. The Blinding Tree, ganwah, geor, gera, wapuru, gunu, phungali, geva, thillamaram, tili, chilla, tella-chetu, haro, kadwa-pal, tayau, yeckin, tella kweya. It may be the taggar wood of Sylhet alluded to under Aquilaria (p. 74). A small evergreen tree of the coast and tidal forests of both sides of the Indian Peninsula, Burma, the Andaman Islands and Ceylon.

The wood contains a milky juice which hardens on exposure to the air into a black caoutchouc-like substance. The sap which exudes from the fresh-cut bark is very acrid, some say poisonous, hence the name Blinding Tree or arbor excaenas (Rumph., Herb. Amb., ii., tt. 79–80). Hooper (Yearbook of Pharmacy, 1899, 468) gives an account of the chemistry of this latex, which he analysed with a view to ascertaining its value as a rubber. The Timber is useful for general carpentry purposes and for match-making. [Cf. Pharmacog. Ind., iii., 1893, 314–5; Ind. For., 1897, xxiii., 150.]

EXCECARIARIA
AGALLOCHA
Blinding Tree

Undavourable Report.

Gutta-percha.

Possible Utilisation.

Possible Useful Milk.

Waterproofing Houses.

Purgative.

Blinding Tree.
Buckwheat

FAGOPYRUM TATARICUM

D.E.P., iii. 310-11.

Temperate.

Alpine.

Cultivation.

- Seasons, Lower Hills.

Plains—a Vegetable.

Higher Reaches Grain Crop.

Catch Crop.

Chief Food-grain.

Bread, Spinach.

BUCKWHEAT

FAGOPYRUM, Gaertn.; Fl. Br. Ind., v., 54-5; Polygonaceae. F. esculentum, Moench; Duthie and Fuller, Field and Garden Crops, 1893, pt. iii., t. 83; Rec. Bot. Surv. Ind., i., 33, 40, 219, 262; Woodrow, Gard. in Ind., 1893, 439; Mukerji, Handbook Ind. Agric., 1901, 56, 260. This is best known as Buckwheat or Bran, paphra, khot, kótha, rājgir, doron, usha, opal, bāra koth, brea, trāmba (tramb), etc. Extensively cultivated on the temperate Himalaya and lower hills of India, from Afghanistan and Kashmir to Darjeeling, Assam and Burma. There are many cultivated forms, some grown for the grain, others as a vegetable, and these blend imperceptibly into the wild F. cymosum, M. viso.

F. tataricum, Gaertn.; Duthie and Fuller, Lc. 26-8, tt. 84, 96. This is the kaspai, kala trāmba (black tramb), chin, karmabres, usha, kótha, tiro rjā, etc. It is usually known as Black Buckwheat, but as a rule paphra denotes F. esculentum and usha, F. tataricum. This form is cultivated throughout the higher temperate Himalaya, especially on the western extremity between altitudes of 9,000 and 15,000 feet. It is a taller, coarser plant than the other species, having longer grains (nuts, as they are sometimes called) of a black colour, and with the angles rounded off and keeled toward the top, instead of being sharp. There are many cultivated forms, one from Kangra having been treated as a distinct variety under the name F. viso.

On the lower Himalaya, between 4,000 and 10,000 feet, F. esculentum is grown, being sown in July and reaped in October. In the lower reaches of its mountainous area it is usually raised more as a vegetable than a grain. Indeed in Northern and Eastern Bengal, Assam and Burma (and even in the Deccan, the Central Provinces and Bihar) it is often met with (on the plains) as a catch or garden crop, where it is exclusively used as a vegetable or fodder. Of the mountains of Assam, Manipur and Burma, it might be said that a climatic depression exists which admits of plants being grown two or three thousand feet below their normal habitats. Hence in these regions the grain-yielding buckwheat becomes an important article of food at altitudes even below 5,000 feet. In the higher reaches of its area buckwheat often becomes exceedingly important, more especially F. tataricum, which, following the spring barley or wheat, is sown in July and gives a supplementary crop before the early snowfall puts a stop to agricultural operations. It is frequently utilised as a first crop on new clearances, and in the most alpine tracts sheltered portions of the grassy slopes are utilised in giving a catch crop one year and left fallow for several succeeding years. It may also be grown on soils too poor for wheat and barley. It seems to succeed fairly well on rocky soils containing a high percentage of granitic detritus, but not on clay. Lawrence (Valley of Kashmir, 1895, 338) informs us that buckwheat (both species) can be grown late on almost any soil, and that in the higher villages F. tataricum constitutes almost the only food-grain of the people. In the lower valleys, he adds, irrigation is sometimes given. Mukerji urges the claims of buckwheat as a catch crop; it yields a return in ten weeks after sowing; it can be grown on poor soils and is able to withstand a greater extreme in heat and cold than can be said of any other known crop.

As a human food buckwheat does not hold a high place, since about 20 per cent. of the weight is lost in decortication. The nuts are husked and ground into flour, which is made into bread or eaten as porridge. The leaves and shoots are boiled as a spinach. For poultry and horses, however, the unhusked nuts are regarded as very superior, while the straw is more nutritious than that of cereal. F. tataricum, var. himalaica, is a better food than F. esculentum, as it is richer in oil and contains less indigestible fibre.

532
He found the word *kema* generic, the asafetida plant being *anguza-kema*, and *Ammoniacum kandal-kema*. [Cf. Stapf, *Kew Bull.*, 1907, 375–88.] Commenting on this view, the authors of the *Pharmacographia Indica* (ii., 143) observe, "It would appear then that the kind of asafetida called *tytib* by the Arabs and their followers is the drug of European commerce, the produce of *Ferula foetida*, Regel, and not that of *F. alliacea*, Boiss., which produces the *hing* of India." Holmes in the *Pharmaceutical Journal* (3rd ser., xix., 21–34, 41–4, 365–8), and the various Museum Catalogues of the Pharmaceutical Society of Great Britain, has afforded many useful particulars and focussed the practical results of recent research. A long account of the phyllology of the word "asafetida" is given by Prof. J. Attfield (*Yearbook of Pharmacy*, 1897, 351–6), who, after consulting Dr. Murray (editor of the *Oxford Dictionary*), had come to the conclusion that it should, both in English and Latin, be rendered "asafetida." When discussing the *hing* and *hingra*, it seems probable that it would be more correct to assign these to groups of species rather than to say that they were each the product of one species. Indeed it would appear that the part of the plant from whence procured, the season of the year when collected, the methods of preparation and degrees and materials of adulteration, exercise considerable influence on the quality and flavour of the resulting drugs. It is, however, convenient to group the commercial resinous products of *Ferula* under three chief species.:

F. alliacea, Boiss.; Bentley and Trimen, *Med. Pl.*, 1880, ii., 126; Dymock, *Mat. Med. W. Ind.*, 1885, 381. In Khorasan it is called *angusheh*, in Kirman, *zendebuj*, while it is also known by the following names—*hing*, *anjudan*, *cagarni*, *abhushaharu hing*, *kayam*, *perun gyaam*, *inguza*, *anguza*, etc. A herb which grows to a height of 2 to 4 feet. It is found wild (is not, at all events, cultivated) in Eastern Persia in the neighbourhood of Djendack and Yezdi, and in Khorasan near Seharud, Nischapur, Meshed, Debrachtindjan and Kerman. It prefers a stony, arid soil, and is found at an altitude of 7,000 feet. This plant is the chief source of the asafetida used in India and known as *hing* (which means pure or superior *hingra*), while that of European commerce is the product mostly of *F. foetida*—*hingra*.

This might be spoken of as the edible form. The gum-resin is obtained by wounding the upper part of the root, from which a small quantity of a fine gum escapes and is collected. The living root is then sliced daily, or every two or three days, with the exudation adhering to it, till exhausted. The whole mass, consisting of alternate layers of root and gum-resin, is then packed in a skin. As found in the market, the resin consists of a blackish-brown, brittle mass of extremely fetid odour, unadulterated with earth or gum-paste, but always with some of the roots. In Bombay it is sometimes adulterated by the addition of gum-arabic, and the cheaper sorts contain an undue proportion of root. Adulteration with sliced potato also takes place.

The resinous mass contains an abundant essential oil which differs from that of *hingra* in having a reddish hue, a higher specific gravity, and a stronger rotatory power. An alcoholic tincture is not precipitated by acetate of lead, nor is the sulphuric-acid solution fluorescent. From earliest times the gum has been held in esteem by Eastern doctors. It is a carminative and antispasmodic, and taken daily is said to ward off malarial fever. It is also recommended as a vermifuge. [Cf. Pharmacog. *Ind.*, 1890, ii., 141–7; *Kanny Lall Day*, *Ind. Drugs Ind.*, 1896, 127–8; Thorpe, *Dict. Appl. Chem.*, 1898, ii., 273.]

F. foetida, Regel; Drude, in Engler and Prantl, *Pflanzenfam.*, iii., 231; *Kew Mus. Guide*, 1907, No. 1, 115; *hingra*, *anguza-kema*, *kurnekema*, *khora-kema*, *vaghayani*, *hingu*, etc. A herb with a circular mass of foliage, springing annually from a perennial root stock. It grows in Southern Turkestan, Persia and Afghanistan. This would appear to have been the Persian plant sent by Dr. Guthrie of Edinburgh, and grown in the Botanic Gardens there in 1780. [Cf. Phil. Trans., 1785, lxxv., 36.]

Gum-resin.—This is the European drug of commerce, and is obtained from Laristan in Persia and from Herat in Afghanistan. It is collected in June.
the method pursued being briefly as follows:—The tap-roots are exposed for a couple of inches. A thick slice is cut from the top, from which a quantity of milk exudes. The root is then protected from the sun by a domed structure, 6 to 8 inches in height, called a khora, formed of twigs and clay and which has an opening towards the north. In five or six weeks' time a thick, gummy, reddish substance appears in irregular lumps on the exposed substance of the root. This is scraped off or removed along with a slice of the root, and placed in a leather bag. It was reported that the plants were sometimes operated upon more than once during the season. The gum is next carried to Herat, where it is deliberately adulterated. [Cf. Aitchison, *Pharm. Journ. and Trans.*, Dec. 11, 1888.] Masson (*Journ. Kalat*, 1848, 451–3) speaks of the plant as flourishing in Seistan, the gum being collected as nushks. Bellew, in his account, says that after cutting the plant through, above the root, three or four incisions are made in the stump, and the operation of incision is repeated every three or four days, so long as sap continues to exude. A particular sort is mentioned by the same writer as being obtained solely from the node or leaf-bud in the centre of the newly sprouting plant. This kind is never adulterated, and may be the fine quality of the drug known as Khandahari-hing (Pharmacog. Ind., ii., 151). The common form is much adulterated by a kind of red clay (tawah), by wheat or barley flour, and by powdered gypsum. It is also mixed with slices of the root. All species of the drug have a powerful, garlic odour, and a bitter acrid taste. Except Khandahari-hing, this variety of asafetida is not used in India.

Maynard and Prain, on the Botany of Baluch-Afghan Boundary Commission of 1896 (*Rec. Bot. Surv. Ind.*, i., 130–1), furnish interesting details of the collections of the commercial article on the hills between Samul and Rohat. Asafetida, they observe, affects bare rocky hill-sides. It is the plant, or at least one of the plants, that people from Kandahar yearly visit the Koh-i-Sultan to collect. Sir Arthur H. McMahon described the collection of the gum from personal observation. The heads are cut down to within one or two inches of the ground. The cut ends are then covered with a little dry earth in order, the collectors say, to keep the wind off. After twenty hours the people collect what has exuded and cut the stalk down another eighth of an inch. But the milk is not allowed to dry in the sun; to obviate this the collectors build small stone traps, open at one side, over each plant, in order to keep off the sun's rays. The juice when partly dried is mixed with some kind of earth, like fuller's-earth; this is merely to increase the weight, and not with any idea of improving the quality. Doubtless the precautions taken to prevent drying are mainly with a view to facilitate this subsequent adulteration.

Asafetida consists of resin, gum and essential oil in varying proportions, but the resin generally amounts to more than one-half. It is partly soluble in ether or chloroform. The oil may be separated by distillation. It is light-yellow, with a pungent odour, and if exposed to the air evolves sulphuretted hydrogen. An alcoholic tincture of the drug is precipitated by acetate of lead, and a solution in sulphuric acid is fluorescent. Medicinally it is used in Europe as an antispasmodic and stimulant (see *Vinegar*, p. 1110).

F. galbaniflua, Boiss. & Buhse.—This is the chief source of the drug known as Galbanum; *bireja, ganda-biroza, badra-kéma, barzed*. It is a native of Persia (especially Shiraz and Kirman), from which the gum is imported into Bombay and re-exported to Egypt and Turkey. Around Gulran it is reported to be specially common.

Gum-resin.—There are three kinds known in commerce: Levant, Persian, Solid, and Persian Liquid. The first comes from Shiraz, and is known as khassenib; the second has an odour of turpentine, and the third is the gao-shir or jawshir. As met with in India, gao (jiao)-shir is a yellow or greenish semi-fluid resin, generally mixed with the stems, flowers and fruits of the plant. It is obtained from the
TRADE IN ASAFOETIDA

Banyan

stem, which, when injured, yields an orange-yellow gummy fluid. Generally, however, the galbanum of commerce forms round, agglutinated tears, about the size of peas, orange-brown outside, yellowish-white or bluish-green inside. The odour is not disagreeable like that of asafoetida, and the taste is bitter.

Medicine.

Galbanum consists essentially of about 65 per cent. resin, 20 per cent. gum, 3 to 7 per cent. volatile oil. The oil is obtained by distillation with water or by extraction with petroleum ether. In medicine, galbanum is administered internally as an expectorant, and externally it enters into the composition of plasters. [Cf. Cooke, Rept. Gums, Resins, etc., in Ind., 1874, 60-1; Bentley and Trimen, Med. Pl., 1880, ii., 128; Pharmacog. Ind., ii., 132-6; Thorpe, Dict. Appl. Chem., 1895, ii., 274; Schimper & Co., Semi-Ainn. Rep. April-May, 1901, 36; Chem. and Drugg., 1901, lix., 374-5; Tschirch, Lc. 348-58.]

F. Narthex, Boiss.; Narthex asafoetida, Falconer, Trans. Linn. Soc., 1846, xx., pt. i., 265-91; Balfour, Trans. Roy. Soc. Edinb., xxii., pt. ii., 261-8, pl. 20-1. This plant owes its discovery to Falconer, who found it in 1838 in Western Tibet on the slopes of the mountains dividing that country from Kashmir. From the plants thus collected seeds were sent to the Edinburgh Botanic Gardens and thence distributed all over Europe.

Holmes mentions in a letter aitchison reports that he had come on F. Narthex at the very locality where he believed Falconer originally found it. He also says that Sir W. R. Lawrence, during his official tour through Jammu and Kashmir in 1893, saw the plant in flower between Astor and twenty miles north of Doiran. This plant was at one time accredited as the source of Tibetan asafoetida, but as already mentioned the European drug comes from Persia and may be accepted as the produce of F. foetida and the Indian of F. orientalis.

Imports.

Trade in Asafoetida.—The following figures are returned as the Trans-frontier imports of asafoetida into British India from Afghanistan, Seistan, etc., for the years 1902-7:—1902-3, 1,368 cwt., Rs. 1,737,760; 1903-4, 2,065 cwt., Rs. 2,63,891; 1904-5, 2,036 cwt., Rs. 2,58,762; 1905-6, 1,106 cwt., Rs. 1,38,901; 1906-7, 1,820 cwt., Rs. 1,59,873. During the years 1903-4 the imports by sea were 13,343 cwt., valued at Rs. 4,89,538; and in 1906-7, 6,062 cwt., valued at Rs. 2,42,635. Practically the whole of the foreign imports came from Persia and went to Bombay.

Exports.

The Exports are returned both as foreign re-exports and as Indian produce. The latter of course means asafoetida brought to India by land routes. Of the foreign produce, 1,612 cwt. were exported in 1903-4, valued at Rs. 53,440; and 1,250 cwt., valued at Rs. 39,758, in 1906-7. Practically the whole went from Bombay. Of the so-called Indian produce, 265 cwt., valued at Rs. 13,548, were exported in 1903-4, but sank to 51 cwt., valued at Rs. 2,043, in 1906-7. The export figures should, however, be regarded as having reference to kingro, while the returns of imports are both kingro and king. [Cf. Brit. and Colon. Drugg., 1905, xlvii., 96, 120, 479, 504.]

Banyan Tree, *bor, bar, bargat, but, bai, ranket, kannji, barenli, wobra, kurku, baogat, phudehari, wur, wad, ala, mari, ahdala, gilke mara, peralu, pyin-nyoung, maha-nuya, vata, etc.* A large tree which throws down numerous aerial roots from the branches. It is found in the Sub-Himalayan forests from Peshawar to Assam; in the deciduous forests of Bihar, Chota Nagpur, Orissa, Circars, Central Provinces, Bombay Presidency and South India; less commonly in evergreen forests and in the low country of Ceylon. It is wild, but doubtfully indigenous, and is also largely planted throughout India for its shade. *Indian Gardening* gives an account of the famous specimen in the Botanic Gardens, Calcutta; described also by Sir George King (1895) in the *Guide to these Gardens.*

It yields an inferior rubber. According to Hooper (*Rept. Labor. Ind. Mus.* (Indust. Soc.), 1905–7, 25), the latex contains only 12.4 per cent. of caoutchouc and 82.2 per cent. resin. It is employed in Lahore in the oxidation of copper. As a medicine the juice is applied externally for pains and bruises, and used as an anodyne in rheumatism. An infusion of the bark is regarded as a powerful tonic in the treatment of diabetes. The leaves are heated and used as a poultice. The fruits ripen from March to June, according to locality, and are eaten in times of famine; it would moreover appear, in addition, that in many parts of the country the young tender shoots and leaves, as well as the bark and wood, are eaten.

*F. Carica, Linn.; Rec. Bot. Surv. Ind., i., 136; Woodrow, *Gard. in Ind.*, 1899, 451–3; Firminger, *Man. Gard. Ind.* (ed. Cameron), 1904, 211–3.* This species is the Edible Fig of Europe, the Smyrna Fig, also *anjir, kimri, faju, fagari, shima-i-atti, tiethic, ten.* Several varieties are cultivated in many parts of India, especially in Baluchistan, Afghanistan and Kashmir.

A rich and moudly soil is required with a considerable quantity of lime combined with thorough drainage. The trees are propagated by cuttings, of one-year-old wood, planted in shady beds in February. There should be about 10 to 12 feet between each root. As a fertiliser about 50 lb. of well-decayed village sweepings may be applied to each tree after the crop is gathered. The plant begins to bear fruit in the second or third year after transplantation and continues for twelve to fifteen years. It fruits twice a year. The first season commences in June–July, but it is not allowed to ripen lest it should injure the second crop, which commences in January and is by far the most valuable. Figs for drying should be cut from the tree and carefully placed in trays and boxes. To improve the colour and soften the skin, the figs, before drying, are sometimes exposed to the fumes of burning sulphur or are dipped in a hot solution of salt, saltpetre or lye; but the former practice gives the fruit a very unpleasant taste and is injurious to the health of the consumer. The drying ground should be a clean space outside the orchard where the figs may be exposed to the full rays of the sun. The figs should be turned twice a day at first, and once a day in the later stages. Drying within six or seven days yields the best quality. So far as India

Ficus

Carica

Fig

Rubber.

Bird-lime.

Fibre.

Medicine.

Food.

Fodder.

Timber.

Loc.
is concerned it would appear that the most approved variety is that found at the village of Khed Shivapur, 14 miles south of Poona at an altitude of about 2,200 feet, but the fruit of Baluchistan, Afghanistan and Persia is superior to the Indian. As a medicine, the dried fruit is demulcent, emollient, nutritive and laxative. [Cf. Pharmacog. Ind., 1893, iii., 342-5; Eisen, Handling and CURING of Figs, in Ind. Agr., Nov. 1, 1897, 348; April 1897, 128; Feb. 1, 1898, 57; Dutt, Nat. Med. Hind., 1900, 291; Repts. Agri. Exp. Stat. Calcutta, 1894, 1896-8, 1900, 1903-4; Cyprus Journ. 1905, ii., 76.]

***F. CUNA, ham.: Rec. Bot. Surv. Ind., ii., 65, 139; iii., 103; Agri. Ledg., 1904, No. 4, 27-8. The cneuva, dambur, riu, konkya, sangu ti nai, poroh, ye-kha-ung, jonua, etc. A moderate-sized tree of the Sub-Himalayan tract from the Chenab eastwards ascending to 4,000 feet, Bengal, Orissa, the Cincars and Burman, usually on the banks of streams or in ravines. Lac is produced on this tree. A fibre is obtained from the bark which is used for tying the rafters of native houses. The fruit ripens about July to October and is eaten in India, though somewhat insipid. The wood is not used economically. The leaves are rough and sometimes employed in place of sandpaper.

F. elastica, Roxb.; see India-rubber (pp. 651-5).

F. glomerata, Roxb.; Rec. Bot. Surv. Ind., ii., 139, 188; iii., 103. The gudar, aroa tue, jagya dumur, dumur, lowa, dimer, tchotngay, toja, panwa, krambal, batbar, dadhuri, umbar, orumul, ramudi, atti, moydi, kula-kith, yetha-pan, udumbara, etc. A large tree noticeable from its being deciduous in the middle of the rainy season. It is found on the Salt Range, the outer Himalaya and Sub-Himalayan tract from Kashmir eastwards; in Assam, on the Khasia hills and in Bengal; in Burmans, Central, Western and Southern India, and in Ceylon.

It produces a viscid Gum which is made into birdlime; Hooper (Rept. Labor. Ind. Mus. (Indist. Sec.), 1906-7, 6) mentions that the latex contains only 4-9 per cent, caoutchouc and 94-0 per cent, resin. It bears large fruits in profusion, which ripen all the year round, are eaten both ripe and unripe, and are considered a useful famine food, being ground to a powder and mixed with flour. The leaves are used for cattle and elephant fodder. The Wood is not durable, but is utilised for wall-frames and for rough purposes, such as outhouse doors and cross-pieces for carts. [Cf. Pharmacog. Ind., 1893, iii., 338-42; Duncan, Dyces and Dying, Assam, 1896, 25; Innes, Jungle Prod., 1897, 8, 11; Dutt, Nat. Med. Hind., 1900, 321; Agri. Ledg., 1902, No. 1, 53; 1904, No. 4, 23-30.]

F. infectoria, Roxb.; Rec. Bot. Surv. Ind., i., 94; ii., 138, 188, 340, etc. The pilkhan, rananji, pakh, kaim, pakh, baswesa, prab, safed kahre, kanchi, pepere, seri, war, batbar, jangli pipi, trimbel, bassari, jari, tsjaka, nayanggiyin, kalaha, plaksa, etc. A large (at first often epiphytic) tree found in the Sub-Himalayan tract from the Salt Range to Sikkim, and thence throughout India, Burma and Ceylon. It is more commonly planted than wild. There are in India three varieties.

The bark is said to yield a fair fibre. The bark is one of the five known as panchavalkala, or the five barks. The young shoots are eaten by the Natives, and the leaves make good elephant and cattle fodder. The Wood is sometimes used for charcoal, but not otherwise. [Cf. Dutt, Nat. Med. Hind., 1900, 235; Innes, Jungle Prod., 1897, 9.]

F. religiosa, Linn.; Cameron, For. Trees Mysore and Coorg, 1894, 283-4; Rec. Bot. Surv. Ind., i., 70, 89, 185, 209, etc.; Ind. Gard., March 1899, 87; Woodrow, Gard. in Ind., 1899, 453. Known as the pipal or peepul, the asvatha of the classics, and by the following, among many other vernacular names:—pipal, asvatha, asvat, hesar, jari, bor-bur, ali, arasa, rai, raj, basri, haspath, nayung-baudi, bo, etc. A large tree (usually starting as an epiphytic) without aerial roots. It is found in the Sub-Himalayan forests from the Panjáb eastwards; Bengal, Orissa.
FISHERIES OF INDIA

Bengal

The following are some of the chief commercial headings under which particulars regarding fish and fish products may be found in this work:—Bèche-de-Mer (p. 122); Fish and Fisheries (the present article); Fish-maws and Shark-fins (p. 542); Isinglass and Glue (pp. 542-3, 695); Oils and Fats—Animal (pp. 811-4).

Other kindred subjects are:—Pears and Pearl Fisheries (p. 557); Shells: Conch, Chank, Mother-of-Pearl, etc. (pp. 558, 989).

If it may be said that while the products afforded by fish are many and varied, the information available regarding them is fragmentary and unsatisfactory. The majority of fish are of course cooked and eaten either fresh or after being salted, sun-dried, smoked, pickled, preserved in oil, etc., etc. But unfortunately it is next to impossible to learn actual particulars of the fisheries and fish-curing industries that could be regarded as of a practical and commercial value. Much has been published, but either of a purely scientific character or of a most discursive nature.

PRODUCTION.—Bengal.—In the trade returns of Bengal, for example, repeated mention is made of exports in dried fish and prawns. It is also known that a fair business is done in smoked, pickled or otherwise preserved mango-fish, hilsa (sable), and begti (cock-up), the last mentioned being often prepared in the form known as “tamarind-fish,” but nothing for certain is known of the sources of supply or the centres of manufacture in Bengal or even in Calcutta. It is recorded that Calcutta obtains fish from Goalundo, from East Bengal, from Diamond Harbour, from Mutta and other localities in South Bengal. Moreover, though repeated efforts have been made (and indeed are being made) to organise a systematic supply of sea-fish, the Calcutta market is almost exclusively met by fresh-water fish. The supply of excellent begti, procured both direct from the rivers or from special rearing-tanks, is very great and the quality excellent. During their respective seasons both mango-fish and hilsa are plentiful, the latter caught very largely in the Ganges and conveyed by special fish trains to Calcutta. Tank-reared fish may be spoken of as an important feature of the Bengal supply. The sale of live fry for the purpose of annually stocking tanks is accordingly a fairly important special industry. The fry are caught on the surface of the shallow water near sandbanks in the rivers, and are carried inland in earthen pots to be sold to the owners of rearing-tanks.

Upper India may be spoken of as entirely dependent on its rivers for its supply of fish. At one time a great effort was made to convey sea-fish from Karachi as far inland as Simla, but the venture was evidently not profitable as it was discontinued. The military stations of the Panjáb, however, do in some cases get fresh sea-fish from Karachi. Near the larger rivers the towns such as Lahore, Delhi, Aga,
PROVINCIAL SUPPLIES

Allahabad, etc., obtain a fair supply at certain seasons, but fish is by no means the important article of diet in Upper India that it is in the western, southern and eastern provinces. In Assam excellent river-fish may be had, one of the most highly prized being the bassa, which when smoked is an excellent addition to the breakfast table, and by some the King-fish—_Semiopterus maccallandi_ (Duy, l.c. 1, 281)—or sundari is even more highly prized.

Bombay and Sind.—The trade returns of Bombay frequently make mention of _bhumelo_ ("Bombay duck"), "tamarind-fish" of various qualities, such as _seir_ (white-pomfret)—the best quality. Bombay has an excellent supply of sea-fish, and accordingly fresh-water fish are nearly as rare in the western capital as sea-fish are in the eastern. Calcutta visitors to Bombay accordingly much appreciate the pomfret and sole they receive there, just as the Bombay visitors extol the _Calcutta begti_ and mango-fish. Bombay oysters have, as a rule, an evil reputation among Europeans, but all the same there exist extensive beds for their production and a by no means unimportant traffic in that shell-fish. The exports to China of Shark-fins and Fish-maws (see p. 549) are by far the most important single item in the Bombay foreign trade in fish. Karachi holds, however, an even more important position in the fish trade of Western India than Bombay. The oysters of Karachi are regarded as the best in all India. The pomfret, sole and other fish procured in Karachi are excellent, and of a flavour only to be compared with those in the extreme south, such as at Cochin and Calicut. A large trade is at the same time done in shark-fins and fish-maws from Karachi, as also in Isinglass and Fish-oil (p. 545). The Persian Gulf traffic in salted and sun-dried fish is very ancient. _Marco Polo_ (Travels, 1290 (ed. Yule), i, 102, also n. 109) alludes to the people of Hormuz living on dates and salt fish. Date and dry-fish diet is alluded to also by Ibn Batuta.

Madras.—This is perhaps the most important province in the fish trade of India. From ancient historic times the sun-dried, salted and pickled fish of the southern Malabar Coast have not only permeated over a large part of India but been carried to foreign countries. Difficulties in the Indian fiscal regulations with salt have for some years been loudly proclaimed as having restricted if not curtailed that industry, and the subject has received (and is receiving) the most careful consideration not only of the local but of the Imperial Government. The tamarind-fish of Cochin is chiefly made from the _seir_, and the fish-oil—so much extolled over India—is made mainly from the sardine (see Oils, pp. 544-5). Under _Béche-de-Mer_ (pp. 122-3) reference has been made to the Madras traffic in sea-slugs. Oysters are specially cultivated at several centres, and the supply is both large and excellent. South India has thus a liberal stock of most admirable sea-fish (pomfret, sole, sardine, etc.) of all kinds, and in the vicinity of its large rivers a supplementary supply of fresh-water fish. Important fisheries exist, as well as valuable industries in Pearls, Conch, Chank and Mother-of-Pearl (see p. 557).

Burma.—Speaking of Further India, the trade returns show a considerable traffic in locally produced sea-slugs, as also in foreign slugs imported and to a certain extent again re-exported. There are also valuable local fisheries and fish-curing centres in Burma. The salting and preserving of fish have in fact assumed special forms more or less characteristic. The _Gazetteer of Upper Burma and the Shan States_ (ii., pt. i., 433)
FISH
Bombay Duck

FISHERIES OF INDIA

gives, for example, a useful sketch of the fisheries and trade in fish on the Irrawaddy.

CHIEF INDIAN FISH AND FISHERIES.—The following are some of the more important aspects of the fish supply of India, of fish products, and of the special preparation of fish, met with in Indian commerce:

1. "BOMBAY DUCK" OR BUMMELO FISH.—This is the fish—Harpa dus neneerus (Day, l.c. i., 412), known in the vernacular as nehare, bumalo, coca sauhari, coco mottah, luli, etc. It is common in the seas and estuaries of India, more especially Bombay. It is highly esteemed as food when eaten immediately after being caught. Since it rapidly goes bad, it is at once salted and subsequently sun-dried, and in that condition alone is known to most people. It is the relish served with curries that bears the name "Bombay Duck"—a quaint and obscure name that has an analogy in "Digby chicks." Boswell (Tour to the Hebrides, 1773) compares the Bombay ducks to the sun-dried whitings of Abergineshire, known as "Speldings."

2. FRESH-WATER FISH.—It would occupy much space to mention all the fish of this class that might be regarded as worthy of interest. A special feature of Indian rural life, and one that is capable of considerable improvement, is the rearing of fish in tanks, an industry already briefly alluded to. Tanks are necessities of life in large tracts of country in order to supply water, and that they are utilised as sources of edible fish is not only natural and economical but essential to the purity of the water. A large number of the Indian fresh-water fish naturally frequent water-beds of the rivers; in other words, they are not averse to live in tanks. This has led to the idea of utilizing and selling live fry with which to stock tanks that are even remote from the rivers. The following are some of the better known river-fish, many of which can be reared in tanks, as: Anabas sphenotes (Day, l.c. ii., 367), the Climbing Fish or coi, assam. nga-pra, haran, etc.; these are often carried alive by the boatmen of the Ganges, being killed and cooked as required. They may be kept alive for a long time in damp earthen pots and thus conveyed to a distance. Barbus, the Carp: various species, especially B. sarana (Day, l.c. i., 300), the sarana or durka, and B. tor (l.c. i., 307), the mahasir; most highly prized of sport-giving fish and found in hill streams. Barilius bata (l.c. i., 392), the trout of Indian streams.

Malayur. Catla buchanani (l.c. i., 287), largely employed for stockfish in Bengal, United Provinces and Panjáb. Clupea lhipha (l.c. i., 376), the sable or hile, a sea-fish that passes up most of the rivers of India and Burmah, and is one of the most important of the fresh-water fishes. Eutropiichthys vaich (l.c. i., 128), the beas of Assam, is found in most of the larger rivers of India. Labeo (l.c. i., 226), the kalban fish; several species are common in the rivers and much used for stockfish, such as L. calbasu (l.c. i., 259), Panjáb, Sínd, Kach, Deccan, etc., L. gonoius (l.c. i., 261), the cura, much used in the United Provinces, Orissa, Ganjam and Kistória. L. rohita (l.c. i., 262), the ruhu or rui, an excellent fish, and accordingly carefully propagated in the tanks of Bengal. Ophicephalus (l.c. ii., 360): several species of the so-called Walking Fish or Murrah, such as O. barea (l.c. ii., 361); may be carried in dank vessels for great distances, alive and cooked as required. O. marnirius (l.c. ii., 360) and O. striatus (l.c. ii., 363) are excellent for stockfishing. Pseudechidius taakree (l.c. i., 138), Poona and Deccan. Ritu buchanani (l.c. i., 165), found in the Jumna, Ganges and Irrawaddy, is valuable for its capability of retaining life long subsequent to the removal from water.

Ruhu or Ruil. Ruia or Ruil.

Shark-fins.

3. FISH-MAWS AND SHARK-FINS: ISINGLASS.—The trade in these articles is a fairly ancient one. Milburn (Or. Comm., 1813, i., 109, 283) makes reference to them. "Fish-maws," he says, "are an article of trade from various parts of China, where they are much esteemed." So again, "Shark-fins are an article of trade from the Arabian and Persian Gulfs and from thence to China; they are esteemed very strengthening by the Chinese." "They are likewise prepared on the Malabar and Coromandel Coasts and many of the islands in the Indian Ocean." The commercial products given as the title of this paragraph are not, however, the only products afforded by the group of fish placed in this position. The flesh (especially of the young) is often valued as an article of food; the fins are employed in making jellies and soups, mainly by the Chinese; the livers afford an oil, which when carefully prepared (more especially of certain species) is spoken of as a useful substitute for cod-liver oil; and the skin of most species is made into the substance known as Shagreen. The group of fish here indicated might be

Oil.

Shagreen.
defined as the Sharks, Ray-fish, Skates and Saw-fish. On the other hand, fish-maw, which in a purified form is known under the name of isinglass (or, to be more accurate, fish isinglass) is a substance usually obtained from a widely divergent assemblage of fish. It is simply the "sound" or "air-bladder" and might be prepared from almost any fish, though certain species are more highly valued than others. It may accordingly be desirable to refer to these two sections:

(a) Shark-fins.—Day (l.c. i. 3) wrote, "These fish are employed as food, and portions of them, especially the fins, are largely exported from the Indian to the Chinese markets. In China Dr. Cantor observed that the fins were not exclusively selected from the sharks—Selachiodi—but equally from the rays—Batoidei. Among those examined at Penang were found to be fins taken from the fishes belonging to the following genera:—Carcharias, Zygana, Stegostoma, Pristis, Rhinobatus, Trygon and Myliobatis. Gelatine is obtained from the larger fins, glue from the smaller. All except the caudal fins are cut from the fish at the root, so as to leave as little flesh as possible. The root is dipped into wetted lime (chinam) and then the fins are dried in the sun, and according to their value they are divided into two kinds: "white" and "black." The white consists exclusively of the rays, which are on both sides of a uniform light colour, and are expected to yield more gelatine than the other fins. The pectoral, ventral and anal fins pass under the denomination of "black fins"; the colour, however, varies from buff to grey or brown, and most of them are of two different colours, the upper surface being dark and the lower light. The black fins of course are the most numerous, and supposed to yield a comparatively small quantity of gelatine." In another passage Day (l.c. i. 5) remarks:—"The fins of the sharks are removed and dried in the sun. Strips of the flesh are also salted as food and the livors boiled down for the oil they contain." "Some forms of large sharks, as Galeocerdo, which have the edges of their broad teeth sharp or coarsely serrated, cannot be captured by nets, as they at once cut their way out. But nets are suitable for such species as possess conical teeth; these last may likewise be taken by baited hooks attached to cords composed of many strands, through which the teeth penetrate but do not cut." A curious circumstance regarding the special nets used on the coast of Karachi may be here mentioned, namely, that they are made very largely of the fibre derived from Calotropis procera (see p. 206), a fibre hardly utilised in any other part of India, but the place of which is taken in Eastern India by rhea fibre (see p. 157), both fibres being selected on account of their great strength and durability under water.

The following are the chief Indian fish that afford "Shark-fins":—Aetobatis narinari (Day, l.c. i. 59), the Devil Fish; Bagarius yarrellii (l.c. i. 194), the fresh-water shark, the bünch or günch; Carcharias aequidens (l.c. i. 11), a shark of the coast of Sind and the Indian Ocean; C. gunjetiensis (l.c. i. 13), one of the most ferocious of Indian sharks; C. hiobatus (l.c. i. 17); C. melanopterus (l.c. i. 14), cauey sorrath or ramarn sorrath; and C. menisorrath (l.c. i. 16); Pristis cuusipatus (l.c. i. 37), the Saw-fish; Pteroplatea micena (l.c. i. 56); Rhynechobatus unguiculatus (l.c. i. 3, 41), the Mud-skate; R. djeddensis (l.c. i. 40), the ulavi or ranjä; Trygon sepbun (l.c. i. 50), the Ray; T. varnök (l.c. i. 53), the samkuk, hunkus; and Zygoena malen (l.c. i. 22), the Hammer-headed Shark.

(b) Fish-maws and Isinglass (see Isinglass, p. 695).—Vulgarily the term Isinglass is sometimes given to Mica. The English word is a corruption of the Dutch huisenblad (=sturgeon-bladder). It may be obtained from many substances, and according to the Greeks it was ixethoca or fish-gelue. As already explained, the finer qualities are the "sounds" or "air-bladders" of fish. The true isinglass of European commerce is the sound of the sturgeon (Acipenser), Brazilian isinglass is derived from one or two species of Sitarus, and the Indian isinglass from one or other of the following fishes:—Arius aequirostris, burmanicus, calurus, patarius, gagora, samu, and sugor (Day, l.c. i. 173–84). These are largely prepared and salted on the Western Coast (Karachi), but at the mouths of the Ganges there is also a fair and improving trade:—Osteoglossus militaris (l.c. i. 190); Otolithus maculatus (l.c. i. 127), the bilarli or Orissa; O. ruber (l.c. ii. 128), the jarang-gigi (or péche-pierrire) of Pondicherry; Pristipoma goiruin (l.c. i. 512), the gouruwa; Serranius diacanthus (l.c. i. 449), the damba; Siluanda yantegica (l.c. i. 145); and the Embrian ramesh (l.c. ii. 110). [Of. Royle, Prod. Isinglass; Day, l.c. (Fishes) i. 3, 5, 7–63; Hunter, Imp. Gaz., iii. 434.]

4. FISH MANURE.—When procured in excess of demand for human food, large

543

Nets.

Salted Flesh.

White and Black Fins.

Gelatine Glue.
quantities of fish are utilised as manure near the coast towns of India, very much as in some parts of Europe. Thurston (Bull. Mad. Mus., 1900, No. 2, 120-3) gives much information on the extent to which the sardine is employed as manure, the supply ranging from 2 to 515 tons a year. Fish manure is not unknown to the coffee planters, and Mollison says that for sugar-cane culture this manure is much valued. The Malayans consider the fish *Echeneis naucrates* (L. ii., 214) as specially suitable as a manure for fruit trees. [Cf. Simmonds, Wave Prod., etc., 155-77; Lehmann, Rept. Agri. Cult. Chem. Mysore, 1901-2, 16; Mollison, Textbook Ind. Agric., 1911, 77] as a substitute for fish meal.

5. MEDICINE. The bile of certain species of fish is believed to be a valuable medicine, especially that of the *ruhu* or *rui* (*Labeo rohita*). [Cf. Tuley/ Sorel, *Playfair*, transl., 1833, 150.] The brine of pickled fish is alluded to by Paula *Eginetas* (Adams, transl., iii., 81). Fish diet is by the Hindus considered safe for invalids than the flesh of other animals. The oil prepared from many species is used as an efficient substitute for cod-liver oil.

6. *Ngapee* (*Ngaps*).—In an official report issued in 1902 (though not offered for sale) by the Government of Burma on the Inland and Sea Fisheries, reference is made to the account of this preparation as given in the Dictionary. The passage in question was reprinted direct from the description of Tenasserim, written by H. Fenwick in 1849—presumably an authority on Burmese matters of the date in question. The recent official publication enumerates and describes some eighteen different forms of *ngaps*, the particulars given occupying five pages of closely printed foolscap. It concludes by asking the question, "Why does *ngaps* smell so? Because, however usefully the stuff is made, there must be always a considerable proportion of uncured flesh, flesh that the salt cannot reach. This flesh decays and rots, but the rest is properly cured fish." To many persons preserved fish in any form is objectionable. The danger of eating a proportion of rotten uncured flesh, however small, may be suggestive of poison and doubtless dictated the appellative "semi-purrid fish" used by Fenwick. The following passage from Niabet (i.e., 361) fairly represents all that is known regarding the preparation of *ngaps*. "Immediately after being caught and brought to land the fish are either scaled by hand or have the scales roughly brushed off with a frayed bamboo, and are then thrown into a wooden trough, the larger being gutted and deprived of head and fins. After being rubbed with salt they are packed in baskets and pressed down by means of a board weighted with large stones. Next morning they are unpacked and again rubbed with salt, then spread out on thin bamboo mats to dry in the sun until the afternoon of the following day, when they are packed alternately with layers of coarse salt in large earthenware jars placed in the shade. To retard the process of liquefaction of the salt, the powdered bark of the *endon* tree (*Lindia sebifera*) is mixed with it; but, during the three to five weeks this rough method of pickling is allowed to continue, the oily brine oozing to the top and evaporating, sometimes becomes so full of maggots before drying up that fresh supplies of salt have to be added. The scaleless siluroid mud-fishes are those most easily treated in this way."

"Greater care is taken in the preparation of *ngathalauk* (*Chapa palua*), the *bhis* of Indian rivers, which are simply gutted but not otherwise cleaned, and then salted and sun-dried before being spread between thin bamboo mats and pressed for about three days. These dried fish (*ngachauk*), the daintiest of Burmese condiments, are both in preparation and in transport handled separately, whereas the stinkingly offensive *ngaps* is sold in bulk; in baskets and sacks. Both varieties are cooked by roasting or frying when used to flavour the meal of boiled rice."

"Along the Tavoy and Mergui coast a finer quality of fish-paste is made with shrimps and prawns, which are worked up with salt when half-dried in the sun. As this is eaten uncooked, it is termed *seinsa* or 'raw food.' The more carefully prepared paste, made with selected small prawns, is frequently used with curry and rice as a chutney by Europeans all along the Malay coast, where it is known as *b.olong*; and of recent years it has competed with caviare as a bonne bouche in the boulevard restaurants of Paris." [Cf. Mandelslo, Travel, 1639, in Olearius, Hist. Muscovy, etc., 121; Symes, Emb. to Ava., 1795, ii., 371; Crawfurd, Journ. to Ava, 1834, ii., 176; Gaz. Upper Burma and Shan States, ii., pt. i. 483.]

7. FISH-OIL may be referred to two sections:—

(a) Shark, Ray and Skate Oils.—These are sometimes treated separately or mixed (as procured). In the former case an oil is often prepared from some of the

544
species that might be used as a substitute for cod-liver oil. Thus, for example, Day (l.c. i., 5) says: "At Calicut, medicinal fish-liver oil of an excellent quality was formerly manufactured, a small factory for this purpose having been constructed at that station in 1514, and the livers of sharks and saw-fishes were purchased from the fishermen. The abundance or paucity of these fishes evidently depended to a very great extent upon whether sardines were or were not present, for these latter forms of Clupeidae are very capricious, sometimes forsaking the coast for several successive years, and then as suddenly reappearing in countless millions. No livers under 40 lb. weight were accepted at the factory, as the larger ones gave proportionally a greater amount of oil than the smaller ones; sometimes livers of a great size were purchased. One weighed 290 lb., and another from a female saw-fish, 14 feet long, 185 lb." The fish included in this paragraph have been enumerated under Fish-maws and Shark-maws above.

(6) Other Fish-oils.—The livers, or the whole fish, of certain species that do not belong to the above group are known to afford excellent oils. These are mainly used for illuminating purposes, but some are of superior quality and may be even employed as articles of food. Such oils appear to be made of salt-water fish, all along the coast of India, and from fresh-water species, along the channels of the chief rivers. The following are the fish most highly spoken of as affording oil:—Barbus chaeta (i.c. i., 317), the Bitter Carp of the rivers of India; Clupea gambiata (i.c. i., 373), the Sardine; C. oresthia (l.c. i., 376), the Sable or Hilsa; C. lomipepho (l.c. i., 373), the Malabar Oil Sardine; Cybium commersonii (l.c. i., 211), the Seer or konam; Labelo rohita (l.c. i., 202), the ruhu of Indian rivers; Silurina gangetica (l.c. i., 145), found in the estuaries of India and Burma, the oil of which is much valued as a medicine.

Trade in Oil.—Thurston gives the fullest and most recent account of the Fish-oil trade of India. The following passage may, therefore, be abstracted from his most interesting and useful report:—"Hundreds of tons of fish-oil are said to have been annually exported from Cochin in former years, and I find that the average export thereof in the five years 1856 to 1861 was 19,630 cwt. The oil trade is, however, reported to be decreasing year by year. In some seasons the sardines arrive off the coast in enormous numbers, or, for several years consecutively, they may be present only in quantities sufficient for purposes of food. The result of this irregularity is that one very important element of success in commercial undertakings—regular supply—is wanting. In some years large shoals of sardines appear, and suddenly disappear. Contracts for the supply of oil are made on the arrival of the fishes, and, in the event of their disappearance, the contractor loses heavily. The Natives of Cochin say that formerly the sardines always arrived regularly, and remained throughout the season. And the fishermen’s belief is that they are at the present day frightened away by the numerous steamers which call at Cochin, and retire in search of a less disturbed spot. In addition to steam-boat traffic, noises in boats, ringing church bells, artillery practice, the erection of lighthouses, gutting fish at sea, using fish as manure, burning kelp, and the wickedness of the people, have been charged with being responsible for a falling off of the fish supply. But, as Mr. Fryer naively remarks, of these alleged causes, only the last, it is to be feared, has been, and is likely to be, a permanent factor in the case."

The preparation of the evil-smelling fish-oil is carried out in large iron cauldrons, in which the fish are boiled with a little water. The oil, as it exudes, rises to the surface, is strained through cloth, and stored in barrels. The residue in the cauldrons is preserved, and utilized as manure for cocoanut gardens, paddy (rice) fields, etc. A rougher and cheaper process of oil-extraction, by which the cost of cauldrons and firewood was saved, has practically been put a stop to as being an offensive trade. This process consisted simply in putting the fishes into a canoe, and exposing them to the influence of the sun until decomposition set in. The oil then rose to the surface, and was removed with a scoop. By this crude process a comparatively small quantity of the oil was extracted. A portion of the manufactured oil is consumed locally by boat-owners for smearing their boats, so as to preserve the wood and coir ropes (made from the fibre of the cocoanut husk) with which the timbers are stitched together. But the bulk is exported to Europe, and some Indian ports. The Natives believe that the oil returns from Europe, masquerading in the guise of cod-liver oil." [Cf. Eastern India, i., 229; Buchanan-Hamilton, MS. pub. by Day in Hunter, Stat. Acc. Beng., xx, 88; Japanese Sardine Oil, in Journ. Soc. Chem. Industr., 1887, vi., 372; Thurston, Bull. Mad. Mus., 1900, No. 2.]
8. POISONS OR INTOXICANTS USED TO KILL FISH.—The following are the plants often used in India to kill fish:—Albizia stipulata, and procera; Anamira Cocculus, W. & A. (the seeds boiled in rice and made into a paste); Balanita Roxburghii, Planch; Barringtonia racemosa, Bl. (seeds mixed with bait); Bassia butyacea, Roxb. (bark used in Sikkim); Berberis aristata, DC. (bark); Crocosmia paniculata, Willd. (according to Hooper, plant used); Derris elliptica, Roxb. (bark and flowers); Diospyros montana, Roxb. (fruits); Euphoria Tirucalli, Linn.; Ficus Lycocarpa, Willd.; and F. microcarpa, Bl. (the barks); Gossypium adenocarpon, Br. (the fruit); Hydnocarpus venenata, Gaertn. (fruit used); Lasiosiphon crinocephalus, Dcne. (bark); Mellettia Piscidia, Wight (powder of bark and flowers); Mundulea suberosa, Benth. (seeds and inner layer of bark); Randia dumerouzii, Lamk. (bruised fruits); Sapindus moulouka, Willd. (the seeds used); Spilanthus Aemelia, Linn. (fruits); Strychnos Nux-vomica, Linn.; Walsdor Piscidia, Roxb (bark thrown into tanks).

It has been pointed out that many of these contain saponin. All are more or less acrid and bitter. It is generally held that the fish taken by this process are quite wholesome. The practice is most reprehensible, since young and old are killed and more therefore destroyed than can be used. [Hooper, Dropp. Bull., Nov. 1890.]

9. ROE.—The roes of certain fish are highly prized. They are often specially prepared and sold by themselves, just as in Europe the cod-roe is a recognised marketable article. The fish most generally resorted to for this purpose are the Gad fish of Malabar (Hemirhamphus buffonii) (l.c. i., 427), a fish found plentifully in the seas and tidal rivers of Bombay, Bengal and the Andaman Islands. So again the Corsula Mullet (Mugil corsula) (l.c. ii., 349) or the undani, corsula, in-gi-ii, nga-sheng, etc., which Ainslie says affords a kind of caviar (caviare), as also the Common Mullet (Mugil eurynotus) (l.c. ii., 348), the kola-kada or muthlah, yields roes that are much appreciated and are sold sun-dried.

10. SALTED AND DRIED FISH.—In official statistics this subject is dealt with under the following headings:—"Dry Unsalted Fish," "Dry Salted Fish," and "Wet Salted Fish." One of the most startling circumstances of the trade in fish is the fact that India is apparently not able to meet her own demands. Perhaps no other part of the globe (of a like magnitude) possesses so varied and extensive a series of marine and fresh-water edible fish, nor so many forms that lend themselves readily to artificial production in tanks and ponds. In spite of every advantage, however, the foreign imports far exceed the exports, thus showing that from one circumstance and another, India is not self-supporting in the matter of fish. Whether this proceeds from unskilled methods and imperfect appliances, or from the want of proper regulations and protective measures, in the form of a Fisheries Act, or from the restrictions that prevail in the supply of cheap salt for fish-curing, or from the climatic and social conditions of the country and people that are naturally opposed to the development of a fish-curing industry, are points of a highly controversial nature. The late Dr. Francis Day was of opinion that the Bengal supply had steadily declined, since the first decade of the nineteenth century, when Buchanan-Hamilton conducted his survey of that province and wrote his Fishes of the Ganges, owing, Day thought, to the selfish and destructive systems that were allowed to prevail. Be that as it may, it is certain that the past twenty or thirty years has witnessed the steady growth of an import trade in fish which has assumed no mean proportions.

The following, arranged in alphabetical sequence of their scientific names, are the more important fish sold in salted condition:—Aetobatis marina (l.c. i., 97), the Devil Fish; Arius calopus (l.c. i., 174), A. sagor and A. sona (l.c. i., 178-9); Chatoecusset chuacunda (l.c. 386), the Indian Herring; Chrysophrys berda (l.c. ii., 44), the Grey Perch; Clarius magnur (l.c. i., 115); Cybium guttatum (l.c. ii., 210), Seer or seer; Cygnosiapeleop (l.c. ii., 452), the Soles known in South India as mantal; Equula dauro (l.c. ii., 188), the dace kurk, Common; Gerres filamentosus (l.c. i., 537), the Udran; Harpodon nehuensis (l.c. i., 412), the Bummelo, already discussed; Latzias argentimaneus (l.c. i., 472), the Red Rock-cod; L. jahangrah (l.c. i., 474), the purrus; Mugil corsuta (l.c. ii., 349), the Mullet; Pristis catuspilatus (l.c. i., 37), the Saw-fish; Rhynchohobitis djuvensis (l.c. i., 40), the Sear; Saccobranus hovilia (l.c. ii., 125), the Silver Pomfret; Saccobranus hovilia (l.c. ii., 112), the schi-ii; Scomber micropinopus (l.c. ii., 203), the Mackerel or ilia; Stromateus cincerus (l.c. ii., 198), the Silver Pomfret; S. niger (l.c. ii., 199), the Black Pomfret; S. sinticus (l.c. ii., 197), the White Pomfret; Trachynotus ortus (l.c. ii., 179), the
TAMARIND-FISH

Fish

Shagreen

Playing-cards.

Artificial Pearls.

kistii or mikali-parah; Trichiurus haemula (l.c. ii., 134), the Puttiah; Trichogaster fasciatus (l.c. ii., 372), the kothaka, nga-playin-thaleh—one of the fish made into ngapi; Trygon nayrak (l.c. i., 53), the Ray-fish, sankuchh.

Thurston (l.c. 1900, No. 2, 116 et seq.) should be consulted for particulars of the Indian methods of fish-curing. The bulk of the traffic, he says, takes place between September and March.

11. FISH SCALES.—The scales of the mahasir (Barbus tor) are said to be employed in the manufacture of playing-cards. They are cut into circular pieces about 1 inch in diameter, painted and varnished. The centre of the trade in this curious commodity appears to be Shahabad. In the Deccan the large scales of a carp are used in place of glass for windows. The scales of the Bleak and the Dace are in Europe employed in the production of a substance known as Essence d'Orient which is utilised in the manufacture of artificial pearls.

[Ind. Art. at Delhi, 1903, 202-5.]

12. SEA FISH.—So many of the fish that should fall into this position will be enumerated under other headings that it is hardly necessary in this place to do more than mention a few of the more important species:—Atherina forskali (l.c. ii., 338), also Engraulis indicus (l.c. iii., 394), both called Whitebait by Europeans in India; Chanos salmoneus (l.c. i., 403), the Milk Fish or White Mullet; Chatteusus chaoana (l.c. i., 386), the Indian Herring; Clupea fimbriata, tile and longiceps (l.c. i., 372-4), Sardines; Cybium guttatum (l.c. ii., 210) and C. commersonii (l.c. ii., 211), seer; Gymnocephalus tigrinus (l.c. ii., 454), the Sole of Europeans in India, or kot-aurals, a fish highly esteemed in the coast towns of India; Bussanieria acuta (l.c. i., 399), the Malabar Sardine; H. acutus (l.c. i., 412), Bombay Duck; Lathe eleotatis (l.c. i., 440), the Cock-up or Nair, the begot; Mugil corsula (l.c. ii., 349) and other species, the Mullet; Polyenius indicus (l.c. ii., 105), the Rowhall of Vizagapatam, the selé, is one of the chief sources of the "Fish-maws"; Scophthalmus microlepidotus (l.c. ii., 203), the Mackerel; Silina shama (l.c. ii., 224), the Whiting of Europeans in Madras; Stromateus cincerus (l.c. ii., 198), the Silver and Grey Pomfret; S. niger (l.c. ii., 199), the Black Pomfret; S. sinensis (l.c. 197), the White Pomfret; and Upenoides vitatus, the Mullet (l.c. ii., 25).

13. SHAGREEN OR FISH-SKINS.—The rough skins of many species of fish are used as a kind of sand-paper, and that of certain sharks, rays and skates is made into the substance known as shagreen. This is a thick skin covered with hard enamelled papillose scales. After being cured and stained it is employed to cover boxes, scabbards, sword-handles and other such purposes. In some respects the shagreen from the ray-fish and certain species of dog-fish is regarded as superior to that of the shark. In Hunter (Imp. Gaz., x., 252) mention is made of shagreen manufactures at Nawanganj; also in Milburn (Or. Comm., ii., 511), Horse-skins. The following afford shagreen:—Pristis eupatidos (l.c. i., 37), the Sawfish; Rhynchobatus ancglostomus (l.c. i., 41), the Mud-skate; Trygon sepheus (l.c. i., 50), the Ray; Zygurus malleus (l.c. i., 22), the Hammer-headed Shark. Hoey (Monog. Fish and Manuf. N. Ind., 1889, 94) describes the process of making horse or asses' hides into an imitation shagreen known as kimukht and kirkin.

14. SMOKED FISH.—While the art of curing fish by smoking them seems to have been known to the Natives of India from fairly ancient times, it cannot be said that it has assumed a position of such importance as in Europe. The hilsa or Sable, Clupea ilisha (l.c. i., 376), is the fish most noted as being in India cured by being smoked. The Mango-fish, Polyenius indicus (l.c. ii., 105), is a fish that must be eaten immediately after being caught. Accordingly, to allow of its being carried to a distance it is sometimes smoked. The basses of the rivers of Assam, Bengal, Orissa, etc., is also a fish often smoked, but these and other instances are more a consequence of special demand by the Europeans than a regular Native industry. The smoke from burning refuse sugar-cane is that most generally used.

15. SOAP.—Several methods of utilising fish and fish-offal in the production of soap have been discussed by several writers, but no actual industry exists in India for this purpose. [Cf. Simmonds, Waste Prod., 148.]

16. TAMARIND-FISH.—Fish pickled in a preparation of tamarinds is known in Indian trade by this name (see p. 1067). The species most frequently treated in this way are Cybium guttatum (l.c. ii., 210), the seer or seir fish, and Lathe eleotatis (l.c. i., 440), the Cock-up or Nair fish, the begot of Bengal. Thurston says: "In
the ordinary method of preparation, the fish is boiled, and, after removal of the bones, cut in thick slices, highly spiced and left to soak, packed in a jar. But the following account of a new and improved process has been sent to me by Mr. Sherman. "Fish of all sizes can be cured, but, for Colombo market, mackerel are preferred. The fish are not slit open, but neatly gutted by extracting the entrails through the gill-opening. They are then carefully washed and packed, with alternate layers of salt, in big casks, which are procured locally and sold in Colombo with the fish. To each mauld of the fish about 7 lbs. of tamarind fruit (goosatapuliy) are used." "The casks are stored on end and filled to the full. The fish is allowed to soak and pickle for four days, and the brine is then drawn off until it is about a foot from the bottom, and thus leaving enough brine to keep the whole cask moist when closed. Under this new system 1,658 maulds of mackerel, with 375-7 mds. of salt, are used, or 18-6 lbs. per mauld against 12-5 lbs. used in the usual west coast method of curing."

TRADE IN FISH.—It has often been urged that India is most neglectful of her food resources in this direction. With a little care the rivers and tanks might become very much more important sources of supply, and indiscriminate and wasteful methods of fishing, both in fresh and sea water, account largely for the backwardness of the trade. It has accordingly been urged that both a Fisheries Department and Fisheries Act are much needed. Repeated efforts have been made and voluminous reports prepared with a view at least to secure for each province a special Act to protect its fisheries (see p. 546). The multifarious vested interests of a vast population of semi-educated people are the excuses for existing defects. It has been said that when the people have come to appreciate the value of measures to secure and protect their interests, then will be the time for special legislation; and further, that without a proper Act a Fisheries Department would have little justification for its existence. On the other hand, the claims of the fish-curing industries have already been recognised by the organisation of Government fish-curing yards where cheap salt may be supplied, under regulations that ensure its being restricted to the purpose intended, and these have been placed under the control of the Salt Department. But in the annual publication *Financial and Commercial Statistics of British India*, no factory or establishment that employs less than 25 persons permanently is recognised, hence the bulk of the fish-curing yards are excluded. Fish-curing in India, though important in the aggregate, is a domestic rather than a public concern. Nevertheless, in the publication mentioned, there were recorded 10 companies in 1901, 15 in 1903, and 13 in 1904, employing on the average about 1,300 persons annually. These were entirely in the Madras Presidency. In 1882 the prohibition against the use of natural saline earth in the preservation of fish was issued. This of necessity led to some provision to replace that material and method of fish-curing. This was met by the Salt Department concerning themselves with the provision of the fish-curing yards to which reference has been made. The salt issued to the fish-curers was at first given at cost price, but in consideration of the fact that the saline earths formerly employed were procured for the cost of collection, the salt was reduced to 6 annas 8 pias per mauld (say 6½d. for 80 lb.). It was found, however, that all forms of salt were not equally serviceable for fish-curing; accordingly for some years complaints were general, and a decline in fish-curing having occurred, this was pointed to as a direct result of the Government's efforts at protecting its salt interests while at the same time raising the standard of fish-curing in India. This subject will be found dealt with in some detail by Thurston. [Bull. Mad. Mus., 1900, No. 2, 147-52.]
From the reports of the Madras Salt Department we learn that 136 curing yards had been organised at convenient centres along the west and east coasts of the Presidency. In 1902-3 the total amount of fish brought to them to be cured came to 50,374 tons, as against 68,992 tons in the previous year. The production came to 814,716 maunds of cured fish, of which it is stated 631,277 maunds were consumed in the Presidency. Thurston gives the returns of the three most important fish as follows:—Sardine, 387,300 maunds in 1896, 253,600 maunds in 1897, and only 31,000 maunds in 1898; Mackerel for these same years, 253,867, 90,035, and 401,946 maunds respectively; and Seir, 12,388, 24,321, and 8,088 maunds respectively. It would appear that from 60 to 65 per cent. of the South Indian fish-curing is done in the Salt Department Sub-Division of Calicut (including Malabar and South Canara), such as Calicut, Cannanore, Mangalore and Malpe, etc. There are several other important centres such as Chicacoole, Tinnevelly, Coocanada, Chingleput, Nellore, Negapatam, etc. Malpe is interesting as the centre to which the fishermen of Ratnagiri and Goa come for the seir fishing season. [Cf. Memo. prepared by Finance and Commerce Dept. Ind. on the Salt Dept., Sept. 1894, 42-3.]

The internal traffic in fish, as in most other Indian commodities, can alone be studied by the perusal of the official statistics of Foreign and Coasting Trade. Fish do not appear in the returns of Rail and River-borne Traffic, so that very little can be learned of the internal transactions. The following are the headings under which they are recorded:—(a) Fish-maws and Shark-fins; (b) Fish, Dry Unsalted; (c) Fish, Dry Salted; (d) Fish, Wet Salted; and (e) Fish-oils.

Trade in Fish-maws and Shark-fins (see p. 542).—India imports on an average 5½ lakhs of rupees' worth. These come from Aden, Arabia, Mekran and Somniami, Persia and Zanzibar. The highest record during the six years ending 31st March, 1907, was in the year 1901-2, when the imports stood at 1,797,114 lb., valued at Rs. 6,58,200; of that amount Bombay took 1,755,877 lb., valued at Rs. 6,27,554, and the balance went to Sind, Madras and Burma. The imports during the years 1903-7 have been:—1903-4, 1,588,692 lb., Rs. 5,87,444; 1904-5, 1,330,326 lb., Rs. 5,05,193; 1905-6, 1,388,365 lb., Rs. 5,25,394; and 1906-7, 1,215,972 lb., valued at Rs. 4,84,465. Practically the entire imports are re-exported, and from 6 to 14 lakhs of rupees' worth of Indian produce exported at the same time. This may approximately be said to represent on the average a total export traffic of 20 lakhs of rupees in value. Thus, taking the year 1903-4, the foreign shark-fins and fish-maws re-exported came to 1,878,342 lb., valued at Rs. 14,36,580, and the exports drawn from Indian supplies came to 481,873 lb., valued at Rs. 5,14,006; and in 1906-7 the re-exports came to 1,350,020 lb., Rs. 11,73,345, and the exports 565,435 lb., Rs. 5,13,350. Bombay is of course the chief exporting province, and exported out of the totals mentioned, in 1903-4, 1,876,074 lb. foreign shark-fins and fish-maws and 49,520 lb. Indian; in 1905-6, 1,336,804 lb. foreign, but no Indian; but Bombay, however, is by no means the most important exporting centre for the Indian fish-maws and shark-fins. In the Indian produce traffic, Burma usually heads the list, and in 1903-4 exported 281,296 lb., in 1905-6, 243,592 lb.; being followed by Madras with 107,582 lb. and 153,614 lb.; Karachi with 14,923 lb. and 113,804 lb.; and lastly Bengal with 28,552 lb. and 14,768 lb. in the two years mentioned. The most important receiving country is of course
FISHERIES OF INDIA

China (Hongkong) for the re-exported fish-maws and shark-fins, followed by the Straits for the Indian. It is perhaps a significant circumstance that the United Kingdom has for some years taken fairly large quantities and even the United States have obtained supplies of these products direct from India.

As giving a fuller conception of the Indian production, the following review of the traffic carried coastwise may be framed. In the year 1903-4 the total coastwise transactions came to 1,236,173 lb., valued at Rs.784,179, but showed a decrease in 1905-6 to 875,927 lb. Of the amount for 1903-4 Bombay alone took 1,160,667 lb., valued at Rs. 4,29,229. Of these coastwise imports two-fifths came from Madras, one-fifth from Sind, the remaining two-fifths equally from British ports and non-British ports within the Presidency of Bombay. The remainder, over and above the Bombay transactions on total coastwise trade, may be said to be imports taken in 1903-4 by Burma from Madras and Bengal, viz. 47,057 lb. Practically, therefore, the coastwise trade in shark-fins and fish-maws is concentrated in Bombay. It has been fairly constant for some years past, but if anything has manifested a tendency in the foreign imports to decrease and the Indian produce to expand, a satisfactory state of affairs.

Trade in Fish.—(b) to (d) above may be exhibited as follows:—

Foreign Imports.—In 1892-3 the imports of fish were valued at Rs. 28,80,269 (say £193,000). Of that amount the “Unsalted Dry Fish” (see p. 543) came to Rs. 3,55,893, “Salted Dry Fish” (see p. 546) to Rs. 18,08,491, and the “Wet Salted Fish” (Ngapi, p. 544) to Rs. 7,15,885. In the years 1894-7 a serious decline took place in the traffic, due, it is believed, to the conditions that then prevailed in Bombay.

Analysis of the Imports of Fish into India.

<table>
<thead>
<tr>
<th>Year</th>
<th>Dry Unsalted</th>
<th>Dry Salted</th>
<th>Wet Salted (Ngapi)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ib.</td>
<td>Rs.</td>
<td>Ib.</td>
</tr>
<tr>
<td>1900-1901</td>
<td>2,36,414</td>
<td>1,14,408</td>
<td>15,76,445</td>
</tr>
<tr>
<td>1901-1902</td>
<td>2,36,821</td>
<td>1,14,323</td>
<td>15,76,310</td>
</tr>
<tr>
<td>1902-1903</td>
<td>2,96,582</td>
<td>1,79,326</td>
<td>15,09,582</td>
</tr>
<tr>
<td>1903-1904</td>
<td>4,74,367</td>
<td>2,48,566</td>
<td>11,83,549</td>
</tr>
<tr>
<td>1904-1905</td>
<td>5,79,140</td>
<td>1,60,650</td>
<td>13,39,959</td>
</tr>
<tr>
<td>1905-1906</td>
<td>4,192,633</td>
<td>2,34,403</td>
<td>14,09,826</td>
</tr>
<tr>
<td>1906-1907</td>
<td>5,889,293</td>
<td>2,59,441</td>
<td>14,40,955</td>
</tr>
</tbody>
</table>

Another very significant circumstance in the fish trade of India may be stated to be the fact that Bengal practically takes no part in the import traffic. Burma receives by far the major portion of all the fish imported by British India; and, what is most striking, its supplies come almost entirely from the Straits Settlements, and are uniformly returned at a much higher price than the classes of fish that go to the other provinces. Bombay is the chief receiving province for “Dry Unsalted Fish” and Burma for “Salted Dry” and “Salted Wet Fish.” The imports of “Dry Salted Fish” come mainly from the Straits (into Burma) and from Arabia, Mekran and Sonmiani (into Bombay).

Foreign Exports.—There exists a small re-export of foreign preserved fish which in 1905-6 came to Rs. 44,584, and in 1906-7, 22,686. But turning from these unimportant transactions to the traffic in Indian produced and preserved fish, it may be said that, if anything, the exports of “Dry Unsalted” and “Dry Salted Fish” from India have shown a tendency to improve during the past decade. In 1892-3, for example, they were valued at Rs. 8,97,406; in 1903-4 they came to Rs. 17,75,722.
and in 1906–7 to Rs. 15,64,747. The "Dry Unsalted Fish" goes usually in almost equal proportions and value from Bombay and Madras (in 1906–7, the Bombay share came to 1,206,665 lb., valued at Rs. 1,20,490; and the Madras to 4,162,854 lb., valued at Rs. 2,94,235). In the "Dry Salted Fish" trade Madras takes by far the most important position. Out of the total exports of 1906–7, Madras supplied fish of this class to the extent of 9,934,728 lb., valued at Rs. 10,44,465, and these went almost exclusively to Ceylon.

Coastwise Traffic.—But to attain a fairly comprehensive conception of the location and extent of the Indian fisheries, it is necessary to consult the returns of coasting trade. It is unfortunate that no particulars are published of the fish carried by rail and river, as these might have afforded some data upon which to judge of the transactions in the more interior tracts. So far as is known, there are no large fish-curing centres connected with the fresh-water fish and fishing, so that the coastwise traffic may be accepted as fairly representing the local trade. The coastwise transactions are recorded under two headings—"Dry Unsalted" and "Dry Salted." Under each the traffic has fluctuated considerably, but on the whole forward. During the under-mentioned years the "Dry Unsalted" has manifested a satisfactory expansion, viz., Rs. 19,85,869 in 1899–1900; Rs. 29,30,971 in 1903–4; and Rs. 25,61,334 in 1905–6; while the "Dry Salted" have practically remained stationary—Rs. 7,87,774 in 1899–1900; Rs. 7,80,301 in 1903–4; and Rs. 7,50,975 in 1905–6. By far the most remarkable features are the immense traffic towards the town of Bombay in cheap fish, and the fairly large supplies drawn by Rangoon of highly priced fish. Thus, for example, in 1905–6 Bombay imported coastwise "Dry Unsalted Fish" to the extent of 15,040,751 lb., valued at Rs. 6,43,159, and Burma 7,219,489 lb., valued at Rs. 18,10,459. The Bombay town supply was procured from British ports within the Presidency (Rs. 2,92,757); from Kathiawar (Rs. 2,60,698); from Daman (Rs. 66,044); and from "Other Provinces" (Rs. 22,660). The Burma supply was drawn from Bengal (Rs. 5,03,765); Madras (Rs. 7,24,770); "Other Provinces" (Rs. 1,94,453); and from the British ports within the province of Burma itself (Rs. 3,86,946). Turning now to the subject of the coastwise traffic in "Dry Salted Fish," the total for 1903–4 came to Rs. 7,80,301, and in 1905–6 to Rs. 7,50,975. But by far the most remarkable aspect in this traffic may be said to be the circumstance that the exports are almost exclusively into Bombay, Madras and Burma, in equal proportions and from their own provincial ports into their chief towns.

Location of Fisheries.—It may, in conclusion, be inferred, from these observations, that the fisheries of India are mainly along the west coast from Kathiawar to Travancore; that Burma is the least self-supporting of all the provinces and demands from external sources a superior, not an inferior quality of fish; and lastly that Bengal, while it takes very little share in the export traffic in fish, produces apparently enough for its own necessities, since it practically imports no fish either from foreign countries or from other Indian provinces.

GARCINIA
COWA

Cultivation.

This plant seems to be grown only in small patches, on homestead lands, as a cold-weather crop. Firminger informs us that it thrives well in Bengal, and where once grown will come up each cold season afterwards, from self-sown seed. The seeds should be sown in October on the plains, and in March and April on the hills. Of the United Provinces, Duthie and Fuller intimate that fennel is extensively cultivated during the cold season in gardens patches. In Bombay, the chief localities are Khandesh and Gujar, but it is also grown in the Deccan.

Fennel fruit yields about 3 per cent. of volatile oil, which consists of anethol or anise camphor and variable proportions of a liquid isomeric with oil of turpentine. The oil is used in Europe in the manufacture of cordials and enters into the composition of fennel water, which is known in India as *muhori-ka-arakan* or *arakan baddian*. [Cf. Thorpe, *Dict. Appl. Chem.*, 1900, iii, 12; Schimmel & Co., *Semi-Ann. Rept.*, Oct.–Nov. 1897, 27–8; Oct.–Nov. 1902, 42–3]

The fruits and oil are stimulant, aromatic and carminative, used largely as flavouring agents to medicines. The root is purgative and the leaves diuretic. [Cf. *Pharmacog. Ind.*, ii, 1890, 124–7; Dutt, *Mat. Med. Hind.*, 1900, 174.] White and Humphrey, *Pharmacop.*, 1904, 203.]

Trade.
The exports are not very important. During the five years ending 1903–4 they ranged from 3,355 cwt., valued at Rs. 29,277, to 14,085 cwt., valued at Rs. 1,16,370, but have since declined to 10,974 cwt., valued at Rs. 1,09,735 in 1906–7. Ceylon is usually the most important receiving country, though during 1903–4 and 1904–5 the United Kingdom took the largest amounts, viz. 5,396 cwt. and 10,521 cwt., but in 1906–7 took only 522 cwt. Outside the British Empire, Germany is the only country that need be mentioned. In 1903–4 it took 1,424 cwt., and in 1906–7, 2,272 cwt. Practically the whole of the exports go from Bombay.

D.E.P.,
iii., 464–78.

GARCINIA, *Linn.*; *Fl. Br. Ind.*, i., 259–70; Roxb., *Fl. Ind.*, ii., 618–30; Gamble, *Man. Ind. Timbs.*, 49–55; Cooke, *Gums, Resins, etc.*, *Ind.*, 1874; *Guttiferæ*. A large genus of evergreen trees of the tropics, none of the species extending to the Panjâb or the United Provinces, and few even to the North-East Himalaya. There are thirty-six species, most of which contain a yellow juice, which generally gives a more or less useful pigment—the grades of Gamboge.

G. Gambogia, *Oerst.*; Talbot, *List Trees*, etc., 1902, 27; Cooke, *Fl. Pres. Bomb.*, 1903, i., 77; Brandis, *Ind. Trees*, 51. The *hila*, *aradali*, *mantubhi*, *ponapuli*, *upagi mara*, *dharame*, *ghokrampuli*, *gorakapuli*, etc. A small evergreen tree of the western coast and Ceylon, ascending to 6,000 feet on the Nilgiris. It is said to yield a yellow, very adhesive Gum, which is valueless as a pigment because insoluble in water. It is, however, soluble in spirits of turpentine, and thus forms a beautiful yellow *Gamboge*. It also gives an Oot used in medicine. The Fruit is edible and of a pleasant acid taste. It ripens during the rainy season. The rind of the fruit is employed as a condiment and eaten with fish as a substitute for tamarind. The Wood is grey, sometimes patched with red, smooth and close-grained. Beddome remarks that it would be useful for common furniture. [Madras Weekly Mail, May 16, 1901.]

GARCINIA MANGOSTANA
Mangosteen

Gum.
Yellow Varnish.
Dye.

Gum.

Kokam Butter.

a yellow Gox which is insoluble in water, but with spirits of turpentine gives a beautiful and permanent yellow Varnish for metallic surfaces. In certain districts the bark is employed to produce a light-yellow Dye used in colouring cloth for the garments of Buddhist monks. Duncan *Dyes and Dyeing, Assam,* 1896, 25 mentions that its use in dyeing is unknown in that province. The Fruitt ripens at the beginning of June, and is of the size and form of a small orange. It is acid in taste, but otherwise good, and makes a very fine preserve. The Wood is not used for any economic purpose.

G. heterandra. Wall. An evergreen tree of the hills of Burma up to 3,000 feet. It is the *thanattaw* or *tha-nat-tau,* and yields a superior quality of gamboge sometimes called Arakan. *Cf. Hanbury Journ. Agri.-Hort. Soc. Ind.* (Proc.), 1859, x, 121.] A sample from Tavoy, when analysed, gave:—resin 76·5 per cent.; gum 23·5. [Gamble, l.c. 55.]

This slender tree with its drooping branches is found in the forests of the Konkan, Kanara, Coorg and Wynaad, and is often planted, especially in the southern districts of the Bombay Presidency. It requires particularly well on the lower slopes of the Nilgiris, and a writer in *Indian Gardening* (March 18, 1899, 108) recommends its cultivation for the fruit as a by-product on lower elevation estates. From the Seeds of the fruit a valuable Oill is extracted known as kokam butter. It is obtained in one of several ways by boiling, churning, or simply pressing the seeds in an ordinary oil-mill. In the Indian bazars it is found in the form of egg-shaped or oblong lumps, of a whitish colour, at ordinary temperatures, firm, dry and friable, yet greasy to the touch. Examination of the glycerine under the microscope proves it to be crystalline. Usually it contains a considerable amount of impurity, but by filtration it may be obtained perfectly pure, transparent, and of a light-yellow colour. It melts at 98° F. According to Flückiger and Hanbury it contains stearic, myristic and oleic acid. In medicine it is considered nutritive, demulcent, astrigent and emollient. It is also used as a substitute for cod-liver oil, and in the preparation of ointments. The Fruit, sometimes called the wild mangosteen, has long been considered an article of food. Garcia de Orta (1563) refers to it under the name of *brindola,* and in his note on Linschoten's account of Indian fruits Paludanus (1596) calls it *brindojus* and speaks of its sour taste—it is called *brindo* in Goa to-day. Woodrow mentions that a statement made by Graham in the *Bombay Courier* (June 12, 1830), to the effect that it is used at Goa for adulterating *ghi,* had been denied by a writer in *The Indian Times.* At the present day the dried fruit is used as a condiment in curries, and in the preparation of acidulous drinks. A considerable trade in kokam butter is carried on by the Goanese. *Cf. Pharmacog. Ind.,* 1890, i., 163–7; Moodoo Sheriff, *Med. Med. Mod.,* 1891, 45–6; Andés, *Veg. Fats and Oils,* 1897, 216, 218; Waring, *Baz. Med. Ind.,* 1897, 83–4; Wright, *An. and Veg. Fixed Oils, Fats,* etc., 1903, 299, 353; *Imp. Inst. Tech. Repts.,* 1903, 129, 132.

Though frequent efforts have been made in Bengal and Western India to grow this tree, it has not been known to fruit successfully. In Ceylon, Trinidad and Jamaica, better results appear to have been attained. A warm moist, insular climate seems essential to success. In the open plains it does not thrive so well as in valleys with light shade. Is liable to the disease known as *gamboge canker.*

553
GARCINIA
MORELLA
Gamboge

It is propagated by seed, grafting or inlaying, and on rich loamy, welldrained soils. The tree is commonly said to begin to bear when from 7 to 10 years, or, according to other experience, not until it is 15 to 20 years old. It may continue to yield thereafter for 50 to 100 years. The fruiting season is June to September. Rich cultivation is essential, such as manure once a year. Care must also be taken in picking the fruit, since until the rind has hardened it is delicate—a fall may often be fatal to any idea of preservation. The yield has been variously stated. A writer in Indian Gardening speaks of trees planted 25 by 25 feet yielding 1,000 fruits an acre, with a net profit of £2. A writer in The Planter, on the other hand, affirms that each tree may give an annual income of £2 to £25. Gambrel observes that according to Helfer one tree may yield 1,000 fruits yearly, valued at Rs. 3 per 100. At Barliar a tree has been reported to have given 1,200 fruits. The fruits are usually strung by a bast fibre, being tied between the thick, hard, calyce teeth and the fruit; bunches thus formed are hung up to mature. If intended to be transported, these bunches should be packed in baskets along with wet moss, and dispatched the day they are plucked. Some years ago a consignment of fresh fruits was sent to London from the West Indies, but apparently no trade has as yet been organised.

As an article of food, the fruit is highly esteemed both by Europeans and Natives, and is considered by many persons the most delicious of Eastern fruits. Ships coming from the Straits bring it to Rangoon and Calcutta, but by the time they reach the latter port the fruits have lost their true flavour, and are often very bitter, through the formation of layers of yellow gamboge between the pips. A considerable trade is done, however, and the price ranges from Rs. 3 to as much as Rs. 10 a hundred, according to season and quality. Recently an attempt has been made to preserve the gamboge, and a little more enterprise might make this an important industry. Traffic in gamboge is, in fact, very ancient. Tavernier (Travels Ind., 1676 (ed. Ball), ii., 287) speaks of the fruit as abounding in Siam.

Tannin Material.

The rind is a powerful tanning material, and an attempt has been made to utilise the immense quantities available in Burma and the Straits. [Cf. Apri. Ledg., 1902, No. 1, 14.] The chemistry of the rind was investigated by Schmid in 1855. It contains tannin, resin, and a yellow crystallisable principle, \textit{sagostin}. In medicine the rind or entire fruit is employed in the production of a syrup that is used in chronic diarrhoea and dysentery. [Cf. Pharmac. Ind., i., 167; Yearbook of Pharmacy, 1892, 167; 1900, 399; Seatt. Repts. Amknt., 1893, 47; Cult. in Singapore, Agri. Bull. Straits, 1902, i., 373; Niabet, Burma under Brit. Rule and Before, 1901, i., 352; Hawaiian For., 1905, ii., 91; Trop. Agrist., 1905, xxv., 259-60.]

Gamboge.

G. Morella, Desr.; Talbot, List Trees, etc., 1902, 27; Cooke, l.c. 77-8; Gamble, l.c. 55; Brandis, Ind. Trees, 1906, 53. Indian Gamboge Tree. The vernacular names are thus grouped:—the tree—\textit{arisinga}a \textit{mar}, \textit{aradal}, \textit{punar puli}, \textit{kankulate}, \textit{daramba}, \textit{tha-men-gut}: the resin—\textit{ghodthagubbu}, \textit{ausuraherevan}, \textit{revachinnisir}, \textit{makkai}, \textit{iroval-\textit{chinip-pul}}, \textit{sanato-\textit{si}}, \textit{rubbire\textit{and}}, \textit{farfaran}, etc. An evergreen tree of the forests of the Khasia hills, Eastern Bengal, the West Coast and Ceylon. The Gamboge of European commerce comes from Siam, and is obtained from \textit{G. Hanburyi}, Hook., f. (Kenu Mus. Guide, 1907, 20).

From the \textit{GUM-RESIN} is produced the gamboge of medicine and the arts. It was first mentioned apparently by Clusius (1605). It is referred to in Chinese works as far back as the end of the 13th century. The gum is not collected to any material extent in the forests of India, and the chief supply comes, therefore, from Siam. Before the resin can be gathered, the trees must be some ten years old. Tapping is carried on during the rainy months, June to October, when the sap is vigorous, by cutting a spiral line round the trunk from a height of about ten feet above the ground. Down these grooves the resin trickles in a viscous stream into hollow bamboo placed at the base. From these it is decanted into smaller bamboos, and left for a month or so to solidify. To remove the gamboge the bamboo joints are placed over a hot fire, which causes them to crack, when a round stick of gamboge is obtained from each—the Roll or Pipe Gamboge of commerce. This method does not seem to be employed in India, where only

Pipe Gamboge.
THE GAMBOGE PLANT

small incisions as a rule are made, and the resin collected in small tear-drops. In Ceylon it is procured by cutting here and there a thin slice off the bark and scraping away the resin which collects on the exposed surface. Cake and Granular Gamboge are thus obtained, but both these are less pure than Siam pipe gamboge. The best commercial samples of the pipe gamboge are of a rich brown colour externally, dense and brittle, with a conchoidal fracture of a reddish-yellow colour, odourless and tasteless at first, then acrid. Mixed with water it forms a yellow emulsion. Hurst (Painters’ Colours, Oils, etc., 1901, 461) gives an account of the chemistry. Analysis shows it to contain:—moisture, 2·50 per cent.; mineral matter, 1·05; resin soluble in ether, 66·05; wax soluble in alcohol, 4·31; gum, 26·03. Gamboge dissolves in ammonia with a yellow colour, and this solution produces yellow and red dyes with zine, alumina, and lime mordants. The average London quotation for Siam gamboge varies from about £6 10s. to £10 per cwt.

In Medicine, gamboge is employed as a hydrogogue and drastic cathartic and anthelmintic. From the seeds a semi-solid oil or fat is obtained, used as a lamp-oil or a substitute for ghee. [Cf. Milburn, Or. Comm., 1813, ii., 507; Cooke, Gums, Resins, etc., 1874, 41–4, 46–8; Moodeen Sheriff, Mat. Med. Mad., 1891, 43–4; Pharmacogn. Ind., 1890, i., 168–70; Trop. Agrist., 1895–6, xxv., 216–7, 319; Yearbook of Pharmacy, 1897, 177–8; 1899, 164–5; Livache, Manuf. Varnishes, Oil Crushing, etc., 1899, 77–8; Moritz Lewinthal, Ueber das Gummirotta, 1891; Chem. and Drugg., 1901, lix., 102; Allen, Comm. Organ. Anat., 1901, iii., pt. i., 461–3; Barry, Legal Med. Ind., 1902, i., 532, 558; Mitchell, Animal and Veg. Fats, etc., 1903, 299; Blyth, Foods, 1903, 353, 491; White and Humphrey, Pharmacop., 1901, 543; Tschihrich, Die Harze and die Harzbehaelter, 1906, ii., 333–50.]

G. Xanthochymus, Hook. f.: Rec. Bot. Surv. Ind., i., 336; Talbot, Insect., 27–8; Cooke, Lc., 78; Prain, Beng. Plants, i., 247; Firringer, Insect., 290. The dandel., tadali, tepor, manohola, tawa, incara memodi, mukki, janadi, madau, etc. A medium-sized evergreen tree of E. Himalaya and E. Bengal; from Kanara south, through Coorg and the Nilgiris; also in the N. Circars, Burma and the Andaman Islands.

A large quantity of an inferior gamboge is obtained from the Gum-resin of this species. In Assam it is extensively used as a dye. The Phakials of Lakhimpur also employ the bark to produce a bright yellow. The mordant used is the green leaves of Symphlocos grandiflora (bhamrattu). [Cf. Duncan, Dyes and Dyeing, Assam, 1896, 26.] The fruit is utilised in medicine either fresh or dried, and also eaten as a food. It ripens in January and February, and is sometimes used in place of the tamarind for preparing curry, and this fruit, as also that of G. paniculata, are used in the preparation of vinegar (see p. 1109).

GEM-STONES.

Holland, Rev. Min. Prod. Ind., 1898–1903, in Rec. Geol. Surv. Ind., 1905, xxxii., pt. i., 106–9; also Imp. Gaz., 1907, iii., 160–3. Holland states that the most important of the precious and semi-precious stones of India are amber, jadeite and ruby. “The only precious and semi-precious stones at present mined in India are the diamond, ruby, sapphire, spinel, tourmaline, garnet, rock-crystal, and the various chalcedonic forms of silicon, jadeite and amber” (see p. 64). The Pearl, though not a mineral but an animal gem-stone, may be described here. In the present article, therefore, a classification into Major and Minor gems may be adopted advantageously. Under the heading of MAJOR GEMS will be taken up in alphabetical sequence—Beryl, Diamond, Pearl, Ruby, Saphhri, Spinel, Topaz and Turquoise; under MINOR GEMS—Garnet, Jade, Lapis Lazuli, the Quartzose minerals (Rock Crystal, Agate, Onyx, Jasper, etc.), and Tourmaline.

Total Trade. The value of the precious stones found annually in India does not apparently equal the value of the unset stones and pearls imported. The Imports in 1903–4 amounted in value to Rs. 1,52,15,502, and in 1906–7 to Rs. 93,38,103, and came chiefly from the United Kingdom, Arabia, France and Persia. The share of Bengal was Rs. 94,62,278
in 1903-4, and Rs. 6,05,482 in 1906-7; of Bombay, Rs. 55,02,591 in 1903-4, and Rs. 84,49,271 in 1906-7. The balance on the totals of the years named went to Burma. In the same years the Exports (Indian merchandise, including Jade) amounted to Rs. 9,25,257 and Rs. 18,81,608, and the re-exports to Rs. 92,118 and Rs. 2,57,598.

I. MAJOR GEMS.

1. Beryl.—Ball, Man. Econ. Geol. Ind., 1881, iii., 520-2; Holland, l.c. 107-8. The sabza, panoa, fastiki kerasi.

Prof. Church writes me that beryl includes not only the rich green emerald, but also the sea-green aquamarine as well as the white, and the bluish variety of a mineral species, which is a silicate of alumina and another earth, now generally called beryllia.

According to Holland, the palest varieties are common in the granite pegmatites of India, but the crystals are too fissured for use as gems-stones. The only places where attempts have been made to excavate pegmatite solely for its aquamarines are at Padyur (Pattalai) near Kanyakumari, Combatore district, and at different places in the Toda hills in Rajputana. [Cf. Linschoten, Voy. E. Ind., 1598 (ed. Hakl. Soc.), 1885, ii., 138; Tavernier, Travels, 1676 (ed. Ball), 1889, ii., 104; Milburn, Or. Comm., 1813, ii., 288; Watt, Min. Rev. India, 1894, 16; 1895, 39; 1896, 38; 1897, 36-7.]

Sources.—India was the first and for long the only source of diamonds known to European nations, and most of the great historic diamonds, the Koh-i-nur, the Orloff, the Pitt, etc., were obtained from that country. Many of the early Indian explorations by Europeans were primarily conducted with a view to learn particulars of the supply of diamonds and other precious stones. References to Indian diamonds accordingly occur in the writings of most of the early travellers. Marco Polo wrote of them in the 13th century. Varthema (Travels, 1510 (ed. Hakl. Soc.), 1863, 107) deals specially with the diamonds of Cambay. The history of the Koh-i-nur, given by Tavernier (l.c. 123-7), traces that gem back to the time of the Emperor Baber (Memoirs (Leyden and Eakins, transl.), 308). Jahangir (Memoirs (Price, transl.); 2-3, 51) gives an account of the diamonds in the crown and throne used by him. Garcia de Orta, who was in India in 1563 (Coll., xiii.; also in Ball, Proc. Roy. Ir. Acad. (3rd ser.), 1890, i., 657-61) mentions various Eastern diamond mines, such as that of "Bisnager" (Vijayanagar) and the "Decam" (Deccan). Ball, in his translation of Tavernier's Travels, gives full particulars of all the Indian sources of diamonds, and the reader desirous of such details should, therefore, consult that work (app., 431-61). Tavernier—a diamond merchant—was the first European to critically examine the diamonds and the Court jewels of India. His work is, accordingly, highly instructive. Fryer (New Acc. E. Ind. and Pers., 1875, 188, 212-4) and Thevenot (Travels in Levant, Indostan, etc., 1687, pt. iii., 98-100, 104) speak of the diamonds of Golconda, etc. (Golconda mines, consult Ball, l.c. 453-6.). Milburn (Or. Comm., 1813, ii., 79-81) furnishes particulars for the guidance of the purchaser and enumerates the more important historic diamonds that had been procured from India up to the beginning of the 19th century.

The following account by Holland gives concisely the chief facts of the modern production:—"Notwithstanding the reputation (stretching back even as far as Ptolemy in the European, and further in the Hindu, classics) which India has had as a diamond-producing country, the output of to-day is very small and comparatively unimportant." The places which, according to accounts, have been most productive in the past form three great groups, each in association with the old unformiferous rocks of probably pre-Cambrian age, now known as the Purana group, and distinguished locally as the Cuddapah and Kurnool systems in South India, and as the Vindhyan system in the northern
part of the Peninsula. The southern of the three groups of diamond-occurrences includes localities with apparently authentic records, in the districts of Cuddapah, Bellary, Kurnool, Kistna, and Godavari. Loose stones have been picked up on the surface of the ground, found in deposits of alluvium and in the workings which have been undertaken in the so-called Banagampilly stage of the Kurnool series of strata. In the second group of occurrences, in the Mahanadi Valley, the stones have been found in the alluvium of the Sambalpur and Chanda districts, and though strata similar to those of the Vindhyanas and Kurnools are known in this area, no diamonds have been found in these older rocks. The third group of occurrences occupies a tract some sixty miles long by ten miles wide, with the Vindhyan conglomerates near Panna as the centre. The diamond-mining industry still persists in this area, both in the old conglomerate of Vindhyan age, and in deposits which, though described as alluvium, are possibly relics of Lameta (Upper Cretaceous) deposits.

The diamond, on account of its hardness, has for long been made use of for glass-cutting purposes. A rude variety, known as Bort, has been chiefly employed in this way. In medicine, diamond dust is known to be a powerful mechanical poison. [Of Hedges, Diary, 1861-7, iii., cxxv., at seg.; Heyne, Tracts on Ind., 1814, 92-107; Bernier, Travels, 1656-68, app. 489-71; King, Ind. Agri., Nov. 1892; Madras Weekly Mail, Dec. 13, 1900, 162; The Pitt Diamond, confer Walter Fitz-Patrick, Rept. Hist. MSS. Comm., 1892; Brough, Mining of Non-Metallic Min., in Journ. Soc. Arts, Jan. 15, 1904, 165-72.]

3. Pearls, Pearl Fisheries and Mother-of-pearl.—Pearls are found in several molluscs which inhabit shallow seas and sandbanks in both the Old and New Worlds. The most productive is the so-called "Pearl Oyster," in reality a mussel—*Meleagrina margaritifera*, Lam. Modern classification, however, favours its reduction to *Arctica*; *moti*, *mutti*, *muthu*, etc.

Formation.—It is now known that most pearls are formed by the presence of some foreign substance, which becomes embedded in the interstices of the mollusc mantle and constitutes a source of irritation. This irritation causes the mollusc to deposit nacreous matter in concentric layers until the foreign particle becomes completely encysted. It has been practically established, chiefly through the investigations of Dr. Lyster Jameson, that the irritating substance which induces the pearl-formation is very seldom a sand grain, but almost always a small parasite, in some cases a simple protozoan, in others one of the stages in the life history of a flat worm. Prof. Herdman of Liverpool, who was requested to examine the fishes in the Gulf of Manar, states in his report that the majority of the best pearls contained as their nuclei the remains of certain Platyhelminthian parasites, which he identified as the larval condition of a Cestode or tape-worm. This cestode passes from the body of the pearl oyster into that of a file-fish and from the file-fish into some larger animal, possibly the large Trogon or ray.

Though pearls originate in the mantle, they nevertheless, when large, frequently work their way out and lie loose between it and the shell, or become attached by subsequent nacreous deposit to the "mother-of-pearl" surface of the latter. In this position a pearl may become so covered up as to form a hemispherical mass which when cut out forms the "perle bouton" of the jewelers. The hollow pearl, known as "blister pearl," is produced by a deposit of nacre in order to close an aperture arising from some injury.

Indian Fisheries.—The pearl fisheries of India have been famous from remote times. Garcia de Orta in 1563 (Coll., xxxv.) mentions the principal localities in the Persian Gulf where pearls were then obtained and says the pearls were cleaned and polished with powdered rice and salt. Linschoten in 1598 and Tavernier in 1676 describe both the Persian and the Ceylon pearl fisheries. At the present time the largest pearl fisheries in the East are those of Ceylon, for information concerning which the reader should consult the reports submitted to the Government of Ceylon in 1904 by Prof. Herdman, Mr. J. F. Lewis and Mr. Hornell; also Herdman's much fuller report published by the Royal Society (London, 1903-6, 5 vols.). In 1905 the total amount realised was Rs. 26,10,621, and the number of oysters fished up 49,250,192. These fisheries (it is understood) have been recently sold, or rather leased, for £20,000 a year to a company who are to work them. The only other pearl fishery of importance

GEM-STONES

MAJOR

Ruby

is that of the Mergui district, Burma, which forms a considerable source of revenue to the Burma Government.

MOTHER-OF-PEARL (see p. 989) is procured in connection with the Pearl and Chank fisheries of South India. It is carried all over the world, but curiously enough is not worked up to the extent that might be anticipated, though a large trade exists in exporting the shells (Watt, Ind. Art at Delhi, 1903, 206-8).

Ruby.

Oriental.

This name is applied by lapidaries and jewellers to two distinct minerals, the True or Oriental Ruby and the Spinel-ruby (see opposite). The former is a clear, crystalline form of aluminium, coloured by some metallic oxide, chiefly that of chromium or of iron, while the latter is an aluminate of magnesia. In hardness the true ruby is inferior only to the diamond, a fact which affords the simplest test for distinguishing it from spinel, but it is also denser and dichroic.

Sources.—Rubies have been found in certain localities in Southern India, Ceylon, Afghanistan and Badakhshan, but the chief sources both of the Oriental and the spinel ruby are in the mines of Upper Burma. Garcia de Orta (1563, Coll., xlv.; also in Ball, Proc. Roy. Ir. Acad. (3rd ser.), 1889-91, i., 665) gives some account of rubies, but remarks that under the name of "ruby" a great many stones are placed. Ball, commenting on Garcia, says that definite information of the occurrence of true rubies in India, at least the existence at any time of regular mines, is wanting. Tavernier makes numerous references to the ruby, and Ball in his edition of that work (1889, ii. (app. v.), 465-70) takes the opportunity to give a full account of the ruby mines of Upper Burma which should be consulted by the reader.

Mining.

At the present day ruby mining in India is confined to the province of Burma, the most important locality being near Mogok. Here the rubies occur in a clayey mass, an alteration product of a coarsely granular marble. According to Mr. Bennet Brough, the methods of mining in Burma are suited to the three conditions of its occurrence, in the limestone, in hill detrital material, and in the alluvial deposits in the valleys. The following account is taken from Holland.

Concession.

During the period under review the ruby-mining industry in Upper Burma underwent a new and favourable phase, the mineral having become, next to petroleum, the most profitable source of revenue among the Burmese minerals.

Various leases were granted in the ruby-bearing area near Nanyaseik in the Myitkyina district, and in the "stone-tract" of the Sagyin hills, in Mandalay district, and the results have been most profitless; but the returns for the Mogok area, where the Burma Ruby Mines Company is paramount, show that the industry has entered a most encouraging phase. The Company was granted the right in 1889 to mine for rubies and to levy royalties from persons working by Native methods, the lease being renewed in 1896 for fourteen years, at a rent of Rs. 3,15,000 a year plus a share of the profits. The result being, however, unsatisfactory from the shareholders' point of view, the rent was reduced in 1898 to Rs. 2,00,000, the share of the profits being at the same time raised from 20 to 30 per cent. A dividend of 5 per cent. was paid for the first time in 1898, when the value of rubies obtained amounted to £57,950. In 1899 the Company obtained rubies to the value of £90,545, and paid a dividend of 12 per cent.; in this year three unusually valuable stones were found, one of 77 carats.
being valued at 4 lakhs of rupees (26,666). In the following year (1900) the value of the stones raised increased to 97,326, and the Company paid a dividend of 17½ per cent. The year 1901 showed the record output of stones, valued at 104,476, whilst in 1902 they brought 86,895. In the last year (1903) the Company’s receipts were 98,575, and profits on the year’s working £44,950.”

Sources.—The sapphire is a transparent variety of corundum or native alumina, composed of oxide of alumina with traces of other substances to which its colour is due. The colour varies from the palest blue to deep indigo, while violet, yellow and green varieties are also met with. Both dark and light varieties are described by Garcia de Orta (1563, Coll., xlv.), who says the latter are called safrina de agua (water sapphire) and that both varieties are found in “Calicut, Cananor and in many parts of the kingdom of Bisnagar.” Ball (Rev. of Garcia de Orta, in Proc. Roy. Ir. Acad., 1889-91 (3rd ser.), 1., 64), commenting on this subject, states that he has no definite information as to the former workings of sapphire deposits in India. In recent years the chief source of sapphire was at Zanskar in Kashmir, but the mines are now said to be exhausted. According to Holland (l.c. 109), the normal blue sapphire and rarer green, yellow and white varieties are occasionally found in the ruby-bearing gravels of Burma. [Cf. Tavernier, Travels, 1676 (ed. Ball), 1889, ii., 102, 465, 470; Thavenot, l.c. 99; Lawrence, Valley of Kashmir, 1895, 60-1; Min. Rev. Ind., 1895, 41; 1896, 40; 1897, 40; Bennet Brough, L.c. Jan. 14, 1904, 172.]

6. **Spinel.**—Ball, l.c. 429-31; Holland, l.c. 109.

The spinel or Balas ruby differs from the true Oriental ruby by containing a considerable percentage of magnesia with traces of chromium and iron oxide. In hardness it is also inferior to the true ruby, of which it is a constant associate and for which it is frequently mistaken. [Cf. Tavernier, l.c., ii., 102, 467.]

7. **Topaz.**—Ball, Man. Econ. Geol. Ind., 1881, iii., 530-1.

A fluo-silicate of alumina always containing a little essential water, and occurring only in metamorphic rocks or in the veins which traverse these. Of its occurrence in India there seems no authentic record. [Cf. Linschoten, Voy. E. Ind., 1598 (ed. Halk. Soc.), 1885, i., 80; ii., 138; Tavernier, l.c., ii., 129, 449.]

8. **Turquoise.**—Ball, l.c. 435.

The existence of the true turquoise in India is doubtful. Holland remarks that its only importance lies in the fact that India is one of the channels by which the material procured in Persia and adjoining areas reaches the European and Eastern markets. The art of manufacturing and colouring imitation turquoise has become a science with the traders in these stones. Recently a new industry has arisen in Kashmir in ornamenting metal wares with a layer of false turquoise embedded over the surface (Watt, Ind. Art. at Delhi, 1903, 50, 75). [Cf. Linschoten, l.c., ii., 141; Tavernier, l.c., ii., 103; Milburn, Or. Commn., 1813, ii., 543; Bennet Brough, Mining Non-Metall. Min., in Journ. Soc. Arts, Jan. 14, 1904, 174.]

II. MINOR GEMS.

9. **Garnet.**—Ball, Man. Econ. Geol. Ind., 1881, iii., 521-4; Holland, Orig. and Growth of Garnets, etc., in Rec. Geol. Surv. Ind., 1896, xxix., pt. i., 559
GEM-STONES

MINOR

Jade and Jadeite

Composition.

Garnets are silicates of alumina, iron, lime, magnesia or similar bases. They may be grouped in six sections as alumina-lime, alumina-magnesia, alumina-iron, alumina-manganese, iron-lime and lime-chrome garnets.

Supply.

Sources.—The garnet is common in various localities in India, those of Rajputana being the most important. Some stones from Rajputana are said to measure a quarter of an inch to six inches in diameter, and are reputed to be the best in the world. In the Madras Presidency they occur in Vizagapatam, Godavari, Trichinopoly and Tinnevelly, and are fairly abundant in Burma. According to Holland. "The only garnets worked to any considerable extent in India occur in the mica schists of Rajmahal in Jaipur, and near Sarwar in the adjoining State of Kishengarh. Returns are not available to show the condition of the industry in Jaipur, but there is still a considerable industry in the Kishengarh State, though the yearly estimates are altogether too variable to permit of a fair average being drawn, varying from about £10,000 to £2,000."

Cut garnets in the form of necklaces and other small articles of personal adornment constitute an important section of the lapidary craft of India. (Watt, Ind. Art at Delhi, 1903, 74–5). The chief centre of the production of these goods is Jaipur. The qualities known are the so-called amethystine or Oriental garnets, which are usually cut in the form of pendants for jewellery, and the more valuable noble or almandine garnets.

Oriental Garnets.

10. Jade and Jadeite.—Ball, Man. Econ. Geol. Ind., 1881, iii., 516–8; Fritz Noetling, Rep. Econ. Res. of Amber and Jade Mines Area, Upper Burma, in Rec. Geol. Surv. Ind., 1892, xxv., pt. iii.; Occurrence in Upper Burma, 1893, xxvii., pt. i., 26–30; Baner, Jadeite from Tamnaw, Upper Burma, 1895, xxviii., pt. iii., 91–5; Holland, L.c. 52–4. The yagya, sang-i-yashab, sudashi, etc. Under the name Jade several different minerals are included, not always easily distinguishable. True jade or nephrite is a native silicate of calcium and magnesium, and may be regarded as a crypto-crystalline variety of hornblende. Jadeite, commonly confused with true jade, is a silicate of soda and alumina, is harder and has a higher specific gravity and greater fusibility than jade. Both jade and jadeite are of economic importance and are comprised under the general term JADESTONE.

Sources.—The chief source of the mineral is in Upper Burma. According to Holland, some of the best material is obtained as pebbles in the gravels of the Uru river, a tributary of the Chindwin, but most is obtained by quarrying near Tamnaw, in the Mogauung Sub-Division of the Myitkyina district. The jadeite here is enclosed in an eruptive rock closely resembling serpentine which pieces strata probably of Upper Miocene age. No jade (nephrite) of the kind which would be regarded as a marketable mineral is known in India, though a mineral having the essential composition and approaching jade in physical characters is known in South Mirzapur. Outside India it may be remarked that in South Turkestan true jade has been worked for many centuries.

Mining.—The method of extraction is very primitive. Before the discovery of the Tamnaw mines, the mineral was obtained only in the form of boulders in the Uru valley, mixed with other rocks in the alluvial deposits of the river. "The boulders are obtained either by digging holes along the bed of the stream or by diving to its bottom. The boulders brought to the surface are at once broken, and the jadeite separated from the useless stuff." (Noetling). In the Tamnaw mines the method employed is to heat the surface of the rock by large fires, the fall of temperature by night being sufficient to crack the rock. Crowbars are then inserted in the cracks and the big blocks thus obtained are broken by mallets into lumps of convenient size.

Manufactures.—Jade is highly valued by the Chinese, and also by certain classes in India. The best is of an intense bright-green colour, but red and pale pinkish varieties are also prized. In Burma it is employed chiefly in the main-

560
facture of finger- and ear-rings, bracelets, chains, etc. The chief seat of the manufacture of these articles is at Momem. All sort of cups, vessels, tables and other ornaments are made of it. [Cf. Watt, Ind. Art at Delhi, 1903, 73, 476-7.] Articles of spurious jade are also frequently met with. The most common of those in India is the Afghan jade-like serpentine, largely used in Bhera (Shahpur district) for making hafts of pesghuabs (Afghan knives) and of hunting- or ordinary table-knives, small boxes, etc.

Trade.—In Upper Burma the export trade in jade-stone is very considerable. Some passes into South-West China by the overland route, but most finds its way down to Rangoon, whence it is exported to the Straits Settlements and China. During the six years 1897-1903 the exports averaged 3,911 cwts., valued at £44,770, giving an average value per cwt. of £11.45. The exports in 1906-7, according to the Official returns, were 2,998 cwts., valued at Rs. 8,02,270. [Cf. Warry, Rept. on Jade Mines at Moganung, 1888; Min. Rev., 1894, 17; 1895, 40; 1896, 39; 1897, 38; Lawrence, Valley of Kashmir, 1895, 65; Scott, Gaz. Upper Burma and Shan States, 1900, ii., pt. i., 277-89; 1901, ii., pt. ii., 208; Bennet Brough, l.c. 176.]

11. Lapis Lazuli.—Ball, l.c. 528-30. The laujetar, rajavaral.

A mineral of complex composition, but consisting chiefly of silica, alumina and lime. It is commonly known as ultramarine from its blue colour. The mineral powdered was largely used in India for house decoration and book-illumination. [Cf. Paulus Regineta (Adams, transl.), iii., 200-1; Linschoten, l.c. ii., 144; Tavernier, Travels, 1676 (ed. Ball), 1889, ii., 156; Milburn, Or. Comm., 1813, i., 138.]

12. Quartzose Minerals.—Quartz is the natural silicic anhydride, but hydrated silica also exists. This has led to the classification of the stones of this kind into:—crystallised or phenocrystaline anhydrous quartz, represented by the rock-crystals; uncrystallised or cryptocrystalline anhydrous quartz, including chalcedony, jasper, agate, etc.; uncrystallised hydrated quartz. The opal is a type of this last group.

(a) Rock-crystal.—Ball, l.c. 502-3; Holland, l.c. 107. The bilaur, phatak, taneela.

Sources.—Rock-crystal is the name given to the transparent varieties of crystallised quartz, the different colours which are met with being due to the presence of small quantities of foreign minerals. These coloured varieties are known by various names, e.g. Amethyst, Cairngorm, Rose-quartz, Smoky-quartz, Milk-quartz, etc., and Holland makes the following statement regarding the occurrence of this gem and its use in India:—"In the Tanjore district, Madras Presidency, fragments of rock-crystal are collected and cut for cheap jewellery, being known as "Vallum diamonds," whilst the bi-pyramidal quartz-crystals found in the gypsum of the salt marsh near Kalabagh, on the Indus, are to a certain extent used for making necklaces, and rock-crystal is similarly used for cheap jewellery in Kashmir." In Indian Art at Delhi, 1903 (l.c. 75), it is stated that rock-crystals are largely cut and made into sword and dagger handles, beads, buckles, necklaces, etc. These are turned out fairly extensively in Jaipur. The so-called "rock-crystal" buckles, etc., of Kashmir are very largely made of paste diamonds. [Cf. Mandelalo, Travels, in Olearius, Hist. Museovy, etc., 1629, 83; Tavernier, l.c. i., 389; Milburn, Or. Comm., 1813, i., 360-1; Min. Prod. Ind. Rev. and Agri. Dept., 1892, 3; Watt, Rev. Min. Prod. Ind., 1894, 18; Nicholson, Man. of Coimbatore Dist., 1898, ii., 150.

(b) Agate and Carnelian.—Ball, l.c. 503-4; Watt, Ind. Art., l.c. 75-5; Holland, l.c. 107; yammi, manka, etc.

Agates are concretionary masses or nodules, which occur usually in hollows or veins in volcanic rocks. When cut across, the sections show layers. Their composition consists of 70 to 96 per cent. of silica, with varying proportions of alumina, coloured by oxide of iron or manganese. Various varieties are found, known as Mocha stones, Moss Agates, Bloodstones, Chrysoprase, etc.

Sources.—According to Holland, a considerable trade in agate and the related forms of silica, called hahik, still exists. These are obtained from the amygdaloidal flows of the Deccan Trap, chiefly from the State of Ralpippa, where the main source is a conglomerate near the village of Ratanpur. Here the right to collect hahik is leased for a period of five years at an annual rental. The most
important place at which agates are cut is Cambay, but a certain amount of agate-cutting is also carried on at Jabalpur, and other places within range of the Deccan Trap. They are much used for ornamental and decorative purposes, being made into brooches, rings, seals, cups, etc. The ancient *murrhine* vases, famous from the time of Pliny, are supposed to have been made of agates from Broach and Cambay. While collecting the pebbles the miners divide them into two primary classes—those that are not improved in colour by burning, and those that are. Of the former there are three chief varieties:—(1) the *Onyx*, known as *mora* or *bdwa ghorii*; (2) the Cat's-eye, *keshashamaddar* or *doic*; and (3) a yellow half-clear pebble called *rangi* or *lasawnia*. All other stones are baked to bring out their colour. During the hot season, generally in March and April, the stones are spread in the sun in an open field. Then in May, a trench, two feet deep by three wide, is dug round the field. The pebbles are gathered into earthen pots, which, with their mouths down and a hole broken in their bottoms, are set in a row in the trench. Round the pots, goat or cow-dung cakes are piled, and the whole kept burning from sunset to sunrise. The pots are then taken out, the stones examined, and the good ones stowed in bags. About the end of May the bags are carried to the Nerbudda and floated to Broach. Here they are shipped in large vessels for Cambay, and offered for sale to the Carnelians dealers.

By exposure to the sun and fire, among browns the light shades brighten into white, and the darker deepen into chestnut. Of yellows, maize gains a rosy tint, orange is intensified into red, and an intermediate shade of yellow becomes pinkish purple. Pebbles in which chestnut browns and yellows were at first mixed are now marked by clear bands of white and red. The hue of the red carnations varies from the palest flesh to the deepest blood red. The best are of a deep, clear, and even red colour, free from cracks, flaws or veins. The larger and thicker the stone, the more it is esteemed. White carnelians are scarce. When large, thick, even coloured, and free from flaws, they are valuable; yellow and variegated stones are worth little. It may be of interest to add in this connection that the burning of agates at Cambay is fully described by Barbosa at the beginning of the 16th century, so that it would appear to be a fairly ancient industry. And moreover other writers of an even earlier date allude to the agates of India without specifically indicating their production. [Cf. Varthema, *Travels*, 1510 (ed. Hakl. Soc.), 107; Barbosa, *Coasts E. Africa and Malabar* (ed. Hakl. Soc.), 1517, 66, 7; Mandelsoo, *Lc. 1662, 28, 40, 83; Tavernier, *Lc. i.* 69; Milburn, *Lc. ii.* 497, 9; *Paulus Epinias* (Adams Comment.), 1847, iii., 476; Campbell, *Bomb. Gaz.*, iii., viii. and xiii.; Watt, *Rev. Min. Prod. Ind.*, 1894, 17; *Ind. Art at Delhi*, 1903, 73–4.]

Onyx.

Cf. *Onyx.—Ball, Lc. 503.*

The *onyx* is the general term for those varieties of agate in which the colours are arranged in flat horizontal planes. It is reported to be plentiful in the crystal pits in the Betul district, and to occur near Amerwara in Chhindwara. It was formerly in great repute for cameos, and is employed for various articles of adornment. [Cf. Milburn, *Lc. ii.*, 515; Watt, *Rev. Min. Prod.*, Lc.]

Jasper.

Cf. Jasper.—Ball, Lc. 503–14; Rec. Geol. Surv. Ind., 1895, xxv., 202.

A quartzose mineral, commonly of a red or yellow colour. The former occurs among the Cambay stones from the Deccan, and the latter in Tenasserim. A green variety is found in Burma, and fine specimens of ribbon jasper are met with in the Sandur hills, Bellary. [Cf. Garcia de Orta, 1563, *Coll.,* xiv.]

Opal.

Cf. Opal.—The dhudi pathar.

Compact uncrystalline semi-transparent to opaque hydrated silica. There are various varieties, of which the most valued is the Noble Opal, of a milky white colour, opalescent and exhibiting a rich play of colour. [Cf. Milburn, *Lc. ii.*, 515; Bennet Brough, *Mining Non-Metall. Min.*, in Journ. Soc. Arts., Jan. 15, 1904, 174.]

Cat's-eye.

Cf. Cat's-eye.—The chush-maidar, lasniyin or lashnaniya.

A variety of chalcedonic quartz, presenting a peculiar opalescent reflection, said to be due to the presence of asbestos. It is called Cat's-eye from its resemblance to the eye of a cat, hence also the Burmese name *kyayung*, which has that meaning. [Cf. Garcia de Orta, 1563, *Coll.,* xiv.; Linschoten, *Voy. E. Ind.*, 1598 (ed. Hakl. Soc.), 1885, ii., 141; Milburn, *Lc. i.*, 361.]

Tourmaline.

13. **Tourmaline.**
A mineral of very complex and variable composition occurring in the granitic and metamorphic rocks of most countries. It is generally black, when it is termed "shohri"; red varieties (rubellite), dark-blue (indicolite) and white (achroite) also occur. The red variety is commonest in India, good specimens being of a deep crimson colour. White specimens have occasionally been found among the black stones from the Shan States, and green tourmaline has been mentioned as occurring in the Hazaribagh district of Bengal and in granite dykes in the bed of the Kaveri, Seringapatam. Holland states that various attempts have been made to work the red variety which occurs in the Ruby district of Upper Burma. It was worth £359 was reported, in 1900 worth £1,240, and in 1903, £196, but returns for 1898 and 1902 are not available. [Cf. Milburn, E.G., i., 361-2; Introd. Chem. and Phy. Study Ind. Min., 1859, 82; Min. Rev., 1895, 43; 1897, 40; Scott, Gaz. Upper. Burma and Shan States, 1900, ii., pt. i., 227-30; 1901, pt. ii., 392.]

GLASS AND GLASSWARE.—Glass is known in India by the vernacular names of kanch, kunnadi, addanú, shishah, kizaz. It is a mixture of silicate of potassium or sodium, or of both, with one or more silicates insoluble in water, such as those of the alkaline earths, aluminium, manganese, iron or lead. The mixture is affected by fusion.

History.—Stein (Ancient Khotan, 1907, 373), in discussing fragments of glass picked up at Niya (3rd century), observes, "Glass was until the middle of the fifth century of our era known in China only as an import from Ta-Ch’in, the Far West (Hirth, China and the Roman Orient, 228 et seq.), and it appears very improbable that the introduction of glass manufacture could have been delayed so long, if the making of glass had been an art practised in Eastern Turkestan when the latter was under Chinese control during earlier centuries. It is significant that, according to the Pei shih, the first makers of glass in China were traders from the country of the Great Yulch-chih, i.e. from the Old Indo-Scythian dominion, for whom the land route through Khotan was a more likely line of communication than the sea route."

In India glass is little employed for the purposes it is ordinarily used in other countries (windows, bottles, etc.), and the process of manufacture, as carried on by the Natives, is accordingly very crude and unscientific. The chief materials employed are carbonate of soda in its crude condition, called rhad, and the impure sands of the rivers with certain special earths, etc. The ordinary Native glass is a coarse, impure, coloured or dirty mass, full of flaws and air bubbles, and suitable only for the manufacture of beads, coarse bangles and other minor articles. White glass is sometimes made (or rather re-made) by melting broken glass or glassware of European manufacture.

Indian Production.—The chief centres of the glass industry to-day are the Lahore, Karnál, Jhelam and Hoshiarpur districts of the Panjáb; the Bijnor, Lucknow and Saharanpur districts, United Provinces; Ahmednagar, Kaira and Baroda, Bombay; Seoni, Central Provinces; Patna, Bengal; lastly the State of Jaipur and the North Acoret district, Madras. The chief articles manufactured are bangles (chàris), beads, crude globes, silvered with mercury or tinfoil, coarse toys, small bottles, lamp chimneys, etc. The only glassware in India with any pretension to art that is produced at Patna. The articles are generally coloured and the shapes very elegant but exceedingly fragile.

The industry is said to be dying out for want of demand. Special mention may be made of the glass mosaics seen in the palaces of some parts of Rajputana, the Panjáb and Burma. It was to meet this demand that the industry of blowing glass globes, silvered inside, sprang into existence. The globes are broken up into fragments of certain sizes, then set in cement (or in Burma in lacquer), and in that way constitute the chief decorative feature of shish mahals (looking-glass palaces). The smaller fragments of silvered glass are also worked up into the embroidered phulkari cloths of the Panjáb. There is in addition the true mosaic art where coloured glass elaborates a pattern, as shown in the palaces of Udaipur.

The influences that operate against the establishment in India of glass works on a commercial scale are the cheapness of the imported Western products, the want of enterprise on the part of capitalists, and the unfavourable climatic conditions. Recently several praiseworthy efforts to extend the manufacture of
GLYCINE SOJA

So y Bean

glass on a scientific basis have been made; of one of the last, an account is given in The Times of India (Oct. 22, 1903). The greatest difficulty is perhaps the apparent absence of a suitable sand for fusing purposes, within easy reach of the trade centres, and of the fuel and other essential materials.

Trade in Glass.—The total imports into India of glass and glassware of all kinds, including Government stores, were in 1876-7 valued at Rs. 29,45,091; twenty years later (1896-7) they stood at Rs. 72,25,918. For the five years ending 1906-7 they were as follows:—1902-3, Rs. 96,15,634; 1903-4, Rs. 1,01,17,065; 1904-5, Rs. 1,14,21,397; 1905-6, Rs. 1,14,79,658; and 1906-7, Rs. 1,22,75,725. The analysis of the commercial returns (1905-6) might be given as follows:—13,769,092 superficial feet of sheet and plate glass, valued at Rs. 12,44,884; 22,520 cwt. of beads and false pearls, valued at Rs. 24,02,442; 65,785 cwt. of bottles, valued at Rs. 6,50,645; bangles, Rs. 42,78,558; lamp-ware, Rs. 6,94,138; other miscellaneous glassware, Rs. 28,43,441; Government stores, Rs. 1,61,677. The sheet and plate glass came chiefly from Belgium and the United Kingdom; the beads from Italy, Austria, Germany and the United Kingdom; the bottles from the United Kingdom and Germany; bangles from Austria-Hungary; lamp-ware from Germany, Austria-Hungary and the United Kingdom; and the other wares from Austria-Hungary, the United Kingdom, Belgium and Germany. Bangles and lamp-ware were returned for the first time in 1905-6. In the same year the Exports (Indian produce) amounted to Rs. 98,029. Bombay exported the largest amount, viz. Rs. 89,177, and the chief market was Persia, followed by Turkey-in-Asia, Arabia, Ceylon, Aden and the United Kingdom.

GLYCINE SOJA, Benth., Journ. Linn. Soc., viii., 266; Kew Rept., 1882, 42-3; Prain, Journ. As. Soc. Beng., 1891, lxi., 403-4; Duthie, Fl. Upper Gang. Plain, 232; G. hispida, Maxim. Duthie and Fuller, Field and Gard. Crops, 1893, pt. iii., 3, t. 85; LEGUMINOSE. (Following the suggestion made by Prain, the above name had better be adopted for the cultivated plant and G. ussuriensis, Regel & Maack, for the wild, which = G. Soja, Sieb. & Luce.). The Soy Bean; in Indian vernaculars, bhat, ram, gari-kulay, hendedisom hore, pond disom, an-ing-biyo, tsu-dza, bhatnas, seta, musa, khajwra, etc.

A sub-erect or creeping annual native of China, Cochin-China, Japan and Java, comparatively recently introduced into India, though recorded as acclimatised and even seen as an escape from cultivation. It might, in fact, be described as extensively cultivated, though more as a garden than a field crop; is especially prevalent in Eastern Bengal, Assam (Barpeta Sub-division), the Khasia hills, Manipur, the Naga hills and Burma. It is not infrequent in the plains of India proper, especially in Boust, Gorakhpur, Patna and Purnea, etc. In Bombay and Madras, however, the Soy Bean has apparently hardly passed the experimental stage.

Cultivation.—Two chief varieties occur, one called white, the other black. On the plains it is generally grown by itself as a kharif (autumn) crop. The seeds are sown from June to September, and harvested from November to December. They should be placed at a depth not exceeding 1 to 1½ inches, and 18 plants
may be left, after weeding, to the square yard. A peaty soil, or one rich in organic matter, is preferred. A good manure for it is sulphate of potash, but nitrogen may be supplied with advantage in the form of nitrate of soda, or in the case of soils poor in organic matter, in the form of rape or mustard cake. In Assam it is sown with ḍhu (autumn rice) in April and May. The ḍhu crop is removed in July and August, and its stubble acts as a support for the bean plants, which are ready for harvest in December and January.

Church (Food-Grains of Ind., 1885, 140–9) gives the following analysis of the bean:—in 100 parts: water 11–0, albuminoids 35–3, starch and sugar 26–0, fat 18–9, fibre 4–2, and ash 4–6. Its chemical composition thus places it above other pulses as an albuminuous food. It is eaten in India in the localities where it is cultivated, chiefly in the form of ḍál or satú. In Japan it is largely used as a sauce, cheese (natto) or paste, and in China an edible oil is obtained from the seed. If cut when the pods are fully formed it makes a most nutritious fodder, and the seed-cake, as already stated, is an extremely rich cattle food. [G. Milburn, Or. Comm., 1813, ii., 519; Drug. Bull., Feb. 1890, 113; Trop. Agrist., 1893, xiii., 50; 1903, xxiii., 175; King, Trop. Agrist., 1897, xvii., 460; Ind. Agrist., March 1, 1899, 93; Ind. Gard., Feb. 9, 1899, 56; Agri. Ledg., 1903, No. 5, 137; König, Chem. Zusammenset. der Mensch. Nahr., 1903, i., 1454; Rev. Mus. Guide, 1907, No. 1, 65.]

GOLD

Occurrence.—Gold is known to occur throughout India—in the Bengal, Madras and Bombay Presidencies; in the Central Provinces, Panjáb, United Provinces, Burma and many of the Native States. The ultimate derivation is mainly the quartz reefs which traverse the metamorphic and sub-metamorphic series of rocks, but smaller quantities appear to exist in certain chloritic schists and quartzites and possibly also in some forms of gneiss. The only other sources in Peninsular India are the recent and sub-recent alluvial deposits which rest on the metamorphic and sub-metamorphic rocks. In extra-peninsular regions, gold is met with in rocks of different periods; in Ladakh in quartz reefs of carboniferous age; in Kandahár in cretaceous formations; while along the foot of the Himalaya the tertiary rocks which flank the base of the hills are more or less auriferous. Holland (l.c. 45) has pointed out that India occupies the sixth or seventh position among the leading gold-producing countries of the world, but that the total output is nevertheless insignificant, aggregating no more than 34 per cent. of the world’s annual supply. The following brief abstract of the available information regarding the occurrence and production of gold, province by province, may be useful:

Bengal.—Gold is obtained in Orissa, Midnapur, Bankura and in the Province of Chota Nagpur. In recent years attention has been drawn chiefly to the latter, where, under the control of the Geological Department, an extensive survey for gold has been conducted by several officers whose publications are mentioned below. The area examined covers part of the districts of Manbhum and Singhbum, with the tributary States of Gangpur, Bonai, Udepur and Jashpur. Commenting on Mr. Maclean’s final report, the Director says that though gold is

D.E.P., iii., 519–33.

Gold.

Production.

Origin.

Geologically.

India’s Position.
GOLD
Provincial Industries

WASHING AURIFEROUS SANDS

undoubtedly almost universal in the country examined, gold-prospecting could not (with one or two exceptions) be honestly recommended as a reasonable venture (General Report, 1902-3). The examination found the deposits in the quartz reefs to be very thin and patchy and the ore bodies small. "The recovery of gold from alluvial deposits," the report further adds, "offers no brighter prospects than that of mining quartz veins." [Cf. Noetling, Sonapet Gold-Field, in Rec. Geol. Surv. Ind., 1890, xxiii., pt. ii., 73-8; 1896, xxix., pt. i., 2; King and Pope, Gold, Copper, Lead in Chota Nagpur, 1891; Hatch, Rept. Parbhani Gold, in Mem. Geol. Surv. Ind., 1901, xxxii., 68-71; Holland, Gen. Rept. Geol. Surv. Ind., 1901-2; 1902-3, 10-4; Maclaren, Rec. Geol. Surv. Ind., 1904, xxxii., pt. ii., 59-91 (with map).]

Assam.

Assam.—For an account of the gold of this province the reader should consult Maclaren's exhaustive paper on the *Auriferous Occurrences of Assam* (I.c. 1904, pt. iv., 205-32, with numerous plates and maps). In a brief notice on that paper, Holland (Rept. Min. Prod., 1905, xxxii., 140) remarks that the most striking feature of the gold deposits of the Assam valley is the universal distribution of the metal in extremely small percentages throughout the gravel of the river-beds. This Maclaren holds to be due to two main causes, the wandering of the Brahmaputra over the plain and the wide distribution of the Tipam or Sub-Himalayan sandstones, which are certainly auriferous in places. The next characteristic feature is the general aggregation of gold at a point the distance of which from the hills is dependent on the strength of the current and the form of the gold dust. This point of general deposition is marked on the Assam rivers by the occurrence of gravels containing pebbles up to 6 inches in diameter. Above the point indicated the only deposition is that due to local diminutions in the velocity of the current, as on the beaches at the end of a long pool or on beaches lying parallel with the stream, and to which the gold is carried by the back eddies, where it is retained in the interstices between the large boulders. The only gold deposits considered by Maclaren to be worthy of further prospecting are the Guri Mara, above the Sadiya and opposite the Chunpara Stockade; the Sibia Mukh on the Dihong river, and the Derpai pool on the Subansiri river. The most promising deposit is that on the Subansiri. The gold in general is of good quality, but the individual gold grains, except in a few places on the Subansiri, are extremely small and much flattened.

River-beds.

Point of Deposition.

Sadiya.

Dihong.

Subansiri.

U. Prov.

United Provinces.—The production of gold in these provinces is comparatively unimportant. The only districts where it occurs in any quantity are Bispet, Naini Tal and Garhwal, but the estimated production is only about 50 to 80 oz. per annum. The general method of working is the washing of auriferous sands found in the beds of certain rivers, most notably Ramganga, Sukhar Sot, Phika and Koh in the Nagina Tahsil of the Birjorn district.

C. Prov.

Central Provinces.—Gold-bearing sands occur in most parts of these provinces, but the outcrop is comparatively insignificant. The chief localities are Nagpur Division, especially Bhandara, Balaghat, Chanda, etc. [Cf. H. Nunn, Monog. Gold and Silver-Ware, 5-10.] In Central India gold appears to be confined to the Ajmer-Merwara district.

Panjāb.

Panjāb.—The districts where gold is found are Bannu, Peshawar, Hazara, Rawalpindi, Jhelum, Kangra, Ambala, Gurgaon, and Hoshiarpur. The most important are the Jhelum district, where gold to the value of £700 was produced in 1901, and a fair amount in the Hazara district. It is said that recently an application has been made to the Panjab Government on behalf of a Syndicate in British Columbia for the grant of a dredging lease for gold in the bed of the Indus. [Cf. Maclagan, Monog. Gold and Silver Works, Pb., 1888-9; Robertson, Sett. Rept. Rawalpindi, 1893, 15; Mem. Geol. Surv. Ind., 1897, xxvii., 287; Madras Weekly Mail, June 7, 1900, 502; Capital, Feb. 4, 1904.]

Kashmir.

Kashmir.—Gold-washing is carried on in some villages chiefly in the Skardu Tahsil and Kargil Tahsil, Baltistan. Till the former, the chief locality is the sands of the Bashahr river, and in the latter along the left bank of the Dras-Soeora river from Hardas to Maimus, at Sheer Aithang near Kharbu, and at Chusker, some eight miles from Kargil. The market value of a tola is Re. 20 and the State rate Rs. 18. [Cf. Drew, Jummoa and Kashmir, 1875, 409; Clarke, Skardu Tahsil and Kargil Tahsil, 1901, 10; Kaye, Note on Assess. Rept. of Kargil Tahsil, 1901, 45; Lawrence, Valley of Kashmir, 62.]

Bombay.

Bombay.—Auriferous rocks occur in the districts of Dharwar, Belgaum, Kaladgi, in the South Marathá country, and in the province of Kathiawar, but the output of gold in late years has been very small. Recently, however, promising work
MYSORE MINES

in reef-mining has been commenced in the Dharwar district under the auspices of the Dharwar Reefs Company, Ltd.

Madras.—Gold is found in Madura, Coimbatore, Salem, Wynnaad, the Nilgiris, Travancore, Malabar, Kanara, North Arcoot and Bellary. In recent years, however, all the gold produced in the Presidency was from the Kangundi mines in the Kangundi Zemindari of North Arcoot.

Work was commenced there in 1893 and was continued with varying success until 1900, when work has ceased. The highest yield was obtained in 1898, viz. 2,834 oz. Prospecting has recently been carried on at Wynnaad and three of the old mines were opened during part of 1901, but did not yield any gold. [Cf. Hayden and Hatch, Gold-Fields of the Woiniod, Mem. Geol. Surv. Ind., xxxiii., pt. ii.]

Mysore and Hyderabad.—The gold of Mysore State is solely derived from the Kolar district, which occupies a small tract of country in the eastern extremity of the State. Roughly, the field is about ten miles long from north to south, two miles wide from east to west, and made up of synclinal folds of schistose rocks. Hatch says that the auriferous lodes of the Kolar gold-fields consist of a series of parallel quartz veins which occupy a central position in the belt of Dharwar schists. Although there are several parallel veins, it is on the Champion lode only that paying mines have been developed. "The attention of European prospectors was directed to this area by numerous Native workings of unknown age; and since operations commenced on a large scale, shortly after 1890, the gold extracted, up to the end of 1903, has reached a value of nearly 19 millions sterling. During this period five companies have paid £2,250,000 in dividends, while the Mysore State has received nearly one million as its royalty. The deepest workings, now somewhat more than 3,000 feet below the surface, show little diminution in the value or width of the auriferous quartz vein. During the past five years the amount of quartz crushed has increased from 337,636 tons in 1898 to 546,752 tons in 1903, and the value of gold extracted has increased from £1,576,000 in 1898 to £2,284,000 in 1903." [Imp. Gaz., 1907, iii., 14.]

Holland observes that various improvement schemes, with the object of reducing working expenses, have been introduced in recent years, one of the most important being the provision of electric power from the Kauveri Falls. The supply commenced about the middle of 1902, and has regularly furnished over 4,000 horse power to the various mining and metallurgical works. In The Madras Weekly Mail (June 1, 1905, 597) an account is given of a new discovery of gold in Mysore at Yellahanka, 22 miles north-east of Bangalore, which seems of future importance.

The citation of publications in the opening paragraph practically denotes those of Madras and Mysore, but there may be added the annual reports of the various companies, of which, in alphabetical sequence, the following may be quoted:—1. Balaghat Gold Mining Company; 2. Champion Reef Gold Mining Company; 3. Coromandel Gold Mining Company; 4. Ooregum Gold Mining Company; 5. Mysore Reefs Company; 6. Mysore Gold Mining Company; 7. The New Kemppakote Gold Field; 8. Nine Reefs Company; 9. The Nundydroog Company; 10. The Oriental Gold Mining Company; 11. the Road Block Gold Mining Company, etc.

In Hyderabad the only quartz mines producing gold are those of Hutti and Wundalli in the Nizam's Dominions. At the Wundalli mine 7,822 oz. of gold were recovered in 1899, but the mines were closed in 1900, and the Hutti mine was the only one at work at the end of 1903. In the latter mine the total output for 1903 was 3,414 oz.

Burma.—The only reef mine of importance is the Kyankpazat near Wuntho in Upper Burma. Holland tells us that this mine yielded in 1898, 1,120 oz., and maintained and indeed increased its yield until 1902, when 1,984 oz., valued at £7,606, were produced, but in 1903 the auriferous chute was worked out and the mine closed. From recent exploration, however, Burma appears to be very rich in alluvial gold, and in 1903 a license was issued to a Company to dredge gold in the Irrawaddy above Bhamo. Gold to the value of Rs. 2,016 was produced, and the result was sufficiently successful to induce the Company to extend its operations. The greater possibilities of dredging on the Irrawaddy appear to arise from the fact that the waters of the river are derived from ranges where, even in the cold weather, there is a heavy rainfall. [Cf. Imp. Gaz., 1907, iii., 141–3.]

The Indian Agriculturist (Feb. 1905) gives the practical results of an interview with Lt.-Col. Mackenzie Foss, on the subject of the occurrence of tin and gold in Lower Burma, in which that gentleman apparently stated that, in his opinion, the district of Mergui was one

GOLD

Occurrence

Madras.

North Arcoot Mines.

Mysore.

Mines of Kolar Field.

Champion Lode.

19 Million Pounds.

2,000 Feet deep.

Electric Power.

New Discovery.

Mines.

Hyderabad.

Burma.

Irrawaddy.
GOSSYPIUM (Cotton); Watt, Wild and Cult. Cotton Plants of the World, 1907, 1,406, tt. 1-53. A genus of Malvaceae, the species of which are widely distributed on both sides of the equator, and in both hemispheres. On the north they extend, under cultivation, to Crimea (45°), and on the south to the latitude of the Cape of Good Hope (34°).

Few cultivated plants are so difficult to understand or have been half so much confused through conflicting opinions regarding the existing forms as the cottons. Practically all the botanical names in current use were founded on cultivated plants, and these changed subsequently, and in some cases so rapidly that they are now mostly unrecognisable. Instead of rejecting a nomenclature thus hopelessly useless, one botanist after another has given his peculiar views and reassorted the published names. The obvious duty of establishing species on the wild forms and grouping the cultivated states as near as may be possible under these, has been absolutely neglected and the literature of the genus become confusion worse confused. Useless controversies have engaged attention, such as whether there are fifty or more species, or only three, or even only one in the whole world; another, whether a single characteristic of supreme value can be discovered, upon which a classification of the forms might be based.

The early authors divided the cottons into trees and bushes, or into perennials and annuals. It has now been established beyond dispute that all species of Gossypium under suitable environment are perennials if left alone, and may in time become large bushes or even small trees. Moreover, when cultivated they readily respond to environment, and when necessity exists become annuals or otherwise adapt themselves. On dry stony soils they are usually perennials, on rich loamy soils annuals, more especially if restrained by cold in the winter months or by a heavy periodic (monsoonic) rainfall or by infestations of pests. Some writers have placed confidence on the characteristics of the seed as affording a key to classification. If possessed of a double layer of wool, viz. an under-velvet or fuzz (as it has been called) and an outer layer or floss (the true wool or lint), such seeds have been regarded as denoting very different plants from those with a naked seed, that is to say, not possessed of the under-coating (fuzz). This conception originated the classification into album (white or fuzzy seeds) and nigrum (black or naked seeds). So again the fact of the seeds being free from each other or attached together into what has been called a "chain" or "kidney" mass, has been accepted as a further means of diagnosis. But as opposed to such views it has recently been shown that certain structural peculiarities have originated in consequence of adaptation to beneficial insects, such as the kelep ant of Guatemala, or as protective measures against enemies. Of this latter kind may very probably be the formation of the floss and of its special and varied peculiarities. Hence another set of writers have rejected all the distinctions based on the fruit or seed and have advanced the argument that selection should primarily be directed towards lowering the size and weight of the seed, and thus increasing the proportion of wool. No structural manifestations would accordingly be less constant than those based on the seed and floss. But the colour of the fuzz and floss have been even more frequently utilised as aids in classification than structural characters. The names Nanking
and religiosum were at first used to denote a red or kakhi coloured flax, and the belief was accepted that all woofs of that colour were obtained from one and the same species. As opposed to that view it may be mentioned that Fortune (Three Years' Wanderings in China, 1847, 264) says that the mie wha or yellow cotton of China cannot be separated from the white form, and that the seed may come up either white or yellow. [Cf. Liotard, Nankung Cotton in India, 1883.] As a matter of fact it would now appear certain that most wild cottons have a red-coloured fuzz or even a red fuzz and floss: accordingly, under negligent cultivation or as acclimatised escapes from cultivation, the woolly coating of the seeds, in the majority of species, may become reddish coloured. Conversely, red-coloured cottons, if carefully cultivated, invariably lose their colour and become white. Lastly, still other writers have sought for a classification based on the shape and degree of hairiness of the leaves and bracteoles or the shape and colour of the flowers. But, as with most other cultivated plants, the classification of the forms of Gossypium is alone possible on the basis of the wild plants and through an aggregation of all natural characteristics, including geographic and climatological considerations, and not upon any arbitrary (single) standard.

In this view it may now be desirable to furnish the practical results of a special study of the genus Gossypium (restricting attention as far as may be possible to the Indian forms) and to draw up the history of the available information regarding the cotton industry, with special reference to the periods of discovery, the stages in cultivation, the improvement of the plants of commerce, and the progression in industrial knowledge:—

1. THE HISTORY OF THE COTTON PLANT AND COTTON INDUSTRIES.

It would not be far from correct to describe cotton as the central feature of the world's modern commerce. Certainly no more remarkable example of a sudden development exists in the history of economic products than is the case with cotton. The enormous importance of the textile to-day, in the agricultural, commercial, industrial and social life of the world, renders it difficult to believe that but little more than two hundred years ago cotton was practically unknown to the civilised nations of the West. But it is perhaps even still more singular that a fibre which, for many centuries apparently, had been a staple article of clothing in India and the East generally, should scarcely find a place in the early classical literature of these countries. Nearly all the beautiful and useful plants of India have their properties extolled by the Sanskrit poets, and indeed are frequently dedicated to the gods, but cotton—the plant above all others which might have been expected to have formed the theme of nature-worship—is hardly more than incidentally mentioned.

The Sanskrit word kārpāsā-i, often rendered cotton, is connected with the Greek and Latin carposos or carbasus, and denoted a fine textile. That name was also known to the Phoenicians and Hebrews, but whether it originated in India or was imported there would be hard to say. Mr. F. W. Thomas, who has kindly permitted me to consult him on this point, informs me that "the earliest mention appears to be in the Aṣṭādhyāyī Śrīmad Sāstra (say 800 n.c.), where the material is contrasted with silk and hemp, as that of which was made the sacred thread of the Brahmanas. Probably the word was thus borrowed from India. The other words tula and pīṣa are later—they denote the substance." "The Sanskrit dictionaries give four names (vadara, kārpaśa, tanškeri and samudrānta) for the shrub, while the wild kind is called bhāraṇḍaši. They also mention that kārpaśa and vadara (the material) come from the fruit of the plant in question, while the Harṣacarita (citra 650 a.p.) twice speaks of the cotton (tulu) from the pods of the kālambī tree" (in sans. Bombax malabaricum). In the Institutes of Manu injunctions exist that regulate the operations of the washermen and of the weavers, and these all point to a social organisation and industrial attainment in which a knowledge
THE OLDEST ASIATIC COTTONS

of cotton is essential, but it is taken for granted rather than expounded or justified. All this might of course argue antiquity, as it certainly does for the arts of spinning and weaving, but the word kärpisi may have existed for centuries with a generic rather than a specific signification.

Similarly it is extremely difficult, if not impossible, to determine the earliest certain references to cotton in the Persian, Arabic and European classics. It is fairly clear that kutin, katän or kutun (the Arabic name from which we have derived the English word cotton) originally denoted flax, not cotton. So also in Greek, karpassos, often rendered cotton, had, as already stated, the still earlier meaning of flax or simply of a fine textile. But cotton textiles had been carried to Europe, and were regularly traded in, long before any definite knowledge existed there regarding the fibre of which they were made. In fact the Greeks first learned definitely of the cotton plant through the group of explorers who visited India along with Alexander the Great and his immediate successors in Bactriana. Herodotus (460 B.C.) had written of India having wild trees that bear flax like their fruits. But right down to the middle of the 18th century the wool-bearing trees were divided into those with spinoza and those with smooth stems. The former were the silk-cotton trees, of which Bombax mukulbaricum may be given as the type, while under the latter many of the botanical writers included kapok (Eriodendron africatum).

A large percentage of the earliest authors speak of cotton being used for quilts and mattresses, but are silent regarding its being spun and woven. Ktesias would appear to have been the first European who observed the spinning and weaving of the Natives of India, but his description does not necessarily denote cotton as the fibre. Theophrastus (350 B.C.) gives us the first definite conception of Indian cotton cultivation. He says (Hist. Pl. (ed. Schenider), iv., ch. 4, 152), "The trees, from which the Indians make cloths, have a leaf like that of the mulberry; but the whole plant resembles the dog-rose. They set them in the plains arranged in rows, so as to look like vines at a distance." Then adds that cotton cultivation may be seen both in India and Arabia. Indian cotton-bearing plants set in rows necessarily involves cultivation, but it would be equally applicable to the perennial as to the annual plant. The comparison to the dog-rose, with its open lax branches, however, brings to mind the perennial roji of the Gujarat rather than the small compact bush of the ordinary annual cotton. (See below, under Roji, p. 581.)

Pliny tells us that cotton (carbasus) was in Tylos called Gassympinse. He does not state whence he derived that information, but curiously enough by modern botanical writers that word has become the generic name for the cottons (Gossypium). In the Periodus of the Erythraean Sea (65 A.D.) we have the first commercial mention of Indian cottons. The raw cotton, as also the Indian cotton manufactures, were conveyed by the Arabs from "Patiaia, Ariake and Barygaza" (the modern Broach) up the Red Sea to "Aduli." The Indika of Arrian, a work compiled (150 A.D.) from Nearchus, Megasthenes, Strabo and Eratothenes, as also other early Greek travellers, was professedly intended to supersede the inaccurate account of India given by Ktesias. After narrating the particulars above mentioned, Arrian adds that the cotton of India is whiter and brighter than that of any other country. Thus by the beginning of the Christian era we have a fairly vivid glimpse of India as a cotton-growing and cotton-manufacturing country. Stein (Ancient Khotan, 1907, 374, 412, 430, 442, etc.) mentions that cotton cultivation is very largely pursued around the modern Khotan, and in other passages he refers to fragments of cotton garments, etc., found in the ruins of the ancient city, which must be accepted as dating from the 3rd to the 5th century. These are doubtless the oldest authenticated examples of the Central Asiatic cotton industry at present known.

The simple reference to a fibre or textile, under such names as kärpisi, katän, linun, carbasus or Gossyptian may be of no historic value whatever. It has to be shown that the word used had the same signification then as to-day. Many illustrations might, in fact, be given of the confusion that prevailed regarding the separate recognition of the chief textiles of the world, down even to the 17th century. In Manchester, for example, a particular texture of goods; woven of wool, was in 1596 sold under the name of "Manchester Cottons." In 1664 the dispute between Sir Martin Noel and the East India Company as to whether "Calico was linen or no" became acute, and that controversy shows how very reluctantly the name " cotton" was in England accepted as indicative of a distinct fibre.
There is, however, every reason for believing that the Arabs knew of cotton and wore cotton garments before the present era. Unhappily no writer has as yet discovered who effectually bridges over the gap between the period of the Persians and that of the physicians who wrote in the 7th to the 10th centuries. Serapion, an Arab medical writer who lived about 850 A.D., quotes several earlier Arab authors, among whom Ibn Maniha, he says (speaking of Kelbe), described the cotton as growing there on trees which lived for twenty years but attained their best bearing condition about the ninth year. Renaudot gives a translation of the journal of an Arab (Sulaiman) who visited China and India in the 9th century. The original Arabic MS. bears the date 1173, and was translated in 1718 by Renaudot, and again in 1845 by Reinaud into French; but there is an English edition dated 1733. Speaking of the town of Calicut, he says that "garments are made in so extraordinary a manner that nowhere else are the like to be seen. They are for the most part round and woven to that degree of fineness that they may be drawn through a ring of middling size." Sulaiman also makes special mention of the fact that the Chinese, rich and poor, were seen to be dressed in silk, but he says nothing of cotton in China. It is one of the many surprises met with everywhere in the study of the world’s production and trade in cotton, that the plant was not cultivated in China for its fibre until the 13th century. In the 6th century we read of the Emperor Ou-ti having possessed a robe of cotton that he held in much esteem. Towards the end of the 7th century cotton was an ornamental shrub in Chinese gardens. Mayer says that it was not until about 1000 A.D. that the plant was fully introduced into China, and this view is accepted by Bretschneider. There was apparently in China (as in Europe) much opposition to the introduction of cotton as a textile.

Marco Polo (who travelled through a large portion of Asia in 1290 A.D.) refers to the production and manufacture of cotton in Persia, Ka-shgar, Yarkand, Khotan, Gujaratt, Cambay, Telin-gana, Malabar, Bengal, etc., but is absolutely silent on the subject of cotton with China. Speaking of Gujaratt, he says the cotton trees are of great size and attain an age of twenty years, but he adds, when of that age the cotton is only used to quilt or stuff beds. Referring doubtless to Ma-sulipatam, he says it produces specially fine "buckrams" (muslins) and chintzes. The Rev. E. Terry, Chaplain to Sir Thomas Roe’s Embassy to India in 1615, speaks of the cotton plants near Surat as growing for three or four years before being uprooted. The cotton plant seen by Rhoede in Malabar during 1686, he describes as a shrub 10 to 12 feet in height, found growing in sandy places—he does not say cultivated.

Turning now and very briefly to Egypt. Pliny, in his account of Ethiopia, speaks of the portion that borders on Egypt having cotton plants that afford a more woolly fibre than is customary and as possessing exceptionally large pods. Yates (Text. Antig., 1843, 334–54), commenting on that passage, observes that the plant referred to may have been *G. arboreum*. He further says that cotton was not grown in Egypt prior during ancient times. In support of that view he affirms that the MS. copies of both Pliny and Julius Pollux (a century later than Pliny), that have been cited as upholding an ancient cultivation, have had that interpretation put upon them through marginal annotations which were made about the 14th century A.D. being taken as parts of the original text. He accordingly maintains that cotton was first cultivated in Egypt about the 13th or 14th centuries, and in support of that opinion mentions the fact that the Arab physician Abdullatif, who visited Egypt in 1200 A.D., and published a list of the plants he saw, makes no mention of cotton. Further, Yates points out that the ancient paintings and sculptures of Egypt, while they show flax cultivation and purification of the fibre, give not the slightest indication of cotton. And this view is confirmed by Prosper Alpinus (De Pl. Egypt., 1592, 29), who makes the significant observation that the Egyptians in 1592 imported cotton for their own use from Syria and Cyprus, and only cultivated in their gardens, as a curious and ornamental plant, the *Gossypium arboreum* which he figured and described, viz. *G. arboreum*. He adds, however, that the Arabs make webs of that cotton which they call *sessa*. Forskal (Pl. E. Arab., 1775, 125) indicates two forms of cotton met with by him: *G. rubrum*, which he says was known to the Arabs as cah, khanur, or *ajaf* (from the description given, the plant indicated was very likely to have been *G. arboreum*, Lind.); while his second species (which he calls *G. urceum*) answers fairly closely to *G. herbaceum*. [Cf. Adler and Casanowicz, Biblical Antig., in Ann. Rept. Smithsonian Inst., 1896, 1005.]

It is thus very remarkable that the accounts given by the earlier authors

572
regarding Indian and Egyptian cottons almost all point to perennial, not annual, plants, and so persistently as to suggest that the annual stock may have been a subsequent discovery obtained very possibly from Arabia.

In the 9th century Sicily was taken by the Saracens, and according to Abu Zacaria Ebn el Awam (Bunquari, trans., ii., ch. 22, 103) they at once introduced the cultivation of cotton. From the account given of the methods of cultivation the plant must have been the annual stock, now known as *G. herbaceum*. In the 16th century the Muhammedans carried the self-same cotton plant (as I take it) across the Mediterranean to Spain, and for three centuries thereafter Barcelona had a flourishing cotton industry. There would thus seem no doubt the plant disseminated by the Muhammedans was *G. herbaceum*, the species presently cultivated in the regions indicated. Where they obtained the plant may be a matter of uncertainty, but to-day the centre of its area of cultivation might almost be given as the northern tracts of Arabia and Mesopotamia, where it stands ever chance of being indigenous. There is no doubt, however, that the Levantine (not the Indian) plant was closely associated with the early Saracens; their religion, their cotton and their sugar might be spoken of as the triple agents of their civilization. As a cultivated plant, that cotton was carried by them to Constantinople, and very possibly through Turkey, Asia Minor, Armenia, Kurdistan and Mesopotamia to Persia, if not even to the frontier of India. So also they in time may have conveyed it to Egypt, in connection with their Baghdad trade, which on the conquest of Spain went via Alexandria. But before passing away from this subject it may be added that there would seem no doubt a limited cultivation of cotton had been established in Crimea and South Italy some short time prior to the European conquests of the Saracens, so that it is just possible it may have existed, if it was not indigenous in some of the islands of the Mediterranean, prior to the knowledge of its utilisation as a textile, just as the tea plant existed in Assam prior to its being brought from China by Gordon and Fortune. It is not surprising, therefore, that Dioscorides should make no mention of cotton. The cultivation of *G. herbaceum* in time, however, was diffused throughout the countries bordering both shores of the Mediterranean, and a cotton trade was established which held sway for several centuries.

It may perhaps suffice for the purpose of this work to indicate very briefly the chief historic facts in the rise and present position of the cotton production and trade of the New World and of the cotton manufacturing enterprise of Great Britain. The earliest mention of the English cotton trade appears to occur in a little poetic work entitled *The Politie of Keeping the Sea*. This is given by Hakluyt in his *Voyages*, etc. (i., 213), and was apparently originally published in 1490. The merchants of Genoa are spoken of as carrying silk, pepper, wood and cotton to England, and as taking back woollen goods. It is thus probable that at an even earlier date than indicated England procured cotton from the Levant, since the fibre is spoken of as an ordinary commodity. In 1492 Columbus discovered the West Indies and America. The Spaniards on their arrival in the New World found cotton being cultivated and manufactured, from the West Indies to Peru and from Mexico to Brazil. In 1498 Vasco da Gama sailed for India round the Cape of Good Hope. The success of that expedition gave to Western Europe a direct route to India, and struck a severe blow at the commercial supremacy of Venice and Genoa. "Thus previous to the discovery of America and the West Indies and for some time afterwards, England, and probably all Europe, were supplied with cotton from the Levant." (Millburn, *Or. Comma.*, 1813, ii., 279-82). 'Down to the close of the 16th century England bought or acquired direct from India the raw cotton in the Levant, and her supplies of cotton goods made of it purchased by the Levant and henceforth from the Levant. ("If any, from the West Indies must accordingly be very insignificant. The early historians of Brazil affirm that a cotton plant was found indigenous there, and that the Natives made use of it to supply the cotton of their simple needs. In Bahia it must have been cultivated, however, since De Souza speaks of it (1570-87) as used with the hoes, two or three times a year. Pizarro in 1522 found cotton in Peru, and it has since been recognised in the ancient tombs of that country. De Vaca is reported to have discovered, in 1536, a wild cotton in Texas and Louisiana. Thus occupied, on the coast of Brazil. The English Supply. United States. Peru. Brazil.
the species of American cottons until approximately two centuries after their original discovery.

The first attempt to grow cotton in the United States was in Virginia. It was not, however, until the second decade of the 17th century that systematic cultivation was organised, and then from seed obtained both from the Levant and from the West Indies. It took nearly a hundred years from that date before the plantations became of national importance, but the seat of the industry gradually shifted south and west. England began to manufacture cotton about 1633, and continued to draw on the Levant for her supplies of the raw fibre. An outcry against the imports of Indian cotton goods began to be raised in England. Macgill (who died in 1644) speaks of the cotton seen by him in Brazil as having the seeds united together—the condition we now call kidney-cotton. According to Samuel Wilson, Smyrna and Cyprus seed, by the close of the 17th century, had been successfully acclimatised in Carolina.

The 18th century opened with repressive legislation passed by the British Parliament against Indian calicoes, but witnessed the imports by England and Scotland of raw cotton amounting to 1,000,000 lb. Cotton was raised in Georgia from seed supplied from Chelsea by Philip Miller (the original stock of the green-seeded plant now known as G. hirsutum). In 1782 muslins were first made in England, and in that year South American or Brazilian cotton began to be regularly received. Two years later a ship which brought eight bags of cotton from America to Liverpool was seized on the ground that so much cotton could not have been produced in the United States. In 1786 the green-seeded cotton was in the States the most largely grown of all kinds, but in that year the black-seeded or Sea Island cotton was introduced from the Bahamas.

Through Patrick Walsh, Pernambuco cotton was successfully introduced into the United States in 1789. Dr. Hove was sent to India to study the Indian cotton trade and Indian cotton plants, but his mission was resented by the East India Company, and his report was not published for sixty years after his return to England. Shortly after the date of Hove's visit the East India Company commenced, however, a series of experiments with a view to improve the quality and increase the quantity of cotton produced in India. Up to this point England obtained her supplies of raw cotton from the Levant, India, the West Indies and South America, the finest qualities being spoken of as coming from Surinam and Ceylon. The century closed with the exports from the United States to England at 9,532,263 lb. and from India at 729,643 lb.

The 19th century opened with the cotton crop of the United States being returned as 48,000,000 lb., contributed as follows:—South Carolina, 20 millions; Georgia, 15 millions; North Carolina, 5 millions; and Tennessee, 7 millions pounds. The exports from that crop to Great Britain were 20,000,000 lb. Total consumption of raw cotton in Great Britain came to 54 million pounds, the supply from India being 64 million pounds, or just onethird of the quantity drawn from the new area—the United States of America. The first Indian cotton mill was built near Calcutta in 1818, and the first of the Bombay series in 1851. Improvements in bleaching, dyeing and cylinder printing soon placed British calicoes in a position to hold their own against similar goods from any other part of the world. Resist printing was introduced by Sir Robert Peel. The Sea Island cotton raised at Hilton Head, South Carolina, fetched the highest price then known. Mexican cotton-seed was introduced into Mississippi by Walter Burling, and by crossing with the existing plant was supposed to have improved the quality of the cotton very greatly. Mention, so far as I can discover, has never been made of any of the indigenous cottons of the States (if such existed) having been grown by the colonists. They grew first Levant cotton, then Miller's green-seeded cotton, and finally Sea Island cotton. Which of these was crossed with Mexican has not been stated, but presumably the green-seed, and this hint should be of value.

Cotton cultivation was systematically prosecuted in Egypt about 1821, and rapidly obtained a position in quality of staple second only to that of the States, but there is very little information as to the original stock or of the subsequent stages in the production of the better races now met with in that country. The year 1825 witnessed ruinous speculation in cotton. From 1829 to 1831 the East India Company made strenuous efforts to improve the Indian staple. Large sums were spent in the form of awards, and ten experienced cotton-growers were procured from the Southern States of America with a view to establish the cultivation of New Orleans cotton. Excepting in Dharwar, failure was the
INDIAN AND ARABIAN WILD COTTON

Gossypium

Herbaceum

Levant Cotton

only result, and the subject was allowed to drop from public attention. In 1841 cotton yarns were in Manchester spun up to No. 450's, and the United States rapidly obtained a monopoly of the market in raw cotton. In 1850 the imports into Great Britain were 664 million pounds of raw cotton, and her exports of manufactured cotton goods were valued at £28,000,000. About this time a scheme was formulated in England to raise a sum of £20,000,000 to be expended in India during five years, in measures calculated to forward India as a cotton-producing country. The outbreak of the Mutiny put an end, however, to these negotiations. Commenting on the effect of the American Civil War and the Great Cotton Famine of 1861–6, Dabney (The Cotton Plant, U.S. Dept. Agri. Bull., 1896, No. 33, 14) very truly observes: "Probably no equally great industry was ever so completely paralysed or had its future placed in greater jeopardy than cotton-growing in the United States during the war of 1861–5." In 1863 a Cotton Commissioner was appointed for Bombay, and the year following for Berar and the Central Provinces. Cotton farms were established under these Commissioners. The Bombay Cotton Frauds Act IX. of 1863 became law, but it is generally believed it did more harm than good and was shortly after repealed. For the ten years ending 1850 Great Britain imported an average of 2,318,575 bales of cotton (each 400 lb.), and of that amount India supplied 405,291 bales. But the ten years ending 1869, which included the troublesome times of the American war, Great Britain imported an average of 2,736,661 bales, of which India supplied 1,282,172 bales—the record year being 1866, when India furnished 1,847,759 bales. Thirty years later (1899) Great Britain took 4,065,617 bales, of which India furnished only 77,297 bales; but in 1903 the Indian portion of them was slightly improved, Great Britain having taken 203,560 bales of Indian cotton. The immediate response made by India during the cotton famine shows her capabilities, but as in the United States, so in India, the demands of her own mills had become a controlling factor in the amount available for export. But the 19th century closed with India, instead of exporting cotton goods, having become the largest single market for English manufactured cottons—its demands for British cotton goods having been just under £20,000,000.

The 20th century may be spoken of as characterised by a new feature, namely, the rise of Continental, American and Indian cotton-manufacturing enterprise seriously threatening the supremacy of England in the cotton markets of the world. The Tariff Commission's Report of June 6, 1905, may be said to have been written with a view to establish this new phase. From that publication the following may be abstracted:—In 1876–80 the average annual consumption of cotton in the United Kingdom exceeded that of the Continent by 2,030,000 cwt., and that of the United States by 5,070,000 cwt.; in the period 1901–4 the annual consumption in the United Kingdom was 8,020,000 cwt. less than on the Continent, and 2,950,000 cwt. less than in the United States.

II. THE CULTIVATED AND WILD COTTONS OF INDIA.

(a) Fuzzy-Seeded Cottons of the Old World.

G. Stocksii, Mast., Fl. Br. Ind., 1874, i., 346; Watt, Wild and Cult. Cotton Pl. of the World, 1907, 73–7, t. 6; hiragumi karpas. This very interesting wild species is found near Karachi, India, and across the Persian Gulf, on the Dhowar Mountains of South-East Arabia.

There would seem little doubt that the writers who have supposed this to be the wild condition of G. herbaceum, Linn., are in error, but not more so than those who have taken it for a naturalised and degenerate state of some American species. Moreover, no one would appear to have demonstrated in actual experiment the forms, if any, that have resulted from using G. Stocksii in hybridisation with other species, hence its influence on the Indian cultivated cottons must be accepted, for the present, as purely imaginary.

India's Cotton Commissioner.

India's Capabilities.

A New Phase.

Sind and Arabia.

D.E.P. iv., 16.

GOSSYPIUM ARBOREUM
Deo Kapas

Habitat—Probably indigenous to North Arabia and Asia Minor. Not known to exist as a wild species anywhere. It occurs in the Mediterranean region (Sicily, Malta, Greece, Crete, Cyprus, Algiers, Turkey), in Syria, Mesopotamia, Armenia, Persia, Afghanistan, Baluchistan, in the North-West Frontier Province of India, and in the northern portions of the cotton area of the United States of America. It may, in fact, be described as a warm-temperate species, and is at least one of the plants that yields, or formerly yielded, the so-called "Short-staple American Cotton" of commerce. There is every reason for believing that it was the species first cultivated by Europeans. It was the bushy, cultivated annual *Gossypium* or *Xylon* first mentioned by botanical writers. Moreover (as already fully shown), the field plant of the Levant was the first commercial cotton of Europe, which, at an early date, was carried to the United States and there largely cultivated some time before the discovery of the other special races that ultimately drove it into a position of secondary importance. It was that discovery, in fact, that gave the States their supremacy and caused the area of production to move to the south and west.

From the practical standpoint it is essential, therefore, that a clear conception be obtained of the plant which in all probability was the species that first attracted the attention of European manufacturers. Dr. Roxburgh—one of the most accurate of botanists—described and prepared an MS. drawing of an Indian plant which he accepted as being *G. herbaceum*, *Linn.* but in that opinion he was in error, for, if any two cultivated species of *Gossypium* can be viewed as distinct, *G. herbaceum*, * Roxb.*, and *G. herbaceum*, * Linn.*, are so. As understood by Roxburgh, the Indian plant embraced Dacca Cotton (*G. negletum*, * Tod.*), also the Berar and China Cottons (*G. Nanking, Megan*). It was apparently with the object of primarily separating the Indian country cottons from the Levant plant that Todaro formed his *G. Wightianum*. That species was founded on but one form (*Oes. Sp. di Cot.*, 1863, No. 12, 47), but subsequently Todaro fell into the error of grouping several Indian plants with it.

Cultivated Forms.—The forms of *G. herbaceum*, *Linn.*, that are deemed of greatest value are (a) those suited to cold countries, and (b) those in the United States that are so much hybridised with *G. hirsutum* that they are often accepted as grades of that plant. The large-leaved hairy states of this species require a much warmer climate than the sub-glabrous (and therefore more typical) conditions. Some of the recent writers, such as Cook (U. S. Dept. Agri. Bull., 1906, No. 88, 8), would appear, however, to go to an unnecessary extreme when they affirm, as Cook does, that "the Upland type of cotton was recognised as a distinct species by Linnaeus under the name *G. hirsutum*, but many subsequent writers have erroneously confused the Old World species *G. herbaceum*, which is not cultivated in the United States, though often so reported." It certainly was very largely cultivated prior to 1732, and for many years thereafter, as the Upland Cotton, and I believe still survives, though mostly in a state of hybridisation with *G. hirsutum*.

Habitat.—A small tree or large shrub which has often been claimed as originally an African species, but few botanists have discovered it anywhere in what could be regarded as an indigenous habitat. It has been reported as wild in Upper Guinea, Abyssinia, and Upper Egypt. [Cf. De Candolle, *Orig. Cult. Plants*, 468.] Certainly so far as botanical publications are concerned it was figured and described as a *Arpinus* as an Egyptian plant a hundred years before Pissenet wrote of it, "*Gossypium herbaceum madrasapatense*." It is said to be met with in gardens (especially near temples) in Egypt, Africa, Arabia, India, but though much less abundant has also been found in China, Japan, Java and the Malaya. Lamark (quoting Somnerat, *Hist. Voy.*, x., 469), speaks of it as growing plentifully in the plains of Macassar. So far as presently known, the *arboresum*
TREE VERSUS BUSHY COTTON

GOSSYPIUM
VAR. NEGLECTA
Bengal Cotton

form (which may be called the typical condition) can hardly be said to be cultivated as a source of fibre to-day, though according to Indian tradition it is the cotton that should be selected in preparing the Brahmanical string; and has often been affirmed was also the cotton specially used by the Egyptian priests in the construction of their robes. Many of the Arab writers speak of its fibre as spun and woven. The classic records of a "tree-cotton" cover, as many centuries beyond the first mention of a herbaceous field crop, and what is even more curious, similar, most of the early writers on Indian cottons, such as Rheede, Terry, Rumphi, etc., describe and figure "tree-cottons" (from admitted personal knowledge), but say absolutely nothing about herbaceous field cottons.

Cultivated Forms.—I regard this species as embracing several fairly distinct forms, some of which at least have been assigned independent positions by certain authors. But while in these a natural assemblage of characteristics is preserved, hardly any one feature is constant. Thus, for example, the flowers may be yellow, the leaves may be very considerably hairy, and the color of the seeds may be grey or brown. The more arboreal form occurs chiefly (so far as India is concerned) as an ornamental garden plant. When grown as a field crop G. arboresum may be either an annual or perennial, and in the latter case is generally sown in rows, being thus employed to shade more delicate annual cotton or other plants. Moreover, the agricultural forms are so much modified, variously possibly by hybridisation, that they cannot be regarded as constituting varieties—in fact, many of them are but climatic sports that lose their properties on being carried from one region to another. It may be accepted, accordingly, that in India at least the cultivation of G. arboresum is quite as ancient, if not more ancient, than that of any other cotton. Some of the Indian races referable to this species (primarily) may be regarded as having derived from G. arboresum the soft silky character of their fibres, while the length and strength of their staples have come from the other ancestral elements. In others a strain from G. arboresum would seem to have been sought on account of the strength thus imparted to withstand seasonal climatic changes—the plant for the most part becoming a hardy perennial.

There are many cultivated states of this species found all over India, Egypt and Africa. As already explained, these manifest a constant tendency to throw back towards the arboreous condition with dark purple flowers, whenever they are allowed to become perennial or to be naturalised. The following are some of the more remarkable varieties or cultivated races of this species:

Var. sanguinea, Watt, l.c. 91-5, t. 9; G. sanguineum, Haselbr., Cat. Hort. Bog., 200; Todaro, Relax. Cult. dei Cot., 1877-8, 179, t. 1. This form is rarely met with in India, though frequent in southern China. A red-flowered herbaceous field cotton was, however, at one time common in India, and is occasionally still met with in Oudh. Buchanan-Hamilton, who gave special attention to the subject of the Indian cottons, did not apparently preserve a specimen of G. arboresum proper in his herbarium. Sets of his plants are to be seen in the Kew, the British Museum, the Wallichian and more especially in the Edinburgh herbaria, and among these may be discovered admirable samples of a red-flowered herbaceous plant which botanically is derived almost immediately from G. arboresum, with possibly a strain of G. Nanking. Of that plant Buchanan-Hamilton has recorded the following observation:—"No. 1549, G. nigrom, vide Comment. mecum in Hort. Mal. p. primam var. (a) rubicundum; G. indicum, Woll., Sp. Pl., iii, 803? Colthur ubique in India vulgatissima." Now if the plant shown by that specimen was cultivated everywhere in India and very common in 1808, it must, I fear, be spoken of as very nearly unknown to-day and its place taken by a multitude of forms of yellow-flowered plants considerably more remote from G. arboresum, etc.

Of these may be mentioned:

Habitat.—A large pyramidal bush, chiefly grown as a field crop. Cultivated
CHINESE AND JAPANESE COTTONS

The advance of the \textit{varadi} cotton across India might be said to have been some few years ago regularly chronicled from district to district and hailed as a treasure by the advocates of low-grade cottons, while viewed as a calamity by others. Middleton says: "White-flowered cotton is a dangerous rival to the finer varieties. By nature it is made to supplant. When brought to a new district, instead of pining as most exiled cottons do, it develops all its best properties, grows robust, matures early, is prolific and so wins the favour of the cultivators; once established, it begins to degenerate, joins company with the worst of the native varieties, and forms the mixed growths that constitute the bulk of the 'Bengals' of commerce.'"

It is most curious that the name \textit{vilayati}, often given to this as also to other robust races of \textit{G. arborescens}, \textit{var. neglecta}, should have begun to be used in Khondesh and Berar about the very time that the record exists of Major Trevor Clarke having supplied seed of a cross he had effected between the Garo hills cotton and Hinghanget. It is thus fairly certain that one of the first serious efforts to improve the Indian stock gave to the cotton growers of that country their most prolific though most inferior staple-yielding plant.

\textbf{Habitat.} An annual or perennial bush with delicately formed and often purple-coloured twigs; cultivated in China, Japan, the Malay Peninsula, Siam, Burma, India, the North-West Himalaya, Persia, Central Asia, Ceylon, Upper Egypt and Africa (doubtfully in Madagascar and Arabia). No person has recorded the discovery of the wild state of this protean species, and yet its specific characteristics are so constant with many of the cottons, within a large part of the areas indicated, that the separation of the assemblage, from \textit{G. herbaceum}, \textit{G. arborescens}, and \textit{G. obtusifolium}, not only meets a commercial necessity but coincides with many historic facts of importance.

Trigault (1615) says that cotton grows in great abundance but is not indigenous to China, in fact was introduced (from Egypt) about four hundred years before his time. Dampier (\textit{Voyages}, 1691) speaks of having seen a small cotton plant on an island near Formosa. One of the most interesting of the early writers on Chinese Cotton may be said to be Barrow (\textit{Travels in China}, 1806 (2nd ed.), 556-7, 580). He tells us that the beautiful coloured cotton, known in commerce by the name of the chief city, Nanking, was exported, the Chinese purchasing in exchange the cheaper white cottons of Bengal and Bombay. It was, he remarks, planted in rows and grew for three years, thereafter being uprooted and the fields prepared for other crops. Fortune (\textit{Three Years' Wanderings in China}, 1847, 264) explains that the \textit{kakh} or Nanking cotton was a mere sport from the common white cotton of China.

Economically \textit{G. Nanking} is, at the present day, doubtless much more valuable than \textit{var. sanguinea} or any of the other \textit{G. arborescens} forms. Moreover, some of the \textit{G. Nanking} series display characters of far greater interest than the mere length of the corolla (which Todaro lays stress on), and they might, in fact, be broken up into several varieties or distinctive races. Thus, for example, Bretschneider's specimen has the seeds black and almost devoid of any down—velvet—a character which brings to mind the naked black-seeded so-called indigenous cottons of South India (see below), but it is highly probable that both these may have to be regarded as indicating hybridisation with one of the naked-seeded forms. So again, some of the Indian examples of this species have purple flowers, others yellow with purple blotches, and in still others the flowers are pale yellow with a purple tinge on the extremities of the petals. A range of variability such as that can be best accounted for on the assumption that the assemblage embraces many cultivated races, of which each very possibly owes its peculiarities largely to hybridisation.

\textbf{Cultivated Forms.} It would be rash to affirm (in the present state of know-
GOSSYPIUM
VAR. NADAM
Coconada

THE COTTON PLANT

ledge) that the special cultivated states to which *G. Nanking* may be referred constitute definite varieties that can readily and invariably be separated from each other. The point of importance is that within certain fairly well defined areas there are commercially and agriculturally distinctive cottons that would appear to be states or races of *G. Nanking*. A detailed acquaintance with the cultivated cottons of Egypt, China, Japan, Siam, the Malayas, etc., will in the future doubtless suggest varietal or racial groups, in amplification of the India series here dealt with:

Var. rubicunda, Watt, Lc. 126–8, tt. 17, 18; *G. rubicunda*, Roxb. MS.; *G. obtusi- folium*, Burkill (in part), Mem. Dept. Agri. Ind., i., No. 4. This was formerly a much more important plant than it is to-day. It occurs occasionally here and there over the hotter parts of India. Hove, who studied the Indian cottons in the field during 1787, wrote of Cambay, on November 6, that the cottons were then in full bloom with scarlet flowers and quite another species from the yellow-flowered bush grown at Diroll in Broach. "On my journey," he continues, "to Kerwan in Cambay, for the space of sixteen miles, wherever I cast my eye, I could see nothing else but cotton plantations. Where the soil consisted of a heavy clay those districts were planted with the yellow sort, and those which consisted of sand, or were situated higher from the adjacent ground, were planted with the red species." He then gives particulars of the method of propagation, more especially the pruning of the perennial plants. Pruning as a system of improving staple is alluded to by many of the early travellers. At Desberah in Broach, Hove was told, the red cotton was known as *dyem norm capass*. One of the most remarkable features of Hove's account of the Bombay cotton cultivation, one hundred and twenty years ago, is the stress he lays upon the necessity for free irrigation with yellow-flowered cotton, which in this respect differs, he adds, materially from the red.

It is significant that all the best examples of *var. rubicunda* in the Kew, British Museum and Edinburgh herbaria appear to have been obtained from South and West or North-West India. It might be described as a hybrid from *G. Nanking* or *G. obtusi-folium*. Its place seems to have been taken in Madras and the Deccan, to a very large extent, and possibly quite recently, by the yellow-flowered *bani* and *nadam* cottons.

Var. himalayana, Watt, Lc. 124–6, t. 16. A herbaceous annual or biennial yellow-flowered cultivated cotton. This is one of the chief forms grown along the Himalaya, and on some of the lower hills of India proper. It is generally called *bogar* or *watni* cotton. It seems probable that the Chinese and Japanese plant yields a superior staple to any of its Indian representatives; on this account, and because the true *G. Nanking* has repeatedly been introduced into India (cf. Roxburgh), it seems desirable to separate the Indian from the Chinese plant. In the Indian, the leaves are larger and broad, the lobes triangular acuminate, and the base very often almost cordate, while the whole plant is frequently very hairy—a departure from the type that possibly denotes hybridisation with *G. obtusi-folium*.

Var. Nadam, Watt, Lc. 128–31; *Capas*, Rumphius, Herb. Amb., iv., 33–7, t. 12; Middleton, Agri. Ledg., 1895, No. 89, 8; *G. indicum*, Gammie, Ind. Cottons, 1908, pl. ix. In trade the cotton of this assemblage is often designated "Coconada," and besides *nadam* there are several other vernacular names that denote the series, such as *yerra* (red) also *paiva*, *burada*, etc. They are usually perennial, bushy plants, with dark-green foliage and deep-red coloured stems. The chief staple of Burma, the *wa-gale*, is an annual; the *wa-mi*, according to Burkill, is a reddicoloured *wa-gale*; lastly, the *wa-gyi* is a perennial—they are all three states of this variety.

I adopt the name *nadam* (or *yerra*) because it is that ascribed by the Natives of India to one of the most extensively cultivated representatives of the present series of cottons—the *nadam* (or *paiva* or *burada*) cottons of South India. Middleton speaks of it as the *roji* of Madras, but he might also have added, or the *bani* of Central and Northern India. There is, however, a considerable range within even the *nadam*. Generally speaking they are the inferior cottons of the Madras Presidency; have often flowers pink in bud and turning reddish purple with age (hence called *yerra* cottons); they are sown either during the north-east monsoon (September to November) or during the south-west monsoon (from April to June), and occupy the land from three to five or more years. They begin to bear in about nine months after sowing, and yield two harvests in their second year, viz. the one in September and the other in January. They
OOMRAS AND HINGANGHATS

are mostly grown on red sandy or stony soils, very rarely on black soils. They are for the most part perennials, and as such attain a height of 6 to 8 feet; they are accordingly largely cultivated as mixed crops, being grown in rows through the fields or as hedges to protect other crops.

Var. Bani, Watt., l.c. 131-4; Middleton, Lc. pl. iii; G. herbaceum, var. Jethi, Gangini, Lc. 4, pl. iv. This affords the finest and most silky qualities of the cottons known in trade as the Oomras (Amraoti), the Hinganghats, the Nagpurs and Bihas. Under each of these there are usually two grades, viz., the bani and the jari. The former grows on the higher and drier soils, especially of the southern districts; gives a fine silky floss but low yield. The latter is raised on the lower black soils of the northern districts; gives an inferior staple of a woolly character but does so very profusely. Jari seems originally to have been simply a lower quality of bani, and perhaps possibly by crossing it with var. negotia; nowadays it is pure negotia. To the circumstance of Bani being one of the races of the Chinese cotton plant is due its silky staple. The description of the shape of the leaves and colour of the flowers of this special form is almost precisely that given for Nudam, except that the leaves in the finest grades of bani are much larger, thinner in texture, more undulated and much finer hair. The bracteoles are usually very large purple, or with a few long pointed teeth.

It is grown over a wide area, bears numerous distinctive names, and manifests a considerable range in quality and staple. It mingled with the Nudam cottons of the south and east, with the Roji of the west, and with the hinganghat layana cottons of the north. It is known in Bihar as Desi or Desi (deshita); in Bengal proper it is bhogila; in Berar it has numerous synonyms such as tidhi, judi; in Hyderabad one of the best forms is that produced at Bhaissi; in Southern Kathiarwar it seems also to be known by the names of maths, jiffina, pangiri, etc. It occurs in Berar, the Central Provinces, Bihar and the drier tracts of Bengal. It is essentially the best cotton met with on all the dry soils that have to be classed as second best in cotton production.

Var. Roji, Watt., l.c. 134-7. A perennial, bushy, yellow-flowered, cultivated cotton that might be described as specially prevalent in Baroda and Kaira. It is a tall much-branched shrub, often climbing in hedges 6 to 8 feet with straight ascending branches. When left to grow in the hedgerows roji becomes subcane, the wool shortens and turns rufous-coloured, and the fuzz lengthens and becomes also red. If allowed to remain in the fields for more than three or four seasons the wool degenerates in quality and, as stated by the early authors, is then fit for upholstery purposes only. But Middleton observes, “Roji is markedly different from the annual cottons and does not seem to hybridise with them.”

One of the earliest and perhaps the most interesting direct allusions to this cotton is that given by the Rev. E. Terry, who accompanied Sir Thomas Roe’s Embassy to India (Voy. E. Ind., 1615, 368). Speaking of the neighbourhood of Surat, he says: “For their Cotton-wool, they sow seed, and very large quantities of Ground in East-India are thus seeded. It grows up like small Rose-bushes and then puts forth many yellow blossoms. . . . Amongst that Wool they find seeds to sow again as they have occasion; but those shrubs bear that Wool three or four years are they supplant them. Of this Cotton-wool they make divers sorts of white Cloth.” This recalls at once the description of Indian cotton given by Theophrastus (see p. 571).

There is only one perennial cotton with yellow blossoms in Gujarath, and accordingly it seems safe to assume it was the plant to which Terry referred. Here, then, we have another indication that the perennial cottons were once upon a time more largely cultivated than they are to-day, if we are not justified in believing that the perennial cottons were the early condition, the annual plant a later product of greater skill in cultivation. Hove (170 years after Terry’s time) repeatedly alludes to the perennial cotton seen by him—both red and yellow flowered—but he also gives a full account of the cultivation of the annual plant, and devotes special attention to what he calls a new method recently introduced. This may possibly point to the extended cultivation of the annual crop. But by the date of Hove’s visit the roji cotton had been assigned the secondary position which it has since held. Hove’s actual specimens are in the British Museum, and it has to be admitted that they could not be separated botanically from any corresponding set of more recent date. But he has no sample of what

Local Manifestations.

D.E.P., iv, 88,139.

Hinganghat Cotton.

Roji.

Early Records.

Change in Indian Stock.
GOSSYPIUM
OBTUSISIFOLIUM
Indian Wild Cotton

THE COTTON PLANT
could be called a high-grade kahgments, his nearest approach to that being a specimen that might be described as the wayria cotton of to-day.

To conclude this account of the forms of G. Nanking, it may have been observed that I have not attempted to describe the races that might be mentioned as examples of each of the great groups, Nodum, Bani, Ragi and bina-
layana. But it is next to impossible to furnish descriptions that would be intelligible to persons who have not a personal acquaintance with the living plants. To the cultivators of India they are, however, often of considerable value. Into one or other of the varieties of G. Nanking have to be placed all the yellow-flowered biennial cottons with thick leathery, broad, five-edged, imperfectly cordate leaves, having three glands and large ovate acute, thick-toothed bracteoles.

A shrubby very rambous plant with small leaves, having three, more rarely five, obtuse entire lobes, stipules falcate; bracteoles entire; capsule ovate, cells 3-seeded; seeds free, clothed with firmly adhering short greenish-grey down, under a small portion of ash-coloured wool. A native of Ceylon, but not cultivated. Flowered during the rains and cold season in the Botanic Gardens at Calcutta, where it was cultivated from seed obtained from Ceylon of a plant reported to be there wild.

The above, very slightly abbreviated, is Roxburgh’s original account of this species. The additional information available may be said to consist of a manuscript coloured drawing made under Roxburgh’s supervision and named by him, the original of which is in the Calcutta Herbarium, and an exact copy in the Royal Herbarium, Kew. It is, however, the plant called G. herbaceum by most writers who have described the cottons of India and Africa, and is the G. hirsutum, Linn. Herb., but not of Linn., Sp. Pl. Roxburgh was apparently not aware that it was a wild plant in Khandesh and Gujarat, nor that it was the type of the most important cottons of India. Under the name G. herbaceum he described the plant now accepted as G. arboresum, var. neglecta, and linked that with G. Nanking (China and Berar Cottons), but kept all these distinct from G. obtusi-
folium. [No plant that could be supposed to correspond with G. obtusifolium is, however, mentioned in Linn., Sp. Pl.; in Fl. Zeyl.; in Burmann, Thes. Zeyl.; in Rheed, Hort. Mal.; nor in Rumphius, Herb. Amb., etc., etc.] Lastly, Trimen says there is no indigenous cotton in Ceylon.

Habitat.—A distinctly Oriental species, the various manifestations of which are met with in India, Ceylon, Malay Archipelago, Philippine Islands, Africa and Upper Egypt. I have in India repeatedly collected a Gossypium in a wild or self-sown condition, and was, I believe, the first person definitely to suggest its identity with G. obtusifolium. It occurs, for example, here and there all over Kathiawar. It is fairly common in the hedges of Gujarat, and was found by me in Khandesh and in the Deccan. If in all these instances it has to be regarded as but a survival of former cultivation, there would seem very little likelihood that in some of its known habitats it has existed in the feral condition for a great many years, perhaps centuries. Further, the plant is perfectly easily recognised from all the other Indian cottons, though certain states of G. Nanking come very near to it indeed, if such instances are not hybrids between the two species. But in the plant does not seem to be confined to India and Africa. Vidal collected it in the island of Ticao, Philippines, and the label attached to his specimen describes it as ‘wild.’ So also Dr. A. B. Meyer found it in the Malay Archipelago.

Cultivated Forms.—To distinguish the cultivated forms collectively, of this species, from those of Africa and other parts of the world, it may be useful to group them as embraced under a special Indian variety as follows:

The so-called Long-staple Cottons of India.

One of the most remarkable features of this plant is the circumstance that while it is the most valuable of all Indian cottons to-day, it is the one least understood and last of all to have been described by botanists. It is a cultivated
GUJARAT FINE COTTONS

GOSSYPIUM

VAR. WIGHTIANA

Indian Long Staple

annual cotton, with seeds much smaller, more definitely and compactly formed than in the wild plant, and fuzz very short, usually yellow-grey in colour. The change in the shape and size of the seed is a direct result of selection intended to lower percentage weight of seed to flax (lint). Vartéhna (Travels (ed. Hakl. Soc.), 1510, 107) speaks of the cotton of Cambay being much exported; he also says Bengal cotton is sent to Mecca, and in a footnote mentions the cotton of Burma. Mandelstam (Travels, in Olearius, Hist. Muscovy, etc., 1638-40, many passages) makes frequent mention of the cotton of Gujarát and Agra, but not in such a way as to allow any opinions being formed regarding the plant that was then grown. In Milburn’s Oriental Commerce (1813, i., 280) special mention is made of the Ahmod being at that time the finest grade of Gujarát cotton. (Cotton Areas.)

Habitat.—This is cultivated in a belt of country that fringes the west coast of India from the Rann of Kach through Kathiawar and Gujarát, to the southern Maráthá country and South India.

Soils.—The cultivated states of G. obtusifolium are exceedingly difficult to classify, since they blend almost imperceptibly from one type to another, in direct adaptation to smaller and less conspicuous climatic and soil variations than is experienced in the other cotton areas. There are in India three main classes of cotton soils with three corresponding main groups of cotton plants:—

(a) Rich black loamy soils, such as those of Kathiawar, Gujarát, Khandesh or the Karnátak. These are collectively often spoken of as the “Black Cotton Soils.”
(b) Mixed red and black stony soils, such as those of the Deccan, Berar, the Central Provinces, etc.
(c) Alluvial sandy soils such as those in the Ganges and Indus basins. In the (a) the forms of G. obtusifolium are mainly grown; in (b) of G. Nanking; and in (c) of G. arboreum. But in each of one of these great cotton areas there may be local modifications both in climate, soil, exposure, etc., so that a limited cultivation of all three plants may exist or be possible in any one province. Speaking generally, however, G. Nanking, when grown on the black cotton soils, is of a superior quality to that seen anywhere else and G. arboreum is there very nearly unknown. These soils are too valuable to be used for the inferior grades, and consequently it is within G. obtusifolium itself, as a rule, that the adaptations of plant to environment have taken place. On the red and black stony soils G. obtusifolium rapidly degenerates or becomes hybridised with G. Nanking. In the areas of sandy dry soils G. obtusifolium becomes unknown, and the higher grades there meet with some of the stocks or hybrids of G. Nanking. It is not to be wondered at, therefore, that in regions so especially suited for cotton as those possessed of black cotton soils, every little variation in soil, climate, altitude, marine influence, etc., etc., should have resulted in the production of special forms adapted district by district, if not field by field. The most favoured conditions, and the localities accordingly of the finest Indian staples, are Surat, Broach, Ahmedabád and Kathiawar. But within these four districts there are well-marked minor areas that have apparently directly originated some of the special forms of G. obtusifolium that have presently to be indicated. In 1891, and again in 1894, I had the pleasure of studying the cottons of Gujarát practically, on the last occasion in company with Prof. Middledon, now of the Board of Agriculture, who was at that time in the service of His Highness the Maharajah of Baroda. We marched over the greater part of the province as well as Kathiawar (when the cottons were in flower), and Middledon’s great personal knowledge of the country enabled him not only to point out to me the kaledioscopic blendings of the plants, but the immediate relationship of these to the variations in soil. [cf. Ann. Rept. Ind. Mus. Calcutt., 1893–4, 2–5.] The rich, deep black soil of Broach and Navsari is known as the kaham, and this was observed to yield the finest of all Indian cottons, accordingly known as the kaham or Broach deshi (= country). The districts south-east of Baroda were seen to produce a considerably lower grade of kaham cotton. So also both sides of the Fishar river (between Baroda and Broach) were noted to change into a calcareous loam with the appearance of a distinctive plant known as the goghari. That particular cotton thus occupies an intermediate zone between the plants of the deep black kaham soil proper and the lighter or shallower soils known as goradu to the north and west. On these lighter loamy soils are to be found the kowé cottons of Bhavnagar, Palitana, Dhola, Amreli and Junagardh, the ambí (of Dhollera), and the waphra of Wadhwan, Viramgam, Morvi, North Kathiawar and Kach.

A similar classification doubtless prevails in the southern Maráthá country.
GOSSYPIUM
VAR. WIGHTIANA

Hybrids

The kumpta (coompta) cottons of Dharwar and Belgaum are the southern equivalents of the kahiami cottons of Gujarat. Still farther to the South (in the Madras Presidency), the uppams of Tinnevelly, Coimbatore, etc., closely correspond with the goghari cottons, while the tellapatti or jowari-hatti (hybrid) cottons of Bellary and Karnul in some respects answer to the wagra of North Gujarat.

Races.
The following may be given as the chief cultivated races of this species:—

(A) Pure Races.
(a) Kahiami: the deshi cottons of Broach, Surat, Navsari, Baroda, etc.
(b) Goghari: one of the inferior but profitable cottons of Baroda and Broach.
(c) Lallo: the deshi cotton of Ahmedabad and Kathiawar—the Dheer Cottons.
(d) Kumpta: the characteristic cotton of the southern Marathia country and known in trade as "Coompta."
(e) Uppam: the long-staple cotton of South India, found mainly in Tinnevelly and Coimbatore.

(B) Hybridised Races.
(f) Kanvi: a recently introduced stock that often bears the name of kashpuri and is probably a hybrid with G. arboreum, var. neglecta.
(g) Wagra: the Common Cotton of North Gujarat, Kathiawar and Kach; is probably a hybrid with G. Nanking—hence the breadth of leaf.
(h) Tellapatti: the black-seeded cotton of South India that is often called jowari-hatti, and which is found in Bellary and Karnul. There would seem little doubt that this is a naturally produced hybrid between the uppam and Bourbon cottons.

Exotic Species.

For the purpose of this work it is hardly necessary to deal with every species and variety simply on the ground that at some time or other it may have been grown in India, or may even exist as an acclimatised (wild) plant. It is desirable to confine attention to the forms that can be said to be regularly cultivated, and which, therefore, participate in the supply of cotton that finds its way to market, or which have contributed (by hybridisation) to the production of some of the special races now grown in India. Suffice it to say that every cultivated cotton of any note in the world has at some time or other been experimentally grown in India. In all but two cases these have ultimately, however, come to be regarded as less valuable than the Asiatic stocks; hence certain forms, being neglected, have escaped into the neighbouring hedgerows or jungles and thus survived to this day, under conditions that have occasioned their being mistaken for indigenous (wild) plants. It may, therefore, serve the present purpose if the exotic cottons of India be discussed under two great groups:—

Fuzzy-seeded and Naked-seeded.—As already observed, a classification exclusively based on any one structural peculiarity would of necessity be misleading; more especially if the selected character could be shown, as in the present instance, to be very largely a special adaptation to external and variable conditions. The grouping suggested is of value, however, when viewed carefully in conjunction with the assemblage of other characteristics that may be said to demarcate the species. It is, moreover, a simple and convenient method of recognising the more important New World cottons.

It may be recollected that the seeds of most wild cottons contain a more or less complete coating of hairs, formed, it is believed, with a view to protection from insect enemies. Certain developments of that feature may, therefore, be regarded as brought into existence primarily as a consequence of definite adaptations, but by human selection these have been fostered or changed in accordance with an altogether new purpose, namely the supply of fibre of a particular length, strength or colour. In some instances, a proportion only of the coating has been elongated, either naturally or as a direct consequence of cultivation. Hence it has come about that the coating of hairs may be referable to two layers—an under coating of short hairs (the fuzz), and an outer coating (the floss). But, on the other hand, the whole of the coating may elongate into floss, the seeds in such cases being described as "naked," that is to say, not possessed of a fuzz. Lastly, the elongation of the floss may not be constant or uniform; a certain proportion may be shorter than the rest. Want of uniformity in the length of the staple is a serious defect, hence in selection of stock this aspect has to be carefully considered. But now comes a curious circumstance, and one of great practical interest: seeds possessed of a fuzz have, as a rule,
SAW-GINNED DHARWAR

their floss more securely and firmly bound to the seed-coat than is the case with naked seeds. This has led to two classes of gins, namely saw-gins and roller-gins, the former being regarded as necessary to tear the firmly bound fibre from the seed-coat, and the latter sufficient for the naked-seeded cottons. The tearing of the staple is a significant feature that lowers very materially the value of the floss, apart altogether from other considerations. A naked-seeded readily separable floss is, therefore, a high qualification, and one that marks great progression in cotton cultivation.

Fuzzy-seeded Cottons of the New World.—The species that fall into this position are:

A botanical specimen contributed by Philip Miller is preserved in the British Museum and is, therefore, very possibly the actual type of the species. Another specimen of the same plant will be found in the Badminton Garden herbarium (also preserved in the British Museum), which was very probably the source from whence Miller obtained seed. And it is just possible the Badminton stock came from Guadeloupe Island, having been contributed by the brothers Lignon, mentioned by Tournefort as having sent seeds of West Indian plants, more especially from Guadeloupe, to Paris. It is interesting, therefore, to be able to add that the record exists of seed having been grown in Georgia in 1734, from a supply furnished by Miller from the Chelsea Physic Garden. There is thus little doubt that the introduction of the actual stock of the New Orleans, Georgian, and many other short-staple American cottons, dates very possibly from the supply sent out by Miller. But to this same plant has to be attributed the Egyptian (Delta lands) cotton—a plant that existed very possibly in Upper Egypt long anterior to the modern traffic, the stock of which we know came very largely from the United States of America. So also the so-called saw-ginned Dharwar cottons of recent Indian commerce were obtained from the States, though later supplies were procured from Egypt, from belief that they represented a special and peculiar plant known in trade as "Egyptian Cotton."

Some years previous to this historic introduction of the Dharwar stock, Ruxburgh spoke of the plant having been only of late brought into India. He does not tell us where it came from, but his description occasions no doubt as to its determination, and he was the first botanist to affirm that the seeds were free from each other. Interest was being taken in the plant the world over, however, since towards the close of the 18th century Murray furnished an admirable picture and description of it, under the name **G. latifolium.** During the past sixty years the cultivation of this cotton in India has gradually concentrated in the Deccan. It is, of course, also met with in other parts of India, but success has chiefly attended its acclimatisation in Dharwar and the neighbouring districts, hence its being known in trade as Saw-ginned Dharwar.

In 1894 I made a tour on foot through certain districts of the Central Provinces and Berar, in order to study in the field the cottons there cultivated. In many parts of Nagpur, Wardha, Ellichpur, Amraoti and Akola I found the present plant very largely mixed in all the fields of the so-called higher grade "Oomas." In many cases it would not have been an over-estimate to say that they contained from 20 to 30 per cent. of **G. hirsutum**, the balance being **G. Sankhing, var. Bani,** of an inferior stock for the most part. The latter was a much larger and more prolific yielder, and the former was grown, so the cultivators told me, entirely because the mixture was believed to raise the grade of the staple. Except, therefore, in Dharwar, where it is grown as a pure crop, the condition mentioned as discovered in the Central Provinces is characteristic of the occurrence of the present plant in India as a whole. It has, however, greatly degenerated, and is often not more than a foot or a foot and a half in height; is a coarse, stunted, much-branched, erect, greenish-red, dust-coated bush, the last-mentioned peculiarity being a consequence of the abundance, length and strength of the hairs with which the shoots, leaf-stalks and veins are coated. The seeds are always large, ovate, truncated on one extremity and have a strong dense fuzz, which may be grey or green in colour. The floss

Gossypium Hirsutum

New Orleans

Necessity for two Kinds of Gins.

Tearing of Staple.

D.E.P.
iv., 17—8.

Saw-ginned

Dharwar.

Miller's Chelsea Stock.

Grown in Georgia.

Cultivation in India.

Admixture.

General Appearance.
adheres very firmiy, hence necessitating the use of saw-gins, but it is fairly long and silky.

As met with in India, the plant has degenerated very greatly from the standard preserved in the United States and in Egypt—has, in fact, approached in many directions to the specific conditions of G. hirsutum, although I am not aware of its ever having been recorded as met with as an escape from cultivation. Had systematic selection of stock been pursued in India, there is little doubt that a higher standard than exists might have been maintained, if not a progression secured. Of this there can be no doubt, that the Upland Cottons of America have advanced until the plant that now affords them is no longer G. hirsutum, but a greatly improved stock that botanically might be described as a hybrid between G. hirsutum and G. mexicanum.

Religious Cotton.

This somewhat remarkable plant is mentioned here mainly in order to allow of its separation from G. brasilienne (var. by Parlato) and others has been incorrectly called G. religiosum. It is not of much importance commercially as its separation from G. hirsutum is a matter of great difficulty, and, moreover, the plant does not appear to be very extensively cultivated. It is best distinguished from the normal condition of saw-ginned Dharwar cotton by its trailing habit and more softly hairy condition. The lateral shoots are much elongated and slender and the internodes are long, straight and profusely tomentose. It is not uncommon to find popular writers in India affirming that the name religiosum was given to denote a cotton cultivated by mendicants or one met with near temples. The name was first used by Linnaeus, and there is no proof whatever that his specimen came from India. Moreover, the plant that in India might deserve the name religiosum would be the deo kópas or ram-kópas, which is G. arboreum. Roxburgh was the first botanist who critically studied the plant, and he came to the very correct conclusion that it could "scarcely be more than a variety of hirsutum!"

Red Peruvian.

A remarkable plant met with now and again throughout the cotton areas, more especially in Africa, though the type was described from a plant raised (so Todaro says) from seed procured from Mexico. Its leaves are even more deeply palmisceted—the lobes being almost linear—than is the case with G. brasilienne, but they are in addition pilose-tomentose, while the seeds are semi-conglomerated and partially coated with a velvet. One of the most striking peculiarities of this plant is the immense size of the calyx. By most writers this has been confused with kidney cotton (G. brasilienne), but others call it the true Pernambuco cotton of commerce, which they hold to be thus distinct from the kidney cotton. By still others it is the original stock of the ashmouni cotton of Egypt, an opinion which I do not accept. Perhaps its best popular name is Red Peruvian.

G. peruvianum, Cav., Diss., 1785–90, 313, t. 168; G. eivjolium, Roxb., Pl. Ind., iii., 186; G. religiosum, Parl. (in part, but non Linn.); G. hirsutum, Cook, Weevil Resist. Adapt. of Cot. Pl.; Watt, l.c. 213-26, tt. 37, 38. U.S. Dept. Agri. Pl. Indust. Bull., 1906, No. 88, 8. Possibly indigenous to Central and South America; is the so-called Peruvian Cotton now met with in most cotton-growing countries, especially West Africa, where it received numerous distinctive local names, such as owu of Abbeokuta and ukoko of the Congo; and most of the races of ordinary or short-staple Egyptians, such as the Ashmouni, Mit Abbé, Zafiri and Abbas.

This somewhat obscure species links together G. mexicanum and G. brasilienne. It has the palmisceted foliage of the latter with the blistering habit of twigs and fuzz-coated seeds of the former. It is somewhat significant that
all the American and African cultivated cottons that possess seeds more or less coated with a velvet or fuzz (e.g. *G. hirsutum*, *G. mexicanum*, and *G. peruvianum*) have the leaves more or less pilose, while the forms with sub-glabrous leaves (e.g. *G. purpurascens*, *G. villosum* and *G. brasiliense*) have the seeds practically naked; that is to say, they do not possess a fuzz.

G. mexicanum, Tod., *Relaz. Cult. dei Cot.*, 193, tt. vi., xii., f. 32; Watt, *l.c.* 226-44, tt. 39-42. This hybrid species is often very difficult to separate from *G. purpurascens* when in foliage. The leaves are broad, smooth, glabrescent with five to seven radiating veins and lobes; pedicels prolonged, pedicels short and flowers small, pale-coloured, nodding; seeds large, with thin ashy fuzz, and copious woolly floss. Apparently originally procured from Mexico, but so far as known is met with under cultivation only.

Roxburgh tells us that this was introduced into India by W. Hamilton in 1804, but subsequently he seems to have confused it with Bourbon Cotton (*G. purpurascens*), and gave both plants the botanical name of *G. barbadense*, Willd., since both his MS. drawings (so named) are in reality *G. mexicanum*. He further apparently alludes to this plant under *G. hirsutum* as being grey-seeded. Wight, Spry, and many other Indian writers refer to Mexican Cotton in the Journals of the Agri.-Horticultural Society.

It has, however, to be admitted that some uncertainty exists as to the plant Todaro actually meant by the name *G. mexicanum*. If its coloured illustration accepted arbitrarily as the type, then it has to be confessed that it is not very plentiful in herbaria. In all the samples seen by me that approach most closely to that type, the plants either came from Mexico or were raised from seed procured from that country, as Todaro affirms was the case with the plant figured and described by him. But in all the best tracts of America, from which the finest Upland and Georgian Cottons are procured, the plant there grown is almost exactly intermediate between the type of *G. hirsutum* and that of *G. mexicanum*. The leaves are large and broad in fully-formed conditions, are 5-, sometimes even 7-lobed or only angled. In texture they are smooth, thick, leathery and either very hairy (in forms that approach to *G. hirsutum*) or almost quite glabrous (in those with a closer approximation to *G. mexicanum*). In the United States fresh stock has again and again been imported from Mexico, and the admission made that the previously existing stocks had been thereby much improved. There would thus seem little doubt that the improvement that has been consistently reported as taking place has run parallel with an undoubted advancement from the older type of *G. hirsutum* towards that which more appropriately should (from the botanical standpoint) be designated *G. mexicanum*. But they are one and all hybrids, and the suggestion may be offered that they have been derived from *G. hirsutum* as the stock, and either *G. purpurascens* or *G. villosum* (*G. barbadense*) the other—the result being the presumed hybrid condition here designated *G. mexicanum*. Of the more famed cottons of this assemblage, the following may be specially mentioned as (a) hairy (e.g. *aff. G. hirsutum*) forms:—

- "Allen," "Peeler," "Sunflower," "Todd" and "Russell." Of the (b) glabrous (aff. *G. mexicanum*):—"Welborn's Pet," "Willet's Red Leaf," "Parker," "Layton's Improved," "Toole," "Shine," "Simms," "Berry's Big Boll," "Culpepper," "Cummings," "Triumph," "Gibson," "Myers" and "Texas Wool." Reversions are also recorded, one example of which may be here specially mentioned, namely "King's Improved," which comes closer to *G. punctatum* than to the bulk of the modern *G. mexicanum* cottons that to-day are called by the old, but now hardly accurate name of *G. hirsutum*. Another illustration is the tendency for green-seeded stock (*G. hirsutum* type proper) to produce brown or grey-seeded forms (*G. mexicanum*) according as the degree of cultivation or neglect tends to develop and establish the one or other ancestor of the present-day much hybridised stock of Upland cottons.

Naked-seeded Cottons of the New World.—The following, among other species, may be specially mentioned in this position:—

there are several distinctive races, derived very possibly from \textit{G. taitense}, \textit{Parl.}, and which constitute the Bourbon and Porto Rico Cottons of commerce.

The seeds are not only what is called naked, but the leaves are almost glabrous. They are perennial plants with strongly angled purplish shoots and leaves, entire or with three lobes on the apex, the laterals arching outwards and the petioles almost thorny through the growth of glandular warts. They are all essentially insular plants, hence the greater success attained with them in South India as compared with North India. They seem to be readily hybridised, and in consequence it is not uncommon for completely fuzzy seeds to appear among plants raised from the normal condition, viz. the seeds naked, except for a tuft of rust-coloured fuzz around the beak.

The Vine-leaved Cotton was probably originally a native of Central and South America, to the Amazon basin and the Lesser Antilles, but early found under cultivation throughout the cotton area of the world. It is the Egyptian long-staple, Antilles, Piura, Surinam and Cayenne, St. Domingo, Guadalupe, Barbados, and other cottons. In the early literature of this genus the greatest possible obscurity prevails regarding \textit{G. barbadense}. It might, in fact, without fear of contradiction, be affirmed that there was little or no distinction between that species and the present plant. As time advanced the form known as Sea Island Cotton appeared, and to it became restricted, by most authors, the name \textit{G. barbadense}, leaving \textit{G. vitifolium} to be accepted as denoting the slightly lower-grade cottons of South America and Egypt that are classed as "Long Staples." It is, in other words, highly likely that this plant may have been one of the ancestral stocks of \textit{G. barbadense, \textit{maritimum}}—a plant which is perhaps the most recent addition to the prized races of cotton met with in the world. No one seems to know what was meant originally by \textit{G. barbadense}. It nowhere exists in a wild state, and is apparently never cultivated except in the form nowadays called Sea Island, but which could hardly be accepted as \textit{G. barbadense, \textit{maritimum}}. The present plant, on the other hand, exists in numerous forms, but is the vine-leaved cotton of most of the early authors, who repeatedly speak of it as met with wild or completely acclimatised. The leaves are sub-cordate with mostly three ascending lobes, the texture often pilose-tonementos below. The \textit{bracteoles} are very large, ovate rotund, deeply auricled, slightly united below and often possessed of the bractlets described by Cook as weevil-resisting adaptations (\textit{U.S. Dept. Agri. Bureau Pl. Industr.}, 1906, No. 88). Seeds black, naked and quite free from each other.

This embraces all the higher-grade long-staple cottons. A shrubby perennial known only in a state of cultivation, and raised usually as an annual. It is glabrous or nearly so, except on the leaf-stalks and veins and the under-surfaces of young leaves.

As already suggested, there seems every probability that the early authors who accepted the name \textit{G. barbadense} did not realise that it meant one and the same plant as that designated \textit{G. vitifolium}. By cultivation and crossing, however, a highly specialised race, known as Sea Island, \textit{"was produced, to which by recent authors the Linnean name \textit{G. barbadense} became in time restricted, though Todaro, and following him some other botanists, preferred to give the new stock the name of \textit{G. maritimum}, thus leaving \textit{G. barbadense}}}
as a name for a species presumed by many to exist, but known for certain to no botanical writer. The species founded by Linnaeus may be said to turn on a specimen still preserved in the British Museum, and that specimen certainly agrees more closely with *G. vitifolium*, L., than with the modern Sea Island Cotton of America.

Although repeatedly introduced into India, Sea Island Cotton has, in no locality, proved a success. It is possible, however, that it might be raised profitably in the Andaman and Nicobar Islands and in some parts of Tenasserim.

The Chain, Kidney, Brazilian, Bahia, Pernambuco and Costa Rica Cottons of most popular writers, and in Burma it is *thembansu* (ship's cotton). It was first definitely alluded to by John Lerieus, who lived in Brazil in 1557, and wrote a history of that country. Sir Walter Elliot, speaking of the plant as known to him in South India, calls it *paodi* (gold) *patti* and *pamidi patti* (the wealth-giving), names that denote the high expectations that were at one time entertained regarding this plant. It was apparently the first of the long-staple silky cottons of the New World to attract attention. Seeds were conveyed by Maregraf and others, and the chain condition so well figured by Zanoni seems to have been accepted as a peculiarity of all cottons, hence Lobel (1576) thought he improved on the pictures of *G. herbaeum*, given thirty years previously by Fuchsius and Matthiolus, by adding a kidneyed mass of seven seeds.

All the nations of the world seem for a time to have vied with each other in the attempt to acclimatise the Brazilian Cotton, and in each new country to which it obtained the name of the region from whence it immediately conveyed; accordingly in Burma, and also in the Antilles, it is called "Siam Cotton," and in India "Ava Cotton," etc. Roxburgh tells us in the MS. edition of his *Flora Indica* (preserved in Kew) that he became acquainted with it through seed sent him from Farukhabad. Mr. H. St. George Tucker (Member of the Court of Directors of the East India Company) observes that Lady Hastings grew it at Fatteghar, and Roger Hunt, in 1808, addressed the East India Company on the causes of deterioration of Pernambuco and Surinam Cottons. Thus we know that prior to Roxburgh's knowledge of it this plant had been experimentally tried in many parts of India.

It is, therefore, perhaps not to be wondered at that this cotton has got considerably more widely distributed and is moreover more frequently met with in states of acclimatization than is the case with any of the other New World cottons. Its large capsule, compact mass of seeds and the copious coating of floss naturally conveyed the impression of great value, and false expectations were raised, only to be rudely dispelled by comparisons of yield to acre. Gradually, however, all interest (or nearly so) in this particular Brazilian Cotton died out with the appearance first of the Upland Georgian Cottons, then the Mexican Cottons, and finally the Sea Island Cottons, all races that could be raised as annuals and occupy the soil for short periods. The present species in most countries accordingly fell into a state of complete neglect and either disappeared or survived as an escape from cultivation and became "the wild tree cotton" of most popular writers, the properties of which have been the will-o'-the-wisp of nearly each decade for the past century in the world's cotton areas.

If I am correct in believing that this plant, however, represents an important stage in the development of the fine long staples of the West Indies and the Sea Islands of America, it is not by any means devoid of interest to persons interested in the production of new and improved races. But as met with in India to-day it is of no value whatever, and the expectations recently advanced regarding it would accordingly seem almost for certain doomed to disappointment, since opposed to all past experience with the plant. It may be said to have attained commercial importance within very restricted areas. In South America—its indigenous habitat—it is regarded as of special value because of its resistance of the diseases that prove disastrous to other cottons. In Guatemala, for example, it is believed to be immune from weevils.

589
GOSSYPIUM

ADULTERATION

I. ADULTERATION AND DETERIORATION.—Milburn (Or. Comm., 1813, 279–80) urged that it was impossible to be too attentive to the shipping of perfectly clean cotton. The adulteration and deterioration of Indian cotton has thus engaged attention for fully a century. St. George Tucker (to whom reference has been made above) wrote in 1830 a report On the Supply of Cotton from British India (cf. Reports on Cotton, Silk, and Indigo published by the Company in 1836, 152–75) in order to account for its depression in price and deterioration in quality. He gives ten reasons. Royle (Cull. and Comm. of Cotton in Ind., 1851, 551) deals frequently and effectively with this question. "When the cotton," he says, which the Native grows, "is intended for sale, the refts have little enough encouragement to bestow more care, either in growing or in picking their cotton, for they usually get no better price for a good and clean, than they do for an indifferent article." So again, "Indian cotton is, however, from the shortness of staple, not well suited for all the purposes of the English manufacturer; but it is much more depreciated than it need be from the dirty and adulterated state in which it is sent to market." Mention has been made that (about the time of the great cotton famine, 1861–5) notice was forcibly directed to India as a future country of supply for England. An outcry was shortly after made against the adulteration and mixing of inferior with superior grade staples. This led to the passing of the Cotton Frauds Act (IX. of 1863, and the Amendment of 1878, Act VII.).

W. B. Wishart (Secretary of the Chamber of Commerce of Upper India) published in 1891 a Note on the Adulteration of Cotton in which he shows that the subject had agitated the minds of the cotton merchants of India for many years. He points out that a report issued in 1845, for example, gave details of the deterioration and decrease in outturn even then observed. Wishart then remarks: "There is now no bona fide market for our inferior cotton. Native hand-weavers cannot work it; the Chinese found out, some years ago, that it did not pay them to use it, and now our Continental customers can and do buy an article that suits them equally well at a proportionately lower price. There is, therefore, no outlet for such cottons, and Native growers and buyers have naturally taken to assisting each other by bulking the inferior and better stuff produced in each district, the mixture constituting a quality just a little below that which spinners want."

In August 1891 a conference was held in the office of the Director of Land Records and Agriculture, Poona, at which proposals were made with a view to preserve and improve the quality of Indian cotton. In the same year Sir E. M. James (at that time Commissioner in Sind) drew up a Memorandum on Cotton. This was widely circulated by the Bombay Government, and elicited many valuable opinions and reports. The Chamber of Commerce of Bombay, for example, issued a very powerful reply, dated November 11, which fully expressed the opinion ultimately upheld by the Government, namely that while there was much need for effort at improving the stock, penal legislation was undesirable. Ten years later (Feb. 1901) the Hon. Mr. Bomanjee Petit (himself a prominent mill owner) pressed on the attention, both of the Bombay Government and the Mill Owners' Association, the serious consequences of the deterioration of the Indian cotton staple. It has now actually come about that both China and Japan have begun to produce coarse yarns of their own, and

590
have thus commenced to close two of the most important outlets for Indian exports. In consequence the necessity to advance has been borne home on the minds of the Indian mill owners. Instead of spinning as their finest yarns 20's, they have begun to think of 80's, but for this purpose they require to import raw cotton from Egypt, if not even from America. India no longer possesses a cotton suited for that purpose, and the adulteration and mixing of the staple have thus very nearly paralysed the industry. In consequence the outcry for legislation has once more been raised: it has been urged that a law requiring the locality of production to be stamped on all bales of cotton would have a highly beneficial result. Others look to the expectations of Sind, irrigated by a system of canals that may allow of the production of the high-grade Egyptian cottons, as the most hopeful indication of the future.

Thus history repeats itself, in no commodity of commerce with greater regularity than in the theories and practices of cotton growing and cotton trading. One lesson alone seems to stand out through the past decades of the steam-power cotton industry of India as unwavering, viz. the conviction that when the time comes for India to assume once more the rôle of a producing and even exporting country in the finer cotton goods, it must either have improved its staple or discovered a country capable of meeting its necessities in suitable raw fibre. A low-grade staple such as the bulk of that grown in India to-day is utterly unsuited for the higher class machine-made goods, even were it put down at the mills pure and clean at a price below that procurable by any other power mills in the world. Thus it has been shown that cheap production is not necessarily economic production. Expensive labour means higher intelligence, with compensation in quality and price. O. P. Austin (Cotton Trade of the United States, 1900, 2608) points out, and with much force, that the low wages of the Indian cultivator are no real economy, since they prevent cotton cultivation on a large scale directed by intelligent supervision. Retrograde agriculture, such as has characterised the Indian cotton trade for a century past, must in the end fall behind in the race for commercial supremacy.

II. IMPROVEMENT OF STOCK. — The cultivated cottons of the world have been referred to three great areas — (a) Asia, (b) Africa, and (c) America. But it has sometimes been affirmed that the first two can be taken together and spoken of as the fuzzy-seeded Asiatic and the others as the naked-seeded American cottons. But it is not the case that all the fuzzy-seeded species are Asiatic, any more than that all the naked-seeded are American. Moreover, the seeds of wild cottons have either a firmly adhering coating of wool or a readily separable floss. But there are both wild and cultivated cottons that possess both a fuzz and a floss. As already mentioned, Cook (U.S. Dept. Agri. Bull., 1906, No. 88) thinks the wool may be a necessity in the protection of the seed from the enemies of the plant. Certainly in most wild forms, such as G. Stocksi, and still more so G. Davidsonii, the wool is so firmly and intricately crumpled up around the seed as to prove a veritable proboscis-proof protection, thus causing such seeds to be described as naked, the compacted fuzz having escaped detection. But of purely wild species the following among others possess a short velvety coating around the seed: — G. Harknessii (a native of California); G. Palmerii (of Mexico); G. Sturtii (of Australia), and G. tomentosum (of the Hawaiian Islands). On the other hand, the following have naked seeds: — G. Kirkii (of East Tropical Islands)
Africa), and *G. taitense* (of the Polynesian Islands). In passing it may be here added that no Asiatic indigenous cotton has a naked seed, and further that with the fuzzy-seeded Asiatic forms the bracteoles are united below, whereas with the American fuzzy-seeded cottons the bracteoles are free. The appearance, therefore, of these peculiarities in certain cultivated or long acclimatised plants may safely be regarded as denoting definite influences and not accidental sports or climatic adaptations.

It has sometimes been upheld, but with little justification, that the crossing of fuzzy-seeded and naked-seeded cottons (or of Asiatic and American cottons) was impossible. But there is perhaps no subject on which greater diversity of opinion exists than in the value or even possibility of hybridisation of the species of *Gossypium*. One set of writers affirms that it is difficult, if not impossible, to prevent hybridisation, while another stoutly upholds the belief that hybridisation is of no practical value, if they do not indeed go so far as to deny the possibility of its accomplishment in nature. A parallel to this diversity (and perhaps a consequent one) is the degree of acceptance of the species as established by botanists. Some writers, such as Todaro, think there may be as many as 54 species, while others, such as Parlatore, reduce them to 7, and Aliotta to 5 species, with numerous varieties and cultivated races or hybrids under each. Buchanan-Hamilton went further and reduced all to 2 (or perhaps 3) species, viz: the black (naked) seeded and the white (fuzzy) seeded, with as a third the red (*kakh*) seeded cottons. In fact the controversy regarding the number of species dates even from before the formation botanically of the genus *Gossypium*, but I venture to think it could never have existed and cannot exist to-day, when the undoubted wild forms are made the basis of classification.

The conflict as to hybrids may be exemplified by the writings of two of the most recent authors. Aliotta (Riv. Citr. Gen. Goss. 1903) gives an elaborate statement of the races of cultivated cottons which he thinks have been produced through the cross-breeding of his five species—*G. barbadense*, *G. religiosum*, *G. arboreum*, *G. herbaceum*, and *G. hirsutum*. On the other hand, G. A. Gammie, Professor of Botany at Poona, Bombay, in his recent report (The Indian Cottons, 1905) reduces all the Indian cultivated forms to *G. obtusifolium*. He would, moreover, not appear to regard hybridisation as of any practical value whatever. He observes that the so-called species and hybrids are merely cultivated races evolved by time and environment from one prototype, but he nevertheless adds somewhat paradoxically that they are capable of being crossed with facility and that their descendants are fertile.

After many years of careful study of the Indian cottons, both in the field and the herbarium, I am constrained to join issue with Aliotta and writers of his school in thinking hybridisation has played an important role, though I am not of course prepared to reduce the ancestral stocks to five forms. Still I am satisfied that many of the more highly prized cultivated cottons are not species botanically (though it may be convenient to retain for them specific names), but are races and natural hybrids (some of the more recent artificial) adapted by selection to man's requirements and to environment. I am at once, in fact, with the army of workers in America who not only say they have produced endless forms by crossing, but who regard that agency as of the greatest possible importance. Tracey (Dabney, *The Cotton Plant*, 1896, 197–224), in dealing with the cultivated varieties, remarks, "Although the plants from a single line of crosses, as fertilising Peterkin with Allen, will vary widely, still it is a general
SPERMATOGENESIS

rule that the character and habit of the future plant will be more like those of the female parent, while the fruit, the boll and its contents, will be more like those of the male parent." So again, "The tendency of the plant to vary from the typical form of any variety will be back towards its original form rather than in any other direction." From these and such-like considerations is doubtless due the affirmation that, from one or two plants specially cultivated and as a consequence of careful selection of sports, it might be possible to produce all the chief types of cultivated cottons. Hence it may be said that with few other cultivated plants is a more rigid selection of seed necessary than with cotton. Moreover, there seems little doubt but that historically it can be shown that G. hirsutum, G. mexicanum, G. citifolium and G. barbadense, as known to us to-day, are themselves to a large extent hybrid stocks. It does not follow, however, that all hybrids may be fertile, still less that they can be invariably again further hybridised with fresh ancestral influences, according to the fancy of the operator. To the neglect of this consideration may be due much of past failure in hybridisation.

One of the most valuable and interesting papers on this subject is that written by Austin Cannon, entitled Spermato genesis of Hybrid Cotton (in Bull. Torrey Bot. Club, 1903, xxx., 133–72.) The cotton hybrid experimented on was produced (so we are told) between Sea Island Cotton (Constellation brand) and Upland Cotton (Klonjikie brand)—G. barbadense × G. herbaceum and the hybrids were found fertile. It is, however, just possible that the plant spoken of as G. herbaceum should have been called G. hirsutum or G. mexicanum, for until about 1896 Uplands were by American authors mostly spoken of under the botanical name that more properly belongs to the Mediterranean stock. All furry-seeded cottons were often, in fact, regarded as one and the same species. It follows that to secure uniformity and precision in the laboratory and in the experimental farm, the foremost consideration must be the ascertaining of the species botanically that it is intended to investigate. Until such knowledge has been obtained it would be preferable to adopt some arbitrary nomenclature such as a numerical system, e.g. the "K3" of geographers, rather than to employ a misleading jargon of botanical names.

As a historic fact in Indian hybridisation it may be mentioned that in 1844 Mr. Alex. Burns of Broach crossed G. obtusifolium, var. Wightiana, with G. arboreum. He obtained a plant that had all the good points of both parents. The leaves were those of arboreum, only larger and more hairy, and the flowers were red with a yellow ring in the throat. This interesting new form, an undoubtedly hybrid, yielded its crop within a period of two months, much as in Broach deh, and the flowers was very silky. The Bombay Chamber of Commerce expressed the opinion that the cross was an exceedingly valuable one. No further information was, however, published regarding it, and the plant seems to have died out. The circumstance is mentioned to show that crosses are possible.

Under the orders of the Government of India much has been recently done to discover the soils suited for cotton generally, and many valuable experiments have been conducted with exotic forms. What would appear the foremost consideration has, however, until very recently been almost entirely neglected, namely the attempt to improve the indigenous or long acclimatised stocks. Royle, for example, repudiated with some warmth the opinion attributed to him, that the greatest attention should be given to the cotton of the country (Cult. and Comm. of Cotton in India, 1851, 544–5). For a good few years past I have uniformly urged, and I repeat that recommendation, namely, to make real progress it is imperative that an exhaustive and scientific investigation should be conducted—a sort of census taken—of the existing stocks, not only of India but of the world. The climatic and other causes which tend to preserve or destroy good or bad properties have to be thoroughly established. The influences of hybridisation have to be worked out on a scientific basis by testing the strength of strain, from this species or that, best suited to environment, the tendencies of cultivated forms recognised and systematic renewal of stock in each locality accepted as a solemn obligation.

A few years ago I drew attention to the establishment of steam ginning factories, all over India, as having created a new danger, namely degrading specialisation of stock. Nowadays the cultivators over a wide area carry the produce of these fields to these factories: all are mixed together, and seed returned to the cultivators that in many cases may be utterly unsuited to the fields on which it has to be grown. The specialisation of centuries of natural selection is thus being

GOSSYPIUM

IMPROVEMENT

OF STOCK

Tendencies of Variation.

Selection.

Spermatogenesis.

Indian Hybrids.

Improvement of Indigenous Stock.

Effect of Steam Gist.
GOSSYPIUM IMPROVEMENT OF STOCK

THE COTTON PLANT

rapidly effaced by this new phase of commercial production. It has been found useless to urge that the cultivators should reserve their own supplies of seed. They are too poor and too ignorant to do so, and, moreover, are only too frequently in the hands of the money-lenders. (See Ginning, pp. 611–12.)

Lastly another evil has crept gradually into the cotton traffic of India. England having adapted her machinery to the steadily improving staple of the United States, soon became unable to work up the short staples of India. But in Germany, Japan and India itself, special factories were built with the object of running for the lower-class goods and working up the world's supplies of short staple. The cultivators were accordingly told that they would get no more for a long than for a short staple. In every district there were both high-class and low-class staples. The former gave a lower yield, compensated for by a higher price. The new condition naturally dictated the universal substitution of the lower grades, and an agricultural degradation in consequence was carried across the country in a remarkably short space of time that may take a century to efface. An official correspondence dated July, 1903, contains a letter from one of the most influential European merchants of India, which puts the present position tersely by narrating the advantages of the belati or jari plant of the Central Provinces and Berar:—(a) It is an earlier crop, thus enabling the cultivator to get a quicker return; (b) it runs accordingly less risk of injury from early cold weather; (c) it is a harder plant, less liable to disease or to deterioration from rain; (d) it gives a larger weight of outturn of lint; (e) it comes into market cleaner than the other grades.

The feature of early ripening is most important. The annual cottons of India have often been spoken of as consisting of two kinds—those that take eight months to ripen, and those that reach maturity in about five months from sowing. The cottons found on a deep, moisture-retaining, black, loamy soil are of the first class. They are usually grown as pure crops, and the particular race met with is often remarkably uniform. The cottons of the second class occur on light soils; they are produced normally as mixed crops and manifest the greatest possible variability. The influence of rainfall, both quantity and season, is of vital importance. The vicinity of Bombay town and south of the Konkan, since it possesses double the rainfall of Broach, grows next to no cotton, even although the soil may be highly suitable. Localities, like much of South India, that have two rainy seasons possess two widely different cotton crops. It is very largely in adaptation to the conditions of soil and climate that certain cottons owe their superiority or the opposite. The substitution, for example, of inferior for superior grades has been primarily the result of the demand for that staple, but the change has to many cultivators been all the more acceptable that the plant required was in their locality hardier and less risky. Some twenty to thirty years ago the Central Provinces had a fair proportion of bani (superior cotton) relative to its jari (inferior cotton). To-day the crops are mainly jari. The former could be spun into yarns of 35's and even to 40's; the latter can rarely be used for more than counts up to 10's. The bani cottons were the once famed Ghats cottons, such as the Hinganghat of commerce. The jari has a very short staple, but is exceedingly hardy and prolific.

As manifesting the present position of cotton and its degeneration, as also some of the features of the programme of improvement that may be found impressively necessary, the following jottings regarding the famed Dacca cotton may be usefully set forth:—In view of the efforts presently being made to develop the industry of cotton cultivation in Bengal, it seems desirable that the opinions of the earliest writers be briefly indicated. Mr. Bebb, Commercial Resident of Dacca, furnished a reply to an inquiry made by the East India Company, and that reply is one of the earliest accounts of Dacca (in fact of Bengal) cotton. It is dated 1788, and speaks of the staple as "the finest cotton in the world, producing cloth of astonishing beauty and fineness." The plant is said to have been an annual, and to have afforded two crops in the year, in April and again in September. The first was the most esteemed and obtained the highest price, but was liable to failure from long drought or from violent storms, though moderate showers were highly beneficial. In the volume of Reports on Cotton, Silk and Indigo published by the East India Company in 1836, there is a report written by St. George Tucker in 1829 (Supply of Cotton from British India, 159–60) in which he discusses the superior cotton of Dacca. He calls it bairati koyra, the finest variety perhaps of the Eastern cottons. It is produced only in small quantity, in the districts north-west of Dacca, and is never exported. Its favourite
THE COTTON PLANT

of other parts of the country. This tendency of the fibre to swell in bleaching is the criterion by which the weavers judge of its quality, but whether it depends on any adherent property in the cotton itself, or on the water used in the bleaching is not known, though there is reason to believe that it is principally owing to the latter. The thread manufactured at Dumroy, which was reported by Mr. Bebb, the Commercial Resident, to swell the most, is found by the weavers at present to be equal to the thread of the best auranga or to swell the least if bleached in Dacca, but the reverse, as Mr. Bebb describes it, if the water of Dumroy be used in the process."

Lastly, Sen (Rept. Agri. Stat. Dacca, 1889, 52) also says: "The cultivation is not now done half so carefully as was the case at the time of Dr. Taylor. The field is prepared by two to four ploughings and as many harrowings. Furrows are then drawn a cubit apart, and in these furrows cotton seeds previously moistened with dung-water are dropped in thickly. When the plants come out they are thinned to a distance of a foot from one another." (See Cultivation in Bengal, p. 607.)

Improvement, when seriously contemplated, will have to be undertaken, not at a great central farm for all India, but district by district. The establishment of seed farms for the supply of specially improved indigenous stock—a subject I had the pleasure of recommending to the consideration of the Scientific Board of Advice at their first meeting—is at present earnestly engaging the attention of the agricultural experts of the Government of India. It may, therefore, suffice by way of concluding this brief sketch of the present position and knowledge regarding the possible methods and results of improvement of cotton stock, to recapitulate the main ideas. Improvement is possible by (a) Selection of seed, in adaptation to environment and trade requirements; (b) Hybridisation, an additional agency to attain these objects; (c) Acclimatisation of prized foreign stocks. All three methods are in India receiving consideration at present. For many of the cotton districts, selection from existing stocks seems the most hopeful method. It may be said, however, that in the discovery of absolutely new stocks, hybridisation is often of special value.

The Government of India have recently appointed an expert in charge of cotton experiments. The results so far attained in selection and crossing are admittedly of a tentative nature, but Gammie’s first report (Note on the Class. Ind. Cottons and Cross-breeding Exper., Poona Farm, 1901–2) manifests a useful start as accomplished. The endeavours of the Bombay Government to bring the vast tracts of Sind under Egyptian cotton through the supply of cheap canal water, would seem to have given much promise, and in the public press repeated mention has recently been made of the high prices realised for the cotton already produced. It may thus be confidently affirmed that there does not appear to be any sufficient reason for doubting the success likely to be attained in India than in other countries with the production of superior cottons. The only untoward anticipations centre around the willingness or ability of the Native cultivator to advance with the times. [Cf. R. J. Redding, Essential Steps in Securing an Early Crop of Cotton, in U.S. Dept. Agri. Farmer’s Bull., 1905, No. 217; Testing Cotton Seed, in Agri. Journ. Ind., 1906, i., pt. ii., 174; also Sly, Fumigation American Cotton Seed, etc., 1907, ii., pt. ii., 212.]

III. CULTIVATION IN INDIA.

1. BOMBAY AND SIND.—Watt, i.c. 134–7, 139–54.

Area and Production.—According to the official Agricultural Statistics, the total area under cotton for 1904–5 in the British districts was 3,605,985 acres. The most important localities were Khan-
GOSSEYPIUM CULTIVATION
Bombay

Kathiawar.

Area and Production in 1906-7.

Bombay Supply.

Local Consumption.

Supply.

Bombay Mills.

Sind.

Operations.

Agricultural Operations.—A full account of the method of cultivation in Bombay is given by Mollison, of which the following may be

597

desh, 1,201,673 acres; Dharwar, 581,950; Bijapur, 455,864; Ahmedabad, 340,602; Broach, 274,699; Sind, 218,050; Belgaum, 183,207; Ahmednagar, 79,626. The area of cotton in the Native States of the Bombay Presidency is an important factor in the Indian cotton supply. This came in 1904–5 to 2,570,985 acres. Kathiawar has usually one to two million acres, and Baroda half a million acres under the crop. The Native States and British districts together thus show the Bombay Presidency with a cotton area of 6,176,970 acres in 1904–5. The yield for the same year was 893,000 bales of 400 lb., or 3,189,285 cwt. The estimated area and yield for the following year were 6,108,900 acres, yielding 1,117,000 bales, in Bombay (including Native States); and 265,000 acres, yielding 79,000 bales, in Sind (including Native States), giving totals of 6,373,900 acres and 1,196,000 bales. The Final Memorandum for the year 1906–7 gives a total of 3,995,499 acres for the British districts, including Sind, and of 3,462,854 acres for the Native States, a grand total of 7,458,353 acres. This estimate is said to be 49.9 per cent. in excess of the average of the preceding ten years. The estimated yield during the same year is 824,052 bales in the British districts (including Sind), 1,071,243 bales in the Native States. The total is thus 1,995,295 bales, an increase of 132.9 per cent. on the yield of the preceding ten years.

Traffic.—In order to arrive at some tangible conception of the local and foreign interests in the cotton of this Presidency, it may be useful to analyse production and supply in the light of the official returns of trade by rail and river and by sea coastwise, from and into town and Presidency. The most interesting features are the supplies drawn by the town from Kathiawar, from the Presidency of Bombay itself, from Berar and from the Central Provinces. The adjustment arrived at shows the Presidency in 1905–6 to make a net export of 2,765,696 cwt., and assuming this to be drawn exclusively from local production (viz. in 1905–6, 1,117,000 bales or 3,989,285 cwt.), a balance of 1,223,589 cwt. would be the net supply retained by the Presidency. It is not, of course, necessarily the case that all the actual exports of a tract of country are drawn from its own production: an error exists in all such calculations which is eliminated by dealing with the whole of India, and for a number of years, not one year. It is useful, however, to ignore such errors and to analyse the figures as they stand. Accordingly, the port town of Bombay is shown to have imported by (internal transactions) rail and by sea coastwise, 10,583,652 cwt., and to have exported by these routes 261,070 cwt., thus showing a net import of 10,322,582 cwt., and, adding the foreign imports, viz. 158,888 cwt., a total net supply of 10,481,420 cwt. The foreign exports (external transactions) came to 5,289,691 cwt., and thus there remained 5,191,729 cwt. as the supply for the Bombay town mills, or, adding the Presidency surplus (viz. 1,223,589 cwt.), 6,415,318 cwt. are shown as having been available for the Presidency and town of Bombay for the year in question. The town of Karachi imports by rail and river approximately the amount which appears in her foreign exports, viz. in 1905–6, 709,257 cwt. In 1905–6 the total imports by rail and river came to 799,721 cwt., of which the Panjáb supplied 427,485 cwt., Sind almost as much, and the balance came from Rajputana and the United Provinces.
GOSSYPIUM
CULTIVATION
Bombay

THE COTTON PLANT

Seasons.

Manures.

Soils.

Associated Crops.

The crop thrives best on fairly deep black soil, with a rainfall of 30 to 40 inches, and it is grown entirely as a dry crop. The most suitable soil is the so-called "black cotton soil," which may be found in some parts to a depth of five feet or more as in Ahmedabad, Broach and Surat; but cotton also succeeds on much shallower soils.

Rotation.—Generally the crop is grown alone, but where the rainfall is heavy and the soil retentive as in Broach, rice in the same or in separate rows is often subordinate to it. Coriander, Sesamum, gram (Vicia sativa), and in some parts to a depth of five feet or more as in Ahmedabad, Broach and Surat; but cotton also succeeds on much shallower soils.

Associated Crops.

Rotation.—Generally the crop is grown alone, but where the rainfall is heavy and the soil retentive as in Broach, rice in the same or in separate rows is often subordinate to it. Coriander, Sesamum, gram (Vicia sativa), and in some parts to a depth of five feet or more as in Ahmedabad, Broach and Surat; but cotton also succeeds on much shallower soils.

Rotation.—Generally the crop is grown alone, but where the rainfall is heavy and the soil retentive as in Broach, rice in the same or in separate rows is often subordinate to it. Coriander, Sesamum, gram (Vicia sativa), and in some parts to a depth of five feet or more as in Ahmedabad, Broach and Surat; but cotton also succeeds on much shallower soils.

Rotation.—Generally the crop is grown alone, but where the rainfall is heavy and the soil retentive as in Broach, rice in the same or in separate rows is often subordinate to it. Coriander, Sesamum, gram (Vicia sativa), and in some parts to a depth of five feet or more as in Ahmedabad, Broach and Surat; but cotton also succeeds on much shallower soils.
DIFFERENT FORMS GROWN

Yield and Cost.—According to Mollison, the average outturn of seed and cotton together in the Presidency varies from about 300 lb. per acre in the Karnátak to as high as 446 lb. in some well-cultivated fields in Broach. The proportion of clean to seed cotton is on an average about one to three. The total cost of cultivation per acre in the Surat district he estimates at Rs. 21–13 annas.

Modifications on above System.—In Surat the average rainfall is slightly heavier than in Broach, but the soil is not so deep nor so dense, and there is less risk of seedlings being destroyed by rain. The rotation crops are mostly kharif, whereas in Broach they are rabi. Juar is the principal rotation crop, always with a subordinate mixture of white tuver. Rice is never sown with cotton in Surat.

The principal variation in cultivation in the Karnátak is due to the monsoons—the south-west between June and October, and the north-east between October and December. If sowing were to take place in June, as in other districts, the Dharwar crop would ripen in the middle of the north-east monsoon and the cotton be damaged by rain. To prevent this, sowing usually takes place in the latter part of August, and may be even extended to September. The seedlings are not thinned out to the same extent as in Broach and Surat, but are left comparatively close together.

In Khandesh two forms of cotton are grown, the one on black and the other on light-soil; they generally occupy the same field once in three years. The light-soil crop yields best with heavy rainfall, the black-soil crop with moderate rainfall. The seed rate is 10 to 12 lb. per acre and is sown, if possible, by June. Picking begins in October and is complete in December. In cotton-picking, care should be taken to avoid floss which is discoloured and damaged by boll-worm, as such obtains a poorer price and its presence lowers the average rate obtained.

In selecting seed for next crop, care should be taken to secure bolls from the largest, healthiest and most copiously fruiting plants. Seed should not be taken from plants on which any of the bolls are affected by boll-worm. As a further precaution against boll-worm, cotton seed should, before it is prepared for sowing, be steeped for five minutes in a ½ per cent. solution of copper sulphate and then dried in the sun. Disastrous effects on the cotton crop may be produced by sudden atmospheric disturbances. The most trying consequences are due to heavy rainfall, frequent changes of wind, cloudy weather and frost. An abstract from Mr. Walton’s History of Cotton in Bombay, detailing the various diseases caused by these conditions, is given in the Dictionary (iv., 70).

Exotic Cottons.—Except in the Karnátak, where an American cotton has been acclimatised, foreign cottons have failed to take any very prominent place. In this connection mention may be made of the attempts of the late Mr. Tata of Bombay to grow Egyptian cotton beyond the Ghats as a rabi crop in the eight months of dry weather that prevail between the monsoons. The result may be said to have been a failure. At Poona in 1900 two Egyptian cottons were tried. They had an unhealthy appearance from the first, many of the bolls dropped before they were ripe, and both together gave an average outturn of only 401 lb., lint and seed, per acre.

SIND.—Area and Production.—In the Final Memorandum for 1906–7
on cotton-growing in India, issued by the Government, the total area in Sind and its Native States was 245,549 acres. The method of cultivation in Sind differs considerably from that pursued in Bombay. The rainfall is excessively small, and the greater part of the cotton is cultivated by irrigation. An unfailling supply of water can be procured from the Indus. Two methods of cultivation are employed. By the first, frequent watering is necessary after sowing, and the seed is sown on ridges in holes 18 inches apart, after the surface has been inundated. By the second, no watering after sowing is required. The only care necessary is to keep the earth about the stems loose and free from weeds.

Seasons.—In Upper Sind the crop is sown at the end of February or beginning of March, or sometimes as late as May or even June. Picking ordinarily takes place in July to August. After picking, cattle are turned on to the fields to graze, but the roots are left for a second year. Farm-yard manure is used, about 12 maunds to the bigha. In other parts of Sind cotton is not cultivated till the canals fill in June, and the crop consequently is not picked till November or December.

Exotic Cottons.—Unlike Bombay, the experiments with Egyptian cottons would appear to have been successful. In a report on the experiments carried on at Dhoro Naro, dated August 30, 1904, Mr. F. Fletcher, then Deputy Director of Agriculture, said of ashmouni and abassi cottons that they yield a minimum of 1,500 lb. of seed-cotton per acre. The plants were irrigated every fifteen or twenty days, at the rate of about 380 cubic metres per acre. In his opinion the experiments so far conducted have sufficiently demonstrated that on perennially irrigated areas in Sind, the Egyptian cottons can be grown normally, and would presumably give even a large yield, but the proper time for sowing would be February or March, and not, as now practised, June to July. He further holds that over-irrigation is often practised on the Jamras. The report then concludes that if the whole of Sind were put under perennial irrigation (through a dam constructed at Bukker) the potentialities of the province for cotton-growing could not be surpassed even by the United States. Mr. Fletcher's experience in Egypt gives an importance to his utterance on the question of cotton-growing in Sind that carries it to a higher platform than the sanguine expectations of many previous writers on Indian cotton-growing. The area under Egyptian cotton at present is 1,500 acres, but if Mr. Fletcher's expectations are even partially realised the future may witness a greatly increased interest in this subject, much to the advantage of India. [Cf. Watt, l.c. 225-6.]

CProv. and Berar.

2. CENTRAL PROVINCES AND BERAR.—Watt, l.c. 131-4. — Area and Production.—On an average of the five years ending 1904-5 the tract under cotton represented 23.60 per cent. of the total cotton area in British India. In 1904-5 there were 1,492,323 acres in the Central
PRODUCTION AND YIELD

Provinces and 3,069,024 acres in Berar. The comparative importance of the various districts may be gathered from the returns for the year named:

Central Provinces—Wardha, 404,405 acres; Nagpur, 404,411; Nimar, 288,387; Chhindwara, 113,730; Berar—Amrāoti, 715,127; Akola, 743,268; Wun, 478,211; Buldana, 421,768; Basīm, 362,069; and Ellichpur, 348,591. The yield for the same year was 472,000 bales, or 1,692,857 cwt., in the Central Provinces; 755,000 bales, or 2,696,428 cwt., in Berar. The estimated area and yield for the year following were 1,586,000 acres and 347,000 bales in the Central Provinces; 3,197,900 acres and 483,000 bales in Berar; giving totals of 4,783,900 acres and 830,000 bales. The final forecast for 1906–7 shows the total area for both the Central Provinces and Berar at 4,852,087 acres, or an increase of 45 per cent. on the decennial average. The yield for the same year is estimated at 880,984 bales, an increase of about 8 per cent. on the previous year.

Traffic.—Since 1903–4 the figures of railborne traffic have been returned for the Central Provinces and Berar conjointly, consequently 1903–4 is the last year in which they can be discussed separately. The Berar railborne traffic in 1903–4 shows a large export and insignificant import. The net exports in 1903–4 came to 2,049,881 cwt., by far the major portion going to the town of Bombay, the balance to Bengal Province (practically none to Calcutta), Bombay Presidency, and the Central Provinces. A fairly large amount is usually shown exported in excess of local production, indicating possibly a considerable traffic by road that escapes registration. In the Central Provinces the net export amounted in 1903–4 to only 846,957 cwt., as compared with 2,049,881 cwt. in Berar. The difference is due chiefly to the large quantity the Central Provinces import, viz. 143,822 cwt. in 1903–4, far the largest part of which comes from Berar, Rajputana and Central India. Almost the whole of the exports go to the town of Bombay, an insignificant surplus going to the Presidency of Bombay and to Bengal. In 1905–6 the net exports from the Central Provinces and Berar together amounted to 4,229,617 cwt.

Agricultural Operations.—Rotation.—In Berar, tur (Cajanus indicus), in the proportion of one-tenth, is generally associated with the cotton crop, but in the villages to the south and above the Ghats, bajra (Pennisetum typhoides) and til (Sesamum indicum) sometimes replace it. Rotation is regarded as absolutely necessary. On light soils, cotton is usually rotated with juar only (Sorghum vulgare), but on the rich black soils of the plains, cotton, juar and a rabi crop are rotated alternately. A plurality of crops is generally grown in the third year, separate parts of the field being devoted to wheat, gram, linseed, or lakd (Lathyrus sativus), and these in their turn are also rotated. Preparatory ploughing is not carried out every year, as it is considered to impoverish the soil, unless manure be subsequently applied. The advantages of manure are thoroughly understood by the cultivators, but there is great difficulty in Berar in obtaining a supply. Poudrette is considered best, and cowdung comes next in order. Green soilling is sometimes, but very rarely, resorted to. Ploughing generally takes place in December or January, as soon as the crop of the year is removed. The fields are always cross-ploughed. Harrowing succeeds ploughing, and in the case of unploughed fields is the only preparatory operation.

Seed.—Sowing commences with the first fall of rain, in the early part of June. The seed of the previous year's crop is always used, and
considerable quantities. The imports come chiefly from Bengal, the United Provinces, the Central Provinces and Berar.

AGRICULTURAL OPERATIONS.—Rotation.—The soils are fertile though light. They fall under Middleton’s third class, which yields the Bengals of commerce. The plant is grown as a mixed crop, usually with ṭil, arhār (Cajanus indicus) and san (Crotalaria juncea), etc. The ground is prepared by ploughing and manuring. The seed is then sown broadcast in the month of April or June, and the land immediately after is lightly ploughed and later on again ploughed. Picking commences in October and is completed by the end of the year. The cost of cultivation has been estimated at Rs. 25 per acre. [Cf. J. Forbes Royle, Lc. 309-29; Medlicott, Lc. 1862, 243-58; Middleton, Rajputana Cotton, Lc. 16.]

4. MADRAS.—Watt, Lc. 128-31, 151.—Area and Production.—Madrass ordinarily grows about 14 per cent. of the cotton crop of British India, or 9.2 per cent. of the entire cotton area. In 1904-5 the total was 2,007,297 acres. The principal districts are usually the following (the figures denoting the acreages in 1904-5): Bellary, 408,388; Karnul, 268,067; Tinnevelly, 250,521; Coimbatore, 256,948; Guntur, 210,487; Anantapur, 171,051; Cuddapah, 127,854. The yield for the same year was 132,000 bales, or 471,428 cwt. The estimated area and yield for the following year were 1,634,000 acres and 148,000 bales (528,571 cwt.). The latest available figures for the year ending December 1906 show an estimated area (raiyatwadi) of 1,544,000 acres, with a yield for the same period of 151,000 bales.

Traffic.—The most noteworthy point regarding the trade of Madras in 1905-6 is the fact that the exports from the Presidency exceeded the outturn. The net export was 864,947 cwt., or 336,376 cwt. in excess of the outturn, which was drawn from beyond the Presidency. The Madras ports had a net import by rail of 932,336 cwt., and by sea coastwise of 10,195 cwt., thus giving a total import of 942,531 cwt. The foreign exports came to 800,479 cwt., and this left 142,052 cwt. as the supply of the Madras town mills.

AGRICULTURAL OPERATIONS.—Forms of Plant.—There are two forms of indigenous cotton usually grown in Madras, one depending on the south-west monsoon, the other on the north-east. The former is sown between May and July, the latter, between September and November. In Tinnevelly both are sown in the same season, October to November. In the Tamil districts these crops are known as uppan and nadam. The uppan crop is generally sown on black cotton soil, the nadam on red or gravelly soils. These produce the four commercial forms known as Tinnevelly, Westerns, Coconadas and Salems. Manure is seldom added, but cow dung or wood ashes may sometimes be lightly scattered over the ground; and if cattle are not permitted to browse on the fields, the leaves and twigs of the previous year often remain, and thus very possibly carry disease from one crop to another. Irrigation is seldom resorted to, and the raiyat has to depend for the successful growth of his crops on the periodical rains.

Rotation.—In exceptional cases cotton is grown continuously, but the general practice is to have a rotation. The principal rotation crops are kambū (Pennisetum typhoides) and várāgu (Panicum millaceum), sometimes also chōlam (Sorghum vulgare) and horse or Bengal gram. If the land is clean, three ploughings before sowing are ordinarily sufficient, but more may be necessary. The soil is ploughed in a drier condition than for grain crops.

Seed.—The seed, which has to be prepared as in other provinces, is generally sown broadcast, and as a rule the same stock is sown over and over again. The seed rate is about 10 lb. per acre. In some districts, however, it is drilled in parallel lines alternately with pulse. The seedlings appear between the third and seventh day. When they are three weeks old the plantation is hand-weeded, and the process repeated several times during growth. The plants begin to flower about the fourth and to ripen their fruit about the sixth month of their growth. In some cases this does not take place till the eighth month. In Tinnevelly, however, the first blooms appear in the third month after sowing and the first bolls open in the fourth month.

Crop.—The pods, as a rule, are not collected as they ripen, but are allowed...
to remain until the whole crop of the field is ready. The time of harvesting varies, according to the district and time of sowing, from January to August. The cotton crop in Madras seems to be specially liable to the attacks of numerous insects and fungal parasites. An ordinary crop of cotton (in form of seed-cotton) in Tinnevelly runs from 750 to 900 lb. per acre, while 500 lb. is stated to be a fair average when all sorts of soil are taken into consideration. The cost of cultivation varies considerably in different districts. In Anantapur it has been estimated at Rs. 2-13-2 per acre; in South Canara at Rs. 14 per acre. [Cf. Buchanan-Hamilton, *Journ. through Mysore*, etc., 1807, ii., 107-8, 221-4, 254, 313-4, 326-7, 450-1, 545; Royle, *I.c.* 464-537; Cassells, *I.c.* 362-3; J. Talboys Wheeler, *Handbook on Cotton Cult. in Madras Pres.*, 1862; Gribble, *Man. of Cuddapah Dist.*, 1875, 201-4; Nicholson, *Man. of Coimbatore*, 1887, 232-5; Cotton in Madras Pres., *Agric. Dept. Mad.*, *Bull.*, 1890, No. 9; S. Iyer, *Rept. on Growth of Cotton in Tinnevelly, Agric. Dept. Mad.*, *Bull.*, 1891, No. 19; Middleton, *I.c.* 7-9; *Rept. on Operations Agric. Dept. Mad.*, 1903-4, 5; *Madrass Weekly Mail*, Sept. 8, 1904, 248; Nov. 24, 1904; *Proc. Agric.-Hort. Soc. Mad.*, April-June 1905, 28-31, 36-7.]

MYSORE AND COORG.—Area and Production.—The area under cotton in 1904-5 was 71,000 acres and the yield 17,857 cwt., or 5,000 bales; in 1905-6, 76,000 acres with the same yield. The principal districts are Chitaldrug, Tumkur, Mysore and Shimoga. The final estimate for 1906-7 shows a total of 89,000 acres and a yield of 10,000 bales. In 1905-6 Mysore had a net export of 40,287 cwt., or 22,430 cwt. in excess of the estimated outfit. Almost all went to Bombay Province, while small quantities found their way to the Province of Madras, the Madras ports and the town of Bombay. The imports came from the Provinces of Bombay, Madras, and the town of Bombay.

Cotton is not an important crop, and there is little of an exceptional character to be recorded regarding either the plant grown or the methods of cultivation pursued, except that after giving a crop the plants are cut down close to the ground, and in a month after the succeeding rainy season they produce a second crop about twice as large as the first. This appears to be one of the few records in modern times of the pruning of cotton—Hove records, however, that in Gujarat the red-flowered plant was regularly pruned during his time (1787). The older writers on cotton frequently allude to the practice prevailing in the West Indies. [Cf. Watt, *I.c.* 94, 259, 286, 309, 322.] It is curious that it should have survived in Mysore, a country closely connected with one of the once famed red-flowered cottons. [Cf. Buchanan-Hamilton, *I.c.* 1807, i., 40, 203, 378-9, 411; iii., 325-4, 351; Lewis Rice, *Mysore Gaz.*, 1897, i., 125-6.]

5. **PANJÁB.—Area and Production.**—On an average of the five years ending 1904-5 the area under cotton in the Panjáb represented about 7.3 per cent. of the total area under cotton in British India. For 1903-4 the Panjáb area, including the North-West Frontier and Native States, was 1,747,000 acres and the yield 1,492,857 cwt., or 418,000 bales. The estimated area for the following year (1905-6) was 2,017,000 acres and the yield 205,000 bales, or 732,142 cwt. The final forecast for 1906-7 gives the area as 1,408,000 acres in the Panjáb and 61,000 acres in the North-West Frontier, a total of 1,469,000 acres and yield of 370,000 bales. The most extensive areas returned for 1904-5 were:—Lyallpur, 165,849, acres; Lahore, 142,621; Hisar, 96,862; Rohtak, 95,880; Gurgaon 92,859; Karnál, 75,008; Multan, 70,342; Gujránwála, 53,488; Sháhpur, 31,155; and Montgomery, 37,474. In the North-West Frontier, Peshawar, 19,658 acres.

Traffic.—The net exports from the Panjáb in 1905-6 amounted to
SIND SUPPLY

GOSSYPIUM

CULTIVATION

Panjab

568,307 cwt. As the outturn in the same year was 732,142 cwt., it thus exceeded the net export by 163,835 cwt. The largest quantity goes to the port town of Karachi, while considerable quantities also are consigned to the towns of Bombay and Calcutta. The imports come chiefly from the United Provinces. Delhi is the most important manufacturing centre in the province.

Soils, Manures, etc.—The soil of the Panjab is generally well suited to the cultivation of cotton, if irrigated or subject to inundation. All kinds of productive soils appear equally well adapted. Manure is frequently applied, and irrigation either by canals or wells is the general rule. In some of the eastern districts cotton is raised as an unirrigated crop, but nearly always in positions where the young plants can, if necessary, be watered from a neighbouring tank. The crop is generally mixed with others, of which the commonest are til, melons and pulses. Throughout the eastern districts it is the usual practice to sow

Ribesus cannabisinus in strips along the edge of the cotton fields, or in alternate rows with the crop. In the Central Panjab certain leguminous crops (species of Melilotus, Trigonella, etc.) are commonly sown with the cotton, as an after crop to be used as fodder for well-bullocks.

Seasons, Crop, etc.—The period of sowing varies in different parts of the province and is largely influenced by the rainfall and the race of plant grown, as also the altitude of locality. In Gurgaon from March to May it is sown near wells, or where there are other means of irrigation, and in June to July on rain lands as soon as the first showers break. In Shahpur and other districts sowings generally go on from the middle of February to the end of March, and in well-watered lands to April or May. The seed is sown broadcast at about the rate of 8 to 12 seers to the acre. The crop requires to be weeded and watered several times during growth. Picking takes place about November and December. The pods do not all ripen at once, and it is necessary to go over the field several times. Picking ought to be completed before January owing to the danger of loss from frost. It is difficult to give a precise statement as to the cost of cultivation. It differs considerably in some districts, and largely depends on the method of irrigation and the use or not of manure. On land both irrigated and manured, the highest figures quoted are in Jalandhar, Rs. 37–13–4 per acre; the lowest in Jhang, Rs. 10–0–9 per acre. [Cf. Royce, Loc. cit. 301–9; Medlicott, l.c. 218–28; 239–42; Stewart, P. B. Pl., 1869, 22; Dist. Gaz. Pl., 1890–1902; Sett. Rept. Jalandhar, 1892, 129–4; Middleton, l.c. 14–5.] Kashmir.—Lawrence (Valley of Kashmir, 1895, 340–1) gives the following account of cotton. It is found all over Kashmir up to certain elevations. Never less than three ploughings are given before sowing, and the clods are also pulverised by mallets. The seeds are soaked in water and mixed with ashes, but beyond this the plant receives no manure. Sowing takes place at the end of April and in May, and about 48 seers of seed are sown to the acre. It is cultivated only for home consumption. The outturn is generally stated to be about two maunds (164 lb.) per acre.

6. UNITED PROVINCES.—Area and Production.—On an average of the five years ending 1904–5, the cotton crop in these Provinces represents about 6½ per cent. of the total cotton area in British India. In 1904–5 the area, including Native States within provincial boundaries, was 1,201,000 acres. In Agra, the districts of Aligarh, 152,407 acres; Muttra, 146,981; Agra, 118,591; Bulundshahr, 109,570; Meerut, 76,866; Etawah, 61,090; Hamirpur, 52,629; Cawnpore, 52,363; and Banda, 43,591. In Oudh, the districts of Hardoi, 11,816; Unao, 10,776; and Lucknow, 2,579. The yield for the same year was 1,314,285 cwt., or 368,000 bales. For 1906–7 the total area for the Province was 1,372,000 acres and the outturn 394,000 bales, or 1,407,142 cwt., including the final estimate for 1906–7 gives an area of 1,489,000 acres and a yield of 638,000 bales. In connection with this subject an interesting article by Moreland, D.E.P., iv., 109–17. Agra and Oudh. Area and Production in 1906–7.
(Agri. Journ. Ind., 1906, i., pt. i., 37-43) on the conditions determining the area sown with cotton in the United Provinces should be consulted.

Traffic.—The net export trade of the United Provinces amounted in 1905-6 to 1,497,159 cwt., or 90,012 cwt. in excess of the outturn. The exports went chiefly to the ports of Bombay and Calcutta and to the Panjáb, small quantities also going to Bengal, Rajputana and Central India. The imports largely came from the Panjáb, Rajputana and Central India, while smaller quantities also came from the Central Provinces, Berar and the port of Bombay. The chief manufacturing centre is Cawnpore.

Soils, Rotation, etc.—The best grade of cotton soils in the Provinces are rich loams, which are either directly manured or reap some benefit from manure applied to a previous crop. Cotton is also grown on poor soils such as the calcareous tracts in the neighbourhood of the great rivers. At present cotton appears to have no definite place in the systems of cropping in vogue, which is said to be partly due to the uncertain distribution of rainfall and the consequent uncertain nature of the crop, partly to the low yield and the narrow margin of profit usually secured. Subbiah (*Cult. of Long-stapled Cottons at Cawnpore Exper. Station*, 1901, 28) suggests various rotations, none of which those interested should consult. On the better classes of soil the crop is generally grown alone, except where rows of arhar are sown at intervals of 5 to 7 yards, but on poor ground it is almost invariably associated with four or five subordinate crops, of which arhar and til are the chief. Subbiah recommends particularly in the cultivation of longer-stapled cottons on irrigable lands, a mixture of cotton and maize in alternate rows at a distance of 1½ to 2 feet. The seed is sown broadcast generally about the middle of June and then ploughed in. The seed rate is about 4 to 6 seers per acre. Irrigation is applied only to about one field in seven. Ficking commences about the beginning of October and is in progress from then till the end of January if not cut short by frost. If the plants are allowed to remain after January and are watered and hoed two or three times, a second gathering even better in quantity and quality may be obtained in May and June. On the richer classes of irrigated land Subbiah gives 140 to 250 lb. of clean fibre as an average outturn per acre for the rainy-weather crop, and about as much for the hot-weather crop, giving a total of 280 to 460 lb. of fibre. The cost of cultivation per acre as estimated by Duthie and Fuller amounts to Rs. 22-9, but by Subbiah at the Cawnpore Station from Rs. 61 to Rs. 73.

Exotic Cottons.—Subbiah's report deals mainly with the efforts made at the Cawnpore Experimental Farm to grow long-stapled American and Egyptian cottons. As a rule the American cottons did better than the Egyptian, since it was found the growing season was too short to allow the latter coming to maturity. It is, therefore, laid down that in introducing long-stapled cottons, it is essential that those be chosen which mature in their native habitat in about the same time that the local country cotton does. [Cf. Royle, *Cult. and Comm. Cotton in Ind.*, 1851, 282-301; Medlicott, *Cotton in the E. Ind. Colonies*, 1858, 215-228; *Exper. Farm Repts. Cawnpore*, 1890-1904; Middleton, *Cottons of United Prov.*, 15-6; Subbiah, *Cotton Acclimatized at Cawnpore*, in *Pioneer Mail*, March 17, 1899, 27; *Rep. Govt. Bot. Gard. Saharanpur*, 1904, 3-4.]

7. BENGAL.—**Area and Production.**—In the province of Bengal as now understood, the area under cotton represents only about 0-6 per cent. of the total area in India. In 1904-5 the estimated area and yield were 78,000 acres and 20,000 bales (71,428 cwt.); in 1905-6, 73,000 acres and 17,000 bales (60,714 cwt.); while the most recent estimate for 1906-7 forecasts the area at 76,477 acres (39,947 acres early cotton and 35,550 late) and the yield 16,030 bales (6,250 early and 9,780 late), or 57,250 cwt. The districts with largest areas are:—Saran, 14,400 acres; Sambalpur, 11,693; Talcher, 10,700; Singhbhum, 7,000; Manbhum, 5,100; Darbhanga, 3,792; Cuttack, 3,400; Murshidabad, 3,000, etc.

Traffic.—The trade returns for 1905-6 show that the Province of Bengal, exclusive of Calcutta, made a net import of 86,224 cwt. The
outturn for the same year was 60,714 cwt., so the total amount available for local purposes was 146,938 cwt. The town of Calcutta imported by rail and river and by sea (coastwise) 1,063,601 cwt. and exported 90,596, giving a net import of 973,005. By adding the foreign imports (2,331 cwt.) we get a total net import of 975,336 cwt. The foreign exports for the same year were 498,567 cwt., so that the amount available for the Calcutta mills was 474,769 cwt. Including the supply for the province (146,938 cwt.), a total of 645,505 cwt. met the local consumption.

Crops, Seasons, etc.—There are generally speaking two cotton crops in Bengal, the early, sown during the monsoon rains and harvested during the cold weather, and the late, sown at the close of the rainy season and harvested during the hot weather. Early cotton is grown chiefly in the Santal Parganas, Sambalpur, Manbhum, Singhbhum and Angul; late cotton in Saron, Muzaffarpur and Darbhanga.

It is not deemed necessary to detail the methods of cultivation or other such particulars, since the crop is hardly of sufficient value. In Saron (the largest cotton-growing district of Bengal) cotton is sown as a secondary crop, the seed being sown broadcasted. The so-called bhadoi cotton of Saron is sown in January and February and reaped in August; the bhasakh is sown in June and July and harvested in April. Maxwell-Lefroy (Notes on Cotton in Bihar, Bull. Agri. Res. Inst., Pusa, Feb. 1904) mentions three ways by which cotton cultivation might be improved—by drainage, growing with other crops, and sowing at another time of year. He considers the failure of cotton in Bihar as due largely to its inability to withstand the wet season, and the improvements he suggests have as their main object the lessening of the effects of the wet weather. He advises sowing in August to October instead of June as the young plants would not then have to struggle through the long rainy season, and the insect pests, which are worst in June, July and August, would not affect the crop seriously. In a note drawn up at the request of the Lieutenant-Governor of Bengal, Mollison (Ind. Pl. Gaz., March 12, 1904, 345) gives an account of recent experiments in Bihar, which the reader should consult; also the efforts made by Messrs. Shaw, Wallace & Co. of Calcutta to grow tree cottons in various parts of the province. Particulars of these latter experiments have been given by Syl (Proc. Govt. Ind. Dept. Rev. and Agri., March 1905.) [Cf. Royle, Cult. and Comm. of Cotton in India, 1851, 241–62; Grant, Rural Life in Bengal, 1860, 187–8; Hunter, Stat. Acc. Beng., 1877, xvi., 105, 342–3; Sen, Rept. Agri. Stat. Dacca, 1889, 51–2; Basu, Agri. Lohardaga, 1890, pt. i., 71–3; ii., 35–7; Banerjea, Agri. Outlook, 1893, 86–8; Middleton, i., 9–12; Banerjea, Monog. on Cotton Fabrics Beng., 1898; Mukerji, Handbook Ind. Agri., 1903; Natural Fert. available for Cotton in Ind., Dept. Rev. and Agri. Proc., May 1904; Ind. Pl. and Gard., Dec. 3, 1904; Feb. 18, 1905, 118–9; Capital, Jan. 14, 1904, 50.]

8. EASTERN BENGAL AND ASSAM.—Area and Production.—The area under cotton represents some 0.3 per cent. of the total under cotton in British India. In 1904–5 it was estimated at 50,000 acres and the yield 17,000 bales (60,714 cwt.); in 1905–6 at 61,000 acres with the same yield; while the latest forecast, namely for 1906–7, puts the area at 57,333 acres and the yield at 13,680 bales (48,857 cwt.). The Chittagong hill tracts are there shown to have an area of 26,636 acres; Garo hills, 23,000; Nowgong, 3,400; Sylhet, 2,060; Khasia and Jaintia hills, 1,000; while smaller areas are recorded in Cachar, Sibsagar, Goalpara, Jalpaiguri and Kamrup. [Cf. Montgomery Martin, Hist. Antiq., etc., E. Ind., 1838, iii., 665, 671, 686–8, 694; Hunter, Stat. Acc. Assam, 1879, i., 252; ii., 151, 191, 223–6, 288; Middleton, Assam Cottons, i., 18–20; Ann. Rep. Dept. Land Rec. and Agri. Assam, 1901–3, 22; Capital, May 18, 1904.]

9. BURMA.—Area and Production.—Burma produces about 0.9 per cent. of the total cotton crop of British India. The area for 1904–5 was estimated at 189,000 acres and the yield 139,285 cwt., or 39,000 bales.
GOSSYPIUM CULTIVATION
Burma

The relative importance of the chief localities in Upper Burma may be expressed by the returns of the year named:—Myingyan, 65,511 acres; Sagaing, 49,575; Meiktila, 36,161; Lower Chindwin, 13,672; and in Lower Burma, Thayetmyo (Lower Burma portion), 12,275. In the following year (1905-6) the estimated area and outturn were 183,000 acres and the yield 35,000 bales (125,000 cwt.); while for 1906-7 the estimates were 186,000 acres, with the same yield.

Traffic.—The trade returns for 1905-6 show that Burma had a net export of 39,225 cwt. The outturn for the same year was 125,000 cwt., so the net supply available for local consumption was 85,775 cwt. Almost all the exports went to Calcutta, but small quantities were also sent to Bombay port and to Pondicherry.

Crops, Seasons, etc.—The most suitable areas for cotton are found in the dry zone of Upper Burma. It is there cultivated on good and medium black cotton soil but is also found on inferior soils of a lighter colour. Burkhill (in a Report on Cotton in Burma dated March 25, 1904) states that cotton is grown on kain land (land periodically flooded by rivers), on taung yas (forest clearings), and on yu (high, dry land). On kain land the seed is sown in September after the floods have left the ground, but such cultivation is now rare. On forest clearings cotton is also said to be unimportant, as the land is more serviceable for other crops. The most important, therefore, is the third, viz. cotton grown on high, dry land.

Two kinds of cotton are in general cultivation, the annual (sea-gale), which is sown in April and May and yields from October to December, and a perennial, (sea-gyi) which is sown at the same season as the annual but continues on the fields for three years and yields annually in February or March. The annual is most extensively grown. Wa-gyi is a common crop in Minbu and Thayetmyo, but rare elsewhere. Manuring is general, farmyard manure being considered best. The yield per acre of seed-cotton Burkhill gives as follows:—on first-class soil, 73 viss (viss = 3·65 lb.); second-class soil, 42 viss; third-class soil, 32 viss. In 1901-2 the average yield per acre of clean cotton for the whole province was only 80 lb.; according to the figures discussed in the Dictionary (taken from reports by the Deputy Commissioner of Meiktila), the yield would appear to average from 125 to 250 viss an acre of seed-cotton. [Cf. Browne, Stat. and Hist. Acc. Thayetmyo, 1873, 87-8; Rept. on Settl. Oper. Meiktila Dist., 1896-8, 7-8; Arnold, Monog. on Cotton Fabrics and Cotton Indust. Burma, 1897, 16-8; Upper Burma Gaz., 1900, ii., pt. 1, 363; Rept. on Settl. Oper. Myinmar, 1899-1901, 32, 42; Mollison, Rept. on Cotton Cult. in Burma, Aug. 18, 1904; Rangoon Times, July 3, 1903; Syl, Cotton Cult. in Burma, in Agri. Jour. Ind., 1906, i., pt. iii., 253-4.]

IV. SOILS AND MANURES.—As already mentioned, Middleton (Agri. Ledg., 1895, No. 8, 117) classifies the Indian cotton soils into three well-marked sections:—(1) rich black clay soils, such as those of Surat and Broach, which produce the finest cottons; (2) soils like those of Kathiwar, Khandesh, Berar and the Central Provinces, that produce the second-grade cottons; and (3) a very large area, too sandy or with too small a rainfall to ripen the finer cottons—the source of the Bengalis of commerce. Bombay Presidency has soils and climates of all three grades, but it is much more favourably placed than other provinces, by having a larger proportion of both the first and second grade soils.

In his paper on Indian soils, Leather (Agri. Ledg., 1898, No. 2) makes four main heads:—the Indo-Gangetic alluvium; black cotton or regur; red soils lying on metamorphic formations (in Madras); and laterite soils. The first consists generally of a yellow-coloured alluvium, sometimes sandy, sometimes stiff clay. The only rocky particles larger than sand which this expanse of land contains is the nodular limestone, kankar. (For theory of formation, see p. 711.) Leather
states that in the samples he examined, the amount of phosphoric acid, though small, was more than in other Indian soils. The commonest form of red soil is a sandy clay coloured by iron peroxide. It may be derived from the rocks in situ or from the same products of decomposition washed by rain to lower levels. Laterite soils are simply soils lying on or adjacent to laterite rocks. The composition of both these classes, according to Leather's analyses, varies considerably, but, like other soils of India, both are deficient in phosphoric acid and nitrogen.

It is on the black cotton or regur soils that Indian cottons are generally grown. Typical regur areas are well represented in the Bombay and Madras Presidencies. The condition indicated may be described as a highly argillaceous, calcareous clay, very adhesive when wet, and from its absorbent nature expanding and again contracting to a remarkable extent. In consequence, during the hot weather, such soils become fissured in every direction by huge cracks, which in depth vary greatly. In some parts, for example at Akola, they have been reported as seen from 40 to 60 feet deep. Underlying the regur is a bed of yellow-white earth consisting of clay, lime and sand intimately mixed. It has generally been supposed that the black colour is due to an admixture of organic matter, but Leather is of opinion that this cannot be the case, but that it must be due to the presence of some mineral substance. He also holds that these soils are not inordinately fertile. In the matter of phosphoric acid and nitrogen they are very poor. The fact that they do produce crops liberally, he thinks, is due to their power of retaining moisture and to their contraction, which not only forms deep and wide fissures, but causes the surface to crumble to a powder, which, getting carried into the larger fissures, thus brings about a continual inversion of the soil.

As regards the manuring of cotton crops, it has been proved by experiment that cotton responds promptly and profitably to a judicious fertilisation. The following account is taken from the results of the experiments carried out by the United States Department of Agriculture. It may be stated in the first place that a complete fertiliser is needed for cotton, i.e. one containing soluble phosphoric acid, potash and nitrogen. Neither phosphoric acid nor potash give as good results separately as when combined. The most effective constituent is phosphoric acid, but nitrogen alone has little or no effect. The best form of nitrogenous manure appears to be cotton-seed meal and nitrate of soda. The proportions of the three constituents in a complete fertiliser should accordingly be approximately, nitrogen 1 part; potash 1 part; phosphoric acid 3 parts. The quantity used per acre varies widely with the nature and condition of the soil, but the maximum should be an amount yielding nitrogen 20 lb.; potash 20 lb.; phosphoric acid 70 lb. The profit from manuring cotton is much increased by antecedent proper preparation of the soil. Farmyard and similar bulky manures are said to be more efficient as soil-renovators than as specific fertilisers for cotton. The concentrated fertiliser should be applied in the drill, not broadcasted, at a depth of not more than 3 inches, and well mixed with the soil.
GOSSYPIUM DISEASES

THE COTTON PLANT

Diseases.

V. DISEASES AND PESTS.—While many writers make mention of a “deterioration” of the cotton plant as having taken place in India, remarkably little has been said of the actual diseases of the crop. Compared with tea or coffee, Indian cotton can hardly be said to be affected with disease further than failure of crops through unfavourable seasons. Maxwell-Lefroy, Entomologist to the Government of India, has, however, recently issued some useful and suggestive Notes on Cotton in Bihar (Bull. Agri. Res. Inst. Pusa, Feb. 1904) in which he gives brief accounts of some 14 pests met with in the cotton of that province, of which 3 are at present known in Bihar only and 11 are general to the cotton tracts of India. He groups these pests under four sections as follows:

(a) Insects attacking the leaves and seen chiefly up to September.—Under this series he places the following:—(1) hairy caterpillar; (2) cotton-leaf caterpillar; (3) the cotton bud-worm; (4) spotted boll-worm; (5) the white weevil; and (6) the cotton leaf-hopper. (b) Insects in the stem: (7) the stem-borer and (8) the stem-weevil. (c) Insects in the boll: (9) the spotted boll-worm and (10) the pink boll-worm; (11) the red cotton-bug; and (12) the dusky cotton-bug. (d) Miscellaneous: (13) the mealy bug; and (14) the large blister beetle.

He then concludes with a recommendation to destroy systematically all traces of the pests as they appear. In August and September a careful outlook should be kept for boll-worms, and all shoots or bolls showing signs of these should be destroyed. More recently Maxwell-Lefroy has issued a paper, entitled The Insect Pests of Cotton in India (Agri. Journ Ind., 1906, i., pt. i., 49–61; also Memoirs Dept. Agri. Ind., 1907, i., No. 2). This will be found to furnish fuller details of six of the more important of the pests, while a further note (The Pests of Introduced Cottons, 1907, ii., pt. iii., 283–5) furnishes a few particulars regarding the pests to which exotic cottons are liable.

Boll-worms.

Exotic Cottons.

The Cotton Mite.

A curious disease often present to a large extent in India is known to the Natives as gosai or tulsî (the Ocimum-like). The former name (the ascetic”) denotes the non-flowering and fruiting of badly affected plants, and the latter their colour and general appearance seen at a distance. The leaves, at first: large and exceptionally vigorous, ultimately curl up and become small, very numerous, and are then seen to be coated with a woolly formation known as Erinosis—a growth at first supposed to be of fungal origin but now definitely ascertained to be caused by a mite (Phytoptus gossypi). This perplexing pest is often very prevalent in Gujarat, as much as 5 to 10 per cent. of the bushes being thereby rendered more or less non-productive. It might be dealt with similarly to the treatment of Erinosis on the vine or other plants, namely by sulphur or kerosene emulsion. [Cf. G. F. Atkinson, Diseases, and L. O. Howard, Pests, in Dabney, The Cotton Plant, 1896, 279–350.]

Resistant.—O. F. Cook has written a highly interesting and most suggestive report on Weevil-resisting Adaptations of the Cotton Plant (U.S. Dept. Agri. Bull., 1906, No. 88). The form specially investigated is the kekchi cotton of Guatemala. This he describes as a dwarf annual short-season variety with numerous features which, in the absence of sufficient numbers of kelep (the so-called Guatemalan ant that kills the weevil), affords material assistance in protecting the crop against the ravages of that pest.
CLEANING AND GINNING

The plant in question matures very early and is more productive than might be expected. He classifies the protective developments into the following:—(1) those calculated to avoid the weevils by general habits of growth; (2) those which exclude the weevils or at least hinder their operations in the buds and bolls; (3) those which attract insect enemies such as the weevil-eating kelep; and (4) those which prevent the development of the weevil larvae even after the eggs have been laid.

VI. CLEANING, GINNING AND BALING, ETC.—The scientific officers who accompanied Alexander the Great and his successors to India described the cleaning, ginning, spinning and weaving of cotton in such detail that it is matter of great surprise that these operations took so much time and study to be fully accepted in Europe. There may be said to have been known in India from time immemorial two forms of gins, viz., the foot roller and the charka. The former is very little used nowadays, though specially applicable to some of the forms of hard-seeded cotton. The latter consists of two rollers of wood, or of iron made to revolve towards each other by hand labour, communicated by a crank or wheel. The seed-cotton is presented at one side against the rollers, the lint passes through, and the seed falls down in front. This is improved by modern contrivances and worked by water power or steam.

The word "gin" is an abbreviation of "engine" which began to have the meaning of machinery shortly after the discovery of steam. The use of that name in India usually denotes the employment of foreign machines for separating lint from seed. A special gin was, for example, invented by Whitney to remove the firmly adhering wool of *G. hirsutum*, and came to be known as the "saw-gin" because it consists of a series of blunt toothed circular saws made to revolve within the interstices of an iron bed which forms the base of a large hopper. The fibre is caught by the teeth and dragged through, leaving the seed behind. This was, however, found to injure the cotton and, moreover, was not necessary with the Sea Island and other cottons, where the lint separates readily. This led to MacCarthy's gin, now very extensively employed for long-stapled cottons. In this contrivance the seed-cotton is drawn in by a leather roller between a metal plate, known as the "doctor," which is fixed tangentially to the roller. A blade called the "beater" is so adjusted as to strike the cotton repeatedly and thus cause the seed to fall out.

It may be said, however, that no modern machine injures the lint and seed less than the Native charka—its one defect is its slowness, and therefore inaptitude for dealing with large quantities. To this fact is due a modern feature, and one of no small importance to the Indian.

GOSSYPIUM
COTTON-SEED

THE COTTON PLANT

cotton trade, namely the establishment all over the country of large public ginning and pressing mills, each situated in a convenient position to drain the produce of a tract of country within which it often has a monopoly. Naturally this has not proved an unalloyed blessing, though it has had some beneficial results. The cultivators hardly anywhere nowadays gin their own cotton, but carry the produce of their fields to the steam ginning mills. It has already been pointed out that widely different lints are in consequence inseparably mixed and ginned together, and moreover the cultivators are given, or purchase, mixed seed. This, it is believed, has rapidly equalised and lowered the Indian staple, thus rendering it imperative for the Government to organise some system of seed culture by which the special evolutions of centuries of cotton-growing may not be irretrievably lost, before the cultivators have learned the value of special selection and intelligent interchange of seed.

In the official statistics published by the Government of India for 1906 there is said to have been in 1904, 951 cotton ginning, cleaning and pressing mills that gave employment to 85,559 persons. *Thacker’s Directory for 1905* enumerates 75 pressing and 47 ginning mills as those of chief interest. These figures show the extent to which the ginning and pressing of cotton have assumed importance.

The necessity for economy in freights was one of the chief arguments that gave birth to cotton presses. But that consideration would seem to have engaged attention from the very earliest records of raw cotton being exported from India. The Rev. Philips Anderson has shown that as early as 1684 special presses were sent out from England to Surat. For many years the pressing and baling of cotton were done almost exclusively in Bombay; nowadays the pressing is done at the ginning factories.

VII. COTTON-SEED: AN ARTICLE OF CATTLE FOOD AND SOURCE OF OIL.—One of the modern aspects of the Indian traffic in oil-seeds may be said to be the sudden development of a foreign demand for cotton-seed, mainly in the United Kingdom. In 1898-9 the exports were returned at 37,000 cwt.; in 1899-1900 at 43,000 cwt.; in 1900-1 they suddenly advanced to 225,000 cwt.; in 1901-2 they increased tenfold, and became 2,036,000 cwt.; in 1902-3 they still advanced, viz. to 3,974,000 cwt.; in 1904-5 were 2,518,897 cwt.; in 1905-6, 3,891,339 cwt.; and in 1906-7, were 4,587,534 cwt. Thus, within five years, from being utterly insignificant the exports of cotton-seed sprang into the second place in quantity and the fourth in value of all the oil-seeds exported from India. This has very possibly been a consequence of the discovery of successful methods of hulling the seed, the decline of the American supply, or simply the extended use of cotton-seed oil as a material employed in the preparation of lard and margarine. But it is significant of India’s consumption of oils and oil materials that even the very large exports of 1902-3 and subsequent years represent but from 10 to 20 per cent. of the amount available. Mollison (Inspector-General)
of Agriculture) in a paper on cotton oil-seed (Agri. Ledg., 1903, No. 9), pointed out that the seed of the United Provinces is best suited for the oil trade.

Oil.—After the cotton (lint) has been removed, the seeds are often subjected to a treatment calculated to remove any still adhering particles of floss. The cleaned seeds are then cut through and decorticated. It is particularly necessary that this should be done, since the cake after expression of the oil is used as an article of cattle food, for which it is generally believed it would be unfit were the hulls attached. The quantity of oil usually present averages from 20 to 25 per cent. of the weight of seed. But the process of manufacture varies according to the purpose for which the oil is destined. The decorticated seeds are subjected to cold pressure, when from 10 to 12 per cent. of oil is obtained. This is of a fine quality, almost devoid of taste, and is accordingly largely used in cookery, being specially valued for frying purposes. It is often sold in mixture with olive oil or is employed as an adulterant for the cheaper grades of that oil, or pure cotton-seed oil is sold under the name of olive oil. It is also extensively utilised in the production of lard. The cake obtained from this cold expressed seed is next subjected to a further pressure, by the hot process, when an extra supply of oil is obtained up to 10 per cent. By other methods from 15 to 20 per cent. of oil is at once expressed by the hot process, from decorticated or undecorticated seed, and the cake allowed to carry the balance. It is, in fact, generally believed that the presence of a fair percentage of oil is essential, otherwise the cake is useless for cattle food. But it should be here added that very little cotton-seed is in India pressed for oil, though valued as a fertiliser.

The sp. gr. of refined cotton-seed oil varies from 0.922 to 0.924, its iodine absorption is from 105 to 109, and its saponification equivalent ranges from 245 to 294. It has a slight tendency to dry, and congeals at 32° to 45° F. By freezing the oil the glyceryl salts, which are solid at low temperatures, are separated and constitute cotton-seed stearin, an important ingredient of margarine. No information can be discovered as to the extent to which cotton-seed oil is prepared in India. A note by Burkhill records his having inspected in Burma a ginning factory and oil mill owned by Jamal Brothers. The cake prepared is exported and the oil refined. The husk is used as fuel.

Cake.—From fairly ancient records regarding the Indian cotton trade, mention is made of the seeds as a useful by-product, employed to fatten cattle. It is said that they do not at first like the seed but soon take to it very kindly, and may be given a daily ration of as much as 6 lb. In the Nagpur Experimental Farm, 2 seers of cotton-seed are given daily to bullocks in place of oil-cake. Nevertheless in many parts of the country the seed is not valued even up to the present day; in fact in India as a whole, the seed can hardly be described as anywhere used by the Natives in the production of oil. The self-same cultivators who grow the cotton plant will raise special oil-yielding crops, the oil of which in some respects may be even inferior to that of the cotton-seed which they entirely neglect. This may proceed from the very generally accepted belief that cotton-seed cake is less wholesome than the whole seed. Mr. R. W. Bingham, who specially investigated the Indian oil-yielding plants half a century ago, said that cotton-seed was more used as an article of cattle food than as an oil-producing seed, and that the seed was considered a better food for working bullocks than even grain. He then added that he did not think it would pay to export the seed since owing to the fibre adhering to it, and perhaps other causes, it is very liable to heat and deteriorate in bulk. The fact that there is to-day a large and prosperous export trade in Indian cotton-seed shows the often unexpected turn that discovery or necessity gives to the trade commodities of the world. In fact, in the Journal of the British Board of Agriculture, Voelcker shows that recent results are distinctly in favour of Bombay undecorticated cotton cake, as compared with Egyptian, especially when its lower price is borne in mind.

Various machines and processes for removing the fuzz from cotton-seed have been patented. Some burn off the velvet, others chemically destroy it, and still others mechanically brush it off. It is no doubt much desired to obtain an effectual and cheap removal of the fuzz, but meantime it is interesting to learn that undecorticated seed-cake finds a market. The chapter on Feeding Value of Cotton-seed by W. Kilgore (in Dabney, The Cotton Plant, 1891, 385-422) will be found to give full particulars on this subject. Other publications of interest are the summary of Dr. T. Thorpe's views (given in Journ. Board Agri., 1898, 205-8).
Hulls and Waste Stems.—Recently it has been found that the hulls or entire seeds may be utilized in the manufacture of a superior grade of writing paper. The stubble, after the cattle have devoured all the edible portions of the plants left on the removal of the lint crop, may be decorticated and a useful fibre thus obtained. It is stated that 5 tons of stubble give a ton of bark, and that a ton of bark yields 1,500 lb. of clean fibre that can be even used as a jute substitute. [Cf. Dabney, L. C.; Connell and Carson, Steer-feeding, in U.S. Dept. Agri. Exp. Rec., 1897-8, ix., 289; Lindsey, Holland and Jones, Cotton-seed for Mill Cows, 1898-9, x., 679-81; Brooks, Cotton, etc., 1898, 309-54; American Cotton Seed Indus., Board of Trade Journ., 1900, 637; Mallison, Textbook Ind., Agri., 1901, 1, 126-8; Munkerji, Handbook Ind. Agri., 1901, 288-90; Journ. Board Agri., June 1901, viii., No. 1, 41-3; Blount and Buxom, Chem. for Engin. and Manuf., 289; Mallison, Offic. Mem. on the Cotton Seed Oil Indus. and Estab. of Cotton Seed Oil Mills in Ind., Agri. ledg., 1903, No. 11; Burton, Cotton Seed Meal as Pigs' Feed, U.S. Dept. Agri. Exper. St. Repts., 1901-2, xii., 583, 881-2; 1903-4, xv., 392-3; Egyptian and Ind. Cotton-seed Cake, Journ. Board of Agri., 1904, xi., No. 5, 289-91; Rept. Exper. Farms Canada, 1905, 176; Gilechrist on Bombay Rough Cotton-cake, in Board of Trade Journ., 1905, 231; Fert. and Feeding Value of Sea Island Cotton Seed, in West Ind. Bull., 1905, v., No. 3, 223-32; Sly, Cotton Seed-oil Indus., Agri. Dept. Cent. Prov. Bull., No. 9; Hanausek, Micro. Tech. Prod. (Winton and Barber, transl.), 1907, 361-8.]

VIII. THE COTTON FIBRE.—The cotton fibre is a unicellular hair arising from the fibril layer of the seed-coat. If taken from the seed of a ripe but unopened pod, it will be found to be a straight, flattened, hollow tube, not quite cylindrical but thickest a little below the middle, tapered abruptly below and more gradually to the apex. With growth, the cell wall thickens, becomes thinnest along the centre and thickest towards what may be called the margins. In consequence of this unequal thickening, maturity is marked by the thinnest parts shrinking most and thus causing the cell to become spirally twisted on itself. The cotton cell may hence be spoken of as a fibril from 1/2 to 2 inches in length, twisted spirally. Wiesner (Die Rohst. des Pflanzenrs., 1903, ii., 240-1) gives a series of measurements to show that the broadest section generally falls a little below the middle. It is a noteworthy circumstance, and moreover one of practical importance, that the floss taken from a capsule always consists of fibres of various lengths. Allard (U.S. Dept. Agri. Bureau Pl. Indus. Bull., 1907, No. 111, 13-5) has shown that this is frequently a consequence of certain cells separating from the seeds and uniting with other cells, thus producing the apparent though not real greater length. This discovery may prove of great value. Average Indian floss does not come to three-quarters of an inch in length, while some varieties of Sea Island have a staple two inches long. Evan Leigh (The Science of Modern Cotton Spinning) gives the following measurements as representative of the lengths (maximum) of cotton staples:—New Orleans, 1-16 inch; Sea Island, 1-80 inch; Brazilian, 1-31 inch; Egyptian, 1-52 inch; Indian (indigenous), 1-02 inch; Upland American grown in India, 1-21 inch; Sea Island grown in India, 1-65 inch. [Cf. Watt, l.c., 1907, 25-51.]

Structurally, the cotton fibre consists of a wall of almost pure cellulose, lined by a delicate layer of protoplasm, which disappears early in the growth of the fibre as the secondary placed deposits increase and a central core of endochrome is formed—the colouring material of the cell. The wall constitutes from one-third to two-thirds of the diameter of the cell. Recently an exceedingly interesting discovery was made by H. de Mosenthal (Journ. Soc. Chem. Indus., March 31, 1904), namely that the cotton cell-wall consists of two layers, termed the outer and inner, which are pierced by minute pores, leading into the lumen of the fibre. These
PORES, HITHERTO UNOBSERVED, OFFER AN EXPLANATION OF THE WAY MOISTURE PENETRATES TO THE INTERIOR. AMONG THE Ripe Flosses OF EVERY GRADE IS OFTEN PRESENT A CERTAIN PERCENTAGE OF QUITE UNRIPE HAIRS. THESE ARE VERY THIN, HAVE WEAK CUTICLES, AND SHOW NO TWISTING; THEY ARE THE CAUSE OF MUCH DEPRECIATION, SINCE THEY CANNOT BE WORKED UP NOR DYED IN THE SAME MANNER AS FULLY FORMED FLOSSES. IN PRACTICAL WORK SUCH HAIRS ARE KNOWN AS “DEAD COTTON.” ACCORDING TO HANAUSEK (Tech. Mikroskopie, 1900, 5–8; ALSO WINTON AND BARBER, TRANSL., 1907, 58–68), DEAD COTTON IS COMMONEST IN COARSEST GRADES (LEVANTINE AND INDIAN) AND RAREST IN SEA ISLAND. [Cf. FLATTERS, THE COTTON PLANT, 1906, 59–92.]

WHEN IMMERSED IN A SOLUTION OF CASTIC SODA, COTTON FIBRE UNDERGOES AN IMPORTANT CHANGE. THE CELL-WALLS SWELL AND ACQUIRE SILKY GLOSS. COTTON SO TREATED IS KNOWN AS MERCERISED. THE PROCESS WAS INVENTED AND PATENTED IN 1851 BY JOHN MERCER, A LANCSHIRE CALICO-PRINTER. THE SWELLING OF THE FIBRE CAUSES A SHRINKAGE IN LENGTH, IT BECOMES MORE TRANSPARENT, GAINS IN STRENGTH AND WEIGHT, WHILE ITS CAPABILITY FOR TAKING UP CERTAIN DYES IS VASTLY INCREASED.

CHEMICALLY, THE MATURE FIBRE CONSISTS OF ALMOST PURE CELLULOSE WITH ABOUT 3 PER CENT. OF OTHER SUBSTANCES. THE MOST IMPORTANT OF THESE ARE COTTON WAX, FATTY AND PECTIC ACID, ENDOCHROMIC COLOURING MATTER, AND ALBUMINOUS SUBSTANCES. THE FIBRE IS INSOLUBLE IN WATER, ALCOHOL, ETHER, FIXED AND VOLATILE OILS OR VEGETABLE ACIDS, BUT SOLUBLE IN STRONG ALKALINE SOLUTIONS AND IS DECOMPOSED BY CONCENTRATED MINERAL ACIDS. CUPRAMMONIA CAUSES A COMPLETE DISORGANISATION OF THE CELLULOSE DEPOSITS.

[Cf. ROYLE, I.E., 1851, 122–6; BOLLEY, CHEM. TECHNOLOGIE DER SPINNFAHRN, 1867; BENNO NEISS, DIE BAUMWOLLFELSAPIEREREI, ETC., 1868; BOWMAN, STRUCT. OF COTTON FIBRE IN RELAT. TO TECH. APPLICAT., 1881, ALSO ED. 1905; HUGH MONIE, THE COTTON FIBRE, ITS STRUCTURE, ETC., 1890; MORRIS, CANTOR LECT. COMM. FIBRES, JOURNAL SOC. ARTS, MARCH–APRIL, 1895, 6–7; MCBRYDE, CHEM. OF COTTON, IN DABNEY, THE COTTON PLANT, ETC., 1896, 81–141; HANAUSEK, MERCER. UND DEFORMATION DER BAUMWOLLE, VIENNA, 1897; TORPHER, DICTIONARY APPLIED CHEMISTRY, 1898, I., 613; CROSS AND BEVAN, PAPER MAKING, 1906, 95–6; SEMLER, TROP. AGRIC., 1903, III., 497–502; HUBNER AND POPE, INFL. OF REAGENTS ON TENSILE STRENGTH OF COTTON YARN, IN JOURNAL SOC. CHEM. INDUSTRY, JAN. 31, 1903, XII., 70–9; CLAYTON BEADLE, FIBRE TESTS OF PAPER COTTON IN TECH., JUNE 1904, 567–74; JULY, 60–5; HILD, MERCER. OF COTTON, IN TEXT. JOURNAL, JUNE 15, 1905, 275–6; C. B. WILLIAMS, COTTON PLANT, N. CAROLINA DEPARTMENT AGRI. BULLETIN, 1906, XXXVI., NO. 9.]

IX. INDIAN MANUFACTURES.

THE COTTON MANUFACTURES OF INDIA MAY BE SAID TO BE REFERABLE TO THREE GROUPS:—1. INDIAN HAND-LOOM GOODS. 2. INDIAN POWER-LOOM GOODS. 3. FOREIGN POWER-LOOM GOODS.

THESE THREE HAVE TO BE CLEARLY BORNE IN MIND BOTH IN CONNECTION WITH THE PRESENT CHAPTER AND THAT ON TRADE. THE LATE SIR JAMES WESTLAND
said of India, and with some force, that "weaving is for the most part the pursuit of the bye-time of the persons who weave." That is doubtless the condition in many parts of the country to-day, but here and there centres of professional hand-loom weaving still exist where the village weaver holds an honoured position. He, in fact, turns out a fair portion of the dresses worn by the more conservative and orthodox members of the community. Increased prosperity of these hard-working and highly deserving craftsmen was entertained by some writers as likely to ensue when the repeal (in 1896) was announced of the tax on yarn, conjointly with the imposition of a countervailing duty on power-loom manufactures, both foreign and Indian. It was thought that all that need further be done, to restore and uphold the hand-loom industry, was to teach the Native weavers the use of the fly-shuttle and a few other such contrivances.

A century ago or more these very contrivances had in Europe been found quite useless in the contest with steam, but it was presumed conditions existed in India that raised the possibility of hand-loom improvement to a position of supreme importance. Hence it was urged, among other considerations, that "the hope of the hand-loom industry lies in the production of goods of a kind which cannot profitably be made by the power-loom, such as those compounded in an intricate fashion or made in a very complicated pattern. The fact that after a long struggle with the products of the mills, the hand-loom industry still survives, may be held to show that it has vitality to preserve it yet for many years." It would very possibly be nearer the truth to say that the hope of the hand-loom weaver lies in the restriction of his operations to lines that are too small to tempt the competition of the power-loom worker. It may, in fact, be safely affirmed that there is nothing either too fine in texture or too complicated in pattern for the power-loom manufacturer to produce. His advent on the field is alone restricted by the possibilities of profit. The finest Dacca muslins and the most intricate Kashmir shawls can be and have been produced by machinery cheaper than by hand labour. But there are markets eminently suited to the hand-weaver, such as the production of special saris and lungis of a particular shape and size that the powerloom producer does not successfully contest.

There is this also in favour of the hand-loom weaver—he can purchase the very best English spun yarn and produce a quality of fabric admittedly superior to the very best power-loom textiles ordinarily turned out by the Indian mills. But, let it be repeated, his safety lies in the goods he manufactures being of a fancy or special nature, meeting local markets known to him, rather than in regular commercial articles intended for large markets.

HAND-LOOM INDUSTRY.—It would occupy much time to review, however briefly, the chief centres of hand-loom production and the class of goods turned out. The figures given within brackets, in the enumeration that follows of the cotton-weaving centres of India, denote the number of steam-power mills in 1904. The square brackets show the provincial totals and the round brackets the district totals, while districts without figures have no power-loom mills. The districts most famed are:—PANJAB [8]—namely, Dera Ismail Khan, Multan, Shahpur, Kohat, Peshawar, Lahore (2), Amritsar (1), Delhi (3), Rohtak, Sialkot, Ludhiana, Gurdaspur, and Jallandhar. Thus 13 districts of the Panjāb are noted for their cotton manufactures, and three of these possess power-loom. Similarly, the UNITED PROVINCES [9]—Benares, Bulandshahr, Sikandrabad, Azamgarh, Lucknow, Cawnpore (4), Mirzapore (1), Allahgarh (1), Agra (3), Fyz-
bad, Rai Bareli and Rampur. CENTRAL PROVINCES [7]—Nagpur (2), Umrer, Bhandara, Burhanpur, Sambalpur, Chandua, Hinganghat (2), Jabalpur (1), Bulgaon (1), and Rajendra nagar (1). BERP (2)—Badnera (1), Akola (1), and Elliptic. RAJPUTANA AND CENTRAL INDIA [4]—Kota, Gwalior, Indore (1), Ujjain (1), Ajmir-Merwara (1), and Kishangarh (1). HYDERABAD [3]—Aurangabad (1), Hyderabad town (1), and Kalgur (1). BENGAL [10]—Calcutta (7), Howrah (3), Bardwan, Birbhum, Serampore, Nadia, Murshidabad, Jessore, Dinajpur, Rangpur, Bogra, Dacca, Tippera, Faridpur, Chittagong, Patna, Shahabad, Saran, Monghyr, Bhagalpur, Cuttack. ASSAM—Sibsagar and Manipur. BOMBAY [141]—Bombay City (84), Ahmedabad (32), Broach (4), Surat (3), Baroda (1), Veramgam (2), Wadhwian (1), Nadiad (1), Julgaon (1), Bhavnagar (1), Hubli (2), Solapur (3), Belgaum (2), Dharvar (1), Bijapur, Poona (2), Nasik, Thana Morari (1). SIND—Halwa, Narapur and Karaibi. MADRAS [17]—Madras town (4), Chingleput (Godavari), Nellore, Vizagapatam, Masulipatam, Salem, North Arcot (Arni), Coimbatore (1), Bellary (1), Tanjore, Madura (1), Pondicherry (5), Tinnevelly (2), Tuticorin (1), Calicut (1), and Travancore (1). MYSORE [2]—Bangalore (2) and Shimoga. BURMA—A domestic industry only.

Sites for Factories.—The selection of sites for steam-power factories has been governed mainly by three considerations:—(1) proximity to supply of raw cotton; (2) the existence of an indigenous industry and therefore of a community of professional weavers who might be drawn upon for labour; and (3) facilities of transport to important markets. As indicated by the figures in the above enumeration, the modern power-loom industry has followed very much in the path of the ancient hand-loom craft. The fine muslins of Dacca, Arni, Chanderi, Kota, Rohtak, Benares and other localities are still being manufactured. Many writers speak of Dacca muslins as being a product of past ages. So long ago as 1820 Mr. Walter Hamilton, one of the Company’s officials resident in Dacca, prophesied that with the decline and fall of the Delhi Court the loss of the fine muslins of Dacca might be expected, since the demand for these expensive fabrics very possibly would cease. But at the Delhi Durbar Exhibition of 1903 some remarkably fine muslins of Dacca were sold on behalf of the manufacturers—and these were very nearly as fine as the samples in the Calcutta Museum, which were procured in 1884 and made somewhere about that date. There is no very ancient sample of these muslins known anywhere, so that we have little by which to compare the famed ancient textiles with the modern productions. But the examples presently being turned out would measure 400’s or 450’s, while English power-loom machines are known to produce 600’s. Cotton yarns are said to be counts of 20’s, 30’s or 400’s, when not more than a like number of hanks of 840 yards go to the pound avoirdupois.

The point of interest in these Dacca muslins, however, lies in the fact that the hand spinners of Dacca are producing to-day yarns of a fineness that no machinery in the world could spin from the inferior staple which they use. Dr. Taylor wrote, in 1840, that the Dacca spinners failed to use the fine American cottons, and gave as their reason the fact that the English yarn swells on bleaching, while that of Dacca shrinks and becomes finer and stronger. It would thus appear that the European spinner, with all his beautiful machinery, may still have something to learn from the hand spinner, and that something might possibly lead to his being able to spin shorter staples than he at present considers indispensable. This hint seems worthy of careful investigation (see pp. 594–5, 607).

Special Indian Goods.—The artistic cottons produced in India are referable to two main heads—long cloths or damasks and muslins, plain or figured. The patterns are usually woven, not printed. When checked
they are in North India commonly termed kheses, to the South gibrins: when striped they are susis. The usual colours are dark red for Hindus, dark blue for Muhammadans, in both cases interwoven with white. The dhotis or dhotar is worn by men and is a piece of plain cloth generally having a coloured border and measuring about 5 yards in length and 1½ yards in breadth. It may be made locally or imported. The sari or woman's upper garment varies greatly according to the wealth, position, caste, etc., of the wearer as regards the material, quality or degree and nature of ornamentation. With finer materials it is usually a gauze, and is still very largely hand-loom work. The sari is, from an art point of view, perhaps the most picturesque of all Indian garments. The chadar or shawl is a sheet usually about three yards long and half as wide. It is worn by men, but by women of certain castes only. The pagri or lungi (turban) is a long narrow strip of cloth worn by men round the head or around the waist as a cummer-band (kamar-band). Mandelslo (Travels in Olearius, Hist. Muscovey, etc., 1662, 27, 83) discusses the cotton manufactures of Broitschia (Broach) and of the "comerbands" or girdles of silk and fine cotton.

Throughout India certain localities are famed for the quality, design, etc., of their kheses, gibrins, susis, dhotis, saris, chadars, pagris and lungis, etc. The merchant who may desire to open up a trade in manufacturing and supplying these special goods must ascertain the exact size and shape, the particular quality and colour in demand in each locality. The mere fact of offering a superior quality of goods is no inducement to trade. Few communities in the world are more conservative regarding their garments than are the various races and castes of India.

The figured or flowered muslins—jamdanis—are by far the most artistic of the cotton manufactures. These are literally cotton brocades, the patterns or flowers being formed by spools carrying special threads of cotton, silk, wool or gold, that are thrown by hand within the warp and thus become supplementary to the weft. The centres most famed for these artistic textiles are Dacca, Santipur, Chittagong, Tanda and Chanderi. The figured muslins of Calcutta and Lucknow are needle-embroidered (chicken) work.

STEAM-POWER MILLS: Spinning and Weaving.—The first cotton mill founded in India was at Fort Gloster (the Bowreah Cotton Mills Company, Ltd.), near Calcutta. This received its charter in 1818 as a cotton mill, a coffee plantation and a rum distillery. Some years later the first of the Bombay series was established, namely the Bombay Spinning and Weaving Company (1851), and ten years later there were a dozen mills and 338,000 spindles at work. In 1879 the number had increased to 58 mills and 1,500,000 spindles, giving employment to 39,537 persons; in 1886-7 there were 90 mills with 16,926 looms and 2,202,602 spindles; in 1896-7, 155 mills, 37,303 looms and 3,984,023 spindles; and in 1901-2, 194 mills, 41,815 looms and 4,992,249 spindles. Within the decade ending 1901-2 the number of looms had increased by 69 per cent., and of spindles by 52 per cent. The capital invested in the 194 mills has been published as Rs. 16,01,40,384 plus £650,000; in 1904-5 they had still further expanded, namely to 203 mills with a capital of Rs. 15,97,41,901 plus £1,067,245, and had 47,305 looms and 5,196,432 spindles. In the Moral and Material Progress of India (1905-6, 176) the following statement occurs:—"There were at the end of 1905-6 in British India and Native
States 204 cotton mills containing 52,300 looms and 5,293,800 spindles, and giving employment on an average to 212,700 persons every day. Of these, 104 were exclusively spinning mills, eight were exclusively weaving mills, and in the rest both spinning and weaving were carried on. The capital invested, including an estimate for ten companies worked by private proprietors, for which accurate returns are not available, was £10,690,000 (paid-up capital and debenture loans). The industry is located, as regards 70 per cent. of the mills, in the Bombay Presidency, while there are 19 mills in the territory of Native States and in French possessions in India. Between the years 1893 and 1900 the industry was depressed, profits being affected by the disturbances in exchange relations with the Far East which followed the closure of the Indian mints, by over-production, by plague, by poor crops, by famine and by the disturbances in China. Since 1901 there has, however, been a satisfactory improvement. The Indian mills give permanent employment to 186,271 weavers, besides occasional employment to large numbers of cultivators, carters, boatmen, etc., etc. By way of comparison, it may be stated that in 1904 there were 2,077 mills in Great Britain; 1,201 in the United States; 500 in Italy; 420 in France; 390 in Germany; 304 in Russia and Poland; 257 in Spain; 203 in India; 64 in Japan; and 22 in Canada—the grand total of the world, including all others not specified, being 6,014 cotton mills.

Wages of Indian Operatives in the Cotton Industry.—It would be impossible to furnish an average wage of all the employees in a mill that would be of any value, since the different classes of labour naturally command different wages. Still more impossible would it be to produce a figure or set of figures that could be regarded as applicable to the whole of India. The following returns taken from an actual statement given by the Government of India (in the publication known as Prices and Wages, 1906) are, however, highly instructive and indicate the average wages (piece-work and monthly wage, in Rs.) paid at the Manockjee Petit Mills of Bombay in January of each year from 1882 to 1906:—doffer, in 1882 Rs. 5, in 1906 Rs. 6.5; winder, in 1882 Rs. 5 to 7, in 1906 Rs. 6 to 9; rover, in 1882 Rs. 14 to 16, in 1906 Rs. 12 to 15; reeler, in 1882 Rs. 5 to 7, in 1906 Rs. 7.5 to 9; warper, in 1882 Rs. 15 to 17, in 1906 Rs. 12 to 20; weaver, in 1882 Rs. 14 to 20, in 1906 Rs. 12 to 30; jobber, in 1882 Rs. 35 to 45, in 1906 Rs. 30 to 50. These are only a few out of the many, but they are sufficiently representative to show the wide range of wages earned, and to indicate the immense importance of the industry to a locality like Bombay that can lay claim to 79,270 men, 28,412 women, 13,590 young persons, and 5,883 children, a total of 127,155, all earnings wages on the scale indicated (the special cases mentioned), manifesting the highest, the lowest, and the medium class earners.

Taxation.—Cotton goods imported into India were for many years subject to a duty of 5 per cent. This tax existed, for example, before the date of the Mutiny and was continued when the East India Company ceased to exist. It was raised to 10 per cent., then in 1864 reduced to 7½ per cent., and in 1875 to 5 per cent., with lower rates for twists and yarns. But, by a Resolution of the House of Commons, 1877, it was ruled that these duties, being protective, should, as early as possible, be repealed. Accordingly, in 1882, the Indian import tariff was practically abolished and no fresh duties were levied until 1894. In March of that year import duties were charged on most articles except cotton goods. The omission of cotton was vigorously opposed by the Indian manufacturers, and a few
months later the bill was accordingly amended and certain cotton imports were excised. The cotton goods and yarns imported into India are mainly of the finer qualities, whereas those manufactured in India (chiefly on account of the inferior quality of the local staple) are of the lower grades. But with the medium-class goods, the foreign supply overlapped the local production, and hence, with a view to take away the protective character of the customs duty, it was decided to impose an excise duty of 5 per cent. on the medium qualities of yarn produced in India. Technically this is expressed by saying that all Indian-produced yarns above 20’s were taxed. It was soon found, however, that this endeavour to equalise the burden of taxation on the two great competing sets of cotton manufacturers (Indian and Foreign) was not a success. In 1896 a further Act was accordingly passed by which cotton yarns were freed from taxation and a uniform duty of 3½ per cent. imposed on all woven goods imported into India or manufactured by Indian power-loom mills, the village hand-loom industry being exempted. In 1902, B. J. Padshah wrote a Memorandum on the Profits of the Cotton Industry in India and the Cotton Duties, to which the editor of The Times of India contributed an Introduction: these papers will richly reward perusal. They may be accepted as setting forth present Indian commercial opinion. Padshah hinges the whole of his critical and very able review on two conceptions that he endeavours to disprove, viz. "that the average profits of the Mill Industry are high": "that the Cotton Duties would be really paid by the consumer of cotton goods and not by the producer." The net duty collected on the goods manufactured by the Indian mills for the four years 1901–2 to 1904–5 was, 1901–2, Rs. 17,77,965; 1902–3, Rs. 18,91,010; 1903–4, Rs. 20,95,149; and 1904–5, Rs. 24,06,976.

X. INDIAN TRADE IN RAW COTTON AND COTTON MANUFACTURES, BOTH LOCAL AND FOREIGN.

RAW COTTON.—So much has already been said regarding the Indian Cotton Trade that this account may be fittingly drawn to a close by a few short paragraphs devoted to the more important sections under which transactions are ordinarily conducted. The total area (according to the Final Memorandum of the Commercial Intelligence Department for the year 1906–7) occupied by cotton was 14,918,000 acres in 1904–5, with
a crop of 3,826,000 bales; in the following year the corresponding figures were 21,072,000 acres and 3,426,000 bales; and for 1906-7 they are estimated at 22,344,000 acres with 4,908,000 bales. These are the actual returns, as also the estimates for all India (British and Native States). In 1904-5 the yield of the British districts alone came approximately to 3½ million bales, while the exports and mill consumption together came to 3,390,413 bales. In 1905-6 the Final General Memorandum estimates the yield in British districts only at about 2,244,000 bales, while the mill consumption is said to have been 2,025,733 bales and the exports approximately 2,000,000 bales. Going back to previous years, in 1903-4 the acreage was 18,042,781, the outturn 3,168,113 bales; the foreign exports were 7,931,075 cwt. (or 2,220,701 bales), thus leaving a balance (plus the produce of Native States) of 947,412 bales as available to meet local demands. But the scarcity of cotton in Europe, then prevalent, very possibly created a stronger demand for Indian cotton than can be regarded as normal. It may, therefore, be desirable to examine the returns of the year previous. In 1902-3 the crop was 16,581,046 acres, yielding 3,367,030 bales, and the exports to foreign countries 1,692,545 bales, thus leaving a balance to meet local demands of 1,674,485 bales, or exactly one-half the production. At the present day the hand-loom weavers rarely spin their own yarn, but purchase supplies either of the imported or of the Indian mill-spun yarn. It may thus be accepted that the balance of production over the demands of the Indian mills is available for the foreign markets.

Exports.—During the past seven years the following were the exports in cwt. and rupee values:—1900-1, 3,575,703 cwt. and Rs. 10,12,74,007; 1901-2, 5,700,014 cwt. and Rs. 4,42,60,933; 1902-3, 6,044,806 cwt. and Rs. 14,75,71,981; 1903-4, 7, 931,075 cwt. and Rs. 24,37,61,464; 1904-5, 5,657,743 cwt. and Rs. 17,43,46,872; 1905-6, 7,399,534 cwt. and Rs. 21,34,15,195; and 1906-7, 7,400,839 cwt. and Rs. 21,94,84,609. These figures thus show an average valuation of close on fifteen crores of rupees; and if we assume an equal valuation for the share of the crop retained (well under the mark), the total value of the cotton raised in India would not be far short of thirty crores, or say £20,000,000.

Low Grade.—Reference has already been made to the degeneration that has taken place in the staple grown in India. The cultivators have allowed themselves to be driven into the production of an inferior staple or they have deliberately selected to grow that class of cotton. If the manufacturer would pay no more for a long than for a short staple, the Indian cultivators naturally sought out the plant that could give them the highest and most profitable yield. It is not surprising, therefore, that within the past thirty years or so the fine long-stapled cottons of India—the cottons that at one time were much admired and found a ready sale in Europe—have gradually disappeared, and that inferior but highly productive, early ripening and hardy races have taken their places (or are rapidly doing so). But the change that has come over the cotton industry may be spoken of as a consequence of various influences. The Indian mills having at hand an inferior staple, concentrated their attention on low-count yarns and inferior piece goods. So successful were they that in a remarkably short time they closed the Indian doors to imported goods of that class. England, on the other
hand, went in for long-staple cottons in order to produce high-grade goods. She found these in the United States, and thus gradually closed her doors against the short-staple cottons of India. But that inferior yarns might come to be refused both in India and China seems never to have been contemplated, yet it may now be affirmed that the future prosperity of the Indian cotton industry will turn very largely on whether or not the Indian cultivator can produce cotton superior and cleaner to that presently grown. With better-grade cotton it may in all fairness be said that it can be but a question of time when the Indian mills will claim a steadily increasing proportion of the supply of higher-count goods not only to India but perhaps to the world.

MANUFACTURES.—Local Trade in Yarn.—The production of yarn by the Indian mills (British and Native) has progressed steadily, but not phenomenally. The output (including Native States) in 1895–6 came to 432 million lb.; in 1900–1 it fell to 352 million; in 1902–3 rose to 375 million; in 1904–5 stood at 578 million; and in 1905–6 at 655 million lb., with in addition 25 million lb. produced by the mills located in the Native States. Of the amount for 1904–5, Bombay Presidency claimed as its share 422 million lb., being followed by Bengal with 38 million, Madras, 30 million, the United Provinces, 27 million, the Panjab, 11 million, and lastly by the Native States with 22½ million lb. Of the total production in 1904–5 about 110 million lb. in the British districts and 4 million in the Native States were in higher counts, that is to say, qualities above 20's. This was about 10 million lb. in excess of 1903–4, and 43 million in excess of 1900–1. One of the most significant features of the modern traffic in Indian cotton manufactures is this increase of the output of the higher-count yarn, for which a fair amount of foreign raw cotton is being imported, and recently an increasing local production. In 1904–5, 192,544 cwt. of cotton were obtained from the United Kingdom, Germany, Egypt and the United States, etc., and in 1905–6 this supply stood at 161,476 cwt. The production of counts in 1904–5 was 51 million lb. in excess of that of 1899–1900. Attention has been drawn (in the Review of Trade) to the fact that the imports of high-count yarns have been almost in the inverse ratio to the expansion of the exports of Indian-produced yarns of that class (30's and over). By way of contrast with this prosperous Indian industry, it may be pointed out that the weight of twist and yarn imported in 1888–9 was 52½ million lb.; in 1898–9 it stood at 45½ million; in 1903–4 at only 28 million; though it rose again in 1905–6 to 45½ million lb.

Indian Yarn.—With regard to the exports of Indian twists and yarns, in 1876–7 these stood at close on 8 million lb., valued at 36½ lakhs of rupees; in 1903–4, at 252½ million lb., valued at about 9 crores of rupees (£6,000,000); in 1905–6 at 297½ million lb., valued at over 12 crores (£8,000,000); and in 1906–7 at 245½ million lb., valued at 10 crores (£6,931,021). Deducting these exports from the above-mentioned total production of yarn at the Indian mills, in 1903–4 there remained 30½ million lb. plus the foreign imports of, say, 28 million lb. of yarns, etc., as the amount to be worked up by the Indian power and hand looms; and in 1905–6 about 35½ million lb. plus the foreign imports, viz. 45½ million lb.

Piece Goods.—The woven goods produced by the Indian mills came to 95 million lb. in 1899–1900; 117 million lb. in 1902–3; 131 million lb. in 1903–4; 152 million lb. in 1904–5; and 156 million lb. in 1905–6, with in addition 7 million lb. turned out by mills in Native States. The
manufactures are mainly grey unbleached; to be more exact, an average of about 83 per cent. are of that nature (126 million lb. out of the total 156 in 1905–6). The proportion of higher-class goods varies in the different provinces; in 1903–4 Madras showed 64 per cent., the Central Provinces 28 per cent., and Bombay 17 per cent. of their manufactures as white and coloured goods, hosiery, etc. It seems probable that the grey goods represent about four yards to the lb. in weight, so that in 1902–3 approximately 386 million yards of grey goods were produced by the Indian mills, 435 million in 1903–4, 524 million in 1904–5, and 540 million yards in 1905–6; while approximately 80 million yards of coloured, etc., were produced in 1902–3, 100 million in 1903–4, 108 million in 1904–5, and 112 million in 1905–6. The goods turned out at the Indian mills are grey—described as chadars, dhutis (or dhotis), drills, jaconets, madapollams, mulls, printers, shirtings, sheetings (T-cloths). Finer goods—figured, coloured or miscellaneous goods and hosiery. Although the home market is likely for many years to be of primary importance to the Indian mills, the exports of Indian-woven cotton goods cannot be called unimportant. In 1903–4 the exports were valued at Rs. 1,63,07,648; in 1905–6 at Rs. 2,03,78,124 (= £1,358,541); and in 1906–7, Rs. 1,77,17,086 (= £1,181,139).

Foreign Trade.—Turning now to the imports from foreign countries—chiefly Great Britain—a traffic which constitutes nearly two-fifths of the whole imports taken by India. The trade in yarns, as already indicated, has declined. The piece goods are referred to the following chief groups:—Grey or Unbleached; White or Bleached; and Coloured, Printed or Dyed. India received in 1903–4, 1,085 million; in 1904–5, 1,210 million; in 1905–6, 1,348 million; and in 1906–7, 1,298 million yards of grey piece goods. In 1903–4, 466 million; in 1904–5, 584 million; in 1905–6, 572 million; and in 1906–7, 494 million yards of white goods. In 1903–4, 481 million; in 1904–5, 493 million; in 1905–6, 541 million; and in 1906–7, 524 million yards of coloured and printed cotton goods. These therefore totalled in 1903–4 to 2,032 million; in 1904–5 to 2,288 million; in 1905–6 to 2,463 million; and in 1906–7, 2,318 million yards; and the re-exports from these were in 1903–4, 66 million; in 1904–5, 63 million; in 1905–6, 67 million; and in 1906–7, 61 million yards, thus leaving in 1903–4, 1,966 million yards available for India; in 1904–5, 2,225 million; in 1905–6, 2,396 million; and in 1906–7, 2,257 million yards.

Adding together the estimates of grey and coloured goods given above as the production of the Indian mills, we obtain the following:—466 million yards in 1902–3; 535 million in 1903–4; 632 million in 1904–5; and 648 million in 1905–6. Deducting from these the exports to foreign countries, viz. 69 million yards in 1902–3, 75 million in 1903–4, 87 million in 1904–5, and 91 million in 1905–6, we arrive at 397, 460, 545 and 547 million yards respectively available for India; and adding these sums to the total imports also mentioned above, the grand totals become 2,448, 2,426, 2,833, and 3,016 million yards as the net Indian supplies for the years in question. This, in a population of 300 millions, allows each person to get about eight to ten yards per annum. It would thus seem that while the Indian mills are spinning very largely for China and other foreign markets, the looms are far more concerned with the home than with any foreign markets. Hence but for the exports of raw cotton and the existence of power-loom mills, the Indian area of cotton cultivation would be reduced.

Value of the Indian Mills.
to about one-quarter its present extent. That is to say, one-half the total production is exported raw and one-quarter in the form of yarn, thus leaving one-quarter to meet the existing local demands. The great feature of the future may be said to be the extent to which Indian manufactures of piece goods may curtail the imports from foreign countries, just as the production of yarn has most certainly curtailed imports of yarn from foreign countries into India.

GRAPHITE AND BLACKLEAD

D.E.P., vi., pt. i., 92–4.

Plumbago.

Production.

Uses.

D.E.P., iv., 177–84.

GREWIA, Linn.: Fl. Br. Ind., i., 383–93; Gamble, Man. Ind. Timbs., 1902, 108–12; Duthie, Fl. Upper Gang. Plain, 1903, 109–17; Prain, Beng. Pl., i., 281–4; Tiliaceae. A genus of plants which contains about 60 species, 12 only being trees, the rest shrubs or climbers. Of these 36 are natives of India.

Fibre.

The species of *Grewia* are of little economic importance apart from the fact that the inner bark of most species yields a fibre, used in the manufacture of ropes and sometimes of paper. Some have a tough and close-grained wood, recommended for purposes where elasticity and strength are required. According to the chief articles manufactured of these woods are bangle-poles, bows, axe and spear handles and the like. Dr. Bidie, in an article in *The Fishing Gazette*, 1897 (quoted in *Ind. For.*, 1897, xxiii., 148), remarks that the wood of three species, *G. oppositifolia*, *G. tiliifolia* and *G. restia*, should make excellent material for fishing-rods. The fruits of many of the species are edible. The most important are:—

G. asiatica, *G. chara*, the *phalsa, shukri, dahmali*, wild in Central and South India, cultivated elsewhere. *G. elascina*, *Royie*, the *dhaman*; indigenous and planted from Hazara and the Panjáb Salt Range to Sikkim at 3,000 to 6,000 feet. *G. oppositifolia*, *buxi*, the *bidal, pastuwanne*, etc.; North-West Himalaya, from the Indus to Nepal, ascending to 6,000 feet. *G. tiliifolia*, *tah.*, the *pharsa, khesa*, etc.; Sub-Himalayan tract from the Jumna to Nepal, ascending to 4,000 feet. *G. restia*, *wali*, the *dhamun, saupasa*, etc. Indigenous in the Sub-Himalayan tract from Dehra Dun to Assam; according to Gamble, common in *sld* and similar forests. [Cf. Pharmacog. Ind., 1890, i., 238; Dodge, Useful Fibre Pl. of the World, 1897, 187; Woodrow, Gard. Ind., 1898, 189; *Agri. Ledg.*, 1901, No. 9, 212; Firminger, Man. Gard. Ind., 1904, 288.]
GUZOTIA ABBYSSINICA, Cass.; Fl. Br. Ind., iii., 308; Woodrow, Gard. in Ind., 1899, 365; Mollison, Handbook Ind. Agri., 1901, iii., 101-2; Rec. Bot. Surv. Ind., 1902, ii., 91; iii., 229; Prain, Beng. Plants, 1903, i., 614; Cooke, Fl. Pres. Bomb., 1904, ii., 66; Composite. Niger Seed and Oil. The káld-til, súrgúja, rámtil, kérani, khúrdusi, úlisi, valentúli, húchchellu, gurellu, etc. A native of tropical Africa, but cultivated as an oil-seed here and there in most of the provinces of India.

It is a kharif crop, sown from June to August and harvested in November or December. Rough and rocky laterite or light sandy soil is generally chosen, and the preparation of the land is very simple. Two ploughings before sowing are sufficient, and manure is not necessary. The seed is drilled in rows 11 to 13 inches apart, and 4 to 6 lb. per acre is held to be a sufficient seed rate. It is more commonly grown alone, but is sometimes accompanied by a pulse-crop. In Bengal a considerable portion of land is under this crop, especially in Chota Nagpur Division, but unfortunately the Niger seed is returned in the Agricultural Statistics under the general heading of "Other Oil Seeds" of which there are usually 500,000 acres, with 150,000 of these in Chota Nagpur. The "Others" are over and above linseed, rapeseed, til, in such a fair proportion must be niger. In Madras linseed and til (sesamum) are separately returned, but a much larger area than both these put together is devoted to "Other Oil Seeds." In 1904-5 the "Others" came to 1,018,483 acres, of which 286,509 are in South Arcot; 111,594 in Anantapur; 92,461 in Cuddapah; 84,810 in Bellary; 71,351 in Kurnool; 56,730 in Trichinopoly; 51,909 in Tanjore; and 47,215 in North Arcot, with lesser areas in the other districts. It is impossible to discover the exact proportions of these areas devoted to niger, but they must be considerable.

In the United Provinces the acreage of "Other Oil Seeds" was in 1904-5, 113,731, and in the Central Provinces the corresponding figure was 314,716, of both of which a certain proportion would have been niger seed. Bombay is the only province that appears to give separate returns for the acreage of this oil seed. In 1905-6 (according to the Season and Crop Report) the total land used for it was 169,863 acres, of which Nasik had 68,940; Poona 22,843; Ahmednagar 14,764; Satara 16,026; Bijapur 7,960; and Ratnagiri 7,147 acres, etc.

Rice (Mysore Gaz., 1897, i., 123) gives an account of the niger seed in the various districts of Mysore, which the reader should consult.

When the crop is ripe it is cut near the root and stacked for eight days. It is then exposed for two or three days in the sun, then the seed beaten out with a stick and separated from fragments of the plant by a fan. The greater part is sold to the oil-makers for expression of the oil, the yield of which is about 35 per cent. of the weight of the seed. But the seed dries quickly and in England yields only about 16 gallons of oil per quarter of seed, while rape seed yields 30 gallons. The oil is pale yellow or orange in colour with little odour and sweet taste, more limpid than rapese oil, with a specific gravity of 0·924 to 0·928. In its drying properties it ranks between cotton and linseed oil. For making paints, lubricating and lighting, this oil is useful, and in many parts of India is employed in cookery and for anointing the body: it is also frequently used as an adulterant for more valuable oils. It is said to be useful in cases of fracture and dislocation of bones among cattle. The oil-cake is highly appreciated in some parts of the country as a cattle food. In the English market the value of the oil is about 37s. per quarter. The production of this oil crop has suffered in recent years, like that of most other oils, through the remarkable expansion of the traffic in kerosene and other mineral oils and the by-products of these illuminants and lubricants. [Cf. Basu, Agr. Lohardaga, 1890, pt. i., 70; Pharmacog. Ind., 1891, ii., 299-71; Agr. Ledg., 1895, No. 24, 502; Hurst, Lubricant. Oils, Fats, etc., 1896, 199; Agr. Ledg., 1896, No. 28, 280; 1899, No. 12, 121, 144; 1901, 364; Settl. Rept. Betul Dist. Cent. Prov., 1901, 31; Wright and Mitchell, Oils, Fats, etc., 1903, 497; Imp. Inst. Tech. Repts., 1903, 125; Agr. Ledg., 1903, No. 7, 171; Hanauske, Micro. Tech. Prod (Winton and Barber, transl.), 375.]

GUTTA-PERCHA.—Since Gutta-percha can hardly be characterised as an Indian product, it will be dealt with here very briefly. It is the commercial name for the inspissated milky sap of several plants of which nearly all (or at least all the important ones) belong to the natural
GUTTA-PERCHA

Trade

DISCOVERY AND UTILISATION

order SAPOTACEAE. The word "gutta-percha" is of Malayan origin: it signifies the gum or gutta or getah of the tree known as percha: according to some writers percha is also the ancient name of Sumatra, so that geta-percha would denote the gutta of Sumatra. And the true gum is to-day almost exclusively a Malayan product. As it reaches the market gutta-percha is, however, largely adulterated. There are high- and low-priced qualities as well as substances that more or less resemble gutta-percha, but which are adulterants rather than grades of gutta. The present article deals with both the pure gutta-percha and its substitutes.

Gutta-percha first definitely appeared in Europe in 1845, and the discovery soon thereafter of its varied utilisations caused an immense demand. Dr. W. Montgomerie read a paper on it before the Society of Arts, London, from which date it became a regular article of trade. It is extensively employed in coating telegraphic cables, owing to its being a perfect insulator, while it is able to withstand in a remarkable degree exposure to varying atmospheric conditions. It keeps good for ten years, if exposed to the open air: 20 years, if protected in tubes; but 20 years, when submerged, have no appreciable effect upon it. Under the action of light, heat and air it slowly oxidises, becomes converted into a brittle resin soluble in hot alcohol. Chemically gutta-percha is almost identical with India-rubber (which see, pp. 647-60). It differs physically, being tough and inelastic. Since the date gutta-percha was made known to Europe perhaps no substance has developed more rapidly, and with India-rubber its uses may be said to be so many and so important as to make these two substances perfectly indispensable to commerce.

Trade.—The immense demand has caused an extended inquiry all over the globe with the view of expanding the area of supply or of discovering useful substitutes. During the past seven years the imports of the United Kingdom alone have been:—1900, 126,059 cwt., £1,688,598; 1901, 88,438 cwt., £1,382,646; 1902, 83,889 cwt., £1,150,902; 1903, 46,411 cwt., £587,712; 1904, 27,288 cwt., £288,535; 1905, 45,434 cwt., £361,475; 1906, 58,271 cwt., £489,280. Of these quantities the Straits Settlements supplied from one-half to three-fourths of the total, but it would seem as if the supply from the Straits was decreasing while that from Venezuela, from British Guiana and from the Netherlands was expanding. It must not, however, be forgotten that a fairly large proportion of these imports are in gutta-percha substitutes, chiefly Balata. Burn-Murdock (Ind. For., 1905, xxxi., 309-20) has contributed useful particulars regarding the extraction, purification, properties, prices and traffic in gutta-percha, also a statement of the exports from Singapore from 1886 to 1903.

A feature of the gutta-percha trade in which India is much interested is the possibility of some method being discovered by which the milky juices of certain abundant plants might be transformed into useful substitutes. The following may be given as the gutta-percha-yielding plants, as also those that it would seem desirable should in future be experimented with as gutta substitutes:—

Abstonia scholastica, R. Br. (see p. 60); APOCYNACEA. The *chativan*; is believed to be the source of *guttapulei* of Singapore. Hooper (Rept. Labor. Ind. Mus., 1905-6, 29) found the latex to contain 45°1 insol., 41°8 resin and 13°1 ash. [Cf. *Manson, l.c.* 82.]

Bassia Mottleyana, De Vriese; SAPOTACEA. A tree of Malaccas and Borneo known as the *koham.* The milk of this tree is regarded as an inferior quality of gutta-percha. Hooper (l.c., 1905-6, 27) says three samples of the milk of *B. latifolia* from Hoshangabad showed on the average 48°9 gutta, 38°8 resin and 12°3 per cent. ash. It was light grey, plastic, but the yield per tree small. A sample from Timnevelly of *B. longifolia* afforded 22°6 gutta, 62°7 resin and 14°7 per cent. ash (see pp. 116-20).

Calotropis gigantea and C. procera, R. Br. (see pp. 205-6); ASCLEPIADACEA. The *madar* or *akanda*, abundant bushes all over India, have often been suggested as capable of affording a limitless quantity of milky sap. Whether that could be utilised profitably has not been definitely ascertained. Over the greater part of the Upper, Western and Central Provinces of India they cover many thousand square miles of waste land, and the utilisation of that herbage would be of infinite value to the people. [Cf. *Manson, l.c.* 87.]

Euphorbia nerifolia, *Linn.; EUPHORBIACEA* (see p. 530).

E. Royleana, Bull. (see p. 531).

E. Truncata, Linn. (see p. 531).

E. trignon, Haworth—the *katti-mandu*. This shrub yields the cement *kattivandu*, often spoken of in connection with South India and the Deccan. It was especially recommended by Sir Walter Elliot in 1851.

Mimusops Kauki, *Linn.; Pl. Br. Ind., iii., 549; SAPOTACEA.* Is closely allied to if distinct from *M. Balata, Gaertn.*, f.—a tree native in Guiana, Honduras and Brazil which affords a gum that is one of the best substitutes for gutta-percha (Jumelle, l.c., 1903, 493-517). No effort appears to have been made to discover whether any of the Indian species might similarly be of value. Other species are *M. Eleni, Linn.—*the Deccan to Malay Peninsula; *M. Roxburghiana, Wight—*South India; and *M. Becomandra, Roxb.—*Deccan and Ceylon. But Gamble (l.c. 117) says that neither *M. Eleni* nor *M. Kauki* are in India known to yield gutta-percha. [Cf. *Manson, l.c.* 78.]

Palmsium ellipticum, Engl., *Pflanzenr., iv., 135; Bassia elliptica, Dall.; Dicrhopus elliptica, Bentham., *Pl. Br. Ind.*, iii., 542; Palmsium, Brandis, Ind. Trees, 424-5; Manson, l.c., 1903, 437-85; SAPOTACEA. This is the *pauchari, pauchanta, kat illupei, pala illupei*, etc. A large tree of the Western Ghats from N. Kanara southwards. It affords an inferior grade of gutta-percha, which is collected by tapping the living trees. Gamble adds, "but although this substance can be utilised for waterproofing and cement it is not a complete substitute for the proper article."

P. Gutta, Burch, in *Ann. Jard. Buitz.*, 1855, v., 40; Dicrhopus Gutta, Bentham. & Hook., f., in *Gen. Pl.*, ii., 658; Gamble, l.c., 113-21. A tree of the Straits Settlements and Malay Archipelago, where it is known as *taban merch* (in Perak), *niato balam tembaga* (or *abang*) in Sumatra, and is the source of the finer grades of the gutta-percha of commerce. But there would appear to be many qualities of the gutta obtained from this plant, some of which are apparently the produce of distinct varieties, others the results of different methods of preparation, and

D.E.P.,

v., 252-3.

D.E.P.,

iii., 102-3.
HEMIDESMUS
INDICUS

THE INDIAN SARSAPARILLA

still others indicate varying degrees of adulteration. For example, the \textit{tabab merah} (according to Burn-Murdoch—the most recent writer) is \textit{P."oblongifolium}; tabab chaier is \textit{Palaquium sp.}; tabab puteh is \textit{P. putatatum} and tabab baik is \textit{P. sp.}. The \textit{tabab puteh} is much inferior to the others. On the other hand, while \textit{P. oblongifolium} does not differ, it is but a variety of \textit{P. Gutta}, still by certain writers it is held to be a distinct species and to yield the \textit{tabab outra} of Perak.

Gamble (\textit{Man. Ind. Timbs.}, 445) says, "The method of collection, usually employed by the Natives of the Malay Peninsula, is very simple but very wasteful. The tree is felled, and either the bark is stripped off altogether or rings are cut at intervals of about a foot. The sap that oozes out is then collected, put in a pot and boiled with a little water, which prevents its hardening afterwards when exposed to the air. It is then run into moulds. The trees usually chosen are those of about thirty to thirty-five years old, and each tree gives 2 to 3 lb. of gutta. Such a system is naturally a wasteful one, and if regularly continued without any arrangements for reproduction would probably lead to the exhaustion of the supply, so that it is satisfactory that French experts are said to have discovered that the gutta-percha can be obtained from the leaves without felling the tree. However this may be, there is little doubt of the value of the product, and that if it is to be regularly produced the tree must be grown in plantations and systematically worked."

\begin{itemize}
\item \textbf{Payena lucida}, A. DC.; \textit{Ieonandra polyandra}, Wight, \textit{Jc.}, t., 1889; \textit{Fl. Br. Ind.}, iii., 547; Gamble, \textit{Man. Ind. Timbs.}, 449; \textit{Sapotaceae}. The \textit{doko-kursa} of Cachar is an evergreen tree of Assam, Tenasserim, and the Straits Settlements. \textit{P. Malangayi}, Clarke, a tree of Penang and Malacca. Both these trees afford gutta-percha in the same manner, according to Malangay, abounds in that substance.
\end{itemize}

\section*{HEMIDESMUS INDICUS, Br.; Fl. Br. Ind., iv., 5; Prain, Beng. Plants, 1903, ii., 686; Cooke, Fl. Pres. Bomb., 1904, ii., 146; Asclepiadeæ. Indian (or country) Sarsaparilla; \textit{anantamul} (anante), magrabur, sugandi pūlā, nannari, upārsāra; śārid (Sansk.). A climbing plant of North India, from Banda to Oudh and Sikkim, and southward to Travancore and Ceylon.

The root has long been employed in Native medicine. García de Orta (1563, Coll., xiii.; also in Ball, \textit{Proc. Roy. Ir. Acad.}, 1890, 3rd. ser., i., 656) speaks of a thorny climber which resembles the pomegranate, from the wood, bark and root of which a drug is obtained. Ball regards that passage as possibly denoting \textit{Hemidesmus}, but is it not rather \textit{Smilax}? The root is supposed to possess properties allied to those of sarsaparilla, and from 1864 has been official in the British Pharmacopœia. It is prescribed usually in the form of syrup and is demulcent, alterative and diuretic. Sometimes the whole plant is pounded and a \textit{congee} made with rice, or an infusion prepared of the dried leaves. In Indian commerce \textit{anantamul} is found in the form of little bundles, which consist
MUSK MALLOW AND ROZELLE

of the entire roots of one or more plants, tied up with a portion of the stem. *Annanamul* costa 6 to 8 annas per lb., and in Europe appears to sell at 1s. 6d. to 2s. per lb. [Cf. Pharmacop. Ind., 1891, ii., 449-9; De Silva, Indig. Food Prod., Trop., Agrist., 1891-2, xi., 520-1; Waring, Bot. Med., 1897, 72-3; Dutt, Mat. Med. Hind., 1900, 195-6; Rept. Cent. Indig. Drugs Comm., 1901, i., 124, 153; Rec. Bot. Surv Ind. (many passages); White and Humphrey, Pharmacop., 1901, 224.]

HIBISCUS TILIACEUS

**HIBISCUS, Medik.: Fl. Br. Ind., i., 334-44; Cooke, Fl. Pres. Bomb., 1901, ii., 104-14; Duthie, Fl. Upper Gang. Plain, 1903, 87-93; Prain, Beng. Plants., i., 262-9; Wiesner, Die Rohst. des Pflanzenr., 1903, ii., 221-3; Malvaceae. A genus of herbs, shrubs or trees, which embraces about 150 species. Some 33 are indigenous to India and several others have been introduced and are now cultivated widely. Many are of considerable economic value, one an important vegetable, and another produces a fibre which is extensively used as a substitute both for hemp and jute. H. Abelmoschus, Linn.: Rec. Bot. Surv. Ind., iii., 178. The Musk Mallow, *mushh-dánda, kalkastari, kasturi-bhendi, lát kasturikã, etc.* A herbaceous bush, common throughout the hotter parts of India. It yields a fibre which occupies a high place among those of the jute type. The seeds afford an odoriferous principle employed in perfumery as a substitute for musk. In European trade they are known as *THINITA PALMARETTE.* By the Natives of Northern India they are employed medicinally. Their value varies from about 4d. to 1s. per lb. [Cf. Pharmacop. Ind., 1890, i., 209-10; Agr. Legd., 1896, No. 6, 29-31; 1898, No. 15, 505; Mukerji, Handbook Ind. Agrs., 1901, 329-30; Schimmel & Co., Semi.-Ann. Rep., Oct., 1902, 9.]

H. ficulnea, Linn.: Rec. Bot. Surv. Ind., iii., 28, 178. *The ban dhenras, jangli bhindi, kopasiga, dula, etc.* A prickly herbaceous annual, indigenous in the hotter parts of India, from the Panjab and Bengal to South India and Ceylon. The stem yields a long, glossy, white and strong fibre, useful for twine and light cording.

H. rosa-dinensis, Linn.: Woodrow, Man. of Gard., 1899, 179; Firiminger, Mon. Gard. Ind. (ed. Cavenham), 651; Rec. Bot. Surv. Ind., ii., 40, 84; iii., 179. *The Shoe Flower, jësus, juwa, joba, jësawanda, etc.* An ornamental shrub, native of China, but found in most gardens in the plains of India. The bark yields a fibre. The flowers are said to produce a purple dye, and are also used in native medicine. The roots are employed in Mysore in certain cattle diseases (Journ. Bomb. Nat. Hist. Soc., 1892-3, vi., 512-5).

H. Sabdariffa, Linn.: Woodrow, l.c. 183; Rec. Bot. Surv. Ind., ii., 40, 84; iii., 28, 179; Firiminger, l.c. 288. *The Rozelle or Red Sorrel of the West Indies, mesta, patra, lâl ambâri, kempute, etc.* A small elegant shrub, widely cultivated throughout the hotter parts of India and Ceylon. The seeds are sown about the end of May, and the plants put out in the ground at a distance of 4 feet from each other. The gathering may be made in November or December in Bengal, but rather earlier in the upper provinces. It seems to thrive best in the damp climate of Lower India and cannot be cultivated on the hills.

The stems yield a strong, silky fibre, the Rozelle Hemp of commerce, obtained by retting the twigs when in flower. The seeds are used in medicine, and have demulcent, diuretic and tonic properties. The fruit, or rather fleshy calyx, is a valuable antiscorbutic, largely eaten in the form of jellies, chutnies and other preserves. The leaves are eaten as salad and in native curries. [Cf. Pharmacop. Ind., i., 212; Dodge, Useful Fibre Plants of the World, 1897, 196; Imp. Inst. Tech. Repts., 1903, 96.]

H. tiliacus, Linn.: Gamble, *Mal. Ind. Timbs.,* 1902, 87; Rec. Bot. Surv. Ind., ii., 177, 245, 247, etc.; iii., 179. *The bôle, banni, bellLOSS. chelena, thinhas, etc.* A small tree or bush of the sea-coast forests and long tidal rivers all round India, Burma and Ceylon. It yields a fibre of fair quality, which can be readily separated and does not easily rot under water. In Bengal it is used for making rough ropes, in the Sundribans for cording, and in Ceylon for mats. Gamble remarks that it ought to be useful for paper. Manson (Ind. For., 1905, xxsti., 347-50) gives an account of experiments which have recently been made in Burma with this fibre as a jute substitute. He considers it would probably fetch about £12 per ton, if sent to market in the condition that jute usually

Musk Mallow.

Perfumery.

Price.

Fibre.

Shoe Flower.

Fibre.

Dye.

Rozelle.

Seasons.

Fibre.

Medicine.

Jelly.

Paper.

Jute Substitute.
HIBISCUS CANNABINUS
Deccan Hemp

H. cannabinus, Linn.; Roxburgh, Trans. Soc. Arts., 1804, 382;
1806, 152; also Coromandel Pl., ii., 190; Rec. Bot. Surv. Ind., i., 90, 194;
ii., 40, 84; iii., 179; Sprague, in Kew Bull., 1908. Deccan Hemp,
kanoff, ambari hemp, ambári, ambedi, pulu, mesta pát, dare kudrum, pátom,
sheria, pundi, gogu, sujjádo, etc. A small herbaceous shrub, indigenous in
Africa and introduced into India, now cultivated extensively for its fibre.

The cultivation, both as a crop and as a hedge plant, is largely carried
on in Bombay (especially the Deccan and Kárnákát), the Central Pro-
vinces and Madras. Elsewhere to a much smaller extent—Bengal, chiefly
Chota Nagpur; also here and there in the United Provinces and the Pan-
jáb. The Bombay statistical returns for 1905–6 show an area of 83,109
acres, with 16 acres in Sind, and an average of about 90,000 acres
annually. Rocky and laterite soils which are not suitable for jute are
well adapted for the cultivation of ambari. It grows best on the alluvial
soils of North Gujarat, but does also very well in medium black soils. It
is usually grown as a mere sprinkling among other crops, and the tillage
is the same as that of the crop with which it is associated, especially
bajra and juar. In October–November the plants should be uprooted.
Full-grown plants which have ripened their seed furnish stronger fibre than
if cut while in flower. The small bundles of stalks, when dry, are tied
into large bundles and steeped in water for some ten days. If the fibre is
separated in the cold weather, longer steeping is required. When removed
the bark and fibre readily peel off in strips from the root upwards. The
strips are then beaten with a stick and threshed in water till the clean fibre
is separated. It is bright and glossy, but coarse and harsh. The length
is 5 to 10 feet, and the breaking strain has been variously stated at
115 to 190 lb. Hanausek (Micro. Tech. Prod. (Winton and Barber,
transl.), 1907, 83) gives interesting particulars of the microscopic structure
of this fibre.

The Deccan hemp is spoken of as similar to jute, but very much
superior. In India a coarse sackcloth is made from it, though its chief
utilisation is for ropes and cordage. Coarse canvas is also manufactured
from it, and in Bengal it is employed for all purposes for which jute is
in demand, but being more durable it is used for fishing-nets and paper
manufacture. Ambári hemp is stated to be worth about 8 lb. per rupee,
but no statistics regarding the extent of the trade are available.

A few years ago a fibre appeared on the London market under
the name of Bimlipatam jute, which there seems little doubt was Deccan hemp.
Still more recently a new fibre from Rio de Janeiro has been much ad-
vertised under the name of Canhamo, and this has been shown by Sprague
to be obtained from an allied species, H. radiatus, Cav. (Fl. Br. Ind.,
I., 335). Thus for commercial purposes both the Bimlipatam jute and
the Canhamo hemp may be accepted as possessing the same properties as
the fibre of H. cannabinus.

The demand for Bimlipatam jute is stated to be yearly increasing,
and in 1903–4 the exports to London amounted in value to two lakhs of rupees.
On the London market it is worth from £11 to £12 12s. 6d. per ton.
BHINDI OR LADY'S FINGERS

Dunstan's chemical investigations into the properties of this fibre, published in the Imperial Institute Technical Reports, as also the further particulars afforded in The Agricultural Ledger, will be found useful and interesting. Apparently the samples of Bimlipatam jute were found of lower value than the best Bengal jute. In the subsequent investigations into this fibre it was found to be prepared on an extensive scale in a factory at Chittavalsa in Vizagapatam, as also exported from Bengal to some extent under the name of mesta pāt. Comparing a sample of true jute with an authenticated sample of Deccan hemp and a good average specimen of Bimlipatam jute, it was found that the percentage of cellulose was nearly the same in all three. The last two were superior to ordinary jute in the smaller loss in mercerising and the larger increase in weight on nitration. The reports therefore conclude that Bimlipatam jute (i.e. Deccan hemp) is deserving of attention.

The seeds yield a clear and limpid oil, and have been sent to England as an oil-seed. They are used in Poona as a cattle food, and the leaves are eaten as a VEGETABLE.

H. esculentus, Linn.; Rec. Bot. Surv. Ind., ii, 84; iii, 28, 178. The Edible Hibiscus, Lady's Fingers; ochro or okra, of the West Indies, bhindi, dhenas (or dheras), rāmturāi, bendekai, vendak-kay, youn-padi-st, tindiso, etc. A tall herb, cultivated throughout India and naturalised in all tropical countries. De Candolle regards it as of African origin.

It is largely cultivated by the Natives of India as a garden crop for the sake of its FRUIT. It should be sown from April to June in nurseries, and transplanted when about 3 inches high. Weeding should be done regularly all through the period of growth to keep the soil loose and open. As a field crop successful cultivation largely depends on rich manuring of the soil. Two varieties, an early and a late, are grown in Bombay, both being sown in June. The acre rate of seed varies from 5 to 10 lb. and the seed is sown at intervals of about a foot, on ridges three feet apart. The early variety bears fruits from about August to September, while the late does so from the end of September to November.

In Madras, the early crop is sown in the first week of March and gathered in the first week of July; the late crop is sown in the latter part of July and gathered in towards the end of December. The yield of fruit per acre varies from 5,000 to 6,000 lb. The cost of cultivation is said to average about Rs. 5 per acre, and the profit about Rs. 9. The bast yields a white FIBRE which is long, silky, strong and pliant, and composed of fine individual threads. The breaking strain is 79 pounds dry, and 95 wet. In colour and texture it resembles hemp, and is well adapted for making ropes, twine and sacking, while the residual portions might be utilised for paper-making. There are no statistics of trade in ochro fibre: it is apparently sold only as an adulterant of jute or of Lady's Fingers, or Ochro.

631
Hides, Skins, Leather and the Manufactures therefrom.—The term "Hides" denotes commercially the raw, dressed or tanned skins of full-grown cows, bullocks, buffaloes and horses, etc., while "Skins" is applied to those of calves, sheep, goats, deer and other wild animals. The term "Furs" is used for ornamental skins, with the hair or wool attached.

It may, perhaps, be as well to dispose of the least important group, namely, the "Furs." In addition to the skins of Deer and Antelopes, there are returned under "Furs" (D.E.P., iii., 458) some 70 different fancy or ornamental skins that are occasionally met with in trade. The following are some of the more important (mentioned in alphabetical sequence):—*Cynocephalus jubatus*, the Hunting Leopard; *Felis pardus*, the Leopard or Panther; *F. tigris*, the Tiger; *F. uncia*, the Snow Leopard; *Mustela*, two species, the Martens; *Putorius erminea*, the Ermine or Stoat; *Sciurus*, the Squirrels; *Vulpes*, the Foxes; and *Ursus*, the Bears, etc. It would seem that in India some of the smaller skins, such as dog-skins, snake and lizard skins, mole-skins, frog-skins and the like are utterly neglected, a consequence very possibly of the climate and the defective methods of curing presently practised.

RAW HIDES AND SKINS.—Supply.—Under Live Stock (pp. 732-52) will be found mention of the chief wild and domestic species and races of animals, the skins of which appear under Hides and Skins. It is not necessary to enumerate these again, but it may be useful to state once more that the live stock of India cannot be far short of a grand total of 220 millions, of which perhaps 40 per cent. die or are slaughtered annually. The annual average exports to foreign countries at all events were, for the five years ending 1903-4, Hides (raw and tanned) 12½ millions; Skins (raw and tanned) 37 millions, or 23 per cent. of the estimated total stock. But these returns take no cognisance of the hides and skins used up in India nor of the animals that die or are killed, but of which the hides and skins are not preserved.

Total Transactions.—It would not be far from correct to affirm that India's local manufactures in skins and leather are as valuable as her foreign trade in these commodities (raw and manufactured). In 1876-7 the total of the declared values of the imports and exports, taken together, was Rs. 3,13,77,912 (or say £2,091,800); in 1902-3 the corresponding figure was Rs. 9,27,48,853 (or say £6,183,257); and in 1903-4 the total traffic came (less the re-exports) to Rs. 9,71,04,548 (or say £6,500,000). If the idea of the internal trade being approximately as valuable as the foreign can be accepted as fairly correct, then during 1903-4 the total turnover of the industries here dealt with (exports plus consumption) would have been close on a valuation of £13,000,000. And later figures for 1906-7 show a considerable expansion, viz. to a total.
THE CHUMARS OR SKINNERS

(imports and exports, less re-exports) of Rs. 15,94,66,392 (or £10,631,093), and thus of an estimated total traffic of over twenty-one millions sterling.

Fluctuations.—But there are a few aspects of importance that had better be here indicated. For example, the trade in hides and skins, as also the craft in leather manufacture, are in the hands either of Muhammadans or of low-caste Hindus. They are, therefore, participated in by a comparatively small community. So again the workers in skins, hides and leather are in Northern India collectively designated chirmfarosh. Then there are two main classes of hides and skins:—hallait (slaughtered), murdari (dead). The former come from the slaughter-houses of the cities, the latter from the country. The chumars (the special caste of skinners) wander about all over the country, and make it their business to skin dead cattle. In seasons of scarcity and famine they reap a rich harvest, but it is often affirmed that they are unscrupulous and, when they do not obtain a sufficient supply, that they are not averse to systematically poisoning cattle. With them, in fact, cattle-poisoning is held to be a profession, and to have attained the position of a high art (see Abrus, p. 1). Moreover, it is believed that a large proportion of the cattle that perish in India die from preventable causes, such as neglect, drought and murrain. The loss to the country of a large percentage of its cattle far outweighs the total value of the traffic in skins and hides, so that the increasing exports in these articles are only too frequently the most certain indication of widespread suffering and loss. The traffic in hides and skins is accordingly subject to great fluctuations, concomitant with the vicissitudes of the seasons. The famine in Western India, during the years of 1899-1901, caused the traffic to become abnormally high, especially in untanned hides, but, due to the war in South Africa, the prices were at the same time preserved. The exports for each of those years were nearly double the normal traffic, but the demand was, nevertheless, brisk. The difficulty to procure capital—an ever-present cause of obstruction to all manufacturing enterprise in India—is doubly true of the leather trades. Religious objection assigns it a position of degradation and neglect. It became accordingly a monopoly within a restricted community, and thus not only suffers from want of capital but from the loss of invigorating competition and popular interest and favour.

FOREIGN TRADE.—The exports to foreign countries from the chief seaports of India are drawn from the provinces by rail, road and river, as also coastwise by sea. These may be analysed as follows:—

Railborne, etc. — Unfortunately a difficulty is at once presented, viz. the railborne and the coastwise transactions are recorded in cwt. It is thus next to impossible to obtain a factor by which to reduce these to numbers of hides as in the returns of foreign trade, since the goods vary so greatly according to species of animal, size and condition, nature of curing or tanning pursued, etc., etc. The figures as they stand are, however, relatively of value:—During 1906-7 the railways of India carried 2,517,787 cwt. of hides and skins (raw and tanned), the bulk being raw. Of that large amount 1,126,302 cwt. were conveyed to CALCUTTA and were drawn—from Bengal Provinces, 350,953 cwt.; from the United Provinces, 354,804 cwt.; from the Panjab, 103,855 cwt.; from the Central Provinces and Berar, 57,056 cwt.; from Madras, 13,974 cwt.; from E. Bengal and Assam, 232,036 cwt.; from Rajputana and Central India, 7,623 cwt.; and from Bombay, 4,816 cwt. The next most important receiving centres are the MADRAS PORTS, which, in the year in question, drew 520,856 cwt., namely from the Madras Presidency, 330,512 cwt.; Mysore, 38,398 cwt.; the Nizam's Territory, 44,951 cwt.; Bombay, 56,901 cwt.; Central Provinces, 633
HIDES AND SKINS

THE LEATHER INDUSTRIES

20,705 cwt.; Panjáb, 19,289 cwt.; and from the United Provinces, 5,441 cwt. Madras Presidency is third in importance with 217,674 cwt., derived chiefly from Mysore, 77,677 cwt.; from its own port towns, 61,434 cwt. from Bombay (5,518 cwt.); from the Nizam's Territory (29,968 cwt.); Bombay Port takes the fourth position with a supply of 149,048 cwt., derived chiefly from its own Presidency, 68,823 cwt.; Panjáb, 28,765 cwt.; United Provinces, 23,419 cwt.; Central Provinces, 13,272 cwt.; Madras, 5,462 cwt. Then comes Karachi with 139,107 cwt., derived mainly from the Panjáb, 100,404 cwt.; Sind, 37,385 cwt.; and from the United Provinces, 842 cwt. Lastly the Panjáb with a total supply of 113,973 cwt., derived chiefly from Rajputana and Central India, 32,978 cwt.; and from the United Provinces, 58,782 cwt. Looking at these figures from the point of view of exports, the Bengal Province supplies 351,794 cwt.; the United Provinces 464,376 cwt.; Madras 368,127 cwt.; the Panjáb 296,576 cwt.; Bombay 171,746 cwt.; Mysore 117,866 cwt.; Rajputana and Central India 118,613 cwt.; Central Provinces and Berar 122,774 cwt.; the Nizam's Territory 86,183 cwt.; Sind 54,559 cwt.; and E. Bengal and Assam 234,810 cwt. Thus, so far as the foreign trade is concerned, the supplies come mainly from Bengal and the United Provinces. Cawnpoor is the great emporium of leather production in India, and the supplies of hides and skins procured by the tanneries of that town must be very largely drawn from local supplies, seeing that the imports are comparatively unimportant. This fact necessarily raises the United Provinces into the position of greatest importance in the hides trade.

Coastwise.—Turning now to the coastwise transactions, it is ascertained that the total imports of raw hides do not normally exceed 25 to 30 thousand cwt., valued at 10½ lakhs of rupees; of raw skins about 15 thousand cwt., and valued at 7½ lakhs of rupees; and of dressed and tanned hides and skins about 6½ thousand cwt., valued at 6 lakhs of rupees.

Exports.

Raw.

In the Review of the Trade of India for 1904-5 it is shown that, according to the declared values, the prices of hides rose steadily during the preceding four years, the average price for 1904-5 being 11½ per cent. in excess of that for the previous year. The corresponding price of skins, on the other hand, fell 13½ per cent. The number of raw hides and skins exported collectively came to 31,606,246, valued at Rs. 7,05,35,585—the shares being 8,722,520 hides and 22,883,726 skins. The value of the raw hides exported from Calcutta was 84½ per cent. of the total trade. They were consigned to the Continent mainly, Germany taking 144½ lakhs; Italy 66 lakhs; Austria-Hungary 51½ lakhs; and Spain 29½ lakhs. This left 23 lakhs consigned to the United Kingdom, and 40½ lakhs to the United States. Calcutta also contributes 75½ per cent. of the total value of the foreign exports in dried and pickled skins. About the same percentage (in value) of the foreign exports is usually drawn from India by the United States. Of the balance, France claimed 29½ lakhs, and the United Kingdom 25½ lakhs. The demand in France seems to be increasing. The later Review for 1905-6 states that the price of hides continued to rise, the average price per cwt. increasing from Rs. 52-4-8 in 1904-5 to Rs. 55-7-0; while that of skins continued to fall, viz. from Rs. 91-1-6 per cwt. in 1904-5 to Rs. 90-7-1 per cwt. The number of hides and skins exported in 1906-7 collectively came to 39,806,281—the shares being 12,917,227 hides and 26,889,054 skins.

TANNED HIDES AND SKINS.—The most significant feature of the coastwise returns, abundantly confirmed by most statistical statements of the Indian trade in hides and skins, may be said to be the fact that Madras is by far the most important centre for dressed skins, and that Burma is the chief coastwise market for them. Recently, however, Bengal has begun to participate largely in this Burmese supply. After Burma, Bombay affords the next most important local outlet for Madras.
dressed skins. And this position of importance held by the Madras Presidency in the traffic in dressed and tanned skins and hides is still further borne out by a study of the foreign trade. During 1904-5 Madras furnished 91 per cent. of the dressed hides and 73 per cent. of the dressed skins, Bombay following with a fair proportion of the balance. The United States of America have hitherto been the most important market for Madras dressed skins. But within the past few years an unhappy new manifestation has appeared, namely a decline in the demand for Indian dressed skins. The export traffic in dressed goods has recently, in fact, fallen back, and the demand for Bengal raw skins advanced considerably. This is presumed to be a direct consequence of the cheaper and more efficient methods of tanning (especially that known as the chrome process) now largely practised in the United States. It points to the urgent necessity for Indian manufacturers to advance with the times or face the total loss of their trade. The tanner who pursues crude methods and continues to employ defective appliances can no longer hope his own against the cheapening process of scientific progress than the hand-loom cotton weaver can stem the tide of steam-power prosperity.

Exports.—The decline in the traffic in tanned hides and skins, established within recent years, calls pointedly for serious consideration. The so-called tanning of India, given to the hides and skins exported, was, and is at its best, so imperfect and unsatisfactory that retanning in the countries to which consigned was essential. But however crude it may be, the business is by no means an unimportant one, nor one for which an effort should not be made to save it from complete annihilation. In 1900-1 the exports of tanned hides were valued at Rs. 1,46,80,048, and of skins at Rs. 3,02,61,805, or collectively Rs. 4,49,41,853 (close on three million pounds sterling). The next year, 1901-2, the collective exports of tanned hides and skins were valued at Rs. 2,65,40,461; in 1902-3 they were Rs. 2,89,81,866; in 1903-4, Rs. 3,09,88,759; in 1904-5, Rs. 2,85,17,173, or approximately one-half the value of the traffic five years previously. Commenting on this somewhat significant state of affairs, Mr. J. E. O’Connor wrote, “This transference of the trade from tanned to untanned skins is likely to proceed in an accelerated degree, to the great loss and detriment of the trade in the Madras Presidency. But it must not hastily be concluded that in itself the contraction of this industry is a subject for regret. If the industry had been established on a sound economic basis, it would not and could not have suffered, for all the natural conditions are in its favour, including cheap and abundant supplies on the spot of skins and tanning substances and cheap labour. These advantages, however, were not effectively utilised, in consequence of the absence of capital, for tanning is essentially an industry in which the possession of large resources counts for much.” “The position, however, may be rectified without difficulty if capital is forthcoming; and if it is desired to prove that tanning is a profitable industry, it may be observed that where it has been undertaken in accordance with sound principle, as in the leading tanning establishments in Cawnpore and Bombay, it has been an extremely profitable and expanding business” (Anglo-Ind. Review, April 1903). The returns for 1905-6 show, however, that in the severe fluctuations to which the traffic is ever subject, the pendulum has once more begun to swing forward. The ex-
HIDES AND SKINS

ports recorded manifest a great improvement in tanned hides, amounting to an increase of 63–7 per cent. in quantity and 87–6 per cent. in value on the figures for 1904–5. The actual value of the hides exported in 1905–6 amounted to Rs. 1,54,80,070, and of the skins to Rs. 2,11,04,250, giving a total of Rs. 3,65,84,320; and in 1906–7, hides Rs. 1,72,96,337, and skins Rs. 2,72,16,204, or Rs. 4,45,12,541.

THE LEATHER INDUSTRIES

—Internal Industries.

Although the objection to taking life is held very strongly by Buddhists and to a less extent by Hindus, it has not seriously opposed the growth of a trade in leather and leather manufactures. From the most ancient times in India, furs, skins, and leather have been used, and apparently to much greater extent than is the case to-day. Speaking of the frontier of India, Stein (Ancient Khotan, 1907, 345 et seq.) describes in great detail the ancient records, correspondence, etc., written on leather and wood, which he discovered during the exploration of the Niya site, and some of which bear the date of the 3rd century A.D. “The finish given,” he says, “to the leather of these ancient documents indicates extensive practice in the preparation of the material.” Leather, when once prepared, was thus not objected to by the early Buddhists of Khotan, any more than are the leather straps of the sacred books used by the orthodox Brahmans of to-day, in Kashmir and India generally. Bookbinding in leather Stein regards as dating back to the Hindu period of Kashmir, and thus long anterior to the Muhammadan conquest. Many of the stucco statuary and fresco paintings of Ancient Khotan show personages riding on horses and camels, the saddles and trappings of which differ but little from those in use to-day; and the riders are often depicted wearing high boots of black leather richly embroidered in gold and silk. These circumstances may thus be accepted as indicative of an ancient knowledge in leather.

It is not contemplated to deal here in detail with the contrivances and materials of leather manufacture. The various provincial Governments of India have recently had prepared a series of publications entitled Monographs on the Tanning and Working in Leather. These, so far as they go, are admirable publications, and will be found to afford much useful information regarding the manufacture and utilisation of leather in India.

Leather.—It may very truly be said that no large industry has changed more rapidly and completely than that of leather. Every axiom of the craft and even the reputation of leather itself has changed completely, for artificial leather is now a regular commodity. But speaking figuratively, India may be said to be many years behind the times. From being an industry in which time and capital had to be locked up almost indefinitely, tanning may now be spoken of as characterised by a rapidity of production and a turnover hardly equalled by any other branch of manufacturing enterprise. From being essentially a craft for manual labour, every stage in the tanning of leather and the preparation from it of the most artistically finished boots and shoes are accomplished by complex and intricate machinery. And what is even more significant, the countries that have responded most energetically to the discoveries of science and of mechanical skill have usurped or are usurping the leather trade of the world. Instead of it being now found necessary to retain hides and skins for a protracted period, subject to the slow action of some vegetable tanning material, rapid chemical methods (by mineral salts,
or even aided by electricity) have been called into existence and accepted with avidity by the trade.

Chrome Process.—By the chrome process, for example, superior leather may be produced from the strongest buffalo hides in seven days, from cowhide in twenty-four hours, and from sheep and goat skins in six to eight hours; and these operations formerly took thirty days, or as much even as eighteen months. There are two methods of chrome tanning, viz. by one or by two vats. After the required submersion the hides or skins are removed from the drums and piled up on a table for twenty-four hours, so as to allow the tanning liquors to drain off slowly, while completing the tanning process. After this the felts are well washed in several changes of water and are then put into a solution of borax and water to neutralise any trace of acid. The neutralisation of the acid is a point that demands careful consideration. After further washing the leather is now ready to be dyed or fat liquored, according to the purpose for which intended.

A point of great moment is the circumstance that once dried, chrome leather can never again be sufficiently wetted to allow of treatment, so that the complete preparation for its final purpose must be undertaken almost immediately the hides or skins are taken from the vats. The half process pursued by many Madras tanners it would seem may have to be abandoned if they propose in the future to adopt chrome tanning. But the new process is neither expensive nor difficult, and with such improvements accomplished it is not difficult to understand why salted hides and skins are preferred to the more expensive half-tanned goods of Indian former trade. While the discoveries here briefly indicated and others too numerous to mention have proved of supreme moment to the leather trade of the rest of the world, the Native tanners of India have stood still and seen their interests being frittered away. Protracted immersion has for many years past been admitted as impossible in India. The superiority of European leather over that of India was accordingly freely acknowledged as a direct consequence of that circumstance. But now that scientific and effectual rapid methods have been designed and freely accepted in other countries, India alone stands aloof and speculates as to the obligation of Government to aid a decaying industry. With the few European manufacturers alone have the discoveries of the past twenty years assumed the position of guiding and controlling influences in internal reform and commercial advancement.

Imports of Leather.—But in spite of general backwardness the leather produced by some of the tanneries, especially those under European management, is in certain respects fully equal to the best imported article, and for rough wear the boots turned out by the Cawnpore factories are even superior (especially when the price is taken into consideration) to the corresponding imported goods. This view would seem to be supported by the fact that the imports of unwrought leather do not appear to be advancing at a rate commensurate with those of manufactured leathern goods. Thus the imports in 1900–1 stood at Rs. 5,55,911; in 1901–2 at Rs. 4,18,348; in 1902–3 at Rs. 6,61,480; in 1903–4 at Rs. 3,81,192; in 1904–5 at Rs. 3,72,167; in 1905–6 at Rs. 4,24,596; and in 1906–7, Rs. 5,04,407. If to these figures be added the value of the imports of saddlery and other goods (except boots and shoes), the grand totals became in 1903–4, Rs. 26,19,633; in 1905–6, Rs. 30,60,820; and in 1906–7, Rs. 32,58,681.
HIDES
AND SKINS

* THE LEATHER INDUSTRIES *

Tanneries.

Indian Tanneries.—Turning now to the statistics of tanneries in India, it may be said that in 1893 there were 44 tanneries that gave employment to 3,804 persons. Steadily these would appear to have increased until in 1902–3 it was ascertained that there were 202 tanneries and 6,200 employees. Of these tanneries, however, 183 were small concerns located in the Madras Presidency and concerned chiefly in the dressing of skins. In 1905–4 and subsequent years all the smaller works (those that gave employment to less than 25 persons) were excluded from consideration, and 43 tanneries were returned giving employment to 7,907 persons. In 1904–5 35 were returned, employing 5,981 persons. Of these 32 were in Madras (excluding the small skin-curing works). The tanneries of North India are six in number located in Cawnpore; four in Calcutta; three in Bombay; and one in Rajputana. The Cawnpore tanneries are by far the most important in all India. They produce superior leather, which is conveyed across the country and worked up by the local boot and shoe makers, saddlers, etc. The Cawnpore factories also turn out very superior boots and shoes, leather trunks, saddlery, etc., for which a large and growing market exists.

Local Tanning.

Indigenous Methods.—But here and there, in every town and village of India, skins may be seen tanned by certain classes of people. It is no uncommon sight to find the skins of animals filled with tanning materials and left suspended from the boughs of trees or from the beams of the verandahs of the dwelling houses, until the desired change has been accomplished in the skin. In other instances crude vats, each containing one or two skins, may be discovered near the leather workers’ houses. The provincial monographs will be found to contain highly instructive photographs, not only of such vats, but also descriptive details of many of the methods and contrivances of leather-curing practised in India. The tanned skins and hides produced in India by the indigenous tanneries are traded in all over the country and used up by the village workers. But the distinctly inferior nature of the leather so used may be illustrated by the fact that the articles produced rarely fetch much more than one-fourth the values of the corresponding articles made of imported Cawnpore (European factory) leather. So again, Indian leather, owing to its low textile strength, is unsuited for belted purposes or any necessity where strength is essential.

Tanning Materials.—India possesses an extensive series of very excellent tanning materials such as Acacia pods and bark (see pp. 6–7); Cutch (see pp. 9–13); Indian Sumach (see p. 913); the Tanner’s Cassia (see pp. 289–90); the Mangroves (see pp. 98, 293); Myrobolans (see pp. 1073–6); and many others. By these and such-like materials and by various methods and contrivances, hides and skins are extensively cured, tanned and curried and the leather worked up, in response to an immense though purely local demand. [Cf. Agri. Ledg., 1896, No. 9; Hooper, Rep. on Tanning Extracts, pub. by Inspector-General of Forests, Feb. 1898; Tanning-Producing Substances, Assist. Agri. Chemist to Govt. of India, 1901; Hooper, Ind. Tanning Materials, in Agri. Ledg., 1902, No. 1, also numerous analyses in the Annual Reports of the Indian Museum (Economic) Laboratory.]

Concluding Observations.—In technical works it is said there are three chief methods of tanning:—(1) with infusion of bark or other vegetable materials; (2) with mineral salts; (3) with tanning oils. After

638
IMPORTED BOOTS AND SHOES

being tanned the skins are subjected to further treatment and are finally spoken of as "dressed."

Hides are tanned principally for sole, belting and harness leather; calf-skins for uppers of boots (light leather) and bookbinding; sheepskins afford a variety of leathers; goat skins are glove skins, although lamb skins and deer skins afford good substitutes in glove-making. The thickest sole leathers are made from the cattle of the less cultivated countries, since artificial protection seems to tend to render the skin thinner. The cattle of the River Plate are the chief source of the heavy hides or butts Castration gives a more uniform hide, and these are much preferred. Hides of diseased animals are nearly always inferior, and moreover dangerous, as there would seem reason for believing that anthrax may be conveyed by imperfectly cured hides. Similarly the sheep most prized and most carefully produced as fleece-yielders afford very inferior skins. Hides may be preserved by being salted on the fleshy side or by being simply passed through a solution of arsenic and dried in the shade. This is the modern practice in India, especially at the yards of the large and important shippers.

BOOT AND SHOE TRADE.—The Imports of boots and shoes have for some years been increasing rapidly. In 1886–7 the supply was valued at Rs.11,31,238; in 1903–4 at Rs. 27,93,249; in 1905–6 at Rs. 34,45,418; and in 1906–7, Rs. 29,08,093. Of the most significant features of this trade is the expansion of American supply, which even in India has begun to be felt. The Indian market is thus one of growing importance, and this circumstance manifests the possibilities of the local industry, already well organised. Every village and town has its shoemakers. In the cities whole streets are often devoted to them, and one of the most surprising features of the trade is the very large number of Chinese men engaged in it. Native shoes are often elaborately embroidered and even jewelled. The places most famed for artistic shoes and leather work generally are in Bengal—Cuttaok, Patna and Sarn. In the United Provinces—Kanpur, Lucknow, Agra, Jhansi and Saharanpur. In the Panjab—Kohat, Rawalpindi, Peshawar, Dera Ghazi Khan and Hoshiarpur. In the Central Provinces—Chanda. In Rajputana—Jaipur and Bikanir. In Bombay—Surat, Ahmedabad, Poona, Ratnagiri and Hyderabad (Sind). In South India—Raichur, Salem, Trichinopoly, Madras and Mysore. These are the chief centres in the native trade, but, as already said, Cawnpore stands out pre-eminently as the commercial centre of the modern trade (European style) in boots, shoes, saddlery, trunks, etc. Lastly, it may be added that for the past ten years or so India has begun to export boots and shoes. In 1898–9 this traffic was valued at Rs.3,52,027; in 1902–3 at Rs.10,59,052; in 1905–6 at Rs. 4,88,640; and in 1906–7, Rs. 4,68,491. These exports go from Calcutta and Bombay and are consigned mainly to Natal, Cape Colony, Mauritius and Egypt, with smaller quantities to England, Russia, etc. Indian (or, to be more correct, Cawnpore) ammunition boots are now well known in trade.

Artistic Manufactures.—Belts, powder-flasks, saddlery, saddle-cloths, etc., are extensively produced all over the country, and in some cases the goods turned out are of superior quality and highly artistic. The "Frontier Belts" of Peshawar, Bannu, Kohat and Quetta are well known and in much demand over a large portion of India. Sambhar leather is also richly embroidered, and in the form of sheets, table-cloths, etc., is extensively used. The localities best known for the production of these are Gorakhpur in Oudh and Chanda in the Central Provinces. In the Karmal district of Madras leather mats are quaintly painted, and in many parts of Rajputana and Bombay leather is admirably stamped and engraved in bookbinding. The most noted centres for this art are Alwar and Ahmedabad. In Gujarat an industry has long existed in carving rhinoceros-hide shields. In some cases, instead of being carved the hide is so cured as to become almost transparent and of a pale amber colour. [Cf. Ind. Art at Delhi, 1903, 190–205; Hoey, Monuments and Monuments, N. Ind., 1889, 90–5; Blount and Bixam, Chem. for Engin. and Manuf., 1900, 367–95; Perkin, Yellow Colouring Matter in Text. Mat., Chem. Soc., 1900, 493–3; Monographs:—Grant, Leather Industr. Ph., 1891–2; Martin, Tanning and Working in Leather, Bombay, 1903; Walton, U. Proc., 1903; Hadi, Dyes and Dyeing in U. Proc., 1896, 58–61;
HORDEUM
VULGARE

THE BARLEY PLANT

Chandra, Beng., 1904; Trench, C. Proc., 1904; Chaterton, Madras, 1906; Colston, Burma, 1904; Josef Jetmar, Practice and Theory of Leather Making (Phelan and Hall, trans.), Jan. 1905; Lawrence, Valley of Kashmir, 1895, 379; Journ. Chem. Indist. (numerous articles), 1896, xv., to 1905, xxiv.; Board of Trade Journ., Oct. 1905; Arkell, Journ. Agri. Dept. Victoria, 1902, i., 196; Leather Trades Review; Boot and Shoe Journ.; Textile Journ., 1898, 84; also 1902; Hide and Leather Tech. Journ., since 1903 (these and other such technical publications have been consulted.)

HOLARRHENA ANTIDYSENTERICA, Wall.; Fl. Br. Ind., iii., 644; Gamble, Man. Ind. Timbs., 484-5; Prain, Beng. Pl., ii., 674; Cooke, Fl. Pres. Bomb., 1904, ii., 133. Apocynaceae. Kurchi or Conessi Bark, kara, kurra, kuda, karchi, kihar, koyar, kachri, dhowura, doula, vapali, pala, littok kyi, etc., etc. A small deciduous tree, found throughout India and Burma, ascending the lower Himalaya to 3,500 feet, and to a similar altitude on the hills of South India. It is an associate of sāl (Shorea robusta) in Northern and Central India, and of eng (Dipterocarpus tuberculatus) in Burma.

Both bark and seed of this plant are among the most important Medicines of the Hindu Materia Medica. Garcial de Orta, who wrote in 1563 (Coll. xxviii.; Chirurgia), wrote of it, 1655, 227; also in Ball, Proc. Roy. Ir. Acad. (ser. 3), i., 412, speaks of this as being called by the Portuguese herba Malabarica owing to its great merit in the treatment of dysentery having been made known through the people of Malabar. In The Bower Manuscript (Hoernle, transl.) repeated mention is made of the drug (kutasja or watsuka, the bark, and kalinga, the seeds), as also of Pierorhiza Kurroa (kutuka, rohini, kutabakhini, etc.), both of which seem to be regarded as having very similar properties. The preparation, generally in the form of a solid or liquid extract or of a decoction, is astringent, anti-dysenteric and anthelmintic. The bark of an allied plant, Wrightia tiliifolia (see pp. 1131-2), has been confused with and substituted for the true kurchi, and thus led to the latter having fallen somewhat into disrepute. The bark of Wrightia may be distinguished from true conessi bark by its darker colour and by its not exfoliating in patches. The seeds yield a fixed Otx. and among the Santals the wood ash is used in dyeing. The Wood is white and soft, with an average weight of 38 to 40 lb. per cubic foot. It is largely used for carving, especially in Saharanpur and Bijnor districts; in Assam for furniture; in South India for turnery. [Cf. Buchanan-Hamilton, Stat. Acc. Dina., 1833, 151; Pharmaco. Ind., ii., 391-8; Woodrow, Gard. ind., 1899, 382; Dutt, Man. Med. Hind., 1900, 192-5; Yearbook of Pharmacy, 1897, 152; 1900, 399; Rept. Cent. Indig. Drugs. Comm., 1901, i., 2, 8-9, 11, 14-2; 14-3; Agri. Ledg., 1901, No. 9, 346; 1902, No. 5, 110; Barry, Legal Med. Ind., 1902, 449.]

D.P.R., iv., 255-9.

Conessi Bark.

Medicine.

Oil.

Wood.

D.P.R., iv., 273-84.

Barley.

Habitat.—An annual grass producing many stems from a single grain, and becoming 2 to 3 feet long. It occurs throughout the temperate and extra-tropical regions of the globe, and in India is met with from the plains to altitudes of 14,000 feet above the sea-level.

There are several well-marked varieties, of which the most important are: var. (a) hexastichon, Aitch.; var. (β) distichon, Linn.; and var. (γ) nudum, Ard. Hexastichon, or six-rowed barley, is that which is

Varieties.
most commonly cultivated in India. The only variety hitherto found wild is *distichon*, which seems to be indigenous to Western Temperate Asia.

History.—Barley is amongst the most ancient of cultivated plants, but as its forms resemble each other very closely in their properties and seem to have had, in all languages, common names, it is not easy to ascertain which variety is referred to by the early writers. Proofs in abundance exist that one or other of the forms has been cultivated since the remotest times. According to Bretschneider, barley is one of the five cereals sown by the Emperor Shen-nung of China, who reigned about 2700 B.C. Theophrastus was acquainted with several forms of barley, and it was an important article of food in the time of Solomon (B.C. 1015). The variety *hexastichon* has been found in the earliest Egyptian monuments, as also in the remains of the later dwellings of Switzerland and of Savoy. The six-rowed barley is represented on the medals of Metapontum—a town in South Italy—of date 6th century B.C. The oldest known Indian (or rather Central Asiatic) samples of barley are those collected by Stein at Khotan (Ancient Khotan, 1907, 448). The ruins in question had been engulfed by sand about the close of the 8th century A.D. The variety most frequently met with in India is also *hexastichon*. Indra is called "the god who ripens barley," and as still manifesting ancient knowledge it may be added that the grain is employed in the ceremonies attending the birth, marriage and death, as also certain sacrificial rites. This idea is also borne out by the antiquity of the Sanskrit name *yava* (*yavaka*), which in the earliest times was a general term for corn or grain, but which with time became restricted to what must have been at least a very important grain—barley; hence have come the modern vernaculars—*jas*, *jus*, *Indrajus*, *jowa*, *etc.* The grain is also closely associated with the Indian Mohammedans. In the *Ain-i-Akbari* the crop is said to have been one of the most important in Afghanistan and Kashmir, a large part of the revenue in these countries having been obtained from barley by exacting the usual two out of every ten *keruvars* produced.

CULTIVATION.—Barley is a *rabi* crop, sown in October or November, and reaped in March or April. In Bombay it is generally grown alone, occasionally with a sprinkling of rape or mustard, but in many parts it is often mixed with wheat, gram, peas or lentils, while rape, Indian mustard and linseed are commonly sown as borderings. The soils on which it thrives best are light and sandy, and, as a rule, not highly manured. The number of ploughings before sowing varies, but four would be a fair average. The seed-rate runs from about 80 to 120 lb. per acre. It is sown by plough-furrows, the surface of the ground being subsequently levelled and beds for irrigation formed. Irrigation, however, may not be necessary, and in districts which enjoy a tolerable certainty of rain it is but rarely resorted to. Little weeding is required, the crop being left very much to itself till March—April, when it is reaped like wheat, tied up in sheaves, and stacked near the homesteads to dry. The preparation for the market is the same as that for wheat. The total cost of growing an acre is variously stated: Mukerji puts it at only Rs. 18—8; Duthe and Fuller, Rs. 20—12; and Mollison gives for Gujarait, Rs. 51—8—0. Huskless barley from Saharanpur is described in the *Kew Bulletin* (1888, 271—3).

Areas under the Crop.—From the *Agricultural Statistics of British India*, it appears that in recent years far the largest quantity of this cereal is grown in the United Provinces and in Bengal. The Panjab, North-West Frontier, Ajmer-Merwara, Bombay, the Central Provinces, Sind and Madras follow in the order given. The total area under barley in British India for the year 1905—6 was 7,326,755 acres. Similarly, in the Native States, the area in the same year is said to have been 418,463 acres, chiefly in Jaipur, Alwar, Bharatpur and Gwalior.

Bengal.—The cultivation of barley is mostly restricted to the central Bengal.
and northern districts. It is more especially met with in South Bihar, where it forms one of the cheapest of foods. In North Bihar (Bhagalpur) it is of less importance. The cultivation of barley diminishes south and east, and is practically not grown in Bengal proper nor in Orissa. Though in recent years Bengal stands second as regards the total area under this crop, within the province it is comparatively unimportant, the percentage of the normal area under barley having amounted in 1904–5 to only 2.50. The total barley area in that year was 1,514,700 acres, and the yield 494,243 tons; hence if an average be assumed, these figures would show 6.4 cwt. per acre. In 1906–7 the area was 1,411,100 acres. The chief localities are usually Patna, Bhagalpur, and Chota Nagpur. [Cf. Mukerji, Handbook Ind. Agri., 1901, 245–7; Banerjei, Agri. Cuttack, 1893, 78–9; Rept. Admin. Beng., 1903, 15; Ind. Planters’ Gaz., Sept. 19, 1903; Oct. 10, 1903.]

U. Prov.

United Provinces.—These provinces stand first in British India as regards the total area under barley and the annual output. In 1905–6 it amounted to 4,127,936 acres, of which Agra contributed 3,137,104 and Oudh 990,832. The largest areas were in the Gorakhpur, Benares, Lucknow and Allahabad Divisions. Duthie and Fuller estimated the average outturn of unmixed barley at 16 maunds per acre if irrigated, 8 to 11 maunds if unirrigated. [Cf. Cawnpore Exper. Farm Rept. Dist. Gaz., U. Prov. (many passages.).]

C. Prov. and Berar.

Central Provinces and Berar.—The total area for 1905–6 in these provinces would appear to have been 11,608 acres, and the chief districts Jabalpur, Damoh, Bilaspur and Chanda. Of Berar, 94 acres have been returned as under this crop.

Rajputana.—The crop is apparently an important one, especially in Ajmer-Merwara, where, during the ten years ending 1899–1900, it is returned as having occupied 16.1 per cent. of the average cultivated area. [Cf. Rajputana Gaz., Ajmer-Merwara, 1904, i., 46.] But of the whole province, in 1904–5, mention is made of a total area of 38,728 acres. In irrigated land it yields an average of about 7.34 cwt. per acre, but in dry crop land the average outturn is given as only 1.46 cwt.

Panjab and N.-W. Frontier.—The system of cultivation is very similar to that in Bombay and the United Provinces, but the practice of topping an over-leafy crop is said to be common; the crop is generally grown unmixed. The total area for 1905–6 was 1,205,678 acres in the Panjab and 315,272 acres in the North-West Frontier. The most important localities are usually Ferozpur, Hissar, Gurgan in the Panjab; Peshawar, Hazara and Bannu in the North-West Frontier. [Cf. Montgomery, Barley Cult. Ph., in Select. Rec. Finance Comm. Office, 1885, No. 29; Rept. Govt. Agri.-Hort. Gard. Lahore; Dist. Gaz. Ph. (many passages.).]

Kashmir.—According to Lawrence (Valley of Kashmir, 1895, 341), barley is the most important spring crop, if area alone be considered. It is not, however, of good quality, and no pains are taken in its cultivation. In the higher villages, at an elevation of 7,000 feet, there is a peculiar variety known as grim, or Tibet barley. The grain is naked like wheat, and it is said that if cultivated at a lower level it takes on the type of ordinary barley. It is sown in May and June, ripens in August and September. Barley gives on an average 8½ maunds per acre; grim, about 4 maunds. [Cf. Assam. Repts. Baltistan.—Kay, Skardu Tahsil, 1901, 8–9; Clarke, Kargil Tahsil, 1901, 19, 23; also Skardu Tahsil, 1901, 20–3.]
MILLING AND MALTING

Bombay.—Barley is not extensively grown in Bombay. In 1905-6 the total area was only 23,103 acres. In that year Ahmedabad grew 11,350 acres; Kaira 3,448; Satara 4,807; Sholapur 1,284; and Panch Mahals 463. It is generally grown alone, occasionally with a sprinkling of rape or mustard. In parts of Gujarat wheat and barley are grown mixed. As in other provinces, it is a light-soil crop, the sandy loams of Kaira and Ahmedabad district being particularly suitable. Mollison remarks that 1,500 to 1,800 lb. of grain per acre and about a ton of straw are considered a full average yield. [Cf. Mollison, Handbook Ind. Agri., 1901, 44-9.]

Madras.—Barley is a very unimportant crop. For the year 1905-6 the total area in the Presidency amounted to only 3,280 acres, all in the Nilgiris. In Mysore the total in 1905-6 was 1,338 acres.

Milling or Preparing.—The process of cleaning barley for food purposes is generally carried out by pounding in wooden mortars and winnowing, or by beating with a flat board. The grain is then ground into coarse meal from which alone, or mixed with the meal of wheat or gram, chappattis are made and baked; or a gruel or pasty mass is made, to which salt is added and the preparation eaten with garlic, onions or chillies. In either of these forms it is a staple article of food among the poorer classes. The grain, thus roughly cleaned and ground, is richer in albuminoids than the more carefully prepared culinary barley of Europe; but at the same time it is more difficult to digest, and is thus partly unsuited for the dietary of dyspeptics or invalids.

In various parts of India barley is now largely employed in the preparation of beer or spirituous liquor, and the use of barley in Europe for malting and brewing is well known (see Malt Liquors, p. 759; Vinegar, p. 1109). Mollison gives an account of the qualities which give barley a special value for these purposes. It is also largely used as a horse and cattle fodder. In some parts of India the crop is cut two or three times when quite young, without marked injury to the final yield of grain. The straw even of ripe barley makes a fairly good fodder when cut up as bhūsa, but is inferior to that of wheat. The grain is a good feed both for horses and cattle, either given alone or mixed with gram.

Properties and Uses.—The chemical composition of ordinary husked Indian barley is given by Church as follows:—in 100 parts: water 12.5, albuminoids 11.5, starch 70.0, fat 1.3, fibre 2.6, ash 2.1. The nutrient ratio is here 1: 6.3 and the nutrient value 84.5. In medicine, barley is demulcent and easily digested, and is much used in the dietary of the sick. Malt extract has become extremely popular both as a nutritive and demulcent, and as a means for rendering other medicines palatable.

Trade.—Official trade statistics show the following as the EXPORTS from British India in the six years ending March 31, 1907:—1901-2, 54,648 cwt., valued at Rs. 1,80,180; 1902-3, 63,872 cwt., valued at Rs. 2,27,937; 1903-4, 1,13,120 cwt., valued at Rs. 3,56,421; 1904-5, 376,548 cwt., valued at Rs. 12,68,154; 1905-6, 92,810 cwt., valued at Rs. 3,12,548; and 1906-7, 406,067 cwt., valued at Rs. 12,51,753. There was thus a steady increase till 1904-5, but a sudden decrease in 1905-6. In 1904-5 (the record year) Bombay exported the largest share, viz. 231,037 cwt. (though in the previous year it exported only 25,883 cwt.); Sind 86,070 cwt.; and Bengal 59,307. The relative shares of the exporting centres are, however, subject to great variation. During the same period the IMPORTS were:—1900-1, 643
Horns, Antlers, and Horn-Work.—Blanford, Fa. Br. Ind. (Mammalia) 1888-91 (respective pages of species below). Horns and Antlers are largely utilized in the manufactures of the world, and in their crude state are fairly extensively exported from India. The traffic is mainly in the hands of the dealers in Hides and Skins.

The following animals will be found fully discussed under Live Stock (pp. 732-49), and, as they are the chief sources of the horns of Indian commerce, that article should be consulted. — Bos indicus (Lc. 483-93), the breeds of the Ox; B. bubalus, the wild and domesticated Buffalo; B. gaurus, the Yak; B. tragelaphus, the Gayal; B. auro-sonduicus, the Bison; and B. rhinoceros, the Stag. B. taurus and B. srinisci, the Brahman or Burmese Wild Bull. Capra (Lc. 501-8), the various breeds of Goat; C. aegagrus, the Baluchistan, etc., Wild Goat; C. falconeri, the Markhor; C. ibex, the Iberian; C. dama, the Domestic Sheep; O. apennina, the Iberian; O. aries, the Great Sheep of the Pamirs; and O. virginiae, the Kuch or Wild Sheep of the Salt Range. Lastly, a small group of transitional animals such as Hemitragus sylvaticus (Lc. 508-12), the tahr of the Western Himalaya; H. hylocrius, the Nilgiri Wild Goat. Nemorhaedus bubalium (Lc. 512-5), the Himalayan Goat-antelope; N. sumatrensis, the Burmese Goat-antelope. Cervus gorei (Lc. 516-7), the goral of the N.W. Himalaya, or Himalayan Chamois. The Boselaphus tragocamelus (Lc. 518-9), or nilgai or Blue Bull. Tetraconus quadricornis (Lc. 519-21), the Four-horned Antelope. Antilope cervicapra (Lc. 521-4), the Black Buck. Gazella bentetti (Lc. 526-8), the Indian Gazelle, etc. To that list of Bovidæ—Oxen, Sheeps, Goats and Antelopes—has to be added the Deer, such as Cerbus unicolor, the Sambar or Rusa Deer. And Rhinoceros unicornis (Lc. 472-4), the great One-horned Rhinoceros, etc., etc. Such then may be given as an enumeration of animals from which, in India and its mountainous frontiers, horns and antlers are obtained. Commercially, however, the horns might almost be said to be derived from the domesticated oxen—all the others being special or fancy articles, in which there is but a limited traffic.

Classification.—Horns may be grouped as follows:—

I. Those that consist of bone and which possess no truly horn structure in their structure.

(a) True bone, such as antlers of deer.
TRADE

HORNS AND ANTLERS

(b) Epiphyses or separate pieces of bone covered by skin, such as in the horns of the giraffe.

II. Horns that more or less consist of true horny matter.
(c) Bone tipped by horn, such as in the horns of the prong-horned antelope.
(d) Bone covered or sheathed by true horn, such as in the ox.
(e) True horn throughout, such as the nasal horn of the rhinoceros.

True horny matter is formed by a modification of the epidermal tissue (the superficial layers of skin) and consists of an albuminoid material called keratin, a substance identical with the chief constituent of wool.

Horns of the first group are largely exported from India to England, under the name of deer-horn. The antlers chiefly traded in are those of the spotted deer (30 inches and under) and the sambar (40 inches and under). They are extensively employed in Europe as bone handles for cutlery, umbrellas, sticks, etc. The second group are valued on account of the special properties of keratin; it is elastic, flexible and tough, and readily softens under heat and allows of the substance being moulded and welded as desired. Long, straight buffalo-horn is valued as a substitute for whalebone, and on this account fetches a higher price than curved horn. Accordingly, the tips are cut off and sold separately. The horns of sheep and goats are whiter and more transparent than those of other animals, and are, therefore, most valued for comb-making, while certain buffalo-horns are in demand for ornamental work. Perhaps one-fifth of the horns imported into England are used up in the comb trade, a small proportion being utilised for fancy work, such as shoe-horns, scoops, drinking-cups and the like. The solid tips, as also the hoofs of cattle (which consist largely of keratin), are made into buttons. The long, straight horns are cut into strips softened in a solution of bi-carbonate of soda; the strips being allowed to sweat, are then bevelled and pressed together, when they unite into the strips that are employed in place of whalebone. In Jaipur and elsewhere in India long straight horns have similarly been used from ancient times in the manufacture of bows and arrows.

Trade in Horns and Hornmeal.—The exports of horn of all kinds from India were 71,894 cwt., valued at Rs. 12,80,051, in 1876–7; a decade later the quantity had been reduced by nearly one half, but the value remained the same; a decade still later the exports were 59,804 cwt., valued at Rs. 16,73,241. The traffic is one that fluctuates extremely according to climatic conditions. In times of scarcity and famine the exports increase and the horns decline in value, while in times of plenty the quantity decreases and the value increases. During 1901–2 the exports were 62,944 cwt. and Rs. 13,35,759; in 1902–3, 71,396 cwt. and Rs. 17,05,297; in 1903–4, 48,405 cwt. and Rs. 12,05,798; 1904–5, 61,582 cwt. and Rs. 13,72,375; 1905–6, 73,521 cwt. and Rs. 17,49,944; and in 1906–7, 78,771 cwt. and Rs. 16,91,532. Usually about 50 per cent. of the trade goes from Bombay, and approximately a similar proportion of the total is consigned to the United Kingdom—the shares taken in 1899–1900 having been 45,660 cwt.; in 1903–4, 25,718 cwt.; and in 1906–7, 26,678 cwt. France is the next most important receiving country, having taken in 1899–1900, 25,590 cwt.; in 1903–4, 13,226 cwt.; and in 1906–7, 32,887 cwt. The share contributed by Calcutta is ordinarily little over half that of Bombay. The imports drawn by India from foreign
countries (by sea) are unimportant, in 1903–4 having been only 353 cwt., valued at Rs. 75,041; and in 1905–6, 316 cwt., valued at Rs. 69,318.

The examination of the returns of trade carried by rail and river reveals the fact that the chief provinces of supply are Bombay, the United Provinces, Central Provinces, the Panjáb, Bengal and Madras. Official returns of the trade of England and Continental countries distinguish as a rule the traffic in deer horns from that in buffalo, and judged from these it would appear that India is one of the chief countries from which the former are obtained. Indian trade statistics do not separate the two, so that the returns reviewed above are for all grades collectively.

Indien Industries.—The chief forms of horn used in the Indian craft (bangi-saż) are buffalo and bison horn, since there are religious objections to the use of cow-horn. A cup made of rhinoceros-horn is much prized by Hindus, but it is too scarce a material to be generally used. Buffalo-horn is by far the most largely employed in India of all horns, but it is the least beautiful. It is made into cups, tumblers, combs, musical instruments, work-boxes, powder-flasks, bows and arrows, hukka-mouth-pieces, scent-bottles, snuff-boxes, sword, dagger and knife handles, and many other such articles. The centres of the trade are Cuttack, Monghyr, Satkhira (Kulna), Hughli and Serampore in Bengal, where combs, brooches, necklaces, snake bangles and the like are made. Rajputana, Jaipur and Kota are famed for their horn works. Rajkote combs, Baroda spoons, Kathiawar knife-handles, Surat and Ahmedabad veneered boxes and Baroda animal toys of horn are all well known. In Mysore, umbrella-handles, powder-boxes and buttons are made of buffalo-horn, and often richly inlaid with ivory and copper. But it is in Vizagapatam that horn veneered work may be said to have assumed the condition of high-class work. In Ratnagiri and Savantvadi a fair trade is done in bison-horn work. Aitken (Agri. Ledg., 1897, No. 10) wrote a most interesting account of the industry in the former locality. Perhaps the most instructive feature of that publication may be said to be the method of softening the horn. It is coated with cocoanut-oil and heated before a fire until it becomes sufficiently soft to allow of its being pulled out and moulded into the desired shape.

The medicinal properties of this plant were known to Sanskrit writers of very remote times, and the early European writers on Indian Materia Medica were also acquainted with the plant. The parts generally employed are the leaves, dried by exposure to the air and ground to a powder. The powder is of a pale green colour and exalates a slight characteristic aroma. It is an alterative, tonic and a local stimulant, said to be efficacious both as an internal and external remedy in ulcers, eczema, leprosy and other cutaneous affections. The chemistry of the leaves was first investigated by Lapine in 1856, who found they contained oily and resinous constituents, with mucilaginous principles and
INDIA-RUBBER, CAOUTCHOUC OR GUM ELASTIC.

Caoutchouc, like gutta-percha, is a vegetable inspissated milk or latex. In both cases the substance consists of a hydrocarbon, forming corpuscle-like bodies floating in a fluid. Gutta-percha becomes soft and plastic in hot water and may be moulded into any desired shape, which it preserves on cooling. Caoutchouc, on the other hand, is not softened by heat, is impervious to water, alcohol and most acids, etc., and retains its elasticity for a considerable period. Gutta-percha is chiefly obtained from trees that belong to the Sapotaceae, while caoutchouc is derived from certain plants which have been placed in three widely different natural orders. These are Funtumia, Hancornia, Landolphia and Willoughbeia of Apocynaceae; Castilloa and Ficus of Urticaceae, and Hevea and Manihot of Euphorbiaceae. The plants that afford gutta-percha and india-rubber thus manifest no definite botanical affinity, except that they are mostly natives of tropical countries. In the plant tissue caoutchouc circulates within certain anastomosing vessels which are distributed throughout the middle, or more rarely the inner layer of bark. [Cf. Lecomte, Journ. d'Agri. Trop., 1903, xvii., 375.] A far larger number of plants possess milk (and even a caoutchouc-yielding latex) than those generally viewed as the sources of india-rubber. The term caoutchouc is sometimes used synonymously for india-rubber, but it more correctly denotes the pure hydrocarbon isolated from the other materials with which it forms the impure rubber of commerce. Caoutchouc is highly elastic, lighter than water, has neither taste nor smell, is fusible at about 248° F. and inflammable at higher temperatures.

Methods of Agglutination.—When the bark of plants containing rubber is cut, the milk exudes, and in time hardens on exposure to the air. This agglutination may be hastened by adding salt water, alum or acetic acid to the milk; but these, more especially salt, increase one of its defects, viz. the hygroscopic property by which it becomes moist and sticky, and in consequence they injure it commercially. A favourite but wasteful method is to allow the milk to flow into holes in the ground and to be left there till the water, etc., has drained off. Boiling the milk is the system followed in Lagos, while in the Amazon valley the smoke of a smouldering fire, combined with moderate heat, is the system almost universally pursued with Para rubber. In a few cases the milk is simply allowed to dry as it trickles down the stem. This gives the Scrap Rubber of Ceara and a good deal of that of Assam and Penang. The alum (or Penang) process was recognised as being useful for Assam, where the humid atmosphere operates against the drying of the rubber. Dr. C. O. Weber, in a series of articles contributed to The India-rubber and Gutta-percha Trades Journal in 1902, also 1904, has stated the facts regarding coagulation briefly as follows:

1. That the so-called coagulation of rubber by acids or alkalis is
erroneous in that it is only the albumen which is coagulated by these substances, and not the india-rubber itself.

2. That the albumen contained in latex is very harmful in many respects, and that it ought to be as far as possible eliminated from the milk before attempting to agglutinate the rubber.

3. The method he recommends for coagulation is briefly as follows:—First mix the latex with water, at least five times its volume. In cases where the latex is thick, actual boiling water may be used with advantage. In this state it can be easily strained to remove impurities. After this, add formaldehyde in the proportion of 8 oz. to a petroleum barrel; stir well and let it stand for twenty-four hours, when the rubber will collect on the top and can be lifted out in one mass. In order to remove any traces of albumen that may be suspended, the rubber should next be cut into strips and subjected to a thorough washing upon an ordinary rubber washing-machine. [Cf. Weber, *Chem. India-Rubber*, 1902:]

But the use of formaldehyde does not seem to have been the success that Weber anticipated, though his recommendation for cleanliness and repeated washing has been universally accepted. Biffen (*Annals of Botany*, 1898, xii., 165–71) suggested the use of a centrifugal separator. The milk is mixed with 50 per cent. of water, and set revolving for a time. It is then found that the rubber floats on the top in a thick mass. The albuminoids, etc., and all the adulterants are found below. It has next to be admitted that by many recent writers the value of centrifugal force has been denied, and special machinery patented in which the merit claimed is that they do not involve centrifugal action.

Indian Planting and Gardening (March 29, 1900) published a letter from Faber that gives particulars of a method of extracting caoutchouc from dry bark, said to have been discovered by a French chemist, M. G. Deiss. This process consists in keeping slices of bark and roots soaked in dilute sulphuric acid while being heated. The woody portions become decomposed and can then be washed out, thus leaving the rubber in a pure state. For other methods of extracting india-rubber by solvents or mechanical processes the reader should consult Gerber’s article on that subject. [Cf. *Journ. Soc. Chem. Indus.*, 1902, 414–5; *Kew Bull.*, 1898, 177–81; Mathieu, *Agr. Bull. Straits and Fed. Mal. States*, 1903, ii., 18–21; 1905, iv., 223–4.

Composition of Rubber.—India-rubber may be said to consist chemically of two substances—an elastic material, on which its merit depends, and a viscous resinous substance readily oxidisable, to which it owes its depreciation. Hence the greater the percentage of resin the less the value of the sample. The property of the elastic substance also varies, and in a marked degree, between that obtained from one genus of plants and that of another, so that every gradation exists from the non-elastic hydrocarbon known as gutta-percha (which see, pp. 625–8) to the finest gum elastic.

Caoutchouc yields by dry distillation a mixture of simpler hydrocarbons, called oil of caoutchouc or *caoutchoucin*, which forms an excellent solvent for caoutchouc and other resins.

History.—During the second voyage of Columbus it was noticed that the inhabitants of Hispaniola (Hayti) played with balls made from the gum of a tree. In 1770 Priestley recommended the use of that substance for the purpose of erasing pencil markings, hence the name “rubber.” The article was new to Europe, and the proposed utilisation of it excited some interest. It was not, however, until 1820 that the beginning of the modern industry can be traced.
SPECIAL CULTIVATION

Three years later Mackintosh created the waterproofing trade by dissolving rubber in naphtha. Nelson Goodyear in 1839 Vulcanised it, and this rapidly led to the production of ebonite. Rubber and its products may now be spoken of as indispensable to the domestic life and to manufacturing and engineering enterprises of the entire human race. J. G. Baker wrote in 1886 (Gard. Chron., xxv., 363) an interesting article on the production of this all-important substance. Part of the supply, he then wrote, comes from South America, shipped from Para and Cartagena, part from Sierra Leone, Mozambique and Madagascar, and the remainder from tropical Asia. After exhibiting the botanical and geographical supplies, Baker dealt with the future, and what he then urged regarding cultivation has proved the keynote to present successes. So in the same way Sir George King, while reporting the introduction of Landolphia into the Botanic Gardens of Calcutta, observed that the exotic rubbers "with the exception of Ceura are either very large trees or climbers; and although it may pay well to collect rubber from them in their native forests, where they have grown to maturity without cost to the collector, it is quite a different matter when their planting and protection have to be paid for, and their coming to maturity has to be awaited for years." That opinion has since been somewhat modified, though, so far as the interests of the European planters (who are at most temporary residents in the tropics) are concerned, not materially. The plantations established by the Government of India have, however, begun to prove of considerable value, as have also some of those made by private enterprise. Indeed, the experience of the past few years would seem to show that perhaps greater success may attend private enterprise in this direction than was currently believed a few years ago.

Conditions of Success.—The whole question of rubber production seems to turn on the cultivation of quick-growing species, on superior methods of cultivating and securing the flow of milk, and on the high prices prevailing for carefully prepared rubber. The production of caoutchouc by the spontaneous change of the hydrocarbon isoprene is not at present of practical importance. Many of the oxidised-oil products now being manufactured manifest not a few of the properties of rubber and seem destined to relieve the strain for supplies of the natural article, but they have all one serious defect, namely they possess no elasticity. Accordingly, the fear of over-production of natural rubber, most writers think, is at present inefinite.

Modern Demand.—The growth of modern demand for rubber may be manifested by the following: the exports from the Amazon valley alone in 1864 came to close on eight million pounds, and thirty years later (1904) they came to sixty-seven million pounds, a quantity that represents the systematic tapping of twenty million trees, and which fetched over thirteen million pounds sterling (see p. 660). In India, Ceylon and the Federated Malay States rubber cultivation is being vigorously prosecuted, and the future seems destined to see a still further expansion in these countries.

Asiatic Production.—In Ceylon during 1905 there are believed to have been 40,000 acres devoted to Hevea and to a lesser extent to Castilloa rubber trees. The plantations are mostly within the valleys, but some extend up to an altitude of 2,000 to 2,500 feet. It seems an accepted axiom that the higher Hevea is planted, the slower it will grow and the less the yield. Castilloa ceases to be profitable in Ceylon at altitudes above 1,500 feet. It has recently been urged, regarding Ceylon, that it might pay to extend plantations of these rubbers into tracts that have to be systematically irrigated. Speaking of South India, Mr. Proudlock, Curator of the Government Gardens on the Nilgiri hills, made an interesting discovery, viz. that Castilloa trees three or four years old, in the Barliar plantation (2,400 feet), yielded a somewhat
gummy substance destitute of the properties of true rubber. Fifteen months later these selfsame trees yielded a better quality of rubber; hence he concludes that the change from yielding a gummy substance to yielding a true rubber coincides with, or closely follows the period when the species first begins to produce ripe seed. In Travancore much interest has been taken by His Highness's Government in the allocation of suitable tracts within the valleys of the State for rubber plantations.

Commercial Rubbers.—The rubbers of commerce are (a) the biscuit and bottle rubbers of South America, such as the Para (the most important) which comes from Brazil, Venezuela, and recently from Ceylon and the Straits. (b) Castilloa, such as the Central American rubbers, of which there are certain grades:—Nicaragua, West Indian, Honduras, Mexican, Guatemala, Panama and Peruvian. These appear in Blocks, Sheets or Scraps. (c) The true Ceara is a dry rubber, very elastic, and free from stickiness; it coagulates in tears forming scrap. (d) Pernambuco and Mangabeira are coagulated with salt and are accordingly “wet” rubbers. (e) Numerous trade forms of African rubber, such as Gambia, Sierra Leone, Lagos, Gold Coast, Congo (ball), Calabar, Cameroon, Batanga, Liberian, etc. (f) Mozambique (ball), Sausage (liver), Madagascar (good and fine, also black). (g) Asiatic, such as Assam, Rangoon, mostly scrap rubbers formed into cakes, slabs or loaves. (h) Javan, Bornean, New Guinea, etc., rubbers (see *Gutta-percha*, p. 626).

The following, in alphabetical sequence of their scientific names, may be given as a brief statement of the India-rubber yielding plants of the world in which India is presently interested:—

Castilloa elastica, Cero.; Hemsley, l.c. 156; [URTICACEE. Central American, Panama and Nicaragua Rubber. Torquemada was the first to mention the rubber of Mexico. He gave it the name of *ulé*. Long years after, Cross successfully introduced the plant to the Old World. In 1876 he conveyed live plants to Kew Gardens, and from that supply the plants that first reached Ceylon and finally India were distributed by Sir William Thistlewood-Dyer. Willis and Wright (Handbook Veg. Econ. Prod. Ceylon, 1901, 41–5) give many useful particulars regarding the experience gained in that country. Mr. W. S. Todd subsequently was successful in having conveyed from Mexico and San Salvador seeds which he germinated in Burma and ultimately sent supplies to Samoa, a fact of some interest, since the seeds of this species are believed to lose their vitality very rapidly. But there are two species of *Castilloa* that yield rubber, and comparative studies have not as yet established which is the more preferable for special cultivation. The Indian and Ceylon plant is chiefly *C. elastica*, the Mexican species, and *C. Tunn*, that of British Honduras and Costa Rica. This is the *tunu* rubber or *el hule macho* (the mule-rubber), but is not the mule-rubber of Brazil.

Manson (Ind. For., 1901, xxvii., 75–96) furnishes much useful information regarding the India-rubber plants of India. Of this species he remarks that it is cultivated in Mergui under wrong conditions, namely on swampy ground. He recommends that it should be tried in Tenasserim on hillsides with a western aspect. The plant has been fairly successfully grown on the hills of South India.
as, for example, near Calicut and Malabar, as also on the Nilgiri hills (Barliar). Speaking of experience gained in Bangalore, Cameron (Rept. Govt. Bot. Gard., 1902–3, app. ii. and iii.) says this plant is intermediate between Para and Ceara, requiring neither the tropical humidity of the former nor the open and comparatively dry conditions of the latter. It is, in fact, a tree for the coffee zones. He accordingly recommends it for the moist regions of the hills, and Ceara for the plateau of Mysore. [Cf. Morris, Cantor Lect. l.c. 761–5; Circ. Roy. Bot. Gard. Ceylon, 1898, ser. i., 96–104; 1903, 125–9; Cook, Journ. Agri.-Hort. Soc. Ind., 1904, 30–43; Bull. Imp. Inst., 1903, 160–7; 1904, 32–8; Trop. Agrist., 1905, xxv., 160–5, 199–200; Board of Trade Journ., 1905, 134–5; Tschirch, l.c. 1008–9; Wright, Rubber Cult. in Brit. Empire, 1907, 20–1; Herbert Wright, Cocoa, 1907, 78–9; Rubber Exper. in Bom. Journ. Ind., 1907, ii., pt. i., 81; Kew Bull., 1907, 103.]

Chonemorpha macrophylla, 6. Don.; Apocynaceae. A large climbing shrub met with in North and East Bengal and the moist tropical forests of India generally from Kumaon to Travancore. Recommended as worthy of trial as a new source of rubber, but from experience gained at Buitenzorg the subject does not seem encouraging. [Cf. Kew Bull., 1896, 186; Manson, l.c. 4; Bull. Imp. Inst., 1904, 160.]

Cryptostegia grandiflora, 8. Br.; Asclepiadaceae. An extensive climber, fairly common on the western and southern tracts of India, and is stated to have been repeatedly cultivated with a view to the utilisation of both its milky sap and beautiful flower. So long ago as 1893 the rubber prepared from it was reported on in England as “hardly equal to Ceara rubber from Brazil, although its general qualities are very encouraging.” [Cf. R.E.P., Comm. Circ., 1898, No. 2; Ind. For., 1898, xxiv., 429; Dunstan, Offic. Repts., 1903–4; Wright, l.c. 28.]

Ecdysanthera micrantha, 8. DC.; Gamble, Man. Ind. Timbs., 488; Apocynaceae. A large climbing shrub common in the Darjeeling Himalaya at 3,000 to 5,000 feet, also in Assam, Sylhet, the Khasia hills and Burma. In Burma it is known as Nucdo.

Recently a sample of the milk of this plant was furnished by the Conservator of Forests, Tenasserim, Burma, to the Reporter on Economic Products to the Government of India, with a view to obtain particulars as to the value of the caoutchouc and suggestions for a method of coagulation to be adopted with the milk. It was ultimately examined by Dunstan, who gave the analysis as caoutchouc 84.1 per cent., resin 11.5 per cent., and insoluble matter 4.4 per cent., with ash 1.3 per cent. The rubber was pronounced of a good quality. Further analysis will be necessary, the report continues, before the above results can be accepted as representative, but if furnished in quality corresponding with the sample analysed, it would be readily saleable.

Ficus elastica, Roxb.; Fl. Br. Ind., v., 508–9; King, Ann. Bot. Gard. Calc., 1888, i., pt. i., 45, t. 54; Gamble, Man. Ind. Timbs., 641–3; Brandis, Ind. Trees, 603; Manson, l.c. (reprinted as Comm. Circ., 1901, No. 4, 6); Hooper, Rept. Labor. Ind. Mus. (Indust. Sec.), 1903–4, 26; Reinhorz, Agri. Legd., 1904, No. 4; Bald, Cult. of Ficus elastica, 1906; Coventry in the Forest Bull. Ind., 1906, No. 4; Mann, Assam Rubber and Its Commercial Prospects, in Agri. Journ. Ind., i., pt. iv., 390–8; Kew Mus. Guide, 1907, No. 1, 195; Urticaceae. The India-rubber Fig, Indian Caoutchouc Tree, the bor, atah bor, ka'giri ranket, lesu, yok bawadi, nyo ng kyet paung, etc. The Karet rubber of West Java—a name which Manson points out may have been derived from the Burmese kyet (kyet).

A gigantic tree having its leaves and shoots perfectly glabrous, and which usually sends down from its branches numerous aerial roots. It frequently germinates naturally from droppings of birds, and is consequently often at first epiphytic. When under these circumstances it chances to become attached to another tree it grows slowly for the first six to ten years, and when its roots have reached the ground it usually kills the foster plant. It then grows more rapidly and becomes an immense and very lofty tree (from 100 to 200 feet in height). It is met with on
INDIA-RUBBER
FICUS ELASTICA
Assam

the outer Himalaya from Nepal eastward to Assam, the Khasia hills and Burma, being especially plentiful in the Hukong valley. It usually occurs in altitudes from 1,000 up to 3,000 or sometimes as much as 5,000 feet. It is now largely cultivated both as a shade or ornamental tree and as a source of rubber. For the latter purpose plantations were established in Java as early as 1872, and in Assam in 1874.

INDIA-RUBBER PLANTATIONS.—From the Assam Forest Department Reports of 1897–8 it may be learned that 88 acres were planted with this fig in Kulsi during 1873–7, and that in 1898 there were 2,411 trees on that plot having an average height of 87 feet 8 inches and mean girth of central bole of 6½ feet; further that in 1878, 13 acres were planted, and the trees were in 1898, 81 feet in height and 9 feet in girth; that 25½ acres were planted in 1883, and the trees on this extension were, when reported on, 67 feet in height and 5 feet in girth; and lastly that in 1884 there was still another addition made of 33½ more acres, the trees of which were found in 1898 to be 55 feet high and 4½ feet in girth. In the report for 1904–5 (Prog. Rept. For. Admin. Assam, 9) it is stated that “56½ acres were exploited, 4,100 trees tapped and 2,550 lb. of rubber obtained. The yield of rubber varied from 62½ lb. per acre in the plantation of 1878 to 30½ lb. per acre in Block II. of the plantation of 1883.” “The cost of tapping was Rs. 672 or annas 4, pies 3 per lb.; and of the rubber obtained, 1,488 lb. were sold for Rs. 4,020–6, or Rs. 2–11–3 per lb.; 3 lb. were kept as a sample and 1,059 lb. sent to London for sale.”

In the Charduar plantation there were in 1898, 1,700 acres under this fig. Experimental tappings were made in 1896–7 and 1897–8. These gave for 21 trees 46 and 48 lb. of rubber respectively, i.e. 2½ and 2·29 lb. per tree. The rubber produced was in England valued at 2s. 3d. to 2s. 9d. per lb. In the report for 1904–5 it is said that “in the Charduar and Bamoni Hill plantations, Darrang Division, 367½ acres were worked, 7,103 trees tapped, and 9,817½ lb. of rubber obtained. The yield of rubber varied from nearly 37 lb. per acre in compartment 3 to 17½ lb. per acre in compartment 11 of Charduar. In Bamoni Hill plantation only 5 lb. per acre were yielded, but this is accounted for by tapping being confined to small suppressed trees.” Home (Ind. For., 1899, xxv., 70) estimates the annual yearly outturn from these Government plantations at 8,000 lb. of rubber, which at 2s. 8d. would give a gross return of Rs. 16,000 or a net return of Rs. 10,400, or say 9 per cent. on the capital cost of the plantations. But does this estimate include the cost of management, rent and interest? Plantations on a much smaller scale have been attempted in Madras and Mysore.

PROPAGATION.—According to Claude Bald, “the prime requirements for raising this rubber are two: high, or well-drained land, and a hot steamy climate.” Fruit is produced from March to October, but according to Bald, the best seed is obtained in the hottest months, May, June and July. When collected the fruits or figs are dried in the sun and mixed with powdered charcoal to preserve them. They are about the size of peas, and at the time of sowing are broken up, and the seed thus sown mixed with portions of the disintegrated fruit. Light, sandy loam is most suitable for seed-beds and the best time for sowing would appear to be during the rains, viz. from June to September; but in some of the Government experiments the sowings are made in January and others in October. Bald recommends sowing in seed pans or boxes covered with glass. The seed is lightly scattered over the surface of the ground, and germinates about three months later. But the drainage of the beds must be perfect, and the ground allowed to become neither very wet nor very dry, and at the same time the plants
ASSAM RUBBER PLANTATIONS

India-Rubber

Ficus Elastica

Assam

must be shaded from the sun for some time. When 2 to 3 inches high, the seedlings should be transplanted to a properly dug nursery-bed, well raised and drained. They should then be planted in lines about one foot apart. When 1 to 2 feet high, they may be put out in their permanent positions, but it is preferable to retain them in the nursery till they are 10 to 12 feet high, so as to prevent them being eaten by animals. In artificial planting it is found that rubber grows best on mounds. In the Kulsi plantation of Assam, lines are cut through the forest 20 feet wide and 50 feet apart from centre to centre. On these lines 15-foot stakes are put up 25 feet apart. Round each stake a mound is thrown up, 4 feet high, on which the rubber seedlings are planted. In the Charduar plantation the lines are 100 feet apart and the trees planted 50 feet apart, but the cleared lines of 20 feet were found insufficient and so were widened to 40 feet, thus effectually checking drip and affording the light necessary for full growth. The trees may also be propagated from cuttings, which must be from young, healthy shoots obtained by pollarding several branches of an old tree and allowing them to send out shoots. The best time to take cuttings is May and June. Both in Sikkim and Assam the epiphytic tendency of the plant has been simulated by tying seedlings or cuttings growing in baskets on to trees and allowing them to become attached to and to kill the trees in the way already mentioned. Gamble gives a full account of the methods of propagation pursued in various plantations which the reader should consult, as also the pamphlets by Bald and Coventry.

Indian Caoutchouc.—Most of the India-rubber procured from India has been collected from wild trees in the natural forests. It is collected by the hill tribes in tracts beyond the British frontier, and sold to the people of the plains in the form of balls that have to be carefully examined for stones or mud placed in the centre. The Government plantations have recently begun, however, to contribute a superior rubber, the proportion of which is likely to be yearly increased. The latex is collected during the dry months. Eight oblique cuts are made on the main stem, sloping downwards and at a little distance from each other. The best tool for making these incisions is said to be a carpenter's gouge worked with a small mallet. These incisions should not be deep, as the milk is secreted just below the outer bark, and the lowest should be about 4 feet from the ground. Below the incisions pots or kaiologies are tied round the tree one under

neath the other, which are left attached for the day. The trees should be tapped only once in three years. If tapped yearly they are liable to die. A few spoonsful of a watery solution of alum are usually put in each vessel of milk, after it has been purified of extraneous matter. The milk coagulates and the rubber is exposed to air on sticks and allowed to drain for a week. In a month it is ready for the market. The yield from each tree in the Assam plantations at the present day is approximately 8 oz. per annum, and the average age of the trees is about 26 years; but according to some writers, the trees may be tapped at 14 years. E. S. Carr's remarks (Ind. For., June 1905, xxxi., 335-7) regarding method of tapping pursued in Assam and the coagulation of the rubber should prove in-structive to those interested in the subject, and an article by Mann (The Tapping of Assam Rubber, in Agri. Journ. Ind., 1907, ii., pt. iii., 277-9) should also be consulted.

Recent Publications.—Mann (loc. cit. 393) reviews in a forcible manner the opinions and conclusions arrived at by Bald, Coventry and Eardley-Wilmot (in the most recent publications mentioned above on the subject of Indian Ficus elastica). He writes, "The factors which will determine the practical success of Assam rubber may perhaps be set out as follows:—

1. "The initial or capital cost of forming a rubber plantation and bringing it into bearing.

2. "The age at which the trees will commence to yield.

3. "The yield which may be expected per tree and per acre.

4. "The cost of working a bearing plantation, collecting the rubber, and placing it on the market.

5. "The value per pound of the rubber produced.

6. "The permanency of the plantation."
INDIA-RUBBER
FICUS ELASTICA
Assam

Disappointing. Conclusions are disappointing. He continues, "The prospects are so doubtful, and even if successful so poor as compared with the culture of Para or Castilloa rubber in Ceylon, the Malay States, or even South India, that one is inclined to consider any large extension of the culture of *Ficus elastica* in North-East India as out of the question. And I must say that this impression has been very strongly confirmed by almost all that I have seen in these districts, if the Assam rubber is to be cultivated as a separate industry. On the present evidence the length of time which it is necessary to wait for returns, the smallness of the returns when they are obtained, the doubt as to the market fifteen or twenty years hence, would seem to make investment in Assam rubber culture, as a separate venture, a very doubtful speculation in North-East India at any rate. I do not see how, at the rate of outturn obtained now at Tezpur, more than Rs. 15 to Rs. 18 per acre profit could be obtained per annum; and even if this were multiplied by four it would hardly be attractive enough to induce an investor to wait over twenty years for the result. In fact, the only possibility of *Ficus elastica* culture would seem to be as a by-product to tea culture, on land now waste and unsuitable for tea. In this case, the growth of Assam rubber may afford a means of turning land to profitable account which would otherwise only remain useless to its owners. It may be that future discoveries with regard to improved methods of tapping, new methods of growth, means of tapping the plants annually without injury, or of growing a larger number of healthy heavily-yielding plants on the same area, may alter the opinion above expressed. But as it stands, and with the data before us in the two pamphlets under review, I feel that no other conclusion is possible than that Assam rubber culture can only continue as a dependent of another larger and more profitable industry, and then can only occupy the inferior land."

Chemical Analysis.—A representative sample of 1903-4 rubber from the Charduar rubber plantation was submitted to analysis in the Scientific and Technical Department of the Imperial Institute, and gave the following results:—The rubber was of a reddish-brown colour, but showed here and there small white patches. It was highly elastic and tenacious, dry, clean and free from stickiness. It was completely soluble in chloroform, carbon disulphide and benzene, and partially in ether. The analysis was as follows:—caoutchouc 76-67 per cent., resin 19-2, albuminoid matter 1-5, dirt and insoluble matter 1-7, moisture 0-9, ash in dirt 0-5. A high percentage of resin appears characteristic of rubber from the Charduar plantation. No precise data are available to show how the composition of rubber varies with the age of the tree or locality from which produced. A specimen of Assam rubber examined by Hooper gave the following:—resin 12-45, caoutchouc 85-95, water 0-0 and mineral matter 0-49, while a sample of Andaman rubber (from this tree) gave resin 4-87, caoutchouc 67-06, water 27-57 and mineral matter 0-50 per cent. There is thus a wide diversity in composition which it seems essential should be explained.

Trade.—The imports into India across its land frontier, more especially into Assam, are considerable. During the year 1901-2 these came to 1,470 cwt., valued at Rs. 1,55,656; in 1902-3, 733 cwt., valued at Rs. 65,912; in 1903-4, 1,601 cwt., valued at Rs. 1,66,629; in 1904-5, 3,083 cwt., valued at Rs. 3,50,773; in 1905-6, 2,587 cwt., valued at Rs. 3,56,413; and in 1906-7, 2,330 cwt., valued at Rs. 3,03,194. Of these amounts a very large proportion usually comes from the Naga and Mishmi hills. Recently the Government plantations have begun to contribute to the annual supply something like 3,000 lb. The exports from India to foreign countries in caoutchouc (mostly the produce of *F. elastica*) were in 1903-4, 1,792 cwt., valued at Rs. 3,47,196, and in 1906-7, 4,489 cwt., valued at Rs. 11,18,487; but the traffic fluctuates very greatly, especially the supply drawn from Burma, for in 1899-1900 the foreign exports were returned at 8,169 cwt., valued at Rs. 15,80,729. These foreign exports are usually drawn from Bengal (including Assam) and Burma, and are consigned chiefly to the United Kingdom and the United States. In a report furnished by the Director of the Imperial Institute (Feb. 3, 1905) the value of the Charduar rubber is stated to have been 3s. 8d. per lb. on the London market. For

Price Realised.
George King in 1877. A second consignment was obtained in 1879 from Ceylon. In 1884 some of the better established plants began to seed, and an acclimatized stock of seedlings was thereby obtained. Manson, in his Short History of the Mergui Rubber Plantations of that Province, has carried the record to the present date. In May 1900 sanction was accorded for the gradual formation of a plantation of 10,000 acres of Hevea trees. This was to be located, 5,000 acres in the Sandawut reserve and a similar area on King Island. The work was started in 1901 by 46 acres being planted out, 12 by 12 feet. By 1904, 1,518 acres had been planted, and the operations have since been vigorously prosecuted, annual extensions taking place according to the scheme sanctioned. The purpose in view has been to demonstrate the commercial possibilities of this rubber cultivation in Mergui. Already 929 lb. of rubber have been produced, and the nurseries, according to the last report, contained 600,000 plants, with an addition of 100,000 self-sown seedlings in the original experimental garden. In the Annual Report Forest Administration of the Tenasserim Circle (1904-5, 31-5), W. F. L. Tottenham, Conservator of Forests, gives the results of a further year's efforts. The total amount of dry rubber collected during 1904-5 was 1,450 lb., of which 54 lb. 6 oz. were collected during the rains. The cost of 10 acres was £150 per lb. The area was extended to have been extended by 1,250 acres, but owing to an outbreak of cholera only 818-65 acres were added to the plantation. Of that expansion 736-87 acres were in Mergui, and 81-78 acres on King Island. The conservator of the Northern Circle (I.c. p92) says that Hevea has not proved a success in the Katha Division. Hooper (Rept. Labor. Ind. Mus. (Indust. Sec.), 1906-7, 6) mentions the result of examination of a sample taken from a white-ant's nest (Termes gasterot). The rubber was of great excellence, the resin having apparently been extracted by the ants.

Thus, then, it may fairly be said that Brandis, who early foretold success for Tenasserim Para-rubber cultivation, has been abundantly confirmed, and the future seems destined to see large developments. Already private enterprise is engaged in the business, and doubtless when the possibilities in this direction of its forest property have been fully established, Government may withdraw. (Ind. For., Sept. 1905, xxxii, 330-4). For methods of propagation and systems of tapping the trees, consult the technical publications, more especially the circulars issued by the Director of the Royal Botanic Gardens, Ceylon.

South India.—A good deal of interest has recently been taken in the possibility of Travancore and even of Mysore becoming hopeful localities for Para-rubber cultivation. It is said by planters and others that thousands of acres of heavy forest-land, below 1,000 feet in altitude, exist that possess rich soils and a liberal rainfall, eminently suited for rubber, but which at present are valueless because not put to any purpose. Some progress has, however, been made, but taking South India as a whole, Para rubber has not so far been the unqualified success anticipated. A writer in the Madras Mail (March and April, 1905) seems to take a hopeful view, however, and the subject has by no means been abandoned.

Bengal and Assam.—Considerable efforts have been made to organise Para-rubber plantations in Northern and Eastern India, but with little encouragement so far. The trees have been planted out in Kurseong, Jalpaiguri and Buxa, but the reports of the Forest Department cannot be said to be favourable. (Cf. Mann, Cult. of Para Rubber in North-East Ind., in Agri. Journ. Ind., 1907, ii, pt. iii, 273-6.)

AFRICAN RUBBERS

INDIA-RUBBER

MANIHOT GLAZIOVII

Ceara Rubber.

Landolph Kirk, Opper, and L. owariensis—East and West African Rubbers; Apocynacae. A genus of climbing plants, met-with in Africa, of which several species afford rubber. To Sir John Kirk is due the honour of having first directed attention to these plants. Sir George King, in the Annual Report of the Royal Botanic Gardens of Calcutta for 1880-1, reported the germination of seeds obtained through Kirk. The plants unfortunately, however, subsequently died. At the Nilambur plantation of the Nilgiri hills, further efforts were made to acclimatise this plant. About the same time thirty-four plants were reported as doing well in South Malabar. In the report of the Government Botanical Gardens, Bangalore (1897-8), it is spoken of as growing like a weed. In the Report for 1902-3, Cameron wrote: "Much nonsense has been written lately concerning a new rubber plant Landolph Tholouti found on the French Congo." ... "The latex of this little shrub, which is only half a foot high, is chiefly stored in the root." The African genus Landolph promises to be a large one, and doubtless all the species may be found to contain latex. The Rubber Cane may have one or two species on trial which grow well. But as climbing plants they are not, in my opinion, very suitable for rubber-farming in this country." Manson (l.c. 8) observes that the Lundolphias have recently been tried in Mergui and in the Rangoon Division of Pegu Circle. [Of. Ind. For., 1882, vi., 233-7; 1897, xxiii., 61-3; 1900, xxvii., 129-34, 313-30; Annals of Botany, 1900, xiv., 203; Christy, New Comm. Pl., No. 1, 8-10, and plate; No. 6, 54-6; Kew. Bull., 1899, 35-9; Morris, Cant. Lect., l.c. 1898, 773-6; Sadebeck, Die Kulturgew. der Deutsch. Kolon., etc., 1899, 270-7 and plates; Rev. des Cult. Colon., Feb., 1900, 121; 1901, 218; 1902, 75; Bull. Econ. Madag., 1902, 143, 145-6, 251; Imp. Inst. Tech. Repts., 1903, 152-4; Junemel, Les Pl. à Caout. et à Gutta, 1903, 284-352; Agri. Journ. Natal, 1903, 25; Bull. Imp. Inst., 1903, 68-71, 168-9; 1904, 94-5; suppl., 95-6, 105-6, 153-6; 1905, 221-2; Bull. Imp. Inst., 1905, iii., 14-8; De Indische Mercure, June 1904; Tschirch, l.c. ii., 1013-4.]

Manihot Glaziovii, Mull. Arg.; Euphorbiaceae. Ceara Rubber, Scrap Rubber, Manicoba Rubber. Cross describes the tracts in Brazil where he found this plant and describes the country and climate for a considerable part of the year. The rainy season, he says, begins in November and continues till May or June, though there are occasionally almost rainless years; the temperature ranges from 82° to 90° F., and the altitude is about 200 feet above the level of the sea. Ceara is a coast town in lat. 4° 8.'

In the early experiments at acclimatisation of rubber trees in India (1876 and subsequently) it was ascertained that while Ceylon had better be treated as the centre of the experiments with Hevea and Castillia rubbers, Calcutta might with advantage be made the depot for Ceara. Sir George King accordingly wrote, in the Annual Report of the Royal Botanic Gardens of Calcutta for 1889-1, that the Ceara rubber trees continue to grow vigorously, and a few are now beginning to yield seed. In the same year, in the Annual Report of the Botanic Gardens, Nilgiri Hills (Barlair), it is said that the Ceara trees are now completely established. Lawson, for example, wrote that Ceara trees "grow very rapidly, and to all appearance thrive well; but I have been wholly unable to extract rubber from them in anything like a paying quantity, and every one else hitherto has also failed." In the report for 1890-1 the record is made of eight trees having been tapped for rubber. In the Report of the Conservator of Forests, Madras (1891-2) it is stated that in North Malabar this rubber tree grows like a weed and some of the trees are 46 feet high. In 1895-6, 309 trees were tapped in South Malabar and gave an average of 1 oz. per tree of dry rubber, valued in England at Is. 6d. to Is. 9d. per pound. Mr. R. L. Proudlock, in 1898, tapped a tree eighteen years old in the Barlair garden, and by a single tapping obtained 2½ oz. of dry rubber. Ceara, he adds, is quite at home and will grow almost anywhere on the Nilgiris up to 4,000 feet in alt. 637 42
INDIA-RUBBER
PARAMERIA GLANDULIFERA RUBBER-YIELDING PLANTS

Milk Creeper
titude. Mention is often made of a fairly extensive cultivation in South Coimbatore. Cameron (Superintendent of the Botanic Gardens, Bangalore) has repeatedly reported on this rubber. Experiments were commenced with it as early as 1879. After enumerating the production and distribution of seed from the gardens during the past twenty-five years, he adds that Ceara rubber is now tolerably common in many parts of the Province. In a report published in the Mysore Gazette, April 1904, he further gives useful particulars of planting, propagation and tapping of the trees. In the Forest Dept. Reports of Burma mention is made of successful acclimatisation in Mergui. In 1896 a valuation of 2s. a pound for the rubber was obtained.

It is hardly necessary to deal with other reports since enough has already been furnished to give a fairly satisfactory conception of the efforts made and results attained in India. But it may be useful to conclude with the following as indicating the opinions held by experienced scientific authorities in Europe:—The Kew Bulletin summarises the results obtained somewhat as follows:—1. The plant is readily propagated by seed or cuttings. Seeds are abundantly produced in almost every part of the world where the plant has been introduced. Sowing in the permanent position is universally adopted in Brazil. 2. The Ceara rubber plant is very hardy, a fast grower, free from insect and fungus attacks, requires little or no attention when once established, and thrives in poor, dry, rocky soils unsuited to almost any other crop. Large plantations only are likely to prove remunerative. 3. It produces a good class of rubber, second only to the best Para. The yield is small per tree, but a return is obtained earlier than from any other species. Under skilful treatment the trees may be tapped twice yearly, and last in a productive state for fifteen to twenty years. 4. In spite, therefore, of the apparent want of success in Ceylon and other countries, the increasing importance of rubber suggests a consideration of the merits of this interesting plant.

Both in India and Burma mention is made of the fact that the large starch-yielding tuberous roots of this tree have been discovered by the wild pigs, and considerable damage done by them in seeking out and devouring the tubers. This fact suggests the possibility of these starch-yielding tubers becoming an additional source of revenue, should an extended cultivation take place. [Cf. Cross, Ind. For., 1879, iv., 27–45; Notes Ceara Rubber in Ind. For., 1882, viii., 58–61; 1897, xxxiii., 459–8; 1898, xxiv., 460–1; Proc. Madras Board Rev., Oct. 1894, No. 712; Nov. 1897, No. 914; 1899, No. 518; Aug. 1904, No. 906; Morris, Cant. Lect., l.c. 1888, 765–70; Kew Bull., 1898, 1–13; R.E.P., Comm. Circ., 1897, No. 8; 1901, No. 4; Rep. Bot. Gard. Nigiri Hills, 1902, 8; 1902–3, 9–15; 1903–4, 2–5; Imp. Inst. Tech. Repts., 1903, 147–8; Tischcer, l.c. 1906, ii., 1006–7; Rubber Exper. in Bombay, in Agri. Journ. Ind., 1907, ii., pt. i., 80–1; Wright, Rubber Cult. in Brit. Empire, 1907, 21–2; Wright, Cocoa, 1907, 79.]

Parameria glandulifera, Benth.; APOCYNACEAE. The Talaking Milk Creeper. A large climbing evergreen shrub of the borders of tidal forests on the sea coasts of Tenasserim and the Andaman Islands. It is known as talasingok in Burmese. It would appear to have sometimes been confused with Willoughbea edulis. The milk is obtained by a somewhat destructive method of cutting the stem into short lengths, and allowing the milk to drain into vessels containing water at a temperature of 104° to 122° F. On agitation the milk coagulates. The plant may be propagated by cuttings with great facility. The yield seems to be remarkably high and the rubber of fair quality, perhaps equal to that of Fleva elastica. Hooper (Rept. Labor. Ind. Mus., 1906–7, 6) gives the analyses of three samples examined. They contained 92.39, 95.1 and 96.7 per cent. of caoutchouc. A sample from the Andaman Islands he found (l.c. 1905–6, 25) contained 92.5 per cent. of caoutchouc, 6.4 per cent. resin and 1.0 per cent. ash. In spite, therefore, of all that has been said to the contrary, this source of rubber seems worthy of more careful consideration than has as yet been meted out to it, and it seems probable that some cheaper and more economical process of collection might be devised than that practised at present, while the cost may be brought within permissible commercial limits.

In this connection it may be added that the percentage of ash is an important factor in determining the values of rubbers. The following average returns may, therefore, be of interest:—Para rubber, 1 to 2.5 per cent. ash; Ceara rubber, 2 to 3 per cent. ash; Assam rubber, 4 to 6 per cent. ash; Parameria rubber,
INDIGOFERA

Indigo.

Tonquin, and gave its valuation at 2s. to 2s. 1d. per lb. Dunstan then adds, "This material is evidently deserving of further attention." The Agricultural Ledger (1903, No. 10) gives the results of additional chemical investigations conducted by Leather, as also a note by Mr. S. Carr, Deputy Conservator of Forests, in which the methods of collection of the latex are described.

Subsequent samples were forwarded to the Imperial Institute for examination. It was reported that three contained so high a percentage of resin as to throw doubts on their being correctly determined botanically. The others showed a high percentage of good caoutchouc, and were valued in 1904 at from 3s. to 4s. a lb. [Cf. Morris, Cant. Lect., i.e., 1898, 792; Bull. Imp. Inst., Sept. 29, 1904, 150–9; Wright, Rubber Cult. in Brit. Empire, 1907, 28–9.]

D.E.P.

Willoughbiana edulis, Benth. Apocynaceae. The thicketknee, possibly also tulainago of Burma, and the lati-ana of Bengal, is an immense climber met with in the forests of Assam, Sylhet, Cachar, Chittagong, Pegu, and Martaban. It yields a large edible fruit, which from a general resemblance to the mango has suggested the name "climbing mango." At one time high expectations were entertained regarding Willoughbiana rubber. It has since transpired that much of the rubber in question will have to be transferred to other genera, and that so far as the Indian species is concerned (W. edulis), it must be no longer considered as a caoutchouc-yielding plant. Recent investigations conducted by Dunstan have shown, for example, that the very high percentage of resin (in some samples 84–6 per cent. with only 10–8 per cent. caoutchouc) necessarily exclude it from consideration as a rubber. [Cf. Wright, loc. cit.]

Low Yield of Caoutchouc.

Trade.

Trade in India-rubber and Caoutchouc Manufactures.—Such particulars (p. 654) as can be procured regarding the production of caoutchouc in India have been given. It remains to exhibit very briefly the traffic in rubber manufactures. There are no local (Indian) manufactures, so that the supplies of goods are drawn exclusively from foreign countries. In 1876–7 the imports of raw caoutchouc and of India-rubber manufactures collectively were valued at Rs. 1,27,759; twenty-five years later (1900–1) they came to Rs. 6,05,594; in 1903–4 to Rs. 7,03,003; in 1905–6 to Rs. 7,78,905; and in 1906–7, Rs. 10,04,782.

It may be here added that the imports into Great Britain during 1902 came to 419,375 cwt., valued at £5,180,262, and in 1906, 607,077 cwt., valued at £9,966,620. Of the last-mentioned amount Brazil alone contributed 263,918 cwt., and the total from British Possessions was 90,453 cwt. The exports equal about one-half the supply (390,252 cwt. in 1906)—the country which takes the largest amount being the United States (126,969 cwt. in 1906).

D.E.P.

iv., 383–469.

Indigo.

Improvement by Selection of Stock.

INDIGOFERA (INDIGO), the Dye-yielding Species.—A genus of Leguminosae which comprises some 300 species, distributed throughout the tropical and warm temperate regions of the globe—India having about 40. Western India may be described as the headquarters of the species, so far as India is concerned, 25 (thus fully half) being peculiar to that Presidency. On the other hand, on the eastern side of India (the provinces of Bengal, Assam and Burma) there is a marked decrease in the number of species but a visible increase in the prevalence of those that are met with. It is possible, moreover, that many more species afford indigo than those specially cultivated for the dye. Accordingly, cultivation of richer dye-yielding stocks has been urged as one of the most rational methods of improvement. [Cf. Watt, Anal. Trade and Comm. of Ind., Madras, 1899, 4.] This is of supreme moment in the crisis that has overtaken the industry. Prain and Baker (Notes on Indigofera, Journ. Bot., 1902, xi., 60–7, 136–44) have furnished a very instructive paper, which has already proved of the greatest practical value. So also
Leake ("The Localization of the Indigo-producing Substance in Indigo-yielding Plants, Journ. Roy. Hort. Soc., 1905, xxix., pts. 1–3; Annals of Botany, 1905, xix., 297–310) has devoted much attention to the selection of stock, and the practical results to be attained thereby. Space cannot be afforded here to do more than review very briefly the salient features of these and other special studies. This will be attempted while following the usual rule of treatment in alphabetical sequence of scientific names:—

This South American species is grown in Burma, Eastern Indo-China and Southern China, but never, so far as we now understand, in India proper. Moreover, there would appear to be three very distinct varieties (or perhaps more correctly distinct species, closely allied to *I. Anil*) that have to be dealt with in this position. These are:—

(a) *I. truxillensis*, N.B.K.; *I. tinctoria*, var. *oligophylla*, DC. An American species and very common plant. It apparently was the form chiefly cultivated in the West Indies during Sloane’s time, and is the wild indigo of West Indian writers. (b) *I. Anil*, Linn., var. *polyphylla*, DC.; *I. suffruticosa*, Miller, Gard. Dict., 1768 (ed. viii.), No. 2. This is the cultivated plant—*Xinhqollit pizabah* of Hernandez (Nova. Pl. Hist., 1651, 108), the wild form of which is the *suffruticosa*, *Linn.* (non Linn.). (c) *I. Anil*, Linn., var. *orthocarpa*, DC.

I. argentea, Burm. (non Linn.), Fl. Ind., 1768, 171, an Indian plant that is quite distinct from *I. articulata*, though often confused with it.

I. arrecta, Hochst. (Schimp., Herb. Abyss. Pl., n. 1923, non Benth.), in Richard, Fl. Abyss., i., 184. The Natal-Java Indigo. This is the well-known *degendege* (dek-indig) of Abyssinia and the chief indigo-producing species of Africa outside the area occupied by *I. articulata*. It is now largely cultivated in Java under the name of Natal Indigo. Of Java, Prain (in a letter to Barber) says, "In the beginning only *I. tinctoria*, probably introduced from India or Ceylon, was grown. This, however, towards the end of the seventeenth century, was replaced by *I. sumatrana*, which held its ground for a considerable time. In the West Indies and Brazil the cultivation began with *I. sumatrana*, which was imported as 'Brazil Indigo.' Later on, however, this plant was displaced by a native species *I. truxillensis*, which soon was supplanted by another and better native species, *I. Anil*. This species, *I. Anil*, has spread all over the world and is even now the most widely grown of the dye-yielding indigos; when it reached Java it displaced *I. sumatrana*. In the West Indies *I. Anil* finally met with a formidable rival in *I. guatimalensis* and in course of time the latter, being recognised as a superior kind, was adopted in Java to the exclusion of *I. Anil*. More recently in Java *I. guatimalensis* has been found to be less valuable than *I. arrecta*, and the latter has practically taken its place. The historical aspect of the subject therefore indicates the advisability of at least giving a trial to *I. arrecta* in Madras. It does, of course, follow that the plant will thrive, but if it does, it seems clear that it is the best species to grow. In Bihar, where it has been carefully tried, there are objections to the plant which it is hoped may be overcome; but in Lower Bengal it thrives much better than *I. sumatrana*. The advantages of the plant are twofold. It gives much more leaf, being a much larger plant, and it is stated by those interested in the preparation of indigo to give a higher percentage of dye from the same weight of leaf." The objections to which Prain refers have been ably dealt with by Leake. The plant was found to germinate so imperfectly as to render its cultivation unprofitable. It has the same defect as clover, namely, the seed-coat is very hard (Bloxam and Leake, *Aec. Research Work in Indigo*, 1905, 33). What is, therefore, required is a machine that will scratch the seed-coat and thus facilitate germination. Recently in the public press of India it has become customary to read of "Natal-Java seed scarified and ready for sowing" (see p. 671). Bergtheil (Ann. Rept. Imp. Dept. Agric., app., 1904–5) observes that the Java plant contains more potential colouring matter than do any of the plants ordinarily cultivated in Bihar. Mr. H. A. Bailey, who visited Java in 1899 on behalf of the Indigo Improvements Syndicate, was apparently the first person who pointedly directed the attention of Indian planters to this stock. F. M. Coventry furnishes returns which would seem to justify the opinion that the Java plant shows an increase of 35 per cent. in the amount of green plant cut per acre and of 45 per cent. increase in vat produce, over the ordinary plant of the United Provinces.
INDIGOFERA
TINCTORIA

INDIGO-YIELDING FORMS

Egyptian. — *I. articulata*, Guss., *Illustr.*, 1773, 49. This is *I. argentea*, Linn., *Mont. Pl.*, ii., 273, *non* Burm.; *I. epicota*, Forsk.; *I. carulea*, Roxb. Is the plant which yields much of the indigo of Arabia and Egypt, still sometimes met with in Western India and as far to the east as Bandelkhand and the Kistna highlands. Was formerly the species most largely grown in the Bombay Presidency, but nowadays is only occasionally seen under cultivation in Rajputana and Sind. PRAIN says that in the time of Roxburgh and Hamilton (1803-14) the Egyptian indigo still survived as an Indian species (probably escaped from cultivation) in Bihar, but now it seems to have quite disappeared from that region.

I. longeraemosa, Balfour, *Herb.*; *Batillon*, in *Bull. Soc. Linn.* Paris, 1883, pt. i., 390; PRAIN and BAKER, loc. 144. In the letter by PRAIN, to which reference has already been made, there occurs the following passage: — "In Madagascar and Zanzibar there is a species — *I. longeraemosa*, very distinct both from *I. tinctoria* and from *I. sumatrana* — that is valued by the people of these islands beyond all the other species they grow, and they grow the following: — (a) and chiefly *I. Anit*, (b) less often *I. tinctoria*, (c) occasionally *I. sumatrana*, and (d), in the highlands of Madagascar, *I. arrecta*." PRAIN then adds that as long ago as 1875-6, COL. BEDDOME found this very species both in Travancore and Tinnevelly, and subsequently it was found by Lawson in Travancore.

Forms of Tinctoria.

I. tinctoria, Linn., *Sp. Pl.*, 1753, 751. PRAIN and BAKER establish two chief varieties of this species with several very distinct cultivated states under these, some of which may have to be viewed as worthy of distinct specific positions. The following abstract may be regarded as setting forth the salient points:

(a) var. *macrocarpa*, DC. The special forms of this are:

The Wild Plant, apparently unknown to Linnaeus or De Candolle. It was found in Nubia by Kotschyi in 1841, and specimens which agree with it in every essential have also been found in Central India. Regarded as a distinct species its name would be *I. Bergii*, var. DC. [Cf. Duthie, *Fl. Upper Gang. Plain*, i., 255.]

The Southern or Madras and Ceylon cultivated plant. This is the plant dealt with by Linnaeus in his *Flora Zeylanica*, and by Burman in his *Flora Indica*. This particular form would thus appear to have been early cultivated in Southern India, though recently it has very possibly been completely displaced by *I. sumatrana*. "It was and still is the *I. tinctoria* of the cultivators in the Dutch Indies, where, however, the species is not now much in favour. Specimens of this form, evidently feral after escape, have been communicated from many places both within and beyond the limits of the area where it now is, or formerly has been in cultivation." PRAIN and BAKER, from whom the above has been derived, add that they have seen specimens of this particular plant from the Philippine Islands; from North Queensland; from the Laccadives, where it is described as forming thickets that cover a great portion of Kadamum Island; finally from Merwara in Rajputana, where it is not, and probably never has been cultivated. It is a wild plant in Merwara, growing by the sides of ravines, and bears the vernacular name of *jinjini*.

The Northern Cultivated Form. — This is largely in use in Northern India from Bihar and Tirhut westward by north to the Panjáb, where its area meets that in which some form of *I. argentea* is grown, and southward to the Cisrars, where *I. tinctoria* occurs. This, throughout the area specified, is the plant known as *nil*, and is the form to which the name *I. tinctoria* is applied. "It is not exactly what Linnaeus meant by *I. tinctoria*; it is, however, precisely what Gaertner intended by *I. sumatrana*, and what LAMARCK has figured as *I. indica*, but not the same thing as the old *I. indica* of Miller, which is *I. hirsuta*, L." (PRAIN and BAKER, *Fl. 65*). In the Annual Report of the Royal Botanic Gardens, Calcutta, for 1901-2, it is observed that while the Dutch held possession of Malabar this indigo plant, "apparently derived from the Eastern Malaya, came into use there." PRAIN (in the letter above mentioned) observes: "About that time, 1868, there was cultivated in Malabar a different plant, *I. sumatrana*, which seems to have been introduced a little later (whether from Malabar or directly from the Malaya cannot be traced) into Bengal, where prior to its introduction, indigo was not grown at all. This plant, which generally passes under the name of *I. tinctoria*, although it is not precisely the same as the true plant of that name, has now spread gradually westward and has driven out most completely the cultivation of the Egyptian indigo. "But what has happened in Northern India has also happened more recently in Madras. "This is all the more remarkable, because in all the older collections, such as those of
THE DYE OF MODERN COMMERCE

Indigofera

Other Indigoes

Wight, Stocks, Law and G. Thomson, *I. sumatrana* was reported only from Malabar and the Konkan, the Coromandel plant being always *I. tinctoria* proper." It is also the form of *I. tinctoria* that was introduced from the East into the West Indies, and is the *I. tinctoria* of Lumn. If, therefore, it be deemed necessary to give this plant a separate name and to remove it from being one of the cultivated states of *I. tinctoria*, then it will have to be called *I. sumatrana*, Gaurt. In addition to India it also occurs in tropical Africa and Formosa. It may be distinguished from the southern form by its leaflets, which are larger and ovate-oblong or oblong, instead of obovate or suborbicular. The pods are also (in *I. sumatrana*) shorter, thicker, and blunter at the apex, and are usually more numerous and straighter than in the Madras form (Duthie, *Ic. 255*). Leake has devoted much careful study to the cultivated races of this plant in relation to temperature and rainfall. His conclusions regarding the seed supply will richly repay careful perusal.

(2) var. *brachycarpa*, D.C. This form has been sent from Guatemala, Central America, Peru, etc. It is apparently not met with in India.

Other Indigo-yielding Plants.—The Indigo of modern commerce is thus obtained from one or other of the species of *Indigofera* discussed above. But species of *Indigofera* are distributed throughout the tropical regions of the globe (both in the Old and New Worlds) with Africa as their headquarters. And in addition to the Indigoferas several widely different plants yield the self-same substance chemically. Hence, for many ages, the dye prepared from these has borne a synonymous name in most tongues, and to such an extent has this been the case that it is impossible to say for certain whether the *nila* of the classic authors of India denoted the self-same plant which yields the dye of that name in modern commerce. The word *nila* simply means dark-blue colour, and is practically synonymous with *kala* (black). It is often used adjectively, such as in *nilgao* (the blue bull), *nilopala* (the blue stone or lapis-lazuli), *nilaman* (the sapphire) and *nilusfar* (the blue water-lily). *Nila* carries, too, the abstract "darkness," and only becomes a substantive to denote the dye-yielding species of *Indigofera* at a comparatively recent date. *Anil* comes from the Arabic *al-nil* through the Portuguese, and should have been written *annil*.

The woad of the early European authors (*Isatis tinctoria*) is grown to-day in Central Asia and has been so for ages past—a region where no species of *Indigofera* has been known to be grown (or possibly could be grown) as a source of indigo. The Sanskrit people may accordingly have first made acquaintance with the indigo of *Indigofera* in India itself, and it is just possible that their *nila* may have originally been the woad, which with the ancient Britons was used, like the indigo of the American Indians, to dye the skin and hair. Complex and difficult though the art of dyeing with Indigo may be, it is thus more intimately associated with the early human race than with any other known dye or pigment. And in India it would appear that a far larger number of plants are regularly resorted to as sources of this dye than is the case with almost any other country in the world. In addition to *Isatis* met with on the north-west alpine tracts and Afghanistan, mention has, for example, to be made of the *num* of Assam and Central China (*Strobilanthes flaccidifolius*, p. 1051); of the *ryom* (*Marsdenia tinctoria*, p. 774), found in the north-eastern tracts, a plant closely allied to the original indigo plant of Java; of an indigo plant (*Tephrosia purpurea*) well known in Bombay and Rajputana and closely allied to one of the indigoes of the Niger and Egypt; of the *Nerium* or *pala* indigoes (*Wrightia tinctoria*,
INDIGO
Indigo

THE INDIGO PLANT

p. 1131) of South India, the plant which would appear to have been used prior
the introduction of the species of Indigofera; of the indigo mining of Burma
(such as Gymnema tingens); of Cochin-China (Spilanthes tinctoria);
and of North China and Siberia (Polygnum tinctorum). These and
many others are plants which have been, or are being, used as sources of
this particular dye in some parts of India. Is it to be wondered at,
therefore, that the early records of the industry leave on the mind of the
student the suspicion that the plant used in early times was, in all prob-
ability, not always the indigo of to-day? Not only has the modern
industry shifted from Agra and Gujarat to Bengal, but the plant grown
has been changed completely. [Cf. Joret, Les Pl. dans L'Antiq., etc., 1904,
ii., 271, 345-6.]

It may serve a useful purpose to quote in some detail and in
sequence of date a few of the more instructive accounts of the indigo
industry of India. It is thus contemplated to concentrate attention on
the Indian issues, and if possible to exemplify from past historic
records and scientific experience the directions of possible economy and
improvement.

Historic Records of Indigo.—Periplus of the Erythraean Sea (80 A.D.)
(McCrindle, transl., 17, 109) speaks of indigo as exported from Barbarikon,
a Skythian town on the Indus and the port for the metropolis-Minnagar.
Marco Polo (1298) gives a grotesque, though accurate, account of the Native
indigo industry as seen by him at Collum (Quilon). "It is made of a certain
herb which is gathered, and (after the roots have been removed) is put into great
vessels upon which they pour water and then leave it till the whole of the plant is
decomposed. They then put this liquid in the sun, which is tremendously hot
there, so that it boils and coagulates, and becomes such as we see it. (They then
divide it into pieces of four ounces each, and in that form it is exported to our
parts)." Athanasius Nikitin (1468) (a Russian traveller) speaks of Kanbat (Cumb-
ay) where the indigo grows. Vasco da Gama (1498), Varthema (1503),
and Barbosa (1516), who all visited Gujarat and the west coast of Bombay, make no
mention of the indigo, from which circumstance it may be inferred to have been
a comparatively unimportant industry. García de Orta (1563), however, gives a
short account of its cultivation and manufacture in Western India. "He calls it
the Annil of the Arabs and Turks, the gali and-nil of Gujarath, and remarks that
it is tested for purity by burning, when there should be no sand in the residue,
and by being so light that it may float on water. Acosta (Tract. de las Drogas,
1578, 406) describes the Annil of Gujarat. Barrett (1834) mentions indigo from
Zindi and Cambia. It is not apparently referred to in Baber's Memoires, 1519-
25, and is but mentioned in the Ain-i-Akbarti, 1590 (Gladding, transl., ii., 28, 41),
as produced at Agra. Linschoten (Voy. E. Ind., i, 61-2; ii., 91) speaks of
"Annil" or indigo as it "grows only in Cambia and is there prepared and made
ready, and from thence carried throughout the whole world." So again, he says,
"Annil or indigo by the Gusesrates is called gali, by others nil: it is a costly
colour and much carried and trafficked into Portugal; it groweth in India in
the kingdom of Cambia: the hearbe very like rosemary, and is sowed like
other hearbes, and when the season serveth is pulled and dried and then made
wette and beaten, and so certain days after dried againe and then prepared." (In
passing it may be here pointed out that the passage just quoted implies that at
the time Linschoten wrote, the dry-leaf process was pursued in Gujarat.)

François Eyraud (Voy. E. Ind. (ed. Hakl. Soc.), 1601-10, ii., 339, etc.) repeats
the account given by Linschoten. In The First Letter Book of the East India
Company, 1605-6, Birdwood and Foster quote a letter of instructions to pur-
chase Indigo of Lahar (Lahore), Serchis (Sarkheej, 6 miles S.W. of Ahmedabad)
and Belondri (? Ballahi, a village 20 miles from Bhavanagar). Finch (Travels
in India, in Purches' Pilgrimes, 1607, i., 429) affords the first definite concep-
tion of the indigo industry of India, or rather of Agra and Fatehpur Sikri, and
from him perhaps dates the conception of the plant being an Indigofera-
"The herb Nil, growth in form not much unlike Gises or Chich-pease, having a
small leaf like that of Sene, but shorter and broader, and set on a very short

664
EARLY RECORDS OF BOMBAY INDIGO

foot-stalke, the branches hard and of a woody substance like unto broome. It
usually groweth not above a yard high, and with a stalke at the highest (which
is at the third yeare) not much exceeding a man's thumbe. The seed is included
in a small ronde codde about an inch long, resembling Fagimicromus, save that it
is more blunted at both ends, as it had been cut off with a knife. It carryeth a
small flower like that of Heart's-ease, the seed is ripe in November, and then
gathered. The herb once sowne dureth three years, being cut every year in
August and September after the raines. That of one yeere is tender and thereof
is made Notes; which is a weighty reddish Nil sinking in water, not come to his
perfection : that of the second yeere is rich, and called Cyerce, very light and of a
perfect violet colour, swimming on the water : in the third yeere the herb is de-
clining and this Nil is called Cuilfeild, being a weightie blackish Nil, the worst
of the three. This herbce being cut the month aforesaid, is cast into a long cistern,
where it is pressed down with many stones, and then filled with water till it be
covered, which so remaineth for certain dayes, till the substance of the herb be
gone into the water. Then they let the water forth into another round cistern
in the midst of which is another small cistern or center: this water being thus
drawn forth, they labour with great staves, like batter or white starch, and then
let it settle, scumming off the clear water on the toppe : then labouring it afresh,
and let it settle again, drawing forth the clear water, doing this oft, till nothing
but a thick substance remaine : which they take forth and spread on cloth, to
dry in the sunne : and being a little hardened, they take it in their hands and
making small balls, lay them on the sand to dry (for any other thing would
drink up the colour), this is the cause of the sandy foot. So if rain fall, it loseth
his colour and glosse and is called Alid. Some deceitfull will take of the herbce
of all three crops, and steepe them altogether, hard to be discerned, very knaydly.
Four things are required in Nil : a pure graine, a violet colour, his glosse in the
Sunne, and that it be dry and light, so that swimming in the water, or burning
in the fire, it cast forth a pure light violet vapour, leaving a few ashes."

Sir Thomas Roe (Embassy to the Court of the Great Mogul, 1616, i., 270) speaks
of the rise in price of Agras indigo and of the sales being effected under charla (or
fardles). The charl of Biana indigo has been computed as being equal to six
maunds. Of the same year, Foster (E.I.C. Letters, iv., 241) records the following
curious passage:—"Indigo is made thus. In the prime June they sow it, which
the rains bring up about the prime September: this they cut and it is called
Nesty, and is a good sort. Next year it sprouts again in the prime August,
which they cut and is the best indigo, called Jerry. Two months after it sprouts
again, which they cut and thereof they make the worst sort; and afterwards
they let it grow to seed and sow again. Being cut, they steep it 24 hours in
a cistern of water; then they draw it into another cistern, where men beat it six
hours forcibly with their hands till it become blue, mixing therewith a little oil ;
then, having stood another day, they draw off the water and there resteth settled
at the bottom pure indigo (which some to falsify mix with dirt and sand) which
they dry by degrees, first in cloths till the water be sunk from it and it be curdled;
afterwards they dry it in round gobbets."

Here we have a distinct reference to the indigo plant having been grown for
two or three years without being uprooted or re-sown. H. A. Bailey of Etawah
describes the system that exists to-day in Shahabad, which in some respects
resembles the old method (E.I.C., Lc. iv., 356). This system has long since been
abandoned in the indigo districts proper, the change possibly denoting new stock,
when that system was unnecessary. The "Nasty" crop is doubtless the "Noste"
of Finch, both words being probably derived from Naubha (the young plant); and
"Jerry" being the "Cyeree" of Finch, both words doubtless being derived from
jari, which would mean "sprouting from the root" (jarr). With the change in
the system of cultivation both these terms have become disused and forgotten.
Mandelslo (Travels, in Olearius, Hist. Muscogn, etc., 1638, 83–4) gives a most curious
account of the cultivation and manufacture of indigo in Gujarat (Ahmeda-
bad) which (as with Linschoten's account above) involves acceptance of belief
that the method of manufacture pursued was that known as the Dry-leaf. His
description of the flower being like that of a thistle was either a mistake (the plant
being confused by Mandelslo with Carthamus) or the plant used at that time was
not Indigofera. The former seems the more plausible explanation. The passage
may be usefully quoted in full:—"The best indigo in the world comes from a
part of Amadabath from a village called Chirchees, whence it derives the name. The
herb of which they make it is that of yellow Parsnip, but shorter, and more

665

Grown for Three Years.

Beating the Liquid.

Balls dried in the Sun.

Roe's Account.

Oil mixed with Indigo.

"Nesty" and "Jerry" Crops.

Dry-leaf.

Mandelslo's Account.
bitter, sprouting forth into branches like a Reed, and growing in kind years, six or seven foot high; the Flower is like that of a thistle, and the seed like that of Fennu-greek. It is sown in June and cut in November and December. It is sown but once in three years, and the first year the leaves are cut off within a foot of the ground. The stalks are taken away, and the leaves are set adrying in the Sun, and that done, they are set soaking, for four or five days, in a stone-trough, containing about six or seven foot water, which is ever and anon stirred, till such time as the water hath sucked out the colour and virtue of the herb. That done, they let out the water into another trough, where they suffer it to settle for one night. The next day, all the water is taken away, and what is left in the bottom of the trough is strained through a coarse cloath, and is set adrying in the Sun. And this is the best Indico; but the country people adulterate it, by mixing therewith a certain earth of the same colour. And whereas the goodness of this Drug is discovered by its lightness, they have the cunning to put a little Oyle into it, to make it swin upon the water."

"The second year, the stalk which was left the year before shoots forth other leaves, but they are not so good as those of the first. Yet is this preferred before Gyngey, that is, wild Indico. It is also the second year that they suffer some part of it to grow up to seed. That of the third year is not good, and consequently not sought after by foreign Merchants, but is employed by the inhabitants of the country in the dyeing of their Cloaths. The best Indico is almost of a violet colour, and hath somewhat of its smell, when burned. The Indosthana call it Anild, and after it hath been in the ground three years, they suffer the Land to lye fallow for one year ere they sow it again."

Terry's Account.

Terry says of Gujarat in 1622, "The Indico we bring thence is good, and a rich commodity. It is there made of leaves not bigger than those of our Gooseberry bushes, and the shrubs that bear those leaves are about their bigness. These leaves they slip off from the small branches of those bushes, which grow with round and full heads without prickles. The leaves thus stripped off, are laid in great heaps together certain days till they have been in a hot sweat; then are they removed and put into very great and deep Vessels filled with sufficient quantity of water to steep them in, where they leave their blue tincture with their substance; this done, the water is drained out into the exceedingly broad, but very shallow Vessels or Vats, made of Plaister (like to that we call Plaister of Paris) which will keep in all the Liquor till the hot Sun in short time extracts the moisture from it; and then what remains in the botomme, is a Cream about one quarter of an inch thick, which suddenly becomes hard and dry, and that is our Indico, the best sort whereof comes from Biana, near unto Agra, and a coarser sort is made at Curissees, not far from Amadamas; about which two places, are a very great number of those shrubs planted, which bear those leaves."

"Could the plant have been Indigofera? The passage is taken from Petro Della Valle (Travels (ed. Hakl. Soc.), 1665, 367). Francis Bernard (Travels, 1656, 283) makes mention of the Anil or Indico of Delhi. Tavernier (Travels, 1670 (ed. Ball), ii., 8-12) of all the early European authors gives perhaps the most detailed and accurate account. He discusses the production in Gujarath (Sharkej, Ahmedabad, Surat, and Broaach), of Golomda, of Agra (Biana, Indous and Corsa) and of Bengal. He then adds that the Dutch Company convey the Bengal dye to Masulipatam, and that the Bengal and Gujarath indigos can be purchased at 30 per cent. less than that of Agra. The reference to a Bengal indigo at the date in question is certainly remarkable. His account is too lengthy for quotation, but it will richly repay perusal. He describes the steeping vats, the use of oil, and the drying in the sun discussed by other travellers. Hove (Tours in Gujarath, etc., 1787, 107-8) gives full particulars of several plantations visited by him. The plant, he says, was usually sown in the beginning of the rains and suffered to grow for two seasons. The first crop is cut at the end of the rains and the last about March or April. So late as 1820 we read of indigo planting having existed in Gujarath, and a number of unused pits near old villages and among the buried cities of the Satpuda mountains bear silent testimony to the former important industry of indigo manufacture. Rheede (Hort. Mal., 1678, i., 101-2, t. 54; ix., t. 30) gives a brief account of the indigo industry of the Malabar coast and furnishes two pictures, which thus leave no doubt that the plant or plants to which he alludes were species of Indigofera. Sir W. Hedges, during his agency of Bengal, wrote a diary, 1681, which deals with his tours of inspection through Hugli, Malda, Dacca, Balasore, etc., and discusses the
articles of merchandise there met with. It is noteworthy that he makes no mention of Indigo. We are thus led to believe the cultivation and manufacture of indigo, which in time became one of the most important of Bengal industries, could not have existed in the districts visited by Hedges. But we learn it was established in Tirhut originally by the Dutch, for we read of their having owned the Singa concern in 1791. It would seem, however, from Tavernier’s allusion to Bengal indigo that a Native industry had existed a little earlier. But shortly after Hedges’ report a change was effected, owing to a Resolution of the Directors of the East India Company. European planters were brought from the West Indies to Bengal to undertake the cultivation of indigo. In 1790 indigo factories were accordingly established in Jessore. Hardly, however, had the industry been thus organised when it was ruined, for we read in Sir W. W. Hunter’s *Imperial Gazetteer of India* that “English indigo planters have forsaken the districts of Hugli, the 24-Parganas, Dacca Fairdpur, Rangpur, and Pabna, now dotted with the sites of ruined old factories.” The industry had thus been established and ruined in Bengal.

It is perhaps hardly necessary to continue this series of quotations much further by supplying a correspondingly detailed selection regarding Africa, Egypt, the West Indies, America, etc. The following may, however, be of value to persons interested in the history of indigo manufacture.

Rochefort (*Histoire Nat. et Mor. de l'Afrique Antilles*, 1658, 98) speaks of the indigo being produced from a plant which rises only about a foot and a half from the ground. It has small leaves of a light green colour which turn yellow. The flowers are reddish. It grows from seed. Its odour is very disagreeable, unlike the Madagascar species, which has small flowers of a whitish-purple colour and a pleasant smell. Pomet (*Histoire Gen. des Drogs.*, 1694, 141–5; also Engl. ed. with annot. from Lemerit and Tournefort, 1712, 89–91) gives a brief description and an engraving of the plant, and these leave no doubt that it was an *Indigofera*. It is sown, he tells us, by the Americans in holes a foot deep, and in two months’ time the plant will be ready to cut, and if left for three months will yield both flower and seed. “Indigo is a meal or flour,” he observes, “made by means of water and oil-olive out of the leaves of the *Anil* or indigo plant; for there is a difference betwixt the leaves of and of the small branches. The choicest of the former sort which bears the surname of Serquisse (Sarkej),” “They cut the said herb with a sickle when the leaves begin to fall upon touching them; and after they have stript them from the branches, they put them into sufficient quantity of water, which is in a vessel called the steeping Vat, then letting them infuse thirty-six hours; after which they turn the cock in order to let the water run off, which is tinged of a green colour, inclining toward blue, into a vessel of the nature of a churn, which is worked by the labour of several men, by means of a Rouller or Turner of Wood; the ends of which run pointed, and are hooped with iron; this they work till the said water abounds with a lather, then they cast into it a little oil-olive; to wit, one Pound into such a Quantity of the Liquor as will yield seventy pounds of indigo, which is the quantity now sold in a barrel; and as soon as the said oil is thrown in, the Lather separates into two parts so that you may observe a Quantity curdled as milk is when ready to break; they then cease churning and let it stand to settle, which when it has done some time, they open the Pipe or Cock of the Churn, in order to let the water clear off, that the meal which is subsided may remain behind at the Bottom of the Vessel like clay or Lees of Wine. Having decanted it thus, they put it into straining Bags of Linnen to separate what water was left, then they convey it to the Chests or Boxes that are shallow to dry it, and being dried, it is what we call Indigo.” Pomet furnishes (plate 35) an admirable picture of an indigo factory which shows the water tank, the steeping vat, beating vat and evaporating vat. The mechanical contrivance for churning or beating the liquid is also shown, but the author makes no reference in the text to his plate, and it would appear accordingly to have been copied from some still earlier author. Pierre Labat (*Voy. aux Isles de L'Amerique*, 1724, i. 90–9, t. 90) gives a long and interesting account of the indigo industry which was translated into English by Philip Miller and given in his *Gardener’s Dictionary* (1st ed., 1731) under the name *Anil*, from the belief, apparently, that it was fully representative of the industry as a whole. But Labat deals very nearly exclusively with the indigo of Martinique, and his description, like that of Pomet, is more characteristic of the Antilles and the West Indies than of India proper. In two months’ time, says Labat, the first crop of cuttings can be taken, and if the rain continues, subsequent
cuttings may be made every six weeks, and the plants continue to bear for two years.

Brownes (Hist. Jam., 1789, 302-5) describes two forms—the wild indigo and the Guatimala indigo. He views the wild as only the survival of a still earlier cultivation, the buildings of which often "remain very perfect to this day." Brownes gives interesting particulars of the "best engine" seen by him for beating; this was in design much the same as some of the contrivances patented in India a century later. He is one of the first authors to mention the use of heat in drying the indigo. "The Magma or mud" is by some put into a cauldron and heated over a gentle fire, but not so far as to boil, and is then emptied into little "ozenbrick" bags to drain; by others it is not heated, but immediately put into the like bags to drain. Edwards (Hist. British West Ind., 1793, ii., 280-8) speaks of three species of indigo, viz. the wild, the Guatimala, and the French. Of these the "French surpasses the Guatimala in quantity but yields to it in fineness of grain and beauty of colour." Lunan (Hort. Jam., 1814, i., 419-26) gives a most instructive account both of the plant grown and the method of manufacture pursued in Jamaica, but quotes very largely from both Browne and Edwards. The plants are regularly laid in the steeper with the stalks upwards, which, he says, hastens the fermentation. None of these West Indian writers, let it be specially noted, speak of the dry-leaf process—the whole plant is carried at once to the steeping vats. After being beaten by various contrivances a little clear lime-water is gradually let in to augment and precipitate the faecula. Too large a quantity of lime would render the indigo hard and of a greyish colour. The faecula is placed in bags and allowed to drain; these are then placed within a press and the remainder of the water squeezed out. The dye is next removed from the bags, placed on a table, cut into square cakes and dried in the shade—the sun being regarded as hurtful.

The East India Company published in 1836 a series of reports and letters regarding the indigo industry, the preface to which records (what may have been inferred from the above series of quotations) the migration from and return again to India of the industry. That work will be found of the greatest possible interest, and should be consulted for historic details. Mr. Minden Wilson has written in the Indian Planters' Gazette a series of graphic historic sketches of the introduction of Indigo in Bihar. From these it would appear that Mr. Grand, the husband of the lady who subsequently married Prince Talleyrand, was one of the founders of the industry. Wilson gives the dates of several concerns—Contai was opened out about 1778 and Singia in 1791; but the last mentioned, as already stated, originally belonged to the Dutch East India Company. These are representative, the Tirhut industry having been mainly established between 1778 and 1800. The Court of Directors of the East India Company sustained severe losses, however, by their endeavours to re-establish the Indian industry, though they obtained the satisfaction of knowing that they had been successful. In time they accordingly threw the traffic open to all, and hoped that their servants might find in indigo "a mode of remitting their fortunes to Europe which would be legal, advantageous and adequate." For twenty-two years (from 1780 to 1802) the Company directly supported the indigo industry and placed India one of the foremost rank among the indigo-producing countries of the world. They, however, continued to make purchases of indigo for the purpose of remittances, and to ensure the supply they even made advances to the special factories that had contracted to sell their produce to the Company. About this time also it was recognised that the industry could not be regarded as successfully established in Bengal so long as it was exclusively held by the Anglo-Indian community. It was accordingly arranged that purchases should be made from, and advances given to, factories owned by Natives provided the security was "sufficiently respectable and the quality fit for the European market."

But the story of the indigo industry is more entertaining historically and more pathetically instructive than that of almost any other Indian agricultural or industrial substance. The main facts may, therefore, be here briefly recapitulated:—There is abundant evidence in support of the belief that when Europeans first began to purchase and export the dye from India, it was procured from the Western presidency and shipped for the most part from Surat. It was carried by the Portuguese to Lisbon and sold by them to the dyers of Holland. It was the desire to secure a more certain supply of dye-stuff that led to the formation, in 1631, of the Dutch East India Company, and shortly after to the overthrow of the Portuguese supremacy in the East. The success of the Dutch merchants
ENGLISH INDIGO-DYEING

INDIGOFERA
Stock Improvement

Protection of Wood.

Indigo and Wool.

England and Indigo.

Colonial Competition.

Cultivation in West Indies abandoned.

Re-establishment in India.

Troubles in Bengal.

Migration to Bihar.

Chemical Discovery.

Improvement of Stock.—Sir Edward Law (formerly Finance Minister of India), in a letter to The Pioneer in December 1905, refers to his views regarding the future of the indigo industry:—"It would appear to be assumed," he says, "that because unfortunately the production of indigo continues to fall off, my belief in the possibility of recovery of the industry is a mistaken one. In my last budget speech in March 1904, I enumerated the following improvements as necessary to effect a reduction in the cost price of indigo and thereby secure a profit to growers and manufacturers:—(1) that the plantations should be placed on a sound financial basis, and cease to remain in a position where requirements for cash in seasons of dear money could only be satisfied by transferring profits from the pockets of the planters to those of the money-lenders; (2) economy in management; (3) selection of seed and propagation of the qualities yielding the highest percentage of indigotin and best suited to local conditions of climate and soil; (4) rotation of crops to obtain good profits from the land when not under indigo, and thereby reduce the cost of cultivation of the plant; (5) chemical improvements in manufacture."
it can be stated that all the improvements I indicated as necessary have been carefully and persistently tried, and that still natural indigo cannot be made to pay, I shall with great regret have to admit that I have been wrong."

There would seem no doubt that each one of the conditions of improvement indicated by Sir Edward are of vital importance; and what is more to the point, hardly any of them have been successfully and completely investigated. A considerable advance would appear to have been attained recently by Bloxam, in his chemical studies of the dye. Leake commenced research into the races of the plant grown and the localisation of the dye within the plant tissue, but his studies were brought to a sudden termination, when on the threshold of possible practical results, through the severance of his connection with the Indigo Planters' Association. It is understood that a start has also been made by the new research station under the direction of the Inspector-General of Agriculture, from which much may indeed be expected in the future. The planters themselves, in their anxiety for alternative crops to be grown on the land when not under indigo, are concerned with an issue of great practical value.

Leake has obligingly furnished for this work a review of his own results and those of other workers in the path of indigo-plant improvement, the passages from which will be indicated by quotation marks.

Present Position of the Industry.—"It may be affirmed that the methods employed for the production of the dye are very crude. The fluctuations in the daily outturn are very large, and all attempts to control the yield have so far proved unavailing, if not prejudicial. This is only one way of confessing our ignorance of the steps of the process. So long as the planting community enjoyed a practical monopoly this inability to control was of little moment. A fall in the quantity of dye produced implied a corresponding rise in price. With the introduction of the synthetic product a short yield no longer meant enhanced price, and this fact, associated with a series of bad seasons, has reduced the margin of profit to a vanishing point. If natural indigo is to compete successfully with its synthetic rival, there is no longer room for the losses which the fluctuations above noticed necessarily involve. A study of the manufacture of indigo reveals how little at present is known of the chemical and bacterial changes involved. Until these have been worked out, little can be hoped for from improvements in the methods pursued. One fact alone is evident, namely that only a fraction of the latent dye-forming power is developed.

"For the present, therefore, the planters must look elsewhere to find relief from the severe competition of the synthetic product. The two lines that suggest themselves and which are, to a small extent, receiving attention, are the introduction of supplementary crops and the increase in the yield of plant per acre (cultivation) as opposed to the increase in the yield of dye per unit of plant (manufacture). The first of these falls outside the province of this article. The second falls naturally under two heads (1) improvement of the present plant *I. sumatrana* by seed control, etc.; (2) introduction of other and richer stocks.

"(1) For the same reason that the *mahai* (indigo manufacture) cannot profitably be altered at the present time, it is also impossible to progress in any process of selection of stock, and, as long as it remains impossible
YIELD ESTIMATED TO STOCK

INDIGO FER A
Stock Improvement

Seed-producing Areas.

Western and Eastern.

<table>
<thead>
<tr>
<th>Western Area</th>
<th>Eastern Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 maunds</td>
<td>140 maunds</td>
</tr>
<tr>
<td>62-5 "</td>
<td>54-4 "</td>
</tr>
<tr>
<td>66 "</td>
<td>82 "</td>
</tr>
</tbody>
</table>

Since the leaf is the main dye-yielding part of the plant, it is obvious that large benefits are likely to be derived from a limitation of the seed-producing area.

(2) "For some years attempts have been made to introduce other species of Indigofera; and that species which has yielded the most promising results is I. arrecta, Hochst. It must be borne in mind, however, that Java indigo does not fetch the price of good Bengal indigo, although the percentage of indigotin is very high in the former, and that this may mean a specific inferiority in the dye obtained from I. arrecta.

A difficulty in obtaining a good germination has alone checked the general cultivation of this plant. The defect has, however, been traced to the large percentage—between 90 and 96—of 'hard' seed. With the introduction of a seed-treating machine this difficulty has been removed and I. arrecta will probably be extensively cultivated" (Leake) (see p. 661).

The Localisation of the Indigo-producing Substances in Indigo-yielding Plants.—The following is a brief abstract of the contents of the paper on this subject:—"Some attempts have been made to trace the function and place of the indigo-yielding substance in the plant metabolism. For instance, Molisch tentatively ascribes to it a position among the anabolic products, and attempts to establish a direct relation between its formation and the chloroplasts. His arguments are largely based upon the localisation of indigo when precipitated within the tissues. He traces a relationship between the chloroplasts and the grains of indigo thus precipitated. This relationship is difficult to uphold, as the present writer has endeavoured to show. The substance may be found in such tissues as pith, xylem-parenchyma, phloem, fibrous cortical tissue, epidermis and in embryonic tissue, even in the embryo sac. In chlorophyll-bearing tissues, it is difficult to trace any relationship between the chloroplasts and the precipitated grains of indigo. By this method of localisation it is impossible to bring conclusive evidence to prove the absence of a relation between the indigo-yielding substance and the chloroplasts. To establish such a relation other lines of investigation will have to be resorted to" (Leake).
CULTIVATION.

Area and Production.—Perhaps one of the most surprising features of indigo cultivation is the variation of the period of occupation of the soil. In some localities the crop is obtained in three months from time of sowing, and from this as a minimum up to as much as eighteen months every possible period is manifested. Speaking generally it may be said that the system of taking several cuttings a year and allowing the plant to occupy the soil for two or even three years seems to have been discontinued—possibly as a consequence of the change that has taken place in the stock now chiefly grown. In the upper provinces, especially where irrigation prevails, indigo occupies the soil in annual rotation with wheat or rice, and is regarded as a catch crop that greatly improves the soil. So much is this the case that indigo has often been recommended as a green manure to be grown temporarily and ploughed into the soil. But in Lower Bengal, on the other hand, the spring-sown crop calls for attention at the very time of the principal rice sowings, and it is therefore an unpopular crop with many cultivators. But a far more serious difficulty has arisen in the production of artificial indigo. The seriousness of this aspect may be at once exemplified by the figures of area and yield. In 1892–3 the area in all India was 1,218,766 acres and the yield 179,056 cwt.; in 1894–5 the corresponding figures were 1,668,042 acres and 237,494 cwt.; in 1896–7, 1,608,901 acres and 168,673 cwt.; in 1898–9, 1,010,318 acres and 139,320 cwt.; in 1900–1, 990,375 acres and 148,029 cwt.; in 1902–3, 645,511 acres and 79,207 cwt.; in 1904–5 the area was 473,757 acres and the outturn 56,200 cwt. Thus in twelve years the area under the crop and the yield decreased to one-third their former magnitude. The most recent forecasts indicate that the area decreased still further in 1905–6, viz. to 583,600 acres with a yield of 46,500 cwt., but the estimated area for 1906–7, namely 452,800 acres, has shown a slight improvement in yield of dye—69,700 cwt.

Land Tenure.—It is impossible, in the space at disposal, to do more than touch upon the system of land tenure. There are commonly three systems throughout the indigo district of Bihar at present under European control. In the first of these the planter is the absolute possessor of the land, known as zerat lands. In the second, as the result of the lease by the zamindars to the planters of certain villages, the factory claims some portion—usually two to threecottas per bigha—of the highlands for the cultivation of indigo. The portion assigned for indigo is usually changed every two or three years. In both these cases the cultivation is effected by labour hired by the factory. In the third, the raispat, under no compulsion, puts a portion of his land into indigo and sells to the factory the plant—either on a valuation of the standing crop or measurement of the amount cut.
"The area in which the cultivation of indigo reaches the highest development is Northern Bihar, the chief districts of which are Champaran, Muzaffarpur, Darbhanga and Saran. In these districts the concerns are entirely under European management. In other areas the specialisation in the methods of cultivation and manufacture is not carried to the same extent. It will be sufficient, therefore, to refer in detail to this area alone, and in the case of other areas to draw attention merely to the points of divergence." (Leake).

BENGAL.—Area and Production.—In 1904-5 the total area under the crop, according to the Agricultural Statistics, amounted to 223,100 acres, and the output to 24,300 cwt. Cultivation reaches its highest development in Northern Bihar; the chief districts of which are Champaran, which in 1904-5 had 84,000 acres; Muzaffarpur, 35,000 acres; Darbhanga, 32,900 acres; and Saran, 18,000 acres. The final forecast for Bengal in 1906 estimates the total area as 137,800 acres and the yield as 1,325,400 lb. (11,816 cwt.). By way of contrast it may be added that the area devoted to the crop in Bengal during 1894-5 was 629,100 acres, which yielded 104,485 cwt. of dye.

Bihar.—"As cultivation is at present practised, indigo forms a '16-anna' crop. Preparation of the land commences at the end of the rains early in October, as soon as the land is cleared of the previous crop. It is thoroughly ploughed and finally levelled by the application of the choki or banghar—a log of wood with the lower surface flat or hollowed, drawn by two or four bullocks. Usually the land is again ploughed and levelled or 'compacted' after a few days—a process which may be repeated as many as four times. In the intervals between the ploughing, gangs of coolies with short sticks are sent over the land. These men collect the stumps of the previous crop, weeds and such like matter, thus clearing the land, and at the same time use their short sticks to break down any clods.

"The whole of this process is aimed at reducing the surface soil to a state of fine division which will admit a further compacting to be readily effected. It is clear, therefore, that the extent to which the land is alternately ploughed and 'choki-ed' will depend on the nature of the surface soil. In the high, light (sumbe) lands a relatively small number of ploughings will be sufficient; while in the low-lying clay (mattyar) lands, a greater number will be required before a sufficiently fine texture is obtained. When the soil is reduced to a sufficiently fine state of division, the plough is no longer used and the choki is only applied at intervals—two or three times a month until the time of sowing.

"The reasons for the adoption of these somewhat intricate processes will become plain when certain peculiarities of the soil and climate of these districts are explained.

"Indigo is sown at the commencement of the hot weather—late February or early March. Since the end of the previous rains—early October—only an inappreciable amount of rain has fallen, for in these districts the average total rainfall from November to May, inclusive, is under three inches. The planter, therefore, is entirely dependent on the moisture retained by the soil from the previous rains, both for the germination of the seed and for the support of the young plant until the break of the rains in June. It will be readily understood that, with the temperatures and low atmospheric humidity which prevail at the time of sowing, the surface soil would soon lose all moisture unless this be constantly replenished by
INDIGOFERA

THE INDIGO PLANT

Soil.

a supply from the deeper layers. Throughout the area the soil consists of an extremely fine alluvial deposit which extends down to and below the water-level—20 feet approximately. It is this unusual condition which makes a rapid capillary movement of water possible. Unless, then, the superficial four or five inches which have been disturbed by the plough are compacted to an extent which will allow the capillary rise of water to take place with a degree of rapidity sufficient to keep pace with the evaporation of moisture caused by the sun’s heat, germination and subsequent growth of the plant will be impossible. It is to produce the necessary degree of compactness in the superficial soil that the above processes are adopted.

Throughout this period—November to February inclusive—the lands are kept scrupulously ‘clean’ by constant weeding. Sowing, as already stated, usually commences in late February or early March. The exact date is dependent chiefly on the temperature, and it is the usual custom to wait till a night temperature of 60° is recorded. Once sowing is commenced, it is carried on with the utmost speed possible. Under the most favourable conditions the increasing day temperature will soon deprive the superficial soil of its moisture, and it is necessary—if the plant is to survive—that it shall have developed a sufficient length of root to be no longer dependent on such moisture. The seed is sown by means of drills, each drawn by two bullocks. Briefly, they consist of a trough, containing the seed, into which small wooden wheels dip. When the drill is in motion these rotate and pick up three to four seeds by means of shallow holes cut at regular intervals in their circumference. The seeds are thus carried forward and dropped down a slot, by which they are guided into a shallow furrow formed by a share situated in front of the slot. Each drill has six shares, corresponding to six wheels set at regular intervals, and thus sows six lines. As soon as the seed is sown a light choki is passed over the field and the seed is thus brought into intimate contact with the moist soil at a depth of about one inch from the surface.

At the present time 8, 12 and even 20 seers (40 lb.) are sown per bigha (seven-eighths acre). There is no doubt that this is excessive, and it is difficult to understand how the practice has arisen. It is quite possible, with good seed, to obtain a yield in no way inferior to that normally obtained when using only four seers (8 lb.) per bigha. During the hot weather, growth is slow, but with the break of the rains this rapidly increases. The commencement of cutting depends to a large extent upon the date at which the rains break, but usually takes place about the middle of June. The low-lying crops are first cut, both because the more abundant moisture has given greater growth and because delay in cutting causes considerable risk of loss from sudden flooding. Two crops are normally obtained except when the plant is growing in the river-bed, where the rise of the river renders only one possible. These two cuttings are known respectively as the morhun and khati cuttings. The crop is entirely hand-cut, and the cut plant is loaded into bullock carts and dispatched to the factory with the least delay possible. Immediately after the morhun crop is cut the land is ploughed. This, without damaging the crop, renders the surface open and uneven, and subsequent rain is retained in greater abundance. After the second cutting the land is ploughed and sown with a rabi crop or prepared, as before, to receive indigo in the following season. On arrival at the factory the carts are weighed, and the weight of plant is obtained approximately by difference."
PRODUCTION IN UNITED PROVINCES

INDIGOHERA

Cultivation

Lower Bengal.—"The chief crop of indigo in Lower Bengal is obtained from the annually inundated tracts of land. The seed is usually sown broadcast upon the muddy banks left by the retreating water during the early part of October. In the case of the higher lands only is the plough used and the land, to a certain extent, prepared. The crop is cut in the following June and July" (Leake).

In the districts of Bihar south of the Ganges, Patna, Gaya and Shahabad, the system of cultivation is closely allied to that pursued in the United Provinces. The soil is non-retentive of moisture, and the sowings are carried on chiefly during the rainy season in July, August, and September. The early rainy-season sowings are called asarhi, and the crop from these is cut in September and October. The later sowings continue to grow throughout the year and are reaped in July and August, when the crop is known as khunti, but that name is also applied to the second year's crop from the early sowings.

UNITED PROVINCES.—Area and Production.—The area in 1904-5 was 107,516 acres: 98,695 acres in Agra and 8,821 in Oudh. The estimated output was 8,000 cwt. These figures show a great contraction on those of the previous year. The chief districts in Agra are ordinarily Aligarh, Azamgarh, Balandshahr, Etah, Cawnpore, Mainpuri; and in Oudh, Fyzabad. The final forecast for 1906-7 shows a still larger reduction to 40,374 acres: viz. 34,809 in Agra and 5,565 in Oudh. This represents a decrease of 75-2 per cent. on the average area of the years 1900-4, and of 83-5 on the average for 1895-1904.

Commenting on these provinces, Leake says, "In the districts forming the west of the United Provinces and the east of the Panjáb, the cultivation of indigo for dye is practically extinct. The plant is, however, still grown to supply seed to Bihar. The seed is sown broadcast after the land has been irrigated and ploughed during March and April, and in those districts where dye is manufactured the plant is ready to be cut in August, but is left in the ground till December if seed is required. The process of dye manufacture, where practised, is essentially similar to that of Bihar."

According to Duthie and Fuller (Field and Garden Crops, 1882, i., 43-50, t.xii.) it may be sown either in spring or at the commencement of the rains. In the first case it is called jamooa or chaiti, in the second asarhi. Jamooa indigo is ready to cut in August, asarhi a month later. Land under jamooa is as a rule ploughed up immediately the crop is cut; asarhi indigo is left in the ground till the following rains, when it springs up again and yields a khunti rop. Generally it is sown alone, though occasionally mixed with jûar (Sorghum vulgare) or arhar (Cajanus indicus), and is surrounded with a border of castor or sun (hemp). A loam is prepared; but where copious irrigation is possible, much of the cultivation is on the
lightest possible sand. Four ploughings are held advisable, though frequently in canal-irrigated districts the land receives only one. For\textit{ jamova} indigo the ground must be watered before ploughing, while the\textit{ asarhi} fields are not ploughed till softened by the rains. The crop must be kept free of weeds, and two weedings at least are required. The cost of cultivating an acre of\textit{ jamova} indigo, to be cut in August, and followed by a\textit{ rabi} crop, is estimated at Rs. 15-7a.

\textbf{CENTRAL PROVINCES AND BERAR.}—\textit{Area and Production.}—Only 110 acres were reported in 1904-5 as under indigo, these being in the districts of Buldana, Hoshangabad, Narsinghpur and Chanda. In Akola the seed is sown about the middle of the rainy season or latter half of July, and the plant is ready for use in October or November, when the flowers begin to form. \[\text{[Cf. Sule,} \text{Monog. Dyes and Dyeing, Berar, 1896, 2.]}\]

\textbf{PANJAB.}—\textit{Area and Production.}—The estimated area in 1904-5 was 53,000 acres, and the yield 9,900 cwt. The large interest in seed cultivation accounts apparently for the disproportion of yield to acreage. The most important districts are Multan, Muzaffargarh, Dera Ghazi Khan and Rohtak. The final forecast for 1906-7 estimates the area at 62,300 acres, as against 67,500 in 1904-5. This total is shown to be 19.3 per cent. below the decennial average. The recent effort by the planters themselves to produce specially improved new seed could have had no other consequence than to disturb and possibly curtail the demand for Native seed. The following are the returns of seed production in the Panjab for the past four years:—1904, 1,673,800 sees; 1905, 1,785,000 sees; 1906, 3,227,600 sees; and 1907, 1,248,900 sees.

The easterly districts of the Panjab should be considered in conjunction with the United Provinces. In the west, however, in Multan, Dera Ghazi Khan and Muzaffargarh, the methods are very primitive, and the market-supplied is the purely Native trade across the north-west frontier. The plant is sown on irrigation, and hence the date of sowing depends on that of the opening of the canals—usually during May. By September the crop is ready to be cut, after which the plant may be ploughed up or left for a second, and, sometimes, even a third, year.” “Lands subject to river inundation are considered unsuited; in other words, a prejudice exists against over-inundation. The land is prepared during the cold season after the winter rains, and sowing takes place from March 1 to May 15. The field is first flooded and the seeds scattered broadcast on the water. Irrigation is given every third day till the plants are about a foot high, then every eight or ten days” (Leake). \[\text{[Cf. Morris,} \text{Cult. and Manuf. Indigo in} \text{Mooltan, Gaz. Mooltan Dist., 1883-4, app. A, 161-6; Panjab, Dist. Gaz.]}\]

\textbf{RAJPUTANA AND CENTRAL INDIA.}—Small quantities are grown in Ajmir and in the Native States of Jaipur, Marwar, Gwalior and Tonk. In Ajmir the seed is sown broadcast in the month of June or as soon as the rains set in. When the young plants are above ground the grass is weeded out by a process of hand-hoeing. Reaping commences about October.

\textbf{BOMBAY AND SIND.}—\textit{Area and Production.}—The late Mr. E. C. Ozanne, then Director of Agriculture, Bombay, wrote in his Annual Report (1885-6, 36-7) that—“In the 16th and 17th centuries, indigo, partly of
to remain till the next heavy showers, when the seed is sown in rows. In about a month weeding commences. On dry lands the crop is entirely dependent on rainfall. The first cutting is taken three or four months after sowing, and a second and third at intervals of three months after the first. After the third cutting, the plant is allowed to seed.

Wet cultivation is also carried on in the neighbourhood of tanks or wells. Near wells with a certain supply of water, cultivation is commenced in March or April. If the soil is loose, the seed is sown without any previous ploughing; otherwise, in the vicinity of tanks, the land is watered, ploughed, and smoothed by a roller. It is then manured, watered again, and the seed sown when the land has dried. After germination, the crop is regularly watered at intervals varying from a week to twenty days. Weeding commences a month after sowing, and the first cutting takes place in three or four months, the second three months later. [Cf. Shortt, Man. Ind. Agri., 1885, 98–136; Mem. on Prog. Madras Pres., 1893, 69–71; Cox, Man. North Aracat Dist., 1895, i., 273–4.]

BURMA AND ASSAM.—Area and Production.—Indigo is cultivated to a very limited extent in Burma. In 1904–5 there were 424 acres in Upper and 58 in Lower Burma. In Upper Burma cultivation is confined to the districts of Pakokku, Lower and Upper Chindwin and Sangoing, and in Lower Burma to Thayetmyo. The grarest suspicion, however, should be entertained in accepting the published figures of area as being **Indigofera**. The description given by Mr. H. G. A. Leveson, in a note on the dyes of the Southern Shan States, at all events, leaves little or no doubt that much of the indigo of that country is derived from **Strobilanthes**. In Chindwin there are reported to be two crops, the wet- and the dry-weather. The wet-weather crop is sown in June and collected in July and August; the dry is sown in October and collected in December and January. An indigo plant is also said to flourish at high elevations in the Shan States. It is remarked that when cultivated in the lower valleys it is generally under the shade of trees, and when grown on the hills, plots of ground are selected at the bottom of steep valleys. Brackish soil is regarded as the most suitable, and the ground is not manured. It is not grown from seed, but at the beginning of the rains the shrub is cut to the ground, the lower part of the stalk thrown away, and the upper part with the young leaves planted. Two or three pluckings are considered a fair average yield, though a well-grown plant may afford as many as five. Most of these statements, it may be inferred, denote **Strobilanthes**.

Turning now to Assam, the cultivation of indigo may be said to be practically non-existent. The greater part of the indigo dye of the province is the produce of **Strobilanthes flaccidifolius**, and not of **Indigofera**. In many respects Assam and Upper Burma show a closer approximation to the conditions of South and Central China than to those of India. Accordingly Assam, in the matter of this particular indigo-yielding plant, may be spoken of as the most western portion of the area of **Strobilanthes flaccidifolius**, a plant that is from there diffused east and north throughout the greater part of China and becomes one of the most important sources of the dye in that vast empire. [Cf. Leveson, Dyes and Dyeing in Southern Shan States, 1896, 2–5; Duncan, Dyes and Dyeing in Assam, 1896, 28, 29; Parlett, Rept. Settl. Oper. Sangoing Dist., 1903, 15.]

Manures.—Generally speaking the only manure given in indigo cultiva-
tion is the refuse of the indigo plant termed *secet*, procured from the factory. Artificial manures have made little headway, and even with the simpler fertilisers, such as lime, gypsum and nitre, there is uncertainty as to their efficacy. In this connection attention should be given to the results obtained by Mr. C. Rawson, summarised in his final report to the Bihar Indigo Planters' Association, published in 1904. As a rule indigo soils were found deficient in available phosphoric acid, and responded remuneratively to treatment with superphosphate, bonemeal or other phosphatic manures. Nitrogenous manures were generally found useful when applied along with phosphates. Dr. Hancock, working at Dalsing Serai under Mr. Bernard Coventry in 1901 (*Rept. Indigo Improv. Syndicate*, 1901), arrived at the same conclusions. The value as manure of the refuse plant (*secet*) was also investigated by Rawson, with the result that he came to believe that in many cases it was as valuable as the indigo produced by the factory. Mr. W. Popplewell Bloxam next took up the inquiry into the subject of indigo improvement by scientific manuring. In his report to the Government of Bengal, 1905, on the work carried out by Leake and himself at Dalsing Serai (in 1903–4), he summarises his experiments and results. The chief feature of these may be characterised as the supply of various carbonaceous materials to indigo soils with the view of ascertaining their effect on the growth of the nodule bacteria. The period of Bloxam's experiments was, however, too short to allow of any very definite conclusions. *[Cf. Voelcker, *Improv. Ind. Agri.*, 1893, 106, 112, 259, 260–1; *Rept. Cawnpore Exper. Farm ;* Bergtheil, *Acc. Sc. Invest. on Indigo*, in *Rept. Dept. Land Rec. and Agri. Beng.*, 1905, vii.–ix.]*

Dangers to the Crop.—"Under favourable conditions the young plant will appear above the surface on the seventh to the tenth day, from which time onwards it is exposed to many vicissitudes. It is no uncommon occurrence to find the destruction of the crop to be caused by a shower of rain. It has already been explained that the young plant is dependent on what may be termed 'bottom' moisture for its early growth, and on the condition of the soil which makes this available. The compacting of the surface soil leaves a loose, dry layer on the surface which acts to a certain degree as a check on evaporation. The effect of rain is to do away with this dry layer and to establish a complete capillary system to the absolute surface. The ultimate result is a rapid decrease in the moisture of the superficial soil, which may ultimately be reduced to below the limit at which life can be supported. Under these circumstances the crust must be broken even at the cost of destroying half the crop. This is usually effected by the use of a light rake, or, in the case of a very light crust, by brushwood drawn over the surface. A prolonged spell of hot west winds, such as are common during April–May, in spite of the precautions taken to conserve the moisture, reduces this to below the needful minimum, and in this way the greater part of the crop may be lost."

"As regards pests little can be said. The larvae of numerous *Lepidoptera* feed on the indigo plant, but in only one case are the ravages sufficient to cause serious damage. Under favourable conditions the larvae of *Agrotis segetis* appear shortly after the young plant has broken through the soil, and before what is known as the '7-leaf' stage is reached. Plants attacked will be entirely stripped of their leaves, and a second sowing may be necessary. In bad seasons this may also happen, and necessitate a third sowing. It seems probable that the ravages of this pest are only
INDIGOFERA

Manufacture:

Wet Process

serious in those lands which have been sown in indigo for several years in succession, and that a reasonable system of rotation would reduce the injury to a negligible quantity.

Aphides.

Of other insect pests which assume dangerous proportions, there is an *Aphis* and a *Thrips*, but little or nothing is known of the life histories of either. They both attack the young plant, rendering it stunted, and the latter, by destroying the mesophyll of the cotyledons and first foliage leaves, may kill the entire plant" (Leake). [Cf. Lefroy, *Caterpillar Pests of Indigo in Bihar*, in Agril. Journ. Ind., 1906, i., pt. iv., 338-50.]

Yield.

Ootturn and Yield.—"Owing to the numerous variations in the exact area denoted by the term *bigha*, and to the confusion consequent thereon, it is almost, if not quite, impossible to determine with any degree of certainty from the published returns what is a normal yield of plant and dye. Under these circumstances it seems best to give the returns for a particular concern for which the figures are available and which, being situated in the centre of the indigo districts of Bihar, may fairly be taken as normal. The period from which the averages are derived covers a term of eleven years, viz. from 1892-1903. This shows an average of 80 mounds of plants per acre for the *morrhun* cutting, and 35 mounds of plants per acre for the *khunti* cutting, while the dye manifests an average of 16 lb. per acre for the year, in the proportion of 11 lb. for the *morrhun* and 5 lb. for the *khunti* cutting. The fluctuations are, however, very wide, *e.g.* for plant per acre 168 to 48 mounds, and for dye, 25 lb. to 73 lb." (Leake).

MANUFACTURE.

WET PROCESS.—"For the manufacture of dye from the plant, the wet process is now almost invariably adopted. Briefly this consists in the extraction from the plant of the dye-yielding principle by steeping in water, and the precipitation, from the extract so obtained, of indigo by exposure to air—oxidation. As the amount of plant which must be daily steeped comes to some hundreds of cartloads, there are certain essentials which must be considered in choosing a site for a factory. Chief among these is an abundant supply of water; and a factory will never, therefore, be found at a distance from a stream or large lake, from which water can be pumped into a large tank—*khazanah*—placed at the highest point of the factory. From this tank channels conduct water to the steeping vats, a row of brick and cement-lined basins, usually about 20 feet square and 4 to 5 feet deep, and about 15 in number. Below these, and corresponding with them in number, are a second row of slightly shallower vats called the beating vats.

"The plant, on arrival at the factory, is loaded into the steeping vats and, as soon as each vat is full, is battened down by means of beams attached to pegs set in the sides of the vat. Water is now run in until the plant is just submerged, and steeping is allowed to proceed for a period varying from 12 to 14 hours. The liquor, which has by this time become yellowish green and almost fluorescent, is now run off into the lower, or beating vat.

"Beating is effected in various ways, the sole object being to obtain as thorough an oxidation as possible. In the more primitive method 10 to 12 coolies enter the vat and proceed to beat the liquor with short sticks to one end of which flat discs of wood are attached. The process is complete after about 1½ hours' continuous beating. With the introduction
European industry in India, the Natives should have quietly continued their own methods of manufacture, oblivious of or indifferent to the numerous patent processes and appliances brought out by their European rivals. By the dry method the bundles of freshly cut plant, instead of being conveyed directly to the factory, are dried and the leaves separated from the stem by beating. When kept dry the leaves turn in the course of a few weeks from green to a blue-grey colour. They are then subjected to steeping and fermentation, when the indican present in the plant splits through hydrolysis into indigotin and indigoluein. The fine green liquor thus obtained is then drawn off to the beating vat, where the matured indigo is precipitated and subsequently concentrated by boiling and compressed into cakes and dried in the usual way. But for the adulteration so largely resorted to by the Native manufacturers, it seems fairly certain the dry-system indigo would be fully as valuable as the wet, and in some respects have distinct advantages. This is exemplified by the fact that it is preferred even in localities where the difficulty of drying becomes serious. For a small manufacturer it has the great advantage of being attended to at the most convenient time.

The rationale of indigo manufacture may be briefly and pointedly told. Fermentation and hydrolysis of the indican found in the steeping vat takes place. The indigotin produced is reduced by the indigoluein to hydriprodigotin (indigo white), and this dissolves in the alkaline liquor. Through the beating that follows the hydriprodigotin is reoxidised, and indigotin precipitated—being insoluble in the alkaline liquid. The yield is about 0·2 per cent. of the weight of the plant. The addition of ammonia to the vat is frequently practised, with the result that the yield is largely increased, as the formation of ammonia by the fermentative breaking down of the indigo is thus hindered. The indigo obtained in this manner varies greatly in quality. Its content of indigotin ranges from 20 to 90 per cent., the average being 40 to 50 per cent. The remainder consists of ash, 5 to 20 per cent.; water, 2 to 8 per cent.; indirubin, 2 to 4 per cent., and various amounts of indigo-brown, indigo-gluten, and carbohydrates. The value of the blue depends on its content of indigotin and indirubin. [Cf. Blount and Bloxam, Chem. for Engin. and Manuf., 320.] It is believed the presence of indirubin gives the more pleasing result of the natural as compared with the synthetic dye.

Mr. W. Popplewell Bloxam (who has devoted much attention to the study of the chemistry of indigo) read a highly instructive and valuable paper before the Society of Chemical Industry (Yorkshire Section) on August 15, 1906, and still more recently a further paper before the London Section on November 30, 1907. The last mentioned is written by Bloxam in collaboration with Dr. R. Gaunt and Mr. F. Thomas, and is specially described as an analysis of indigo and of the dried leaves of I. arrecta and I. sumatrana. It is, therefore, desirable that readers anxious for information of the nature indicated should consult the papers mentioned. But it may be useful to give here the few concluding remarks in the first, since these seem to give an indication of the direction and purport of Bloxam's investigations:

"From these results, it will be seen that if the percentage of indigotin contained in the whole plant (ordinary Indian varieties) be taken, as seems reasonable, at 0·6 per cent., then from consideration of the weights of plant steeped and the indigotin recovered in the finished cake, the highest
efficiency attained does not reach 50 per cent. of the total indigotin obtainable, whilst the average efficiency of the 'mahai' is 25 per cent., falling thence to 12-6 per cent. (cake No. 2). The attention of the Government of India will be called to this wasteful method of manufacture, with a view to the long-needed improvements being introduced to India without delay.” Concluding the second paper, Bloxam and his collaborators observe: “Being now in the possession of some 150 grms. of crystallised indican, we are undertaking a scientific study of its quantitative conversion, by various methods, into indigotin—with the view of improving the process of manufacture at present in use in India. The results of our experiments all tend to show that considerable improvement remains to be made in the efficiency of the indigo manufacture, and point to the fact that the efficiency of the process is far lower than is currently stated.” Bloxam submitted his final Report of the Research Work on Indigo to the Government of India in 1908.

SYNTHETIC INDIGO.—It would be impossible to deal here with the discovery and production of synthetic indigo. As a matter of historic interest it may be mentioned that Perkin was (in 1856) the original discoverer of the coal-tar dyes, but, like Green’s discoveries still later, they were not fully appreciated until they had reached the Netherlands and German laboratories. Hence for a good many years past the artificial dyes have proved formidable rivals to the natural colours, and even in the case of indigo have begun to curtail the world’s demand for the Indian article. Already the exports from India have been reduced very seriously. Germany, for example, has practically ceased to import vegetable indigo, and her exports of the artificial products to all countries were last year valued at 25,000,000 marks (£1,250,020). This is remarkable, seeing that the first commercial manufacture was only made in 1897. According to a report issued by the Badische Anilin and Soda-Fabrik Company, their profits were in 1903, £583,787, and in 1904, £544,936. Thus it would appear probable that large sums have been realised from the sale of artificial indigo. The imports of synthetic indigo are mainly from the Netherlands. These came to 14,691 cwt., valued at £143,613 in 1902; 17,752 cwt. in 1903; 19,458 cwt. in 1904; 32,246 cwt. in 1905; and 39,042 cwt., valued at £147,325 in 1906.

TRADE IN INDIGO.—In a dispatch dated 1792, the Board of Directors congratulated the Indian Government that, as the British imports of Bengal indigo increased, those from the Spanish and French colonies declined, while at the same time a large export trade from Great Britain to the Continent had been established. That re-export trade amounted in 1790 to close on one million pounds of the dye. Such a brilliant result, when contrasted with the depression that has been cast over the industry, within the past few years, is highly significant. But
with the detailed statement of former transactions, given in the Dictionary, it may suffice to review here, and very briefly, the returns of the past few years:—

Exports.—The bulk of the factory-made indigo is exported. India uses up only the inferior grades of the dye. The returns of foreign trade thus very nearly express the total production. The year 1894–5 showed the highest production credited to the Indian industry, viz., 237,494 cwt., produced from 1,688,042 acres. Up to that point the prosperity was almost phenomenal—a century of advancement, in spite of numerous local upheavals. But the year following the first commercial production of synthetic indigo the crash came, and from that time there has been nothing but continuous curtailments. From 1894–5 down to 1906–7 the record is, in fact, a very melancholy one. The exports in 1894–5 were 166,308 cwt., valued at Rs. 4,74,59,153, and in 1895–6 they were 187,337 cwt., valued at Rs. 5,35,45,112. But the twelve years following show a continuous decline, until in 1906–7 the exports were only 35,102 cwt., valued at Rs. 70,04,773. Commenting on this subject, J. A. Robertson (Rev. Trade Ind., 1904–5, 28–9), at that time Director-General of Statistics in India, wrote: “The unremunerative level to which prices have been forced down by competition of synthetic indigo has reduced the indigo plantations of Bengal to less than half the area they occupied ten years ago, and over the whole of India the reduction in that period was 66 per cent. Planters in Bengal are strengthening their position by cultivating other crops in addition to indigo, and they can carry on a contest for supremacy with synthetic indigo for many years.”

“The season of 1904 gave a very poor yield, the deficiency compared with the previous year being estimated in the official reports at 31 per cent. in Bengal and 45 per cent. for the whole crop. The total exports of 1904–5 are less by 18 4/ per cent. in quantity, and 22 4/ per cent. in value, than the exports of the previous year. The fall in the average price was thus 4 per cent., and in Calcutta the fall was more marked in the better kinds than in the ordinary qualities.”

Turning now to the countries which have drawn on India for their supplies of indigo, Great Britain formerly headed the list. The exports from India to Great Britain in 1875–6 came to 72,494 cwt.; in 1883–6 to 64,204 cwt.; in 1895–6 to 66,215 cwt.; and in 1898–9 (the year after the production of synthetic indigo) they dropped to 30,973 cwt.; since which date they have steadily declined until in 1904–5 they were only 10,743 cwt.; in 1905–6, 7,749 cwt.; and in 1906–7, 7,942 cwt. The record of the United States is somewhat similar, though on a smaller scale. In 1875–6 the share taken by the States came to 4,089 cwt.; ten years later it became 20,737 cwt., and from then a decline has been observed until in 1905–6 the amount taken was only 1,530 cwt., and in 1906–7, 1,258 cwt. Egypt, on the other hand, has preserved a fairly constant market, but it has to be explained that Egypt takes mainly Madras dry-leaf indigo. In 1875–6 it drew 577 cwt.; in 1885–6, 11,601 cwt.; in 1895–6, 13,995 cwt.; in 1903–4, 15,375 cwt.; in 1905–6, 9,702 cwt.; and in 1906–7, 9,195 cwt. With most Continental countries the decline in the demand for Indian indigo has been most marked. Germany took in 1895–6, 16,929 cwt.; in 1903–4, only 1,776 cwt.; in 1905–6, 487 cwt.; and in 1906–7, 523 cwt. France procured in 1895–6, 21,011 cwt.; in 1903–4, 1,975 cwt.; in 1905–6, 970 cwt.; and in 1906–7, 541 cwt. Japan, which for several years had been one of the
chief markets, almost ceased to import in 1904–5. This, it is believed, was largely a consequence of the differential taxation which took effect from April 1, 1903 and imposed an extra tax, equal to 1.55 pence per lb., on Indian indigo, which both Java plant indigo and German synthetic indigo escaped, placing an insupportable burden on the trade; but now that Indian indigo has been treated on the most-favoured-nation basis by the Convention with Japan, which came into force on March 15, 1905, there may be some revival of the trade. German synthetic indigo has, however, now acquired such a dominant position, and its higher percentage of colouring matter still retains for it such advantage by reason of the duty being charged by weight, that India will find it difficult to recover lost ground.” (Robertson, l.c. 29). The exports from India to Japan in 1906–7 were 1,800 cwt. [Cf. Rept. Beng. Chamber of Comm., 1905–6, 163–8.]

Internal Trade.—Turning now to the shares taken by the provinces of India. In 1885–6 the total exports were 132,495 cwt., of which the Bengal share was 76,109 and the Madras 45,828. Ten years later (1895–6) the total exports were 187,337, of which the Bengal share was 111,714 and the Madras 62,425 cwt.; in 1903–4, 60,410, of which Bengal furnished 29,858 and Madras 24,414 cwt.; in 1905–6, 31,186, of which Bengal supplied 19,062 and Madras 7,756 cwt.; and in 1906–7, 35,102, of which Bengal contributed 19,309 and Madras 11,359 cwt. The exports across the land frontier are not very important. In 1904–5 they came to 4,873 cwt., valued at Rs. 4,70,203; in 1905–6 to 5,275 cwt., valued at Rs. 5,26,431; and in 1906–7 to 3,518 cwt., valued at Rs. 3,47,341. The most important receiving countries are Seistan and Dir, Swat and Bajaur. Formerly a large trade was done in exporting indigo-dyed goods from India. The only survival of this is the export of blue cloth from Pondicherry to French China—a survival due, apparently, to the French protectionist enactments in favour of her colonies.

Imports.—A startling peculiarity of the present phase of the Indian traffic in indigo may be said to exist in the circumstance that a small supply of the dye is annually drawn from the Straits, from the United Kingdom, Belgium and Japan. There is no mention of synthentic indigo being imported, and the small foreign supply may be to some extent returns of Indian indigo. The imports in 1905–6 were 1,244 cwt., valued at Rs. 1,12,243; and in 1906–7, 2,392 cwt. and Rs. 97,152.

With the exception of the silkworms, the bees, the cochineal, the lac and the gall-forming insects, very few others can be regarded as of economic value. Unfortunately a very large number of insects force attention through the depredations they effect on crops, stores of food, industrial materials, manufactures, woodwork, etc. Maxwell-Lefroy has set forth in a lucid manner the difficulties that beset the entomologist in India who may have entrusted him the investigation and solution of the pests of the fields and forests or the discovery of beneficial insects. The insects have to be identified and in many cases scientifically named, then their life-histories worked out, before practical suggestions are possible. Throughout the present publication the effort has been made to record the results
IPOMÉIA
PURGA

hitherto attained under the names of the products concerned, such as Corchorus
(Jute), Canna (Tobacco), etc. But in addition, the following special articles deal
with insect economic products:

Bees, Bees'-wax, Damar and Honey (see pp. 123-9).
Cocceus Caeti, Cochineal (pp. 347-9).
Silk (pp. 992-1013).
Tachardia Lacca (pp. 1053-6).

Besides these, however, there are a few other insects that have attracted
attention. Perhaps the most important is the Locust. This often proves so
destructive that strenuous efforts become necessary to restrain it. In order
to aid in their identification, Maxwell-Lefroy has recently published an
interesting account of the life-histories, with full-page illustrations, of the two
locusts known to India, viz. the Bombay Locust and the North-West Locust. [The
following papers have appeared in The Agricultural Ledger:—Gunther and Cotes,
Dried Locusts as food for Cage and Game Birds, 1893, No. 2; _The Automatic
Locust Catcher_, 1895, No. 15; Stewart Stockman, _A Plague of Grasshoppers
No. 1; 1907, i., 125.] Sly (Agri. Journ. Ind., ii., pt. ii., 208) gives a brief
forecast of a report shortly to appear on the results attained in India with the
locust parasitic fungus.

The wing-cases of the beetle _Buprestis villata_ are largely employed for
ornamental purposes in India, and are especially worked up in articles of
decorations, in Masks and Headdresses, and are used in Khussa fans, etc. _[Of.
Mukharji, Art Manuf. Ind., 309, 313, 390; Watt, Ind. Art at Delhi, 1903,
161, 198, 408._]

D.E.P.,

Ⅱ. _IPOMÉIA, Linn._; _Fl. Br. Ind._, iv., 196-215; Prain, _Beng. Plants._
1903, ii., 731-7; Cooke, _Fl. Pres. Bombi._, 1905, ii., 241-52; _Con-
volvulaceæ._ A genus of herbs, rarely shrubs, twining, prostrate, or
less often sub-erect.

Wild Pet-herb.

The _kalmi,sok, vérri, ganthian, náichs bais, sarkares valis_, etc. An aquatic species common
throughout India but especially abundant on the surface of tanks in Bengal.
The young shoots, leaves and roots are universally eaten as a vegetable, and
the plant is for that purpose often semi-cultivated. The juice is believed to have
emetic properties and to be useful in opium poisoning. _[Cf. Pharmacog. Ind._, ii.,
540; Dutt, _Matt. Med. Hind._, 1900, 302._]

II. _digitata, Linn._; _Talbot, List Trees, etc._, 1902, 251. The _bídí kand, bhui-kokola,
matta-pal-tigga_, etc. A large climbing perennial cultivated on account of its
pink to purple flowers and its tuberous roots, used in Native medicine (see p. 1129).
Cf. The Bower Manuscript (Hoernle, transl.), 1893-7, 96; _Pharmacog. Ind._,
ii., 534-6; Dutt, _l.c._ 323._]

III. _hereracea, Jacq._; _Rec. Bot. Surv. Ind._, iii., 244. The _nd-kalmi, bauurna, bídí,
kodi, kálí-dand, kakkután-virá_, etc. An annual hairy twinner, cultivated in
India, but also found wild. The seeds known as _kálí-dans_ and _mulam_ are
purgative and resemble jalap in their action. They were made medicinal in the
Pharmacopeia India in 1888. The market rate is about 4 annas per lb. _Hooper
(Rept. Labor. Ind. Mus. (Indust. Sec.),_ 1905-6, 32-3) says that the seeds contain
8.05 per cent. of resin resembling _convolvulin_, but in addition are rich in albu-
minous substances and contain 14-02 per cent. of a nauseous fat—a disadvantage
China_, 1893, 49; Firminger, _Man Gard. Ind._ (ed. Cameron), 1904, 476._]

I. _Purga, Hayne._ Jalap. A climber, native of the Mexican Andes, at altitudes from 5,000 to 8,000 feet above the sea.
In its native habitat rain falls almost daily, and it flourishes best in shady woods with a deep
rich humus soil.

In India it is cultivated on Dodabatta in the Nilgiri hills, and in the North-Western Himalayas at Mussoorie. The crop is an exhausting one. Formerly
the plant was grown among the chinchoa trees, but this system has been abandoned,
since while the jalap flourished the chinchoa was injured. Plants may be obtained
from cuttings set under shade in a moist sandy soil, but for cultivation on a
large scale the smaller tuberous roots may preferably be used. _These are placed_
to 3 inches deep, while the other node is left free. The cuttings are usually placed along ridges, though sometimes in flat beds. The ridges are about 18 inches apart and the cuttings are deposited one foot apart on each side of the ridge, half-way between the crest and the bottom of the furrow. Cross furrows are also drawn which form channels for irrigation. Weeding should be attended to and the crop watered every eight or twelve days. Care must also be taken to prevent the plants rooting at the nodes, for otherwise small tubers of no value will be formed at the points of attachment and these will deduct from the growth of the large tubers at the main root.

Yield.—If planted in October–November the crop should be ripe in April and the tubers lifted at once, else much damage will be done by rats and white ants. The vines or haubes are reaped before the tubers are dug. A good crop may yield six tons per acre, worth about Rs. 300. The cost of cultivation in the Surat district Mollison gives as Rs. 134.

Sugar and Alcohol.—The sweet potato contains more dry starchy and sugary matter than the ordinary potato, but less nitrogenous substance. Analysis shows it to possess about 10 to 20 per cent. of sugar and about 16:05 per cent. of starch. It is said to be an excellent source of alcohol, 100 kilos of tubers yielding about 12 to 13 litres of absolute alcohol.

Recently it has been largely cultivated in some parts of the world as a source of sugar. By the Natives of India it is commonly used as food, either cooked in curry or boiled, roasted or fried.

PRODUCTION.—Iron is commonly said to exist in nature in two great classes of workable ore.—(1) Carbonates and clay ironstone, and (2) Oxides, like hematite and magnetite. The Carbonates consist essentially of two kinds: (a) those in which the salt is crystalline and little admixed with earthy matter, and (b) those in which a larger or smaller amount of clay is intimately intermixed with the ferrous carbonate. The former is epaphic iron ore and the latter argillaceous ore or clay-ironstone. Clay ironstone exists in large deposits in many coal measures and is then known as black-band. The Oxides may be spoken of as of three kinds (a) anhydrous ferric oxide; (b) hydrated ferric oxide; and (c) a mixture of ferrous and ferric oxides such as the magnetic oxide of iron. Hughes Buller has recently sent from Baluchistan a natural mineral known as khaghal or laq, which is employed as a dye. This has been ascertained to be an impure sulphate of iron. The most abundant iron ores are the minerals magnetite and hematite which occur in numerous places with quartz, making quartz iron-ore schists which are generally members
INDIA’S RESOURCES IN IRON ORE

of the Dharwar and other Archeean schist series. The most conspicuous examples of this class occur in the Salem district and the Sandur State in the Bellary district of the Madras Presidency, and in the Chanda, Rajpur, and Jubulpore Districts of the Central Provinces. The chief ore now used at the Barakar iron-works for the manufacture of pig-iron is clay ironstone, containing 45 to 48 per cent. of iron, and occurring as nodules in shaly formation separating the Barakar and Rániganj stages of the Dámuda series in Bengal” (Imp. Gaz., 1907, iii., 145–6).

Notwithstanding the fact that rich deposits of one or other of these various iron ores exist here and there all over India, and have, from the most ancient times, been worked up in a desultory manner by the Natives, still there has been but one successful attempt on European lines and by modern appliances. Indeed some of the recent investigations conducted in India would seem to establish belief that few of the important supplies of ore are of sufficiently high merit to defray the cost of carriage to Europe (or even to Indian centres of fuel supply) and leave a margin of profit. The opinion would thus appear to have been borne home that the expansion of India’s iron production must, for the present, be looked for in the immediate vicinity of fuel supplies.

South India.—Some few years ago many persons urged that if it paid to convey Spanish ore to England to be there made into “pig” which in the ordinary course of trade was profitably carried even to India, it must of necessity pay to convey the rich ores of Madras to the coal mines of India to be there worked up in competition with the imported foreign metal (Watt, Mem. Res. Ind., 1894). It was also even upheld that the time might soon arrive when England would have to look to Salem for its supplies of magnetic ore. In his presidential address to the Iron and Steel Institute (of May 1893), for example, Mr. W. Richards suggested that Indian ores could and should be substituted for Spanish. And still further it was loudly proclaimed that with some co-operative organisation of the Forest Department, South India might easily supply charcoal in such abundance and at such a price as to admit of production of iron after the fashion pursued in Styria and certain districts of America. These and other such opinions led to various technical investigations and reports on the part of experts employed both by private individuals and by Government. The Secretary of State for India, for example, submitted the then available information to Mr. Jeremiah Head, formerly President of the Institution of Mechanical Engineers, for favour of his views, the result being a most valuable contribution dated May 2, 1896. This is concluded as follows:—“I regret to have to say that in my opinion it is not at present practicable to conduct an iron industry at or near Salem upon the methods pursued in Styria and certain districts of America where charcoal is employed.” It was perhaps but natural that with a subject which had not passed from the stage of personal opinion to that of ascertained results, some at least of Head’s statements would be challenged. His final conclusion, in fact, has by no means been universally accepted in India, and the accuracy of the information on which he based his calculations of cost of production of iron, as also the supply of crude ore for direct export to Europe, has been called into question. The Board of Revenue, Madras, for example, observed that “If it can be shown that Mr. Head’s estimate can be safely reduced to Rs. 50 per ton f.o.b., as the Board believes that it can be, and freight can be obtained at 15s. per ton, the estimate taken by

689 44
Mr. Head (at page 18 of his report), it will be possible to deliver Kanjamalai pig-iron in England for £3 15s. 10d. per ton, being 5s. 2d. below the minimum value of imported Swedish pig, £1 4s. 11d. below the maximum, and 12s. 3d. below the average. The same iron could also compete still more favourably with Swedish pig imported into Madras, Calcutta and Ceylon."

In 1898 a consignment of Kanjamalai Salem ore was sent to England to be tested along with Indian coke supplied for that purpose. The experiment was conducted by Messrs. Bolckow, Vaughan & Co. at Middlesborough, with the result that it was found to contain only 40 per cent. magnetic iron—in fact, that it was not worth exporting. This led to an acrimonious correspondence in the public press, in which it was affirmed that the sample sent was not selected ore but an average of the whole rock, and thus contained much that ordinarily would never be conveyed from the mine to the smelting furnace. It was urged that the results of previous investigations (such as those conducted by Dunstan, *Imp. Inst. Tech. Repts.,* 12–22) showed a much higher average merit. Six samples examined gave 56·95 average, with the highest 70·06 and the lowest 36·44 per cent. of iron.

The Porto Novo Iron Company, founded by Mr. Josiah Marshal Heath, was the earliest and perhaps the most persistently worked concern in India. It was founded in 1830, changed hands more than once, and was finally dissolved and its privileges surrendered to Government in 1874. For thirty years a large quantity of iron was manufactured, and failure, as Major R. H. Mahon says, was not due to lack of iron ore or its quality, but to inexperience, defective machinery, and want of capital. He is, moreover, strongly of opinion that all existing difficulties will be overcome and iron production from the South Indian supplies made an industry of the greatest possible value. Persons interested in this subject should therefore procure Mahon's admirable report. It would thus seem that the whole subject needs to be even still further investigated before it can be regarded as satisfactorily disposed of one way or the other.

Central Provinces and Orissa.—Hardly less satisfactory are the results of the inquiry made regarding the iron supplies of the Central Provinces. The report of investigations conducted by Mr. E. P. Martin and Prof. Henry Louis (on behalf of the Right Hon. Sir E. Cassel) will be found in *The Agricultural Memoir.* Speaking of the Jabalpur district, more especially the Agaria ridge, these distinguished investigators say "the entire district undoubtedly contains considerable quantities of ferruginous material, but the latter is nowhere concentrated into what may be called a workable ore deposit showing the essential characters of steadiness and persistence which are indispensable in a deposit that is to form the basis of an important industry." The conclusion arrived at may be said to be that considerable though the iron resources of the district are, they are not such as would warrant the erection of iron and steel works with any prospect of commercial success. In the Mayurbhanj State, in Raipur and in the Chanda districts, Messrs. Tata, Sons & Co. of Bombay organised prospecting operations on a large scale and employed Mr. C. P. Perin and Mr. C. M. Weld as their experts. As a result it has been decided to erect iron and steel works near Kalimati on the Bengal-Nagpur Railway with the intention of using the Mayurbhanj ore in conjunction with fuel from the Jherris Coal Field. It may thus fairly well be assumed that this new departure marks an era in the metal industries of India.

A Company known as the Tata Iron and Steel Company, Ltd., was
founded at Bombay in July 1907 with a capital of 2½ lakhs of rupees. Since then Government have sanctioned the construction of a broad-gauge railway from Kalimati (the site selected for the works) to the ore-fields of Mayurbhanj State, a distance of about 45 miles. Coal lands have been purchased by the company in the Jherria field; limestone quarries secured near Katni; manganese ore is being opened up in Salaghat; designs for the works have been accepted and progress made in clearing the site for the erection of the blast furnaces which are expected to commence operations about the end of 1910.

Bengal.—It has, however, to be admitted that so far as actual results are concerned, the ore utilised in India is very nearly confined to that worked up by the Bengal Iron and Steel Company in its works at Barakar. In the Review of Mineral Production, Holland gives the ore raised in Bengal during 1898 to 1903, which shows for the six years an annual average output of 57,678 tons valued at £8,338, and a value per ton of 2½s. Up to the present time, he observes, the Barakar Iron and Steel Company has manufactured pig-iron only, of which two blast furnaces have turned out 35,000 tons of pig-iron a year. Since then a third blast furnace has been added and an unsuccessful attempt made to manufacture basic steel. The history of past adversity and present prosperity of the Barakar works is the story of the failure of unskilled impersonal enterprise contrasted with skilled individual energy when combined with capital and commercial acumen. Their subsequent production was 65,115 tons in 1904; 97,698 tons in 1905; and 69,397 tons in 1906.

FOUNDRIES AND INDUSTRIES.—Iron and Brass Foundries are not separately returned, so that they have to be dealt with conjointly. They are scattered all over the country, but with the exception of the Barakar Iron and Steel Company, the railway and engineering workshops and foundries of Calcutta, Bombay, and certain other large towns, few are of any importance. In 1903 there were 78 foundries in all India giving employment to 22,568 persons, and in 1904, 89 employing 24,256 persons. Three years previously the corresponding figures were 70 and 17,980, so that there has been a considerable expansion; but these returns take, of course, no cognisance of the village blacksmith nor the workers in brass and copper. In the Records of the Geological Survey of India (1906, xxxiii., pt. i., 12–3) it is stated that the value of Bengal ore works out to an average of Rs. 2–4a. (8a.) per ton. For the rest of India, the ore being of a higher quality and raised at places often distant from the railways as well as the ports, a higher average prevails, say Rs. 4. The returns for 1904 show 71,608 tons of ore used, valued at £12,617. In the Central Provinces there were 441 small direct-process furnaces at work. [Cf. Moral and Mat. Prog. Ind., 1905–6, 115.]

Local Manufactures.—The exports and re-exports are not of sufficient importance to necessitate separate treatment. A feature of great potentiality that bids fair to foster local manufacturing enterprise, is the decision of the Indian Railway Board to place Indian engineering firms in a position to tender publicly for a portion of the annual requirement of stock. The tenders are to be confined for the present to the supply of frames and bodies only, the requisite wheels, axles, springs and draw-bars to complete wagons being indented for from England as heretofore. Subject to the material being satisfactory, iron and steel of Indian manufacture should be used whenever possible.
TRADE IN IRON AND STEEL

tude of the traffic. The Imports shown under these headings were collectively in 1899-1900 valued at Rs. 13,34,14,503; in 1901-2 at Rs. 15,11,06,431; in 1903-4, Rs. 19,58,09,778; in 1904-5, Rs. 20,30,66,366; in 1905-6, Rs. 23,01,10,532; and in 1906-7, Rs. 26,66,49,605 (£17,909,973). Thus the traffic is by no means unimportant, but it may be useful to direct attention to certain items of it that more especially may be called Iron. The imports of Cast-Pig were in 1899-1900, 263,563 cwt., valued at Rs. 7,95,040; in 1901-2, 291,422 cwt., valued at Rs. 8,73,347; in 1903-4, 531,953 cwt., valued at Rs. 13,84,888; in 1905-6, 636,163 cwt., valued at Rs. 16,17,966; and in 1906-7, 667,285 cwt., valued at Rs. 18,43,167. Practically the whole of these imports came from the United Kingdom, the only other country of importance being Aden. Of Bar-Iron, the imports were in 1899-1900, 499,678 cwt., Rs. 30,07,124; in 1901-2, 855,106 cwt., Rs. 49,67,024; in 1903-4, 650,409 cwt., Rs. 35,74,266; in 1905-6, 781,360 cwt., Rs. 39,89,004; and in 1906-7, 606,604 cwt., Rs. 35,18,998. Under the heading of Steel-Bars the imports were in 1899-1900, 500,676 cwt., valued at Rs. 33,21,024; in 1901-2, 974,038 cwt., Rs. 54,93,840; in 1903-4, 1,115,933 cwt., Rs. 59,49,191; in 1905-6, 1,963,574 cwt., Rs. 95,42,895; and in 1906-7, 1,402,762 cwt., Rs. 74,92,013. In the iron and steel bar traffic Belgium has practically usurped the United Kingdom and for some years past poured into the country large quantities of cheap stuff that has found a ready and expanding market. Of Pipes and Tubes in 1899-1900 the imports were 257,118 cwt., Rs. 25,32,277; in 1901-2, 322,520 cwt., Rs. 29,40,404; 1903-4, 821,783 cwt., Rs. 57,81,098; 1905-6, 514,060 cwt., Rs. 38,19,850; and in 1906-7, 668,539 cwt., Rs. 51,17,286. In this traffic the British manufacturer more than holds his own, the only important competitor being the United States. Of Sheets and Plates (all kinds) the imports in 1899-1900 were 1,104,289 cwt., valued at Rs. 1,04,42,871; in 1901-2, 1,298,985 cwt., Rs. 1,22,15,307; in 1903-4, 1,636,592 cwt., Rs. 1,45,60,655; in 1905-6, 1,783,999 cwt., Rs. 1,59,41,040; and in 1906-7, 2,190,764 cwt., Rs. 2,20,45,396. The supplies come mainly from the United Kingdom, the only other country of importance being Belgium, the trade from which would appear to be declining.

These illustrations may be accepted as fairly representative of all the special headings of the iron trade proper. Space cannot be afforded to indicate the traffic in the manufactures that are only partially made of iron, such as machinery, railway plant, etc. It may have been observed that a steady rise is taking place in the imports. Even the figures exemplified are sufficient to show that there is room for a large iron manufacturing industry; and when this is established, the production of rails, rolling stock and machinery would soon follow in the wake of the furnace and the foundry.

ISCHÆMUM ANGUSTIFOLIUM

THE BABOI PAPER-GRASS

BABOI

Mats.

Identification:

Bhabar is often associated with the sedge Eriophorum comosum (D.E.P., iii., 266), and the two doubtless are sometimes used mixed together, but for many years it was incorrectly supposed that bhabar was Eriophorum. Sir D. Brandis was the first to recognise that Boyle, Wallich and others were in error in overlooking the grass Ischænum as the most important, if not the true bhabar. Stewart (Journ. Agri.-Hort. Soc. Ind., 1863, xiii., 293), while acknowledging his indebtedness for this correction, expressed the opinion that the grass should, in the future, play an important part as a paper material—he was thus apparently the first to suggest that use for the grass. Duthe led to a true identification botanically, and Sir George King pioneered the trade as a paper material (see pp. 865–8). In the Annual Report for the Botanic Gardens of Calcutta for 1893–4, he tells us that he had sent home, in 1873, samples of the grass to a paper-maker in Scotland, who reported favourably on it, and again in 1877 had furnished the late Mr. Routledge, through the India Office, with a consignment for experiment in Sunderland. Investigations were also made in India from 1882, the first by Mr. Deveria, and finally by the Bally Mills Company, Ltd., and others, until the grass became firmly established as a paper material.

Paper Material.

Supply.

The Kew Bulletin and the Indian Forester have devoted much attention to this subject for some years past, and the Annual Administration Reports of the Forest Department have recorded the measures taken to foster and extend production. [Cf. Gamble, Ind. For., 1893, app., xix.; Fischer, Ind. For., Nov. 1903, xxxix., 516.] The grass has thus been systematically placed before the public. It has, in consequence, become an assured paper material, restricted alone by the insufficiency of the supply. The attempt has accordingly been made to cultivate the plant in localities more accessible to the paper-mills, thereby lowering the ruinously heavy freight charges. More or less successful experiments of this kind have been conducted in Poona, Mysore, Hyderabad Deccan and in Hyderabad Sind. Systematic cultivation has also been undertaken in Manbhum, Birbhum and Murshidabad. In Poona it has been announced that the yield is 24 cwt. of dry grass per acre. It was, however, ascertained that when grown on soils of a better class than in its wild habitat or under warmer and moister conditions, it tends to flower too profusely, and this lowers its value as a paper material. A consignment sent in 1898 from Poona to London, by Woodrow, was accompanied with the statement that it could be delivered on board ship at Bombay at Rs. 40 per ton.

Yield.

As marking the progress made, the following jottings, taken from official and other publications, may be here given. In the Bengal Forest Department Report for 1896–8, we read that the grass had been fairly extensively planted in Sahibganj, and that the produce sold readily at 12 to 14 annas a mound, and fetched at the mills Rs. 1–4 to Rs. 1–7, the railway freight being not over

Cost.
ISINGLASS, GELATINE, GLUE AND GELOSE.—There are commonly said to be five classes of Cements:—(a) Calcareous (pp. 713-4); (b) Gelatinous (animal, p. 543); (c) Glutinous (vegetable, p. 293); (d) Resinous (see Tachardia lacca, p. 1063); and (e) Mixed Materials, non-resinous. With the first mentioned lime is essential, and they are collectively designated Mortars. Gelatine is prepared from animal flesh, bones, skins, hoofs and horns. It is a purer article than glue, which is made, as a rule, from the parings of hides and the refuse of the tan-yard generally. A mixture of glue and shellac is often used in India, the lac preventing the penetration of moisture, which softens and renders ordinary glue often useless. There is no chemical difference between gelatine, glue and isinglass. The purer transparent forms are used for culinary purposes. Fish-glue made from fish-bones is largely employed in India, and may be had all over the country, but no information exists as to the centres of production or the methods of manufacture. Edible Swallows' Nests may be described as Indian gelatine (see Birds, p. 138). Gelose is prepared from several Algae, designated in India as agar-agar, and in European commerce as China Moss. The best-known example is Gracilaria tichonoides (D.E.P., iv., 174-5). Numerous glutinous cements and pastes are in use in India, the commonest of all being made with the water obtained on boiling rice. [Cf. GLUE:—Hoey, Monog. Trade and Manuf. N. Ind., 176-7; Notter and Firth, Theory and Practice of Hygiene, 1896, 808; Journ. Soc. Chem. Induct., 1904, xxiii., 1189-92; Isinglass:—Day, Sea Fish and Fisheries of Ind. and Burma, app. exx.—exlv.]
THE ELEPHANT

ELEPHANT.—No account of Ivory would be complete without some mention of the ELEPHANT. In the Dictionary will be found a fairly detailed account of the Indian species. From the most ancient classic times this sagacious and most useful animal has been known, and the methods of capturing and taming it can hardly have been changed materially for the past two thousand years. The Hindu god Ganesha (son of Siva) is represented with an elephant’s head on the body of a man. In the Rig Veda the elephant is the animal with a hand, and in the Athatvar he is the mightiest of animals. In the epics of the Ramayana and the Mahabharata, the war elephants were employed and Indra’s Vahana is the elephant Airavat. According to Monier Williams (Buddhism, 23–4, 84, 355), the elephant is with the Buddhists the most sacred of animals.

Among European writers, Megasthenes (300 B.C.), Strabo (25 B.C.), Arrian (Indika, 150 A.D.; ed. McCrindle, 213) and Ellian (250 A.D.) give full particulars regarding the manner of hunting and capturing the elephant, the degree of its domestication and its use in warfare. Strabo (xv., 1, 41–3, 704–7) gives a chapter on the keddahs that might be read as an abridgment of Sanderson’s corresponding chapter in Thirteen Years Among the Wild Beasts of India. The African elephant appears to have similarly been tamed, and the Carthaginians employed them as fighting animals. The inscription of an Adula (recorded by Cosmas, 545 A.D.) alludes to this special use. [Cf. Vincent, Periplus, app. 56.]

During the ascendancy of the Roman Empire, elephants became quite common in Europe; but they ultimately disappeared, and for several centuries seem to have been altogether forgotten, and what is most significant, the African elephant, since the fall of Carthage, has hardly since been in such a complete state of domestication.

Passing over a gap of several centuries, little is said even of the Indian elephant, till Abi-er-Razzak (Narr. of Journ. in Ind., 1442, in India in 15th Century, Major, transl.), 27, 36 described the elephants owned by the King of Vijayanagar near Bellary, and the method of capturing and taming them then prevalent. Nicolo Conti, speaking of Ava (Travels in the East, in India in 15th Century, 11–2, 37), alludes to the white elephant owned by the king. Athanasius Kirik (Travels in the 15th Century, 12) discusses the elephants seen by him. Vartères (Travels, 1510 (ed. Hakl. Soc.), 125–31) gives a most graphic account of the city of Vijayanagar and vivifies the ruined elephant stables, which in their desolation are to-day objects of special inspection by the curious. Garcia de Orta published at Goa the first edition of the Coelologie (1563, xxii.), and in that work we are given the Arabic name flo, the Deccan name atti, the Kanarese acet, the Malabar uae, and the Ethiopian ytembo. Mention is made of the large amount of African ivory annually imported into Cambay, and of the existence of wild elephants in Orissa, Bengal, Patna, Pegu, Martaban, Ceylon and Siam. This is followed by Acosta (Tract. de las Drogas, 1578, 417–48), who gives for the time when produced two admirable plates showing the wild and tame elephant, with its war-howdah. In the Voyage of Linschoten, some additional useful facts are told of Indian elephants. Baber (Memoirs, 1525) (Leyden and Erskine, transl.), 315–6 enumerates and briefly describes the animals and plants seen by him in India which he regarded as peculiar to that country, and assigns the first place to the elephant, which he speaks of as abundant in parts of the country where, during the memory of living man, no wild elephants have been known. Abul Fazl (Ain-i-Akbari, 1590 (Blochmann, transl.), 117, etc.) details the particulars of the Emperor’s elephant stables, and of the rearing of that animal under domestication. Barbossa (Coasts East Africa and Malabar (ed. Hakl. Soc.), 167–8) furnishes an account of how elephants were caught in Ceylon and exported to India. Subsequent to the dates mentioned, many European authors have contributed to the stock of present-day knowledge, many European authors have contributed to the stock of present-day knowledge.

CAPTURE OF ELEPHANTS

Distribution.—The elephant frequents the forest-clad portions of India and Ceylon from about Dehra Dun in the north along the foot of the Himalaya to Assam, Chittagong, Burma, Siam and Cochin-China, also in the forests of the Deccan, the Western Ghats, Mysore and South India. As a rule the elephant does not ascend much above 5,000 feet, but in Manipur and the Naga hills (Japvo) it has been met with at close on 8,000 feet. The chief centres of capture are in Assam (Garo hills more especially), in Mysore and Ceylon. It is generally affirmed that while all the Indian elephants constitute but one species—apart from that of Africa—there are several very distinct races such as those of Nepal, Assam, Burma and Mysore. The Nepal animal is small and especially adapted for life in a hilly country; the Shan elephant is tall, massive and handsome, but like the Ceylon race is often tuskless. Those of Burma and Chittagong are small and well suited for hilly countries, while the Assam animal is large and massive, hence better adapted for hunting purposes. The Natives classify the recognised races into kumeriah, the royal or princely, the thoroughbred; mirga, a tightly built and long-legged, arched-backed animal, suggestive of the deer mirga; and dwasda, the intermediate of the two former and the ordinary domestic or working elephant, the mirga being used in quick marching.

In India the animal is caught purely and simply for domestic purposes and is never (as in Africa) ruthlessly destroyed on account of its ivory. It is now captured exclusively by the kheddah system, and never by the cruel methods in pits, etc., formerly pursued. But there seem indications that, far from being exterminated, the Indian elephant is increasing in a higher ratio than the captures, and that the time may come when it may be necessary to keep the multiplication under control, so as to protect the cultivation of the tracts adjacent to the forests.

The chief Indian mart where elephants are offered for sale appears to be Sonepoor, near Patna, the mela there held being some time in October or November. An elephant costs about £40 to capture, and may be sold for £150. A full-grown elephant will weigh from 3 to 3½ tons, and stand from 7½ to 9½ feet at the shoulders. It is an adult at twenty-five years (but a calf may be obtained at thirteen to sixteen years), and its full age is 120 years. The only pace of the elephant is the walk; capable of being increased to a fast shuffle of about fifteen miles an hour, but for short distances only; it can neither trot, canter nor gallop. It cannot jump, can never have all four feet off the ground at one time; and hence a trench 7 feet wide is to it impassable, though the step of a full-grown animal is 6½ feet. The elephant will eat 600 to 700 lb. of green fodder, but is usually under-fed, getting 250 to 400 lb., and is fed mainly on leaves and boughs of trees. Most of its ailments proceed from unsuitable or insufficient food.

IVORY (ELEPHANT'S TOOTH).—Mention has been made of the fact that the Ceylon elephant has frequently no tusks. In India a tuskless male is called a mukna. The tusks of the Asiatic animal are considerably less valuable than the African. As a rule, the nearer the equator, the larger, finer and more expensive the ivory; but there are in addition many local manifestations. African ivory is closer in grain and not so liable to turn yellow nor to warp and split as the Indian; moreover, the ivory of the east coast of Africa is superior to that of the west. By "dead ivory" is meant ivory that has been found on the ground or
stored for a considerable time, until it has lost the oil or gelatine that gives elasticity to "green ivory." All the finer and more expensive ivory carvings are, as a rule, done on the best African ivory; and even in inlaying, the hair lines are invariably in the bluish-white African article, the larger patches being in the dull chalky Indian quality. For the microscopic structure of ivory, consult Hanassek (Micro. Tech. Prod. (Winton and Barber, transl.), 1907, 422–8).

Perhaps one of the oldest samples of Indian ivory on record is that mentioned by Stein (Ancient Khotan, 1907, 209, 222, pl. xlviii). This was found in the Khotan oasis and dates from about the 8th century. As a curiosity, it may be mentioned that in the armouries of the Indian princes a large number of daggers will be found, the hafts of which are made of fossil or of walrus ivories. Some of these weapons have often histories that carry them back for one or more centuries; hence the traffic in conveying these special forms of ivory from Siberia or even from Greenland to India, mostly by tedious land routes, must have existed long anterior to the present methods and channels of commerce. For the microscopic appearances of the various fossil and other ivories, confer with Hanassek (loc. 426–9).

Centres of Ivory Carving, etc.—There are four localities in India and one in Burma that may be spoken of as specially noted for their artistic ivories. These are Delhi in the Panjáb, Murshidabad in Bengal, Mysore and Travancore in Madras, and Moulmein in Burma. Here and there all over the country ivory carving and ivory turnery are met with, but the five localities named produce by far the best work. The chief artistic workers in India are Hindus.

Ivory Turnery, though less artistic, is even more widespread than carving: in fact, most towns have a few workers of this class. Small articles are made by them, such as bracelets (bangles), chessmen, antimony boxes, etc., etc. Some of the better known localities are Agra, Alwar, Bikanir, Jodhpur (more especially Pali), Amritsar, Ludhiana, Patiala, Tippera, Tirupati, Godavari, etc. With the Sikh the use of a comb is almost a religious observance. It is no wonder, therefore, that in Amritsar and other towns of the Panjáb, ivory combs of great beauty are to be had. Here and there fabulous sums are expended on special chairs, howdahs and thrones made of ivory, or rather veneered with ivory; so also in the purchase of mats and fans woven by threads cut from the tusk. Ivory mats are often made at Delhi, Bharatpur, Murshidabad, Tippera, etc.

Ivory Inlaying.—In many parts of India wood is inlaid with ivory, but there are three localities that are specially noted for the superiority of this class of work. These are Mysore in South India, Hoshiarpur in the Panjáb, and Monghyr in Bengal. Bone is sometimes used as an inferior substitute for ivory in inlaying.

Trade.—The exports of Ivory (raw and manufactured) from India appear to have been declining for some years past. In 1876–7 they were valued at Rs. 55,582; in 1886–7 at Rs. 48,311; in 1896–7 at Rs. 60,501; but for the years 1901–7 they have been Rs. 27,740 in 1901–2; Rs. 27,827 in 1902–3; Rs. 26,795 in 1903–4; Rs. 26,656 in 1904–5; Rs. 44,655 in 1905–6; and Rs. 49,583 in 1906–7. The imports, on the other hand, seem to fluctuate very greatly, but on the whole the supply of raw ivory seems to be declining and manufactures increasing. Thus the raw and manufactured ivory imported in 1876–7 were valued at Rs. 24,55,637 (raw accounting for Rs. 24,15,514); in 1886–7
LAGENARIA
VULGARIS
Bottle Gourd

Dye.

Medicine.

D.E.P.,
iv., 549–52.

Walnut.

Timber.

JUGLANS REGIA, Linn.; Fl. Br. Ind., v., 595; Gamble, Man.
Ind. Timb., 662–3; Brandis, Ind. Trees, 619–20; JUGLANDIAE. The
Walnut Tree, akhroī, akhīr, kabaishing, kōl, dān, ughz, thitcha, etc. A large
deciduous tree of the Himalayan forests from Afghanistan to Bhutan
at 3,000 to 10,000 feet, and the hills of Upper Burma; also cultivated on
the Himalaya, the Khasia hills, and occasionally in gardens on other
temperate tracts.

The utilisation of the walnut and, accordingly, its cultivation in India date
from very remote times. Its chief value lies in its timber. The most important
use of the wood is for gunstocks, and as the European supply is becoming exhaus-
ted, Gamble points out that it is a matter for serious consideration whether
the tree should not be more extensively and systematically cultivated in India.
In Kashmir and throughout the Panjāb it is used for ornamental carving, turnery
and fancy work. The average weight is about 44 lb. per cubic foot. The huge
wants or "burrus" growing on the stem are also exceedingly valuable, the wood
of which is prized by cabinet-makers for veneer work. It is said that a good
burr may be valued at about 20s. per cubic foot. These burrs have at times
been largely exported from Kashmir to France, and Lawrence (Valley of Kash-
mır, 1895, 352–4) mentions that in one year countless numbers of trees were
destroyed by cutting out the burrs, for which a large demand then existed.
The bark is employed as a Dye and Medicine and is exported to the plains, where
it is used for cleaning the teeth. The fruit, which ripens in July to September,
is an important article of food in Kashmir and the North-West Himalaya
and is largely exported to the plains. The kernel yields a good description
of oil, while the rind is employed for tanning and dyeing. Lastly, the twigs
and leaves are utilised as fodder. [Cf. Moorcroft, Travels Himal., 1841, ii.,
145–50; Bentham, Rev. of Targioni-Tozzetti in Journ. Hort. Soc., 1855, ix., 166;
De Candolle, Orig. Cult. Plants, 1884, 425–7; Ind. For. 1892, xviii., 383–5; 1896,
For. Admin. Repts.]

L

LAGENARIA VULGARIS, Seringe; Fl. Br. Ind., ii., 613;
Duthie and Fuller, Field and Garden Crops, 1883, iii., 48–9, t. xlviii;
546–7; Prain. Beng. Plants, 1903, i., 519; CUCURBITACEAE. The kuddu,
lauki, tumari, kodu, tikta lāu, tumba, irāo, kundāngu, etc. A climbing plant
found wild in India, the Moluccas and Abyssinia. As a result of cultivation
the fruit assumes many different forms, the best known of which are the
Pilgrim’s Gourd, the Bottle Gourd, the Trumpet Gourd, and the Calabash.

This plant is extensively grown in many parts of India for its Fruits and
succeeds best on heavily manured soil. Sowing may take place as early as
February or as late as July, but for rainy-season crops two sowings are made,
the first in April, the second in June. It is best to sow the seed where the plants
are to grow, and about six feet should be left between each. The cultivated
forms are all eaten both by Europeans and Natives. By the former, the fruit is
boiled when young and used as a vegetable marrow; by the latter it is sliced and
cooked in curry, or the pulp is eaten with vinegar or mixed with rice. The dried
shell of the bottle-shaped gourd is used by the Natives for holding water or as
oil bottles, while the small wild form, tumari, is used for making the stringed
instrument, the sitar, and the wind instrument, the bin. The seeds yield a clear,
LARD AND TALLOW

LARD.-The rendered fat of the pig forms the valuable commercial product Lard. A similar substance prepared from cattle and sheep is Tallow (see Live Stock, p. 754; also Oils, pp. 813-4, 819). Space cannot be afforded to deal with these substances separately. Speaking of lard, the best is the so-called Leaf Lard. This is derived from the fat surrounding the kidneys, and from the flaky layers below the skin. In European trade two other qualities are prepared from the softer and more fusible parts of the fat, and are known as second and third quality lard.

LARD AND TALLOW.—The following information regarding the manufacture in Calcutta
is communicated by Mr. I. H. Burkhill, from information derived from Mr. S. Francis, superintendent of the pig slaughterhouse, Calcutta. Formerly lard was made by three large firms and several small houses, but lard-rendering is now carried on by a few small Native concerns only, and these are situated round the municipal pig slaughterhouse. With the disappearance of large and responsible firms, the quality of the lard has degenerated. The manufacture goes on all the year, but the beginning of the hot weather is the busiest season, because then most pigs are brought in. Two kinds of pig are slaughtered; one, bred in Calcutta, is called the "China-pig"; the other, driven in from the villages of Bengal, is called the "country pig." The former is white, the latter black. The animals are slaughtered in the early hours of the morning and lard-rendering begins in the forenoon. The rendering house consists of a small room and a larger godown, where the lard is cooled and stored. The rendering is done in an iron pan about two feet across and eight inches deep, placed over a slow fire. Scraps of fat of all shapes, but none weighing more than three or four ounces, are washed in water for about two hours and then heaped up in the pan to above the level of the rim. When the lard is thoroughly melted it is poured out of the pan through a double thickness of cotton-muslin into an earthenware vessel, where it stands to set. Several times a day during setting it is stirred gently for about half an hour. The time taken in setting varies with the nature of the animal from which the fat has been obtained. Lard from the "China pig" takes about two days to set, that from the "country pig" a much less time, and the lard is of better quality. Lard thus manufactured will keep for about two months only, but formerly for a much longer time—a circumstance due apparently to the fact that fat of the freshest and best quality is not always used.

The best quality of lard is much used in cooking and in preparing ointments, etc., the second in the manufacture of lard oil, the third as a low-grade oil in soap-making. The oil is manufactured by exposing the lard in woollen bags between wickerwork to a pressure of about ten cwt. a square inch in the cold for about eighteen hours. The oleine thus obtained is pure, colourless and limpid. It is employed as an adulterant for olive oil in France, and for sperm oil in the Eastern States of America. It is also esteemed as a lubricant and is used for illuminating. In Medicine, lard has long held the principal place as a medium for the exhibition of other substances, as ointments, etc. As an external application it possesses emollient properties, and is extensively employed in external inflammations, bruises, sprains, and in various skin eruptions.

Tallow, as already stated, is prepared from beef or mutton and goat fat, or a mixture of these. It is a harder and less fusible fat than lard. The rendered tallow is refined by boiling with water; it is often bleached by means of nitric acid, and employed as a lubricant and for soap and candle making. When intended to make moulded tallow-candles, the finest mutton suet can alone be used, but for "dips" the refuse from the moulded candles or the cheapest tallow (a mixture of all animal fats) may be employed. Hoey (Monog. Trade and Manufact., N. Ind., 174) speaks of the candle-makers of Lucknow using charbh (fat), but though he deals most minutely with the industries of that city, he makes no reference to the lard and tallow manufactures. So again, speaking of soap manufactures, he states that charbh (bullock and buffalo fat and tel, either castor or linseed) is employed.

702
BOMBAY TRADE IN TALLOW

Trade in Lard and Tallow.—The foreign traffic in Lard appears to be declining. The exports in 1876-7 were valued at Rs. 3,228,825; in 1886-7, Rs. 1,935,283; in 1896-7, Rs. 67,900; and for the past five years they have been:—1902-3, Rs. 52,810; 1903-4, Rs. 30,526; 1904-5, Rs. 15,500; 1905-6, Rs. 18,750; and 1906-7, Rs. 15,747. Corresponding with this change in the traffic, the imports may be said to manifest an expansion: in 1899 they were valued at Rs. 26,952; in 1900-1 at Rs. 47,058; and for the past five years have been:—1902-3, Rs. 61,462; 1903-4, Rs. 70,610; 1904-5, Rs. 55,454; 1905-6, Rs. 59,536; and 1906-7, Rs. 92,370. The traffic in Tallow corresponding to the lard just given was as follows:—Exports were in 1876-7 valued at Rs. 31,234; 1886-7, Rs. 54,097; 1896-7, Rs. 95,574; and during the five years ending 1906-7 were valued at Rs. 1,70,721, Rs. 2,17,828, Rs. 1,30,999, Rs. 1,11,255, and Rs. 80,404. Thus it may be said this export traffic is, on the whole, an expansion. The imports in 1876-7 were valued at Rs. 62,671, and for the past seven years have been:—1900-1, Rs. 3,46,570; 1901-2, Rs. 5,51,976; 1902-3, Rs. 3,84,402; 1903-4, Rs. 5,93,127; 1904-5, Rs. 6,80,054; 1905-6, Rs. 8,16,705; and 1906-7, Rs. 9,14,834.

Nearly the whole of the Lard exported from India goes from Bengal to Mauritius. Formerly a fair amount was consigned to Reunion and to the Straits Settlements, but for some years past both these countries have discontinued their demands. India, as shown above, imports lard, and by far the major supply comes from the Straits, and recently from China (Hongkong), but Burma may be described as the receiving province. Of the total imports in 1903-4, viz. 316,111 lb. (the largest quantity for the past five years), valued at Rs. 70,610, Burma alone took 303,727 lb., valued at Rs. 65,203. The returns of the coastwise traffic do not show lard separately from “Other Provisions,” so that it is not possible to discover to what extent Bengal or the other provinces of India are competing with the Straits for a share in the Burmese market.

Speaking of the traffic in Tallow, it is curious that while Bengal is the province most concerned in lard, the tallow traffic is concentrated chiefly in Bombay. The foreign exports in 1906-7 were 4,135 cwt., valued at Rs. 80,404, of which Bombay exported 3,517 cwt., valued at Rs. 69,601. Of the receiving countries, Arabia seems to manifest the most constant demand, taking 2,260 cwt. out of the total. Imports.—A curious feature of the tallow traffic may now be mentioned, namely that Bombay, followed by Burma, takes by far the largest share of the foreign supply. During 1906-7 India imported tallow to the extent of 36,837 cwt., valued at Rs. 9,14,834, and of these amounts Bombay took 23,325 cwt., Burma 6,433 cwt. The countries of supply were the United Kingdom, 19,604 cwt., and Belgium, 6,288 cwt. There is no mention of re-exports, so that India would appear to be by no means self-supporting in its lard and tallow supplies. [Cf. Hurst, Lubric. Oils, Fats, etc., 1896, 180; also Soaps, 1898, 119-20; Blyth, Food Comps. and Anal., 1903, 310-6; Leach, Food Inspect. and Anal., 1905, 451-6.]
LATHYRUS SATIVUS

THE CHICKLING-VETCH

teora, tiura, churál, lákh (or lác), lákhorí, láng, etc. An annual herb which, according to De Candolle, is indigenous to the region that extends from the Caucasus to Northern India.

Cultivation.

India as a cold-weather crop, and has the reputation of germinating on land too dry for other rabi crops. To this fact is largely due its value agriculturally. It can take the place of other crops when the October rain has failed, and as an article of food it is remarkably cheap. Statistics of actual cultivation are not available for the whole of India, so that a complete statement of the total area cannot be furnished. The following particulars of a few provinces are, however, instructive. In 1904-5 the Central Provinces had an area of 363,504 acres, chiefly in Nagpur (163,632 acres) and Chhattisgarh (152,046 acres) districts. Berar appears to have had 14,408 acres. Bombay (excluding Sind) 18,656 acres, mainly in Broach. Sind by itself had 292,070 acres, chiefly in Larkhana district (142,014 acres). The United Provinces do not appear to have published the area recently, but some few years ago the acreage devoted to the crop was said to have been 56,100 acres. No returns of any kind are available for Bengal, Assam, Burma, the Panjáb, Rajputana and Central India, nor Madras. There is no evidence, however, that these provinces materially affect the total Indian production. The two chief areas are the Central Provinces and Sind.

Tillage.

Tillage and Yield.—To give some conception of the methods of cultivation, yield, etc., of this pulse, the admirable account given by Mollison (Textbook Ind. Agri. 1901, ii., 29; iii., 78-80) may be here drawn upon. Láng, he says, is almost invariably grown alone, though a slight admixture may be found in gram (Cicer arietinum) fields. It thrives best on deep, retentive, black soils. In the Deccan it is chiefly a second crop in rice-fields, but in Gujarat it is the sole crop of the year. In Broach it is generally raised on low-lying fields liable to be flooded by heavy rain, all fields which become waterlogged and too wet for cotton being commonly sown with láng. Tillage operations begin by ploughing after the first fall of rain. If the rains are unfavourable for cotton, the field is kept for láng and repeatedly harrowed during July, August and September. No manure is applied, but the ground is carefully prepared, since láng grown on clean ground is a good preparation for cotton in the succeeding year. Sowing takes place in September or early in October, and the seed-rate varies from 35 to 40 lb. per acre. The seed is dropped in the plough furrows in rows about a foot apart, and the surface levelled and pressed immediately after. No weeding is required, and the crop ripens in February about four and a half months after sowing. It is reaped before it is fully ripe, formed into small heaps in the field, and allowed to dry for a week. When dry it is threshed out under the feet of bullocks and winnowed in the ordinary way. The cost of cultivation is stated to be Rs. 13-12 per acre. In a well-grown crop the weight of pulse almost equals the weight of fodder. From full average crops in Broach, Mollison found the outturn of pulse to vary from 925 lb. to 1,068 lb. per acre, and of fodder from 1,220 lb. to 1,405 lb. Láng is cultivated chiefly as a FODDER, but as it is cheap and easily grown, it is considerably used as Food by the poorer classes, principally in the form of bread, dál, or porridge.

Evil Reputation.—Much interest has been, for a century or more, spasmodically directed to this pulse, on account of its evil reputation of causing paralysis.
pointed out as the poisonous seed. The subject has been approached at the instance of the Imperial Institute from another point of view, namely investigations to ascertain if the pulse possesses a poisonous fungal parasite that could account for the toxic action. Prof. Percival, of the Wye Agricultural College, failed to discover any such fungus.

Recently the disease has been very prevalent in the Central Provinces, and a census showed that the number of people more or less paralysed was over 7,600. In view of this fact Major Buchanan was put on special duty to inquire into the cause of the spread of lathyrism, and to endeavour to find means for its prevention. The results of his investigations are embodied in a bulky report (to which reference has already been made). He gives the following general summary:—"It has been shown that lathyrism is due to the consumption of Lathyrus; that the disease, when it occurs in big epidemics, follows famine or scarcity; that it is chiefly confined to wheat-growing areas; that failure in wheat is an important factor in the causation; that the disease is chiefly found among the poor, and that debt is an important factor in the causation. Under certain circumstances Lathyrus is a good article of diet, and it is only when the proportion reaches or exceeds one-half of the whole ration that paralysis is likely to occur." On the other hand, Dr. A. G. Hendley (Brit. Med. Journ., 1903, ii., 707–9), after discussing fully this subject, arrives at the conclusion that "Lathyrus, whilst it may possibly cause paralysis by itself, ordinarily only predisposes to it, that it makes the subject ready or ripe for the attack of paralysis, but that exposure to severe wet and cold is required actually to excite the sudden seizure." "The attack occurs after an unusually thorough wetting whilst ploughing, watching crops at night or other field work that ordinarily falls to man's lot and not woman's."

Trade.—No particulars can be furnished of the trade in this pulse. It is known to be occasionally exported. Some few years ago a sample of what was called "mútar, or Indian Grey Peas" was shown to me by a Glasgow corn-merchant. I pointed out that while this pulse was occasionally called mattr, the true mattr of India was the Grey or Field Pea. It is, therefore, most important that the present pulse should not be confused with the grey pea of India, which is as harmless and useful as the grey pea of Europe. The wedge-shaped pea of the present plant, flattened on two sides and marbled on the surface, should easily be distinguishable from all the peas or pulses of India, except perhaps gram (Cicer arietinum); but while gram is somewhat triangular in section it is prominently tapered below into a beak, and is devoid of the marbling of Lathyrus.

Cultivated throughout India on account of its leaves, which yield the "henna," dye and also as a garden hedge plant. The soil is repeatedly ploughed and heavily manured, and the seed is soaked in water for twenty-five days before sowing, which takes place in April and May. The plot of land where the seeds are to be sown is formed into beds and kept flooded for some days. The seed is scattered on the water and sinks with it into the ground. For three days water is given both night and morning; after that only once a day till the plants meet. For three days water is given both night and morning; after that only once a day till the plants meet.
INDIAN COSMETIC AND HAIR DYE

appear above ground, when they are watered every alternate day. When about 2 feet high they are ready for transplanting in July and August. About 6 inches are nipped from the centre shoot, and the young plants are then put singly into holes one foot apart. They are watered daily till they have recovered the shock of transplanting, and the fields are weeded once a month. No crop is reaped the first year, but afterwards two crops a year are obtained, one in April—May, the other in October—November, for many years on end. At each cutting about 9 inches are taken from the top shoots, and an acre yields about 20 masunds of dry leaves a year.

The dye is obtained from the leaves: these are dried, sifted, a little sarson oil added, then reduced to a powder. This powder may be purchased at all the cosmetic and dye shops in the larger towns of India, and may be seen in small sacks alongside of the imported aniline dyes. It is occasionally used in dyeing cloth, but its principal value in India is as an article of the toilet, for staining the finger-nails, hands and feet a dull orange colour, also for dyeing the hair into a bright red colour, what is often but a first stage in the production of black by the action of indigo on the original red. The use of henna as a cosmetic dates from very little known, and the flowers are employed in perfumery and embalming.

LEAD and its Salts and Manufactures. — Ball, Man. Econ. Geol. Ind., 1881, iii, 281–311; King and Pope, Gold, Copper, Lead in Chota Nagpur, 1891, 95–9, 156, 159–99; Rec. Geol. Surv. Ind., 1904, xxxii, pt. 1, 46–7; Holland, Rev. Min. Prod. Ind., in Rec. Geol. Surv. Ind., 1905, xxxii., pt. 1, 110. This metal bears among other names the following:—sisa, bindi, surb, ikam, temaatam, khai-pok, etc. It rarely occurs anywhere in the native state, and is never found in that condition in India. Its commonest ore is the Sulphide or Galena, surma, anjana. Other common ores and salts are:—Red Oxide of Lead, sandhur, segapú, temaméra, k’san, etc.; Litharge, murdasang, marudar singhie; Carbonate of Lead, safída, vullay, sibaydá, etc.; Chromate of Lead, peori-wilayti (= English peori, see p. 765).

Mining. — Although lead ores have been worked to some extent in ancient times, at the present day lead-mining in India is practically in a dormant condition. Holland makes the following statement with regard to it:—“Galena alone, or with blende and other sulphide ores, has been worked in various places for lead and lead and silver, under past Native rulers; but the mining of lead-ores has long been extinct, and the only recent attempt calling for special mention is that now being made to develop the deposits near Pang Yung in the Northern Shan States formerly worked by the Chinese, who left behind large heaps of slag reported to be amenable to profitable treatment by modern metallurgical processes for the extraction of silver.”

Manufactures. — The metal is comparatively little employed by the Natives of India, owing to its scarceness. It is, however, occasionally used in the manufacture of certain wares and alloys, as for example in Hyderabad and Lucknow, where it is a component of the alloy of which Bidri ware is made (Watt, Ind. Art at Delhi, 1903, 47). Both the red oxide of lead and the carbonate or white lead are commonly utilised as pigments, e.g. in lac turnery (Watt, loc. cit. 211–2, 231), in Afridi waxcloth (Agri. Ledy., 1901, No. 12, 400 et seq.). Red oxide is largely employed for religious purposes by the Hindus, who mark their idols and their money with it. All married Hindu women employ it as a paint to give a circular spot on the forehead. In Medicine, the monoxide or litharge, the carbonate, acetate, sub-acetate, nitrate and iodide are all official in the Indian Pharmacopoeia. All these salts, except the acetate, are applied externally only, as sedative and cooling astringents, in various skin diseases. The acetate is similarly used, but is also administered internally.

Trade. — The imports of lead from foreign countries are very considerable:

LEAD

<table>
<thead>
<tr>
<th>Ores and Salts.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transplanting.</td>
</tr>
<tr>
<td>Cropping.</td>
</tr>
<tr>
<td>Season.</td>
</tr>
</tbody>
</table>

Dye.

Cosmetic.

Oil.

Lead.

Mining.

Manufactures.

Uses.

Medicines.

Imports.

707
LENSES
CULENTA
Masur.

in 1906-7, 102,455 cwt., valued at Rs. 15,82,550. In addition, Government imported 12,301 cwt., valued at Rs. 1,58,840. The greater part of these imports came from the United Kingdom. But it has to be pointed out that the chief market is the supply of the tea industry with the sheet lead required for lining tea chests, which is admitted free of duty. This came in 1905-6 to 82,166 cwt., valued at Rs. 11,23,738, and in 1906-7, 57,307 cwt., valued at Rs. 8,76,739, and was consigned from the United Kingdom almost entirely to Bengal. In the year 1906-7 the chief sources of supply for lead of all kinds were as follows:—United Kingdom, 76,230 cwt.; Australia, 16,001; France, 4,199; Belgium, 2,990; Ceylon, 2,864. The share of the Presidencies and Provinces in the imports were:—Bengal, 72,548 cwt.; Bombay, 10,772; Madras, 6,197; Sind, 4,918; Burma, 3,493.

D.E.P., Iv., 621-5.

Lentil.

LENSES ESCULENTA, Moench.; Duthie, Fl. Upper Gang.-Plain, 1903, 257; Prain, Beng. Pl., 1903, i., 367; Brevum Lens, Duthie & Fuller, Field and Garden Crops, 1883, ii., 13, t. xxx.; Fl. Br. Ind., ii., 179; Leguminose. The Lentil, masir, channangi, moher, chanching, kerze, adah, misurpurpur, misur-pappu, etc. A valuable pulse, grown as a winter crop all over India. According to De Candolle, it is a native of western temperate Asia, Greece and Italy, and has long been cultivated in Egypt, whence it was conveyed to India. As an article of food it has been known from the most ancient times.

Cultivation.—At the present day the lentil is cultivated in all parts of India, especially in the Central Provinces, Madras and United Provinces. The following is a brief summary of the area under cultivation and the methods pursued in those provinces about which trustworthy information can be obtained.

Bengal. Bengal.—Separate returns for this pulse are not recorded, hence an estimate of the area under cultivation cannot be given. It thrives best on a clay soil, since in light soils the plants wither away. In rotation following paddy (rice), the land receives three or four ploughings and the seed of the lentil is then sown October to December at the rate of about 5 seers per bigha (=one-third acre). In some parts of the country it is mixed with barley. Harvesting takes place from the middle of February to the middle of April; the crop yields about 3 maunds per acre. The cost of cultivation has been estimated at Rs. 2-10 per acre. [Cf. Basu, Agri. Lohardaga, 1890, pt. ii., 34; Banerjee, Agri. Cutch, 1893, 83.]

Assam. Assam.—Cultivation is chiefly confined to the chaparis of Kamrup, Nowgong and Mangalda. In Upper Assam it is cultivated to a small extent in the Majuli. The crop prefers a light, loamy soil and an open situation, and generally follows a broadcasted dhu (rice) crop, and is sown in mixture with mustard. Sowing takes place within the first fortnight of November. The seed rate is 12 lb. per acre, if sown with mustard, but if sown alone, about 50 per cent, more seed is required. Harvesting takes place in March and April, and the usual yield is about 2 to 4 maunds per acre. [Cf. Agri. Dept. Assam Bull., 1902, No. 9, 11.]

U. Prov. U. Prov. United Provinces.—The area under masir is not separately recorded, but in 1904-5 peas and masir together occupied an area of 2,035,573 acres, distributed thus:—1,437,152 acres in Agra, 618,727 acres in Oudh. According

708
INVALID FOOD

CALCICUM CARBONATE

LIME

Location.

Yield.

C. Prov.

Area.

Panjab.

Inundation Crop.

Seed.

Bombay.

Area.

Soils.

Season.

Food.

Dhal.

Vegetable.

Ervalenta.

Medicine.

Indian Names.

to Duthie and Fuller, cultivation is most extensive in the damper parts of these provinces. It is sown in all kinds of soil, but chiefly in low-lying land. Generally it follows rice, being often sown while the rice stalks are standing, and is allowed to grow up amongst them. The seed rate varies with the condition of the ground, but is commonly about one maund per acre. The outturn from unirrigated land varies from 6 to 8 maunds per acre, but with irrigation may reach 10 to 12 maunds.

Central Provinces and Berar.—In 1904–5 the area under the crop was in the Central Provinces, 231,756 acres, chiefly in the Chattisgarh, Jabalpur and Nerbudda Divisions, and in Berar, 13,167 acres. It is generally sown on the best black soil.

Panjib.—No statistics of area are available. In the Jhang district, which is typical of the province as a whole, it is a "sailaba" or inundation crop. Now alluvial soils or light lands, not good enough for wheat, are selected. The land is ploughed once or twice and the seed is sown broadcast, 30 to 45 lb. per acre, from December to January. The crop is ripe in March to April. [Cf. Gaz. Panjib Dist.]

Bombay.—In 1904–5 the area was 9,791 acres, chiefly in Nääsk (5,097 acres) and Belgaum (2,918 acres). Maüsir is always an unirrigated mad crop, and generally is grown alone. In Poona it is the sole crop of the year, and is rotated with dry-crop wheat. The soil is mixed black, but only of moderate depth. In September and October the land is repeatedly ploughed, and in October the seed is drilled in rows a foot apart at the rate of 20 to 25 lb. per acre. The crop ripens in three and a half months, and a good outturn is about 300 lb. per acre. [Cf. Mollison, Textbook Ind. Agr., 1901, ii., 89-90.]

Food.—In India it is eaten as dāl, flavoured with various aromatics and condiments, also as a component part of the dish called kichri, and is considered the most nutritious of the pulses. The young pod is also eaten as a vegetable, and the dry leaves and stalks are greatly prized as fodder. In Europe this pulse meal, mixed with barley flour or other cereal and common salt, is sold as an invalid food under the name Ervalenta or Revalenta. Leather (Ind. Food-Grains and Fodders, Agri. Ledg., 1901, No. 10, 366) gives the following chemical analysis:—moisture 8-03 per cent., oil 1-06, albuminoids 23-0, soluble carbohydrates 61-14, woody fibre 2-42, soluble mineral matter 3-54, sand and silica 0-81, total nitrogen 3-94, albuminoid nitrogen 3-68. As a medicine, lentils have long had the reputation of being useful in cases of constipation and other intestinal affections. [Cf. Bentham, Rev. of Tarqioni-Tozetti, in Journ. Hort. Soc., 1855, ix., 139; De Candolle, Orig. Cult. Plants, 1884, 321; Church, Food-Grains of Ind., 1886, 138–9; Ass Gray, Scient. Papers, 1889, i., 347; Kanny Lall Dey, Indig. Drugs of Ind., 1896, 174–5; Yearbook of Pharmacy, 1898, 77.]

LIME, MARBLE, CHALK, etc., or Calcium and its Salts and Manufactures.—Although Lime (Calcium) does not exist in a pure state, in the form of the carbonate it constitutes a by no means insignificant portion of the earth's crust, e.g. limestone rocks. Limestone-burning is the operation of driving off carbonic acid from the carbonate with the production of the oxide of calcium or Quicklime. This readily absorbs water and becomes Slaked Lime or hydrate of lime (Agri. Ledg., 1902, No. 5, 137–47). The subject may, therefore, be dealt with under two great sections—Calcium Carbonate and Calcium Sulphate.

LIME, CARBONATE OF.—This is known in India by an extensive series of vernacular names that denote the conditions (quicklime, slaked lime, etc.) and the sources (limestone, marble, chalk, shells, etc.). The most general name is perhaps the Hindustani chūná, a word which in the various languages of India assumes numerous forms, such as chūndh, chūn, chūno, chūnak, chūnmābu, chūrṇa, shunnambu, sunnam,
sunna, hunna, hunu, etc. Its most general name in Sanskrit would appear to be sanhka-bhasma, but certain writers give also chūrṇ (= a "powder"), sudha, kapardaka-bhasma, sukti-bhasma, etc. Its Arabic names appear to be kils and abu and its Persian mukkak and ahak. chalk is very generally known as khari-matti or kharya-mitti. Unsalted or quicklime is kali-ka-chuna or simply kali or kalai, often also called ahak; limestone is kali-ka-pattar; shell lime is sipi-ka-chuna; the lime from limestone lime being kattal-ka-chuna; marble is marmar; fossil corals are sang-ya-yahada.

The word chūnām, by modern usage, generally denotes, however, the beautiful plaster or cement characteristic of many localities of India, more especially in the south (see below in the paragraph devoted to Mortar and Cements, p. 713). One of the earliest European writers to use the word chūna appears to be Garcia de Orta (A.D. 1553), although fifty years previously the Italian traveller Varthemat describes the people around Calicut as eating betel leaves along with a certain lime made from oyster shells, which they call "cionama."

Sources.—There may, in India, be said to be three great groups of rocks or materials that afford lime, as follows:—

(a) Limestone, Dolomite, Miliolite, etc. (Imp. Gaz., iii, 148-50).—Hardly any known geological formation in India is wholly without limestone in some form, although many of the examples are exceedingly impure and scarcely worthy of the name. Mr. R. L. Sevenoakes, in the Journal of the Queen Victoria Indian Memorial Fund (No. 2, 26-31) (a publication here utilised freely), describes some twenty different kinds of ornamental building stones. Some Indian ornamental stones are of nearly equal merit to the marbles specialised below, and still others gradually decline until they have to be characterised as at most only good building limestones. The limestones procurable in many parts of Bombay and Sind, for example, are admirable building stones, though marble nowhere exists in that Presidency. The Porbandar miliolite (foraminifer limestone) has been conveyed from Kathiawar to Bombay and even to Calcutta, and is employed in the construction of some of the more important of the recent buildings of these cities. In South India it may be said that crystalline limestones occur in Trichinopoly and Coimbatore, but of very inferior quality; good building limestones are found in Cuddapah, Karnul and Guntur, and marbles at Palnad. In the Central Provinces there are numerous examples of limestones and admirable building stones, such as those of Wardha, Nagpur, of the Vindhyan formation, such as the limestones of Katni; and in the United Provinces the crystalline limestone of Mirzapur, which occurs in the metamorphic rocks of that district. In various localities of the Panjāb good limestones and even marbles are found. Lastly a reference is essential to the limestones of Lakhimpur and of the Khasia and Jaintia hills of Assam.

The most important limestones and lime may thus be grouped commercially:—

1. SATNA, in Rewah and at Katni, in the Jhabalpur district. From both localities lime of excellent quality is carried as far as Calcutta (624 and 685 miles distant), and constitutes a large proportion of the lime used in that city. 2. SYLHET.—Along the southern foot of the Khasia and Jaintia hills there is an inexhaustible supply of nummulitic limestone, which formerly supplied the whole of the demand of Calcutta and Lower Bengal.
and still does so to a large extent. The returns of 1904 show a supply of 123,108 tons of lime, valued at £9,496. 3. Rhotasagarh.—The lower Vindhyan limestone near Rhotasagarh is quarried to a small extent, and exported down the Són in boats; it was largely used in the works of the Són Canal. Good lime is made from the deposits at Bisra, in the Singbhum district, and has recently begun to arrive in Cuttack in increasing quantity. 4. Himalaya.—Along the foot of the Himalaya, boulders of limestone are collected and burnt in large quantities every year; the slaked lime is exported on camels and supplies a large portion of the Panjáb and the United Provinces. 5. Andaman.—There is a band of cream-coloured marble near Port Blair which may prove of economic importance, as it is about the same distance from Calcutta as Katni, and the lime is of equally good quality. 6. Other localities where limestone is known are numerous, but at present of merely local importance, or in most cases of no value whatever. A full list of them as far as they are known will be found in the Manual of the Geology of India (1881, iii., 449 et seq.)."

(b) Lime, Concretionary or Kankar; Imp. Gaz., Lc. 23.—Medlicott explained the formation of this substance as due to the evaporation of the ground water, containing in solution more or less of carbonate of lime, produced in the slow process of soil-formation by the general decomposition of rock particles. Its production is, however, very much a matter of climate, i.e. alternating periods of extreme moisture and dryness. In the vast majority of cases a layer of kankar (a word which means simply nodular stone) will be found to underlie ñssár soils. This circumstance has been purposely only incidentally alluded to in the passages that deal with réh efflorescence (p. 52), because, although doubtless formed by the same physical processes, réh and lime have not been shown to be dependent on each other. Réh efflorescence may occur without any formation of kankar, and conversely kankar may exist within the soil without any evidence of réh efflorescence or even of an abnormal deposition of soluble alkalis.

Kankar is the chief source of lime in Upper India, and it yields an excellent and somewhat hydraulic cement. Holland (Rev. Min. Prod., Lc. 1898–1903, 102) speaks of kankar and laterite as "about the most valuable assets in building material possessed by the country." James Cleghorn (Ind. and East. Engin., June 1898, 356–7) gives the results of his study of this substance and of its practical utilisation as mortar. Very often the nodules of kankar are so abundant, at certain depths below the surface of the ground, that they become consolidated into blocks. Such blocks when obtainable are largely employed for building purposes, and were so used extensively in the Ganges Canal Works. Kankar, broken and hammered while water is poured over, is the material mainly used for road-making in the greater part of India. This circumstance gives at once a vivid conception of the abundance and extensive distribution of the substance. Kankar has been tried as a flux for iron on several occasions, but with very indifferent results. Its composition is too variable and its liability to adulteration too great to admit of its use, except where limestones are not available. "Large quantities of lime are made in various parts of India from highly calcareous surface soil." "This lime when mixed with proper proportions of sand makes most excellent mortar." (Rept. Chief Insp. of Mines in Ind., 1904, 4.)
MORTAR AND CEMENT

LIME

CALCIUM CARBONATE

genous matter by boiling is less perfectly accomplished in the case of beet than of cane juice. The addition of slaked lime accordingly greatly facilitates that result by the formation of insoluble lime compounds. For medicinal purposes, lime enjoys a well-recognised position, more especially as the basis of the mild antacid known as "lime water." [Cf. Waring, Baz. Med., 1897, 90-4; Barry, Legal Med., 1902, 389, 451.]

Mortar and Cements.—By far the most important use of lime is as mortar—a cement which consists of lime, sand and water (see pp. 292-3, 695). If lime be mixed with water, a paste is formed that will rapidly harden or "set," as it is called. When dry it will, however, be found to crack and crumble to pieces. To prevent this it is mixed with sand (or in India with the fine powder made from brick known as surkhi). To obviate a too rapid evaporation of water from the mortar, it is customary to moisten the stones or bricks, when a much more durable cement is the result. If mortar be properly prepared, a thin layer is found sufficient to bind together the materials with which it is mixed.

Stein (Ancient Khotan, 1907) describes the stucco used in plastering the surfaces of walls made of wood, mud, and (sun-dried) bricks in buildings uncovered by him from the sand with which they had been engulfed during the 3rd to the 8th centuries. The stuccoed surfaces were found to have been frescoed very elaborately and beautifully, and in many cases statues made of mud were found to have been coated with stucco and subsequently painted. In a further paragraph reference will again be made to Stein's discoveries in connection with plaster of Paris (see p. 718). It would thus seem fairly certain that an advanced knowledge existed in Eastern Turkestan of certain uses of lime long before that material came into use as a cement in stone and brick construction. The oldest constructive buildings in India, such as the Chulikyan temples of the Deccan, have the stones so fitted into each other or are of such massive blocks that they have remained in their positions for centuries without cement of any kind having been used. It seems thus fairly certain that the use of cement in house-building was subsequent to the date of the temples named. [Cf. Papers Relat. to Magnesia Cement, Mod. Govt., 1826-37; Butler, Port. Cement, 1899.]

There are commonly said to be the following classes of cements:—

(a) calcareous; (b) gelatinous; (c) glutinous; (d) resinous; (e) mixed materials but non-resinous. The first mentioned are those with which the present article is more immediately concerned, such, for example, as the mortar already indicated. A hydraulic cement, or Portland cement as it is called, is in other words a cement which has the property of setting under water. This is obtainable from certain limestones that naturally contain from 10 to 25 per cent. of alumina, magnesia and silica, or may be artificially manufactured by mixing 65 to 80 parts of chalk or other pure lime with 20 to 35 parts of river mud or clay and a little oxide of iron, say 3 to 14 per cent. These ingredients are thoroughly mixed in water, dried slowly, calcined, and then reduced to a powder. In India, Portland cement is at present mainly manufactured in the Madras Presidency, and more recently works have been started in Bengal, but in other provinces it is occasionally prepared, and chiefly from argillaceous kankar to which a certain proportion of fat limestone is added. But it is a striking peculiarity of these hydraulic cements that

713
their adhesive power is diminished by mixture with sand. When used as a stucco the sand employed must be perfectly free from loam, and the surface must not be painted over (if that be so desired) until the cement has been thoroughly dry for some months.

It may further be added that if Portland cements have more than 4 per cent. magnesia they rapidly decompose when kept under water. A cement with a basis of white magnesia in place of clay is sometimes known as "White Mortar." There are large deposits of magnesite and of magnesium limestones (dolomites), especially near Salem in South India, and these it is understood have recently been taken advantage of by the Madras Portland Cement Company in the preparation of a cheap, easily applied and rapidly drying plaster that takes a fine polish. In the public press it is not uncommon to read the certificates of "Arbutnott's Portland Cement" as being "equal to the best-known brands of English Portland Cement." Mr. C. S. Middlemiss wrote in 1896 a most interesting report on the magnesite areas of the Chalk Hills near Salem (Agr. Ledg., 1896, No. 15). Papers written by James Clegborn (Ind. and East. Engin., May 1894, 320–1; 1898, ii., 210–11; iii., 32–3; iv., 28, etc.) will also be found to contain much useful information regarding magnesia cements. [Cf. Blount and Bloxam, Chem. for Engin. and Manuf., 1900, 132–42; Min. Indust. in U.S.A., 1900, 75, 82; Gilmore, Hydr. Cements, 1–334, etc.]

Chinám.—Incidental mention has already been made of the fact that an admirable polishing and exceedingly strong cement (sometimes spoken of as chinám) is made in several parts of India. There are various methods of preparing this substance, but these all practically agree in the circumstance that some saccharine substance is combined with the lime as well as powdered marble, plaster of Paris or steatite. The sugar most commonly employed for this purpose is the jaggery obtained from the cocoanut palm. The milk of that palm is also mixed with lime in the preparation of a very superior whitewash. It is believed that the sugar promotes the solubility of the lime, thus allowing of a finer and more complete state of division.

A special art of some parts of India, as, for example, in Bikanir, consists in carving cemented surfaces into rich floral designs that may be subsequently gilded or painted. [Cf. Ind. Art at Delhi, 1903, 95–6.]

Cement Materials.—Lime or some of its salts (such as plaster of Paris) is largely employed in combination with glutinous and resinous materials in the formation of cements. The rice-water is in India commonly mixed with a certain percentage of pure lime in the preparation of a strong cement which is employed to join the various parts of musical instruments in place of glue. Instead of rice, the dough of fine flour may be kneaded in water until gluten only remains. To this should then be added a small quantity of pure lime. The cement thus prepared is largely used for all forms of woodwork, and has the special merit of resisting damp. It is generally known by the name sují. Lac combined with borax forms a convenient cement to be used where exposure to water or moisture is unavoidable. Cutlers' cement consists of rosin, beeswax and brickdust and plaster of Paris, or simply rosin and plaster of Paris. Dr. Fleming, in his Account of the Salt Range, says the Natives use plaster of Paris, mixed with pure lime, to produce their finest
qualities of shining marble-like chúnám. It is also largely employed as a whitewash.

For the materials employed along with lime in the formation of special cements, the reader is referred above (pp. 292–3) and to the respective positions in this work of the articles there indicated.

Marble.—The best-known marbles are those of the Aravalli series, which include the quarries of Jodhpur (Makrāna), of Tonkra in Kishengarh, of Khawar in Ajmir, as well as of Raialo in Jaipur, all in Rajputana, and of Jabalpur in the Central Provinces. Within a radius of eight miles around Makrana there are something like 100 quarries, but of these only 15 are at present worked. They vary in depth from 30 to 75 feet, and follow the vein. The marble is excavated by blasting, and is then cut into the required size by steel saws. It is hauled to the surface on wooden rollers, and by manual labour. The quality of the stone is generally better according to the depth it is worked, but owing to the crude appliances used for hoisting to the surface, deep mines are impossible. The dust and fragments produced during mining operations at Makrana are burnt into lime, and this quality is much appreciated for the finer kinds of plastering. [Cf. Journ. Queen Vict. Ind. Mem. Fund, March 1904, 19–25.]

Colours.—The white marbles of Raialo are highly valued for filigree screens (jālé), of which numerous fine examples exist at Abu, Agra, Ahmedabad, Delhi, etc. The yellow marble of Jaisalmir (khattu) is a pure yellow, not white and yellow veined. It is used in the tomb of Ghayas Beg and his wife at Agra, and is so abundant as to be locally worked up as an ordinary building stone. The black marble found at Bainslana is carved into statues and toys. The black material in the inlaid work of the Taj and other Mughal buildings is a calcareous shale found in the lower Vindhyan series at Chitor. The handsome, mottled, green marble of Motipura in Baroda State, as also the grey and pink marbles of Narwār in Kishengarh State, are much admired and largely used for ornamental purposes. The onyx-marble of Nurpur and Shahpūr, Panjab, is famous. This is a cream-coloured rock streaked cloud-like with purple, hence its name badal (cloud). An exquisitely beautiful variety of onyx-marble is found near Jhuli in Baluchistan, too remote from civilisation to admit of its utilisation. The marbles and limes of Narnaul in Patiala State are also well known. [Cf. Rec. Geol. Surv. Ind., 1906, xxxiii., 59–60.] It is commonly believed that the reason why the marble used in the Taj and other buildings has remained for three hundred years without getting tarnished is due to its coarseness of grain and chemical purity. A coarsely crystalline dolomite marble occurs near Mirganj, 11 miles west of Jabalpur, but it includes numerous crystals of tremolite, and its use for tombstones at Jabalpur shows that it is of inferior quality as a marble stone when exposed to the weather. In Burma the beautiful semi-transparent white marble so extensively employed for the figures of Gautama is obtained chiefly from the Tseygen hills in the Madeya Sub-division of the Mandalay district and near Sagaiing.

Uses.—Marble is thus in extensive demand for the decoration of sumptuous dwelling-houses, palaces, temples and mosques, and in the construction of idols, ornaments, toys, etc. A highly instructive account of its uses in the buildings of Agra will be found in the (Agra Gazetteer 1884, vii., 684–716, 728–35). In the Aín-i-Akbari mention is made
of the skill of the Indian stone-carvers, but not of the art of stone inlaying. Both arts were, however, greatly improved during the time of Akbar's son and grandson. The use of marble became, in fact, the dominant feature of the new school of architecture that assumed such stupendous proportions with the Mughal rulers of India. Perhaps one of the most pleasing and at the same time surprising features of that great school of Indian architecture might be said to be the marvellous filigree screens (jali work), in sandstone or marble, that take the place of the glass windows of European buildings. Keene (Stone Indust. of Agra) gives a very accurate and impressive account of the screens at Fatehpur Sikri (constructed 1581 A.D.). "The outer screens," he says, "are so minutely pierced that they actually look like lace at a distance, and illuminate the mortuary chamber with a solemn half-light which resembles nothing else that I have seen." In Agra a fairly extensive industry exists in the preparation of screens, tables, fancy boxes, picture frames, plates, vases, etc., as also models of the Taj and other ancient monuments. These are mostly done in white marble, inlaid with agate, carnelian, chalcedony, jade, Jasper, lapis-lazuli, topaz, turquoise, bloodstones, garnets, rubies, sapphires, etc. This art is supposed to have sprung into perfection with the tomb of Itmad-u-Daula and the Taj (A.D. 1627-1658), and to have almost immediately thereafter gradually declined until at the beginning of the 19th century it had practically disappeared. It is said to have been revived by Dr. J. Murray about fifty years later. It has flourished ever since, the goods produced in Agra being carried for sale by the traders in Indian art wares all over India.

LIME SULPHATE: GYPSUM, Plaster of Paris.—This is the hydrous calcium sulphate generally known as Gypsum; when in a fine grained condition, Alabaster; and when in transparent crystals, Selenite. On being calcined it parts with some of its water and then constitutes Plaster of Paris. The powder thus produced on the addition of water gradually sets, and as it does so expands slightly. It is this property that has made plaster of Paris so exceedingly valuable for making casts and moulds. In India sulphate of lime is known by an extensive series of names such as kulnar, kurpura-silasit, karsi, sang-i-jerdhat, surma safed, makol, jirah, etc. Plaster of Paris is generally known as gach.

Occurrence.—In the Madras Presidency it has been met with abundantly, but in an impure form, in the cretaceous rocks of Trichinopoly. Masses of gypsum and crystals of selenite are occasionally found in the clays of Chingleput. In Nellore, crystals of greater purity than those found near Madras have been recorded as fairly prevalent. In Bombay, selenite occurs in the marine deposits near the city, also in Khasiwar and in some parts of the Deccan. Very excellent gypsum is found in Kach. In Sind, deposits frequently 3 to 4 feet thick occur near the top of the Gaj beds of the Kirthar character. The Mud Gorge, on the Harnai route to Quetta, owes its intractable character to the circumstance that much sulphate of lime is there present, and very largely in the anhydrite.
condition. This absorbs water and thereby expands 33 per cent. The adjacent materials are in consequence continuously displaced, and the Mud Gorge may, therefore, be said to be in a state of constant change.

In Rajputana, at Nagor in Jodhpur, a bed of gypsum probably not less than 5 feet thick has been worked to some extent. A similar occurrence is worked at Jamsar in Bikanir State. While excavating a well at Falod, gypsum of a very pure kind was found, but at too great a depth to be of much value. In the Panjab (Bannu district) the mineral occurs in Kalabagh and in Khasor, but is not utilised. The Kohat district contains gypsum in great abundance. Ball says "it might be obtained by open quarrying in any quantity, but is not worked." The Salt Range possesses gypsum in enormous quantity, associated with rock salt. The Spiti Valley has gypsum of a snowy whiteness. In the United Provinces deposits of gypsum have been reported as met with in Dehra Dun, Kumaon, and Garhwal. Middlemiss (Rec. Geol. Surv. Ind., 1889, xxii., pt. 2) gives a full account of the gypsum of Nehal Nuddi in Kumaon. [Cf. Hayden, Mem. Geol. Surv. Ind., xxxvi., pt. 1, pl. 16.] The Pioneer (July 27, 1888) announced that gypsum had been found at a locality some 19 miles distant from Haldwani, a station on the Rohilkhand and Kumaon Railway. In Burma gypsum has been found, but not in sufficient quantity to be of much commercial importance.

Industrial and Agricultural Uses.—For a great many years gypsum has been regarded as a manure of exceptional merit, especially for leguminous crops and for certain soils. It has recently been found to vastly increase the yield of indigo, so that a large demand seems likely to arise for it. The reader should consult the observations already made (p. 53) regarding the use of this salt as a neutralising agent, or rather one which modifies the physical conditions of the soil as to bring it into a culturable state. Of manures that contain gypsum mention may be made of "superphosphate," which is a mixture of calcium sulphate with an acid phosphate of lime—the essential manurial constituent. It is prepared by the treatment of phosphatic minerals with sulphuric acid (Mukerji, Handbook Ind. Agri., 1901, 569-71).

The next most important use for gypsum is the numerous methods of utilising plaster of Paris. In 1852 Dr. Buiest drew attention to the interesting fact that the Natives of Sind had, from ancient times, been in the habit of casting lattices and openwork screens to be used within houses to allow of free circulation of air. The Marwaris very cleverly make what might be called stained-glass windows by taking two lattice screens, made of plaster of Paris, of identical pattern, and placing between these fragments of coloured glass so arranged as to bring out the desired colour in design. The screens are then firmly fastened together and the pieces of glass secured in their positions by a thin layer of liquid plaster being run over the lattice upon which the glasses have been arranged before pressing home (on the top) the second layer of lattice. In many parts of Rajputana and of the Panjab the walls and ceilings of palaces are richly ornamented, in arabesque design, with glass. These are silvered behind or backed with plated metal discs or with coloured tinfoil, or they are painted on the surface and embedded singly or collectively in wooden frames, within a plaster, which consists mainly, if not entirely, of plaster of Paris. This work might be described
as a kind of mosaic, and from the fact of pieces of glass (shishah) being used, has come to be spoken of as shish-mosaic. The famous Shish-mahal (the Palace of Glass) at Agra, the Shish-mahal at Lahore, and the Shish-mahal in the ruined city of Amber (near Jaipur) are perhaps the best examples of this class of work. Mr. L. Kipling very truly says, "The effect of the shish or mirror mosaic, though brilliant, narrowly escapes the charge of vulgarity," so that it is not much to be regretted that the art may be said to be hardly practised at the present day. [Cf. Plaster of Paris work in Ind. Art at Delhi, 1903, 95-6.]

While it would thus seem that certain uses of plaster of Paris have been well known to the Natives of India for a considerable period at all events, a knowledge in the art of casting figures, ornaments and toys in that material is of comparatively recent date, and originated with the modern Schools of Art. While that is so, it is surprising to learn from Stein (Ancient Khotan, 244, etc.) that the whole of the stucco work discovered by him consisted very largely of plaster of Paris. Moreover, he tells us that the figures, idols, etc., had in many instances been moulded and elaborations accomplished in the form of extra figures, etc., by a process of appliqué. Grooves had been made on the plaster background to allow of the attachment of these extra mouldings, which were finally fused into their positions by liquid plaster. Since plaster of Paris moulding is quite modern in India proper, the ancient people of Khotan must have either discovered that art spontaneously or learned of it through their dealings with other than Indian races (see p. 713). So late as 1885, while engaged supervising the preparation of life-sized statues or models of ethnological subjects that were required for the Colonial and Indian Exhibition, I experienced the greatest possible difficulty in inducing the Krishnagar modellers to substitute plaster of Paris for clay. I procured a supply of gypsum from the Salt Range, had it fired in Calcutta, and found that it yielded a most excellent modelling plaster, and at a cheaper rate than I could purchase the imported article, which alone had been previously procurable in Calcutta. But my clay-modellers struck work, and I had to import others from Lucknow, and thus successfully threaten them with dismissal, before I could induce the Krishnagar men to resume operations. I mention this circumstance as showing the quality of the Indian plaster of Paris and its recent use in castings.

Alabaster. Alabaster, where met with, is largely utilised in the manufacture of ornaments and toys. The dark-green form procured from Garhwal is regularly made into elegant cups and saucers and even large bowls that are much admired by the richer Native gentlemen of Northern India. The same material, drawn from various sources, is to some extent utilised by the stone-carvers in Agra and other centres of that industry. [Cf. Blount and Bloxam, Chem. for Engin. and Manuf., 1900, 131-2.]

TRADE IN LIME, MARBLE, ETC.—With a country that possesses so many rich deposits of lime and marble, it is surprising to read of the large foreign imports that regularly take place. In the Calcutta press may be seen, almost daily, advertisements of dealers prepared to supply the "Best Italian Carrara Marbles" and "Best Belgian Jet Black Marbles" (Journ. Soc. Arts, 1901). So again, it is not uncommon to find mention of the coloured marbles of Montarrenti, Montalcino and Caldana, which

718
are unrivalled in Italy for the beauty of their tints. It is well to remember that many of the columns, altars and floors of the Tuscan cathedrals, which are the admiration of the world, were constructed of these marbles. Mention is also frequently made in the Indian press of the Greek marbles, especially those of the Pentilikon quarries near Athens, and from the famous quarries in Thessaly, from which the genuine "Verde Antico" marbles were obtained. Many of the marbles met with in Indian household ornamentation have been derived from European quarries.

The official returns of foreign trade adopt two headings, under which lime, marble, etc., are included. These are "Stone and Marble," and "Building Materials," such as "Cement" and "Chalk" and "Lime." The imports of Stone and Marble have ranged from 204,205 to 362,554 cwt. during the five years 1902-7, or a valuation of from 24\frac{1}{2} to 43 \frac{1}{2} lakhs of rupees. The chief item in point of bulk is stone from Arabia and Mauritius, used for road-making in Calcutta; and in point of value, marble from Italy to the extent of an average of 24 \frac{1}{2} lakhs of rupees for each of the years named. Turning now to the Chalk and Lime. The quantity imported is annually about 30,000 to 50,000 cwt., valued at about Rs. 30,000 to 36,000, and comes almost exclusively from the United Kingdom and is received mainly by Bengal. The exports from India have never exceeded 50,000 cwt., or a valuation of just under one lakh of rupees. These consignments go mostly from Madras to Ceylon. Of the Cements a very different story has to be told. The totals (during 1902-7) have ranged from 646,356 cwt. in 1902-3 to 1,788,428 in 1905-6, valued at from 13 \frac{1}{2} to 32 lakhs of rupees. In 1906-7 the imports were 1,714,506 cwt., valued at Rs. 30,87,484. Fully three-quarters of the supply comes from the United Kingdom, and the balance mainly from Belgium, France and Germany. Bengal takes very nearly half the imports: the remainder goes to Bombay, Burma, Madras and Sind in the order named. Of the internal traffic in Stone and Lime very little can be learned. The rail and riverborne returns of minerals show a steady progress from an import of 6,733,264 cwt. in 1902-3 to 12,744,352 cwt. in 1905-6, with 12,149,239 cwt. in 1906-7. Taking the last year the chief receiving centres for Marble and Stone were:—Madras Ports, 3,443,282 cwt. (chiefly from Madras Presidency); Calcutta, 2,040,834 cwt. (from Bengal); and the United Provinces, 569,874 cwt. (from Rajputana and Central India). Chalk and Lime:—Calcutta, 1,606,523 cwt. (from Assam, Eastern Bengal, Rajputana and Central India, Central Provinces and Calcutta); and the United Provinces, 244,421 cwt. (from the Central Provinces and Nizam's Territory). Lastly, Others—a total of 66,986 cwt. Thus Assam and Madras are the chief sources of the lime traded in over India, but Bombay and Burma seem to be entirely self-supporting, as there are practically no records of interchanges from or to these provinces.

LINUM
USITATISSIMUM

THE FLAX PLANT

The above, out of the library of books that might be cited as dealing more or less fully with the subject of Linum (Linseed and Flax), may be consulted by the reader desirous of botanical, historical and industrial details. The names given to these products in Europe and Asia are so extensive and varied that only those of most frequent use can be here mentioned:—linseed, linum, lein, lin, lino, linu; flax, vlas, flachs, etc.; alsi, alshi, asli, tisi, chikna, pesu, bijri, keum, zighir, javasa, atasi, alashi, masina, mushina, auma, ksumd, unda ziggar, kattan, zaghu, pischta, etc. etc.

Species and Races. The Linseed and Flax Plant is cultivated throughout the plains of India, and up to altitudes of 6,000 feet above the sea. According to De Candolle (followed by most other botanical writers), it is indigenous to certain localities situate between the Persian Gulf and the Caspian and Black Seas. A consensus of opinion also favours the belief that originally the perennial flax (Linum angustifolium) was the plant that in Europe was first cultivated for its fibre—a plant that is wild south of the Alps; and further that its displacement from popular favour took place about the close of the Stone Age of European history.

There is no evidence of L. angustifolium ever having been met with in India either wild or cultivated. It would seem highly likely (as recently pointed out to me by Mr. J. R. Drummond) that the economic information recorded in the Dictionary under L. strictum may be incorrect—the plant intended to be denoted as cultivated in Afghanistan having very possibly been one of the numerous races of the ordinary linseed. That being so, the only truly wild Linum within the Indian area, at all related to the oil-yielding L. usitatissimum, is L. perenne, Linn.—a species found in Western Tibet at altitudes of 9,000 to 13,000 feet. This is reputed to have been occasionally seen under a crude cultivation, the seeds being valued on account of the oil they contain.

Thus we are left completely in the dark, not only as to when and where the substitution of L. usitatissimum for L. angustifolium took place in Europe, but as to the origin of the stock that now affords the linseed of Indian commerce. According to some writers L. usitatissimum, the modern flax-yielding plant of Europe, was derived from India.
FLAX AND LINSEED

LINUM USITATISSIMUM
Ksaumā Fibre.

Restrictions against the Fibre

Flax and Linseed.—While the classic records of India certainly do make mention of atasi, umā, ksaumā, etc., etc., no account, either of the oil-seed or of the fibre, is as such to remove all possible doubt that linseed and flax were undoubtedly indicated, but it can be said that greater certainty prevails regarding the oil than the fibre. In the Institutes of Manu (bk. ii., 41) we read that the garments of students should consist of skins above and of fabrics of hemp, flax (ksaumā) or wool below. So again (bk. v., 121), a man who knows the law is likened to purified linen cloth (ksaumā). Lastly a Brahmin, if he be compelled to make his living as a trader (bk. x., 37), must not sell dyed cloth or garments of hemp, flax (ksaumā) and wool.

Thus there would seem no doubt that the word ksaumā is of frequent occurrence, and that it denoted a fibre which was purified (bleached, doubtless). Kālādāsa speaks of the white colour of the cloth. But whether ksaumā originally denoted linen or silk, or rhea, or Calotropis, or some such fibre, not necessariy linen, seems a doubtful question. Most commentators have, however, accepted the name ksaumā as linen, and often with an atmosphere of such assurance as to convey the impression that there was no doubt, and could be no doubt, as to its determination. But if that view be correct it is, to say the least of it, curious that to-day the only use of the plant, known to the people of India, is as a source of linen and linseed oil, not of fibre (ksaumā) or garments of the same. In fact, it is the all but universal belief that the linseed plant will not yield fibre of sufficient merit to repay the expense of its separation and purification. Are we to suppose, then, that since classic times a complete revolution has in India taken place, and that cultivation as a source of oil-seed is comparatively modern—a consequence possibly of the Muhammadan conquests of India, if not of European commerce? Or is the other explanation more acceptable, namely that the passages above indicated refer to an entirely different plant (possibly cotton) or denote experience obtained and opinions held prior to the invasion of India, and, therefore, prior to any knowledge of the plant as a source of oil? Mr. W. Thomas (Livingstone to the India Office) draws my attention to the fact that in Suvarutu (800 B.C.) atasi oil is spoken of as having a slight smell of flesh; of its being used like that of hemp and sesamum for poultices; and of its being pungent, light, penetrating and laxative. These are characters that would seem to denote linseed, so that the atasi of Sanskrit authors stands a better chance of having been linseed than the umā or ksaumā of being flax. Dutt (Mat. Med. Hind., 1900, 292) simply gives, in an appendix to his work, the name atasi as the Sanskrit of Linum; masina, its Bengali; and tesi, its Hindustani; so that it may be inferred to have been a drug, in the opinion of the Sanskrit authors, that was unworthy of special consideration.

The oil is occasionally mentioned, however, in the Ain-i-Akbari and in a few other such publications; but on the other hand all the early European travelers in India whose evidence is generally regarded as of value historically, are singularly silent regarding both linseed and flax. Rheece, Runphius and Burmann make no mention of any species of Linum. The East India Company's Records, as published by Birdwood and Foster (First Letter Book, 1600 to 1619), the subsequent six volumes of Letters Received by The East India Company, as also the still more recent work, The English Factories in India, 1618-21, prepared by Foster, do not contain any references to linseed or flax. Milburn (Or. Comm., 1813), who deals with all the articles traded in between England and the East Indies, China and Japan of that date, makes not the slightest allusion to linseed or flax, though he deals with sesamum castor and other oils and oil-seeds as exported from India. Next to nothing of a historic character can, therefore, be recorded of the early production and trade in linseed. The only point at all conclusive is that the Muhammadans seem more closely connected with the origin of the traffic than the Hindus.

Buchanan-Hamilton (Stat. Acc. Dina. 1807) enumerates "Flax or Linseed, mosina" among his agricultural crops of Bengal, but makes no observations regarding it. Neither in his Journey through Mysoore, etc., 1807, nor in his Account of the Kingdom of Nepal (1819) does he refer to either flax or linseed. Amlie (1826) says there was then a good deal of flax being cultivated in Upper India, especially in Bengal, for making oil; he then adds,—"of late years it has also become an object in the lower provinces." Carey (As. Res., 1808, x., 15) was apparently one of the first authors who wrote definitely regarding Indian linseed. He says that the oil is mixed with mustard to such an extent that it is " unfit" for painting or the other useful purposes.
LINUM
USITATISSIMUM
Flax.

to which it is applied in Europe. Of flax he says the Natives know nothing of its use to make thread. In 1825 Thornton brought out the second edition of Milburn's *Oriental Commerce*, in which work it is stated that “flax is very generally cultivated in Bengal and Bihar for the oil which is obtained from the seeds, the stalks being rejected as useless.” [*Cf. Rawlinson, Hist. Ancient Egyp*, 1881, i., 62-3.]

Thus then from the observations already made, it may be inferred that the study of the production and utilisation of *L. usitatissimum* resolves itself into two sections, Flax and Linseed. These cannot of course be exhaustively dealt with, but I shall dispose of Flax (to India infinitely the lesser important product) first of all, and in a very few words.

FLAX AND LINEN.—The possibility of combining the production of linseed with the supply of flax has been spasmodically raised in India every now and again during the past hundred years or so. An important series of experiments and investigations were in consequence conducted in 1790 to 1810; another in 1840; and still a third in 1872, the object not being so much to ascertain whether a profitable combined seed and fibre industry could be organised, as to ascertain whether flax could become a commercial product of India at all. In the *Proceedings of the Honourable the East India Company*, preserved in the records of the Board of Revenue, Bengal, of date 1806-7, are many interesting details of the early experiments. Six Arab flax-dressers were sent from Bassora to Bengal, but failed to produce good fibre from the plants raised from the seed specially imported from Bassora. Roxburgh, in 1801, and again in 1806, gave accounts of the experiments he had conducted at the Company's Hemp Farm near Calcutta. An army of writers, down to Royle's time, may be said to have recorded their theories or narrated their experiments. On each occasion of special investigation, the results obtained were not deemed encouraging. But more recently still a new phase has arisen that may in the future assume some importance. The demand for cheap cordage, to be used as "binders," has suggested the possibility that the stems of the linseed-yielding plants (while they doubtless do not contain fibre of sufficient merit and abundance to justify being elaborately separated, cleaned, and placed on the market as Indian flax) may still by a simple method of preparation afford a cordage fibre that, as a catch crop, might undersell even jute. At present the stems of the linseed plant are not used in any way, and if they could be turned into a profitable by-product a great boon would doubtless be conferred on the Indian cultivators.

Vesque (*Traité de Bot. Agri. et Indust.*, 1885, 495) very properly observes that climate exercises a considerable influence on the qualities of fibre or seed produced. In warm countries the fibre is least abundant, but the seed crop profuse. He then adds that the seeds obtained from a fibre crop may be useful for oil, but they are imperfectly formed and can never be used for reproduction. Conversely, if the seeds be fully developed, the fibre is all but ruined. If the combination crop of flax and linseed be in India seriously contemplated in the future, the plants would have to be sickled close to the ground or pulled up by the root, the seeds being thrashed out and the stems subsequently treated for their fibre. But the question of all others that naturally arises is this—can the same plant yield both products profitably? Would it not be preferable to grow separate crops?

Extensive experiments would very possibly have to be conducted by the various Governments of India in order to ascertain the conditions.
necessary for a combination crop. It would have to be discovered whether
a stock could be evolved a little richer in fibre than that presently
grown, but which would still yield a fair crop of seed. The class of
soils suited, the seasons of sowing, the methods of cultivation, and the
period at which the harvest should be made, etc., etc., are some of the
issues of importance that the Indian cultivators could not be trusted to
investigate and solve for themselves. Then the methods and appliances
required for separation of the fibre would have to be demonstrated, and
above all, the final conclusion made abundantly clear, namely that the
proposed departures from the time-honoured usages, in linseed cultivation,
were in the raiyats' best interests, and that the vastly increased cost of
seed to acre, the new expenditure in fibre-extracting appliances and the
extra labour involved, could all be justified by the much greater
returns obtained.

In testing these and many other such aspects of the proposed new
departure, the experience gained in the past (very nearly futile) experi-
ments would have to be carefully borne in mind and the shortcomings
guarded against. These results will be found in the Dictionary (v., 10–85)
and it will be seen that the idea of utilising the fibre of the linseed plant
is by no means new, but that several persons have unsuccessfully tried
to obtain a useful fibre from it. For example, we read that some years
ago the late Mr. Savi of Mohesgunge in Eastern Bengal found the stems
of linseed too thin and woody to afford fibre. In Assam the Director of
Agriculture, we are told, made some experiments in 1901 to ascertain if
flax could be produced in that province. The plants grew well enough
but were laid by heavy rain, and when taken up the fibre was found to
be rotten. The following year better results were obtained, but the want
of proper machinery, to separate the fibre, resulted in a report that denoted
imperfect work rather than defective crop. In the report for 1904 it
is stated that as the sowings had been made in spring, the crop had
to ripen in July during the middle of the rains. It was accordingly
contemplated to try an autumn sowing, notwithstanding the risk of
frost. The report adds, "By sowing the crop in autumn it may
grow and ripen in dry weather and escape the baneful influence of the
monsoon rains."

Recent Experiments.—It may now be stated that the Bihar Planters'
Association have recently taken interest in the possibility of flax-growing
being usefully resorted to by the indigo planters as a supplementary crop.
At a meeting of the Dundee Chamber of Commerce (Sept. 20, 1904) this
subject was alluded to with much interest, and a reference made to a
committee having obtained an audience of His Majesty's Secretary of State,
with the express object of urging this matter as specially worthy of the
attention of the Government of India. The samples procured from Bihar
were pronounced such as to suit a large portion of the trade. It would
thus seem that within the past few years the question of flax-production
alone, as well as of flax and linseed combined, have been once more
engaging the attention of many persons, and it may be said that it will
be a fortunate circumstance if a solution of the problem be at last found
and a new and prosperous industry given to India, in continuation of
the already long list of those that owe their existence or development
to British commercial enterprise. It must never be forgotten, however,
that linseed is at best a risky crop, and one that is resorted to by the
LINUM
USITATISSIMUM

Flax

raiyat for rent-paying purposes, but only when necessity occurs and favourable conditions are likely to prevail.

Recent Results.

Since the above was penned there has come to hand a report of the experiments recently conducted in Bihar, written by Bernard Coventry (Agri. Journ. Ind., i., pt. iii., 192-200). It would appear that a few indigo concerns have experimented with flax during the past four years, and Coventry’s remarks are apparently the result of experience gained. The following extract may be accepted as conveying the chief facts:—

"There is as much fibre in the plant grown in India as at home, namely, about 20 per cent. of dried straw. The average yield of retted and dried straw at Dooriah from sowing at the rate of 2 maunds of seed, was 40 maunds per acre, and the percentage of fibre obtained from the straw was 15 per cent., or 6 maunds of fibre per acre. This should have given 4½ maunds of good fibre and 1½ maunds of tow, that is to say, the proportion of good fibre to tow should have been as three to one, but in point of fact it was only half good fibre and half tow.” “The flax from the first year’s experiments fetched £30 a ton, the second year £35, and this year it is expected to fetch £40 a ton, owing to its better quality. The price of tow was about £10 a ton. The cost of production, including cultivation, seed, manufacture, shipping, insurance, and other outlay expenditure, amounts to Rs. 62 per acre. Taking the 6 maunds of fibre to have sold at £25 a ton including tow, equal to say Rs. 13 per maund, we have a gross return of Rs. 78 per acre and a profit of Rs. 16."

Coventry contends accordingly that the cultivation of the plant has been accomplished successfully, but concludes his report almost in the words used by Dr. Jameson in 1859, viz., “All that is required to market a useful crop in India are some good instructors to show how the fibre is to be prepared and fitted for the market, and good seed and machinery.” Lastly, Coventry, like most other writers on this subject, adds, “There are two separate but closely connected problems for investigation: first, the possibility of establishing a new industry for the growth of flax as a fibre crop for the production of high-grade fibre alone; second, the possibility of introducing a system whereby fibre, probably of a lower quality, could be produced in combination with the existing large cultivation of linseed for oil-seeds.” Students of this subject will find the information furnished by Hanausek (Micro. Tech. Prod. (Winton and Barber, transl.), 1907, 73-7) highly instructive. They should also consult the recent results by Finlow (Dept. E. Beng. and Assam, 1906-7, app. ii.).

It has been often urged that, even if the separation of a fibre should prove unremunerative, the stems might become of great value to the paper-maker. But the crop is well known to be an exhausting one, and on that account is often barred by many leases, hence an effort should be made to overcome these objections by improvements in manuring. Fowls are known to fatten very rapidly if allowed to stray over linseed fields, and a certain percentage of linseed-cake is the world over recognised as one of the very best food materials for prolonging and improving the milk of cows, especially when butter manufacture is an important consideration. It has, in fact, been remarked that along the foot of the lower North-West Himalaya, linseed is at times sown mainly as a cattle food for milch buffaloes—the oil being only a secondary consideration. In this connection, however, attention may be drawn to a brief note by Leather
(Cyanogenesis in Plants, in Agri. Journ. Ind., i., pt. iii., 225) on a poisonous property at times possessed by the linseed plant. He mentions a case where cattle ate some immature linseed as fodder with the result that fifty-two died in a few hours. A specimen of the plant sent for examination contained a cyanogenic glucoside, and yielded prussic acid when crushed in water.

LINSEED AND LINSEED OIL.—The seed obtained from the cultivated *L. usitatissimum* is known as LINSEED, the oil expressed therefrom is LINSEED-OIL, and the cake LINSEED-CAKE.

The object being to promote flowering, not to produce long, straight, fibre-yielding stems, the seed is sown much thinner than is generally the case with European flax. The result of this special cultivation has been to develop several well-marked RACES, all of which possess one characteristic—a much-branched stem. There are two readily recognised kinds, namely a white-seeded and a red-seeded, and of each of these at least two grades with either "bold" or "small" forms of the seed. The latter may be only a condition of defective cultivation or immaturity of crop, but commercially the bold seed is the form of greatest value. The subject of the cultivated races of linseed is, however, too imperfectly understood to allow of more being at present said regarding them than that many distinct forms exist. It would, therefore, be the most obvious course to pursue, in any attempt at new developments of the linseed traffic, to improve the stock by careful selection in the direction desired, rather than to attempt the acclimatisation of exotic stocks. It is well known that the quality and yield of oil varies greatly in the seed of one country as compared with that of another. The white-seeded form has usually white coloured flowers, the brown-seeded blue flowers. Moreover, the white seed has a thinner shell, and contains nearly 2 per cent. more oil than is the case with the red. These facts have led to many inquiries as to the white-seeded plant being grown separately and the seed sent into the market pure. The demand for such pure seed has never, however, been so large and constant, nor the hopes of increased price sufficiently encouraging, to tempt producers to give the attention to the subject that would be necessary. Moreover, it is said that the quality indicated is not constant. In other words, under altered conditions, the white-seeded plant may produce red seed and thus frustrate the production of a pure crop. [Cf. Leather, *Effect of Change of Climate on Amount of Oil in Linseed*, in Agri. Journ. Ind., 1906, i., pt. iv., 413-4.]

Area under Linseed.—Very often linseed is grown as a mixed crop, being sown along with other oil-seeds and the two reaped together and used in the production of well-known blends of oils. At other times linseed constitutes lines through or borders to other crops, so that the greatest difficulty often prevails in determining the actual area under the crop. This is more especially the case in the United Provinces. But when grown mixed, the crop is all but universally intended for home markets, the crop grown for export being usually pure.

To the Natives of India a drying oil is of no consequence since they do not require an oil with that property, hence the frequent admixture with mustard-oil seed, which greatly reduces the value of the produce from the standpoint of a drying oil. But such admixture is more often than not accidental, through produce being purchased that was not intended for the foreign market. Voelcker (*Improv. Ind. Agri.*, 1893, 285) discusses
LINUM USITATISSIMUM

Linseed

Adulteration Standardised.

Purity not Demanded.

Official Returns.

During the past fifteen years the crop has fluctuated very greatly. Thus in 1891–2 it was 3,211,000 acres pure and 545,000 acres mixed; in 1895–6 it was 2,954,093 pure and 560,000 mixed; in 1899–1900, 1,648,903 pure and 409,000 mixed; in 1903–4, 3,609,079 pure and 592,000 mixed; in 1904–5, 3,747,400 pure and 647,000 mixed; in 1905–6, 2,700,400 pure and 567,000 mixed, while the Final Memorandum issued by the Commercial Intelligence Department estimates the area for 1906–7 as 3,028,200 pure and 633,000 mixed. Analysing the returns for the year 1906–7, by way of illustration of the distribution of production, we learn that Assam had 55,709; Eastern Bengal 103,000; Bengal 726,600; Agra 185,034; Oudh 60,880; Bombay 139,623; Central Provinces 812,068; Berar 96,703 acres, the balance on the total area being in Madras, Panjáb, Rajputana and Central India, and lastly Burma. The highest of all the unimportant areas is usually Madras, which in 1905–6 had 21,099 acres; and Sind the lowest, with 3 acres under the crop.

PRODUCTION.—It may now be useful to devote a few pages to a series of notes on the linseed of the chief areas of Indian production:

1. BENGAL (including Eastern Bengal).—As already indicated, Bengal, of all the provinces of India, has usually the largest extent of land under this crop, though in the year specially dealt with it had less than the Central Provinces. The districts of Bengal that had in 1905–6 the greatest acreage of linseed were Darbhanga, 138,500; Gaya, 80,000; Nadia, 49,000; Saran, 72,000; Champaran, 66,300; Muzaffarpur, 41,200; Jessore, 29,000; Murshidabad, 29,100; Bardwan, 22,500; Noakhali, 22,000; and Backerganj, 20,000 acres. It is thus a crop that may be spoken of as produced most abundantly within the indigo districts. At all events it is mainly grown, so far as Bengal is concerned, in Tirhut and Bihār.

Mukerji (Handbook Ind. Agr., 272–4) says it is believed to love well-drained heavy, loamy soils, especially if rich in lime, such as those often under mustard or til crops. It requires more or less the same soil, in fact, as wheat and gram. The land should be prepared in September, and thorough and deep ploughing is desirable. Before the close of the monsoons the sowings are usually completed. The seed rate has been given as 8 to 12 lb. to the acre. If sown late, irrigation may be necessary, but when the plant is in flower rainfall is injurious. The crop is harvested by the end of February or the beginning of March and the seed extracted by flailing. Six to eight maunds of seed (say 500 to 700 lb.) is the average produce per acre. The straw is useless as fodder, and indeed it is said that green plants eaten by cattle have been known to prove fatal. The seed is held to yield one-fourth of its weight of oil. The cake is regarded more valuable as food for milch cows than either rat or tori cakes, though the butter is said to be softer than that obtained where mustard- or cotton-seed cake has been given to the cows. Basu speaks of the straw of linseed being reduced to ḍhāsa and given to cattle in mixtures with the ḍhāsa of wheat, barley, gram, lentils, etc. It is considered as heating, and therefore seldom given to animals by itself. The crop is sometimes barren and thus becomes a dead loss to the cultivators.

Trade in Bengal (see p. 728).—In the Annual Report on the Maritime Trade of Bengal (1904–5, 24) it is stated that "the quantity shipped rose by 26-7 per cent. and was the highest on record, the year 1898–9 coming next, but the value advanced by 6-6 per cent. only. In May, 1903, the price of linseed in Calcutta was Rs. 5-0–6 per maund; while in May, 1904, it was Rs. 3–10. The world's production in the year 1904 was enormous and in April the home price fell to 29s. per quarter, a figure not approached since July, 1896, when the price was 28s. 6d.
The average price for 1904 was 33s, as compared with 39s. in 1903. There was an extremely large crop in Argentina, and the United Kingdom imported even more from that country than from British India. The United Kingdom took 55-5 per cent. of the quantity shipped from Calcutta, and Germany 33-7 per cent. Exports to the United States, which did not exist in the previous year, totalled 69,047 cwt. "In the United Provinces the output of pure linseed during the year was 26-3 per cent. better than the season before, and in Bengal the improvement was 5-7 per cent., or 41-4 per cent. above the ten years' average." [Cf. Bau, Agri. Lohardaga, 1890, pt. ii., 35; Banerjei, Agri. Cuttack, 1893, 89.]

2. CENTRAL PROVINCES AND BERAR.—Judged of by the area devoted to the crop, these provinces are undoubtedly the second most important centres of production, and are usually just under the Bengal area. In 1905-6 the Central Provinces had 812,068 acres devoted to linseed and Berar had 96,703, or close on a million acres between them. A slight increase of these areas would have to be made to cover the mixed cultivations of linseed and wheat or linseed and gram, etc., which expressed as pure linseed usually represents a cultivation of say 30,000 acres. The districts enumerated in sequence of linseed acreage were in the Central Provinces:—Raipur, 181,699; Bilaspur, 109,993; Nagpur, 66,980; Wardha, 61,212; Bhandara, 68,950; Chanda, 82,533; Jabalpur, 43,013; Balaghat, 28,358; Saugor, 23,970; and Damoh, 22,082. In Berar:—Wun, 46,129; Buldana, 19,563; Akola, 15,097; and Amraoti, 11,317. The balance in both instances on the total areas given is made up by districts with smaller acreages than those shown.

Sir J. B. Fuller, in a Report on the Outturn of Crops (1894, 20-2), furnishes many useful particulars regarding linseed. "Thirty years ago," he says, "the production of linseed was relatively very small. It is now one of the principal of agricultural resources of the Provinces, and crop statistics indicate that the area is still extending. But there is reason to believe that the land rapidly becomes linseed-sick, when it requires a long period of rotation." "By far the most important producing tracts are the Nagpur and Chattisgarh plains. In the former it is almost entirely a single crop. In the latter it is of most importance as an after crop, though its growth as a single crop is by no means insignificant." "The crop would be exceedingly profitable were it not very precarious. In a good year it gives a larger return than wheat with a far smaller outlay on seed and cultivation. But the plants are very sensitive to damp when in flower, and a few days' cloudy weather at this time will prevent the seed from setting and bring a promising crop to a disappointing harvest. Rust also causes great damage." The late Dr. Barclay (Agri. Ledg., 1895, No. 20, 267-70, 351-2) devoted much attention to the study of that fungal parasite. While by no means confined to the Central Provinces and Berar, it has been specially studied in connection with these provinces, and a reference to the available information may therefore be given in this place.

The methods of cultivation and all other details are precisely similar in the Central Provinces to those already described under Bengal and Bombay, and need not therefore be here repeated. Subsequent years to those discussed by Sir James Fuller have manifested an even greater expansion, though severe fluctuations and heavy losses through failure of crops were also recorded. About 5 per cent. of the total cropped area in the Central Provinces is ordinarily under linseed. It cannot be grown more frequently than once in five or six years but it has this advantage, that when wheat and gram give bad returns, linseed, in such seasons, is usually successful, and thus may save the cultivator's position. When cotton or juar fail, the land may be suddenly thrown under linseed and a good crop obtained. When grown as a sole crop, linseed is ordinarily sown earlier than wheat, and this is sometimes in its favour. But a large part of the linseed produced is sown as a second crop following rice, and is thus much later. An early cessation of the monsoon would thus injuriously affect the late crop.

Trade in Central Provinces.—The bulk of the production in these provinces is conveyed by train to Bombay, but a fair amount is imported from Rajputana and Central India.

3. UNITED PROVINCES.—The two provinces of Agra and Oudh viewed together undoubtedly take the third position in the Indian production of linseed. During 1905-6 the area in the former came to 185,034 acres and in the latter to 60,889 acres, or a total of 245,914 acres. And to indicate the distribution the following figures of the district areas may be recorded. In Agra Province:
Linseed

THE LINSEED PLANT

Chief Districts.

Gorakhpur, 60,331; Basti, 22,144; Allahabad, 8,803; Mirzapur, 22,581; Hamirpur, 40,959; Banda, 2,457; Jalaun, 6,379; all other districts with lesser areas. In Oudh Province:—Gonda, 33,175; Bahraich, 17,120; Sitapur, 3,007; and Kheri, 2,299; all others much smaller areas.

The system of cultivating pursued in these provinces, and the results obtained, have been so fully dealt with in the Field and Garden Crops and in the Dictionary, that it is hardly desirable to republish a general statement. The remarks that follow may therefore be regarded as useful particulars gleaned from various sources with a view to supplement what has already been said.

In the Gazetteer for Bareilly, linseed is described as one of the minor staples that is always sown broadcast, and nearly always as the second (dosakh) crop of the year. Of Moradabad it is said that when the rice is cut, advantage is taken of any moisture left in the soil to scratch the ground hastily with the plough and throw a mixture of gram, linseed and barley into it and leave these to take their chance. These are, however, rather exceptional than typical districts in linseed production. Mr. W. H. Moreland, the Director of Agriculture, in his annual forecasts and final reports of the linseed and rape crops of these provinces has for some years past furnished a most useful review of the facts of interest and value. In the report for 1903-4 he reserves the details of linseed generally sown after the autumn crop. Excessive moisture at the sowing season would appear to be injurious, but rain in December and January is necessary, and if delayed till February the crop is not much benefited.

Trade.

Trade with the United Provinces.—The exports shown in the rail and river-borne traffic of these provinces go almost exclusively to the port of Calcutta. These, in fact, constitute one-third of the total Calcutta supply, the remaining two-thirds coming almost entirely from Bengal. The total amount of linseed shown in the returns of internal trade of India came in 1904-5 to 12,051,507 cwt., of which Calcutta took 6,915,008 and Bombay 4,561,058 cwt. Hence the two towns named drain practically the entire amount of linseed that is annually produced and in the proportions shown. But in 1906-7 the quantity produced fell to 4,859,773, of which Calcutta took 2,666,604 and Bombay 1,936,053 cwt.

 Bombay.

4. BOMBAY AND SIND.—In the Western Presidency linseed can hardly be regarded as a very important crop. It, in fact, has hitherto held the fourth, if not the fifth, position among the Indian provinces, with, in 1904-5, 523,968, and in 1905-6, 139,623. That area was distributed as follows in 1905-6:—Nasik, 24,115; Bijapur, 44,662; Khandesh, 16,333; Sholapur, 21,727; Dhawar, 14,013; and Ahmednagar, 12,645; all others with less than 5,000 acres. But the figures for the years 1903-4 and 1904-5 were in nearly every instance double what might be called the normal area in the districts named. The total for the Presidency, in other words, showed in 1903-4 an expansion on the area during 1902-3 of 108 per cent., and on that of five years previously of 140. Mollison (Textbook Ind. Agr., iii., 94-8) furnishes an account of a practical nature regarding this crop in Western India. The following may be given as an abstract of his views:—When grown for linseed (as in India), the seed rate is much lower than when grown (as in Europe) for fibre. In India, a mature crop stands 18 to 24 inches high. The stems rise from the ground some distance, and then branch freely. A linseed crop in flower is, during December-January, a noticeable feature of the black-soil districts, particularly in Khandesh—the common variety with a rich mahogany-brown coloured seed; but a creamy-white variety is sparingly grown in the Bombay Presidency, and to a considerable extent in the Central Provinces. The dry crop rabi areas under linseed, wheat, gram and juar are more or less interchangeable, depending on the character of the monsoon season, and particularly on the late rainfall.

From the district areas given above, it will be seen that the Bombay linseed supply comes mainly from the Deccan and Karnátak, very little being grown in Gujarat and none at all in the Konkan. It is raised in the rabi season only, and on deep moisture-holding black soil, and on such land is rotated chiefly with wheat, gram or safflower, and sometimes rabi juar. The best linseed soil is probably the deep black-soil belt on each side of the Tapti in Khandesh. Linseed is the sole crop of its year. The tillage should be completed by the end of September, and the seed drilled in October at the rate of 10 to 12 lb. to the acre, in rows a foot apart. But the land should be so thoroughly harrowed that weeding may not be necessary, since interculture is usually harmful. The
crop is in good seasons ripe by February, and is reaped with a sickle near the ground or uprooted. It is then carried to the threshing-floor and dried, when the seeds readily separate, and are winnowed in the usual way. A full crop may be 500 lb. to the acre, but it is precarious, and often may yield much less. Linseed may therefore be considered a delicate crop, which in favourable seasons only is grown with particular success.

Trade in Bombay.—The port town of Bombay drains its supplies from the Nizam’s Territory, Balbhad, the Central Provinces and Berar, Rajputana and Central India, the United Provinces of Agra and Oudh, the Panjáb, and Madras. In the returns of traffic carried by rail and river, it is shown that the town of Bombay received in 1904–5, 4,561,058 cwt.; in 1905–6, 2,086,494 cwt.; and in 1906-7, 1,936,053 cwt. The most important contributing centre is the Nizam’s Territory. From these supplies are, of course, drawn the Bombay exports to foreign countries, and it is thus instructive to note that one-half comes from the Nizam’s Territory—a region very different from that from which Calcutta drains its supplies.

5. PANJÁB.—Since the time that Baden-Powell wrote his Panjáb Products (2, 497–500, 522–5) and Stewart published his Panjáb Plants, a considerable expansion of the area of linseed seems to have taken place. Still, the total area in 1905–6 was only 31,293 acres, the bulk being in Kangra, 12,580 acres; Gurdaspur, 4,039; Sialkot, 3,624; Ambala, 1,575; Hoshiarpur, 1,927; Gujrat, 1,579; and Jhelum, 1,309. In Kashmir there is also a fair area, the plant being cultivated up to about 6,000 feet above the sea (Lawrence, Assess. Rep., 1890, 18).

The imports into the Panjáb of linseed obtained from Kashmir is an important item in the Trans-frontier trade, and one of increasing value. In 1898–9, these imports were 20,423 cwt., valued at Rs. 88,952; in 1901–2, they had become 233,642 cwt., valued at Rs. 15,522,093; and in 1903–4 stood at 50,502 cwt., valued at Rs. 3,35,136; but in 1906–7 fell to 6,083 cwt., Rs. 41,189. In 1860–3 a company carried out fairly extensive experiments at Sialkot in order to ascertain if flax could be there produced; they were apparently unsuccessful, for the plant presently grown in that district is entirely for linseed. In Kangra the seed is thrown among the stubble after cutting the rice and springs up without any special cultivation; it is thus a second or supplementary crop.

6. HYDERABAD, CENTRAL INDIA AND RAJPUTANA.—It is unfortunate that particulars cannot be ascertained regarding the production in the Native States, since one or two of these, more especially Hyderabad, are important centres of production. The only sort of conception that can be obtained regarding this is by a study of the railborne traffic. During the year 1904–5 the Nizam’s Territory exported 1,226,202 cwt., and in 1906–7, 850,037 cwt.; Rajputana and Central India, 951,460 and 182,170 cwt. in the same years; these amounts, going to Bombay, constituted fully one-half of the Bombay supply.

7. MADRAS, ASSAM AND BURMA.—These provinces take so small a share in the Indian linseed traffic that they can be neglected without serious consequences. The reports from the province of Eastern Bengal and Assam were in 1904–5, 85,746 cwt., and in 1906–7 only 45,893 cwt.; of Madras still less, namely 50,171 and 31,269 cwt.

INDIAN TRADE IN LINSEED AND LINSEED OIL.—In the provincial paragraphs above, mention will be found to have been made of the extent of cultivation and the supply of linseed obtained from the chief producing provinces. It is not necessary to repeat these statements, but a good starting-point in a study of the total linseed trade of India is naturally to be had in the figures of FOREIGN TRADE.

British Gift to Indian Cultivators.—FOREIGN EXPORTS.—Royle informs us that the first mention of the Exports of linseed from India occurs in 1832, when 3 cwt. were recorded. The very next year the exports were 1,583 cwt.; in 1839, 120,922 cwt.; and in 1850, 560,452 cwt. In 1860–1 the exports from India were 550,700 cwt., valued at Rs. 1,25,57,790; in 1880–1, 5,997,172 cwt., valued at Rs. 3,69,81,265; in 1900–1, 5,060,189 cwt., valued at Rs. 4,45,60,096; in 1903–4, 8,616,356 cwt., valued at Rs. 5,74,41,762; and in 1904–5 they
Linum usitatissimum

Trade

Last Year's Exports.

Grown almost exclusively for Export.

Safety-valve.

Prices affect Production.

United Kingdom.
Germany.
France.

Vicissitudes of Seasons.

High Value.

Rent-paying Crop.

Internal Trade.—The returns published officially regarding the movements of linseed by road, rail and river afford the only really definite conception of production and sale that can be learned. The traffic registered as carried by these routes during the five years ending 1906-7 were, 1902-3, 5,922,967 cwt.; 1903-4, 8,884,004 cwt.; 1904-5, 12,051,607 cwt.; 1905-6, 5,278,659 cwt.; and 1906-7, 4,859,773 cwt. Analysing the record year (1904-5), the total shown under foreign exports (disregarding for the moment the traffic in the oil) came to 11,182,009 cwt., or say half a million cwt. less than the deliveries registered by the railways at the port towns—and that surplus may, therefore, be taken as the amount used up by the local mills or carried forward into next year's stock. A certain discrepancy has, however, to be accepted, due to imperfections in the returns and unavoidable duplications. Still, it can fairly be said that the figures compiled by one department (Railways) provide the exact quantity shown by another (Foreign Exports), and a third line of reasoning might

730
be used to confirm both, namely the area of cultivation expressed to the accepted average yield. Viewed from any and every standpoint, we learn that the linseed of India is grown purely and simply in obedience to a foreign demand. As already mentioned, the exports from Calcutta are drawn from the province of Bengal (two-thirds) and from the United Provinces (the remainder); Assam and the Central Provinces contributing between them only about 120,000 cwt.; out of a total Calcutta supply of close on 7,000,000 cwt. The exports from Bombay, on the other hand, are drawn from the Nizam's Territory, Rajputana and Central India, the Central Provinces and Berar, and lastly the Bombay Presidency itself, and in the order named. Of the producing provinces (judged of from the railway returns), Bengal heads the list, and is followed by the United Provinces (a good second); by the Nizam's Territory (an indifferent third); by the Central Provinces and Berar (a very poor fourth); then Rajputana and Central India; Bombay; next Assam; and, last of all, Madras. Karachi exports a small amount of Panjáb linseed. Seeing that the Central Provinces have so large an area under the crop, their position as fourth in exports is a little difficult to understand. The explanation is perhaps that the area is shown larger than it should be owing to mixed cultivation being estimated as pure.

Linseed Oil and Oil Mills.—It cannot be ascertained how many of the 99 oil mills, reported to be at work in India, are concerned in the linseed traffic proper. Only one appears to deal exclusively in linseed, namely the Goureapore Company, Ltd., near Calcutta. Their oils and oilcakes are noted all over India. The mill, moreover, produces both boiled and unboiled oils. The exports of linseed oil from India are not very important, nor do they appear to be increasing; in fact, judged of by the returns from 1899–1900 to 1906–7, they have, if anything, been decreasing. In 1899–1900 they were 248,479 gallons, valued at Rs. 4,20,167; in 1903–4, 137,252 gallons, valued at Rs. 3,61,564; in 1905–6, 186,682 gallons, valued at Rs. 4,57,983; and in 1906–7, 114,205 gallons, valued at Rs. 2,18,926. Nearly the whole of these exports go from Bengal, and thus to a large extent doubtless embrace the Goureapore Company's transactions. It is also noteworthy that the major portion goes to Australia and New Zealand. As already mentioned (p. 726) the cake is valued as an article of cattle food when not adulterated with mustard (see pp. 184, 770, 817).

LIVE STOCK OF INDIA.—This very large and important subject may be discussed under the following sections: Oxen and Buffaloes; Sheep and Goats; Horses, Donkeys, Mules, Camels; and Pigs.

An analysis of the returns of Live Stock in India during 1905–6 manifests the existence of approximately 198 million head of cattle (cows, bulls, bullocks, buffaloes, sheep, goats, horses, mules, donkeys, camels, etc.). The actual figures are 30 million bulls and bullocks, 22 million cows; 13 million buffaloes; 26 million young stock; 18 million sheep; 25 million goats; 24 million horses, donkeys, mules; and 393,308 camels. The
LIVE STOCK

THE OXEN AND BUFFALOES

Grand Total

live stock of Bengal is not recorded, but, since its population is twice that of Madras, it may be assumed to possess double the returned live stock of all sorts met with in the Southern Presidency, viz. 61 million. This gives the 198 millions (above mentioned) as the total live stock, in place of the official figure of 137 millions (exclusive of Bengal). But to that total has also to be added the 15 millions shown as owned by the Native States. In fact 30 millions would not over-state the live stock of these States, making a grand total for India of over 228 million cattle of all kinds.

Some such estimate seems essential to allow of comparison with the trade returns, which include Bengal and the Native States. Thus, for example, the term "hides" may be taken to mean undressed skins of full-grown bovine animals, and "skins" those of calves, sheep and goats. For the five years ending 1903-4 the average number of hides (raw and dressed) exported from India came to 124 millions, and of skins 37 millions; these collectively would, therefore, show 23 per cent. on the estimated total live stock of all India for the period in question. But the exports by themselves take no cognisance of the numbers of hides and skins used up by the indigenous leather industries of India itself, nor of the numbers of animals that die or are killed and the skins, for various reasons, entirely lost. Were a figure to be given for the annual death-rate (from all causes) of the cattle, sheep and goats of India, it is probable that it would be something nearer 70 to 80 rather than the 50 millions indicated by the returns of foreign trade specially dealt with above. For further particulars see the article Hides and Skins (pp. 632-9).

I. THE OXEN, BUFFALOES, ETC., OF INDIA.

The following is a list of the chief Bovine animals of India that fall into this group:—

The Indian animal differs from the tame ox of Europe and North Asia in structure, general coloration, voice and habit. Its origin is unknown, but according to Blyth it was probably African. No ancestral form has as yet been discovered among the Indian fossil bovines. Humped cattle have, however, often been reported to have run wild in India. All the breeds of the Indian ox are held sacred by the Hindus and are, therefore, neither killed nor their flesh eaten by a large portion of the people. On the other hand, the tending on cattle is regarded as a highly honourable position, and hence also milk, butter, cheese, etc., are largely consumed by all classes of the community. Below will be found a brief sketch of some of the leading breeds of oxen.

Tame buffaloes are found all over the plains and lower hills of India. They are repeatedly mentioned in the *Institutes of Manu* (xi., 69) that they have been known from the earliest historic times. They are semi-aquatic animals, and accordingly most abundant in humid localities. Are large, massive, and clumsy creatures, with exceptionally short thick legs and conspicuous hoofs. The horns are thick, flat, curved or straight, and marked with rings indicative of age. The muzzle is large, remarkably square, and the head carried very low. A truly wild buffalo is fairly abundant in India (except in the Southern and Western Provinces), especially in low-lying swampy land covered with tall grass. Few domestic animals have, in fact, changed less than the buffalo. While it will not breed with the ox, the tame buffalo-cow will pair readily with the wild buffalo-bull, the stock being thereby improved.

732
They are powerful draught animals, and the milk is exceptionally rich in butter-fat.

B. grunniens, Linn.; Blanford, Lc. 490; Turner, Acc. Emb. to Tibet, 1800, 186, t. x. (from a picture belonging to Warren Hastings); Vigne, Travels, etc., 1842, ii, 277; Hoffmeister, Travels in Cont. Ind., 1848, 362, 374. The Yak or Grunting Ox, dong, bron-dong, ban-chouer (the wild): yak, psgu, chour-gau, kotmus (the domestic animal).

In its wild state it inhabits the coldest and most desolate tracts of the Himalayas—being found at a greater elevation than any other mammal. It is dark brown, almost black, with the exception of the muzzle, head and neck, which are often grey. In domestication it becomes smaller and variable in colour, being often pure white or piebald. Mention is made of the qatas or "Tibetan yak" in the Ain-i-Akbari (1590, Jarrett, transl., i., 121). It is kept by the Tibetans and various other tribes that inhabit the higher regions, on account of its being a sure-footed pack animal. The flesh is said to be rich, juicy and delicately flavoured. The milk is exceptionally rich (considerably richer than that of the cow), and much of the food of the people consists of curd either fresh or dried and powdered into a kind of meal. The white tails constitute the chowris (fly-flaps) sold all over India. The hair is woven into cloth and ropes. In fact the wealth of the people of Eastern Tibet consists in their flocks of yaks. The horns are made into cups and other objects of domestic use and ornament. But the yak breeds freely with domestic cattle. One was sent to England by Warren Hastings, which lived for some years and became the sire of many cross-bred calves, only one of which lived and was successfully crossed by an Indian bull. A cross is common on the North-West Himalayas and is known as the dzoa, zobo, etc.; it is fertile and in some localities preferred to the pure yak. Other Species.—Three other animals belonging to this genus may be here mentioned, but, as scarcely of economic value, need only be exhibited very briefly:—

(a) **B. frontalis**, Lwm.; Blanford, Lc. 487–9; the Mithan or Gayal of Assam, Manipur, Nagas hills, Chittagong and Burma. Said to be partly domesticated by the Kuki.

(b) **B. gaurus**, Ham.; Blanford, Lc. 484–7; the Gaur or Indian Bison of the hilly forests of the Indian Peninsula, Assam, Burma and the Malay Peninsula, ascending to altitudes of about 6,000 feet. It has occasionally been tamed by the people on the hill tracts between Assam and Burma, but has never, strictly speaking, been domesticated. The horns are in great demand for ornamental work. (See Horn, p. 464.)

(c) **B. sondaicus**, Muller & Schleg.; Blanford, Lc. 489–90. The Banting, found in Burma and the Malay Peninsula, Borneo, Java and Bali. It has been more or less domesticated in Java and perhaps elsewhere.

CATTLE AND CATTLE-BREEDING.—In Europe cattle may be said to be reared for milk and meat, but in India their chief value is as beasts of burden. Horses are all but unknown in Indian agriculture, the bullock being very nearly exclusively used for tillage and transport. Occasionally camels are so employed and buffaloes are highly valued for their milk, though they are too slow to be much in demand for agricultural operations.

There are many breeds of indigenous cattle. Nearly all the pure stocks are of one colour—white or grey. In areas where little attention is paid to the subject, mixed colours or piebald cattle are not infrequent. Except in the north-east of Madras, all Indian cattle are horned. The hump is prominent, and more highly developed in some breeds. Bullocks which are suited for slow and heavy work have usually massive heads, long pendulous ears, thick short necks, coarse leg-bones, big feet, much loose skin on the neck, dewlap and sheath, and no particular droop in the hind quarters. Those best suited for quick work have clean heads, fiery tempers, short erect ears, thin necks, compact rounded bodies, small hard feet, a very decided droop in the hind quarters, and little or no loose skin on the neck, dewlap and sheath. Indian oxen, it may thus be observed, are distinguished collectively from the breeds of...
about the bignesse of our great Dogs in England." [Cf. Tavernier, l.c. 44; Terry, l.c. 144-5, 187.]

But, excepting at the homesteads of the wealthy or at the experimental farms owned by Government, special selection of stock or the rearing of healthy, well-formed bulls for service purposes is practically unknown from one end of India to the other. The story told by Abul Fazl of the "Cow Stalls" kept by the Emperor Akbar reads more like a proclamation of the pageant of the all-wise and good Emperor than a statement of his efforts towards the improvement of the cattle of India. The Amrit Mahal breed is said to have been introduced into Mysore and specially developed by Haider Ali for military purposes. But history tells of no Hindu Prince who devoted anything like the attention Akbar bestowed on this most important subject.

Indian agriculture has for centuries been and is to-day essentially a peasant industry. It is in the hands of persons who have the traditional knowledge of their ancestors to guide them, but absolutely no capital beyond that absorbed in daily necessities. Each person, as a rule, keeps but two or three cows, and cannot afford to keep a bull. And moreover, since the male offspring are not generally emasculated until they are three years old, the cows are served by immature and as often as not diseased, degenerated or otherwise undesirable males. Improvement of the breed under these conditions is naturally very difficult. For some years past, however, the Government of India has recognised the obligation of initiating a reform, and with this in view have had superior bulls reared at special farms (such as those of Hissar, Charodi, Pusa, etc.) and presented to districts where it was desired to improve the local breed of cattle. Voelcker alludes approvingly to this action, and urges that the satisfactory results attained should be pushed forward until the remotest corners of the Empire have been reached. So also the Government have aided very greatly by encouraging local fairs and cattle shows, by awarding special prizes on the verdict of high expert officials who have been deputed to visit the shows for that purpose. But it is well known that half-bred cattle contract rinderpest and other common diseases in a most virulent form and rarely recover under treatment, while many indigenous breeds are comparatively immune. This has accordingly led to belief that the best results are likely to be obtained by breeding strictly within carefully selected and special local stocks, not promiscuous inter-breeding of all races.

(A) Chief Breeds of Indian Buffaloes.—The breeds of buffaloes have not as yet been critically studied. Until this has been done, little more can be accomplished here than to indicate those most frequently spoken of. Terry gives a curious reference (Voy. E. Ind., 1622 (abrid. ed. Havers), 1665, 359) to "a very large beast having a smooth thick skin without hair called a buffalo which gives good milk; the flesh of them is like beef but neither so toothsome nor wholesome."

In rice-growing tracts buffaloes are extensively used for tillage and cartage work. But although they thrive well in wet climates, the best breeds are met with in localities of moderate rainfall and under the conditions best suited for cattle-breeding. But buffaloes must have access to water, and require to be bathed once or twice a day if they are to be kept in health. It is also customary to clip off their sparse coat of hair once or twice a year. Buffaloes vary in colour, but the majority have black, shining
THE OXEN AND BUFFALOES

Buffaloes

sirks. Some have white markings and a few are grey, light dun or white. Their lowing differs from that of kine and they have no hump. Most writers allude to the fact that it is difficult to get a good buffalo-bull, owing to its being less valuable than the buffalo-cow. The bulls are not often reared, but are either purposely starved or killed. They attain maturity at 3½ years and are used for stud purposes for not more than 7 or 8 years.

"It is just as essential when starting a dairy, to get a good bull as to get good cows, for many authorities now hold that it is from the sire, and not so much from the dam, that a heifer inherits her milking powers." Middleton, who has kindly perused this review of Indian information, observes that the milking properties may be transmitted by either sex equally, but in England bulls are usually more carefully bred than cows and may so transmit properties with greater certainty.

Considerable commercial interest is taken in the shape of the buffalo-horn, the straight forms being of greater value than the curved. From the standpoint of the dairy farm, the breeds with curved horns are apparently the most highly appreciated. The following are mentioned by authors as the characteristics by which the chief breeds of buffaloes may be classified:—those with horns approaching a circle (the spirrocerus of Hodgson), and those with the horns long, straight, the tips only arching forward (the macrocerus of Hodgson).

1. Delhi.—The breeds of the United Provinces, the Panjāb and Sind are often collectively designated "Delhi Buffaloes." The horns are short, thick at the base, sharply angled, and rise from the head in a backward and upward course, then become completely curled up like the horns of a ram. According to Meagher and Vaughan (l.c. 47-8) the best buffaloes of this kind are the muraṅ, procured in Hānsi-Hissar, Rohtak, Jhīmd and Nabhā. The name given to them is derived from muraṅ (= to turn), and is an allusion to the form of the horns. They are sometimes also called kunḍi, and cross-breeds with this and the inferior village buffalo (with straight horns) are called dogla. [Pease, Agri. Ledg., 1895, No. 22, 408; Hadi, Agri. Ledg., 1895, No. 12, 206-8.]

2. Surat and Deccan.—The buffaloes of Surat and the Deccan are very different. They both have what are called straight horns. That is to say, in the Surat animal they extend along the side of the neck, then turn up near the shoulder with an inward graceful curve; and in the Deccan breed are even straighter, and extend backwards to the shoulders before becoming arched.

3. Jafferabad.—In the Jafferabad (Kathiawar) buffalo the horn is very massive and coarse. It is flat and broad below, developed at first downwards and backwards, then curved forwards, thus forming three-quarters of a circle, placed on either side of the head. But there is still another peculiarity. The frontal bone becomes greatly developed until it causes the horns to appear united across the forehead. This is a very large, clumsy animal with unusually long legs and large spreading feet.

4. Dun-coloured Buffaloes.—Here and there all over India, more especially in hilly districts, remote from swampy country, a dun-coloured buffalo is met with that seems very distinct from the other breeds. This has by zoologists been regarded as possibly a distinct variety, and has received the name of B. bubalus, var. fulvus. Meagher and Vaughan say these dun or brown buffaloes generally start well but end badly. They are not as a rule heavy milkers for any length of time.

5. Burma and Assam.—Varthème (Travels, 1510 (ed. Hakl. Soc.), 200-1) speaks of the breeds of Tenasserim as very "miserable." Many subsequent writers have incidentally mentioned the buffaloes of Burma, but no one apparently has studied them comparatively with the breeds of India. Evans (Agri. Ledg., 1895, No. 10, 165-72; 1896, No. 10) gives, however, many particulars of the Burmese breeds. They would seem to have long, so-called straight horns, like those of Surat. They give very little milk. The buffaloes of Assam have been discussed in some detail by Darrah (Agri. Ledg., 1894, No. 14). He tells us that though the stock is regularly imported from Bengal, the animals soon improve on the rich pastures of the Brahmaputra valley.
and the horns, which spring close together, take a backward sweep, gradually diverge, and near the extremity curve gracefully upwards and forwards. They are all, even the nadudana breeds, powerful draught cattle but poor milkers. [Cf. Buchanan-Hamilton, Journ. Mysores, etc., 1807, i. (many passages); Kristnamangar and Pease, Cattle of Mysoore, in Agrl. Ledg., 1895, No. 24; Kristnamangar, Diseases of Mysoore Cattle, Agrl. Ledg., 1896, No. 28.]

6. Madras, Nellore, Kistna (Ongole), etc., Cattle.—The Ongole breed of cattle is reared chiefly in the districts of Nellore and Kistna. From early times it has enjoyed a well-earned reputation of being one of the best milking breeds of India. Most writers agree, however, in saying that they degenerate rapidly when removed to other localities. The valleys of the Kistna and its tributaries have a rich, soft, deep black soil, and naturally therefore the cattle of such a country are not well suited for hard roads, unless carefully and regularly shod. They are collectively heavily built animals, docile and of a mild and gentle disposition—essential qualities for milch-cattle—but sluggish in action. The head is erect on a short, stout neck. The horns are short and stumpy, somewhat resembling those of Sind cattle, and longer in the cows than in the bulls. They give to the head a curious and characteristic appearance, the bulging forehead forming a very obtuse angle. The prevailing and true colour is white with grey or black points, and frequently the bulls are black about the neck and shoulders—broken colours indicate impurity. In point of size they are inferior to the Gujarat and Nagar cattle. Other Madras breeds are the Alambadi of Salem and Coimbatore; the Baragur of the hills of Coimbatore; the Kangayam of Madura; the Pallikolam (Jellicut) cattle of Madura; the small Trichengodi cattle of Salem; the artificially spotted cattle of Tanjore; and the Punganur cattle of North Arcot. [Cf. Pease, Agrl. Ledg., 1895, No. 7; Sabha Rao, in Agrl. Ledg., 1896, No. 12; Holmes, Hair-markings on Horses and Cattle, Dept. Land Rec. and Agrl. Mad. Bull., 1900, No. 42; also Notes on Cattle of Madras Pres., Bull. No. 44; Gunn, The Nellore Breed of Cattle, in Agri. Journ. Ind., 1906, i., pt. iii., 237-42.]

7. Burma.—Very little has been written regarding the cattle of Burma, so that it is not possible to assert them with the Indian breeds. Red is the dominant colour. The horns, when not interfered with, take an upward and forward direction and grow to a length of 10 to 18 inches. The neck is short and powerful and the dewlap not much developed. The Burmans are most considerate of their cattle, never overworking them, and grooming them carefully on the close of the day’s task. The animals are also well-fed, so that they are naturally much superior to the imported cattle from India. But milk-farmers of the Burman cows occupy a very low place, owing to the prejudice entertained by the Burmans against the use of milk. [Cf. Frost, Note on Cattle of Burma, 1889; also Quart. Journ. Vet. Sc. Ind., 1890; Evans, in Agrl. Ledg., 1895, No. 10; Rept. Vet. Admin., 1889-90, 47-8; Sett. Repts (many); also Dept. Agri. Ann. Repts., etc.]

8. Bengal and Assam.—The ordinary village cattle of these provinces might practically be spoken of as the most inferior in India. They are small over-worked and half-starved animals of which little more can be said than that they are suited to the climatic conditions and soils in which they range. In certain localities, such as Bihar and Tihtrut, considerably better breeds exist, most probably a consequence of the continual importation and crossing of fresh stock. In Gaya, for example, it is not uncommon to find an animal supposed to have been derived originally by crossing the Indian cow with an English "short-horn" bull imported in 1857. "Bihar is overrun with pola (bulls) dedicated to the gods). These are very fat, and comparatively useless for stock purposes, but do much harm in eating and trampling the growing crops." [Cf. Buchanan-Hamilton, Stat. Acc. Dinaj, 221-8; also in Montgomery Martin, Hist., etc. (many passages); Banerjyi, Bankipore Cross-bred Cattle, in Agrl. Ledg., 1895, No. 25; Durrah, Cattle of Assam, Agri. Ledg., 1894, No. 14; Mukerji, Bengali Cattle, Handbook Ind. Agri., 1901, 578-93; Imp. Gaz., iii., 77-89.]

9. Central Provinces.—The stock is often very mixed. In Nimar, red and brown coloured animals prevail, and in other districts white predominate. The Nimar is, however, generally held to be the best breed. It is a medium-sized animal. Mollison says that it may be recognised by two peculiarities in the colour of the skin and shape of the horns. They are red or brown mottled, but the red is always light, sometimes almost yellowish, and the white markings are never pure white. The horns are thick at the base, blunt, flattened and curled over the head like those of the Delhi buffalo. They are chiefly valued for agricultural work and as draught bullocks. The Arvi cattle of these provinces closely
10. United Provinces of Agra and Oudh.—Throughout Oudh, the nāṁpārā breed ranks high. But there is a sub-breed known as the rīsī, which is smaller in size, more leggy and quicker tempered than the nāṁpārā. The horns in both are elegant, thick below, and tapering to a fine point. One important feature is a slight but distinct depression on the forehead which makes it easy to distinguish the Bahrāi from the Doab and Mathura (the kosi) cattle. The cows of Kosi and Chhata are celebrated for their milking qualities, and the bullocks have the reputation of being good draught animals (see No. 13 below). The breeds of Kheri are, however, far superior to those of Bahrāi, and much resemble the Malvi of Central India and Rajputana. In fact Kheri occupies the most prominent position amongst all the districts of Oudh, being famed for its so-called parchār cattle, sometimes spoken of as bangār. White is considered the best colour and black the worst. The bullocks are fast walkers, have a highly irritable temper, but possess great powers of endurance. Other breeds may be named: —Bhur, Khairigarh, Majhra-Singahi and Dhnaworo. [Cf. Sayyid Mohammed Hadi, Bahrāi and Kheri Cattle, in Agrī. Ledg., 1893, No. 12; also Mathura, No. 19; Leather, Barabanki Cattle, Agrī. Ledg., 1895, No. 17; Ann. Repts. Civil Vet. Dept., 1903–4 (many district accounts).]

11. Panjāb.—"It may safely be said that the best milk-cows of Upper India are obtained from the Hansi-Hissar district, and they are commonly termed Hansi cows." With these words Meagher and Vaughan open their chapters on the "Best Milking Breeds." Speaking of the Harriana cattle, Pease describes the region in which they are produced as "the green country which comprises about 292 villages of the Hissar district chiefly in the Hissar and Hansi Tahsil and the greater part of the Rohtak district." The region in question has a good soil, passing into clay-loam in one direction and into sand in the other. The average rainfall is 18 inches and the climate, therefore, is dry and well suited to cattle. But the increase of cultivation within recent years has curtailed the pasture lands and lessened the interest in cattle-rearing. Still the country indicates produces a large surplus of cattle regularly exported, as also a very important supply of ghi traded in all over India. The Hansi-Hissar cattle are uniform in colour; broken colours are seldom, if ever, met with. The skin is usually dark coloured and the hair white or grey, but darker at the shoulders and neck, and on the flanks sometimes almost black or blue. Red-coloured examples are rare and usually inferior. The horns are short, set wide apart and arch outwards, upwards and then inwards, but only slightly forwards. Meagher and Vaughan, while apparently accepting the Hansi as the best breed for Upper India, give several illustrations of the Sanshiwal sub-breed, which would appear to be frequently broken coloured—red or mixed colours—white being rare. According to many writers, the Montgomery cattle are powerful rivals of the Hansi for the claim of first position as a milk-yielding stock. They are small, shapely and short-legged animals with exceptionally long tails. The Director of Agriculture, in July 1903, drew up a statement of the breeds of cattle in the Panjāb, in which he adds to the above the Kuchi or Chenab breed; the cattle of the Jhund district; the Dera Ghazi Khan breeds; the Dhanī cattle of the Salt Range; and the Maja cattle of the uplands between the Sutlej and the Ravi. [Cf. Pease, Cattle of Harriana and Sires, Agrī. Ledg., 1895, No. 22; Meagher and Vaughan, Dairy Farming in India, 41–59; Repts. Civil Vet. Dept., 1892–1900.]

12. Rajputana, Central India, Berar and Hyderabad.—The animals of a large portion of the tracts of country indicated naturally approximate very closely to the Hansi breed already briefly indicated. The characteristic cattle of Rajputana and Central India are invariably pure white, though grey or silver-grey specimens are occasionally seen, but broken and mixed colours are unknown. As in other large areas, there may be said to be two sub-races—a large animal specially selected and used by the well-to-do as trotting or fast walking animals, and the ordinary village or agricultural breed. Mollison calls these collectively Malī or Malī' cattle, and Maj. Kemp speaks of the high-class animal as the Nagore (or Naggor) and the agricultural the Rindā (small) breed. It would seem that throughout the country indicated local names are often given which, like "Nagore," originated from the name of a village or locality specially noted for the superiority of its cattle. Mollison observes that "the head is short, the eyes
OXEN AND BUFFALOES

LIVE STOCK

Oxen

are dark, prominent and have a docile appearance. The ears are short with little or no tendency to droop. The horns are very characteristic. They are moderately thick at the base, of fair length and are sharply pointed and invariably spring in a forward and upward direction from the head with a graceful outward bend. Prof. Wallace describes the horns as resembling two arcs of a circle set on the crest of the head with the concavity inwards. They are much prized as heavy draft animals, and are accordingly frequently seen all over Central and Western India. They are very strong, but not swift; being reared on stony ground, have hard feet and do not require shoeing even when worked on metalled roads (Col. Gerard). They are very largely bred in the territories of H.H. the Maharaja Holkar and H.H. the Maharaja Sindhia and the cows are often not milked at all, and in consequence when used as milch-cows are a very inferior stock.

The Khillari cattle of the Satpura hills (in Holkar's territory extending to North Khandesh), according to Mollison, were derived originally from Mysore and should be spoken of as the Amrit Mahal breed. Mollison adds, "The fact that Khillaris are now bred true to a particular type in a district where Malvi cattle are also extensively reared is a clear indication that the breeders know the advantage of keeping a good strain as pure as possible." Mr. Ali Abdoola describes four breeds, met with in H.H. the Nizam's Dominions, that take their names after the towns in which reared. Commenting on these, Vet. Major W. R. Hagger observes that from the description of the prevailing colours "some seem to have a strong strain of Mysore in them, some show a Decennia cross, while others seem to resemble the Malvi breed." (Cf. Kemp, Powlett, Reynolds, Hendley and Hagger, in Agr. Ledg., 1900, No. 21: Gerard and Abdoola, in Agr. Ledg., 1900, No. 22: Gaz. Rajputana (Ajmir), 1904, i., A., 49-50.)

Nizam's Dominions.

Hill Cattle.

13. Hill Cattle.—The cattle seen on the higher cultivated Himalaya are small sturdy animals with short, thick legs. They are admirably suited to the regions in which found, and are very active and wild. They are mostly black in colour, though occasionally dun or mottled examples are met with. They are well protected from the severity of the winter by a thick, shaggy coat. The hump and dewlap are hardly if at all present, and, as pointed out by Walker, they much resemble the Kerry-Dexter cattle of Great Britain and Ireland. The cattle of the lower tracts, being annually taken to the grazing lands of the Bhader country, have been crossed with the breeds of the adjacent plains. In the higher tracts the pure hill breeds are met with, and these are spoken of by names denoting regions or special sub-breeds. The males are used for ploughing, but their working qualities are poor and many refuse to work at all, while the cows are poor milkers. In a further paragraph will be found particulars of the traffic from Nepal to the plains of India in live stock. (Cf. Walker, Kumaon Cattle, in Agr. Ledg., 1899, No. 7; Lawrence, Valley of Kashmir, 358-60.)

CATTLE FOOD AND FODDER.—There may be said to be two conditions of cattle-rearing in India.—(a) village or agricultural, and (b) prairie or nomadic. The latter consists of large herds fed on fertile non-cultivated lands, the former small herds or solitary animals reared at the homesteads, thus mostly on cultivated lands. It is generally said, moreover, that the advances of cultivation are rapidly curtailing the areas of nomadic production and thereby cutting off the sources of supply of

740
superior breeds. Hay-making is not practised by the Indian cultivators, and the surplus of naturally produced grass is thus left to waste. Moreover, the cost and difficulty of transport preclude the equalisation of supplies, hence in seasons of drought the greatest hardships have to be endured, and the first indication of famine is the increasing death-rate of the cattle. For example, during the famine years of 1899-1900 something like 70 to 80 per cent. of the cattle perished in certain districts of Bombay, notwithstanding the large imports of fodder made by Government, for the railways were unable to cope with the burden thrown on their resources in conveying food and fodder to the famine-stricken districts.

It has sometimes been upheld that cattle represent the raiyats' capital. They certainly provide the labour for ploughing and carting, as well as very largely supply the manure and fuel used by their owners. In return the animals get what they can pick up (after the crops are off the fields) and what they can discover on the waysides and waste lands. Nevertheless they often become the cultivator’s greatest source of poverty and danger. They increase beyond the needs of the neighbourhood, and thus rapidly change the character of the vegetation: noxious weeds survive and nutritious plants are gradually exterminated. Thus are the village cattle themselves not only depraved and starved, but the natural fertility and humidity of the soil lowered to such an extent that any untoward climatic disturbance too often means famine. Of few localities can it be said that special food or fodder is grown for the cattle, but where this is done, as, for example, the cultivation of the cluster-bean, *Cyanopsis psoratioides* (p. 449), and of fodder crops of *Sorghum vulgare* (of which the races known as *sundhia, dudhia, nilea*, etc., may be mentioned, p. 1039) in Gujarat and Jhang, etc., etc., the superiority of the cattle in these regions has been frequently attributed to that circumstance. It is of course customary to give rich foods (including several kinds of oil-cake) to milch-cows and to bullocks in daily work. Mollison reviews the opinions that prevail in India regarding linseed, *til*, *niger*, safflower, ground-nut, cocanut, and cotton-seed cake. [Cf. Leather, *Agr. Ledg.*, 1897, No. 8.] It is somewhat remarkable, but true, that a very large percentage of the draught bullocks of India are fed exclusively on dry food. It is of course very generally believed that green food is not suited to working cattle. This is, however, a very different question from that of the conditions of life and the food-stuffs essential to systematic breeding, where the improvement of stock is a distinct feature. The contrast between the bullocks belonging to the European planters in Tirhut and those of the Bihar peasants, or between the bullocks owned by the Burmans and those possessed by the Hindustani residents in Burma, abundantly exemplify the difference between carefully reared and properly tended cattle and those brought up under a system of indifference and neglect.

In the *Dictionary* will be found a complete enumeration of the trees, shrubs, herbs and grasses known to be of value as cattle food and fodder. Excellent pasturage exists in most provinces, especially on the lower hills and great Himalayan range. Open stretches of grass-land (*maidans*) often extend from the upper limits of the forests towards the snow-line. On these uplands vast herds of sheep and goats are to be found, the latter affording the much prized *pashm* wool (hair). But on the lower Himalaya the cattle are largely fed on the leaves of four species of oak and a few other trees. The grass that exists abundantly in these tracts is as a rule
cut and dried as hay in order to be exported to the plains. The extent to which leaves are utilised as cattle fodder is a speciality of India.

In the deltaic tracts and rice lands generally, the cattle are miserably poor. Grazing lands are limited, or totally wanting, and the only fodder available in any quantity is rice straw, which provides scant nourishment. Moreover, it may be said that little or no concentrated food is given even to the work cattle in busy seasons. In peninsular India, good grass is not found where the average annual rainfall much exceeds 40 inches. In some parts of that vast area, therefore, the cattle are extensively fed by hand on the produce of arable tracts (Imp. Gaz., iii, 86). The grazing lands of India and the grazing rights of the people are highly controversial questions. Voelcker (Improv. Ind. Agri., 169-97) discusses these very freely, and his views have on the whole been upheld by subsequent experience. But the almost complete absence of special fields of cattle food is perhaps the aspect of Indian farming that strikes the visitor as most significant. The possession of immense herds, reared on waste lands, accounts very largely for the ghi, which is so much traded in all over India; but one of the surest signs of the devastation caused through failure of the rains is the sudden rise in the exports from India of cheap hides—a melancholy consequence of the starvation of these unprovided-for herds.

[Cf. Benson, Ind. Fodder Grasses, in Agri. Ld., 1892, No. 1; Watt, Ground-nut as Cattle Food and Fodder, 1893, No. 1, 87 et seq.; Leather, Silage-making in India, i.e., 1894, No. 2; Feeding Exper., New York Agri. Exper. Station Bull., 1897, No. 141; Wood, in Journ. Board Agri, 1899, vii, 311-32; Walker, Measurement of Cattle, Agri. Ld., 1899, No. 8; Leather, Food-Grains and Fodders of India, i.e., 1901, No. 10; Mollison, Textbook Ind. Agri., 1901, ii, 11-41; 48-52; Mekerji, Handbook Ind. Agri., 632-42; Meagher and Vaughan, Dairy Farming in India, 1904, 1-14; Settl. Rept., especially those of Burma, deal fully with the fodder supplies and grazing rights.]

DISEASES OF CATTLE.—The Agricultural Ledgers enumerated below contain many valuable papers on the diseases of cattle. The more serious and special diseases are briefly:

1. **Rinderpest**—the bossonto, giûdû, kalaucah, pitchinoe, peya, kyauk-paik, etc.
2. **Anthrax**—the golafula, gutherewan, golî, suth, odro, thalinova, daungthan, etc.
3. **Foot and Mouth Disease**—the khurat, asha, khurpaika, mohona, mupaun, sha-na-kwauna, etc.
4. **Pleuroneumonia**—the phipri, asok-gaw-ga, etc.

In a special Veterinary Series of The Agricultural Ledger have been published numerous papers on the above and other diseases which the reader, desirous of such information, should consult. Two papers may, however, be specially indicated, namely, Dr. K. Mcleod's *Measures, Legal and Sanitary, adopted by European Countries to oppose the introduction and spread of cattle plague* (1896, No. 20), and Prof. Koch's *Method of Immunising Cattle against Rinderpest* and the Resolution of Government of India on the same, together with the Opinions of Indian Veterinary Authorities (1898, No. 5). But for practical dairying operations, particulars of all the ordinary ailments of cattle will be found in the chapter on diseases of horned cattle and their treatment given by Meagher and Vaughan, in their work on *Dairy Farming in India* (1904, 113-143, 147). These authors conclude with the following recommendations, strict attention to which they consider calculated to avert serious loss and inconvenience:

"(a) Proximity of grazing grounds to the cattle-yard, enabling the
cattle to go out and back without possible contact with outside cattle or their tracks; (b) Complete separation between the dry stock and cattle in milk; (c) Frequent inspection of all home cattle, and immediate isolation of animals from any disorder, however simple; and the prompt disinfection of all ropes, standings, troughs, etc.; (d) Perfect sanitation in and about the cattle-yard, standings, stalls, etc.; (e) tramway lines for the conveyance of grain, fodder, etc., to the cattle-yard and the rigid exclusion of all outside draught-cattle bringing in these supplies; (f) The allotment to sick cattle of special attendants, who must not be permitted to approach the healthy animals, or associate with the staff working in the cattle-yard; (g) The best and most wholesome fodder, grain, cake, etc., only fed to the cattle; and (h) Complete segregation at as great a distance as possible from the infected enclosure; and, as calves are the principal medium, not more than sixteen calves should be housed together."

Poisoning.—Among the important causes of cattle-death has unfortunately to be given criminal poisoning. The chumars are the chief criminals, and their method of accomplishing their nefarious purpose is by the use of the su (see Abrus, p. 1).

II. THE GOATS AND SHEEP OF INDIA.

In addition to the oxen (discussed above) the family of the Bovidae includes the goats and the sheep:—

THE WILD GOATS.—The following are the species recognised by zoologists:—

Capra aegagrus, Omenin; Blanford, Pa. Br. Ind. (Mammalia), 502–3;
Masson, Journ. to Kalat, 1843, 445–6; the pasang (male), boz (female), borz, kuyik, thar, sair, sarah, chank, etc. A wild goat found throughout Asia Minor, Persia, Afghanistan, Baluchistan and Sind.

This remarkably interesting goat inhabits barren rocky hills in herds of varying numbers, but always keeps much to the cliffs and crags. Capt. Hutton, who, while Resident at Kandahar, devoted much careful study to *C. aegagrus* in domestication, and cross-bred it with the common goat, arrived at an emphatic opinion, opposed to that advanced by Hodgson and others, namely, that the Persian and Afghan goats at all events were not derived from *C. aegagrus*. The late Dr. Blanford, the most recent author, however, says "there can be no doubt that *C. aegagrus* is one of the species, and probably the principal from which tame goats are derived." The flesh of this wild goat is highly prized. The skins are valued as water and flour bags. The horns are carried by mendicants, and trumpeting horns are made of them. The bezoar-stones are found in the stomach (see Bezoar, p. 131).

C. falconeri, Meyer; Blanford, Lc. 505–8; Vigne, Travels, etc., 1842, ii., 279; the markhor (snake-eater), riche (the great horn), tush-ra (water goat), rezkuk, rish, puchin, etc.

A magnificent animal which inhabits the Himalayan tracts west of the Beas to Kashmir, Ladakh, Baltistan, Afghanistan, Baluchistan, etc. It frequents high ranges, especially where concealment is afforded by shrubs or broken rocks, and is then met with in large herds. There are several well-marked local varieties that differ from each other mainly in the length, shape and degree of twisting and curving of the horns. It is much sought after by sportsmen, and is said to be in appearance by far the grandest of all the wild goats. Has repeatedly been bred in confinement and crossed with the domestic goat. It is generally believed, in fact, that some of the races of domestic goats with spiral horns have descended from this species. There are two important points that should be borne in mind: the direction of the spiral of the horns is outwards, not inwards (as in most domestic goats), and the *markhor* does not possess the under-fur or pashm (pam) of the alpine domestic breeds.

C. sibirica, Meyer; Blanford, Lc. 503–5; the Himalayan Ibex, the skin of sakin, dabmo or danmo, kal, tangrol, buz, sheu, etc.
of Angora blood, as has been suggested, would obviously be to court failure. It might, however, be possible to cross the alpine breeds of Sind, Baluchistan and Hazara with the Angora goat, if foreign blood be considered essential.

Many years ago the proposal was made to establish sheep and goat runs on the southern slopes of the Himalaya with a view to improve and extend the Indian supplies of wool and hair. This has never been definitely tried, though much has been written on the growing necessity for better and more certain supplies of these staples. Falconer seemed to think that the pashm goat might be acclimatised on the southern slopes of the Himalaya, but it must not be forgotten that the down of the ibex and of the pashm domesticated goat seems to be directly the result of the drier and ever so much colder nature of the northern as compared with the southern slopes. Indeed the pashm goat may be said to actually exist at Spiti, and according to Hodgson the chāpū is the acclimatised form of the Tibetan chāŋgrā. If this be so, the goat, even if successfully reared on a more extended scale than at present on the southern slopes, would probably yield a far inferior pashm than the northern stock, if indeed it did not degenerate into a form of the pat-yielding (not pashm) goat. It may, however, be safely said that for present European commerce a pashm goat is not an indispensable necessity of success.

Speaking of the plains, sheep and goats are most successfully reared in areas that receive a moderate rainfall. Upland well-drained soils with sparse jungle growth and a considerable variety of herbage are necessary. In peninsular India the shepherds possess large flocks, with which they wander from place to place when arable land is usually clear of crops. The sheep and goats graze during the day and are folded at night on land where it is desired to obtain the manure of their droppings. This is paid for by the cultivators whose lands are thus benefited. Goats are valued for their meat and milk, and on the Himalaya for their hair.

CHIEF BREEDS. — With the exception of Mr. B. H. Hodgson’s valuable paper on the sheep and goats of the Himalaya and Tibet, and of Capt. T. Hutton’s paper on the sheep and goats of Afghanistan, the subject has never been systematically treated, and little can be added to the particulars given already in the Dictionary. I am, therefore, unable to do more than mention by name some of the better known breeds of Indian goats:

1. South Indian Goat. — These are gaunt in appearance and badly proportioned, but hardy and active and can exist on almost any kind of vegetation.

2. North Indian Goat. — A much finer animal than that found in the south. The ears are large and perfectly pendent. This is possibly the jamnapari of Hodgson. [cf. Hoey, Monog. Trade and Manuf. N. Ind., 1880, 90, 105-6; Pun, Monog. Woolen Fabrics C. Pr., 1898, 2-3; Note on Indig. Sheep and Goats of the P. in Land Rec. and Agr., 1903.]

3. Surat and Gujaratt Goats. — These are small short-legged animals that are much valued as milkers.

4. Nepal Goat. — The best-known breed; has long flapping ears and rounded nose.

5. Bengal Goat. — This is smaller even than the Madras animal, and is usually quite black and destitute of horns. Hodgson identifies it with the dugū of the Himalaya. [cf. Basu, Agri. Lohardaga, 1880, i, 92; ii, 44-5; Banerjee, Monog. Woolen Fab. Beng., 1899, 1-3, 35-6.]

6. The Hill Goats of the Deccan, Sind, Rajputana and Baluchistan. — The hair of these animals is more abundant and woolly than the plains goat, and the horns
animals have contributed to the breeds of Indian sheep, *O. viguet* seems to have done so. It apparently affords a small proportion of the *pashm* known as *thos*, and from the lachrymal sinus a thick gummy substance is obtained that is much valued in greasing metal locks. Mr. Drummond informs me that pure or half-breed *dumbas* have been crossed with this wild sheep and that the progeny exhibits, while young, an under-fleece similar to *pashm*. But according to local belief this cross is only attained if *dumba* stock be employed.

Breeds of Domestic Sheep.—Sheep are met with throughout the plains and lower hills of India and up the Himalaya to the sub-arctic zones. The breeds of Indian sheep are quite as extensive and diversified as those of Europe. Some are tropical, thriving in swampy regions or on dry, arid tracts, others warm temperate, still others temperate or even arctic. There has, however, been even less of an authoritative character written of the Indian sheep than of the goats. Most writers have discussed the Patna, Dumba, Meywar, Madras, Mysore, etc., breeds without having considered it necessary to detail their characteristic features. Shortt (*Manual of Indian Cattle and Sheep*), if his illustrations can be viewed seriously, would seem to establish for South India certain well-marked breeds, and doubtless extensive diversities exist among the sheep of other provinces. But, speaking generally, it may be said of perhaps more than half the breeds found on the plains of India, that they afford a kind of hair rather than a wool. They are reared chiefly on account of mutton, their fleece, like the hair of the village goat, being, comparatively speaking, valueless.

But although many of the sheep of India yield a fleece of hair rather than of wool, certain breeds give fairly good wool. Of this class may be mentioned the black-headed sheep of Coimbatore, the woolly sheep of Mysore, the sheep of large portions of the Deccan, of Rajputana, of the Panjáb, and, in Bengal and the United Provinces, the so-called Patna sheep. Although there are possibly several very distinct breeds of large fat-tailed sheep (all designated *dumba*), these should be classed as wool-yielding breeds. They have been crossed with the Patna, the Merino and other imported sheep, and apparently with satisfactory results, though the improvement effected cannot be said to have been lasting. Some of the fine wools imported from Afghanistan and Persia are obtained from breeds of *dumba* sheep, and this fact having been ascertained many years ago, effort was put forth to secure stock for breeding purposes. So far the result, however, has been unsatisfactory, for when conveyed to the moister tracts of India, the fat tail has proved a source of danger. It is liable to disease, so that unless a breed could be produced, in the natural habitat of this animal, that would preserve its merit as a wool-producer during successive crosses in which it was gradually developed into a condition suitable to the plains of India generally, it is not likely to be of much value to future breeders. It may, in fact, be said in conclusion that, so far as past experience goes, the breeds of most value, as Indian stock for improvement, are the Coimbatore, Mysore, Rajputana and Patna. But it may be added that perhaps the majority of persons who have given this subject anything like careful consideration seem to incline to the view that except in certain tracts, there is very little hope of India as a whole becoming of much greater moment than at present as a country of wool-supply. Interest is far more keenly directed towards facilitating importation from the mountainous countries bordering on India, than in any material improvement of the wools of the
LIVE STOCK
Sheep

THE GOATS AND SHEEP

 plains. [Cf. Orrah, Wool of Baluch, and the Introd. of Merino Sheep and Angora Goats, March 1890.]

The following may be mentioned as the better known breeds of sheep in India:

1. Rajputana (Maywar) Sheep.—These are the finest and largest sheep in India. They are sometimes called Delhi-Hansi or Tottyghar sheep. They have poor wool, but the mutton is large though somewhat coarse. [Cf. Ann. Rep. Civ. Vet. Dept., 1893–4, 14–6.]

2. Bengal and Patna Sheep.—The former is very inferior but the latter one of the best breeds in India. They yield good wool and fatten readily. In 1836 an effort was made to improve the Patna sheep by crossing them with Southdown rams. So also a similar effort was made with Bhagalpur sheep.

3. Madras Sheep.—The best are those of Chingleput, Kistna, Godavari, Ganjam, Arcot, Salem, Trichinopoly, Tanjore, Madura and Tinnevelly. They are coated with a coarse brown wool or hair of little value. An experiment was for some years prosecuted at Heragahallly to improve these sheep by crossing them with Merino rams imported from Australia. This was abandoned in 1863.

4. Nellore Sheep.—A large breed, examples of which have been known to scale 80 to 90 lbs. They are tall, leggy, and white or light brown in colour.

5. Coimbatore Sheep.—This is known as the kurumba breed. It is a wool-producing animal, small in size, the prevailing colours being black with white heads. They fatten well, and the mutton of gram-famed animals is rich and well-tested.

6. Mysore.—This is a woolly breed. The prevailing colour is light to a very dark grey or black. It furnishes the best fighting rams of the plains. [Cf. Buchanan-Hamilton, Journ. Mysore, etc., 1807, i., 119–21; ii., 276–8; iii., 354–5.]

Bombay.

Breeding Experiments.

7. Bombay Sheep.—Dr. Hove, in 1787, speaks of the sheep in the Deccan as being the finest he had seen in India and as having superior wool. So long ago as 1835 Col. Jervis conducted extensive experiments with a view to improving the Bombay sheep. Subsequently Col. Pottinger, Sir A. Bumnes and others brought sheep from Kabul, the districts of the Upper Indus, Persia, the Cape of Good Hope and England. A farm was established at Ahmednagar, and for some years vigorous experiments at stock improvement were prosecuted. This was reported on by Sir George Arthur in 1843, who recommended that fresh Merino rams should be continuously imported for some years to come. The subject seems, however, to have been suddenly forgotten and the farm abandoned, for nothing of any importance was subsequently published regarding it. Mollison (Trans. Ind. Agri., ii., 59) says nothing of these experiments nor of the fate of the farm. He offers, however, many useful and practical suggestions based chiefly on experience gained in Bombay. Sheep and goats, he says, are most successfully bred in districts with moderate or light rainfall and light, naturally well-drained soils. Neither sheep nor goats thrive during the monsoon in heavy-soil districts. In the breeding districts large flocks do not thrive unless they are continuously grazed on clean ground. Large flocks of sheep and goats are brought in the fair season by professional shepherds from Kathiawar into the plains of Northern Gujarat, and also from the upland comparatively dry waste grazing lands east and north of Khandesh, to the black-soil tracts and arable plains of the Deccan. A few goats among the sheep are decidedly advantageous. They lead the flock and keep the sheep moving and thus grazing. [Cf. Morgan, Sheep-Breeding in the Deccan, in Agr. Led., 1895, No. 18.]

Nepal.

Kashmir.

8. Nepal Sheep.—Of these there are two kinds—the village ghorapula and the forest ran bari. The last is a small and almost semi-wild animal that lives in large flocks on the wooded hill slopes.

9. Kashmir Sheep.—Lawrence (Valley of Kashmir, 360–4) gives many interesting particulars of the sheep and wool of Kashmir, but says nothing of the breeds met with except that some are as good as the Southdowns. Mr. Drummond informs me that in Kashmir it is the custom to wash the sheep in the river before being shorn, a circumstance that would point to the wool being valued more highly than is commonly believed. Baldwin (Agr. Jour. India, 1906, i., pt. iii., 201–4) urges the “Benefits of Sheep-dipping” in India.

Himalayan and Tibetan.

Huns.

Huns (of Western and Hulik of Eastern Tibet. A tall, graceful animal,
the universal beast of burden on the higher snowy ranges—is docile and sure-footed. Hodgson compares this with the great wild sheep (O. hodgsoni). It cannot endure the rank pasture or high temperature of the Sub-Himalaya. Mutton and fleece are both excellent.

(b) Silingia or Siling sheep or Pedúk of the Eastern Himalaya. According to Hodgson, the Siling country corresponds to the Serica regio of the classific. The animal is smaller than the hání. In colour it is white tinged with fawn.

(c) Bárúal or Barwal is a Cis-Himalayan breed and the ordinary sheep of the Cashar or northern regions of the Sub-Himalaya between the Jümula and the Kirant. Hodgson, in fact, says this breed practically extends from Kumaon to Sikkim. It is the great fighting ram of the hill tribes. It is remarkable for its massive horns entirely covering the top of the head. The flesh and the fleece are both abundant but coarse. By far the largest number of the rähris or coarse blankets and serge manufactured in these hills, and which are extensively exported therefrom, are made of bárúal wool. Coarse as this wool is, it is, however, superior to the wool of the plains.

(d) Chápía—This is the characteristic breed of the central region of the Sub-Himalaya. It is reared rather by householders than shepherds, and for its flesh rather than its wool. It is a handsome animal, but its head is too large, though the legs are short.

(e) In conclusion. This is practically identical with the sheep of the plains. It may in conclusion be pointed out that Hodgson's Trans-Himalayan sheep (the hání and the silingia) are, like his Trans-Himalayan goats (chángú and chápía), far superior to his Cis-Himalayan breeds. If, therefore, India cannot acclimatise and develop new breeds on the southern slopes of the Himalaya, attention should be given to increased facilities of transport and more friendly intercourse with the Trans-frontier tribes for increased supplies of superior wool.

II. Bira and Dumba Sheep.—Some at least of the breed are natives of Afghanistan and Persia, and others of Africa. They are frequently imported into India, and are large sheep characterised by the immense development of masses of fat placed on either side of the tail, forming stores of nourishment which are drawn upon during the winter months, when fodder is scanty. Hutton tells us that in some parts of the country the tail grows, in fact, to such a size that a small wheeled carriage has often to be constructed to carry its weight. Hodgson calls them púchía (tailed) sheep. The wool is of good quality, and on that account they have often been crossed with Indian plains sheep. Mollison says dumba sheep have proved exceptionally suitable for crossing with the Deccani stock. The wool of these half-breeds, like that of the pure dumba, is of fine quality and long. The mutton is said to be coarse, though the tail is sometimes spoken of as of great value.

Elian (De Nat. Hist. Anim., 250 a.d., iv., 32) speaks of the tails of the Indian sheep reaching to their feet and as being cut open by the shepherds, the tallow removed, and the tails sewn up again. Marco Polo, in the 13th century, and Varthémé, in the 16th, describe the dumba or Ethiopian sheep as seen by them on the east coast of Africa. Marco Polo says the tail often weighs 30 lb., but Varthémé puts it at a lower figure, 15 to 16 lb. Terry (Veyp. E. Ind., 1622 (ed. 1777), 90) observes that "their sheep differ from ours by their great fleasy bob-tails which severed from their bodies are very ponderous. Their wool is generally coarse but their flesh is not so." There would thus seem no doubt that this particular sheep has existed in India from fairly remote times. The head and neck are quite black and the body otherwise white. In the Cairo Museum, among the ornamens found in the mummy-pits, there is a little figure of one of these sheep, so that it may safely be said they have been known from ancient times and beyond the limits of India. [Cf. Cordemoy, Le Prod. Colon. d'Origine Animale, Paris, 1903, 126-38.]

III. HORSES, ASSES, AND MULES OF INDIA.

The horse has been a domesticated animal since prehistoric times. Elian, compiling doubtless from Megasthenes, 300 B.C. (De Nat. Hist. Anim., xvi., 2, 22), says, "In India there are herds of wild horses and also of wild asses." No aboriginal or truly wild horse is known to exist to-day, though wild representatives of the ass are well known. [Cf. Blanford, Fa. Br. Ind. (Mammalia), 470-1.] There seems, however, little doubt that
all the existing races and breeds of horses have descended from one common stock, which Darwin believed was dun-coloured and more or less striped. In Neolithic times a wild horse would appear to have existed in Europe, but the animals of the present time have probably not been derived from these, but from animals which it is well known were imported from Asia into Greece and Italy. But even these Asiatic ancestors were doubtless only a consequence of a still earlier long-continued selection from a stock or stocks that to some extent may be indicated by the fossil remains discovered. The artificial selection conducted by man has been toward specific purposes. The English thoroughbred may be mentioned as the final manifestation in speed; the English draught-horse in working capacity; and the Shetland pony in sure-footedness and suitability for mountainous regions. What may be true of England can be shown as equally applicable to all countries wherever the horse has been appreciated in agricultural, industrial and political life. The most ancient histories and traditions of India point to a specialisation in warfare. Ælian describes the King's stables; the use of the bit and bridle in making the horses move at a measured pace; the breaking in of the animals by forcing them to gallop round and round in a ring; and when on the march, we are told the war chariots were drawn by oxen and the horses led on a halter so that their legs might not be gallored nor their spirits damped by drawing the chariot to the battle-field. None of the early writers would seem to make even the most distant allusion to the Indian horse being used for agricultural purposes or for transport; adaptation, therefore, to riding and swiftness were the directions of early Hindu influence on the horse. The establishment of the rule of peace under British supremacy of necessity meant the overthrow of martial power and the loss of the races of fiery chargers that doubtless previously existed in India.

Principal Indian Breeds.—There seems at all events little doubt that the Native breeds of horses have diminished and deteriorated since the establishment of British rule in India. The suppression of the predatory system lessened the demand, and the superior Lakhi and Cutch breeds which for centuries had been famous became almost, if not altogether, extinct. It is probable also that the requirements of modern warfare for larger and more powerful animals than India naturally produced, led to a system of artificial breeding, in which size was the object mainly aimed at, an object that might easily have resulted in the deterioration of the original small, hardy and swift breeds and the production of badly formed and weedy animals. Within recent years the Government of India have adopted, in the Civil Veterinary Department, a policy of supplying specially selected stallions to each important centre. These have been chosen in consideration of the most hopeful directions of improvement of existing stock, and their services are placed at the disposal of horse-breeders free of charge, provided the mares have been examined, approved and branded, by a representative of the Department. According to universal repute this has had a most beneficial effect. The following are some of the better known indigenous breeds:

1. **Kathiawar and Rajputana.**—The Chiefs in these States still continue to give attention to horse-breeding and many of them keep up very large stables, in which the most careful selection is observed. The original breed—known as the Kathi—was noted for its great powers of endurance. The peculiarities of the animal are that it is generally under-sized and small-boned and has a distinctive mark, a black cross down the back and black bars on the legs, the colour of the
coat varying in every shade of dun. It is supposed to possess a strong strain of Arab blood, an opinion supported by the known frequent intercourse between the two countries. The mares are most esteemed, as the horses are noted screamers. The Bhavnagar and Palitana Princes take the greatest possible interest in the preservation and improvement of this peculiar and special breed.

2. Bombay.—The horses of Kach and Sind do not materially differ from those of Kathiawar. They are usually a little over fourteen hands, are well made, spirited, showy in action, with clean limbs, good bone, thin long neck, large head, outstanding ram-like brow, and small ears. Their great defect is their bad temper. But there may be said to be three other types in the Presidency in the Maratha pony, the little Gujarati, and the Bimthadi of the Deccan. The last mentioned is one of the best breeds in India.

3. Waziri and Baluchi.—A fine breed of hardy and active animals. They have good shoulders, very deep and moderately broad chests and angular drooping quarters, very broad across the hips. They make excellent troopers on account of their speed and endurance, and, crossed with Arabs and thoroughbred English horses, become good cavalry remounts.

4. Panjub.—There are many special races, such as those reared about Rawalpindi, Jhelam, Gujrat, Gugaira and Lahore. In the Sikh times the greatest care was bestowed on them, and stallions from Kathiawar, Kach, Baluchistan and Afghanistan were regularly imported and used to improve the stock. The average Panjub country-bred to-day is small, but possesses great powers of endurance. It used to be a by no means uncommon occurrence to hear of an ekkā pony dragging a cart and three passengers from Simla to Kalka, thus covering 88 miles in one day, without, as the saying goes, "turning a hair." This is representative of the hardy little animals found on the plains adjoining the North-West Himalaya. In former times the Sikh cavalry were horse from Dhanni, north of the Salt Range, and even now large numbers of remounts are drawn from that country.

5. Burma and Manipur.—The ponies of Burma, which are small, hardy and exceedingly tractable, are said to be all importations from the Shan States and Manipur. Their characteristic pace is an unbroken run, in which the shoulders seem to roll from side to side. The pure Manipur is generally considered the best of all Indian ponies. It is well under thirteen hands, is mostly dun-coloured, and possesses of wonderful powers of endurance and weight-carrying capabilities.

6. Himalayan Ponies.—The Ghunt or Khunt breed is met with in Lahoul and Spiti, and is employed almost entirely for saddle purposes. It is never over twelve hands, is strongly built, exceptionally sure-footed and hearty, but is often very hard-mouthed and stubborn. A similar animal is the Bhutia pony, which often attains a height of fourteen hands. A larger and more valuable breed is known as the Yarkand pony. It much resembles the Yābú of Afghanistan; has a short round body, deep chest, full quarters, and thick limbs—a miniature English cart-horse. It is an admirable pack-horse, and harnessed to heavy loads. It moves at about five miles an hour, and if allowed to preserve that pace has great powers of endurance. Closely allied is the pack and riding pony of Baltistan and Kashmir.

7. Asses and Mules.—The ass exists in all parts of India and is largely used as a beast of burden, especially by the dhobis or washermen, potters, tinkers, etc. As a rule it is badly cared for, its only redeeming feature being its cheapness. In Kathiawar there is a specially good breed of donkeys, of which the Halar or Jalalavad white variety is specially deserving of notice. The people of the interior Himalaya also have a peculiar breed—a very small black animal with long shaggy hair. This they bring with them when they come down in the winter months to seek work at Simla and other outer hill stations. Mules seem to have been known from the most ancient times in India. Ælian says that the mares are often covered by the wild asses, red-coloured mules being the result. These are very fleet and impatient of the yoke. They are caught with foot-traps, and when only two years old may be tamed and domesticated. They are then taken to the King of Persia. Blanford gives full particulars of the Asiatic Wild Ass. It is found throughout Central and Western Asia, a few being occasionally seen in Baluchistan, the Panjub frontier, and even east of the Indus in Bikanir and the Rann of Kach.

For many years past the Government of India have made strenuous efforts to improve the breed of the plains donkeys, and to secure the rearing of a good quality of mules. They have accordingly supplied donkey stallions and offered.
LIVE STOCK

Pigs

rewards and prizes for good mules. The Natives of India have, in many localities, a semi-religious objection to breeding mules. [Cf. Ain-i-Akbari, 1590 (Bisho-

IV. THE DOMESTICATED PIGS AND WILD BOARS OF INDIA.

Pig or Hog is the name applied to different animals of the family Suidae, the only representative in India of the sub-division of the Ungulates known as Suina. Blanford enumerates the following species:—

Sus cristatus, Wagner: Blanford, Fa. Br. Ind. (Mammalia), 560–2; **Indian Wild Boar**, iver, bad janvar, varaha, paddi, dukkar, pandi hundi, tan-vet, etc. This is the only species of any interest or importance economically. It is found throughout India, from the sea-level to an altitude of about 12,000 feet, wherever there is sufficient shelter, either of long grass, low jungle or forest. When abundant it does great damage to crops. The tame pig of India is probably derived from the wild animal, and in some places is said to breed with the latter. Several races of domesticated pigs are met with in India, where religious and caste beliefs allow of their being kept. In the article on Lard (pp. 701-2) it will be seen that two chief classes of pigs are spoken of, namely the “China pig” and the “Country pig.”

S. andamanensis, Bligh: Blanford, i.e. 562–3. The Andaman Pig. A small animal, some 20 inches high, occurring in the forests of the Andaman Islands.

S. salvanius, Hodg.: Blanford, i.e. 563. The Pigmy Hog. In the forests at the base of the Himalaya in Nepal, Sikkim and Bhutan. Its habits are very similar to those of **S. cristatus**. It is found chiefly in high jungle grass, in herds of two to twenty. They are rarely seen, as they leave the forests at night only, but may be traced to their lairs by the mud coatings of the lower vegetation left behind them. In Manipur I found this species to form coverings over their lairs by breaking and throwing down the spiny bamboo.

The pig affords various economic products, the chief of which are Bristles, Lard, Meat (Pork, Ham, etc.) and Skin. Lard is separately dealt with under that heading (pp. 701-3). Pig-skin forms, when tanned, a leather which is principally valued for saddlery. That of the wild boar is much thinner than that of the domesticated animal, and consequently offers more difficulty in the process of tanning and preparation. It is also used in the manufacture of many small articles of leather-ware, such as purses, coverings of pocket-books, etc.

Bristles are employed chiefly in the manufacture of brushes, and the export trade in bristles and other brush fibres in recent years is very considerable. For the period 1900–7, the following were the Exports of bristles and fibres for broom and brush manufacture:—1900–1, 48,682 cwt., valued at Rs. 14,93,685; 1901–2, 48,488 cwt., Rs. 13,65,600; 1902–3, 70,917 cwt., Rs. 15,79,002; 1903–4, 83,258 cwt., Rs. 20,76,331; 1904–5, 81,290 cwt., Rs. 18,39,854; 1905–6, 93,873 cwt., Rs. 21,51,028; 1906–7, 88,168 cwt., Rs. 17,68,930. Of the total for 1905–6, Madras exported 89,978 cwt., and Bengal 3,604 cwt., and the countries to which the largest quantities went were—the United Kingdom, 30,485 cwt.; Germany, 27,874 cwt.; Belgium, 24,463, cwt.; Ceylon, 5,536 cwt. The Imports are compara-
TRADE IN LIVE STOCK

LIVE STOCK
Bacon and Ham

Trade.

Bacon and Ham.

Imports, Cattle.

Trans-frontier Traffic.

Exports.

Imports of Horses.

Trade with India.

India annually imports large quantities, and the exports are small. The Imports for 1900–7 were as follows:—1900–1, 1,144,716 lb., valued at Rs. 7,61,782; 1901–2, 1,136,959 lb., Rs. 7,47,093; 1902–3, 1,231,934 lb., Rs. 8,16,613; 1903–4, 1,267,724 lb., Rs. 8,16,223; 1904–5, 1,373,474 lb., Rs. 8,09,678; 1905–6, 1,600,898 lb., Rs. 9,40,140; 1906–7, 1,487,729 lb., Rs. 9,52,715. Almost the whole comes from the United Kingdom, viz. 1,375,838 lb. in 1905–6, while small quantities are drawn from Hongkong, Australia, the Straits Settlements, Germany, and Sweden. The Exports of Indian hams amounted in 1904–5 to 672 lb., valued at Rs. 150, and in 1906–7 to 259 lb., valued at Rs. 150. The re-exports in 1904–5 were 7,323 lb., valued at Rs. 4,358, but in 1906–7 only 537 lb. Thus, adding together all the available returns of the products derived from the pig, the exports in 1905–6 were Rs. 21,69,778 and the imports Rs. 10,17,138; and in 1906–7, exports Rs. 17,84,827 and imports Rs. 10,70,304. The decline in the imports point to a serious defect, and the large demand for foreign ham and bacon is significant. There are thus great possibilities in the future.

TRADE IN INDIAN LIVE STOCK.

Of the estimated number of animals of all sorts (220 million in 1904–5), about 23 per cent. are annually exported in the form of hides and skins.

But India imports and exports live stock; and by sea as well as across her land frontiers. Hence the returns under these headings have to be taken into account. It may be desirable to set forth the Trans-frontier trade before exhibiting the foreign. In the official statistics the imports are referred to the following groups—(a) Horses, Ponies, Mules; (b) Cattle; (c) Sheep and Goats; and (d) Other Kinds. The totals for the year 1904–5 were 665,024 animals, valued at Rs. 74,74,928; for 1905–6, 685,732 animals, Rs. 65,30,041; for 1906–7, 714,368 animals, Rs. 70,12,607.

The most important are the cattle, 105,726; valued at Rs. 44,04,266 in 1906–7: the sheep and goats, 166,655, valued at Rs. 6,12,062; and other kinds of animals 434,704, valued at Rs. 13,14,543. The chief countries of supply of cattle are Nepal, North Siam, and the Southern Shan States. For sheep and goats, Northern and Eastern Afghanistan, Nepal and Kashmir. Of the other kinds, Nepal, South Siam and North Siam. The Trans-frontier exports from British India are less important and need hardly be reviewed. The totals in 1906–7 were 92,644 animals, valued at Rs. 11,78,866. Perhaps the most remarkable feature of the trade recorded as carried by rail and river is the fact that Bengal is the chief exporting province and the United Provinces the principal importing area. The next most important receiving centres are Calcutta and Bombay.

Turning now to the transactions by sea, the Imports are most valuable under the heading of horses. The total imports in 1903–4 were valued at Rs. 53,62,833, of which Rs. 52,48,590 represented the horses brought mostly from Australia into Bombay and Calcutta; in 1904–5, Rs. 59,27,625 (horses: Rs. 55,47,939); in 1905–6, Rs. 49,41,452 (horses: Rs. 46,76,055); in 1906–7, Rs. 46,55,792 (horses: Rs. 44,88,933). Of the Exports it may be said the position is reversed, the traffic in horses being the least important. The total for 1903–4 was returned at
TRADE IN LIVE STOCK

Rs. 22,27,523, of which Rs. 21,23,214 represented cattle, sheep and goats, etc.; 1904-5, Rs. 19,40,129 (Rs. 18,98,380 cattle, sheep, etc.); 1905-6, Rs. 19,33,828 (Rs. 19,07,228 cattle, sheep, etc.); and 1906-7, Rs. 22,63,176 (Rs. 22,21,416 cattle, sheep, etc. The horses go mainly from Bengal and Bombay to Ceylon and Mauritius, and of the others Madras practically conducts the entire trade, sending the animals to Ceylon and the Straits Settlements.

Fodder.

CATTLE FOOD AND FODDER.—Exports.—It is somewhat surprising to discover in the published returns of the foreign trade of India, a heading "Fodder, Bran, and Cattle Food, including Hay and Straw." This is referred to three groups, as follows—Oil-cake: Rice bran: Other sorts. The total exports under these three headings were in 1900-1 valued at Rs. 70,18,826; in 1902-3, Rs. 85,73,627; in 1904-5, Rs. 97,21,116; in 1905-6, Rs. 1,18,15,434; and in 1906-7 at Rs. 93,99,644 (£626,642). Of the large amount for 1905-6, Rs. 51,99,194 represented the value of oil-cake, and Rs. 55,41,825 that of rice bran. Practically the whole of the RICE BRAN goes from Burma and the OIL-CAKE very largely from Madras, with a fair amount from Calcutta and the balance, very nearly, from Bombay. Fully a third of these articles of cattle food is consigned to the United Kingdom; another third to Ceylon, the Straits Settlements and Germany in approximately equal quantities. The balance goes to Java, the Philippines and East Africa, followed by France, Aden, Hongkong, Belgium, etc.

Prices of Beef and Mutton.—Particulars are given in Prices and Wages in India (1904) of beef and mutton in certain localities of Western India since 1855. During that time they have practically remained stationary; if anything, cheapened. Taking the average of the quinquennial period 1871-5 as a standard, the price in the Presidency for BEEF was 25 rupees a seer (= 2 lb.); in Sind '17; in Rajputana and Central India '16. For MUTTON, Bombay 31; Sind 18; Central India and Rajputana 21. Taking these as 100, BEEF in Bombay was (in 1903) 80; in Sind 118, and in Central India and Rajputana 50; MUTTON similarly was 100 (during 1871-5) in Bombay, and in 1903 it was 97; in Sind 144, and in Central India and Rajputana 95. These results are doubtless fairly expressive of India as a whole; but no other returns are available, so that particulars of the other provinces cannot be furnished.

For trade in LARD and TALLOW, see the separate article (pp. 701-3).

Hides and Skins (pp. 652-40); and Oils (pp. 813-4, 819).

LUFFA. Cv. : Fl. Br. Ind., ii., 614-6; Duthie, Fl. Upper Gang. Plain, 1903, 367; Cooke, Fl. Pres. Bomb., 1903, i., 531-3; Prain, Beng. Plants, 1903, i., 519-20; Cucurbitaceae. A genus of climbing plants, native of the warmer regions of the Old World and one indigenous in America. Four or five are wild in India.

L. acutangula, Duthie and Fuller, Field and Garden Crops, 1883, ii., 60. t. Ixii; Ic. Bot. Surv. Ind., iii., 61, 216. The taro (tara), jhinga, satupiya, shiridu,
THE KAMELA PLANT

MALVACEAE. The kan (ban)-bhendi.

An erect annual, native of West Tropical Africa and of Tropical America; introduced into India and now plentiful throughout the hotter damp tracts from the United Provinces to the Karnatāk. It yields an excellent fibre, 8 to 9 feet long, which experts have decided is little if at all inferior to jute. It was at one time hoped that Bombay through the cultivation of this plant might secure a good and profitable substitute for Bengal Jute. These expectations have never been realised, but the plant in some parts of the Presidency has become so abundant as to be often viewed as indigenous. [Cf. Offic. Correspond. on Exper. Cult. in Bomb., 1878-82; Agri. Ledg., 1896, No. 6, 30; Dodge, Useful Fibre Plants of the World, 233; Woodrow, Gard. in Ind., 1899, 184; Imp. Inst. Tech. Repts., 1903, 69.]

MALLOTUS PHILIPPINENSIS, Muell. Arg.; Fl. Br. Ind., v., 442; Gamble, Man. Ind. Timbs., 1902, 619-20; Talbot, List Trees, etc., 1902, 316; Hooper, Agri. Ledg., 1905, No. 4; also Rept. Labor. Ind. Mus. (Indust. Sec.), 1906-6, 30, 33-4; Rec. Bot. Surv. Ind., iii., 101; Brandis, Ind. Trees, 1906, 590; EUPHORBIACEAE. The kamela, kamala, kambatā, rāin, rori, sinduri, shendri, pīnay, tāng, gāngai, rolī, puroa, kapli, kūmkuṇa, kurku, tauchthin, etc. A small tree, usually with a buttressed trunk, occurring along the foot of the Himalaya from Kashmir eastwards (rising to 4,500 feet in altitude); also in Bengal, Central, Western and Southern India; Burma; the Andaman Islands and Ceylon.

THE KAMELA PLANT

MALACHRA CAPITATA

An erect annual, native of West Tropical Africa and of Tropical America; introduced into India and now plentiful throughout the hotter damp tracts from the United Provinces to the Karnatāk. It yields an excellent fibre, 8 to 9 feet long, which experts have decided is little if at all inferior to jute. It was at one time hoped that Bombay through the cultivation of this plant might secure a good and profitable substitute for Bengal Jute. These expectations have never been realised, but the plant in some parts of the Presidency has become so abundant as to be often viewed as indigenous. [Cf. Offic. Correspond. on Exper. Cult. in Bomb., 1878-82; Agri. Ledg., 1896, No. 6, 30; Dodge, Useful Fibre Plants of the World, 233; Woodrow, Gard. in Ind., 1899, 184; Imp. Inst. Tech. Repts., 1903, 69.]

MALLOTUS PHILIPPINENSIS

A little branched climber, met with in North-West India, Sikkim, Assam and Eastern Bengal.

Is cultivated in most parts of India for its fruit. Rich soil should be selected, and the seed sown from March to June in lines 5 feet apart. When the young plants are about 4 inches high, supports are required. Until the rains begin, the first sowings have to be regularly watered. The fruit is highly esteemed by Natives and eaten either in curries or dressed with clarified butter. When fully developed it is about a foot long, but if allowed to grow longer than 4 inches it rapidly deteriorates. The seeds possess emetic and purgative properties and also yield an oil. The fibrous texture of the fruit forms, like that of L. *egyptiaca*, a cheap and efficient flesh-brush. [Cf. Gollan, Ind. Veg. Gard., 1892, 117-8; Banerjei, Agri. Cuttack, 1893, 117-8; Woodrow, Gard. in Ind., 1899, 333-4; Fimminger, Man. Gard. Ind. (ed. Cameron), 1904, 168.]

Var. amara; L. amara, Roth.; Praîn, l.c.; Rec. Bot. Surv. Ind., iii., 216; karni-toro, ghosha-latā, tita-jhingā, rāntuni, kadū-sirola, adevi-bira, etc. Met with all over India, especially on the western side. The fruit is largely used in Native medicine. The juice of the roasted fruit is applied to the temples to cure headache, and the ripe seeds are generally said to be a sure and safe emetic. [Cf. Pharmacog. Ind., 1891, ii. 80-1.]

L. *egyptiaca*, Mill.; Duthie and Fuller, l.c. 61, t. lxiii; Rec. Bot. Surv. Ind., iii., 60, 216. The ghia-taroï, dhundul, bhol, hiasda, dilpasand, ghoeldé, gutti bira, etc. A large climber common everywhere and often cultivated, especially in the plains. The fruit is edible, and when dried forms a structure of interlacing fibres, used as a flesh-brush in the Turkish bath or as a substitute for the bath sponge, and has more recently been made into boot-socks. The seeds are emetic and cathartic and yield an oil. [Cf. Dodge, Useful Fibre Plants of the World, 1897, 229; Woodrow, l.c. 333-4.]

L. echinata, Roxb.; bindaal, janthori, kukad-vel, etc. A small climber, native of Gujarat, Sind and Bengal (Purneal and Dacca). The fruits ripen in the cold weather and are medicinal, as is also the stem. It is a bitter tonic and powerful diuretic. [Cf. Pharmacog. Ind., 1891, ii., 81-6; Sen, Orig. Res. in Treatment of Trop. Diseases, 1902, 95-8.]
Dye.—The most important product of this tree is the kamela powder—a dye formed of the red glands found on the surface of the capsule. It is used chiefly for imparting to silk a bright orange or flame colour. A full account of the history of this dye is given in the Dictionary. In collecting the powder, the ripe fruits are placed in a cloth or sack, and beaten until the glandular pubescence is removed. In some districts the fruits are simply rubbed between the palms of the hands, or are kneaded with the feet on the ground. The powder thus obtained is then sifted to free it from the fruits and broken pieces, and in this condition it is ready for market. Through careless collection or fraudulent admixture, the commercial article, however, is often met with in a very impure state, and this may partly account for its neglect by the Native dyers and the decrease in its consumption.

The following abstract of the available information regarding the chief localities and collecting areas may be given here:

Bengal.—The tree is fairly abundant in the forests of Puri and Singhbum, but is scarce in other localities. In the Puri Division it is said to occur in abundance in the southern tracts. It grows wild in the forests, but attains greatest perfection in open situations. Flowers and fruits heavily on lands leased to the Brahms, who clear away all other tree growth, and carefully prune the trees every year. In the thick forests it bears few flowers and fruits. The flowering season is in December, and the fruits mature in January to February. The fruit of the Bengal plant is larger than that of the United Provinces, and doubtless yields a more abundant and better colouring matter. The dye was formerly procurable in large quantities from Raman Lall Das of Elam bazar, Birbhum, at Rs. 13 to 14 per maund.

U. Prov. Abundance. United Provinces.—Occurs in great quantity throughout the Kumaon, Garhwal, and Ganges Sub-Himalayan Forest Divisions. It grows wild, for the most part associated with adi (Shorea robusta). It is common in the Dun; in a few places might be said to form almost the principal tree met with. In spite of its prevalence, there is now, however, no trade in the dye, which could be landed at a railway station for Rs. 10 to Rs. 12 per 100 lb.

Panjáb Prices. Panjáb.—Very abundant in the Nurpur forests, Kangra. About 20 maunds are annually exported from Nurpur, where it is sold at the rate of 4 seers per rupee. The cost of 100 lb. would thus be Rs. 12-8, or, delivered at the nearest station, Patankot, would come to Rs. 16. At Amritsar it is said to fetch Rs. 20 a maund. Kamela is imported into Rawalpindi from the Hosharpur district at the latter price. The tree grows in abundance in the Simla forests, but the dye is not gathered.

Bombay. Bombay.—The Belgaum district is the principal collecting ground for Western India. About 10,000 lb. are sold locally every year, to be sold 6 annas per lb. The price of 100 lb. delivered at Belgaum railway station is Rs. 12-8.

Madras. Production. Madras.—Widely distributed in the Gamsur taluk of the Ganjam district, the annual output varying from 30,000 to 35,000 lb. The cost price at Madras, including transport and delivery, is Rs. 20 to Rs. 40 per 100 lb. In Madras City there is no local demand for kamela, and the dye from Ganjam is all shipped to England and the Continent.

Burma. Burm.—More common in Upper than in Lower Burma. The dye collected is estimated to cost at least double what it does in North India. There do not appear to be any regular market rates, but the prepared powder can be obtained in the jungles at Rs. 5 per viss.

Indian Methods. Indian Methods of Dyeing.—Hooper gives the following account of the method of dyeing pursued in Belgaum:—"Two lb. of silk and 1 lb. of carbonate of soda are placed in a vessel of water and boiled for a short time. As soon as the silk softens, it is removed. In the same water are then placed 20 tolas of kamela powder, 2½ tolas of jinjil (Sesamum) oil, ½ lb. of alum, 1 lb. of carbonate of soda (in addition to the 1 lb. previously used). This mixture is boiled for a quarter of an hour, and then the silk is replaced in the vessel and taken out after another quarter of an hour's boiling. The colour is deep yellow. In the Central Provinces, in dyeing tasar silk, the powder is first mixed with the ash of the myrobalan (Terminalia Arjuna) and then put in water and allowed to stand till the sediment subsides. The water is then decanted into another vessel in which is placed finely powdered lodd (Symphlocos Racemosa) bark. The tasar silk is next soaked for six hours in the preparation; then taken out and dried, put back in the fluid, dried and again submerged till the fabric obtains the desired shade.
MALT LIQUORS

The manufacture of BEER embraces two distinct operations—MALTING and BREWING. In the time of Herodotus (450 B.C., bk. ii., ch. 77) there was no separate name for beer; he accordingly speaks of the Egyptians as making wine from barley. Dioscorides, Galen and others condemn beer as prejudicial to the head and nerves.

History. The Hindus, as well as most of the aboriginal tribes of India, have been acquainted with both distilled and fermented beverages from very ancient times. But it is curious that while full particulars exist regarding the more advanced art, viz. that of distillation, the rationale of malting as a distinct stage in the production of fermented beverages does not appear to have been understood. Indeed it has been contended that, even in England, malting as a separate operation was not known until the time of Henry VIII., when the use of hops was also discovered. A fermented but non-distilled liquor may be said to have been prepared all over India, the materials varying according to the region or people, but in no instance has malting as a distinct and necessary stage been recorded. And what is perhaps even more striking, a fermented beverage made from grain would seem, so far as India is concerned, to have been more closely associated with the Mongolian than with the Aryan races. With the latter branch of the human family sweet liquids, such as honey and water, cane-juice and water, or the sap of various palms, were fermented into beverages that would more closely correspond with the ancient mead of England or the ale subsequently in favour, than with the beer of modern trade. It would be thus easy to understand why the art of malting was not known, since unnecessary, indeed almost impossible, under these circumstances. The most general Indian name for fermented sweet liquors is possibly tari, though sendhi is sometimes used almost synonymously, while pachewa (or handia and marua) denote malted and fermented beverages made from grain, mostly rice, though barley and millet are also utilised (see p. 840).

The English word “beer” came through the Anglo-Saxon beor and the German bier—words which indicate the grain used in the fabrication of the beverage. The Asiatic word which in meaning most closely approaches “beer” seems to be buzah or buza, a Turkish word adopted into Persian and ultimately into many languages in India and Africa. It is, however, the name more used by the well-informed, pachewa being the every-day word for beer or malted liquor made from grain. Shaw (Travels, etc., 1767, 407) remarks of the Egyptians making a fermented and intoxicating liquor, known as buzah, from barley. Moorcroft (Travels, 1819–25, i., 162), while describing Ladakh, says that the inhabitants make “a sort of beer called buzah from barley, the grain of which is parched and ground, and the flour mixed with rice which has been softened by steeping in water. The powder of the root of some bitter and aromatic plant that grows higher up in the mountains is added to the mixture, and the whole is put into a press to squeeze out the water, and dried. When required for use a piece of the dry cake is thrown into a vessel of water, and in

Medicine. Kamela is used as an anthelmintic for the expulsion of tape-worm, but its utilisation is said to be almost obsolete, and in 1898 it was omitted from the British Pharmacopoeia. The seeds yield 5-83 per cent. of a bland oil. According to Gamble, the wood is of little use as timber, but is valued as a FUEL. The bark has been reported to be used for TANNING leather, but Prof. Hummel of Leeds found only 6-5 per cent. of tannin in a sample submitted to him for examination. [Of. The Bower Manuscript (Humphrey, trans.), Bower, Yorkshire, iv., 1848, 1859: Trav. Ind., iii., 296–300; Lawrence, The Valley of Kashmir, 1895, 68; Monographs, Dyes and Dyeing:—Fawcett, Bomb., 1896, 31; Halder, Madras, 1896, 8; Russell, C. Proc., 1896, 19–20; Hadi, U. Proc., 1896, 80; Sule, Berar, 1896, 6; Hummel and Perkin, Tinctorial Prop. of Ind. Dye-stuffs; Perkin, Class. of Ind. Dye-stuffs, in Imp. Inst. Journ., March 1897; Perkin, Colouring Matter of Cotton Fibres and Note on Rottlerina, contrib. from Res. Lab. Dyeing Dept. Yorkshire, Col. 1897; Adulterat. of Kamala, Journ. Soc. Chem. Indust., June 30, 1900, xix., No. 6; Dutt, Mat. Med. Hist., 1900, 232–3; Imp. Inst. Journ., 1900, vi., 209; Rep. Cent. Indig. Drugs Comm., 1901, i., 120; Agri. Journ., 1902, No. 1, 52; 1905, No. 4, Imp. Inst. Tech. Repts., 1903, 216–7, app. 213–5; Joret, Les Pl. dans L'Antiq., etc., 1904, ii., 348.]

Medicine.

the course of three or four days fermentation takes place and the liquor is ready for drinking." In another passage, Moorcroft remarks, "The Tibetans never drink plain water if they can avoid it. The wealthier drink grape-juice and water, or sherbets: the poorer, a beverage called busa by the Kashmiris, and chang by the Tibetans, which is made from barley. The grain is boiled until it is soft, and then dried; to about 10 lb. of this softened grain, three ounces of the dough used for wheaten cakes, but dried and pounded, are added, and the mixture is put into a bag and kept in a warm place until it ferments, which it does usually in two or three days. Equal measures of the prepared barley and cold water are put together in an earthen vessel. After standing for two days the fluid is strained off; a similar quantity of water is again added, and treated in the same manner, and the beverage is the liquor called chang." "The grains remaining after infusion are dried, and ground into flour." The above passages bring to mind the account of busch as given by the Emperor Baber in his Memoirs (1525, 283, 294), speaking of Sewad and Bajour (practically the same country), and thus three hundred years before Moorcroft's time. The passage has already been quoted under Eleusine (p. 520), and there would seem little doubt that the substance called kim, which was "round like a loaf," was the softened grain (whether barley or marua), with its ferment and bitter flavouring ingredient, taken from the cloth in which it was squeezed to deprive it of its moisture, and thus compressed into what might easily be described as a sort of loaf. Aitchison (Fl. Lahul, Journ. Linn. Soc., 1886, x., 76) says that "from barley, as well as from rice ('drai,' 'dai') a kind of beer is made, called chang." In making chang, a ferment is used, called poh, imported from Ladakh in the form of dry yeast. "The Lahulees admit their ignorance as to its nature and their non-ability to make chang without it." In the Hemp Drugs Commission's Report (1894, i., 157) mention is made of a liquid preparation used in Sholapur, Bombay, under the name boja, which consists of a gruel made of jorbu (sorghum, p. 1040) flavoured with hemp and a little Nuz vomica.

The practice of making busa or beer from barley is thus quite as ancient in India, very possibly, as in Europe. In passing it may be added that the great conquering Emperor Baber tells us he did not like "busch" because of its bitter flavour—the Indian objection to-day to European beer. (See Cannabis sativa, p. 257.)

Naga Dzu: Under Coix (p. 396) particulars will be found of the Naga hills beer, known as dzu. This is, undoubtedly, a fermented beverage made either from coix or rice or both mixed, the one fermented and the other not. Grain is placed in a large wooden trough and hot water poured over it. It is then left to malt, and, when this stage is complete, a further quantity of boiling water is added. In three days' time the liquor is in prime condition, and by the fourth or fifth day it becomes intoxicating. It has already been pointed out that the dispersion of coix grain over India and Burma accompanied the Mongolian invaders, and further that the name kasi or kasa or some obvious derivative from that word was conveyed to remote countries and into diverse tongues.

Ferments.—Bergtheil (The Study of Fermentation as Applied to Agriculture, in Agri. Journ. Ind., i., pt. i., 68-75; pt. iii., 230-6) reviews some of the more interesting modern opinions regarding Fermentation. Among all races and in every age, he says, we find a knowledge of some means for the production of alcohol, all fundamentally depending on the fermentation of sugar. In many instances the initial action is the conversion of starch into sugar by an enzyme action—the "maling" of barley. The grains are placed under conditions favourable for germination, and when the production of a soluble, easily assimilable food for the infant plant has been accomplished, the grains are killed. The further stage, namely, the fermentation of the sugary fluid into alcohol, is ordinarily accomplished by a fungus, known as yeast. "In Western countries," writes Bergtheil, "yeasts and their actions have been carefully studied, and pure cultures of special yeasts, which have been found most suitable for the production of the particular type of fermentation desired, are deliberately introduced and their growth most carefully regulated and guarded; in other cases, such as those we are familiar with
in India, wild yeasts are allowed to gain access from the air and grow in the liquid to be fermented, but under all circumstances a yeast or closely allied organism is necessary to the process."

From the facts already briefly reviewed, it may be inferred that this art of fermentation is fairly understood in India. In most Excise Reports of Bengal mention is made of a ferment known as bakhar—a compound prepared from the roots and leaves of several plants (names unknown, but innocuous) (see Spirits, p. 1047). In most cases the yeast used is conveyed from one brew to another. The bakers of the lower provinces of India, for example, regularly purchase their supply from the palm-wine (tari) manufacturers. In Upper India numerous ferments are known. For example, while travelling in Kullu and Ladakh my attention was drawn to the ferments employed by the people in these countries. I found that in Kullu the brewers of sur (grain beer) sent, just as Moorcroft tells us, up country for the root of a herb which they employed in brewing. In Kullu this is known as mathosan, and seems to be a species of Ligusticum. The root is reduced to powder and mixed with damp barley flour. Fermentation is soon set up, and the mixture is then baked into cakes and dried. These are sold under the name dheli, and are said to preserve the fermentative germ for an almost indefinite period, and may be used either by the baker or the brewer as desired. In Ladakh I was unable to discover the plant employed, but the cakes are there known by the name paps (see above, pab). [Cf. Ann. Rept. Ind. Mus., 1894-5, 35.]

In Manipur I discovered that the powdered stems of a leguminous plant (possibly a species of Millettia) were employed as the fermenting material, and Mr. C. B. Clarke says that in the Khasia hills the people procure fermentation from the flowering spikes of a Rhyncospora. [Cf. D.E.P., v., 131-6; Lawrence, Valley of Kashmir, 1895, 82.]

Hops and Substitutes.—On more than one occasion the effort has been made to cultivate hops (Humulus Lupulus) in India, but with indifferent results. The amount required by the brewers in India is annually imported. Hooper (Rept. Labor. Ind. Mus. (Indust. Sec.), 1906-7, 12) gives the results of his chemical examination of a sample of hops grown in Kashmir. By way of comparison, he exhibits the amounts of resin (ascertained by Coze's benzol method) in certain trade samples:—California, 21-0; East Kent, 18-7; Kent, 17-8; Bohemian, 15-6; North French, 14-8; Kashmir, 13-2; and other Indian samples, 12-9. Thus Kashmir is not far behind French hops.

By the Indian makers of liquors, various substances are used as substitutes for hops, the most general being the distiller's bark (see Acacia leucophleum, p. 15), but in this connection it may be of interest to invite attention to the suggestion that the soma of the ancient classical writers may have been the astringent stems of Ephedra (D.E.P., iii., p. 247-51) employed in place of hops, and not as itself the source of the liquor of which so much has been written.

Barley.—All forms of barley (p. 643) are not equally suitable for brewing any more than all forms of coix are suited (see p. 396). The best Indian barley comes from Northern India (United Provinces and South Panjáb). Plumpness of grain and uniformity in weight are desirable. The finest Indian samples weigh 56 lb. per bushel. The grain must also be bright in colour and not "steele"—the condition of most of the samples from the plains. But above all, it must be living and capable
of active germination during malting, and must not have germinated before reaching the brewery. Damaged grain will rot during malting, and thus lower very greatly the value of the material. [Cf. D.E.P., v., 128.]

The grain must be thoroughly screened and winnowed before it is placed in the steeping-vats. It is now conveyed to the malting-floor, where it softens and germinates. Simultaneous and uniform malting is essential. When malting is completed, the grain is again screened to remove the rootlets, then crushed, infused with water and hops added. The infusion is next fermented, and shortly after the liquor is ready for bottling and caskling.

Indian indigenous Brewing.—No one has hitherto attempted to produce a definite statement of the art of brewing and of the beverages produced for the whole of India. In the *Excise Reports* issued annually by the various Provincial Governments, brief paragraphs now and again deal with what appear to be beverages akin to beer and ale. As already explained, *pachewa* is made from fermented grain, mostly rice; it is thus a form of beer, but when distilled it becomes a kind of spirit or whisky, and in that case is called *phatika* or *madria*. On the other hand, toddy or *tari* (palm juice) fermented, but not distilled, corresponds very closely with the theoretic definition of ale, and when distilled becomes the spirit generally called *arak*. But palm juice is often drunk without being fermented, and is then spoken of as "sweet tari." For this purpose the law requires that a private person tapping his own trees must wash the interior of the collecting vessels with lime-water so as to prevent fermentation taking place. Similarly a sweet drink or fermented ale is often prepared from *makka* flowers.

In the *Excise Reports* for both Bengal and Assam, *pachewa* and *tari* are mentioned. (See *Oryza* (Revenue), p. 840.) The licenses granted for home-brewing of *pachewa* are explained: these are issued (mostly to hill tribes) without limit as to quantity, but at a fixed annual fee. The beverage cannot, however, be sold.

In the Central Provinces the revenue from *tari* consists of license fees paid for the right to manufacture and to vend. But *pachewa* and *saqda* are in these provinces spoken of as "Native Beer." [Cf. Hooper, *Rept. Labor. Ind. Mus.* (Indust. Sec.), 1903-4, 35.] In the reports of the United Provinces reference is given to *tari* (the juice of *Borassus*), to *sendhi* (the juice of *Phoenix*), to *baza*, a fermented liquor made from rice, and to *darka*. A fermented beverage from various herbs (not known). Of Madras, mention is made of both sweet and fermented "toddy" collected from the coconut, sago, palm and date palms, also from a palm not previously recorded as affording the juice, namely the *dassal* or *dassel* (*Avocca Wightii*). Of Bombay toddy, it is said the revenue in 1903-4 came to Rs. 15,52,000. This was raised both by a tax on the palm tree and a vendor's license.

The chief trees tapped are the date palm, the *brab* (*Palmira*) and the coconut. The total number of trees tapped in 1903-4 was 231,245. Unlike Madras, tree-tapping for sweet toddy is not permitted, as fermentation is said to be set up immediately the juice is drawn from the stem. In a special experiment separately reported, thirty-two *brab* trees yielded in Salsette during the month February 16 to March 15, 1904—a total of 176 gallons of toddy. The Burmese reports speak of "fermented" liquors under two headings—(a) other than *tari*, and (b) *tari*. The consumption of fresh *tari* is allowed without being subject to a tax, and the owners of trees may sell the juice obtained from their trees to professional *tari* makers without paying any fees. Of the non-*tari* beverages, mention is made of *kaung, sesuye, hauza* and *sea*. These are said to be manufactured from rice, fermentation being procured by yeast. It would seem that a mistake may have been made regarding both the grain and the ferment. Coix is certainly largely employed by the hill tribes, but the ferment need not be yeast as understood in Europe. (See *Bassia*, pp. 118-9; *Borassus*, pp. 170-1; *Carvoda*, p. 286; *Cocos*, pp. 361-2; *Phoenix*, p. 886; *Setaria*, p. 988; *Spirita*, p. 1047.)

European Beer.—Turning now to Indian beer brewed after the European method. In the writings of the early European visitors to that country, frequent mention is made of "beer" or of "country ale," but whether these were malted beers or merely the various sweet-liquor beverages already indicated, under the name toddy or *tari*, it would be difficult to say. The English word "toddy" comes, of course, from the Indian *tari*, and was originally, and in India is to-day,
the fermented sap of the tār palm. Friar Jordanus (1328 A.D.) speaks of the tree that gives all the year round a white liquor, pleasant to drink, which tree is called tārī. Sidi Ali Reis refers to the wine obtained in Gujarat from the tārī tree. On the other hand, Mandelalo (Travels, in Olearius, Hist. Myscory, etc. (Davies, transl.), 14; also Hobson-Jobson (ed. Crooke), 738 mentions that the captain of the ship in which he journeyed to Surat had excellent good nectar, English beer, French wines, arak, and that they prepared from the latter good punch (palepunsen). Ovington (Voy. to Suratt, 1689, 238, 395) says "no Malt drink is made in India"; and again, "Europe Wines and English Beer," though expensive, were "yet purchased and drank with pleasure." Tavernier (Travel., 1676 (ed. Ball), ii., 365) tells us that the President gave him a large cask of "English beer" to take with him to Batavia, where none could be had. Birdwood and Foster (E.I.C. First Letter Book (Introduction), xxi.) describe the "Cock Ale" in use in the 17th century. It consisted of a bruised cock (the older the better) with 3 lb. of raisins, mace, cloves, etc., two quarts of sack and ten gallons of ale, the whole being left to ripen as with other ales. Punch was another special Indian preparation, and "milk punch" has survived to the present day—the last of a long list of Anglo-Indian preparations—a sort of home-brewed or concocted liquor. [For further particulars see the articles on Opium, pp. 845-61, Tobacco, p. 796, and Spirits, pp. 1043-8.]

Indian Breweries.—Within recent years "Country Beer" has come to mean beer brewed in India after the European system. The first European brewery in India was started in 1825 by a Mr. Henry Bohle at Meerut and Mussourie, but in time the business was taken over by Mr. John Mackinnon. It was not, however, until 1870 that the enterprise became successful. In the meantime, between 1850 and 1860, several breweries were started on hill stations. The official statistics of the larger establishments show that in 1880 there were seventeen breweries in India producing 1,974,578 gallons of beer made after the European system; in 1890, 22 breweries producing 5,192,572 gallons; in 1900, 26 breweries producing 4,947,841 gallons; and in 1904 there were 27 breweries producing 6,219,761 gallons, of which the Commissariat Department purchased 2,839,177 gallons, or a little under half the production. These figures abundantly demonstrate the rapidity with which brewing had developed, and its present position. The breweries and shares of production in 1904–5 are as follows:—Panjāb, 8 breweries and 2,233,955 gallons; United Provinces, 6, and 1,451,796 gallons; Madras, 4, and 416,852 gallons; Mysore, 3, and 700,281 gallons; Bombay, 1, and 558,767 gallons; Baluchistan (Quetta), 1, and 338,580 gallons; Burma (Mandalay), 1, and 306,396 gallons; Central Provinces (Jabalpur), 1, and 130,194 gallons; Bengal (Sonada), 1, and 82,940 gallons.

Consumption of country-brewed (English) beer and ale by the Natives of India is not important, though in some provinces it is more extensive than in others. In Madras these beverages are fairly popular, especially in the hill districts, and in the Panjāb mention is made in the Excise Reports of the demand being on the increase.

External Trade Returns.—The rise and fall in the popularity of imported ale, beer and porter may be said to mark the steady progress of European opinion against the use of strong drinks, and of large quantities of liquors of any kind in tropical countries. The first importation of beer from London recorded in modern commerce may be said to have been consigned from Hodgson's brewery in 1816. This was ultimately known as "Hodgson's Pale Ale." By 1825 the beers made by Bass, Allsopp, Ind and Smith, etc., had found their way to India. It is within the recollection of those still living that a guest was supplied with a basket of four or six bottles of beer and was supposed somehow

761
MANGANESE

Chief Ores

Special Demand.

Competition.

Imports.

Total Traffic.

Contributing Countries.

Receiving Ports.

D.E.P.,
v., 144-6.

Output.

Classification.

MANGANESE

TRADE IN ALE AND BEER

to get through that supply during the repast. For many years this practice has died out, and the demand been steadily made for a higher grade, lighter beer. This was first met by the Indian brewers. But in time there appeared on the Indian markets not only new firms with light ales and beers, but all the older ones had to respond to the popular desire, and in consequence of this keen competition the Indian breweries lost temporarily some portion of the position they had attained.

Imports.—To contrast with the Indian production, already given, the following figures of the import trade may now be recorded. In 1900-1 India received of ale, beer and porter, 3,226,534 gallons, valued at Rs. 46,826,468; in 1902-3, 3,820,938 gallons, valued at Rs. 51,663,787; and in 1904-5, 4,607,530 gallons, valued at Rs. 60,415,793 (£402,798), or say, on an average, two-thirds the quantity brewed in India. In subsequent years the imports were:—1905-6, 5,002,448 gallons, valued at Rs. 62,956,616; and in 1906-7, 4,916,294 gallons, valued at Rs. 60,277,011. Of these foreign imports by far the major portion comes from the United Kingdom. Out of the totals mentioned, for example, the United Kingdom supplied in 1900-1, 3,014,064 gallons; in 1902-3, 3,581,544 gallons; and in 1906-7, 4,506,145 gallons, the only other important country being Germany, with an average of over 200,000 gallons for each of the past five years. The receiving ports are Bombay—the chief emporium for the large military towns of Northern India—followed by Burma, Bengal, Sind and Madras, in the order of importance named. It seems, however, that some of the beers imported from England may be of German origin, though it is perfectly true that Pilsener and Lager are now merely trade names for certain qualities of light beers, and do not necessarily denote German manufacture.

brasiië, a sesquioxide and silicate combined; and
pyrolusite, or the black peroxide. The peroxide has the following names,

Production.—In 1906 India took the first place among the manganese-producing countries of the world. In 1903 the output was 171,806 tons; in 1904, 150,297 tons; and in 1905, 253,896 tons. The most important deposits occur in the Central Provinces, Madras, Central India and Mysore. In 1905 the production of the Central Provinces was 159,950 tons; in Madras, 63,695; and in Central India, 30,251. Investigations into the manganese-ore deposits of India were started in 1903-4 by the Geological Survey, and a summary of the results is given by Fermor. It has been shown that the deposits can be classified into (a)
brasiië,
psilomelane
and
pyrolusite, associated with and derived from manganese-bearing silicates in the Archaean schists and gneisses. Examples occur in Nârukot

762
CENTRES OF PRODUCTION

MANGANESE

in Bombay; Jhábuá in Central India; Bálaghát, Bhandára, Chhindwára and Nagpur in the Central Provinces; Ganjam and Vizagapatam in Madras. (b) Psilomelane and pyrolusite, in part superficially formed on outcrops of rocks of Dharwar age, with which the ores are also embedded. These occur in Singhbhum in Bengal; Dharwar and Panch Mahals in Bombay; Jabalpur in the Central Provinces; Sandur hills in Madras. (c) Psilomelane and pyrolusite, associated with or contained in laterite. These occur in Belgaum and Satara in Bombay; Jabalpur in the Central Provinces.

Chief Centres.—Panch Mahals in Bombay; Jhábuá in Central India; Bálaghát, Bhandára, Chhindwára and Nagpur in the Central Provinces; Vizagapatam and the Sandur hills in Madras; and Shimoga district, Mysore, are the localities in which economically important deposits are located and worked.

Uses.—The uses to which the ores of manganese are put are somewhat varied. The peroxide is extensively employed in glass-making, to destroy the green colour. The same oxide is used in porcelain painting and glazing for the fine brown colour it yields, while violet colours are got from the carbonate (Ind. Art at Delhi, 1903, 22). The ores are now mainly employed in the manufacture of ferro-manganese for use in the manufacture of mild steel. For use in steel-making, manganese ores should not contain more than 0.25 per cent. phosphorus, nor more than 10 per cent. silica. Under conditions laid down by the Carnegie Steel Company, ores containing less than 40 per cent. manganese and more than 0.27 per cent. phosphorus or 12 per cent. silica may be rejected at the option of the buyer. Holland deprecates the exports, since "the whole industry is at present equivalent to a heavy loss to the country." The ore exported is worth perhaps Rs. 30 a ton, whereas India gets merely the margin left after paying the heavy freight charges, and possibly Rs. 15 a ton can be regarded as the profit divided between the railways, the miners and the owners. He then concludes: "If a flourishing steel-manufacturing industry existed in the country, much of the manganese would be retained in India, and the lower-grade ores would be economically developed. As it is, our manganese-ore is being exported to the three great steel-producing countries—England, United States and Germany."

Trade.—As regards foreign trade, the EXPORTS have in recent years shown a considerable increase, especially in 1905-6. In 1900-1, they amounted to 2,613,394 cwt., valued at Rs. 12,51,639; in 1904-5, to 3,618,909 cwt., valued at Rs. 24,07,681; and in 1906-7, 9,839,855 cwt., valued at Rs. 70,88,280. The largest quantity goes to the United Kingdom, viz. in 1906-7, 4,392,130 cwt. Then follow the United States, 2,786,400 cwt.; Belgium, 1,971,614 cwt.; France, 669,710 cwt.; Holland, 40,000 cwt. In the same year the share of Bombay in the exports was 7,010,863 cwt.; Madras, 2,130,701 cwt.; Bengal, 718,291 cwt. Tables showing the variation in the price of manganese ore at the United Kingdom ports since 1890 are given by Holland. In 1903 the price for ore carrying over 50 per cent. of the metal, delivered at United Kingdom ports or at New York, ranged between 9 and 10 pence per unit, or in other words, an ore containing 52 per cent. manganese would be valued at 39 shillings a ton. These prices have considerably risen since, and during 1906 reached 16 pence per unit, the higher rates having greatly stimulated production in India.
MANGIFERA INDICA

THE MANGO PLANT

Mango.

MANGIFERA INDICA, Linn.; Fl. Br. Ind., ii., 13; Talbot, List Trees, etc., 1902, 115; Gamble, Man. Ind. Timb., 1902, 211-3; Duthie, Fl. Upper Gang. Plain, 1903, 189; Cooke, Fl. Pres. Bomb., 1903, i., 273-4; Brandis, Ind. Trees, 1906, 206; Anacardiaceae. The Mango Tree, am, uli, jegachu, gharáim, tsarapang, marka, mawashi, mad, mangas, mánadí, mavnía, thayet, etc. A large evergreen tree of the Tropical Himalaya, at 1,000 to 3,000 feet, from Kumaon to Bhutan, the Khasia hills, Burma, Oudh, lower hills of Bihar, and in the Western Peninsula from Khandesh southwards. According to De Candolle it is a native of the south of Asia or of the Malay Archipelago.

The mango has been known and cultivated all over India from a very remote epoch. It is closely connected with Sanskrit mythology, and finds a place in old Hindu tales and folklore. Mention is made of it by Friar Jordanus, who wrote about 1328, and by most of the early Indian travellers. Varthamá in 1510 describes it under the name of ambá, and Baber, in 1526, speaks of the excellence of the fruit. Again García de Orta, in 1563, writes that those of Hormuz are so good, when in season, that no other fruit can be sold; he then describes the various kinds known.

Cultivation. — Mangoes can be grown from seed, but it is the general belief that seedlings rarely produce fruit equal to the parents, and the usual method of propagation is by inarching. According to Maries, the best place to plant the mango is on a raised, well-drained piece of land with a good depth of soil. The nature of the soil does not appear to interfere much with the growth of the tree. In Bengal it succeeds equally well on a rich, deep river deposit, on clayey or on sandy soil; and in Gwalior, Maries wrote that fine trees were grown on kankar, i.e. soil with a large proportion of lime nodules.

Inarching. — The "stones" are usually sown at the time the fruit is in season, and the plants raised from them are potted to be grafted by inarching with desirable plants. This is accomplished during the setting-in of the rains in the second year of the growth of the seedling. At the close of the rains the union is usually complete. The essential points in this method of grafting are to bring the cambium of the stock and scion together before the graft is completely severed, the parts being bound together so as to exclude air and water and keep the plants healthy during a short growing season. Care should be taken that the scion be of the same thickness as the stock.

Planting Out. — The best season for planting out the young grafts is the monsoon. The following is a brief account of the method recommended by Woodrow (The Mango, Cult. and Varieties, 1904, 11). Having selected the plot of ground, holes should be dug about 3 feet in dimension. The centre of the holes should be about 20 feet distant from each other. About 20 lb. of fresh bone manure should be placed in the bottom of each. The soil on the margin should then be drawn in to a depth of about 9 inches, and the surface soil, mixed with manure, placed on the top. The holes are now ready to receive the grafts. The soil that is left over is put round the margin as a ridge, or thala, to form a dam which causes the water given to the young graft to sink.

764
THE FRUIT FRESH AND PRESERVED

near the root. Firm stakes and shade are desirable during the following six months, and the intervening land may be cultivated with moderately irrigated and richly manured crops till the trees have attained flowering size. In five years the plants should be fit to bear a considerable quantity of fruit. When fruiting age is attained, there is no necessity for irrigation from the time the rain ceases in September till the young fruits appear; thereafter, irrigation about once in fifteen days is desirable while the fruits are increasing in size, but may be discontinued when ripening approaches. The surface soil should be kept in a loose, friable state to cause the water to pass downwards. The general flowering season is from January to March, and ripening from May to August, but varieties flower and ripen at all seasons.

Fruit.—The cultivated kinds of mango are very numerous, but the reader need only be referred to the list given by Maries in the Dictionary, and to the accounts by Firminger (Man. Gard. Ind. (ed. Cameron), 1904, 256–61) and by Woodrow (I.c. 25–32). An interesting paper by Maries in the Journal of the Royal Horticultural Society may also be consulted. The two principal localities in India where the finest fruits are said to be produced are Mazagon at Bombay and Malda in Bengal. On the other hand, the fruit ripens so badly and is so much diseased in Assam that it is hardly ever seen to be cultivated, except as a shade-tree. Maxwell-LeRoy gives an account of the Mango Weevil (Agri. Journ. Ind., i., pt. ii., 164–5) which is so very destructive to the fruit.

Besides being eaten as a ripe fruit, numerous preparations are made of it. When green it is cut into slices, and, after extraction of the stone, is put into curries, or made into pickles with other ingredients or into preserves and jellies. When young and green it is boiled, strained, mixed with milk and sugar, and thus prepared as the custard known as mango-phul, or dried and made into the Native ambakar. When very young it may be cut into small pieces and eaten in salad. So again, the ripe fruit is used in curries and salads, and the expressed juice when spread on plates and allowed to dry is formed into the thin cakes known as ambath. Attempts to bring the fresh mango on the London market, at a paying price, have hitherto been unsuccessful, but if it could be conveyed cheaply to England, a trade that would rival the fruit of the West Indies might be immediately anticipated. In times of famine the kernels are eaten. Preserves, chutneys and pickles made from mango fruit are largely exported to England and elsewhere. In Medicine, the ripe fruit is considered invigorating, fattening, laxative and diuretic, but the fibrous rind, as well as the unripe fruit, are astringent and acid.

Timber.—According to Gamble, the Wood is used for planking, door and window-frames, in Calcutta for packing-cases, and in Bihar for opium and indigo boxes. Canoes and masula boats are also made of it, and in Dehra Dun and some other tea districts it is in large demand for tea-boxes. Hooper (Rept. Labor. Ind. Mus (Indust. Sec.), 1906–7, 8) says that samples of the resinous substance procured from the tree were found to contain 79 per cent. of resin and 15 per cent. gum. Some samples also contained an insoluble gum like tragacanth. The bark and leaves yield a yellow Dye of which little use is made; one of the curiosities of the industrial uses of the tree is the peori (or Indian yellow) made from the urine of cattle fed on the leaves. (See Coal Tar Dyes, pp. 345, 707.)
MANIHOT UTILISSIMA

Tapioca

(Cf. Varthema, Travels, 1510 [ed. Hakl. Soc.], 153; Baber, Memoirs, 1526
[Leyden and Erskine, transl.], 324; Garcia de Orta, 1563, Coll., xxxiv.; Acosta,
i., 23-6; Pyrard, Voy. E. Ind., etc., 1601 [ed. Hakl. Soc.], ii., 367; Jacobs
Terry, Voy. E. Ind., 1655 [ed. 1777], 91; Boyln, Flor. Sin., 1656, H.; Mandelslo,
Travels, 1662, in Olearius, Hist. Muscoy, etc., 148; Fryer, New Acc. E. Ind.
and Pers., 1675, 182; Crawfurd, Journ. to Ava, 1834, ii., 218-9; Pharmacop.
Ind., i., 381-5; Moodeen Sheriff, Med. Med. Mod., 1891, 120-2; Nicholls, Text-
book Trop. Agri., 1892, 85; Woodrow, Gard. in Ind., 1899, 239; Maries, Ind.
L’Antiqu., etc., 1904, ii., 280-6.)

D.E.P.,
v., 157.
Tapioca.

MANIHOT UTILISSIMA, Pohl.; Fl. Br. Ind., v., 239; Gamble,
Man. Ind. Timbs., 589; Prain, Beng. Plants, 1903, ii., 940; M. palma,
Muell.; Kew Mus. Guide, 1907, 187; EUPHORBIACEAE. Cassava, Tapioca,
Manioc, Mandiocca, maravuli, marachini, simila-alu, simul-alu, pulu pasan
myouk, etc. According to De Candolle, this is a native of America, but
cultivated for so long that the wild parent is no longer recognisable.
At the present day there are many widely different races. Some
botanists, moreover, regard M. palma as a separate species, others
only as a variety of M. utilissima, from which it differs chiefly in
the absence of the acrid taste and poisonous principle of the latter.
On this account M. palma is known as the sweet, while the other form
is the bitter cassava (see p. 444).

Cultivation.

Cassava is cultivated in most of the provinces of India, and in view of the
fact that it is a drought-resisting plant, requiring only about 14 to 16 inches
of rain per annum, there has been considerable discussion as to whether its cul-
tivation should not be more widely extended, in view of its value in times of famine.
The soil should be rich and light. Propagation is carried on by cuttings from
the stem, 4 to 8 inches long, which are half buried in the soil at an angle of 45°
and placed in rows 4 feet apart. Planting can be done during the whole year,
but the best time is at the close of the cold season. Irrigation is employed in
some parts, chiefly about Pondicherry and Travancore, but hardly elsewhere.
During the first two months the young plants require a moderate supply of
water. After the crop is planted, no special cultivation is necessary except to
keep the soil free from weeds.

The time the crop takes to mature depends on the particular race grown.
Most require about twelve months, though some only six and others as many
as eighteen. The yield per acre is very variously stated. In all cases it is large,
running from about 2,500 lb. to as much as 30,000 lb. or more (Agri. Ledg.,
1904, No. 10, 144-5).

Crop.

From the roots, various preparations are made. The preliminary operations
are the same. The roots are scraped, carefully washed, and then reduced to
pulp by being passed through rollers. Subsequent stages vary according to
the product required, the most important of which are couac, cassava
meal, Brazilian arrowroot and tapioca. Couac is a coarse meal obtained from
the pulp by expressing the juice and then pounding and drying the remaining
particles. Cassava meal is simply couac of a greater degree of fineness. Brazilian
arrowroot is the starch washed out of the root, and tapioca is the same slightly
parched. In Cuddalore and Pondicherry the roots are sold after having been
part boiled (Agri. Ledg., loc. cit., 125). The juice of the tubers of the bitter variety
can be converted by boiling into a valuable product widely known as cassareep.
It is a wonderful antisepic, will preserve fresh meat for considerable periods,
and is also the chief ingredient in many sauces.

It was formerly supposed that the root consisted chiefly of starch with a
varying quantity of prussic acid, which latter in the case of the "sweet"
cassava was confined to the bark, but in the "bitter" occurred throughout the root.
To this prussic acid the numerous cases of cassava-poisoning which have at various
times occurred were said to be due. Leather, however (Cyanogenesis in Plants,
Agri. Journ. Ind., 1906, i., pt. iii., 223-4), states that a number of varieties were

766
examined by him at Poona in January 1904, and that none were found to contain any prussic acid as such, but that all manifested a cyanogenic glucoside associated with an enzyme which has the property of causing the splitting up of the glucoside; and the consequent formation of prussic acid. In exemplification of this he gives particulars regarding the glucoside *dharra* in the leaves of the *juar* (*Sorghum vulgare*, see p. 1040) and of the glucoside in the present plant. "I was able," he adds, "to establish three facts: firstly, none of the varieties contained any prussic acid as such; secondly, all the varieties, irrespective of the colour of the petiole or other botanical features, contained a cyanogenic glucoside, which varied much in amount; thirdly, this glucoside is associated with an enzyme which has the property of causing the splitting up of the glucoside, and the consequent formation of prussic acid. As in the case of *juar* leaves, it is only necessary to crush tapioca root with water in order to bring about this change. The amount of prussic acid varied very much; from some roots 1½ grains of prussic acid per pound of root was obtained, from others only one-tenth as much." "Boiling the root is quite sufficient, not only to destroy the enzyme, but also to allow the glucoside to pass out into the water, for the root splits up freely." Dunstan and Henry (Pois. Prop. Beans of *Phaseolus lunatus*, in Journ. Board Agri., 1908, xiv., 730) are of opinion that the application of enough heat to destroy the activity of the enzyme present should render such food material harmless. (See *Phaseolus lunatus*, p. 880.) In Medicine tapioca has the same properties and uses as starch. Hanousek (Micro. Tech. Prod. (Winton and Barber, trans.)), 1907, 45 gives interesting details of his microscopical examinations of the grain. [Cf. Shortt, Man. Ind. Agri., 1885, 307–10; Nicholls, Textbook Trop. Agri., 1892, 274–8; Pharmacog. Ind., iii., 203–5; ap. Sawyer, Tapioca Cult. in Travancore, in Proc. and Journ. Agri. Hort. Soc. Ind., April to June, 1897, xi., 666–74; Agri. Ledg., 1897, No. 4; 1900, No. 15; 1904, No. 10; W. Australian Settlers' Guide and Farmers' Handbook, 1897, iii., 456; Thorpe, Dict. Appl. Chem., 1898, i., 146–7; 1899, ii., 503; 1900, iii., 781; Woodrow, Gard. in Ind., 1899, 442–3; Munkerji, Handbook Ind. Agri., 1901, 468–77; Cassava Poisoning, in Imp. Dept. Agri. W. Ind., 1902, No. 7 (Leaflet Series); Bull. Dept. Agri. Jamaica, 1903, i., 35–8; Board of Trade Journ. Bull. Imp. Inst., May 1903; Tracy, Cassava, U.S. Dept. Agri. Bull., 1903, 167.)

MANURES AND FERTILISERS.—The most general vernacular names in India for manures are:—khad, khau, pδus, khadar, sar or sarra, kellar, etc.; pousa, Sansk.; and zbc, Arab.

Speaking of India as a whole, it may be said that systematic manuring is almost entirely neglected by the Natives. From the most ancient times they have been accustomed to observe a casual system of manuring, namely the collection of such substances as are inexpensive and easily obtainable. Moreover, by the very general employment of dried cow-dung as fuel and the utter neglect, through insufficient litter, to conserve cattle urine, they have been deprived of the most important source of all fertilisers and the one readiest to hand, namely farm-yard manure. Caste prejudices, moreover, have to a great extent forbidden the employment of many manures such as bone, animal refuse, night-soil, etc. Still, here and there the value of manure is fully understood (as, for example, in some parts of the Western Presidency); and in the treatment of special crops (such as sugar-cane) manuring is regularly practised. But neither example nor precept have, as yet, succeeded in arousing the average Native cultivator to a sense of the benefits likely to accrue from an extended use of manure beyond that pursued by his ancestors. But in all fairness it must be added that in the majority of cases this apathy proceeds far less from ignorance than from inability to purchase soil-fertilisers. The most urgent necessity of agricultural progression in India is, therefore, a system of fuel and fodder reserves calculated to release the supply of farm-yard manure for its more legitimate purpose, that of a soil-fertiliser.

767
MANURES AND FERTILISERS

Voelcker (Improv. Ind. Agri., 131) has very properly said: "Whilst a few soils, such as those of silt-renewed tracts, the black cotton-soil, and newly reclaimed or virgin land, may not require manure, it may be said of the greater part of India that the necessity for using manure is enormous, and the supply of it is notoriously inadequate. Water and manure are interdependent, and, just as the former has been, and is still being provided for, so must attention be given to the supply of manure. These two factors, water and manure, constitute the rayat's great needs, and in their supply consists, very largely, the Improvement of Indian Agriculture."

In dealing with Manures and Fertilisers it may be convenient to assimilate them under three main groups, namely Animal, Vegetable and Mineral Manures:

1. Animal Manures.—These may be referred to the following (a) Farm-yard Manure; (b) Town Refuse and Night-soil (Poudrette); (c) Bones; and (d) Guano.

Farm-yard Manure.—It would be impossible to review here the very large amount of interesting new information that has accumulated during the past decade or so regarding Indian farm-yard manure and its uses. The chief contributors in this direction have been Benson, Leather, Lehmann, Mehra and Mollison. Leather, in his *Final Report*, points to the fact that throughout the greater part of Gujarat, farm-yard manure is extensively utilised as a *manure, not as a fuel*, and with much skill and intelligence is stored in specially prepared pits. Benson deals with a somewhat similar state of affairs in Coimbatore and Salem. But what is more to the point, the people who do so find no difficulty in growing for themselves, in the form of hedges and otherwise, the fuel that they require for domestic purposes, and thus disprove the oft-affirmed opinion that, having no other fuel, the people of India are driven to burn their manure. In many parts of India even the surplus cow-dung—the proportion that is not required for fuel—is rarely appreciated to the full extent as manure. It is all too often thrown into waste hollows or on the roadsides or on the bank of the village tank, in most cases becoming a source of danger in place of an advantage. Very rarely indeed is any effort made to preserve and utilise the cattle urine. This is a most unfortunate state of affairs seeing that it has been shown in Europe and America most conclusively that farm-yard manure is, perhaps, the best and certainly the most economical of all manures. It contains all the constituents of plant food; is a most valuable and convenient source of nitric acid; its nitrification is most active at the very period of greatest growth; as a manure it is less liable to be washed out of the soil than most artificial nitrogenous fertilisers; it permanently enriches the soil; and acts under all climates, on all soils and with all crops.

Leather says that Indian experiments show that when an application of 6 tons to the acre is given, an increase of 300 to 400 lb. of wheat may be the result. After ascertaining that such an allowance would not be beyond the capabilities of the cultivator, he adds, "consequently these experiments really illustrate what the value of the cattle manure is in terms of food-grains." Moreover he confirms the opinion, advanced originally by Voelcker, that "Indian dung is not poorer than English." [Cf. Leather, *Note on Value of Ind. Cattle-dung*, in *Nagpur Exp. Farm Rept.*, Annex. F, 1893-4, 1-10; *Econ. Util. of Cow-dung and Rd. in Bom.*, in *Ind. For.*, 1886, xii., 541-5; Benson, *Care and Man. Farm Man.*, in *South India, Bull.*, 1894, No. 31; Watt and Mann, *The Past and Blights of the Tea Plant*, 130-4; Clouston, *Cattle Manure*, in *Agr. Journ. Ind.*, 1907, ii., pt. iii., 261-9.]

2. Night-soil and Sewage.—The question of the disposal of night-soil and its utilisation for manurial purposes is one which has been, of late years, earnestly considered throughout India by all Governments and Municipalities. In large towns night-soil and street refuse are removed at the expense of the local authorities, but the question arises as to its disposal. The most general practice is to trench it into fields and by its means to reclaim waste land. For this purpose, in some cases deep, in others shallow trenches are employed. Leather remarks, "It is at Allahabad Grass Farm that I have found the most perfect methods employed. The night-soil is..."
MANURES

Animal

Deep and Shallow Trenching.

Poudrette.

Bones.
Guano.

Guano and Allied Manures.—The excrement of fowls, pigeons, wild birds and bats, etc., may be said to be all forms of the substance known as Guano. It is one of the most highly prized animal manures in European countries, and owes its value to the readily soluble ammonia, phosphates, potash and soda that it contains. A small amount of this substance is annually imported into India, and it has been ascertained to be of special value in protecting sugar-cane cuttings from being attacked by white-ants. Mollison says it is one of the best manures for wheat, 2 to 3 cwt. an acre being sufficient. It acts rapidly and is expended almost entirely on the crop to which applied.

Indian guano is not unknown. It is procured from the caves in Karnul and of the Andaman and Nicobar Islands. The former is possibly mainly the produce of bats, and the latter of the edible swallows (see Birds, p. 138). The imports during the past five years have averaged 2 tons, valued at Rs. 700. [Cf. Encycl. Brit., 1880, xi, 233 et seq.; Spons, Encycl., 1882, i, 358; ii, 1258; Journ. Soc. Chem. Industr., 1887, vii, 228; 1888, viii., 54 et seq.; 1899, xviii., 213 et seq.; Thorpe, Dict. Appl. Chem., 1899, ii., 504 et seq.; U.S. Yearbook, Dept. Agr., 1899, 274 et seq.; Board of Trade Journ., 1901, xxxiii., 72 et seq.; 1902, xxxix., 201-2.]

II. Vegetable Manures.—Many vegetable substances such as boughs and leaves of bushes and trees, indigo refuse, wood-ashes, weeds of every description (green, dry and burnt), oil-cakes, tank deposits consisting largely of aquatic weeds, etc.,—these and such like are, when obtainable, fairly extensively used as manure here and there all over India. They are usually thrown on the surface of the land and ploughed or hoed into the soil in a fresh state, where they only too frequently become a nidus for insect pests and fungal blights. Except by market gardeners and by tea and coffee planters, pits or heaps are rarely resorted to for the storage and maturation of vegetable manures, and as often as not the stuff casually secured is thrown on the field at the wrong season, and thus becomes next to useless. The following are the chief manures of this class:—

Green Manuring and the Assimilation of Nitrogen.—As with the clover in Europe so with several leguminous crops in India, their value as alternating

769 49
MANURES

Vegetable

Green Manuring.

Leguminous Crops.

Advantages and Requirements.

MANURES AND FERTILISERS

Crops or as green manure was appreciated for centuries before their exact action was understood. The chief crops of this nature are Cajanus (see pp. 197-8), Clor (see p. 298), Crotalaria (p. 433), Dolichos (p. 504), Indigofera (pp. 672, 679), Phaseolus (pp. 225, 879), and Vigna (see p. 1107). It is significant that all these, and a good few others that might be mentioned, belong, like clover, to the special sub-order of leguminous plants that have been shown to possess in the strongest degree the power of producing on their roots, warts that harbour bacterial organisms that have the power of fixing the free nitrogen of the air and thus enriching the soil. Unless, therefore, leguminous crops have been grown so extensively as to render some other plant a desirable rotation, it is preferable in green manuring to select a leguminous crop for that purpose. In that way the advantages of green soiloing as well as the supply of nitrogen to the soil may be secured. A green manure should, in fact, be a plant that develops rapidly; should give the largest volume of green vegetation; should be as deep-rooting as possible, thus opening up the soil to a fair depth; should be sufficiently hardy as to flourish under what might be called unfavourable conditions; should occupy the soil and the atmosphere at a season when the crop it is designed to assist is either not on the soil or not growing vigorously at the time; should return more to the land than it has removed; should serve to retain manurial constituents that might otherwise be washed out; and lastly, should easily rot when hoed into the ground. [Cf. tillage, The Sources of Free Nitrogen, Lect. deliv. at Cirencester, July 1890; Laves and Gilbert, Sources Nitrogen of Legum. Crops, 1892; Warrington, Six Lect. on Rothamsted Exper. Stat., etc., U.S. Dept. Agri. Bull., 1892, No. 8; Frankland, The Chem. and Bacteriology of Ferment. Indust., in Journ. Soc. Arts, 1893; Agri. Ledg., 1893, No. 20, 141-3; 1894, No. 7, 189-200; 1897, No. 8, 173-5; Nitrogen and Forest Crops, in Ind. For., 1897, xxiii., 439-52; Green Manuring, in Journ. Board of Agri., 1897, 1-10; Fixation of Atmospheric Nitrogen of Legum. Pl., West Ind. Bull., 1900, i., 396-401; Mollison, Textbook Ind. Agri., 1901, i., 105-7; Allen, Legum. Pl. for Green Manuring, U.S. Dept. Agri. Farmer's Bull., 1894, No. 15; Watt and Mann, Peas and Beans, etc., 1900, 134-47; Nitrogenous and Nembrad Pl., Circ. Agri. Journ. Roy. Bot. Gard. Ceylon, 1904, No. 18, 273-7; Wright, Soil Bacteria in Relation to Agri., in Trop. Agrist., 1905, xxiv., 116-9; Green Manures, Circ. Agri. Journ. Roy. Bot. Gard. Ceylon, 1905, iii., 181-98; Woods, Isolation of Soil with Nitrogen—Fixing Bacteria, in U.S. Dept. Agri. Bureau. Pl. Indust. Bull., 1905, No. 72.]

Burning or Råbing and Jumming.—Burning of weeds in heaps collected all over the fields is less commonly seen in India than in Europe. Aboriginal tribes are fond of cutting down the trees and brushwood and firing these on the surface of the soil—a process of both clearing new land and manuring it with vegetable ash. This is known as jumming. A civilised modification of this is pursued in Western (and to some extent also in Southern) India. Seedbeds or even whole fields are manured by what is called råb. This consists in burning the surface soil by means of layers of dried manure, leaves, branches and weeds. After the burning has ceased, the soil and ashes are ploughed in, and thus mixed together. The reader will find much useful information regarding the production of råb soil in Mollison's (Textbook Ind. Agri., i., 83-5).

Silt.

Peat-soil.

Oil-seed Cake.—The Indian cultivators fully recognise the value of oil-seed cake or the refuse of such, both in feeding cattle and as manures of great value. The edible sorts of oil-cake, such as Linseed (see p. 731), Rape and

AMMONIUM SULPHATE

Mustard (p. 184), Safflower (p. 283), Til (p. 986), Cotton (p. 613), Earth-nut (p. 82) and Cocoanut (p. 360) are much favoured as cattle foods, while the others that may be classed as nutritious are largely used as manures, the most important of this latter class being Castor-oil (see p. 992); but Poppy (p. 860) and Mahua (p. 120) may be added. With highly profitable crops, such as sugar-cane, many of the edible cakes are occasionally employed as manures. Mallison points out that the cultivators in this respect often act against their own interests, since the castor cake very often fetches a higher price than some of the edible cakes which they refuse to use as manure. The advantage to India of the oil-seeds being expressed in the country, instead of being exported, has been repeatedly urged (Voelcker, Lc. 104). Profitable labour would be secured for many persons and a larger percentage of cake retained and to a greater extent than at present, very possibly, returned to the soil. The Annual Reports of the various Agricultural Departments and Experimental Farms of India have for many years past abundantly demonstrated the value of the cakes as special manures. [Cf. Leather, Lc. 157–62; Mallison, Lc. 122–33; Lehmann, Comm. Fertili., in Agri. Journ. Ind., 1906, i., pt. ii., 123–6; also see article Oils and Oil-seeds, p. 818.]

Special Plants as Manures.—Achathoda (see p. 25); helpful vegetation (see pp. 54, 113–4). Plants with milky sap, such as Calotropis (pp. 53, 206) and Euphorbia (p. 530), are specially preferred; the refuse of Indigo (see, see p. 679); and many other such substances are valued as manures and often resorted to by the cultivators. The reputation of Achathoda, both as a manure and a poison to destructive organisms that appear in the flooded rice-fields, is specially worthy of attention.

III. Mineral Manures.—Though several very valuable manures of this kind exist plentifully in many parts of India, their value and uses are hardly anywhere appreciated. Some of these have already been so fully dealt with in other positions in this work that all that need be necessary is to furnish cross references:—

Lime.—(See p. 712). As a rule lime is present in such abundance in the agricultural tracts as scarcely to require its addition as a manure.

Gypsum.—(See p. 717).

Ammonical Liquors and Ammonium Sulphate as Manures.—(See pp. 48, 346.) Sir John Lawes has pointed out that the objection to sulphate of ammonia and all other "highly nitrogenous" manures, is that "they use up certain natural ingredients in the soil,” which when exhausted cause the plant to fail.” In a further communication he condemned sulphate of ammonia, because it removes lime from the soils. Where the percentage of lime is naturally low, as for example in the tea lands as a whole, it should not be used, or only in exceptional cases. All artificial manures have the further objection that in countries subject to heavy rains, soluble manures are very readily washed out of the soil, so that their action is often only temporary; a fall of rain of only a very few inches may suffice to remove them entirely. For crops that occupy the soil for brief periods only, such as wheat and barley, if given in combination with potash either present in the soil or added as an ingredient of the special manures, these chemical nitrogenous fertilisers may be of special value. [Journ. Soc. Chem. Industr., 1899, xviii., 486; Mallison, Lc. 117–8; Watt and Mann, Lc. 154–5.]

Nitrates.—The nitrates of potash and soda are both largely employed as manures. In a crude sort of fashion the Native cultivators of India here and there show that they are aware of the value of crude saltpetre as a manure by the value they place on surface soil collected near the homestead. Certain localities, as for example Bihar, have been noted from time immemorial for the large stores of saltpetre found naturally in the soil, and such localities have accordingly been famed centres for the production of the salt. Saltpetre is specially valued as a manure with tobacco, sugar-cane, and garden crops generally (see Saltpetre, p. 974). [Cf. Mallison, Lc. 119–21; Leather, Calcium Nitrate and Nitric Acid, in Agri. Journ. Ind., 1907, ii., pt. ii., 209–10.]

Potash Manures: Peat, Emba, Kalum etc.—Saltpetre is valued not only as a source of nitrogen, but on account of its potash. Continuous cultivation and removal of crops must, therefore, gradually lower the stores of this all-important material. With the return to the soil of decomposed vegetable matter or of plant ashes, the potash is to some extent restored. But sooner or later it must
and the Others at Rs. 71,503; five years later (1904–5) the Others had expanded to Rs. 6,26,361. It is believed this increased traffic may, to some extent, represent the expansion in the manufacture of special manures, the surplus, not required for India, being exported. Lastly, this increase in the exports of manures from India has been chiefly from Madras and Burma. The imports of foreign manures are so unimportant as scarcely to deserve notice. In foreign-5 they were valued at Rs. 50,980, and in 1906–7 at Rs. 55,105, and came almost exclusively from the United Kingdom.

MARANTA ARUNDINACEAE

Linn.; Prain, Beng. Plants, 1903, ii., 1047–8; Scitamineae. West Indian Arrowroot, tikhar, tacvil, arurat, kūaka neshaste, kuva mavi, tavaksha, pen-bua, etc. A native of Tropical America and of the West Indies, cultivated in India. It yields the genuine or West Indian Arrowroot, so called to distinguish it from East Indian, the produce of Curcuma angustifolia (see p. 444), with which it is often confused.

Cultivation.—The cultivation of this rhizome is briefly as follows:—Drills are made about 3 or 4 inches deep and 2 feet apart. On these the roots are planted in May, at a distance of a foot and a half apart, and covered over by earth. As the plants grow, they should be earthed up in the same way as potatoes. They require good, rich soil and plenty of water, which should, however, be withheld for a month or two previous to gathering the crop (Firminger, Man. Gard. Ind. (ed. Cameron), 143–4). Of Cuttack, Banerji states that it grows well on rather sandy soil, and of Bombay, Woodrow remarks that as regards soil it is as by no means fastidious, "fine sand at Nariad and loam and clay-loam at Poona being equally suitable provided heavily manured and irrigated." Flowering takes place in August, and in January or February the crop may be taken up. The maturity of the rhizomes may be ascertained by the falling down of the leaves. In digging up the crop it is impossible not to leave behind small portions of the rhizomes, and from these fresh plants spring, so that it is often difficult to eradicate the plant from soils on which it has been once grown. The smaller rhizomes and the pointed ends of the larger ones, on which the "eyes" are situated, should be kept for fresh planting. According to Woodrow, the produce in green tubers is generally 6 to 7 tons per acre, though over 12 tons have been produced at Poona. According to Nicholls the rhizomes contain 20 per cent, or even more of starch, and in Natal as much as a ton of arrowroot has been made from the rhizomes derived from an acre. It is generally said that cultivation should not be attempted in localities remote from a liberal supply of water, since irrigation may not only be required by the crop, but water is essential in the manufacture of the arrowroot.

Manufacture.—The method of preparing the arrowroot is simple. The rhizomes after being well washed are scraped with a knife to remove the rind, and at the same time diseased or imperfectly formed portions are picked out and thrown away. D.E.P., v., 180–4.

The Arrowroot Plant

Exports of Special Manures.

Imports.

Arrowroot

Cultivation.

Soils.

Seasons.

Propagation.

Yield.

Preparation.
MARSDENIA
Tenacissima

Rajmahal Hemp

The rhizomes are then pounded to pulp in a mortar or reduced to that condition on a grater. The pulp is then thrown into a vessel of water, which becomes turbid or milky while a portion of the pulp remains suspended as a fibrous mass. This fibrous portion is lifted out, rinsed, pounded once more and again thrown into water, lifted out a second time, rinsed, and then thrown away. The milky-looking fluid thus obtained from these several washings is now strained through a coarse cloth to remove any particles of the fibre and other impurities, the liquid being thus passed into another vessel, and when the sediment has settled, the water is gently poured off and clean water added. This is again stirred up and strained through a fine cloth, and, on settling, the water is once more carefully and gently drained away. The sediment that remains now consists of pure arrowroot, and is dried on sheets of paper by exposure to the sun, and packed ready for the market. It is a tasteless and colourless powder, which might be spoken of as consisting of pure starch granules. [Cf. Hanauerc, Micro. Tec. Prod. (Winton and Barber, transl.), 1907, 43-4.]

The genuine West Indian arrowroot may be readily distinguished from East Indian by its pure white colour and by its swelling in boiling water. [Cf. Milburn, Or. Comm., 1813, ii., 207; De Candolle, Orig. Cult. Plants, 1882, 81-2; Mason, Burma and Its People (ed. Theobald), 1883, ii., 209; Nicholls, Textbook Trop. Agri., 1892, 278-83; St. Vincent Arrowroot, Kew Bull., 1893, 191; also Bermuda Arrowroot, 1898, 50; Manuf. of Arrowroot in Ceylon, Trop. Agrist., Feb. 1, 1895, xiv., 557; Dodge, Useful Fibre Plants of the World, 1897, 235; Semler, Trop. Agrist., 1900, ii., 747-66; Woodrow, Gard. in Ind., 1903, 480-1; A. W. and M. W. Blyth, Foods, etc., 1903, 141, 144-5; Agr. Legdy., 1904, No. 10, 135; L Agri. Prat. des Pays Chauds, 1904, iii., 757-8.]

Rajmahal Hemp.

M. Roylei, Wigt murukula, pathar, tar, veri, kurung, kharchu, shongori, etc. A climbing shrub of the Himalaya, from Sikkim westwards, ascending to altitudes of 7,000 feet. It yields a fibre from which fishing-nets, lines and strong ropes are manufactured.

M. tenacissima, Wigt & Ann.; Rajmahal Hemp, tongus, jiti (chiti), babal jak, etc. A climbing shrub of the Sub-Himalayan tracts from the Jumna to Nepal and extending South to Oudh, Bihar and Chota Nagpur; Chittagong and Upper Burma.

The bark of the stem yields a valuable fibre, which was said by Royle to be the second best in India. By the hill tribes it is used chiefly for bow-strings and netting. The fibre was examined in 1886 by Cross and Bevan, who reported that it was of excellent quality and in point of fineness and durability ranked next to rhea. More recently a sample was sent to the Imperial Institute for examination. It was found to contain little or no lignocellulose, and to be exceptionally resistant to the action of alkalis. The remarkable quality of the fibre was also shown by the unusually high percentage of cellulose and by the large increase of weight on nitration. The length of the ultimate fibre was found to be 10 to 30 mm. Specimens were submitted to leading firms of fibre brokers for commercial valuation. One reported that the fibre, though short, was of great strength, and another that it was very strong, but harsh. The sample, of a length of 12 to 15 inches, was valued at £15 to £18 per ton, but it was stated if fibre 30 to 35 inches long could be sent, its value would probably be £35 to £40 per ton. In view of these facts the question arises whether experiments in cultivating the plant might not be undertaken, and whether the fibre could be successfully treated by machinery. [Cf. Royle, Fibrinous Fl. Ind., 1855, 304-5; Dodge, Useful Fibre Plants of the World, 1897, 235-6; Dunstan, Rept. on Marsdenia tenacissima, Imp. Inst., July 9, 1903; Agr. Legdy., 1904, No. 8.]

M. tinctoria, t. Br.; ryom, riyong, kali lara, mai-nuani, etc. A large climbing shrub of the Sikkim Himalaya, Assam, the Khasia hills, Northern Burma and the Circars. This species also yields a fibre, but is more especially interesting on account of the indigo dye yielded by the leaves. At the beginning of last century Roxburgh recommended its cultivation, but nothing appears to have been done, nor has the value of the dye been commercially tested. (See Indigo, p. 663.)

For information regarding woven mats, the reader should consult Carpets and Rugs (pp. 271-6), and for the chief matting materials, the list below. The most famous of the so-called mats are the grass-mats—(a) of Pálghát on the Malabar Coast of Tinnevelly, and Ganjam in South India; (b) of Midapur and Calcutta in Bengal; (c) the sitalpatí mats of Eastern Bengal and Assam (Sylhet); (d) the coir mats of South India and Bengal; (e) the munj mats of Allahabad, Agra and Delhi in North India; (f) the date and other palm-leaf mats used all over India, more especially in Western and Southern India—in Bombay known as shaelu mats; and lastly, (g) ivory mats, woven from strips of ivory so fine that they resemble the strands of sitalpatí (see Ivory, p. 698).

Mats or rather screens (tatties) made of the sweetly scented khas-khas are hung in front of doors, etc., to afford shade and to cool, by evaporation, the air which passes through their moistened texture. Bamboo mats are manufactured here and there all over India, and in Bengal more especially darmá mats (those constructed of reeds, see Phragmites below) are all but universally used in house-construction. The traffic in darmá mats must, therefore, be very great, and give employment to a far larger number of persons than can be learned from published statistics. In some of the jails aloe-fibre mats are produced and find a fair market, while cane mats are not uncommon. These are formed by selected canes being placed parallel to each other and bound in position by cross-ties. They are exceptionally strong, and specially valued in public offices where there is much traffic.

The following are the chief matting materials of India:

Agave (see p. 43). In the Panjáb, the fibre of two species is a good deal used in jails for making daris, mats and ropes. It is beautifully white and takes dye much better than even munj (Saccharum), but it is neither so strong nor so durable. The plant is a slow grower and liable to exhaustion. [Gee, i.e. 4.]

Arundinaria racemosa, Munro (see Bambusa, p. 99).

Bambusa Tulda, Roxb. (see Bambusa, p. 101).

Calamus—Canes and Rattans (see pp. 202-4).

Clinozyne dichotoma, Sattub.: Pl. Br. Ind., vi., 258; Agri. Ledg., 1896, No. 41; Nisbet, Burma under Brit. Rule and Before, 1901, i., 383: Scaurainae. The sitalpatí, mukká-pala, mutta, thin, godamika, bhádra, etc. A woody shrub of Eastern Bengal, Assam, Burma and the Malay Peninsula. It thrives on moist ground, which need not be specially prepared, and it can be reproduced by cuttings as well as by transplantation of shoots.

From the stems are prepared the famous sitalpatí or "cool mats." For the manufacture of the finest mats, the mutta should be cut when one year old. The split stems as prepared are about 4 feet long, one-twentieth of an inch wide, and as thin as paper. The average size of the mats, when finished, is about that of an ordinary double bed. Owing to their coolness they are much used during the hot weather, both by Europeans and by Natives, being placed beneath the bedding sheets. As a historic fact of some interest it may be here mentioned that formerly the main corridor of the East India House in Leadenhall Street, London, is said to have been lined with this matting. The quality is judged by glossiness, smoothness and fineness of texture, and it is said that over the smoothest even a serpent cannot glide. The price varies from Rs. 2 for the common sort to as much as Rs. 100 for the best qualities. The chief producing
MATS AND MATTING

MATS

Materials

districts are Faridpur, Bakarganj, Tippera and Chittagong in Eastern Bengal, Sylhet and Cachar in Assam, and Henzada in Burma. The industry is almost entirely confined to women. It has been suggested more than once that this fibre would make an excellent substitute for the Panama fibre in hat manufacture. The plant also yields a pith, which is discarded by the sitapathi makers, but which might well be employed as a paper material if procurable in sufficient quantity. [Cf. O. W., in Capital, April 25, 1901.]

Panama Fibre.

Cocos nucifera, Linn. (see p. 356).

Corypha umbraculifera, Linn. (see p. 429).

Crotalaria juncea, Linn. (see pp. 435-6).

Calcutta Mats.

Cyperus tegetum, Rott. etc. (see pp. 467-8).

Hedychium speciatum, Ham.; the sit-ruti, kaspurkachari, sheduri, etc. The leaves of this plant are made into the sleeping-mats employed by the hill tribes, where the plant is at all plentiful.

Hibiscus tiliaceus, Linn.; a large and abundant bush and affords a fibre obtainable by a process much less tedious than with most other fibre-yielding plants—a fibre which would appear well adapted for the manufacture of mats, ropes, and possibly also paper. In the Panjab it is occasionally employed in the construction of charpois, sides of carts, seats of bullock-wagons and mats. In New Caledonia and Tahiti it is made into fishing-nets (see p. 629).

Ischemium angustifolium, Hack. (see pp. 694, 863).

Juncus effusus, Linn.: Fl. Br. Ind., vi., 392. This common European rush is found in the Sikim Himalaya and Khassia hills from 6,000 to 10,000 feet.

S. glutinosus, Ehrh. Beitr., which is not unlike the former species, though stiffer and darker, is met with in the Western Himalaya, Nilgiri hills and Ceylon. The European plant is in considerable vogue for the manufacture of baskets, mats and chair-seats, and it is suggested that similar uses might be found for one or both species in India, where they are at present entirely neglected.

D.E.P., iv., 552.

Melocanna bambusoides, Trin. (see Bambusa, p. 103).

Nannorrhops Ritchieana, H. Wendt.: Fl. Br. Ind., vi., 429: Gamble, Man. Ind. Timbs., 733; Palme. The mazri, patha, kilu, pifis, etc. Usually a stemless shrub, but occasionally develops a stem 10 to 14 feet long. It is met with in Sindh and the Western Panjab as well as in the Kuram Valley and in Baluchistan, many acres of country about Harnai being covered with it, and ascending the hills to 5,500 feet above the sea.

Waziri Mats.

In former times it was common all over Kohat, but railway construction has led to an increased export to the Cis-Indus districts, and the more easily available mazri supplies have been exhausted. In 1882 measures were taken to protect the palm. The green leaves are beaten out with a mallet, and the fibre obtained is used for matting, fans, baskets, hats, sandals, nets, etc. Waziri baskets and mats procured at Bannu are famous all over the Western Panjab. Rope is also made from the stems and leaf-stalks, though apparently its use is not very strong. The leaf-buds are very much used for cattle feed and eaten, and the leaves regarded as a purgative medicine for cattle. The seeds are made into rosaries and exported from Baluchistan (Gwadar) to Mecca. The price of mazri matting in Peshawar is about Rs. 8 per 100 sq. yards, and its popularity appears to be increasing.

Nipa fruticans, Wurmb.; Fl. Br. Ind., vi., 424; Gamble, Man. Ind. Timbs., 729; Palme. The gâpâ, golphal (fruit), golpatra (leaves), dani, etc.; a large creeping gregarious palm of the Sundribans, Chittagong, Burma and the Assamames. The old fruits are large, the interior being hard like ivory, but transparent; they are carried to the sea and floated to great distances. The leaf-stalks are used to help in floating sundri logs in the Sundribans, also as fishing-floats. The leaves are very largely employed for thatching and in making mats. In the Straits Settlements they are used for covering cigarettes. Toddy is obtained from the spathe (as Linschoten observed in 1598), and the young fruit is edible. Gamble states that the trade in golpatra leaves in the Sundribans amounts yearly to about 125,000 tons, valued at nearly Rs. 60,000.

Golpatra.

Rice.

Oryza—Rice Straw (see p. 826). In Kullu and Hazara, mats called mambri and phêndi, as also string, are made of rice-straw.

Pandanus, the screw-pines, might be described as a genus of palm-like evergreen trees or shrubs, often scendent and possessed of copious and strong aerial roots. They are met with in the moist tropical regions, chiefly Malesian and Malayean. Hooker (Fl. Br. Ind., vi., 483-7) describes some seven Indian Screw-pine.

776
species, and mentions many other obscure forms. The only species of economic value may be said to be:—

P. odoratissimus, Linn. f. (P. fasicularis, Lam.): the keura, kea, ketuki, keori, muyalik, thalay, talai, kaida, satthapu, etc. Common on the sandy coasts of South India, Burma and the Andamans. It forms dense impenetrable thickets in the tidal forests, and is extensively grown as a hedge plant. It is also specially cultivated in gardens in South India on account of the fragrance of its spike of flowers. These, tied up within the few adjacent leaves, are sold in the market towns, and may be seen in shops and at the railway stations. The women wear the fresh flowers in their hair and use them as offerings at the temples. From them is also prepared keura, perhaps the most characteristic and most widely used perfume of India. The soft floral leaves and pulp of the fruit are also eaten. The leaves afford an excellent fibre which is employed for nets, sacks, brushes, mats, etc. [Cf. Marco Polo, Travels (ed. Yule), ii., 251; Clusius, Ananas silvestris, Exot. Pl., 1803, 285; Ain-i-Akbari (Jarrett, trans.) ii., 126; Forster, Pl. Ess., 1786, 38-41; Taleef Shereef (Playfair, trans.), 141; Rept. Ind. Hemp Drugs Comm., i., 156.]

Phœnix, several species (see pp. 884-5); also Basket- and Wicker-work (p. 115).

Phragmites: of the reeds proper there are two species, P. communis (dulla or dambâ), met with in the marshes and on the margins of lakes in North-West India up to altitude 10,000 feet, and P. karka (nala, na, nar, sur, kaising, karka, etc.), found in the swamps of the more tropical India. The former is employed on the Dal Lake of Kashmir as the râda that constitute the foundation of embankments and floating islands. The culms of both species are extensively utilised all over India in the construction of chairs (workas) and baskets; they are also largely used for lutes and the tubes of smoking-pipes (hukaha). Split they are made into mats, and thus constitute one at least of the sources of the dâmi mats of Bengal. These are produced cheaply and in great abundance, being universally employed in house-construction. They are also utilised as lining (dunning) of ships to protect and isolate cargoes, and they might with advantage be used to line the inside of iron roofing. The flowering stalks are beaten out and afford a useful rope-fibre. [Cf. Lisboa, Bomb. Grass., 116; For. Admin. Repts.; Rec. Bot. Surv. Ind., ii., 155, 240, 247, 360.]

Pseudostachyum (see Bamboo, p. 104).

Saccharum arundinaceum, Roxb. (see pp. 929-30).

Tachardia lacca, Kerr.: for mats made of lac, confer with account given by Birdwood (Indust. Arts Ind., 1890, ii., 223-4). A thread of lac is wound around a stick, and, after drying, is drawn off and broken into sections of three or four turns each. These are then linked together into mats of all sorts of variegated colours.

Typha: Fl. Br. Ind., vi., 488. There are three species of Reed Mace, Elephant Grass or Cat’s tail Bulrush, between which, for the present purpose, it is hardly necessary to draw distinctions since their properties and uses are practically identical. These are known as T. angustata, the lûkh of Upper India; T. elephantium, the pater, hóglá, bora, dû, pun, rámabôna, etc.; and T. laxmannii, the pitz of Kashmir.

The culms, as also the leaves of all three forms, are extensively used in making sieves, thatching huts and house-boats, and in the manufacture of mats, ropes and baskets. In Sind they are also employed in the construction of crude boats called turbo, also floats and buoys to support swimmers. They are much valued for their long roots, which bind loose soils and embankments. The pollen is regularly collected, and on the Indus forms a fairly important article of food, being baked into cakes. Bhaduri (Rept. Labor. Ind. Mus., Indus. Sec. Soc.), 1902-3, 27 has given the results of his chemical analysis of this article of food. It contains carbohydrate, 44-50; albuminoid, 19-75; cellulose, 17-80; oil, 2-70; the balance ash and water. The young shoots and tender roots are also eaten, and the lower succulent parts of the fruiting spike, soaked in oil, are used as a torch, whilst the down of the ripe fruit is mixed with mortar as a binding material.

The rushes are split and woven into coarse mats for covering boats and for making walls or partitions of houses. The leaves also find a purpose in the construction of soft matting as, for example, in Kulu, Kumaon, Sind and elsewhere. In the Panjâb, Typha is generally adopted as a matting material when matri (vannorhops) is not available. [Cf. Ain-i-Akbari (Jarrett, trans.), ii., 123;
MATS AND MATTING

MEDICAGO SATIVA
Lucerne

Taleef Shereef (Playfair, transl.), 31; Gee, Monog. Fibrous Mat. Ph., 1891, 2; Dodge, Useful Fibre Plants of the World, 1897, 319; etc., etc.

Khas-khas.
Trade.

Trade and Commerce.—The statistics of mats and matting given in the annual official returns of trade exclude Coir Manufactures, and it is not shown to what extent they include mats or rugs other than grass-mats. The exports to foreign countries during the years 1899–1900 to 1906–7 showed no great fluctuation in quantity but a remarkable undulation in value, due perhaps to the demand for cheap goods in one year being supplanted by more expensive articles in the next. The highest recorded value was Rs. 2,41,887 in 1900–1. In 1906–4 the amount stood at Rs. 58,754; in 1905–6 was only Rs. 27,267; and in 1906–7, Rs. 47,617. Madras has more than half the trade in quantity but realises less in value than Bombay. The re-exports were at their highest value in 1903–4 (Rs. 26,234), and represented chiefly trade from Bombay to East Africa, Turkey-in-Asia and Persia. Of the imports a large share should probably appear as Carpets and Rugs, as, for example, the supply (56 per cent.) that comes from Mekran and Soumian. Other considerable contributors are China (Hongkong) and the Straits Settlements. The highest value in the years mentioned (1899–1907) was reached in 1904–5 (Rs. 2,94,182), and of that Rs. 1,52,782 and Rs. 49,473 were taken by Bombay and Sind.

Coir.

As regards Coir Manufactures (excluding rope and presumably including some proportion of articles other than matting) the trade is almost entirely concentrated in Madras, which in 1903–4 exported to foreign countries some 473,281 cwt., valued at Rs. 46,78,050, chiefly to the United Kingdom and Germany, the total foreign trade of all provinces having been 483,355 cwt., valued at Rs. 47,90,110. In 1906–7 the exports from Madras were 552,703 cwt., valued at Rs. 55,24,154, and the total foreign trade 559,329 cwt., valued at Rs. 56,00,268. At the same time the Madras Presidency contributed to Bengal and Bombay a fairly large quantity, namely Rs. 9,00,000 worth. (See also Cocos nucifera, p. 362.)

Lucerne.

MEDICAGO SATIVA, Linn. : Fl. Br. Ind., ii., 90; Prain, Beng. Plants, 1903, i., 414; Leguminosae. Lucerne, Purple Lucerne, or Alfalfa, vilayti-gawuth, hol, spastu, sebist, yurushea, beda, vilayti-kul, etc.

According to De Candolle, the plant is a native of western temperate Asia, and is found apparently wild in Afghanistan and Baluchistan. Stein (Ancient Khotan, 1907, 130) speaks of it as extensively cultivated in Khotan and used as fodder. It is now largely grown in many parts of India and affords excellent forage for horses and cattle, if given in moderate quantity. At least two varieties are cultivated, the Kandahar and the Persian or Arabian. The latter is the crop ordinarily met with.

Cultivation.—In the Poona district, according to Mollison, the best time for sowing is either early in the rains or between October and December; in the north of India, from the middle of October to the middle of November. The price of seed ranges from Rs. 0–14 to Rs. 1–8 per lb. The usual native method of sowing is broadcasting on a clean, well-prepared bed, but by this method the field gets fouled by deep-rooted grasses and other weeds, and the lucerne fails when it ought to be in full vigour. A good method of cultivation is as follows:—The field should be well ploughed and brought into a thoroughly friable, smooth, clean condition during the rains. In September, 30 cart-loads per acre of well-decayed farm-yard manure should be given. The manure must be evenly spread and mixed thoroughly with the soil. Ridges are then formed

778
BURMESE VARNISH TREE

MELANORRHÖEAE
USITATA
Lacquer Ware

22 to 25 inches apart, on which the seeds are sown (10 lb. per acre) in a groove along the top, and covered by not more than 1½ inches of soil. Frequent waterings are necessary during the first fortnight. On medium soil, lucerne grown in the above manner requires water every eighth day in the cold season, every sixth day in the hot weather, and oftener if the soil be light. Water should also be given during breaks in the monsoon. It requires liberal top-dressing at short intervals. At least 5 tons of well-rotted farm-yard manure should be applied every third time the crop is cut.

The principal object of the ridge-and-furrow system is to keep the field clean, since the furrows can easily be weeded each time the crop is cut by using an ordinary bullock-hoe. A crop will be well established in six months, and should last for years, yielding at least ten cuts per annum. In 1893-4 the best results obtained on the Poona Farm were as follows:—outturn per acre, 31,816 lb.; value per rupee, 120 lb.: cost of cultivation per acre, Rs. 85-3-8; value of produce per acre, Rs. 265-2-0. [Cf. Bentham, Rev. of Targioni-Tozzetti, in Journ. Hort. Soc., 1855, ix., 139; De Candolle, Orig. Cult. Plants, 1884, 102; Burke, Primer on Cult. Lucerne, in Meerut Press, 1891; Voelcker, Improv. Ind. Agri., 1893, 193, 202, 240; Duthie and Fuller, Field and Garden Crops, iii., 61; Mollison, Agri. Legd., 1893, No. 13; 1894, No. 8; Leather, Food Grains and Fodders, in Agri. Legd., 1893, No. 7, 156, 174; Smith, Lucerne, U.S. Dept. Agri. Farmer’s Bull., 1895, No. 31; Moreland, Note on Cult. Lucerne, in Dept. Land Rec. and Agri. U. Prov. Bull., 1897, No. 6; Capnore, Essex Farm Repts.; Journ. Board Agri., Sept. 1897, iv., 218-221; June, 1899, vi., 39-44; 1901, vii., 485-8; Mollison, Textbook Ind. Agri., 1901, 229-33.]

MELANORRHÖAE USITATA, Wall., Pl. As. Rar., i., 9-12, tt. 11, 12; Fl. Br. Ind., ii., 25; Watt, Kew Bull., 1906, 137-47; also Ind. Art at Delhi, 1903, 218-24; ANACARDIACEAE. A large deciduous tree of the open forests of Manipur, Burma and Siam, rare in dry forests. It is generally known as THE BURMESE VARNISH TREE, and by the following vernacular names, thitsi, kheu, suthan, kiahong, etc. (See SEMECARPUS, p. 981.)

In addition to affording a useful Timber, it yields a natural Varnish of great interest and value, and one which may be characterised as having originated several distinct industrial and art conceptions peculiar to the Burmese, Shans and Siamese. In Maymyo the preparation of the crude black varnish may be spoken of as the chief forest industry, but it is also largely extracted in the Monghong State. In fact, wherever the tree abounds the varnish is collected. In such tracts it is rare to find a tree that has not been tapped. It is exported mainly from the Northern and Southern Forest Circles of Burma. To obtain the varnish, V-shaped incisions, 9 inches long and 5 inches apart at the base, are cut on the bark of the tree, the apex pointing down. The tongue of bark within these scars is then slightly lifted up and a specially prepared joint of bamboo driven in horizontally immediately below the apex of the incision. The sap which exudes from the inner bark drains into the bamboo receiver. This is emptied at the end of ten days, when the flow of varnish is observed to become scanty. A second cut is made along each side of the contained tongue of bark, which is also again raised up slightly and the bamboo receiver placed more conveniently to the new scarification. After this has yielded all the varnish that seems likely, a new incision is made a little higher up. It would appear that young trees yield better than fully formed ones. By the tapping process the trees become much distorted, and it is no unusual occurrence to find some that manifest 50 to 60 successive scarifications. One man, it has been estimated, can look after and collect the varnish from 1,200 trees, provided they are not too much scattered. He can scarify and collect from about 200 trees a day. The best season for working is from July to October, and one man may collect from 146 to 182 lb. in one season. In 1904-5, 38,622 viss, and in 1905-6, 36,382 viss, were collected under license and permit. [Cf. Ann. Rept. For. Admin., 1904-5, 55.]

Thitsi is largely utilised in its liquid state as a natural varnish, and has the great merit of preserving woodwork. Thickened by sawdust, cow-dung ashes, or bone-ashes to a plastic condition, it is employed as a CEMENT and body Lacquer Ware.
MELIA Azadirachta

THE NEEM OR MARGOSA TREE

Material or moulding substance. It may be coloured with lamp-black, gold-leaf, vermillion (not red lead), orpiment, indigo, etc., and applied with a brush, by the hand direct, or to objects revolving on the turning-lathe. When painted on cloth or paper the form used is very thin and pure, but on drying the articles are found to have been rendered waterproof. As a cement it is largely employed in the Burmese glass mosaics, but by far its best-known property is in the manufacture of the so-called Burmese lacquer ware, of which there are four types and centres of production—Pagan; Prome; Mandalay; and Manipur leather varnish.

M. Azadirachta, Linn.; M. indica, Brandis, For. Pl., 67; Azadirachta indica, Jussieu, in Mém. Mus. Hist. Nat. Paris, 1830, 19, 221. The Neem or Margosa Tree, nim, agas, limba, kohunba, vépa, taruka, bevina, thin, kamádi, etc. A large tree; according to Gamble, probably wild in the forests of the Karmákt and parts of the Deccan, and perhaps also in the drier, inland parts of Burma; elsewhere cultivated.

It is of considerable economic importance. From the bark there exudes a bright amber-coloured Gum, which is collected in small tears or fragments. This is said to constitute a portion of the commercial "gum gattis," and of "East India gum." It is considerably esteemed medicinally as a stimulant.

From the seeds a fixed acid, bitter Oil is extracted, of a deep yellow colour and disagreeable flavour. As an anthelmintic and antiseptic it is in much demand, and is largely used by the poorer classes for burning, but said to smoke badly. The barks of trees are often painted with it to protect them from insect pests. By the women of Sind it is applied as a hair wash. The chemistry of this oil was fully investigated by the late Dr. Warden, and a detailed account of his results is given in the Dictionary. Nim oil-cake is regarded as a useful fertiliser. In addition to the gum and oil, the bark, young fruits, seeds, leaves, flowers and sap have all medicinal properties assigned to them or are spoken of as edible. The leaves are utilised to preserve books, papers, clothes, etc., from ravages of insects. They are said, moreover, to be useful in keeping away mosquitoes. Hooper (Rept. Labor. Ind. Mus (Indust. Sec.), 1903-4, 3-0) records the results of his investigations. Fresh leaves are also distilled in water. It was found that the distilled orUnion-smelling compound was present in the distillate. The powdered leaf, when burnt, gave off an odour found to prove fatal to insects. The extract of the leaves was intensely bitter and contained evidence of an alkaloid.

The sap or nim Toddy is yielded by the tree either spontaneously or is extracted artificially. In the former case, a clear and colourless liquid flows in a thin stream or continuous droppings from two, three or more parts of the plant simultaneously for several weeks on end. Artificially it is obtained by exposing a healthy-looking root, cutting it through, and placing a vessel beneath to receive the exuding liquor, which is a refrigent, nutrient and alterative tonic. The Wood is durable, has an average weight of 50 to 52 lb. per cubic foot. Its chief use is for cart-construction, ship-building, agricultural implements, and in South India for furniture. The twigs are largely used as tooth-brushes. [Cf. García de Orta, 1563; Coll., xi.; Talbot. Shereef (Playfair, transl.), 170; Jacob Breynius, Icon. Rar. Pl., 1739, 15, t. i.; Buchanan-Hamilton, Stat. Acc. Dinaj., 1823, 154; Mooden Sheriff, Mat. Med. Madr., 1891, 100-5; Banerjei, Agri. Cuttuck, 1893, 185, 187, 201; Woodrow, Gard. in India, 1899, 59, 233; Munkerji, Handbook Ind. Agri., 1901, 296-7; Watt and Mann, Pests and Blights of the Tea Plant, 1903, 411; Cunningham, Plagues and Pleasures of Life in Bengal, 1907, 102.]

M. Azedarach, Linn.; Rec. Bot. Surv. Ind., 1894, i., 70, 148, 195; ii., 52; iii., 186. The Persian Lilac of Indian writers, Bastard Cedar or Dead Tree, drék, bakain, deikna, ghorá nim, thamaga, chein, maha-limbo, makai, rembu, bêu, fai, ma-ka, etc. A deciduous tree doubtfully indigenous in the Sub-Himalayan tract.
SUPPLY OF MICA

MICA Mines

though commonly met with up to 6,000 feet in altitude, and frequently cultivated in India and Burmah.

Like the nim, this species also yields a brown adhesive Gum and the seeds afford a fixed oil; but these are not important. It has long been used in medicine by the Arabs and Persians, but the Hindus seem to have neglected it in favour of nim. The stone from the fruit is employed all over India as a bead, being perforated and strung into necklaces, rosaries, etc., and is supposed to act as a charm against disease. According to most writers, the wood is liable to warp and split, but Gamble states that the samples used at the Imperial Forest School for Museum cases and furniture behaved well. It is handsomely marked and takes an excellent polish. [Cf. Taleef Shereef, L. c. 39, 182; Paulus Eginetis (Adams, Comment.), 1847,iii., 449-50; Bentham, Rev. of Tarjoni-Tozzetti, Journ. Hort. Soc., 1855, ix., 177; Mooden Sheriff, L. c. 99-100; Banerjei, L. c. 185, 195; Woodruff, L. c. 233; Firminger, Man. Gard. Ind. (ed. Cameron), 1904, 635; Der Tropenpfanzer, Oct. 1904, No. 10, 578-80.]

M. composita, Willd. : M. dubia, Hiern (non Cav.), in Fl. Br. Ind., i., 545. The esir, kadú-kajur, limbarra, dink'évelong, mallay vembu, bèvu, etc. A large deciduous tree of the Sikkim Himalaya, up to 6,000 feet; Khasia hills; hills of Western Ghats in South India and west coast forests from the Konkan south. Gamble states that the wood will probably be found useful for tea-boxes and similar purposes, and that it should be cultivated on account of its rapid growth. In Ceylon, the outgrowers of native boats are made of it.

MICA; Ball, Man. Econ. Geol. Ind., iii., 524; Holland, Mica Deposits Ind., in Mem. Geol. Surv. Ind., 1902, xxxiv., pt. 2; Phosphatic Mica-Peridottites in Lower Gondwana Rocks, Beng., in Rec. Geol. Surv. Ind., 1894, xxvii., pt. 4, 129-46; also Rev. Min. Prod., in Rec. Geol. Surv. Ind., 1906, xxvii., pt. 1, 14, 63-9; 1907, xxxvi., 76. The group of minerals known collectively under the name Mica have several characteristics in common, which vary with the combining ratios of the bases and the silica of which they are composed. The light-coloured micas generally belong to the kind known as muscovite, the black to biotite; other varieties are lepidolite and lepidomelane. It has the following vernacular names:—abrák, appracam, kókádzlar, cajrábhrá (black mica), etc.

Sources.—Though mica is one of the most widely distributed minerals in India, its occurrence in plates of sufficient size to be of commercial value is limited to a few tracts. Holland (Mem. Geol., l.c.) gives a full account of the geographical distribution of the known mica-bearing areas of India. The most important localities occur in the provinces of Bengal, Madras, Bombay and Burma, but in another publication (Rev. Min. Prod., l.c.) he states that Bengal and Madras are the only provinces in which the mica-mining industry can be viewed as established and important. In the official returns, Financial and Commercial Statistics, published by the Government of India, particulars are given of factories or works that employ 25 persons or over. Under "Mica Mines" (on that standard) there were in 1901, 17 mines employing 6,668 persons; in 1902, 16 mines employing 7,242 persons; in 1903, 18 mines, employing 6,276 persons; and in 1904, 45 mines, employing 6,559 persons. Including all grades of mica mines, there were 9,165 persons employed on the average during the three years ending 1903, of which 6,694 were in Bengal and 2,471 in Madras. In 1905, 15,244, and in 1906, 15,725 daily workers were recorded at the mica mines.

Outturn.—As regards the outturn, Holland observes that the published returns greatly underestimate both the quantity and value, since they are below the figures usually quoted for the export. "As the only mica on which royalty is charged is that raised on Government land, and as many mica miners have mines in both Zemindari and Government land, there are obvious reasons for understating the production; and, besides this fact, the flourishing industry of stealing mica diminishes the returns for production without affecting the export figures. A considerable quantity of mica of the poorer grades is consumed in the country for ornamental and decorative purposes, and a small quantity of the larger sheets is used for painting pictures on, in various parts of the country. As far as the figures for quantity are concerned, therefore, the exports cannot be accepted as

781
an approximate expression of the production; but as regards value, the export returns may be accepted as a closer approach to the figures which should express production."

Uses.—The uses of mica depend on its peculiar combination of qualities, viz. its highly perfect cleavage; its transparency to light, together with a comparative opacity to radiant heat-rays; its low power of conducting electricity; its chemical stability; the great flexibility of its folia, combined with a high elastic limit and consequent power to resist violent shocks or sudden changes of temperature. It may be substituted for glass in lanterns, doors of furnaces, windows, as a glazing material for pictures, for backing of mirrors, etc. By far the largest quantity of sheet mica, is used for electrical purposes, for covering portions of dynamos and other electrical machines. For similar uses, thin films have lately been used for making the so-called Micanite, in which films of mica are made to adhere to one another by a highly-insulating cement. According to Holland, the invention of micanite has created a new opening for the use of the smaller grades of mica, formerly rejected as waste. In India itself mica is chiefly employed for decorative and ornamental purposes, e.g. in ornamenting temples, palaces, and many of the banners, robes, etc., employed in ceremonies. In fine fragments or as powder it is also used for ornamenting pottery and fancy cloths, especially the Afridi wax-cloth (see Carthamus, p. 282). Finally, it is used to a considerable extent in Native medicine, and even more naturally and successfully as a manure.

Trade.—For the years 1897–8 to 1902–3, it is stated that the mica exports averaged 19,173 cwt. with an annual value of £77,613, or £4.05 per cwt. A table is furnished by Holland that shows the relative contributions of the mica-exporting provinces. The two chief, Bengal and Madras, during the years under review (1897–1903) contributed to the average total as follows:—Bengal, 12,582 cwt., valued at £52,272; Madras, 6,872 cwt., valued at £25,241. Of these exports the United Kingdom took the largest share, amounting to the average to 14,843 cwt., valued at £56,799, or 77.4 per cent. of the total quantity and 73.2 per cent. of the total value. Much of this, however, is sold in the United Kingdom for transmission to the Continent and America. The United States come next, 18.5 per cent. of the average total quantity and 20.1 per cent. of the total value. The mica sent to America, it is stated, brought a higher price, as only the better qualities could face the heavy import duty imposed by the Dingley Tariff in 1897. Turning to the annual statement of the Trade and Navigation of British India with foreign countries for the year ending March 1907, we learn that the following were the actual exports from India during the past five years:—1901–2, 16,285 cwt., valued at Rs. 10,50,511; 1902–3, 20,412 cwt., valued at Rs. 13,13,909; 1903–4, 21,548 cwt., valued at Rs. 12,94,453; 1904–5, 19,575 cwt., valued at Rs. 14,68,986; 1905–6, 31,554 cwt., valued at Rs. 23,94,413; and 1906–7, 51,426 cwt., valued at Rs. 38,24,988.

MORINDA, Linn.; Fl. Br. Ind., iii., 155–8; Watt, Agri. Ledge, 1895, No. 9; Gambling, Man. Ind. Timbs., 422; Talbot, List Trees, etc., 1902, 196; Prain, Beng. Plants, 1903, i., 572–3; Cooke, Fl. Pres. Bomb., 1903, i., 613–5; Duthie, Fl. Upper Gang. Plain, 1905, i., 426–7; Brandis, Ind. Trees, 1906, 392; Rubiaceæ. A genus of erect or climbing shrubs or trees which comprises about 40 species, all tropical. Of these seven are natives of India.

M. angustifolia, Roxb.; Rec. Bot. Surv. Ind., i., 248, 347. The dāru haridri, chenung, ban hardi, yigo, etc. An evergreen bush of the Eastern Himalaya ascending the hills to 6,000 feet in altitude; Assam; Eastern Bengal to Tenasserim.
THE ÁL OR ÁCH DYE

The young roots (more especially the root-bark) yield a good yellow Dye, which is used fairly extensively by the Natives of Eastern Bengal and Darjeeling, also by those in Assam, and to a small extent in Burma. In Darjeeling and the Garo hills, McCann writes that the dye is prepared by pounding the bark of the root and boiling it in water, then straining and boiling over again till the required consistency is obtained. In dyeing cotton yarn or cloth, certain ingredients that act as mordants or acids to brighten the colour are used along with the morinda extract. Other dyes are employed along with it, to produce brilliant reds. Duncan (Dyes and Dyeing in Assam, 1896, 35) gives full particulars of the system of dyeing with Morinda angustifolia that prevails in Assam. Chips of the bark of letekú (Baccaurea sapida) and the leaves of the ladh (Symphoricarpos spicata, p. 1053), by most writers said to be the chief mordants employed. [Cf. Mason, Burm and Its People (ed. Theobald), 1883, ii, 422.]

M. citrifolia, Linn.; *M. tinctoria*, Roxb.; Watt, *Agri. Ledg.*, 1895, No. 9, 2 plates. A plant often called the Indian "Mulberry," or Togari Wood of Madras; ál, ách, bárti, surangí, nína, nína, sirá, maddí, nyab-yyí, etc. A small tree or large bush formerly widely cultivated throughout India; but within the past few years the industry has been entirely ruined and the cultivation practically abandoned.

Cultivation.—The cultivation of *Morinda* has been discontinued, or nearly so, since the introduction of aniline dyes. In many districts where it was formerly grown, the cultivation was entirely discontinued and the cultivation practically abandoned. A full account of the methods of cultivation and position of the industry is given in the *Agricultural Ledger* (i.e. 1873). It is there stated that the crop was formerly very profitable. One of the most striking features was the circumstance that from a perennial tree, which may attain a height of 30 to 50 feet, a biennial field-crop had been produced that rarely exceeded a height of 2 feet, though it flowered and fruitied freely.

The soil was prepared as for other crops. It was ploughed three times, cleared of weeds, and sown in June. The seed was procured from previous field-crops and put through a process of special preparation. This was the choti-al, and was the crop exclusively grown in certain localities, such as the Anjangaon neighbourhood. In other villages a crop known as moti-al was also grown, the seed for which was obtained from trees which grew near by, and not from the previous field-stock. The fruits were collected, piled in a heap till they turned black and the pulp softened. This was accomplished in three or four days. After separating the seeds by breaking the fruit on stones or by the mogra (mallet), the seeds were piled together for fifteen days. To remove the remainder of the pulp the seeds were placed in baskets and sunk in the river and finally spread out to dry. About 40 lb. were drill-sown to the acre. The moti-al often flowered and fruited the first year, and would continue to do so during the second or even third. At the village of Anjangaon, the choti-al crop was usually gathered in the third year and dug up somewhere in November to January. Sandy soils were best suited, black soils being too hard for the roots to penetrate. The Anjangaon cultivators considered the three-year-old crop to be the best. After the roots were dug up and separated from the stems, they were cut into small pieces, spread out to dry, and in eight or twelve days were ready for market. The ál crop was followed by cotton, which in its turn was followed again by ál.

Dye.—A full account of the Native methods of utilising the dye is given in the *Dictionary*. The reader should also consult the *Agricultural Ledger* (i.e. 1873), where it will be found an account of the process in Gondal, Kathiawar, has been contributed by Mr. M. J. Bharwada. A widespread opinion prevails among Natives that textiles dyed with ál are protected against the depredations of white ants; and if this were so, it would be a powerful argument in favour of its extended use, instead of its discontinuance, but the matter has never been scientifically confirmed. Some years ago the dye was thoroughly investigated by Prof. Hummel and Mr. Perkin of the Yorkshire College, Leeds. They found that the root does not dye in its original condition, but that either the glucosides must first be hydrolysed or that certain acid substances must be removed. The former is effected by boiling with acids or alkalis, or by fermentation. The process of removing the acids consists in washing the powdered root three times, two hours each time, with water. The last steeping may occupy twenty hours. The dye-bath is then charged with the washed root and 1:5 per cent. of its weight of sodium carbonate or 1 per cent. of chalk. The temperature is gradually raised to the boiling-point and the colours cleared with boiling soap solution. [Cf. Forster, *Pl. Enc.*, 1876, 41; Rumphius, *Herb. Amb.*, 1743, iii, 159; Hunter, *Morinda and its*...
HORSE-RADISH TREE

MORUS ALBA
White Mulberry

M. umbellata, Linn.;

White.

Javan Red Dye.

Horse-radish.

Gum.

Ben Oil.

Perfumery.

Pot-herb.

D.E.P., v., 278-84.

Mulberry.

MORUS, Linn. ; Fl. Br. Ind., v., 491-3; Gamble, Man. Ind. Timbs., 1902, 634-5; Talbot, List Trees, etc., 1902, 324; Prain, Beng. Plants, 1903, ii., 967-8; Brandis, Ind. Trees, 1906, 612; UBTICARCHE. A genus of trees or shrubs. Three species are said to be natives of India, of which the best known is M. indica. The economic information regarding each species cannot be accurately separated, as all possess very similar properties.

M. alba, Linn.; tát, tál, chinni, sátr, uppu náte, etc. A small deciduous tree indigenous in Northern and Western Asia; cultivated in Northern India and Trans-Indus country up to 11,000 feet. It is the chief mulberry used for silk-production in the Panjáb and Kashmir. The fruit is edible, and there are many varieties according to locality. It flowers in February and the fruit ripens in May and June. The wood weighs from 38 to 56 lb. per cubic foot (Gamble), and is employed for building, in making boats, furniture and agricultural implements. [Cf. Bentham, Rev. of Tarqgion-Tazzett, in Journ. Hort. Soc., 1856, ix., 170-1; Dodge, Useful Fibre Plants of the World, 1897, 243; Hosie, Rept. on Prod. of Sau’ch’wan, China, 1904, No. 5, 17, 50, 55.]

874
THE MULBERRY

M. indica, Indian mulberry, has been cultivated in the Himalayas since ancient times. It is a deciduous tree that provides shade and food for silkworms. The tree's leaves are used to feed the silkworms, which then produce silk thread.

M. alba, white mulberry, is native to Asia and is commonly found in the wild. It is known for its hardy nature and ability to grow in a variety of conditions. The fruit is edible and has been used in various cultures for its nutritional benefits.

M. burlingtoniana, a native of North America, is another species of mulberry that is grown for its fruit and as an ornamental tree.
rocky country. Occurs on the Himalaya west to Gilgit and east to Sikkim, usually at altitudes of 8,000 to 12,000 feet, and is also met with in Tibet and Central Asia as far as Siberia. The rutting season is in January, the period of gestation about 160 days, a single young one being usually produced.

Musk is the contents of the abdominal gland—the preputial follicle. Within is a secretion that looks like coagulated blood, has a greasy touch and a strong penetrating odour. It is only developed in the rutting season, and as sold is a brown, soft mass possessed of the well-known odour. An ounce is about the average produce of one animal. Good and pure pods fetch from Rs. 10 to Rs. 15 according to size, but they are often much adulterated with blood and other material. Musk-deer are snared or shot to secure the "musk-pods," but the flesh is said to be well-flavoured and not at all tainted, as might have been expected, with the penetrating odour of the musk. The males smell of it, but the females never do so.

There are recognised in trade three chief grades, viz., (1) the Cabardien or Russian musk; (2) Assam musk (which includes all grades of Indian musk); and (3) Tonquin or Chinese Musk. The Assam and Tibetan musks reach Europe via Calcutta. When dried within the follicle, it bears the name of "Musk-pods," when scraped out and sold in granular form it is called "Grain Musk." It is shipped in bags enclosed in wooden or tin-lined chests that contain about 200 pods. In the Dictionary will be found an interesting note on the Bashahr Musk, contributed by Mr. G. G. Minikien. The Himalayan Musk has been known from ancient times and Baber in 1510 refers to it, but within the past decade or so the demand for the Indian article seems to have been declining.

The following were the exports to foreign countries:—In 1899-1900, 61 oz., valued at Rs. 11,900; in 1900-1, 647 oz., valued at Rs. 18,873; in 1901-2, 309 oz., valued at Rs. 13,320; in 1902-3, 44 oz., valued at Rs. 1,500; in 1903-4, 53 oz., valued at Rs. 2,425; in 1904-5, exports nil; in 1905-6, 223 oz., valued at Rs. 11,180; and in 1906-7, 658 oz., valued at Rs. 14,500. Capital (Oct. 20, 1904) gives an instructive account of the traffic in this substance and exhibits the official statistics of imports into Bengal from Tibet and Bhutan for 16 years prior to that date. The Bhutan had preserved a mean valuation of Rs. 15,000, while the Tibetisch has fluctuated from a valuation of Rs. 3,343 to Rs. 1,27,144. The official valuation of the Tibetan musk last year was Rs. 40 per oz. and that of Bhutan Rs. 32. The price of the Tonquin musk in England has been as high as 119s. an oz. and as low as 45s. Ten years ago the price was from 90s. to 95s. the oz. The latest quotations in the London market for genuine grain musk of good quality is 72s. 6d. to 75s. per ounce." [Cf. Marco Polo, Travels (ed. Yule), ii., 35; Baber, Memoirs (Leyden and Erskine, transl.), 313: Barbosa, Coasts E. Africa and Malabar (ed. Hakl. Soc.), 186-7; Terry, Voy. E. Ind., 1655 (ed. 1777), 109; Tavernier, Travels (Ball, transl.), ii., 143-5, 258-60; Linschoten, Voy. E. Ind. (ed. Hakl. Soc.), ii., 94-5; Pyrard, Voy. E. Ind., 1601 (ed. Hakl. Soc.), ii., 359; Fryer, New Acc. E. Ind. and Pers., 212; Boyum, Fl. Sin., Z; Birdwood and Foster, E.I.O. First Letter Book, 131, 255, 261, 287, 428, etc.; Milburn, Or. Comm., ii., 513-4; As. Res. 1832, xvii., 15; Kirkpatrick, Kingdon T. Nepal, 131; Hoffmeister, Travels Cont. Ind. (Engl. transl.), 323; Brandt, and Ratzel, Med. Zool., 1829, ii., 41-5, t. 7; Paulus Apigneta (Adams, Comment.), 1847, iii., 468-70; Rockhill, Mongolia and Tibet, 71; Cordemoy, Le Prod. Colon. d'Orig. Animale, 1903, 302-5; Fulton, Notes on Mammalia of Chirah, in Journ. Bomb. Nat. Hist. Soc., 1903, xiv., 760; Waddell, Lhassa and Its Mysteries, 1905, 483.]

Musk Substitutes.—The term "Musk" is in common usage applied in compound names to a number of products of both animal and vegetable character, possessed more or less of the scent of the true perfume. Amongst these may be mentioned the musk-rat (or shrew); the musk-plant (Minimus mosschatus); and the Abelmoschus of India (Abelmoschus moschatus). The last mentioned is the only substitute that has so far attracted serious attention, but the experiments in its cultivation on a commercial scale cannot be regarded as having proved successful.

THE SPECIES OF BANANA

MUSA

SAPIENTUM

Banana

A genus of tree-like herbs with thick stems largely composed of the convolute leaf-sheaths. It contains some 40 species, several of which are often considered as mere cultivated varieties.

M. sapientum, Linn.; The Banana, kela, kach-kula, kantali-kela, muz, vazhav, pazham, anati, arut, bale, vasha, ya khaing, etc. A perennial herb, 8 to 15 feet in height, indigenous in the hills of Bihar, the Eastern Himalaya and the mountains of Assam, Manipur and Burma, ascending to 4,000 feet; cultivated throughout India and the tropics. By some writers the Plantain is considered a distinct species, and placed under the name **M. paradisiaca**, but by most authorities it is simply a cultivated variety of **M. sapientum**. According to Schumann, both should be placed under **M. paradisiaca**.

J. G. Baker, in the *Flora of British India*, gives ten different forms of this plant. The more important of these from the Indian standpoint are:

M. Dacca, Hort., Prod. Monog. Soc., 1862, 41. Distinguished by the pale green leaves and stem, white pruineose below, the petiole having a broad red border and the fruit being pale yellow. Cameron adds that the tip and stout stalk remain of a bright green, while the fruit is still firm on the bunch when fully ripe. Cameron also suggests that this is the Dacca or Dacca-Martaban; is doubtless the dhakkai described by Liotard as abundant in Eastern Bengal.

M. Champa, Hort. Stem and mid-rib of the leaf red, fruit pale straw-coloured, about 6 inches long. Cameron makes two forms. These are the Champa—the finest of all the plantains, but not fit to be eaten till it can be removed from the bunch without the slightest effort: and the Chimi-Champa, which differs only from the preceding in being much smaller (in fact, not much larger than the thumb). These two are the plantains most generally seen in Calcutta.

M. stikkimensis, Kurz. A wild form.

M. paradisiaca, Linn. Fruit large, long and firm—the field plant of India generally; is eaten only after having been cooked. This is the plantain of Cameron, while **M. Dacca** and **M. Champa** above, with the Bombay red fruit below, would be the Bananas of India. Under this form should be included the kuneta and kach-kela, the large coarse fruits eaten by the poorer classes throughout India.

M. corniculata (Rumphius), Kurz, a form closely resembling **M. paradisiaca**, and its representative to a large extent in Western and Southern India.

M. textilis, see (see below).

M. arakanensis, Ripley. In the *Flora of British India* this is simply mentioned as a fibre-yielding form, but Capt. Ripley sent to the Agri.-Horticultural Society of India (in 1857) 19 forms of Arakan plantains, each possessing special properties of its own, some having red, others pale yellow, and still others dull white fruits. The one which he specially designated **M. arakanensis** yields, he says, both a fine fruit and a useful fibre. One of these Arakan plantains—the Royal Plantain—he further observes, bears fruits 15 inches long. The most characteristic plantain of Burma much resembles the Bombay red plantain, which Cameron calls:

M. rubra, Firminger (non Wall.); Baker, Ann. Bot., vii., 221; ram-kela or Red Plantain. This is a remarkably fine fruit; in flavour and buttery consistency recalls the Dacca plantain. The plant is unmistakable at a glance, as it has the stem and leaf-stalks and mid-ribs of a dull red colour, as also the flowers. The fruit is about 7 inches long and rather thin, is at first of a very dark red colour, but ripens into a yellowish red. Though not very common in India as a whole, it is the characteristic better-class plantain of Bombay. Hence the plantains of Calcutta and Bombay are widely different, both in appearance and flavour.
MUSA
SAPIENTUM
Plantain

Name
"Banana."

"Plantain."

History.—The name "Banana" is very seldom used by the English in India, though it is universal in the fruit-shops of England. In India all kinds are indiscriminately called plantains. But neither name would appear to be originally Indian. The plant grew in Palestine before the Crusades. Garcia de Orta, 1563 (Coll., xxiii.), says the word came from Guinea, and that the Arabs call "these figs," "Musa," or "Amusa," names which of course come from the Sanskrit "mocha." The origin of the name "Plantain" is perhaps even more obscure. In Hobson-Jobson it is said that according to Oviedo (1516), "it or rather platana appears to have been the name under which the fruit was first carried to the W. Indies." But according to Oviedo the plant was improperly so called, as it was quite another thing from the platana described by Pliny. Early mediæval travellers generally call the fruit either "Fig of Paradise" or "Fig of India," and in the West Indies to-day the common small plantains are called figs. Ligon (Hist. Barbados, 1657, 80–2) is perhaps the first author who attempted to describe and figure the two plants, calling them by the names of banana and plantain. [Cf. Joret, Les Pl. dans l'Antiq., etc., 1904, ii., 301–2.]

Cultivation.—The plantain is cultivated very nearly throughout India, except in the extreme north-west and from sea-level up to 5,000 or 6,000 feet in altitude. In certain localities large gardens (of many acres) are planted almost exclusively with the fruit, and the produce is systematically sent to Calcutta, Bombay and other large towns. More frequently it is cultivated merely in small patches around the homesteads and for home consumption. Throughout the plains of India the plantain is extensively produced, especially along the banks of rivers, canals and tanks. Many distinct races exist and these may be grouped under two heads, those grown for their ripe and those for their half-ripe fruits; the latter being used as green vegetables. The vegetable forms are known by the general name of kach-kela and are raised on inferior lands as field crops. The fruit forms require more careful cultivation and on garden soils. Kach-kela plantains will grow on almost any soil except stiff clay and barren sand, but both field and garden varieties do best on newly raised earth, as, for example, on embankments. On laying out a garden it is customary to excavate a tank and to plant as a first crop, on the new soil spread on the surface around, a quantity of plantains.

Propagation is entirely by rooted cuttings or portions secured from old stools. These may be deposited in holes made within fields of standing rice paddy, kachu (Colocasia antiquorum), begun (Solanum Melongena) or turmeric (Curcuma longa). The pits or holes are ordinarily 12 to 15 feet apart and the transplanting is usually made in the rainy season (beginning of June to end of July). The pits should be about a cubit deep and manured with cow-dung. When the secondary crop is off the field (April 15 to June 15) the ground is ploughed two or three times. The plantains begin to bear fruit one year after setting, and the ground is then usually devoted to the plantain crop alone. When a sufficient bunch of fruit has set, the pendent extremity of the inflorescence, with its remaining flowers and conspicuous bracts, should be cut away, so that all the available nourishment may go to the formation of fruit. No clump should at one time have more than three suckers at the base. Extra suckers that appear must be removed in June or July and transplanted into fresh ground. When the bunch of fruit has ripened and been cut off, the stem should be severed at the base, so as to make room for the other fruiting stems of the stool. The cost of cultivating 100 trees has been estimated at Rs. 12–12 annas, and from 300 to 600 bunches of fruit may be obtained, which fetch about Rs. 150 per acre per annum.

Of the Madras Presidency it is stated that plantains are grown chiefly

788
PLANTAIN FIBRE

on wet lands. The land is thoroughly ploughed and the shoots planted in pits, almost any month, but more especially during the monsoons. Cameron (For. Trees Mysore and Coorg, etc., 323) suggests that planting should be made every two months so as to keep up a succession of fruiting. Irrigation is effected by flooding the soil, and after the water has soaked in for a day, the superfluous water is run off through drains. The land is then hoed once a month, and three months after planting a surface dressing is given of wild indigo and dung. Hoeing is stopped as soon as the flowers appear, but begins again after gathering the crop. The plants last three to four years.

Food and Fodder.—Plantains, after mangoes, are the commonest and most highly prized of all Indian Fruits, while the coarser kinds constitute one of the staple articles of diet in many parts of India and the Malay Peninsula, being mostly cooked before being eaten. It has been proved that the produce from one acre will support a much greater number of people than a similar area under any other crop, and the immense yield may be preserved for an indefinite period by drying the fruit and preparing meal from it. Plantain meal is made by stripping off the husk, slicing the core, drying it in the sun and then reducing it to a powder and finally sifting. It is calculated that the fresh core will give 40 per cent. of meal, and that an acre of average quality will yield over a ton. [Cf. Bhaduri, Rept. Labor. Ind. Mus. (Indust. Sec.), 1902-3, 26.]

In the Kew Bulletin of 1894 will be found a complete review of the available information regarding the production and trade in the bananas and plantains of the world. The recent demand has given the West Indies a new and profitable industry. There seems no very good reason why India should not participate in the supply of the finer bananas.

Besides the fruit, other parts of the plant are used as food. The flower-heads of many kinds are cooked, generally in curries, and the inner portion of the stem, called thor, is also edible. The shoots and tops of young plants are occasionally used as a vegetable, and are given as fodder to sheep and cattle. The outer sheaths are valued as elephant-fodder, and the root-stock is said to be given to cattle to increase the quantity of milk. [Cf. Rept. Labor. Ind. Mus., 1900-1, 24.]

Industrial Uses.—For long the fibre of the plantain has been used by the Natives of India for cordage purposes, mats and coarse paper. It early attracted attention from the fact that it so closely resembled Manila hemp, (the product of M. textilis), though it is not so strong as the latter and can never hope to compete with it in the European markets. The special Arakan form might, however, prove a useful substitute for the true Manila hemp, and is worthy of special attention. Moreover, vast numbers of the common plantain stems are available for extraction of the fibre, and as at present these are simply thrown away, efforts have been made in recent years to encourage the extraction of the fibre as an additional source of profit. The rapidly increasing demand for cheap string to be used as "binders" should render this suggestion of interest to both the cultivators of the fruit and the cordage manufacturers. The subject of the wild species of Musa as sources of fibre has aroused some attention, and it seems possible that this idea may come to be of value, especially in some portions of Burma. The chief difficulty in the utilisation of plantain stems as sources of fibre or as paper materials is the expense of collecting and carting.
THE NUTMEG TREE

MYRISTICA

FRAGRANS

Nutmeg and Mace

M. canarica, Bedd. : Talbot, List Trees, etc., 165; Gamble, Man. Ind. Timbs., 556 : the pindi. This is discussed by Hooper (Rept. Labor. Ind. Mus. (Indust. Sec.), 1906-7, 9) under the name pandi-kai. The seeds are made into candles and they contain half their weight of fat, which melts at 39° C. It saponifies with great facility, yielding 92 per cent. of crystalline acids, melting at 41° C. The fat consists largely of myristicin. In another report (loc. 1903-4, 31) Hooper refers to the juice of M. gibbosa, Hook. f. & L., which he describes as the Assam nutmeg. The ferment of the fluid he speaks of as resembling that of kino.

M. malabarica, tami. : kanagi, shola vengai, pathiri. A large tree of the western coast from the Konkan southwards in evergreen forests. Like the previous species, the seed yields a yellowish oil when bruised or boiled. It is used medicinally and for illumination (Hooper, Lc., 1906-7, 9). The fruit appears to have been used for adulterating the nutmegs and mace of M. fragrans. The wood is moderately hard and used in building. [Cf. Pharmacog. Ind., 1893, iii., 197.]

M. fragrans, Houtt. : Nutmeg, and Mace; javaphal (nutmeg), jathi, jatri (mace). A bushy, evergreen tree, native of the Moluccas. Cultivated in India but not to a great extent. It has succeeded best at the Botanic Garden of Barliyâr, in the Conoor Valley at the eastern side of the Nilgiri hills. The fruit yields the valuable spices "nutmeg" and "mace," the former being the hard ruminated abumen and the latter the aril (lavanga, see p. 313).

Cultivation.——According to Nicholls (Textbook Trop. Agri., 1892, 178-84), the best soil for the nutmeg-tree is a deep, rich loam, with good drainage. It will not thrive on sandy soils, and stagnant water about the roots soon kills it. The climate must be hot and moist with an annual rainfall of 60 to 70 inches. Plants are raised from fresh seeds, sown in nursery beds, sheltered from sun and wind. They require to be watered every day in dry weather. When 2 to 3 feet high they are transplanted at distances of 25 to 30 feet apart. The young trees must be shaded and well watered, and the land constantly weeded. Should dry weather come, the ground around the stems is improved by being mulched with straw, leaves or stable litter. All parasitic or epiphytic plants on stem or branches should be at once removed. When the trees flower the sexes must be determined and about one male left to every eight or ten females. The males should be on the windward side, so that pollen may be carried to the female plants. The trees commence to bear about the seventh year, and the produce increases till about the fifteenth.

Manufactures.——The fruit is picked up every morning after it has fallen from the tree. From 1,500 to 2,000 nuts should be obtained from each tree in full bearing. The mace is stripped off and the nuts dried in sheds in trays raised above smouldering fires. When dry the shells are broken with mallets, and the nuts rubbed with lime to prevent attack from worms and then packed in tight cases for export. The mace, after being stripped off, is spread on mats or trays to dry, when it turns yellowish brown and becomes the mace of commerce.

Oil.——Nutmeg yields an essential and a fixed oil, while mace also contains a peculiar essential oil. The fixed Oil, "nutmeg butter," is obtained by expression, the powdered nuts being steamed and pressed while hot. It occurs in blocks of a yellow colour. The essential oil is obtained by distillation, and is white in colour, with the odor of nutmeg. The essential oils of both nutmeg and mace are largely used in perfumery.
NARDOSTACHYS
JATAMANSI

THE SPIKENARD

Medicine.

In Medicine, nutmeg is an aromatic stimulant, carminative, and in large doses narcotic. The widespread use of both nutmeg and mace in European cookery is well known.

Trade.

Exports.

Trade.—As regards trade, the Exports of Indian merchandise for the six years 1901–7 were as follows:—In 1901–2, 170 lb., valued at Rs. 106; in 1902–3, 5,287 lb., valued at Rs. 2,683; in 1903–4, 2,596 lb., valued at Rs. 1,189; in 1904–5, 5,086 lb., valued at Rs. 2,586; in 1905–6, 560 lb., valued at Rs. 194; and in 1906–7, 793 lb., valued at Rs. 691.

Imports.

The Imports for the same years were as follows:—In 1901–2, 589,295 lb., valued at Rs. 2,54,259; in 1902–3, 626,871 lb., valued at Rs. 3,32,352; in 1903–4, 571,118 lb., valued at Rs. 2,17,870; in 1904–5, 584,818 lb., valued at Rs. 3,10,071; in 1905–6, 671,445 lb., valued at Rs. 2,15,137; and in 1906–7, 715,018 lb., valued at Rs. 2,28,453. Almost the whole of the imports come from the Straits Settlements, viz. in 1906–7, 706,366 lb. There is, moreover, a Re-export trade, which shows the following returns:—In 1901–2, 19,130 lb., valued at Rs. 7,949; in 1902–3, 69,975 lb., valued at Rs. 44,549; in 1903–4, 16,050 lb., valued at Rs. 9,667; in 1904–5, 21,077 lb., valued at Rs. 10,026; in 1905–6, 15,217 lb., valued at Rs. 8,392; and in 1906–7, 21,287 lb., valued at Rs. 10,542. The United Kingdom receives the largest share of the re-exports, while British East Africa, Aden, Turkey-in-Asia, and in some parts France and Egypt, also take considerable quantities.

NARDOSTACHYS JATAMANSI, DC.; Fl. Br. Ind., iii., 211; Valerianaceae. Spikenard, jagatánsí, bálu-char, behk-kurphus, hasuwa, pampe, mási, bhutt-jatt, bala-charea, etc. A perennial herb of the alpine Himalaya, which extends eastwards from Garwhal and ascends to 17,000 feet in Sikkim.

Perfume.

Through the researches of Sir W. Jones (As. Res., 1790, ii., 405–17) this perfume was first identified with the spikenard of the ancients. In The Bower Manuscript (Hoernle, transl.) numerous references are made to mamsi and namads, which the translator regards as the present plant. The manuscript in question dates from the 8th century and was found at Kucha in Khotan. Garcia de Orta (Coll., I.) gives an account of the spikenard, but as he speaks of it as procured from Mandu, Chitor and parts of Bengal bordering the Ganges, it seems likely that he confused Cymbopogon with Nardostachys. The drug consists of a portion of the rhizome, about as thick as the little finger, surmounted by a bundle of reddish-brown fibres, the remains of the radical leaves. It is aromatic and bitter, and yields on distillation an essential oil. In India it is largely used as an aromatic adjunct in the preparation of medicinal oils, and is popularly believed to increase the growth and blackness of the hair. [Cf. Pliny, Nat. Hist., bk. xii., ch. xii. (Holland, transl.), 364; Paulus Epineta (Adams transl.), ii., 294; Amatus, Comment. on Dioscorides, 1558, 12–5; Acosta, Tract. de las Drogas, 1578, 173–81; Celsius, Hierobot., 1747, ii., 1–11; Roxburgh, As. Res., 1795, iv., 435–6; Lambert, Genus Cinchona, etc., 1821, 177–80; Tuleef Sherief (Playfair transl.), 1833, 67; Pharmacog. Ind., 1891, ii., 233–8; Dutt, Mat. Med. Hind., 1900, 189–1.]

Essential Oil.
THE LITCHI FRUIT

NEPHELIUM LIT-CHI, Camb. ; Fl. Br. Ind., i., 687 ; Gamble, Man. Ind. Timbs., 1902, 197 ; Talbot, List Trees, etc., 1902, 109 ; Cooke, Fl. Pres. Bom., 1903, i., 268 ; SAPINDACEAE. The Litchi, litchi, litchi, kyetmauk. A handsome evergreen tree, introduced from South China and now largely cultivated in Northern India for its delicious Fruit.

The tree grows well in all parts of India, but in the north-west is apt to be killed by cold. It prefers a damp climate and abundance of water. The finest quality of fruit has hitherto been produced in Bengal and Assam, more especially the latter province, but fine fruit is also obtainable in Lucknow and in Salaranpur. It may be propagated by seed, but the surest way to obtain good fruit is to propagate by gíti, about the end of May. For this method of propagation the reader should consult an article by Masters (Agri.-Hort. Soc. Trans., 1839, iii., 2; vi., 18) quoted by Firminger (l.c. 99). The gíti made in May will be ready for removing and potting off by the commencement of the cold weather, and may be planted out in the following rainy season. The fruit is nearly round, about an inch and a half in diameter. The edible portion is the semi-transparent pulp or aril which covers the seed. The Chinese dry the fruit, which thus becomes blackish, and in this state it may be seen in London fruit shops, but it is incomparable with the fresh fruit. [Cf. Boym. Fl. Sin., 1656, D. ; Sonerat, Voy. aux Indes, 1782, iii., 255-8 ; Bretschneider, Hist. Europ. Bot. Disc. in China (quoting Mendoza, 1585), 1898, 11 and (quoting Trigaut, 1615) 10-1 ; Woodrow, Gard. in Ind., 1903, 238 ; Firminger, Man. Gard. Ind. (ed. Cameron), 1904, 265.]

NICOTIANA, Linn. ; Lobel, Hist. Stirp., 1576, 316 ; Everart, De Herba Panacea, 1587 ; Casper Bauhin, Pinax, Theat. Bot., 1623, 169 ; Parkinson, Parad., 1629, 363-4 ; Gerarde, Herb., 1636, 357-61 ; Simon Pauli, Comment. de Abusu Tabaci, etc., 1665 ; Tourn., Inst. rei Herb., 1719, i., 117 ; Miller, Gard. Dict., 1st ed., 1731 ; Tiedemann, Gesch. des Tabak, etc., 1854 ; Koning, Der Tabak, etc., 1900 ; Comes, Monog. du genre Nicotiana, 1899 ; also Della Rasse dei Tabacchi, etc., 1905 ; Prain, Beng. Plants, ii., 751-2 ; Cooke, Fl. Pres. Bom., ii., 276 ; Kissling, Handbuch der Tabak, etc., 1905 ; Anastasia, Le Varietà Tipiche della Nicotiana Tabacum, 1806 ; SOLANACEAE.

Prof. Comes of Naples has described some 41 species of Nicotiana. The majority are natives of the New World, though a few are met with in the Philippine Islands, Australia and New Caledonia, etc. Only two, or perhaps three, can be regarded as affording the commercial products TOBACCO and SNUFF, but under each of these Comes has assorted numerous varieties and races, some of which possess special properties, and would seem to constitute the trade qualities famed throughout the world. The following are some of the chief forms, and the countries with which these are mainly associated:

N. Tabacum, Linn.; Fl. Br. Ind., iv., 245; Comes, Monog., Lc. 7-19; also Della Rasse, etc., 1-222; Sadebeck, Kulturgew. der Deut. Kolon., 1899, 206; Wiesner, Die Rohst. des Pflanzenw., 1903, 613. A native of tropical America, which Comes views as embracing some six varieties as follows:—

Var. fruticosa, Hook. f., Bot. Mag., 1876, t. 6207; Comes, Lc. tt. i., iii. The narrow-leaved Shrubby Tobacco. A native of Mexico and Brazil. Appears to be the plant described by the older authors—e.g. the Herba sancta minor of Lobel, and the Nicotiana minor angustifolium of Bauhin. According to Comes, the following are some of the races of this plant—Caraboro, China, Nepal, Doniaku, Singapore and the South Indian.

Var. lancifolia, Comes, Lc. tt. i., iv.; Héuzé, Les Pl. Indust., 1895, iv., 18. A native of South India. It would appear to be occasionally cultivated on the hills, as for example in Kashmir, Nilgiri hills, etc., and in the Philippine Islands (Manilla). Comes mentions, as races of this plant, Domingo, Kentucky Burley, Cattaro, etc. D.E.P., v., 348-8. Lit-chi. Fruit.

Propagation.
Season.
Species and Varieties.

Kashmir.

NICOTIANA
RUSTICA

Species and Varieties

Var. virginica, *Comes, Lc. tt. i., v.; also Della Rasse, etc., 121–5; Anastasia, Lc. 106–16.* This, Comes thinks, came originally from the region of the Orinoco and was introduced by the English colonists into Virginia, where, under cultivation, it gave rise to some of the most highly valued forms of tobacco usually grouped under pale and dark-coloured leaf. Among these may be mentioned Big Orinoco, or Virginia Broad-leaf, Yellow Orinoco, Blue Pryor, Yellow Mammoth Golden-leaf, etc.

Var. brasiliensis, *Comes, Lc. tt. i., vi.; also Della Rasse, etc., 79–119; Anastasia, Lc. 101–5.* This is the Broad-leaved Tobacco, known in Brazil by the name petum or petun. A native of Brazil, Guinea, Venezuela and Bolivia. According to Comes was introduced into France by Thevet in 1556, and thence to Europe generally. Is the stock from which the so-called indigenous tobacco of Europe has been derived, and is valued on account of the thickness of the leaf rendering it suitable for the manufacture of snuff. The following special races may be mentioned:
Brazilian.

Var. havanaensis, *Comes, Lc. tt. i., vii.; also Della Rasse, etc., 153–97; Anastasia, Lc. 97–106.* Indigenous to the valleys of Mexico. It was conveyed thence by the Spaniards to the island of Cuba, is the plant most highly valued as Havana tobacco, and known by many trade names such as Havana Seed-leaf, Cuban Seed-leaf, etc. This plant is accordingly most largely selected for the improvement of other stocks, and it would appear to be the chief source of the so-called Java and Sumatra tobaccos. The following are some of the chief races mentioned by Comes:—Seed-leaf, Connecticut, Pennsylvania, Ohio, Maryland, Wilson's Hybrid, Zimmer's Spanish, Mexican, Manilla, Deli-Tabak, etc. [cf. Shamel, *Imp. Tob. by Breeding and Selection, etc.*, in *U.S. Yearbook*, 1904, 435–52; 1906, 387–404.]

Var. macrophylla, *Schrank; Comes, Lc. tt. i., viii.; also Della Rasse, etc., 199–22; N. Tabacum, var. purpurea, Anastasia, Lc. 1906, 43–96.* A native of Mexico and introduced into many countries—India, Persia, Egypt, Porto Rico, Peru, etc. This appears to yield much of the Maryland tobaccos of commerce. The flowers are usually of a deep purple colour and the leaves exceptionally large. The following are some of the special races mentioned by Comes:—Cuban, Varinas, Venezuela, Makala, Salomiki, Argos, etc.

N. rustica, *Linn.; Heuzé, *Les Pl. Indust.*, 1895, iv., 19; Sadebeck, Lc. 220; Wiesner, Lc. 614.* This is the *Nicotiana minor* of some of the older authors, and is at once distinguished by its being a smaller plant with almost orbicular-stalked, leathery leaves and pale-greenish white flowers, with the limb of corolla imperfectly developed. It is commonly known as Turkish or East Indian Tobacco. Comes regards it as a native of Mexico and Texas. In the former it is known as *pucicu* or *puicu*, and he is of opinion that this was the plant introduced into France by Jean Nicot (after whom the genus was subsequently named). It was cultivated in America before the arrival of Columbus. Comes places under it the following varieties:—

Var. texana, *Comes, Lc. tt. ii., ix.* A native of Mexico and the plant seen by Nicot under cultivation in Portugal in 1560, the seed of which was sent to Queen Catherine of Medicia.

Var. jamaicensis, *Comes, Lc. tt. ii., x.* A form met with under cultivation in Jamaica, Guatemala and Mexico, but doubtfully distinct from the preceding.

Var. brasilia, *Schrank; Comes, Lc. tt. ii., xi.* Habitat, Brazil. This is the tobacco which the Brazilians call *fumo-crespo*. It is often used in the manufacture of snuff.

Var. asiatica, *Schrank; Comes, Lc. tt. ii., xii.* This is the so-called Syrian tobacco, but is also grown in Arabia, Persia and Abyssinia. It came, however, from America and is sometimes designated as the common or English tobacco, and when made into snuff is held to be superior to most other grades, though in many trade samples it has been flavoured with aromatic herbs.

Var. humilis, *Schrank; Comes, Lc. tt. ii., xiii.* Extensively cultivated for the manufacture of snuff, and in Germany is regarded as superior to the product of *var. brasilia*.
COMMERICAL CLASSIFICATION

Var. scabra, Comex, Lc. tt. ii., xiv. A native of South America. Hardly ever used commercially because of its disagreeable odour.

N. alata, Lk. et O. ; N. persica, Lindl., Bot. Reg., 1833, xix., t. 1592; Riach, Sheeraz Tobacco, Trans. Hort. Soc., 1835, i., 205-7. A native of Brazil and cultivated in gardens in Europe, Persia, etc. At one time it was thought that this plant was the source of the tumbeki of Persia. In the Kew Bulletin (1891, 77-84) full particulars will be found, the final conclusion of which appears to be that the merits of the tumbeki leaf, like that of most other special tobaccos, proceed from the climate and soil, together with the methods of cultivation and curing, more than from specific differences. Comes seems, however, to think that N. alata is the source of the Persian leaf, while the numerous writers quoted in the Kew Bulletin regard it as derived from the ordinary N. Tabacum.

N. plumbaginifolia, Viv.; Fl. Br. Ind., iv., 246; Comes, Lc. 45. This is believed to be a native of Mexico and the West Indies. In India it has become completely naturalised, especially on sandy islands within the rivers and in damp situations by the roadsides. It does not appear to be put to any economic purpose. It is not mentioned in Roxburgh's Flora Indica, consequently its introduction may date subsequent to 1832.

To conclude this brief statement of the species, varieties and races of tobacco, it may be pointed out that Shamel and Cobey (Varieties of Tob., 1905-6, U.S. Dept. Agri., Bureau Pl. Indust., No. 91) give the following classification according to uses:

1. Cigar-wraper Tobaccos—Sumatra, Connecticut, Havana and Connecticut Broad-leaf, etc.
2. Cigar-filler Tobaccos—Cuban, Zimmer's Spanish, Little Dutch, etc.
3. Pipe Tobaccos—North Carolina, Bright Yellow, Maryland Smoking, etc.
4. Plug Tobaccos—White Burley, Orinoco, Yellow Mammoth, Virginia Blue Pryor, White Stem, etc.

Tobacco breeding, Shamel and Cobey have shown (U.S. Dept. Agri., Bureau Pl. Indust., 1907, No. 96) is of necessity a subject of the greatest possible interest and value.

History. The practice of tobacco-smoking was unknown in Europe and Asia prior to the discovery of America in 1492. It has since been ascertained that the knowledge of the properties of tobacco was very ancient and widespread in the American Continent and Islands. Some difference of opinion prevails as to the locality where tobacco-smoking was first witnessed by Columbus and his associates. By some authorities Cuba is mentioned, by others San Salvador. The plant and the habit of smoking were found by Cortes in the very heart of Mexico. The Spaniards witnessed tobacco-chewing in 1502 on the coast of South America. Monardes published, in 1517, an account of tobacco in which he says that it was known to the Indians (American) by the name piciel. In 1518 Fernando Cortez occupied the island of Tobago, and found the plant being there cultivated. About the same time the prepared leaves were brought by Oviedo from San Domingo to Spain. In 1531 the Spaniards commenced the cultivation of tobacco in San Domingo, employing for the purpose African slave labour. Oviedo described a smoking-pipe (Hist. Gen. de las Indias, 1535). In 1539 Hernandez brought seed to Europe. Jean Nicot, French Ambassador, saw the plant cultivated in Portugal, and in 1560 sent seed of it to Catherine of Medicis, from which circumstance the genus obtained its botanical name. In the same year tobacco was conveyed to England by Thomas Hariot; Sir Francis Drake and, subsequently (1570-94), Sir Walter Raleigh and others made tobacco-smoking popular in England, and about the same time cultivation was started in Virginia. In 1596 Ben Jonson, in his Every Man in his Humour, represented the arguments for and against tobacco.
History

Not grown in India.

Portuguese.

First Definite Appearance in India.

Cultivation in Ceylon.

Jahangir forbade Smoking.

Exported from India.

Parsis of Gujarat.

Abundantly cultivated in India.

Its Improvement in Botanic Gardens, Calcutta.

A Century ago was Unimportant.

Prohibition.

"Counterblaste."

Prohibited in England.

Babar (Conqueror and Emperor of India) wrote his Memoirs with special reference to 1519-25, and while describing all the useful and interesting animals and plants found by him in India, makes no mention of tobacco. So also a little later (1563) Garcia de Orta published in Goa his historic work on the drugs of India, but makes no mention of tobacco. The first direct reference to it, in connection with India, centres around certain Portuguese missionaries at the Court of the Great Mughal. Doubtless to the Portuguese is due the credit of having conveyed both the plant and the knowledge of its properties to India and China. It is said in the Dara-shikoh that they had conveyed it to the Deccan as early as 1508. Asad Beg, of date 1605 (Elliott, Hist. Ind., 1875, vi., 165-7), says of Bijapur that he found some tobacco and, "never having seen the like in India I brought some with me and prepared a handsome pipe of jewel work." These he presented to the Emperor Akbar, who attempted to smoke, until he was forbidden by his physician. It would thus seem to have been known in the Deccan for nearly a century before it was carried to the rest of India. On the other hand, Comes affirms that the seed cultivated in India in 1605 had been brought from Brazil. In 1610 tobacco was grown in Ceylon, and in that same year it was introduced into Turkey (George Sandys, Journey, 56). In 1614 Floris produced a sketch of a Hindu woman of Masauipatam smoking tobacco. By 1617 smoking had, in fact, become so general in India that the Emperor Jahangir forbade the practice, as also had Shah Abbas of Persia (Elliott, V. vi., 851). Foster, in his work The English Factories in India (1906, 64, 92, 109), quotes various letters and invoices of date 1619 which speak of tobacco being sent from India to Red Sea ports. Mandelslo (Travels, 1638, in Olearium, Hist. Muscovy, etc., 1662, 74) speaks of the Parsis of Gujarat living peaceably and subsisting themselves out of the advantage they make of the tobacco-plant and the terry they get out of the palms." Cultivation in Gujarat in 1638 is spoken of as successful. In 1645 the plant was carried to Golconda. Edward Terry (Voy. E. Ind., 1659-60), speaking of Surat, says that "the tobacco which grows there is doubtless in the plant as good as in any other place of the world, but they know not how to curb and order it, as those in the West Indies." Fryer (New Acc. E. Ind. and Pers., 1672-81, 223, etc.) says, "The Persians smoke tobacco in their most solemn assemblies, and for this purpose are provided with spitting-pots or pidgeans." Tavernier (Travels in Ind. ed. Ball, 1676, ii., 23) tells us that he found tobacco grown abundantly at Burhanpur, and adds, "In certain years I have known the people to neglect saving it because they had too much, and they allowed half the crop to decay." Ovington (Voy. to Suratt, 1689, 428) speaks of the people of Muscat abhorring tobacco and burning all that is brought to their city. Strachan (in Phil. Trans., 1702, xxiii., 1134, (abrid. ed.) iv., 667), gives an account of the cultivation and manufacture of tobacco in Ceylon. He speaks of two forms, one much stronger than the other. The Bahar-i-Ajam, 1760 (Blochmann in Ind. Antiq., i., 164), speaks of tobacco coming from the Bank Put for the Dakhim and the Thanes to Upper India during the reign of Akbar Shah—a fact already indicated. Col. Kyd (in his History of the Court of Directors, proposing the formation of the Botanic Gardens, Calcutta) mentioned the improvement of tobacco as one of the subjects that might engage attention. Macpherson (Hist. Europ. Comm. with Ind., 1812) makes only a passing allusion to the tobacco trade of India with France, and Milburn (Or. Comm., 1813) does not even mention the name of the "weed." It is thus a fact beyond dispute that tobacco, less than a hundred years ago, was an article of comparative unimportance in India, whereas to-day its use is all but universal—men, women, and even children smoke—and, moreover, the export traffic has become of the greatest importance to the country. The Sikhs, Wahabis and certain Hindus are, however, prohibited the use of tobacco, though allowed indulgence in hemp and opium to any extent. As in other parts of the world, so in India, tobacco passed through a period of persecution, but its ultimate complete distribution over India is one of the numerous examples of the avidity with which advantageous new crops or new appliances have been absorbed into the agriculture and social customs and even literature of the people of India.

It is a matter of everyday knowledge that King James I. issued his famous "Counterblaste" in 1603, and raised the tax to 6s. 10d. on the pound. King Charles, in 1630, prohibited the cultivation in England and Ireland, where it seems, according to Macpherson, great quantities were still raised. In 1633 the King issued a proclamation to regulate the vendors of tobacco in cities and towns. Pope Urban VIII. prohibited smoking in church, By an Act of 1663 cultivation
in England was again prohibited, and in 1670 Charles II. passed still a further Act, by which imports intended for Ireland had, in the first instance, to be conveyed to England. In 1709 the net consumption of tobacco in England came to 11,290,669 lb. In 1791 Virginia and Maryland were regarded as most valuable acquisitions to Britain because, among other considerations, of the tobacco they produced. An interesting account of the cultivation of tobacco in Virginia in 1676 is given by Mr. Thomas Glover in a paper delivered to the Royal Society (Phil. Trans., June 20, 1676, xi, 623, (abrid. ed.) ii., 301—reprinted, Oxford, 1904). By a special Act of George III. (1780) tobacco cultivation in Ireland was allowed, but not in England nor Scotland; and, lastly, in 1830 William IV. prohibited the Irish cultivation.

Prior to the separation of the United States, the British supply of tobacco came almost entirely from Virginia. During the reign of Queen Anne the annual revenue from tobacco was only about £250,000. In 1903 the net imports (that is to say, imports less exports) were valued at £3,136,228, or a total weight of 75,915,759 lb., and the traffic gave a revenue of over £12½ million pounds sterling.

Cultivation.

Area.—The crop occupied in 1905–6, 1,018,506 acres in British districts and 24,284 acres in the Native States for which returns are available. But since several important States furnish no returns, it may be accepted as a safe estimate to put the total tobacco area of India at 1,100,000 acres. It would, moreover, seem fairly certain that it has not expanded materially during the past ten years. Of the total, Bengal (including Eastern Bengal and Assam), has fully one-half; Madras a little over 300,000 acres; Burma, Bombay, the United Provinces and the Panjab have each about 60,000 acres.

As a rule there are three distinct persons concerned in the tobacco trade. In Rangpur (of Bengal) the cultivators sell the leaf on the field to up-country traders and curers—*dalals*, as they are called—who own large curing-sheds, at certain convenient intervals, through the chief tobacco-producing localities. The curers next sell it to Burmese dealers, who come and supervise the leaf as it is being cured; they then pack and dispatch it themselves. These three classes are fairly general throughout Bengal, the chief tobacco-growing province of India. Tobacco with the Natives of India is either used up in the crude form or is worked into a paste with several ingredients (to be detailed later on), and in that form smoked. The more elaborate curing of higher-grade leaf is pursued over a comparatively limited area, and to meet the demands of the European rather than the Native population. Bengal, the chief growing province, takes practically no share in the higher-grade manufacture. The crudely manufactured leaf (in trade returned as "unmanufactured tobacco") is exported to Burma or to foreign countries, and in these is worked up into special grades of smoking-tobacco, cigars, etc. In South India (and within comparatively recent years) a new trade has arisen in the manufacture of cigars for the European consumer, both within India and throughout the East generally. Indian cigars have, moreover, found their way to Europe, and the traffic in them is yearly increasing. In the whole of India there are nominally, say, 25 curing farms and factories that give employment to 2,150 persons, but this must be regarded as over and above the large number of persons already indicated as concerned in the cultivation and crude manufacture of the Native article. [Cf. Heuzé, *Les Pl. Indust.*, 1895, iv., 24–42.]

Bengal, Eastern Bengal and Assam.—Tobacco is grown for local consumption in almost every district, more especially in Rangpur, Jalpaiguri, Kueh Bihar, Darbhanga, Purnea, the 24-Parganas, Nadia,
NICOTIANA

Bengal

Areas.

Chittagong, Sylhet and Kamrup, etc. In some of these districts it is moreover, largely grown for trade and export. In 1905–6 the total area under tobacco in the two provinces of Bengal was 535,525 acres, more than half that of all India, and in Assam 4,911 acres. The districts of Rangpur and Jalpaiguri and the Native State of Kuch Bihar contain the largest areas. In 1904–5 the area in Rangpur was 181,100 acres and in Jalpaiguri 119,300 acres. Two species, *N. Tabacum* and *N. rustica*, are grown. The former is generally called *desi*, and the latter *vilayati* (foreign). *Vilayati* is largely cultivated in Purneh and neighbourhood. So little attention has been paid by writers on this subject that it is said no cultivated races of *vilayati* are known, but that the *desi* has many such, the most important of which is known as *kingle*, produced in parts of Nadia and Jessore.

One of the most striking features of Rangpur is the extent of tobacco cultivation (Agri. Ledg., 1898, No. 15, 508). Both *N. Tabacum* and *N. rustica* are grown, wherever the soil is a rich, sandy loam with water only a few feet below the surface. Shallow wells are dug all over the tobacco-fields, and during certain stages in growth hand irrigation is daily pursued. The water is thrown from the wells so as not merely to supply moisture to the roots but to wash the dust off the leaves. The agricultural system pursued is of a very high order, and it is not to be wondered at that tobacco should prove so valuable and remunerative a crop, in a country pre-eminently the tobacco area of India. The railway to Jatapur cuts the district practically in two. In the one half, the northern, with its rich sandy loam, *N. Tabacum* is cultivated; and in the other, the southern, with its lower, damper soil, *N. rustica* prevails. But wherever the red-clay soil appears, tobacco cultivation at once disappears. In Rangpur and Kuch Bihar it is no unusual occurrence to find a single leaf of *N. Tabacum* measuring 3 to 4 feet in length.

The following account of cultivation has been derived mainly from Mukerji and Roy. The crop requires a good soil and heavy manuring. The best kind is a well-drained friable, sandy loam, not too rich in organic matter, but rich in mineral salts, especially those of potassium. It may be grown after jute or Indian corn, but often forms the only crop of the year. If properly manured, it can be grown three or four years on the same ground. The seeds are sown in seed-beds in August or September, and the seedlings transplanted a month later. The soil of the seed-bed is dug and manured with cow-dung and ashes until raised about 6 inches. After the soil has been well pulverised the seed is sown thin and lightly covered with earth. About half an ounce is required to produce plants for one acre.

When the seedlings are about 3 inches high they are fit for transplantation, which takes place from the end of September to the middle of November. The soil must previously be prepared by eight or ten ploughings. Deep cultivation and thorough pulverisation are important, and a liberal manure of rotted cow-dung and ashes is necessary. The seedlings are planted in the evening 3 feet apart. They must be carefully watered the first few days, and irrigation is necessary afterwards at intervals of ten to twenty days. In Rangpur and Jalpaiguri a hand-plough is repeatedly drawn along and across the fields until about the time that the flower-buds appear. Where artificial irrigation is required, regular hoeing is necessary.
Nicotiana

Panjab and Kashmir

Areas.

was 12,194 acres in the Central Provinces, and 14,220 acres in Oudh. The districts with largest areas are usually Raipur 1,105 acres, Bilaspur 995, and Chanda 1,023 acres, in the Central Provinces; Amrati 5,531 acres, Bundana 3,602, Wun 2,374, and Ellichpur 1,178 acres in Berar. The plant is cultivated in patches near the villages, and the whole produce is consumed locally. The seasons of sowing and reaping vary. In Narsingpur the crop is harvested in October; in other districts the stems are cut usually in February and March.

Rajputana.

Rajputana and Central India.—In these provinces cultivation is almost confined to the Native States of Gwalior, Jaipur, Bharatpur and Tonk, which in 1905–6 grew respectively 3,590 acres, 2,563 acres, 1,072 acres, and 147 acres. A description by Dr. R. H. Irvine of the famous Bihlsa tobacco, grown in Gwalior, is quoted in the Dictionary. According to O’Conor, tobacco in Central India is raised on high, well-ploughed lands. A second crop is frequently taken from the stems left after the first crop has been gathered.

Panjab.

Panjab and North-West Frontier.—The area in 1905–6 was 67,594 acres in the Panjab and 9,666 acres in the North-West Frontier. In the Panjab the districts with largest areas are usually Jalandhar, 3,756 acres, Sialkot 4,400 acres, Lahore 4,524 acres, Gujrat 3,137 acres, Amritsar 2,890 acres, Gujranwala 3,465 acres, Jhang 2,708 acres; in the North-West Frontier, Peshawar 8,513 acres. The soils generally preferred are garden and manured lands near the villages. Alluvial lands are not considered suitable; in three cases only—namely, parts of the Sialkot, Ludhiana and Rawalpindi districts—are alluvial tracts selected. Irrigation is practised, the plots being watered about once in every four days, and extensive manuring is necessary. Night-soil, sheep- and goat-dung, stable litter and cow-dung, are used, and an admixture of saltpetre is found beneficial. The sowing season in most districts is October and November, but may in some places continue till December and January (Shahpur, Multan, Dera Ghazi Khan) and February (Peshawar, Amritsar, Rawalpindi). Transplanting takes place from January to March, and cutting during May, June and July. The plant is cut to the roots and no second crop taken. [Cf. Purser, Settl. Rept. Jalandhar, 1892, 127–8; Dist. Gaz. Pb.; Exper. Farm Rept. Lyallpur, 1901–2, 20; Renouf, Tobacco in Pb., in Proc. Board Agr. Psyene. Jan. 1906, 115–6.]

Kashmir.

Kashmir.—According to Sir W. Lawrence (Valley of Kashmir, 1895, 345–6) tobacco is cultivated in many parts of Kashmir, but chiefly in and around Srinagar and the smaller towns. Cultivation is almost entirely in the hands of the gardener class. The plant yielding the best produce grows in Srinagar, and is known as brevarei (N. Tabacum, var. lanceifolia). Another species, chilasi (N. rustica), has been introduced from the Panjab. It is sown in April and picked about the end of August. It requires very rich soil and is irrigated by the dip-wells of the country. The consumption of tobacco in Kashmir is almost entirely in the form of snuff.

Bombay.

Bombay and Sind.—The area in 1905–6 was 64,539 acres in Bombay and 9,048 acres in Sind. The districts with the largest areas are Belgaum 22,856 acres, Kaira 21,276 acres, Satara 4,215 acres, Ahmadabad 3,187 acres, Khandesh 4,364 acres, Broach 2,685 acres, and Hyderabad 4,847 acres. Mollison gives a very full account of the methods pursued. The best kind is grown on deep alluvial lands near the Krishna. Throughout the Kaira
district and the adjoining Baroda Territory, where cultivation is extensive, wells with salt water are common, and the water is used for irrigating the tobacco, often with remarkable manurial effects. Wells of special value occur in the neighbourhood of Nadiád (Kaira district) and Pettád (Baroda Territory). For details regarding the manurial value of these salt wells, consult Leather (Agri. Ledg., 1895, No.14). A free-working and satisfactorily drained soil is best. On such land in Gujarat mild-flavoured tobacco of good quality can be grown. A stronger tobacco with large, coarse leaves grows best on medium clay loams, irrigated with sweet water or salt and sweet combined. In Gujarat, tobacco is rarely rotated with other crops, and it is claimed that the longer the soil is under the crop, the better the produce.

The seed-beds should be prepared on elevated ground and under tree-shade. In villages which grow a large area of tobacco, a piece of ground is usually set apart as a common nursery. The bed should be carefully prepared. The burning on the surface (before the rains set in) of refuse, straw, brushwood or cow-dung improves the mechanical condition, the ashes manure the soil, and the heat kills weeds and insects. After burning (rubbing), goat manure should be well mixed with the soil, and a fine tilth obtained by hand-digging. The seed (mixed with ashes or fine sand) is sown in July, one ounce to one hundred square feet of seed-bed. The beds require protection from heavy rain, and should at first be lightly watered by hand. Weeds must be removed and the seedlings thinned out. The seedlings are ready for transplantation when they have four leaves and are 3 or 4 inches high. As soon as possible after the harvesting of the previous crop the stems and roots should be grubbed up and burned. The field is ploughed soon after the monsoon has set in, and again frequently between June and August. Twenty-five to thirty cart-loads per acre of well-rotted farm-yard manure should be applied, after the field has been ploughed several times. A better practice is to fold sheep on the fields intended for tobacco. The mud from village tanks is also considered good. Before planting the young seedlings, the field is levelled with the samár, then lined and cross-lined with the giske. A seedling is planted carefully at each angle made by the intersecting lines, and a cloudy afternoon is usually chosen. Frequent watering is required. As soon as the young plants have made a fair start hoeing should begin, and when the flower-buds begin to open they should be removed, and with them two to four of the youngest leaves. About ten to fourteen leaves should be left on each plant. The removal of the flower-buds is followed by the appearance of side branches known as “suckers,” and these also should be regularly removed.

On a stiff clay loam soil (besar), tobacco is a dry crop, but as a rule in Gujarat it is irrigated more or less according to the kind of tobacco to be manufactured. Irrigation ordinarily begins early in November. Twenty days after the first watering a second is given, and afterwards others at intervals of twelve to sixteen days until the leaves are ripe, usually about the middle of February. In Gujarat the leaves are left on the plant till they are decidedly yellow. Sometimes the whole plant is cut down, but the usual method is to strip off the leaves one by one from the stalk with a small bent sickle.

NICOTIANA

Madras

Madras.—The area under the crop amounted in 1905-6 to 132,458 acres. The districts with the largest areas are usually Guntur, 41,798 acres, Coimbatore 26,884 acres, Godavari 8,143 acres, Vizagapatam 5,037 acres, Madura 8,296 acres, Kurnool 6,664 acres, etc. The crop is grown in all districts, though on the Nilgiris and the west coast the area is small. Benson (Proc. Board Agri., Pusa, 82-92) gives a very full account of tobacco cultivation in the various districts. In Kistna the crop is grown chiefly in the upland taluks on ordinary black cotton soil. The seed-beds are usually located near shallow pools in which the monsoon rains stand. They are well ploughed and manured. After the first ploughing cattle are penned on the plots, and they are again ploughed once or twice. Village manure, consisting of ashes, earth and dried cow-dung, is then applied at the rate of 50 to 60 loads per acre. After two or three more ploughings the seed is sown broadcast, at the rate of one local seer to 18 cents of land, and pressed in by the hand. At first, watering is frequent, three or four times a day. After twenty days, watering is reduced to once a day, and all unhealthy leaves are picked off daily.

In about two and a half months, when the plants are 8 to 9 inches high, they are trimmed and lateral shoots, if any, removed, and fifteen days later are pulled up and made into bundles for planting. The preparation of the land for the crop commences about July. Before this, village manure and tank silt are applied, and cattle, sheep or goats penned on it after the first ploughing. The land is ploughed seven to ten times, then twice with the gorrum, and afterwards marked off into squares. The young plants are placed in holes filled with water at the corner of the squares, and the earth gathered round them. They are watered for two days in the morning, then for two days in the evening, but are afterwards left to themselves. The crop is topped when 2½ feet high and suckered twenty days later, and about ten days later still is ready for harvest, in February or March. No second growth occurs, and the stems are cut down and used for fuel.

In cultivating tobacco for the manufacture of snuff, the crop is never irrigated from wells, but the plants are grown by the aid of rain alone. Again, if the tobacco is for chewing, watering is withheld four or five days before harvest. The chief centres for snuff tobacco are Trichangode, Rasipuram and Uttankarai taluks in Salem district.

Mysore.

Mysore and Coorg.—The area in Mysore in 1905-6 was 14,263 acres, chiefly in Mysore, Tumkur, Chitalkad and Kolar. The crop is grown on land where ragi and similar grains are cultivated, a crop of which must intervene between every two of tobacco. The seed is sown in June or July, and the seed-beds are prepared near wells or other sources of water supply. The seeds are sown mixed with dung, and after being pressed down with the hand and watered they are covered with mats or the leaves of the date palm. The seedlings are transplanted into fields prepared previously by frequent ploughings and manured by cattle and
DISEASES OF THE CROP

NICTOTIANA

Cultivation

Burma

Pruning.

Burma.

Area.

Seasons.

Transplanting.

Harvest.

Outturn.

Diseases.

sheep. They are placed in holes 18 inches apart and filled in with a mixture of red earth, sand and dung. About a month and a half after being set out they are topped, six or seven leaves only being allowed to remain, and the suckers are removed. They are ripe in November and January and cut down to within 4 or 5 inches of the ground. The stems are then split lengthwise, each portion carrying three or four leaves. [Cf. Rice, Mysore Gaz., 1897, i., 126-8.]

Burma.—The total area in 1905-6 amounted to 49,205 acres in Lower Burma, 26,560 acres in Upper Burma. In Lower Burma the largest areas occur in Henzada, 12,849 acres; Thayetmyo, 6,627 acres; Tharawadi, 5,601 acres; Prome, 3,772 acres; and Kyaukpyu, 3,525 acres: in Upper Burma, Pakókkü, 5,530 acres; Mandalay, 4,393 acres; Minbu, 2,646 acres; Sagaing, 4,156 acres; and Myingyan, 3,944 acres.

Mackenna (Settl. Rept. Henzada, 1901, 50-1) states that the bulk of the crop is grown on low lands annually flooded. A high-land portion of the holding is ploughed during July to August, and about the end of August to the middle of September seed is sown in nurseries. In four or five weeks the seedlings will be 3 or 4 inches above ground and are ready for transplantation in October to November or early in December. The ground is previously prepared by numerous ploughings, and the plants are placed in furrows 3 feet apart at a distance of 3 feet from each other. The ground must be kept free of weeds, and about a month after transplanting the small leaves are removed till only six to ten are left. About March to April plucking commences, and is continued till the rains break. On poor soil tobacco should be planted every three or four years only in the same place, but in good soil annual plantings may go on for twenty or twenty-five years. The expense of cultivation is calculated at an average of Rs. 40 per acre, and the total value of the outturn at Rs. 113-25 per acre. [Cf. Dist. Settl. Repts. Burma; Nisbet, Burma under Brit. Rule and Before, 1901, i., 387-8; Scott, Gaz. Upper Burma and Shan States, 1901 (many passages); Proc. Board Agric., Pusa, 1906,109-12; Repts. Dept. Land Rec. and Agri., Burma.]

DISEASES OF THE TOBACCO PLANT.—Howard (U.S. Yearbook, Agri. Dept., 1898) gives useful particulars regarding the insect pests. So also various publications furnish details regarding Ceylon (Trop. Agrist., xxv., 825; xxvi., 130), Delacroix (Recherches sur Quelques Maladies du Tabac en France, Paris, 1906) has published a full account of the most recent researches and has described the symptoms and methods of treatment of several diseases. He deals fully, for example, with the Canker, caused by a bacterium which he has named Bacillus aeruginosus; with Collar Rot (Pourriture du Collet) and Pith Rot (Pourriture de la Moelle), also due to bacterial organisms hitherto undescribed; with Foot Rot (Pourriture du Pied) due to Fusarium tabacorum, Delacroix; with Mosaic Disease (La Nielle or Mosaique); and with White Spot Disease (Maladie des Taches blanches), etc. So far as at present known, most of these blights do not seem to have appeared on the Indian tobacco plant.

Of the blights of tobacco, the best known are the broom rapes, Orobancha indica and O. nicotianae, common in most of the tobacco districts, especially in Bengal, Madras and Gujarat. Mollison states that in Gujarat a bad attack may sometimes destroy a quarter of the crop. The only practicable direct means of lessening its severity is the prevention of the parasite from forming seed. Another serious disease, in some districts, is the tobacco mildew, caused by the conoidal stage of
continued. The withering-house may be constructed of any design or material providing free circulation of air. In the interior a framework of uprights and cross-rails has to be arranged, across which the sticks with withered leaf or withered plants suspended are placed and retained until the drying is complete. For the first two or three days the sticks with their suspended leaves are removed a foot apart and retained in that position until the mid-ribs are completely dried, which may take from fifteen to thirty days, according to the nature of the weather prevalent. In some parts of the country the first drying is accomplished by the leaves being spread on the floor over a layer of dry straw. Rapid drying produces yellow or almost green leaves, and slow drying darkens the colour.

Drying and Fermenting.—When quite dry, the leaves (or stems with attached leaves) are taken down, usually assorted and, at the same time, separated from the stems and placed in heaps or stacks to ferment or sweat. For this purpose they are flattened out carefully, the stems or leaf-stalks being placed inwards and the tips of the leaves outwards. It is preferable to select a damp day to commence this operation. In the Rangpur houses, the floors being usually mud, the stacks of leaf are placed on boarding. Great care is taken that the leaves be spread out perfectly flat, and as a rule a selection is made of the finer leaf to be used for wrappers, from the coarser to be used as fillers. For this purpose it is accordingly customary to make two stacks, one of high-class, the other of low-class leaf. The stacks of leaf may be as much as 2 to 6 feet in height and the top is usually covered with a cloth or sheet of basket-work over which a weight is placed. It is customary on the second or third day to pull down two stacks of the same quality simultaneously, and to construct new stacks, taking leaf alternately from the one and the other, observing the while that the leaf in the centre of the first stacks may be in the exterior of the new ones. A week later the stacks are similarly pulled down and remade, and this may be continued time after time for a month or six weeks—in other words, until all the heat of fermentation has disappeared. In this way uniform and continuous fermentation is ensured.

Bundling and Baling.—The leaves are then tied into bundles of 25 or 30, a useless leaf being employed in tying each such bundle. Great skill is required in this operation, since the leaves must be left perfectly flat, the bundles being almost fan-shaped. In this condition they are baled, the broom-like ends projecting outwards.

It may be as well to contrast this (which may be taken as the system pursued in 1902 when personally inspected by me in Rangpur) with that given by Buchanan-Hamilton as observed in Dinajpur (the adjoining district) during 1809-11. The tobacco, he says, is "fit for cutting in March and April. Each stem contains from 5 to 8 leaves, which in a good soil are 18 inches long, and in a poor are only half the length. The stem is cut, and the plants are allowed to lie three days on the ground. The leaves are then separated, and are tied in handfuls, which are hung in the open air until dry. The handfuls are made into balls, by laying them together in two rows, with their roots outward. The parcels are surrounded with straw, are tied very tightly, and the bale is then complete."

Whitney and Floyd (Growth of Tobacco Industry, U.S. Yearbook, Agri. Dept., 1899, 429-40) show the bundles or "hands" as produced in Maryland and Virginia, also the forms adopted with the "Cigarette and Manufacturing Tobaccos," "Connecticut Cigar-wrapper Leaf," the "Ohio Limmer
Spanish Cigar-filler Leaf," the "Florida Cigar-filler Cuban Seed." [C. Floyd, *World's Exhib. Leaf Tobacco at Paris Expos. 1900*, in *U.S. Yearbook, Agri. Dept.*, 1900, 157–66; McNess and Mathewson, *Dark Fire-cured Tobacco of Virginia, etc.*, *U.S. Yearbook, Agri. Dept.*, 1905, 219–30.] Much depends, apparently, on the care in handling and the skill in making up the bundles. There would accordingly seem every prospect of limitless expansions of the Indian tobacco trade, through the simple bestowal of greater care in the manufacture and in the methods of bundling and handling the leaf. Although the past century has witnessed a great advance there is still much room for improvement. Any one who will take the trouble to inspect the chief tobacco area of India will readily discover that the fault is not so much the climate, soil and plant, as the defective methods of curing that consign the Bengal tobacco to the humble position it usually occupies in the markets of the world.

Changes occurring during Manufacture.—Dr. Harold H. Mann, in a communication with which I have been favoured, discusses the modern opinions on this subject:—"It has been repeatedly pointed out by writers on this subject that dry *Nicotiana Tabacum* leaf is not tobacco. Delacroix (Bull. Scient. Pharm., Feb. 1905, No. 2) remarks, for example, that the quantity of albuminoids present in the normal leaf gives a disagreeable odour to the smoke that recalls that of burning wool or horn. The fermentation which the leaf undergoes during manufacture is, in fact, essential to the preparation of tobacco, and if not carried out properly, the finest leaf may be rendered entirely worthless. Many theories have been held at various times as to the nature and cause of the great changes which take place, and it has been successively believed that they were due simply to the oxidising action of the atmosphere at the high temperature which was produced (100° to 120° F.), (Schloesing, Nessler); that definite microbes or bacteria were the necessary agents in producing the flavour of tobacco (Suchsland, Koning, Vernhout), and even that each class of tobacco had its own special bacterium; and that such changes as occur are principally, if not entirely, due to the presence and action of oxidising enzymes or unorganised ferments (Loew). It is now almost universally recognised that oxidising enzymes are the principal agents in producing the development of the colour and aroma characteristic of prepared tobacco leaf.

"These enzymes, which were first isolated and examined by Oscar Loew in America, appear to be at least three in number. The first of these (oxidase) is an exceedingly active ferment, but very susceptible to noxious influences, being destroyed by heating to the very moderate temperature of 150° F.; the second (peroxidase) is not nearly so active, but is more resistant, and is only destroyed at 190° F.; the third (catalase) is of a different character, more resistant than either, but the part it takes in the processes of manufacture is not yet understood. The processes of curing (drying) and sweating (fermentation) of the tobacco leaf are accompanied by a destruction of these enzymes present in the leaves; the oxidase and peroxidase generally survive the curing process but the former of these finally disappears in the sweating (fermentation), leaving the more resistant peroxidase.

"The changes induced by these ferments are very considerable. During the drying (curing) of the leaves, the starch is transformed, and the greater part of the sugar which results disappears. The albuminoids decrease
NICOTIANA
Manufacture

And it is customary to read in the public press of the rapidity with which the habit of cigarette-smoking has invaded the social life of the various races and peoples of India.

Indian Cigars.—One of the first persons who realised the possibilities of an Indian cigar trade was Capt. E. A. Campbell, who, in 1876, started a company at Dindigul to improve the well-known “Trichy” of former times. Two years later, however, the company was wound up and little progress made till about 1881, when it was discovered that by importing wrappers from Java and Sumatra a cigar could be turned out that would please the eye of the consumer better than that constructed throughout of Indian leaf. This discovery gave at once the impetus that was needed to bring the excellent cigars of South India to the favourable notice of the world at large. A factory inspected by me in 1903 was found to give employment in all its departments to fully a thousand persons—men, women and children. It was ascertained that the usual rate for an expert worker was to produce 400 to 800 cigars a day, according to skill, thus earning from Rs. 20 to Rs. 30 a month in wages.

But it is perhaps one of the most remarkable features of the tobacco traffic that no attempt has been made by Europeans to organise a tobacco-manufacturing establishment either within the great producing area of Bengal itself or in Burma, where the Bengal leaf is worked up and again returned in the form of the cigars for which Burma has been so long famous.

Industrial, Chemical, etc.—It would be beyond the scope of this work to discuss all the side issues and technical investigations. The Pharmacographia Indica (ii., 632-43) will be found to set forth the salient features of most of these side issues. The Kew Bulletin (Feb. 1896, 49-55) furnishes details regarding the natural sugar present in tobacco. Many publications have dealt with tobacco juice—a substance prepared in France and sold by all the licensed vendors. It is claimed to be free from all matter susceptible of fermentation and to contain no resinous substance, but a higher percentage of nicotine than would be the case with an infusion of the leaf. Tobacco juice is largely used as an insecticide. Espin published in the Bulletin of the Botanical Department of Trinidad for 1900 a highly instructive account of tobacco cultivation, manufacture and trade. This was followed up by a most instructive little book issued by Sir D. Morris, Imperial Commissioner of Agriculture for the West Indies, entitled The Cultivation and Curing of Tobacco (1905). The Tropical Agriculturist (Oct. 1905, 595; Jan. 1906, 819-26, etc.) contains papers of great interest on the cultivation and manufacture of tobacco in Ceylon.

Trade.

Masulipatam.

Indian Snuff.

TRADE IN INDIAN TOBACCO.—During the opening decade of the 19th century India was not known to the commerce of the world as a tobacco-producing country. By 1825, however, we read of Masulipatam in South India producing very superior tobacco, and that snuff was

808
about that time also sent from India to England. In 1833 was published Buchanan-Hamilton’s account of Dinajpur (which was possibly written about 1809 to 1811). He speaks of tobacco cultivation much as if it had been even then a well-known crop (see p. 805). It was apparently not fermented at all—simply dried leaf.

Exports.—By 1866–7 the exports of tobacco from India were valued at Rs. 5,61,836, of which only Rs. 7,088 worth were consigned to the United Kingdom. But there is no mention of cigars in these early trade returns; and what is more curious still, Bombay was by far the most important source of the Indian supply. Ten years later (1876–7) the exports were rendered under three headings:—Unmanufactured Tobacco, 10,508,720 lb., valued at Rs. 7,51,375; Cigars, 190,136 lb., valued at Rs. 1,17,445; and Other Manufactured Tobaccos, 205,033 lb., valued at Rs. 22,578. Ten years still later (1886–7) the exports were:—Unmanufactured, 9,868,834 lb., valued at Rs. 9,57,156; Cigars, 273,209 lb., valued at Rs. 2,11,391; and Other Sorts, 193,996 lb., valued at Rs. 27,036. Again, ten years still later (1896–7), the exports were:—Unmanufactured 11,257,582 lb., valued at Rs. 11,38,204; Cigars, 557,816 lb., valued at Rs. 6,37,812; and Other Sorts, 273,872 lb., valued at Rs. 37,318. For the most recent years (taking values only) the following were the exports:

<table>
<thead>
<tr>
<th></th>
<th>1900–1</th>
<th>1901–2</th>
<th>1903–4</th>
<th>1905–6</th>
<th>1906–7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unmanufactured</td>
<td>Rs. 6,48,102</td>
<td>17,86,132</td>
<td>12,86,241</td>
<td>14,07,241</td>
<td>20,49,623</td>
</tr>
<tr>
<td>Cigars</td>
<td>Rs. 8,64,254</td>
<td>16,40,427</td>
<td>7,72,799</td>
<td>8,80,903</td>
<td>9,97,489</td>
</tr>
<tr>
<td>Other Sorts</td>
<td>Rs. 30,745</td>
<td>42,440</td>
<td>37,639</td>
<td>52,293</td>
<td>48,866</td>
</tr>
<tr>
<td>Total</td>
<td>Rs. 15,49,101</td>
<td>34,68,999</td>
<td>20,96,679</td>
<td>23,40,437</td>
<td>30,95,978</td>
</tr>
</tbody>
</table>

The cheap tobaccos returned under “Other Sorts” are Native preparations consigned to the Maldives, the Straits, Ceylon and Arabia. Perhaps the most remarkable feature of the foreign traffic is the growth of the supply of cigars. The exports of this class expanded from a valuation of Rs. 1,17,445 in 1876–7 (when first separately returned) to Rs. 16,40,427 in 1901–2, and Rs. 9,97,489 in 1906–7. And it is significant that, in what might be called normal years, these exports go mainly to the United Kingdom and the Straits Settlements. The years 1901–2 and 1902–3 were abnormal, since in these years very large consignments were made to Cape Colony and Natal—doubtless to meet the demands of the British soldiers. Further, it may be added that the bulk of the cigars exported from India go from Madras and Burma.

Of the unmanufactured tobacco, Bombay exports by far the largest quantity (on an average about one-half the total). And what is remarkable, the receiving countries are Aden, the Straits Settlements, China (Hongkong) and Holland, the last-mentioned having for some time steadily increased its demands for the very cheapest of the Indian unmanufactured tobaccos. No Indian unmanufactured tobacco would appear to go to the United Kingdom. Bengal, the chief producing province, exports to foreign countries, as a rule, only about half the quantity supplied by Bombay. But the explanation of this circumstance is perhaps to be had in the fact that by the coastwise traffic Bengal is shown to export to Burma unmanufactured tobacco (in 1905–6) to the value of Rs. 27,68,296. The importance of Burma to the Indian grower is made
NICOTIANA

Trade

still more evident when it is added that at the same time Madras contributed to Burma unmanufactured tobacco to the value of Rs. 14,72,433. Thus Burma is to the Indian grower of unmanufactured tobacco a very much more important market than the rest of the world collectively.

Imports.—Turning now to the Import Traffic, a similar expansion may be said to be observable. In 1876–7 the traffic under all classes was valued at Rs. 9,56,880. Ten years later (1886–7) at Rs. 49,53,486; the following decade (1896–7) at Rs. 26,30,258; in 1904–5 at Rs. 55,62,850; in 1905–6 at Rs. 66,08,807; and in 1906–7 at Rs. 69,33,377. The most noteworthy feature of this trade is the growth of the demand for foreign cigarettes. The year 1900–1 was that in which the returns of cigarettes were made apart from cigars. They were then returned as 1,165,399 lb., valued at Rs. 17,03,968; while in 1904–5 they were 2,518,659 lb., valued at Rs. 35,08,187; in 1905–6, 3,119,071 lb., valued at Rs. 44,97,699; and in 1906–7, 2,912,841 lb., valued at Rs. 45,97,364. On the other hand, if an opinion can be formed of a traffic for so limited a period as six years, the imports of cigars would seem to have manifested nothing like the interest taken in the cigarettes. In 1900–1 the imports of cigars were 60,157 lb., valued at Rs. 2,34,209; in 1904–5 they were 118,020 lb., valued at Rs. 3,75,958; in 1905–6, 101,293 lb., valued at Rs. 3,49,136; and in 1906–7, 111,586 lb., valued at Rs. 4,03,330. This state of affairs may be a direct consequence of the continuous improvement that for some years past has been maintained in the Indian-made cigar.

Of the imports of cigarettes in 1900–1 (1,165,399 lb.), 610,980 lb. came from the United Kingdom and 362,760 lb. from the United States, while 887,882 lb. of these imports were taken by Bengal. Of the supply for 1906–7 (2,912,841 lb.), 1,818,057 lb. came from the United Kingdom and 782,596 lb. from the United States. The supply from the Straits Settlements seems to fluctuate very greatly, but for the past two years has declined seriously. In 1903–4 the imports came to 177,294 lb., but in 1905–6 were 19,228 lb., and in 1906–7, 15,053 lb. China (Treaty) Ports have similarly given indications of a contraction: in 1903–4, 203,134 lb.; in 1905–6, 163,661 lb.; and in 1906–7, 112,528 lb. Bengal continued to hold the supremacy as the receiving province, since out of the total it took in 1906–7, 1,755,852 lb.; Burma and Bombay following with respectively 438,723 and 309,885 lb. Robertson (Rev. Trade Ind., 1904–5, 11) remarks: The cigarette imports have thus in five years increased 106 per cent., and the quantity imported last year represents 840 million cigarettes. The average value per pound was Rs.1–4–5 British, Rs.1–1–2 American, Rs.6–9–1 Egyptian, and those from the East, 15 annas 9 pies, the value per 1,000 being roughly three times the value per pound. Noël-Paton (Rev. Trade Ind., 1905–6, 15) shows the quantity to have further increased by 23.8 per cent. on that for 1904–5: “The average value per lb. from each of the sources was:—British, Rs. 1–8–10; American, Rs. 1–1–6; Egyptian, Rs. 6–4–3; and Eastern 13 annas.”

Speaking of the modern cigarette trade, J. E. O’Conor (Anglo-Ind. Rev., April 1903) observed: “Within the last three or four years, however, a singular modification of popular taste has been witnessed, one which would hardly have been believed possible in such a country and amongst such a people. Some enterprising firms in Europe thought they saw an opening in India for the Native consumption of American tobacco in

THE TOBACCO PLANT

810
cigarettes in supersession of the hookah (or water-pipe) still commonly used by the people. Acting on this idea they imported cigarettes in increasing quantity at rates bringing them within the reach of the masses, and in a very short time the arrangements made for bringing the cigarettes within easy reach of the consumer had a very manifest effect. At the present moment the value of the cigarettes imported is about £150,000 a year, and allowing for the proportion of better class cigarettes imported for Europeans it is clear that the trade is already extensive. As yet, moreover, it is practically confined to a few large towns, and is only beginning. To say that it may increase tenfold is to use most moderate language. Why should the supply of these things be allowed to come from abroad?"

Of the cigar trade in 1900-1 (60,157 lb.), 18,295 lb. came from Belgium; 11,653 lb. from the Philippines; 7,605 lb. from the Straits Settlements; 5,978 lb. from the United Kingdom; and 4,777 lb. from China—Hongkong. In 1906-7 (111,586 lb.), 38,420 lb. came from Belgium; 28,448 lb. from China—Hongkong; 21,759 lb. from Holland; 5,650 lb. from the United Kingdom; 2,992 lb. from the Straits Settlements; and 450 lb. from Natal, the supply having greatly decreased.

NIGELLA SATIVA, Linn. Prain, Beng. Plants, 1903, i., 194. Ranunculaceae. The Small Fennel or Black Cumin, kalájira, kalóni, wagrela, karun-shirogam, nalla-jilakra, karijiriqi, samon-né, etc. A native of Southern Europe, but extensively cultivated in India for its seeds.

These contain two kinds of Oils, one dark-coloured, fragrant and volatile, the other clear, nearly colourless, and of about the consistency of castor oil. Medicinally they are regarded as aromatic, carminative, stomachic and digestive. By the Natives they are much used in curries, in vinegar (p. 1110), and other dishes, and are frequently sprinkled over the surface of bread along with sesamum seed. [Cf. Pharmacog. Ind., i., 28-9; Agr. Ledg., 1895, No. 10, 168, 171; 1896, No. 28, 271; 1899, No. 12, 150; Thorpe, Dict. Appl. Chem., 1899, ii., 397; Gildemeister and Hoffmann, Volatile Oils, 1900, 352; Dutt, Mat. Med. Hind., 1900, 102-3. (For the true Cumin, see pp. 442-3; black Caraway, p. 283.)]

OILS, OIL-SEEDS, FATS, ETC., AND PERFUMERY.—The Oils and Fats may be classified by many systems depending upon their chemical, physical and industrial properties and uses. Or they may be grouped according as they are derived from the animal, vegetable or mineral kingdoms. Some are spoken of as fixed, others as essential, edible, medicinal, drying, non-drying, etc., or again as illuminants, lubricants or as suitable for candle-making, soap-making or perfumery. Blount and Bloxam (Chem. for Engin. and Manuf., etc., 1900, ii., 223) observe that fats, tallow, waxes, etc., are chemically of the same nature as the substances popularly designated oils. They are characterised by their unctuousness, by their insolubility in water, and by their solubility in ether, benzene, carbon bisulphide, and by their leaving a greasy stain on paper, which does not disappear by evaporation. Chemically they are ethereal salts of fatty acids, the alcohol radicle of the salt being glycerine (glyceryl), except in certain waxes where radicles of higher alcohols occur. Popularly, however, fats are viewed as distinct from oils, but it serves no good purpose to separate them.

OILS

Chief Kinds

Paint.

Uses of Oil.

Soap.

Candles.

Kerosene.

House Illumination.

Cheap Lamps.

Chief Oils and Fats.

To the Natives of India Oils might be described as chiefly of interest as articles of diet or as illuminants. They are but rarely employed as lubricants. The painting of woodwork is a luxury of the wealthy. With the peasant, the ornamentation of the implements of his trade or the materials of his pastime are coloured; when coloured at all, on the turning-lathe and by means of lac. The dyers and leather-workers, however, all use oil, and have done so from the remotest antiquity. One of the most important Indian uses of oil, and one comparatively unknown in Europe, is the anointment of the person with mustard or rape and a few other sweet oils. The use of soap as a personal detergent cannot be said to be more than a luxury, and indeed, to the mass of the people, an unknown luxury. Crude soap is, however, largely manufactured and sold in every village to be employed by the washermen and dyers.

Candles were never very extensively used by the Natives of India, but the modern demand for kerosene oil and the cheap German lamps, specially designed for service with mineral oils, has largely supplanted the candles of former times. In fact the great popularity of kerosene and other mineral oils, within recent years, has doubtless curtailed the cultivation and manufacture of most of the minor oils, more especially those intended as illuminants and lubricants. It is a matter of twenty-five to thirty years ago, at most, since every European resident in India, and all the wealthier Natives, employed either castor or coconut oil exclusively for house illumination. The subsequent introduction of refined kerosene from America drove these completely out of use, and that too within a remarkably short time, just as electricity seems destined to displace kerosene and gas. The introduction of less pure though cheaper Russian oil and the invention of cheap lamps (already mentioned) may be said to have marked the still greater displacement of vegetable illuminating oils. Kerosene has, in fact, effected a revolution in the domestic economy of the people of India that is marked by an increasing demand for luxury and convenience, one of the many expressions of prosperity that come direct from the peasantry. The present article will be made, as far as possible, to exclude Petroleum (p. 875), though in some instances this may be impossible (e.g. candles) when the returns do not separate the mineral oils and their manufactures from the corresponding vegetable and animal products.

The following are the chief sources of the vegetable and animal Oils and Fats of India, in the sequence of their scientific or trade names: —

Arachis — the Earth-nut (see pp. 76, 80–3); *Bassia* — the *Maha* (p. 120); *Brassica* — Mustard and Rape (pp. 183–6); *Butter* (pp. 475–8); *Camellia* — Tea-seed; *Camphor* (p. 247); *Cannabis* — Hemp (pp. 256–7); *Carthamus* — Safflower (pp. 281–3); *Cocos* — Cocoanut (*Kopra*) (pp. 357–60); *Dipterocarpus* (*Eng*) (pp. 501–2); *Fish-oil* (pp. 544–5); *Garcinia* — Kokum Butter (p. 553); *Ghi* — Clarified Butter (pp. 478–82); *Gossypium* — Cotton-seed (pp. 612–3); *Guizotia* — Niger-seed (p. 625); *Juglans* — Walnut (p. 700); *Lard and Tallow* (pp. 701–3); *Linum* — Linseed (pp. 725–31); *Moringa* — Ben Oil, (p. 784); *Papaver* — Poppy-seed (p. 860); *Ricinus* — Castor (p. 922); *Sesamum* — *Til* or Gingelly (pp. 966–7); and *Wax* (*Bees*) (pp. 125–7).

There are many others that of course might be mentioned, but the above are representative of the Fats and Oils of commercial importance. In passing, reference may be given to *Bombax* (see p. 168); *Cochlospermum Gossypium, DC.*, the White Silk-cotton Tree.
IMPORTS AND EXPORTS

(Hooper, Rept. Labor. Ind. Mus. (Indust. Sec.), 1906–7, 9); Helianthus annuus, Linn., Sunflower (Hooper, Agri. Ledg., 1907, No. 1); and to Otea cuspidata, Wall., the Indian Olive, which in Kohat fruits abundantly (Hooper, l.c. 1904–5, 25). In the present article it is proposed to give in one place a brief sketch of the oil interests of India collectively (exclusive of petroleum and its derivatives). Collective treatment is necessary, not only to link together kindred information but to exhibit the returns of oils and fats (given in trade statistics as "Others"), which by any other treatment would be omitted from this work.

FOREIGN TRADE IN OIL-SEEDS, OILS, FATS, ETC.

The official returns here discussed may be viewed as separated into two great groups—Imports and Exports. Under each of these sections may be formed, such as Fixed and Essential, with sub-sections, Vegetable and Animal, and under these again still further groupings, according as the substances are raw or manufactured. Taking the first year for which fairly complete returns exist (1876–7), then twenty years later (1896–7) and the most recent years (1905–7), the following statement may be accepted as exhibiting the values of the more interesting transactions in the combined traffic:—

<table>
<thead>
<tr>
<th>(A) Fixed.</th>
<th>1876–7</th>
<th>1896–7</th>
<th>1905–6</th>
<th>1906–7</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) VEGETABLE.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Oil-seeds</td>
<td>1,37,191</td>
<td>7,06,675</td>
<td>2,95,548</td>
<td>3,76,009</td>
</tr>
<tr>
<td>2. Oils</td>
<td>2,41,930</td>
<td>31,73,292</td>
<td>14,40,805</td>
<td>26,33,724</td>
</tr>
<tr>
<td>(b) ANIMAL.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Oils</td>
<td>10,664</td>
<td>2,19,761</td>
<td>4,62,361</td>
<td>5,70,655</td>
</tr>
<tr>
<td>4. Butter</td>
<td>85,383</td>
<td>2,01,443</td>
<td>3,12,510</td>
<td>2,66,636</td>
</tr>
<tr>
<td>5. Ghi</td>
<td>2,76,395</td>
<td>4,28,432</td>
<td>1,79,483</td>
<td>2,13,861</td>
</tr>
<tr>
<td>6. Tallow</td>
<td>62,671</td>
<td>1,99,157</td>
<td>8,16,705</td>
<td>9,14,834</td>
</tr>
<tr>
<td>7. Lard</td>
<td>—</td>
<td>—</td>
<td>59,536</td>
<td>92,370</td>
</tr>
<tr>
<td>8. Wax (excl. Candles)</td>
<td>1,48,416</td>
<td>7,093</td>
<td>13,634</td>
<td>24,875</td>
</tr>
<tr>
<td>(c) MANUFACTURES.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Candles (incl. Paraffin)</td>
<td>8,92,918</td>
<td>10,99,751</td>
<td>8,67,983</td>
<td>7,32,438</td>
</tr>
<tr>
<td>10. Soap</td>
<td>3,32,791</td>
<td>11,70,670</td>
<td>31,90,890</td>
<td>32,28,156</td>
</tr>
<tr>
<td>11. Oil and Wax Cloth, etc.</td>
<td>17,020</td>
<td>2,99,150</td>
<td>5,96,666</td>
<td>6,20,305</td>
</tr>
<tr>
<td>(B) ESSENTIAL.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Oil-seeds</td>
<td>58,986</td>
<td>1,44,407</td>
<td>1,22,978</td>
<td>1,69,306</td>
</tr>
<tr>
<td>13. Oils</td>
<td>40,363</td>
<td>1,15,661</td>
<td>1,82,501</td>
<td>2,03,506</td>
</tr>
<tr>
<td>14. Perfumery</td>
<td>4,18,851</td>
<td>2,14,570</td>
<td>2,88,954</td>
<td>2,61,299</td>
</tr>
<tr>
<td>GRAND TOTALS</td>
<td>27,24,179</td>
<td>79,79,962</td>
<td>88,30,554</td>
<td>1,03,07,974</td>
</tr>
<tr>
<td>£181,612</td>
<td>£531,998</td>
<td>£588,703</td>
<td>£687,198</td>
<td></td>
</tr>
</tbody>
</table>

It will thus be seen that while for approximately the past thirty years the imports have increased threefold, during the past eight or nine years they have manifested a tendency to decrease. Prior to 1906–7 the highest year on record was 1901–2, when the total of the above articles came
OILS, OIL-SEEDS AND PERFUMERY

to Rs. 94,66,769 (or £631,118). The most significant feature of the returns is the expansion of the demand for soap, namely from a valuation of Rs. 3,32,791 in 1876-7 to Rs. 31,90,890 in 1905-6 and Rs. 32,28,156 in 1906-7. The growth of this traffic has been continuous, notwithstanding the fact that within the period dealt with India has made rapid progress as a soap-manufacturing country. So also the expansion of the demand for the goods treated under Oil and Wax Cloth is certainly remarkable, seeing that the textile used for linoleum is jute, which is specially manufactured in Calcutta and sent to Europe and America to be subjected to its final transformation into the goods which reappear under the imports indicated. The decline of the imports of ghi and the enhancement of those of butter and tallow are also worthy of note, the more so since the consumption of foreign candles has practically remained stationary for the past thirty years.

Exports to Foreign Countries.

It may now be useful to set forth in a parallel series of quotations the exports from India of the Oil-seeds, Oils, and Manufactures therefrom:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) VEGETABLE.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Oil-seeds</td>
<td>5,28,90,873</td>
<td>7,95,41,000</td>
<td>10,49,17,449</td>
<td>12,82,97,037</td>
</tr>
<tr>
<td>3. Oil-cake</td>
<td>—</td>
<td>19,17,673</td>
<td>31,99,194</td>
<td>(35,88,740)</td>
</tr>
<tr>
<td>4. Dregs of Oil</td>
<td>6,70,935</td>
<td>1,79,515</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>(b) ANIMAL.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Oils</td>
<td>63,088</td>
<td>1,691</td>
<td>6,543</td>
<td>23,171</td>
</tr>
<tr>
<td>6. Ghi</td>
<td>3,57,250</td>
<td>15,00,900</td>
<td>29,38,771</td>
<td>22,65,443</td>
</tr>
<tr>
<td>7. Lard</td>
<td>3,22,825</td>
<td>67,960</td>
<td>18,750</td>
<td>15,747</td>
</tr>
<tr>
<td>8. Tallow</td>
<td>31,234</td>
<td>93,574</td>
<td>1,11,255</td>
<td>80,404</td>
</tr>
<tr>
<td>9. Wax (other than Candles)</td>
<td>—</td>
<td>2,76,190</td>
<td>7,31,320</td>
<td>5,96,009</td>
</tr>
<tr>
<td>(c) MANUFACTURES.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Soap</td>
<td>3,72,059</td>
<td>64,260</td>
<td>10,867</td>
<td>6,685</td>
</tr>
<tr>
<td>(B) ESSENTIAL.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Oil-seeds</td>
<td>2,94,367</td>
<td>5,75,801</td>
<td>20,74,818</td>
<td>19,20,297</td>
</tr>
<tr>
<td>12. Oils</td>
<td>1,80,130</td>
<td>2,52,601</td>
<td>7,18,318</td>
<td>8,12,746</td>
</tr>
<tr>
<td>13. Perfumery (Musick)</td>
<td>1,17,226</td>
<td>19,235</td>
<td>11,180</td>
<td>14,500</td>
</tr>
<tr>
<td>" Others</td>
<td>1,64,371</td>
<td>82,795</td>
<td>1,49,639</td>
<td>1,51,441</td>
</tr>
<tr>
<td>GRAND TOTALS</td>
<td>5,83,25,385</td>
<td>8,93,51,682</td>
<td>12,30,79,765</td>
<td>14,64,59,871</td>
</tr>
<tr>
<td></td>
<td>£3,221,692</td>
<td>£5,956,778</td>
<td>£8,203,317</td>
<td>£9,763,991</td>
</tr>
</tbody>
</table>

Thus in approximately thirty years the exports under the above-mentioned articles have increased from a valuation of 3½ to 9½ million pounds sterling. But to obtain a full conception of the importance of Indian foreign transactions in oils and oil manufactures, it is necessary to add the imports to the exports, when it is seen that the total traffic has expanded from a valuation in 1876-7 of 3½ million to over 10½ million pounds in 1906-7.

Perhaps the most important feature in these returns is the steady progression of the oil-seed traffic, which in 1876-7 stood at a valuation of £3,526,458 and in 1904-5 had expanded to £9,499,961, but contracted to £6,934,496 in 1905-6, and became £8,553,135 in 1906-7. And when the details of these exports are looked into it is found that the traffic in cotton-
seed has expanded during the past five years from a valuation of £36,999
in 1900–1 to £410,840 in 1904–5, £681,173 in 1905–6, and £866,043 in
1906–7. That is to say it has expanded from being utterly insignificant
until now it holds the second place in quantity and the fourth in value of
all the oil-seeds. The bulk of cotton-seed exports go from Bombay to the
United Kingdom. Although less in value, relatively, the expansion of the
traffic in oils, in ghi and essential-oil seeds is no less interesting and
valuable.

INTERNAL TRADE.

But splendid though these results are, they show very possibly little
more than two-thirds of the actual value to the country, the remaining
third representing the consumption of raw material or of the local manu-
factures therefrom. But while it is easy enough, from personal acquaint-
ance with the country, to hazard opinions that may be found fairly accurate,
it is often by no means possible to substantiate such by actual statistical
returns. It has been found the only satisfactory course in dealing with
the above (foreign transactions) to take the declared values at the ports,
since in some cases the quantities may be in gallons, in others in cwt. or
in yards. On referring to the official returns of internal trade, as mani-
fested by the rail-borne traffic, the quantities only are given, and these are
expressed in cwt. No relation can, therefore, be worked out between the
railway goods traffic and the valuations of the exports and imports recorded
at the customs houses. Still, as they stand, the railway returns are in-
inestructive. Some of the more important materials and movements, as
learned from a study of these returns, may be here briefly reviewed. So
also, in the same way, a study of the transactions by sea coastwise gives
additional particulars of the inter-provincial exchanges and of local con-
sumption. These transactions are given in cwt., so that a comparison
with the railway returns is possible, but not with the foreign transactions
nor for years later than 1905–6.

OIL-SEEDS.—In the Agricultural Statistics the following are the head-
ings usually accepted, and under which alone areas of production are
recorded—Linseed, Til, Rape and Mustard, and Others. In the returns
of Foreign Trade a more comprehensive series is given, namely Cotton,
Castor, Earth-nut, Linseed, Mahua ("Mowa" or "Mowra"), Mustard,
Poppy, Rape, Til, and Others. Lastly, in the published returns of rail-
borne traffic we find a third grouping, namely Linseed, Rape and
Mustard, Til, and All Kinds collectively, the last heading including the
three separate kinds as well as the Others of Agricultural and
Trade Statistics. With the exception of linseed and til, no analysis
of the returns of oil-seeds is possible that would approximately exhibit
the relations of production to consumption.

Area.—The majority of the oil-seeds and oil-yielding materials enu-
merated in the opening paragraphs above are, however, regular agricul-
tural crops; and accordingly appear in official statistics in some position
or other. A few, such as the coconut, the mahua, the walnut, etc., are,
however, trees, and can hardly be classed as regular agricultural crops.
Another series afford oil-yielding seeds as a supplementary crop, such, for
example, as cotton, hemp, safflower, poppy, tea, etc. The others in
Agricultural Statistics would, therefore, not include these by-product oils,
but would consist of the minor oil-seeds proper, such as earth-nut, niger
and castor. To the areas returned as oil-seeds would, therefore, have to be

815
added some portions of the acreages returned under cotton, hemp, poppy, etc., and an estimate made for the areas of the oil-yielding trees, before a full conception could be obtained of the total area of India normally concerned in its oil traffic. But taking the statistics of the oil-seeds as published, the area devoted to these crops would seem to have expanded considerably within the past few years. In 1899–1900 the total came to 10,327,641 acres in the British Provinces alone, in 1903–4 it had expanded to 14,545,966 acres, in 1904–5 stood at 13,518,768 acres, and in 1905–6 was 12,501,253, with, say, another million acres in the Native States. But to that vast area would, as just explained, have to be added some portion of the land devoted to cotton (which for the years 1904–7 has averaged 21 million acres), as also the area under all the other plants enumerated above that, like cotton, afford oil-seeds as by-products.

Of the more important oil-seeds it may be said that til or jinjili (Sesamum indicum) is the most abundant and most widely cultivated of all. It occupied, according to the Agricultural Statistics, over 4 million acres in 1904–5, distributed chiefly in Burma, the Central Provinces, Madras and Bombay (including Kathiawar and Baroda). Then come rape and mustard with almost 3½ million acres, mostly in Bengal and the Panjab. Lastly, linseed, a good third, with some 3 million acres, very largely in Bengal, the United Provinces and the Central Provinces. The final reports issued by the Commercial Intelligence Department estimate the areas for 1906–7 under these crops as follows:—rape and mustard, 4,196,500 acres (pure) and 2,210,000 acres (mixed); sesamum, 3,863,100 (pure) and 775,000 (mixed); linseed, 3,028,200 acres (pure) and 663,000 acres (mixed); but in the case of sesamum the area for Burma is not included. Linseed is the rent-paying oil-seed crop, only about 6 per cent. of the annual average output being retained in the country. The other two crops, til and mustard and rape, are very much more largely consumed locally, and are accordingly not so immediately influenced by the fluctuations of the foreign markets. But a disturbing element in estimates of area and production occurs, as already partially indicated, in the very large export trade in cocoanut oil, and in the material (kôpra) from which that oil is expressed, through the fact that no area of production can be given for these products. Moreover, kôpra (or dried cocoanut kernel) is exported, to some extent at least, as an article of food. It is at all events not treated as an oil-seed in any of the official returns, though it affords an important oil.

Traffic.—Turning now to the official publications that furnish information regarding the internal trade, we learn from the returns of railborne goods that the most important receiving province is ordinarily Bengal (an average of over 1,100,000 cwt. for the years 1902–7, drawn chiefly from the United Provinces and Calcutta). Next the Panjab, with an average of about 1,000,000 cwt. for the same period), depends upon the United Provinces almost exclusively for its external supplies, which, moreover, are chiefly classed as Other Oil-seeds. Then comes Madras with an average of about 400,000 cwt. Lastly, Bombay imported during the same period an average of about 400,000 cwt. of oil-seeds of all kinds, chiefly from the Nizam's Territory and Mysore. But the internal transactions of the provinces (the strictly local trade) is normally only 3½ million cwt. (for example, 3,478,180 cwt. in 1904–5 and 3,307,669 cwt. in 1905–6), while the receipts of the port towns came in 1904–5 to 30,890,818 cwt., in 1905–6 to 18,075,155 cwt., and in 1906–7 to 20,804,457 cwt. This is
the supply that meets the foreign exports. It is drawn of course from the provinces, but is consigned direct to the ports, hence does not appear in the inter-provincial transactions. Calcutta and Bombay practically divide the traffic between them. Bombay in 1904-5 (the year with the largest imports during the past five years) took 13,986,721 cwt., of which 4 million came from the Central Provinces and Berar, 3½ million from the United Provinces, 2¼ million from the Presidency of Bombay, 1¼ million from Rajputana and Central India, and 2¼ million cwt. from the Nizam's Dominions.

The traffic with Calcutta, on the other hand, amounted in the same year to 11,165,255 cwt., of which 6½ millions came from the province of Bengal, 4 from the United Provinces, and the balance from the Central Provinces, Rajputana and Central India. The figures for 1904-5, however, were exceptionally high, and in the succeeding years were respectively—Bombay, in 1905-6, 7,289,797 cwt., and in 1906-7, 8,555,004 cwt.; and Calcutta, 6,228,115 cwt and 6,420,501 cwt. Of the other port towns that participate in the foreign trade in oil-seeds it is hardly necessary to go into such details since the amounts are so very much smaller. Karachi, in 1904-5, drew 2,870,569 cwt.; in 1905-6, 1,826,105 cwt.; and in 1906-7, 2,972,222 cwt. almost entirely from the Panjáb, while Madras took in 1904-5, 2,868,273 cwt.; in 1905-6, 2,731,138 cwt.; and in 1906-7, 2,856,730 cwt. in the same years from its own Presidency and the Nizam's Territory.

Turning now to the returns of coastwise trade. The oil-seed traffic in 1904-5 came to 1,294,166 cwt., valued at Rs. 79,23,531 (or £528,235), and in 1905-6 to 1,552,904 cwt., valued at Rs. 1,12,35,391 (£749,026). The most significant feature may be said to be that the chief oil-seed of these returns is sesameum (ū), 431,386 cwt. having been exchanged inter-provincially in 1905-6. Of this, Burma took 316,372 cwt., the bulk being derived from Madras. The traffic in castor is also worthy of special comment. Of the total 220,419 cwt. exchanged, 143,429 cwt. were taken by Bengal, the major portion being derived from Madras. The next most important item is the supply of castor drawn by Bombay, which in the year in question came to 51,755 cwt.

OILS.—It has already been pointed out that the Exports in oils have manifested a considerable expansion, namely, in the case of fixed oils, from a valuation of £190,333 in 1876-7 to £359,965 in 1905-6, and in 1906-7, £311,820; and in essential oils from £12,008 in 1876-7 to £47,421 in 1905-6, and in 1906-7, £54,183. But by far the most important vegetable oil (exported from India) is that of the cocoanut. The total exports of that oil during the years 1902-7 have ranged from about one to three and a quarter million gallons, or, say, a valuation of from 14 to 49 lakhs of rupees (£85,952 to £325,439). The supply goes almost exclusively from Madras, and is consigned in three nearly equal portions to the United Kingdom, Germany and the United States—the only other country of importance being Belgium. The exports of linseed oil go almost entirely from Bengal, and to a very large extent represent directly the operations of the Gouripur and other oil-mills in the neighbourhood of Calcutta. The exports are consigned chiefly to Australia and New Zealand (see p. 731).

The internal traffic in oils (as manifested by the rail-borne transactions) is also interesting. Excluding kerosene, the total exports in 1906-7 came to 1,712,165 cwt. The most important is mustard and rape (726,506 cwt.), followed by "others" (638,489 cwt.); then by cocoanut (199,272 cwt.)
CANDLES AND SOAP

Castor Oil

Candle-making in India.—Except in the new industry of manufacture of candles from the mineral wax and paraffin that has recently assumed considerable proportions both in Rangoon and Calcutta, India cannot be said to possess candle works of any great importance. Here and there all over the country the batti-soz still plies his craft of "tallow dip" making, but very few of these workers form candles by moulding. In Lahore and Bombay, candles are crudely moulded, and from time immemorial the art of rolling wax candles has been known and practised. One or two soap works have given attention to candle-making, but, as a rule, they employ mineral wax, and their candles have accordingly to be considered along with petroleum. (See Lime, p. 712.)

While India, as a whole, is very far behind other countries in the production of candles, the demand for these articles is very considerable. Indian Imports:—The United Kingdom and Belgium are the sources of supply, and the provinces that receive these are, in sequence of demand—first Madras, next Bombay, then Bengal, and lastly Burma. The imports have fluctuated between 8 and 12 lakhs of rupees in value each year during the past twenty-five to thirty years. It may be here added that Burma has, however, begun recently to export candles, and these are of course entirely mineral. The Exports were in 1900-1 valued at Rs. 15,157; in 1901-2, at Rs. 49,703; in 1902-3, at Rs. 4,41,863; in 1903-4, at Rs. 9,05,521; in 1904-5, at Rs. 9,48,156; in 1905-6 at Rs. 1,6,53,646 (in which year the share of Burma was Rs. 16,37,755); and in 1906-7, Rs. 14,20,943. This traffic is mainly with China, the Straits Settlements, Ceylon, Australia and New Zealand, and is thus a new feature of India's manufacturing enterprise. (See Cocos, p. 359; Rhus, p. 914.)

Soap.—As already observed, to the Natives of India as a whole, soap is not of much importance, and soap substitutes (natural earths or vegetable materials), as a rule, take its place. Still, the art of soap-making has been known and practised from a remote antiquity, the impure article produced being used by the washermen and dyers. Trade statistics show, however, that India's demands on foreign countries for soap are very considerable and yearly expanding. In 1876-7 the Imports were valued at Rs. 3,32,791; in 1901-2 at Rs. 17,61,427, or an annual average expansion of 17 per cent.; in 1902-3 a still greater expansion, the imports having been then valued at Rs. 22,67,801; in 1903-4 they became Rs. 26,56,673; in 1904-5, Rs. 27,23,705; in 1905-6, Rs. 31,90,890; and in 1906-7, Rs. 32,28,156. Almost one-half the total imports are, as a rule, taken by Bombay, one-quarter by Bengal, and of the remaining quarter about one-half goes to
OILS, OIL-SEEDS AND PERFUMERY

Burma. At the same time India exports soap, though the traffic is not extensive nor very prosperous. [Cf. A. Watt, Art of Soap-Making, 1901; see also Ægie Maravelos (p. 27); Agave (p. 35); Alkalis (p. 49); Cinnamomum (p. 313); Cocos nucifera (p. 359); Fish (p. 547); Pinus (p. 890); Rosa (p. 926); Sesamum (p. 986).]

Perfumery. ESSENTIAL OILS AND PERFUMERY.—This classification is convenient rather than logical. The separation between perfumes, cosmetics and condiments is often extremely difficult and even sometimes undesirable. Though most of the articles indicated may yield oils chemically, they are often used without having their oils extracted from them, just as sesamum seeds are eaten in certain native sweetmeats, where they serve a purpose similar to the raisins and caraways in European cakes.

The imports of essential oils, essential seeds and of perfumery are of far less consequence than the exports. In 1901-2 the combined imports were valued at Rs. 5,11,456; in 1902-3 at Rs. 4,96,622; in 1903-4 at Rs. 6,56,617; in 1904-5 at Rs. 5,88,633; in 1905-6 at Rs. 5,94,433; and in 1906-7, Rs. 6,34,111. The exports were valued in 1901-2 at Rs. 22,44,404; in 1902-3 at Rs. 20,66,970; in 1903-4 at Rs. 20,71,940; in 1904-5 at Rs. 23,50,385; in 1905-6 at Rs. 29,46,855; and in 1906-7, Rs. 28,98,944. It is interesting also to observe that the exports of essential seeds have been steadily improving for some years. In 1876-7 they stood at Rs. 29,437; in 1901-2 at Rs. 14,68,241; in 1902-3 at Rs. 11,83,190; in 1903-4 at Rs. 12,32,950; in 1904-5 at Rs. 16,09,137; in 1905-6 at Rs. 20,74,818; and in 1906-7 at Rs. 19,20,527. The chief seeds exported under this heading are Caraway (p. 284); Ajwan (p. 285); Coriander (p. 427); Cumin (p. 443); Fennel (p. 552); Niger (Nigella, p. 811); Aniseed (Pimpinella, p. 887); Fenugreek (Trigonella, p. 1081); and the like.

Perfumery is one of the most ancient and honourable of Indian crafts, and one which attains greatest importance at the present day in Northern India. It is perhaps hardly necessary to go further back than to the Aín-i-Akbarí (Blochmann, transl., 73-89, etc.), where we read that the great Emperor encouraged and fostered the art of preparation of perfumes and scented oils. This gives the suggestion of the two methods of separating perfumes having been known from very ancient times, namely enfleurage and distillation. One of the earliest and most instructive accounts of the former, as far as India is concerned, was written by Dr. Jackson of Ghazipur, in a letter to the editor of the Asiatic Journal of Calcutta for June 1839 (in Edinb. New Phil. Journ., 1840, xxix., 189-9). The following describes the method pursued in the preparation of jasmine.

"The Natives never make use of distillation, but extract the essence by causing it to be absorbed by some of the purest oleaginous seeds, and then expressing these in a common mill, when the oil given out has all the scent of the flower which has been made use of." Dr. Jackson gives particulars of the operation—layers of sesameum seed (see p. 986) "wetted" in water alternating with layers of jasmine flowers are covered over with a cloth and left for twelve to eighteen hours. It may be added that, according to modern European experience, jasmine is one of the perfume-yielding products that must be treated by enfleurage, as it does not yield its perfume in water-distillation.

Turning now to the distillation process, Hoey (Monog. Trade and Manufactures, N. Ind., 107-8) gives an interesting account of the gandhi or "tārārāth and his art and trade. He buys flowers from the mālīs (gardeners) and maun-
factures from these, by distillation, their respective perfumes. Into the still is placed the zamin or mâwa of all îtar, viz. sandal îtar, manufactured at Kanauj. The flowers are thrown into the cauldron on the fire and their perfume comes off in steam and passes through the worm into the copper bhapka, and there combines with the sandal îtar. On cooling, the perfume is separated from the water by skimming the surface. In some localities, in place of sandal, lemon-grass is used as an adjunct, especially in the production of attar of roses.

Jaunpore and Ghazipur might be described as the chief manufacturing localities, Delhi, Amritsar and Lahore the distributing centres, and Bombay the emporium of foreign transactions. The following are some of the more important ingredients and materials in Indian perfumery: —

Cassie (Acacia Farnesiana, p. 14); Bael (Aegle Marmelos, p. 27); Galangal (p. 60); Himalayan Dhup (Jusinea); Altingia (p. 61); Aquilaria (p. 72); Arachis (p. 82); Cinnamomum (pp. 315–7); Citrus (p. 327); Lemon, Rusa, Citronella Oils, etc. (pp. 451–62); Jasminum (motiya, juhi, and chameli); Michelia (champa); Minuusops (maulsari); Lawsonia (henna, p. 707); Ilang-ilang (Cananga); Keura (Pandanus, pp. 188, 777); Musc (p. 786); the Spikenard (p. 792); Patchouli (Pogostemon, p. 904); Rose Attar (p. 926); Sandal-wood (p. 977); Kut (p. 980); Sesamum (p. 986); Vetiveria (p. 1106). [Cf. Sawyer, Odorography, 1892; Scint. American, Cycl. Receipts, 1899, 383–5; Gildemeister and Hoffmann, Volatile Oils, 1900; Hooper, The Perfumes of the Moghuls, in Calc. Rev., Oct. 1904.]

OLDENLANDIA UMBELLATA, Linn.; Fl. Br. Ind., iii., 66; Prain, Beng. Plants, i., 559; Cooke, Fl. Pres. Bomb., 1903, i., 590; RUBIACEAE. Chay-root or Indian Madder, chiral, surbhi, kalhengok, saya, etc. A common biennial, met with from Orissa and Bengal southward to Ceylon, also in North Burma.

The root-bark, with alum as a mordant, gives a beautiful red Dy, formerly much employed in Madras for dyeing handkerchiefs (the bandana handkerchiefs formerly famed). Though met with in Bengal, it is not used for dyeing in that province. It is somewhat extensively cultivated in sandy situations on the Coromandel Coast, as at Nellore and Masulipatam. Previous to sowing, the land is manured, generally by penning cattle or sheep, and thereafter thoroughly ploughed. The seeds are sown in August, on the ground having been well moistened. After sowing it is again watered, and the process repeated three times daily till the young shoots appear, when water need then be given less frequently. Cow-dung should be mixed with the water once a day for the first fifteen days. Extensive watering is the chief feature of the cultivation, but weeding has also to be constantly performed. The expense of cultivating an acre is naturally heavy (estimated at Rs. 28–7a.) compared with the returns.

Only the bark of the root contains the dye. The Natives consider the roots of the wild plant best, and prefer to make their collections at the end of the second year’s growth. In dyeing, the Hindus use an aqueous solution of the colouring matter, obtained by pounding the root in water. The fabric is steeped several times in this solution, then boiled for two hours in a similar solution and finally washed with clean water and dried. Various attempts have been made to introduce the dye into Europe, but these have been unsuccessful, due probably to the fact that the root rapidly deteriorates when stored in damp situations. The tintorial properties of the dye-stuff have been investigated by Hummel and Perkin. [Cf. Alexander Hamilton, New Acc. E. Ind., 1727, i., 370; Milburn, Or. Comm., 1813, i., 277; Heyne, Tracts on Ind., 1814, 209; Pharmacog. Ind., 1891, ii., 199; Hummel and Perkin, in Proc. Chem. Soc., 1893, 201; 1895, 150; Holder, Monog. Dyes and Dyeing, Madras, 1896, 2; Imp. Inst. Tech. Repts., 1903, 207–6; Joret, Les Pl. dans L’Antiq., etc., 1904, ii., 549.]

Chay-root.

Dye.

Cultivated.

Seasons.

Irrigation.

Root-bark.

Deterioration.
THE PRICKLY PEAR

O. Dilleni, nsw. The Prickly Pear, nāg-phānā, pheni-mama, samar, thor-hatheyo, nāga-dalī, chappal, sha shoun, liō va, etc. This is the only species described in the Flora of British India. It is indigenous in America, but naturalised all over India from Bengal and Madras to the Panjāb, and found on the Himalaya up to 5,000 feet in altitude. The fruit is edible, and can be employed in the distillation of alcohol. The jointed, juicy, leaf-like stems, when deprived of their spines, have generally been considered a useful Cattle Food, especially in times of famine. Mr. F. R. Mehta, however, in a report on prickly pear feeding experiments carried on at the Poona and Surat Farms, gives a poor estimate of its feeding value. He states that the experiments conclusively prove that the prickly pear has hardly any value as a cattle food. A sample analysed by Leather gave the following result:—water, 16.96 per cent.; organic matter, 60.64; ash, 22.40. Hooper furnishes the following composition of the fruit from Nellore examined by him:—carbohydrates 41.89; fibre 32.00; albuminoids 6.25; fat 3.63; water 5.67; and ash 10.36; (Rept. Labor. Ind. Mus. (Indust. Sec.), 1904-5, 30).

In India the plant is much used to form hedges about fields and for fences round homesteads. Gambles states that the chief interest in the plant is due to the Forest Officer, has been in the hope that it would assist in the reproduction of forest trees, by protecting the young seedlings from cattle. A coarse fibre can be obtained from it, which might prove useful as a paper material. [Of. Mason, Burma and its People (ed. Theobald), 1883, ii., 441; De Candolle, Orig. Cult. Plants, 1884, 274; Ass Gray, Scient. Papers, 1889, i., 312; Kee Bull., 1888, 165-73; Pharmacog. Ind., 1890, ii., 99; The Scrub Exterminator, Agri. Dept. Madras Bull., 1891, 23; Voelcker, Improv. Ind. Agri., 1893, 193-4; Bourne, Rept. on Destruct. of Prickly Pear by Coccineal Insect, Offic. Govt. of Madras Rev., Aug. 5, 1897; Dodge, Useful Fibre Plants of the World, 1897, 253; Maiden, Study of Prickly Pears Naturalised in New S. Wales, Dept. Agri. Sydney, Misc. 1898, 253; Woodrow, Gard. in Ind., 1899, 336-7; Mehta, Prickly Pear and Aloe as Cattle Fodder during Scarcity, in Dept. Land Rec. and Agri. Bomb. Bull., 1903, No. 22.]

While botanical writers have described some twenty species of the genus *Oryza*, Bentham and Hooker (Gen. Pl., iii., pt. ii., 1117) say that scarcely five of these can be easily distinguished and even these are very generally viewed as varieties of but one species, *O. sativa*, Linn. The chief forms are met with in the East Indies, though some are indigenous to Australia and most have been widely cultivated from ancient times in the warmer regions of both hemispheres.

Species and Varieties.—There may be said to be four fairly easily recognised forms of *Oryza* in India:—

- **Oryza coarctata**, Roxb., Fl. Ind., ii., 206; *O. triticioides*, Griffiths, Notulae Pl. Asiatic., 1851, pt. iii., 8; Icon., t. 142; Prain, Lc.; Fl. Br. Ind., vii., 93. It is known as *nanao* (Indus valley), *natasaba* (in Burma); *manikal* (the plant), and *barirhab* (the grain) in Patuakhali, Dacca.

In this grass the margins of the leaves are spinose-serrate. It frequents the margins of rivers and is essentially an aquatic plant. Griffith had grave doubts as to the propriety of treating it as a species of *Oryza*, and suggested the genus *Sclerophyllum*. Roxburgh gives the delta of the Ganges as its habitat, and says it was first discovered there by Buchanan-Hamilton in 1796. He then adds that he had failed to find that the plant was put to any economic use or to discover an Asiatic name for it.

In 1895 Mr. J. E. O’Conor (at that time Director-General of Statistics) proposed to have all the articles of official returns that appeared under “Others” investigated. He undertook to have specimens sent to me for determination. Almost the first, under edible substances, that came to hand was a cereal from Karachi. *This* was stated to be a wild grain collected from the swampy margins of the Indus and carried all over India to be eaten by the Hindus during certain ceremonial occasions. At first sight it looked like a form of wheat, but Sir George King and Lieut.-Col. D. Prain, who kindly examined it with me, suggested that it most probably would prove a form of rice. Botanical specimens came to hand in June 1895, and were at once seen to be the long-lost species *O. coarctata*, Roxb., which, because of its resemblance to wheat, had also been called *O. triticioides*. Through subsequent investigations this interesting plant was found prevalent in the Indus valley; nowhere in the river basins of South India; occasional in the Sundarbans (Saugor Island) and the lower Gangetic basin; and common near Khaton and Moulmein in Burma. It seems probable, however, that the resemblance of the grass to wheat may have originated the belief that wheat was indigenous to the Indus basin. Thus, for example, De Candolle (Orig. Cult. Plants, 356) while discussing the origin of wheat, observes that “Strabo (ed. 1707, ii., 1017), born 50 B.C., says that, according to Aristobulus, a grain very similar to wheat grew wild upon the banks of the Indus on the 25th parallel of latitude.” And it is certainly remarkable that until the discoveries briefly narrated above, the wild rice of the Indus should have remained unknown to the botanical world while it was actually being traded in all over India.

Samples of the *nanao* rice were sent to Church (Food-Grains of India, suppl., 1907, 5) for chemical examination, and the result showed that it is by no means an unwholesome article of food, though the edible portion, relatively to the husk and fibre, is exceptionally low. The nutrient ratio was found to be 1:7-6, while the nutrient value worked out at 84-9.

- **O. granulata**, Nees. A species found on dry soils at altitudes up to 3,000 feet. Specimens have been collected from Sikkim, Assam, Burma, Bengal (Parishmah and Râjîmahâl hills), Malabar and Courallum. It is perennial with almost woody root-stock and thin, round, firm, branching stems. The surface of the inner glume, though glabrous, is rendered woolly-looking through the presence of irregular roundish granulations.
however, restrict its wild habitat to China, but admits it has been found both in India and Australia under such conditions as to allow of little doubt that it is native to these countries as well. De Candolle simply affirms that rice cultivation in India, though subsequent to that of China, has been a valued crop since the classic period. It is pointed out in the Dictionary that in spite of the temptation to derive the Arabic (al-ruz, uruz, uruz, wiz, etc.), Greek (εἰρήμα) and European names (rice, riz, ris, etc.) from the Tamil ari, modern philologists are agreed that they cannot be so derived, but come from the old Persian word vireni or virena, the modern equivalent of which is birin, Siz C. J. Lyall states (D.E.P., L. 518) that vireni is exactly the equivalent we should expect of the Sanskrit word for rice, vrihi, and the names point to the time when the two branches of the Aryan race dwelt together and developed the respective peculiarities of their languages from a common or original tongue. The Persians did not borrow the cultivation of rice from the Indians; the plant existed in the region where the two races dwelt together before their respective migrations. In other words, there is no evidence to show that its cultivation in Southern Asia was not so ancient as to have allowed of its diffusion into the Aryan home at a period prior to the division of that branch of the human family. The chief objection to this hypothesis, viz. the absence of any pointed allusion to so valuable a plant in the earliest Vedas, is not serious, since a pastoral people, like the early Aryan invaders, may not have appreciated its importance till they settled down and took to agricultural pursuits. Perhaps the oldest actual samples of rice are those collected by Stein at Kara-dong (Ancient Khotan, 1907, 488). These would appear to have been engulfed by sand about the close of the 8th century. Then, approximately in the same part of Eastern Turkestan, was found The House Manuscript (Hoernle, transl., 129-4), believed to date from about the 5th century. In that work frequent mention is made of "fried paddy" in the production of a drug used in the cure of coughs.

It may be repeated, however, that the chief wild habitat of the plant is to-day roughly from Southern India to Cochín-China—where we have no record of its existence as a wild plant in Turkestan or anywhere in Central Asia. But in passing, it may be stated that the wild plant in India coincides with the region through which the Dravidian invaders passed till they culminated in the Tamil civilisation. Cultivation appears, in fact, to have spread eastwards to China perhaps three thousand years before the Christian era, and at a slightly more recent date, westwards and northwards throughout India to Persia, Central Asia, Arabia, and ultimately to Egypt and Europe. An early record of the exports of rice from India is the passage in the Erythraean Sac (ed. McRindle, 119). This may be put at 60 A.D., and refers to Gujarā. [Cf. Acc. Ind. and China by Moh. Trav. in 9th Cent. (Renaudot, transl.), 1733, 13; Vértomannus, Travels, 1503, in Hâkîl Voy., iv., 1811, 577; Ain-i-Akbari, 1590, (Jarrett, transl.), ii., 121, 330; Pyrard, Voy. E. Ind., 1601 (ed. Hakluyt Soc.), i., 326-7, etc.; Jâhangir, Memoirs (Price, transl.), 1829, 98; Mandelso, Voy. E. Ind., in Olearius, Hist. Muscovy, etc., 1662, 62, 86; Fryer, New Acc. E. Ind. and Pers., 1675, 119; Tavernier, Travels (ed. Ball), 1676, i., 282, 391, etc.; Herbert, Travels, 1677, 310 and t.; Alexander Hamilton, New Acc. E. Ind., 1688-1723, i., 161; Ovington, Voy. to Suratt, 1689, 397; Symes, Emb. to Agra, 1800, ii., 307; Turner, Emb. to Thidet, 1800, 24-6; Joret, Les Pl. dans L'Asiat., etc., 1904, ii., 242-314.]

Properties and Uses.—The grain of rice is one of the chief articles of human food throughout India, and in many parts (e.g. Manipur) it was in 1882 one of the chief foods given to horses and even to cattle, and throughout India the straw of the better qualities is invariably collected, cut into small pieces and given to cattle, along with several flavouring liquid preparations, oil-cake or grain, designated the currie stuffs. The chaff and waste obtained in winnowing and husking also constitute important articles of human and cattle food. But husking is a troublesome process. In India a large part of the rice sold in shops and exported to Europe as an article of human food has been prepared by being first half boiled, then dried in the sun, and finally husked by the ordinary pestle and mortar. Such rice is, in trade, termed "par-boiled." Husking without boiling is a tedious process when done by hand. In Yarkand there is a mechanical contrivance for husking rice in which water is the motive power. In the plains of India, rice is frequently husked by the same appliance as is used in pounding bricks. A pestle suspended from the end of a beam, worked by the foot, is made to fall with considerable force on the grain. A woman, standing at
THE RICE PLANT

Medicinal Preparations.

The preparations of rice made in India are very numerous. Dutt (Mat. Med. Hund., 1900, 268–9) gives the vernacular names of various medicinal ones and their properties. Their use in brewing and distilling is, in India, almost universal. Straws from rice (sura) are alluded to by Linschoten as having been largely consumed in Southern and Western India three hundred years ago, while sura is frequently mentioned in the Institutes of Manu—a work written (the earlier portions of it, at least) some fifteen hundred years ago. At the present day a kind of beer (pachewa) made from rice is extensively consumed. [Cf. Ray, Hindu Method of Manuf. Spirit from Rice, in Journ. As. Soc. Beng., n.s., 1906, ii, No. 4, 129–42] See Malt Liquors (pp. 757, 760), Spirits (pp. 1043, 1045, 1046), and Vinegar (p. 1111).

Vinegar.

The properties and uses of rice are, in fact, extremely varied, and to the people of India an infinity of forms, many of which have each some special merit. A Dye is made from the husk, and the straw (even the stubble and roots) may be used in paper-making (For Baskets, see p. 116; Mats, p. 776.) As an edible grain there may be said to be three chief grades—the finer qualities or table (Patna) rice: the lower grades suitable for distillation or for the manufacture of starch. Blount and Bloxam, Chem. for Engin. and Manuf., 1900, 189. The rice of Burma are employed for distillation (and for that purpose very largely go to Holland and Germany) and for conversion into starch (mainly to England). They are thick, coarse, highly glutinous rices, and when boiled assume a heavy, somewhat repulsive appearance to persons not accustomed to them. Such glutinous rices are, however, much prized in the manufacture of Cements. A special Indian cement is made from the water in which rice has been boiled, mixed with a small quantity of pure lime (see p. 293). Black Burmese rice (Kew. Bull., 1892, 233–4) may be spoken of as an exceptionally glutinous grain.

Dye.

Leather (Agri. Ledg., 1903, No. 7, 175–8) gives the following chemical analysis of rice: Undecorticated (fine sorts):—moisture, 12.55 per cent.; oil, 2.14; albuminoids, 6.35; soluble carbohydrates, 65.29; woody fibre, 7.84; soluble mineral matter, 1.39; sand and silica, 4.44; total nitrogen, 1.06; albuminoid nitrogen, 1.01. Decorticated (fine sorts):—moisture, 12.25 per cent.; oil, .92; albuminoids, 6.45; soluble carbohydrates, 78.85; woody fibre, .21; soluble mineral matter, .82; sand and silica, .51; total nitrogen, 1.19; albuminoid nitrogen, 1.03. Further analyses of coarser kinds of rice, rice husks, bran and straw, will be found in the same article. Following up these results, Hooper (Rept. Labor. Ind. Mus. (Indust. Sec.), 1906–7, 11) gives particulars of the comparative nutritive value and glutinosity of some of the chief kinds of rice. Certain forms were found to be more nutritious than previous analyses would indicate. Hanausek (Micro. Tech. Prod. (Winton and Barber, transl.), 1907, 42) gives interesting particulars of rice-grains as seen under the microscope. [Cf. Church, Food-Grains of Ind., 1886, 66; Dodge, Useful Fibre Plants of the World, 1897, 254; Brownie, Prop. and Util. of Rice Oil in Louisiana, Planter and Sugar Manufacturer, 1903, xxxiv., 352–3; Excise Admin. Repts. Beng., Burma, etc.]

Edible Grain.

CULTIVATION.

Rice "is essentially a crop of damp tropical or semi-tropical climates. The finest varieties and the largest yields are produced in tracts which, during the growing season, afford a moderate degree of sunshine and a damp, warm atmosphere. Rice is therefore the staple crop of all areas of heavy and assured rainfall; but good crops are produced in districts which receive moderate or even light rain, when this can be assisted by sufficient irrigation."

"Rice is sown in three ways—broadcast, by drill and by transplantation from a seed-bed where it has been broadcast sown. As a rule, the first method is practised on inferior soils, or where labour is scarce. Rice is drilled in some districts of Bombay, but this system is not common. The third method is much more usual than the others and is less risky. Broadcast or drilled rice requires 80 to 120 lb. of seed per acre, while the seed-rate of the transplanted crop varies from 30 to 80 lb. per acre."
"The yield in different tracts, from different soils, and from different methods of cultivation varies very greatly. In good soil an average transplanted crop yields probably about 2,400 lb. of paddy per acre in a favourable season. Broadcast and drilled rice yield much less." (Imp. Gaz. Ind., 1905, iii., 26-9).

In recent agricultural statistics it is shown that the net area cropped in British India amounted, in 1905–6, to 207,683,741 acres. Of this, 73,400,522 acres were found to be under rice. In the Native States in the same year the net area cropped amounted to 12,015,009 acres, and the area under rice to 717,767 acres. Thus, out of a total area of 219,698,750 acres under crops, rice occupied 74,118,289 acres, or over one-third. But so large a percentage averaged for the whole of India is misleading. Rice is almost concentrated into Bengal. In fact, with the exception of Madras and Burmah it is in the other provinces of India unimportant relatively. In the Agricultural Statistics (published by the Government of India) two sets of figures are given, viz. (a) the surveyed areas from which we obtain the total rice area of 73,400,522 acres; (b) estimates of area and yield framed by the local authorities (township officers, etc.). In the case of Burmah, the local estimates are usually considerably below the surveyed areas (in fact, they do not deal with the whole of the province), but these estimates are instructive. The following are the figures (estimated) of the four chief rice areas for 1905–6:—Bengal, 25,150,600 acres; Eastern Bengal and Assam, 15,960,200 acres; Madras, 6,604,400 acres; Burma, 6,713,400 acres; giving a total of 54,428,600 acres and a yield of 433,138,300 cwt., and in 1906–7 a total of 54,521,600 acres and 430,258,000 cwt. In the case of Burma the surveyed area was 9,283,801 acres. The Final General Memorandum, issued by the Commercial Intelligence Department, estimates the total area in the four chief centres of production as having been in 1905–6, 54,428,600 acres, and the yield as 375,198,300 cwt. of cleaned rice; and in 1906–7, 54,535,400 acres and 368,334,000 cwt.

Bengal (excluding Eastern Bengal and Assam).—Area. The normal area cultivated with rice in the province of Bengal (according to the Season and Crop Report for 1905–6) has been estimated at 26,308,800 acres, and as the total area in Bengal under cultivation in that year amounted to 45,287,000 acres, it is thus seen that rice comprised over 58 per cent. of the actual cropped area of the province. The Final General Memorandum for 1906–7 stated the estimated area in Bengal as 24,506,200 acres, and the yield as 195,461,600 cwt. of cleaned rice. This represented 34-8 per cent. of the rice area of British India. The Season and Crop Report for 1906–7 gives the normal area as 25,919,600 acres, which would consist of 21,301,700 acres of winter rice and 4,617,900 acres of autumn rice. The forecast of the winter rice alone for 1905–6 shows a total of 20,043,400 acres, which represented 28-5 per cent. of the total area under this particular crop in British India. The corresponding estimate for 1906–7 was 19,845,300 acres of winter rice. The chief districts in 1905–6 were:—Midnapur, 1,365,300 acres; Ranchi, 1,240,900 acres; Gaya, 1,151,600 acres; Sahabahad, 1,132,000 acres; Darbhanga, 961,400 acres; Cuttack, 952,200 acres; Hazaribagh, 950,400 acres; Manbhum, 929,100 acres; and Bardwan, 807,700 acres.

Eastern Bengal and Assam.—**Area.**—The Commercial Intelligence Department, Government of India, gives the extent of rice cultivation in 1906–7 (summer, autumn and winter crops together) as having been
ORYZA SATIVA
E. Bengal

16,105,800 acres as compared with 15,960,200 acres in the previous year. The total yield came to 122,476,700 cwt. This represents 23 per cent. of the total rice crop of India. The forecast of the winter rice for 1905-6 shows 12,226,200 acres, which represented 17.2 per cent. of the winter rice for the whole of British India. The chief districts were as follows:—Bakarganj, 1,436,900 acres; Dinajpur, 1,160,000 acres; Maimensingh, 1,130,000 acres; Sylhet, 1,098,400 acres; Rangpur, 837,900 acres; Rajshahi, 636,900 acres; and Tippera, 614,300 acres.

Races.

Three Groups.

Áman.

Áus.

Boro.

Two Crops.

An important feature of the Bengal rice crop is the fact that a large portion of the area bears two or more crops a year, a circumstance that has led to the expression of a "vertical" as compared with a "horizontal" area. In fact, it has been pointed out that a proprietor of an estate with a fairly mixed soil might have three, four, or even five harvests of rice every twelve months:—(1) Áus, from July to August; (2) chaton Áman, from October to November; (3) boran Áman, from December to January; (4) boro, from April to May; and (5) raida, from September to October.

It has also been said that in many parts of Bengal two crops are all but universal, hence it may be inferred how misleading a hard-and-fast percentage of rice area may be to the total cropped area. In the Indian Museum will be found a collection of rice made in 1872 and for some years subsequently. The collection finally brought together came to something like 5,000 forms. These are probably not all distinct, but even if halved, the number would still be sufficiently significant of the vast antiquity of the cultivation. A remarkable fact is that the Áus, Áman, and boros of one district are often so different from those of another, that if interchanged the one may not grow on the fields where the other has flourished for centuries. Here the European farmer is confronted with a problem scarcely known to scientific agriculture; for the rice-cultivator of India will detect the one from the other with a perfectly marvellous degree of certainty. In Burma a few forms only constitute the chief crop, and to these the milling apparatus now in use have been adapted, and to such an extent that it is believed the Burma machinery would be quite unsuited to Bengal, and, further, that milling in Bengal on the European method would be impossible, unless a particular rice could be guaranteed in sufficient quantity to justify the preparation of the required special machinery.

A. C. Sen gives an instructive account of the methods of cultivation in the Dacca district, and as that is more or less applicable to the whole of Bengal, as well as to Eastern Bengal and Assam, it may serve the purposes of this work better than a series of abstracts of the varying methods.
in many districts. He divides the crops into three groups, subdividing each again into two sections. These are (1) áman, (a) long-stemmed and (b) transplanted; (2) áus, (a) ordinary and (b) lepi; (3) boro, (a) ordinary and (b) lepi.

ÁMAN.—Long-stemmed áman is extensively grown in Dacca. Low lands, the sides of jhils, and low plains on which 5 to 15 feet of water accumulate during the rains, are selected. The soil best suited is a stiff clay, deposited on the bottom and edges of jhils. At harvest-time only the ears with about 1½ feet of the straw are removed. The remainder of the straw is generally gathered in heaps and burnt, and immediately after the field is ploughed, generally in December. It is again ploughed once or twice and left exposed till March-April, when the larger clods are broken. One or two more ploughings and harrowings are given, and the field is ready for sowing in April-May. About 15 seers of seed are broadcasted over a bigha of land. In moist low-lying places, sowing takes place a month or even two months earlier, in February-March. Harvest is from 16th November to 15th January. When the seeds have germinated the field is rolled twice with the ladder, and when the plants are 5 to 6 inches high the soil is loosened by the rake. After this the only operation till harvest is a weeding, which may be dispensed with. The yield per bigha varies from 3 to 12 maunds.

Transplanted áman is grown on two different classes of land, in the upper reaches of the valleys of the Madhapur jungle and in the comparatively high land and old dearahs of the Brahmputra and its branches. The paddy in the Madhapur valley is a special variety, known as shaldan; the transplanted paddy of other places goes by the general name of rowa. Seedlings are prepared in a nursery close to the rayiat’s homestead, or in a corner of the field. The nursery is ploughed four or five times in April-May, and the next month, when a little rain-water has collected on it, the surface is levelled and plastered. Meanwhile the necessary quantity of seed (6 seers for every bigha) is soaked in an earthen pot, drained, and kept covered with mats till it germinates; then it is sown broadcast so thickly that the grains overlap. When the seedlings are 12 to 18 inches high, they are fit for transplantation. In the case of jungle valleys, the first thing done before transplanting is to repair the embankments thrown across for collecting water. The field is prepared by ploughing in the mud two or three times. The seedlings are transplanted at the end of July about half a cubit apart either way, putting in three to four plants in the same place. The crop is harvested in November-December. In the case of dearah land, two ploughings are given in the dry field, as soon as the previous crop, generally khesari, is taken off. On such lands two rain-crops are sometimes grown in the same field in the same season. As early as possible the field is sown with jute or áus paddy. The jute or the paddy is harvested in July-August; then the field is ploughed and transplanted with the áman crop.

ÁUS.—This kind of paddy is grown (1) on the high grounds of the Madhapur jungle, where sufficient water cannot be collected for the cultivation of shal paddy; (2) on the comparatively high and sandy dearah lands. Áus paddy cannot be grown on land on which more than 2 feet of water accumulates during the early part of the rains. The land on which áus paddy grows is light and easily workable. It generally bears two crops in the year—áus paddy or jute during the rains and one
THE RICE PLANT

of the pulses or mustard during the cold weather. As soon as the rabi crop is off the field, it is ploughed and harrowed as rapidly as possible. Preparation must be hastened, especially on char lands, for here a late crop is sure to be lost by the rise of the rivers. Sowing time, therefore, varies. In the chars of Meghna, it may be sown as early as the middle of February; in the highlands of North Manikganj it may be delayed till the middle of April. As soon as the plants appear the field is rolled with the ladder, and a week after harrowed with the rake. After this it must be carefully weeded. Harvest extends from the middle of July to the middle of August.

Seasons.

Harvest.

Boro.—The places in Dacca where this class of paddy is most extensively grown are (1) the sides of the jhils and streams of the Madhupur jungle; (2) the chars and edges of the Meghna and its branches; (3) in some of the chars of the Padma. The soil best suited is a mixture of clay and vegetable matter. As soon as the rains are over, a plot, from which the inundation water has just receded, is chosen for a nursery, aquatic grasses, etc., are removed, and the place worked into a soft mud. The seed is made to germinate and then sown broadcast. Thirty seers of paddy sown on a quarter bigha of land give seedlings sufficient for transplanting two bighas. The time for sowing is usually about the middle of October, and for transplanting, December—January. No tillage is generally needed for boro paddy. The harvest time is April—May and the yield per bigha 5 to 12 maunds.

Assam.—By way of affording a comparison with the particulars already given regarding Bengal as a whole, the following brief statement of the Assam Valley may be furnished. Darrah (*Ann. Rept.*, 1887–8) discussed the Assam rices under two sections which practically correspond with the chief Bengal crops, viz. early or summer, and late or winter rices. He subdivided these into the two great sections of the province, the Brahmaputra valley—Assam—and the Surma valley—Sylhet and Cachar.

Of the rices of the Brahmaputra valley, he enumerates three—saki, ahu, bao. Saki is the general term applied to all transplanted rice grown on land lower than that required for ahu and higher than needed for bao. It is sown about May and June, transplanted in July and August, and reaped in December and January. Ahu is the name given to the numerous kinds of rice which grow on high lands, require little rain, and are sown from March to June and reaped June to September. It is usually sown broadcast, but sometimes transplanted. Bao comprises the varieties grown on the lowest land which will support rice. It is sown in March—April, cut in November—December. When transplanted, the operation is performed in July and August. Of the Sylhet or Surma valley, there are
low-land and high-land áus, murali, sāil, low-land and high-land áman, kataria and sāil bura. High-land áus is sown in the higher parts of Sylhet usually broadcast but occasionally transplanted. It is put down in March and April, harvested in August–September. Low-land áus is grown in the lower parts of the district, but is never transplanted. It is sown in January–February, cut in May–June. Murali is generally sown on lower land than in the case of áus of the high-land form, but on higher than the low-land. It is put down in February–March and cut in June–July. Sāil is always transplanted; sown in April–May, transplanted July–August, and reaped November to January. It is grown on land almost as high as áus land. Áman, like áus, is referred to two sections, according as grown on high or low ground. In the higher parts it is transplanted like sāil, but sown and gathered about a month earlier than that crop. In the lower parts of the district one variety is always sown broadcast, viz. the long-stemmed kind. Kataria is a form of áman sown in April–May, transplanted in May–June, and reaped in October–November. Sāil bura is grown on the very lowest land and is generally irrigated; sown in October–November, transplanted in December–January, and cut in April–May. The lands used are those portions of the haors, or large natural depressions in Sylhet, which are left dry by the receding of the water in the cold weather.

The Cachar rices enumerated are dumai, murali, asra and sāil. Dumai comprises the Cachar rices which correspond with the forms of áus sown broadcast on high-lands in April–May, never transplanted, and reaped in July–August. Murali is sown in March–April, sometimes transplanted about May and reaped in June–July. Asra is sown in March and April on low-lying lands, never transplanted, and reaped in December. Sāil is practically the same as the sāil of the Brahmaputra valley and the sāil of Sylhet. [Cf. Sen, Final Rept. Settl., Jaintia Parganas, 1892–7, 8–9; Banerjei, Final Rept. Settl., Cachar Dist., 1894–9, 65, 111.]

United Provinces.—The area in 1905–6 was 7,078,563 acres: 4,252,528 acres in Agra, and 2,826,035 acres in Oudh. In Agra the largest areas occur in Gorakhpur, 976,423 acres; Basti, 700,314 acres; Allahabad, 285,503 acres; and Azamgarh, 277,401 acres. In Oudh: Gonda, 565,895 acres; Bahraich, 236,399 acres; Sultanpur, 277,039 acres; and Barabanki, 262,225 acres; etc.

Methods of Cultivation.—Duthie and Fuller give a full and comprehensive account of the cultivation in these provinces; the races are very numerous, strongly marked, and may be assorted under three groups:—(1) those with a tall habit of growth, with the ear protruded from the sheath, feathery and drooping, and with thin usually yellow-husked grain; (2) those with a shorter habit of growth and stouter stems, with the ear not so prominent and carried more erect than that of the preceding, and with thick yellow or red-husked grain; (3) those with short, strong stem, ear partially enclosed in the sheath and grain-husk, dark-coloured or black. The first are most highly prized, the commonest being known as naha, bānsmatt, bānpshal and jhalma. Of the second, seondhi and sumhāra are the principal, while sathī is the most important of the third. Munji is a term of varying meaning, denoting in some places high-class rice, in others being merely a term for rice sown broadcast. Another classification is into transplanted from seed-beds or sown broadcast. As a rule, the finer
varieties, falling under the first two classes named above, are raised in seed-beds and planted out, while the coarser kinds are broadcasted.

Rice is sown in all months from January to July, and harvested from May to November. The seasons in which the greater portion is grown are June to August for broadcast rice, and June to November for transplanted. Broadcasted rice is sown mostly on the break of the monsoon and is ready for cutting in August (bhadoi) or September (kuvari), and hence often known as bhadoi and kuvari. A certain quantity is also sown two months before the monsoon rain can be expected, and in this case there are two methods of cultivation. Either the rice germination is promoted and its growth stimulated by frequent and copious irrigation till the rains break, or, taking advantage of a fall of rain in April and May, the ground is ploughed up and sown, but the seed allowed to lie unirrigated, and the young plants should not come up before the advent of the rain induces germination. Nearly the whole of the transplanted rice (jarhan) is sown in seed-beds at the beginning of the rains, planted out after a fortnight or three weeks, and cut in aghan or November, hence also called aghan. A small portion, boron, jethi or hot-weather rice, is sown in January, planted out in February, and cut in May. This is only practised in slimy soils, along the edges of tanks or beds of rivers, which are planted with rice as the water becomes shallow from evaporation.

Much of the rice land in the Sub-Himalayan districts is prepared by being dug over by the mattock during the cold and hot weather months when the soil has been softened by a fall of rain. For land not dug in this way the number of ploughings varies according as the crop is to be sown broadcast or planted out, two or three in the first case, four or six in the second. For sowing, the soil must be thoroughly moist. If sown broadcast, 40 seers to the acre are held sufficient. If seedlings are to be raised in a nursery, the seed is sown more thickly. If the crop is to be transplanted, the nursery should be about one-twelfth the size of the field. The seedlings are taken up when about a foot high and planted in regular rows at distances of about 6 inches, 2 to 6 seedlings being planted together.

For rice grown in the hot-weather months, frequent irrigation is necessary. Rice sown at the commencement of the rains and cut in August or September under ordinary circumstances needs no watering, but the transplanted varieties, which are not ripe till November, require two or three waterings when the rains cease. At least one weeding is given to broadcast rice. Planted rice in Cawnpore is said to be more frequently weeded than broadcast, but in Allahabad it requires no weeding at all. When ripe, the crop is cut with sickles in the same way as wheat or barley. (U. Dist. Settl. Repts., U. Prov. ; Nevill, Dist. Gaz. U. Prov.; Dist. Repts. quoted in Dictionary, v., 605–12.)

Central Provinces and Berar.—The area in 1905–6 amounted in the Central Provinces to 4,178,430 acres. The largest areas occur in Raipur, 1,264,198 acres; Bilaspur, 1,005,941 acres; Bhandara, 433,186 acres; Balaghat, 254,029 acres; and Chanda, 221,465 acres. Of the area under rice in 1904–5, it has been stated that 712,824 acres consisted of transplanted rice (302,794 irrigated and 410,030 unirrigated) and 4,193,045 acres of broadcasted rice (305,492 acres irrigated and 3,887,553 acres unirrigated). In Berar, the total area in 1905–6 amounted to 28,457 acres, almost entirely unirrigated.

Methods of Cultivation.—Fuller (Note in Outturn of Land under Principal
RELATIONSHIP TO SOILS

Crops in C. Prov., 1894, 10 states that the rice-growing areas fall into three tracts. The first lies in the north, and comprises the southern portion of the Damoh district, the Jabbalpur district and part of Mandla. Rice is here grown from seed, sown broadcast, and the crop is rarely irrigated. In black-soil fields it is generally grown as a catch crop before wheat. On lighter land it forms the only crop of the year. The second tract may be described as the Wainganga valley from its origin in the Seoni district to its termination in Chanda, and includes the southern portion of Seoni, the low country of Balaghat below the hills, and the eastern portion of Bhandara and Chanda, with isolated patches at the northern and southern extremities of the Nagpur district. In these localities most of the crop is grown from transplanted seedlings, and a large proportion is irrigated from tanks. The third tract consists of the plain of Chattisgarh and the Sambalpur district, forming the valleys of the Seonath and Mahanadi rivers. The common method of cultivation in Chattisgarh is to sow thickly broadcast and then to plough up the seedlings when they have made some progress, leaving the land a mass of mud, weeds and rice plants, from which a proportion of the latter make good growth. This process is known as *beasi* in Raipur and Bilaspur, and as *bilura* in Sambalpur. Transplantation of rice is almost unknown in Chattisgarh proper, i.e., in the Raipur and Bilaspur districts, and though tanks are numerous, the whole of the crop is practically unirrigated. [Cf. Dist. Settl. Repts., C. Prov.; Rept. Operat. Dept. Agri., C. Prov., 1894–5, 15; Oraddock, Rept. Land Rev. Settl., Nagpur, 1899, 61–2; Rept. Dept. Land Rec. and Agri., C. Prov., 1902–3, 10–11.]

Panjab and North-West Frontier.—The area in the Panjāb in 1905–6 was 493,062 acres, and in the North-West Frontier 29,647 acres. The largest areas in the former were:—Kangra, 96,938 acres; Gurudaspur, 52,361 acres; Sialkot, 38,151 acres; Amritsar, 33,217 acres; Dera Ghazi Khan, 32,152 acres, etc.; in the latter:—Hazara, 12,793 acres; Peshawar, 12,053 acres.

Methods of Cultivation.—In the Upper Kangra valleys, where abundance of water, high temperature and a peculiar soil which favours its growth, are found in combination, rice is the staple product. It is also grown in the irrigated parts of Dehra and Nurpur. Coarser kinds are grown without irrigation in the more elevated parts of the district. There are upwards of 60 cultivated forms, of which the most esteemed are *begami*, *basmati*, *jhinska*, *nakanda*, *kamadh*, and *rangari*. Each has its special locality, e.g., Rihlū is famous for its *begami*, Pālam for its *basmati*. Of the coarser kinds, the best known are *kathón* and *kolhenā*; of the inferior unirrigated rices, *rorā*, *kalāna*, *dhākar*. Where irrigation is possible, rice is not sown till June. In districts dependent on rain, the seed is sown as early as April. Harvest takes place in October.

There are three methods of cultivation. By the first, *būtar*, the seed is sown broadcast in its natural state and is the universal method on unirrigated land. In the second, *māch* or *lungū*, the seed is first steeped in water, forced under warm grass to germinate and then thrown into the soil, which has been previously flooded. By the third, *ūr*, the young rice, about a month old, is planted out by hand at stated intervals in a well-flooded field. The growth of weeds in the rice-fields is rapid, and to check them the crop, weeds and all, are ploughed up. This practice is called *holdna*, and only the weeds suffer, as the rice springs up again more luxuriant than before.
In the Karnal districts, rices are divided into two well-defined classes—fine, known by the name of ziri, and coarse, of which the principal sorts are munji and sánthi. Of ziri, the principal varieties are randal and rámjamání. Sunkar and ansari are coarser and grown chiefly where there is fear of too much water. Rice is grown only on stiif soil. The seed-beds are ploughed four or five times and carefully prepared, manure is spread on them, and the seed sown broadcast. More manure is then spread over the seeds and the whole watered. Four days after they are again watered, and after the fifth or sixth day they must be kept wet till ready to plant out. The rice-field is ploughed twice, and such manure given as can be spared. It is then flushed with 3 inches of water, and, if there are weeds, a plough is driven about under water. When the plough has worked the mud to a fine pulp, operators take the seedlings (pod) in handfuls (júts) and plant them one by one in the water. The field is weeded once at least and must at first be kept under water, but not more than about 6 inches deep. When the ears begin to form, the ground must be kept well wetted, but not too slushy. Reaping must be done directly the grain is ripe.

Coarse rice is of two kinds, mentioned above, viz. munji and sánthi. The former is sown in spots liable to be flooded, since it cannot be drowned, the straw lengthening as the water deepens. The peculiarity of the latter (sánthi) is that it ripens within an extraordinarily short time from sowing. It requires but little water, if the soil is thoroughly moist, after the shoots are once up. Both kinds are sown in their final positions. After two or three ploughings, cattle are sent into the water to walk about and stir up the mud or a plough is worked under water. The seed is sown broadcast. No manure is used nor is the crop irrigated. [Cf. Ph. Dist. Gaz.; Pb. Settl. Repts.]

Kashmir. Lawrence (Valley of Kashmir, 1895, 326–36) gives a full and interesting account of rice cultivation. The varieties grown are very numerous but may be roughly divided into two classes, the white and the red, the latter being the more alpine form. As a food, the white is more esteemed, and the best are the básmati and the kanyun. Though of good quality, the white is less popular from the cultivator's point of view, since it is a more delicate plant and suffers more from changes of temperature and from the chill of snow-water. If the cultivator can obtain water and manure, he will continue to grow rice, and no rotation takes place. Where, however, water is uncertain, the rice land is allowed a fallow, and in some cases may be followed by cotton, maize, wheat, barley and máh (pulse).

There are two systems pursued: either the rice is sown broadcast, or first sown in a nursery and then planted out. Results show that the broadcast system gives the best outturn per acre. Preparatory cultivation commences in March, when the fields are hard and stiff. Where the soil is dry ploughed, cultivation is known as tao; where wet, as kenač. Previous to ploughing, all the village litter and farm-yard manure are carried to the fields and ploughed in, or heaped in a place through which the irrigation duct passes, and so reach the fields as liquid manure. In June and July the labour of weeding the rice begins. The process is known by the name of khushába, and consists in weeding the crop, placing the rice plants in their proper places, and kneading and pressing the soft mud round the green seedlings. Only experts can
perform this work successfully and detect the counterfeit grasses. Under the nursery system two khushábas are sufficient, while four are essential in broadcast sowing. Sometimes when the rice is 2 feet high the whole crop is ploughed up (sele). When the rice has blooméd, and the grain begun to form, the water is run off the fields, but a short time before harvest a final watering is given to swell the ears. Harvest takes place in the months of September and October. [Cf. Dist. Assess. Repts. Kashmir.]

Bombay and Sind.—In 1905–6 the total area was 1,512,261 acres in Bombay; 1,013,902 acres in Sind. The largest areas in the Presidency occur in the Konkan:—Thana, 304,872 acres; Kolába, 248,067 acres; Kanara, 185,873 acres; and in the Karnátak, Dharwar, 143,606 acres; Belgaum, 207,571 acres. Of Sind, the following may be mentioned:—Lárkhána, 336,019 acres; Hyderábád, 215,297 acres; Karácchí, 189,273 acres; Thar and Pákár, 134,192 acres.

Methods of Cultivation.—Mollison tells us that rice is principally a kharij crop dependent on natural rainfall. In the Southern Collectorate, especially in Kanara, rabí rice, known as vaingan, which ripens in the hot weather, is grown. This rice is generally irrigated, usually by channel water drawn from a nullah or natural spring. As a rule the crop is grown on the same land year after year without rotation. This is the case in the Konkan, except in years of favourable late rainfall, when a second crop of vál, gram, castor, wheat, or of mixed vál and castor or mixed gram and castor may be preferred. This second crop, however, is more common in the tank irrigated rice-beds of Northern Gujarát and elsewhere than in the Konkan rice-fields. In the southern tálikas of the Surat district it is common to grow a crop of sugar-cane once in four years or at longer intervals, and the same practice prevails in the laterite soils of Belgaum, Dharwar and the above-Ghát parts of Kanara. In the Belgaum and Dharwar rice-beds a sprinkling of juar is sown with the rice. In Broach, in deep, black soil and in the tálikas, where the average rainfall exceeds 40 inches, rice is sown subordinate to cotton. Elsewhere in Gujarát, where the land is not true rice land and the produce uncertain, kodra and rice, with a sprinkling of tuwer, are a common mixed crop.

The best soils are clayes or clay loams with a substratum of other porous material. Embankments are formed, and the surface of the beds made level. Many fields on and under the Ghás are never manured, but the seed-beds invariably are, either by burning rabí material thereon or by direct application of manure. The rice-beds of Gujarát and those of the flat bottom-lands of the Konkan and elsewhere are regularly manured. In Gujarát tank-mud, 40 loads per acre, is a favourite application, and the practice of green manuring is also common. Castor cake may also be given as a top-dressing to supplement ordinary manure. Fish manure is similarly employed in the southern tálikas of Surat and parts of the Konkan. In Kanara and the forest tracts of Dharwar, leaves and twigs of certain forest trees are used as a green manure. Rice is sown broadcast, drilled, or broadcast in a seed-bed and thence transplanted. The first is seldom adopted except in the case of rice grown on marshy situations reclaimed from the sea. The second plan is very common in the western tálikas of Belgaum and Dharwar and above the Ghás in Kanara and in unembanked fields in Gujarát. The third method is most suitable in fields which are embanked and where the rainfall is over 80 inches, or
where deficient rainfall can easily be supplemented by irrigation. Broad-
casted or drilled rice requires a higher seed-rate than the transplanted, viz. about 120 lb. per acre; the seed-rate of the transplanted varies
per acre from 25 or 30 lb. to 90 or 100 lb. In the Konkan, Mollison esti-
mates a full yield under favourable circumstances at less than 4,000 lb.
per acre. A full average from transplanted rice ranges from 2,800 to 3,200
lb. of grain per acre, while broad-cast or drilled yields on an average
1,800 lb. per acre. The cost of cultivation is estimated at Rs. 52-15a. per
1901, iii., 32-44.]

Madras.
Area.

Madras.—The total area in 1905-6 was 7,561,611 acres, and distributed
thus:—in Tanjore, 1,074,152 acres; Malabar, 831,545 acres; Kistna,
611,664 acres; South Arcot, 555,574 acres; South Kanara, 530,402 acres;
Madura, 376,302 acres; Trichinopoly, 208,967 acres, etc. The Final
General Memorandum for 1906-7 estimates the area for the year at
6,934,900 acres with a yield of 50,395,700 cwt., or 10-5 per cent. of the
total rice area of British India.

Methods of Cultivation.—In Malabar the crop is sometimes sown broad-
cast, but usually transplanted. There are several crops in the year, the
principal of which are the kanny, sown in April–May and cut in August–
September, and the makaram crop, sown in September–October, and
reaped in January–February. These are the principal rice harvests,
but there are intermediate crops in some places; and a third, known as
poonja, sown in February and reaped in April–May. The greater
portion of the land, however, bears only one crop.

In South Kanara, rice is the staple crop. The land is classified, according
to its capacity for irrigation, into byle, or rich wet land; majal, or middling
wet land; and bettu, or land watered only by rainfall. On byle land of the
best quality three rice crops can be raised in the year; on the best majal,
two crops; while bettu land produces only one crop. The earliest rice
crop of the season, on whatever land it may be grown, is termed zenelu or
carty. The seed is usually sown in nurseries, highly manured, and the
plants transplanted. In almost two months’ time the crop comes to ear,
and in about twenty-one days more is ready for reaping.

In Tanjore, rice is raised almost entirely by artificial irrigation. There
are two chief kinds, viz. kar and pishanam, each including minor varieties.
In all cases of irrigated cultivation, transplantation is the rule. A few
corser sorts, grown in some places beyond the delta of the Kaveri,
and on rain-fed land, are sown broadcast. Kar is planted in June and
reaped in October; pishanam in July–August and reaped in January–
February. In the Madura district, rice is stated to be grown on almost
every description of soil, the only essential being a constant supply of
water. The seed may be sown broadcast, but the rule is to sow in nurseries.
Sometimes the young plants raised in the nursery are transplanted to a
second nursery, and afterwards carried to the field. As a rule, ploughing
is done in June or July, after the early rains have softened the ground,
and the seed is sown in nurseries at the end of July or beginning of August.
After thirty days the seedlings are fit for transplanting, and in January
may be harvested. When re-transplanting takes place, the young plants
are suffered to remain in the second nursery about 35 days. Weeding is
done about a month after sowing or transplanting. During the whole
time the plants are in the ground they must stand in about 2 inches of water,
SOUTHERN INDIA

which must not be allowed to stagnate. In lands well supplied with water, as soon as the January crop is reaped, preparations are made for a second crop (mäsi ködei) raised in the same way as the first, but which comes to maturity about May. If the season be unpropitious during January–February, the second sowing will be in March, April or May and the reaping in July or August. The second crop is then called adi-ködei. Sometimes there may be three crops of rice raised in succession in a period of 13 or 14 months. [Cf. Sturrock, Man. S. Canara, 1894, i., 21, 199–204; Cox, Man. N. Aroot, 1895, i., 160–2; Francis, Gaz. Anantapur, 1905, 39; A Root Parasite of Paddy in Malabar, in Agri. Journ. Ind., 1906, i., pt. ii., 169.]

Mysore and Coorg.—The only available figures are for 1903–4, when the area in Mysore was 792,754 acres, and Coorg, 79,763 acres. The largest areas in Mysore State occur in Shimoga, which grew 244,758 acres; Mysore, 117,749 acres; Hassan, 103,639 acres; Kadur, 97,905 acres, etc.

Methods of Cultivation.—In Mysore the bara batta or punaji seed is sown dry in the fields; the mole batta, germinated seed, in fields reduced to a puddle; and the nät, seedlings transplanted from a nursery after having attained a foot in height. Rice (Mysore Gaz.) fully describes these methods. There are two crops, the hain (rainy season) and the kuru (hot weather). In the first, dry-seed cultivation is managed as follows:—from February to May, plough twice a month, having previous to the first ploughing softened the soil with water. After the fourth ploughing the field must be manured with dung, and after the fifth, watered by rain or from the canal. Three days later, the seed is sown broadcast and covered by the sixth ploughing. Any rain that falls the first 30 days after sowing must be allowed to run off, but should there have been no rain, the field must be kept inundated till the crop is ripe. If there have been occasional showers, inundation should not commence till the 45th day. Weeding and loosen the soil about the roots of the young plants and placing them at proper distances must be done three times, first on the 45th or 50th day; secondly, 20 days later; and thirdly, 15 days after the second weeding. These periods refer to crops that require 7 months to ripen. Rice which ripens in 5½ months must be inundated on the 20th day; and the weedicings are on the 20th, 30th and 40th days. By the sprouted-seed method, ploughing takes place in June–July. During this time the field is inundated, ploughed four times, and at each ploughing turned over twice in two directions which cross each other at right angles. About the middle of July the field is manured, again ploughed, and the mud smoothed by foot. All water except 1 inch is let off, and the germinated seed sown broadcast. For 24 days the field must have some water every other day, and thereafter, till ripe, be constantly inundated.

In the method of transplanting rice, two distinctions are made, one called bara-vägi or dry plants, the other nirägi or wet plants. Low land is required for both. In bara-vägi the ground is worked in the same way as for the dry-seed crop. In May it is manured and the seed sown thickly and ploughed in. If no rain falls till the 8th day it is watered, and again on the 22nd. From the 45th till the 60th day, the plants continue to be removed. The field must be inundated for five days before plucking up the seedlings for transplantation. The ground in which the dry seedlings are to be ripened is ploughed four times in the course of

837
eight weeks commencing about 15th May, and all the while inundated. The manure is given before the fourth ploughing. The mud is then smoothed and the seedlings transplanted into it, about 3 to 5 being stuck together in the mud at about a span distant from the next clump. The water is let off for a day, but afterwards the field is constantly inundated till the grain is ripe. In nárápí, the ground is ploughed three times in February–March while it is dry. About the middle of May the field is inundated, and in the course of 15 days ploughed four times. After the fourth ploughing the mud is smoothed, the seed sown thickly and dung sprinkled over the surface, and the water let off. On the 3rd, 6th and 9th days water is again given, but must not stagnate. After the 12th day, inundation is commenced, and continued till the seedlings are fit for removal 30 days after sowing. The cultivation of the field into which the seedlings are transplanted is exactly the same as for dry seedlings. Various pulses are sown in the fields that are to ripen the transplanted crop, and are cut down immediately before ploughing for rice commences.

Kár (or karu) crops (hot weather) are divided into three kinds according to the time of sowing. When the farm is properly stocked, the seed is sown at the most favourable season, and is called kumbá kár; but if there be a want of hands or of cattle, part of the seed is sown earlier and part later than in the proper season. When sown too early it is called tula kár; when too late, mésha kár. The three methods of cultivation described above for the hain crop, viz. by dry seed, germinated seed, and transplantation, are found here also, except that in the case of tula kár no dry seed is ever sown.

In Coorg there is annually but one rice crop, except in a few valleys in the north. The rice cultivated throughout Coorg and in general use is the large-grained dodda-batta. A finer kind is the small rice sanma-batta, and a red variety the késari. For parched rice the kalame is the kind used. The seed is sown in a nursery, and in 20 or 30 days the seedlings are ready for transplantation, which takes place in July and August, regulated by the monsoon. The crop is cut in November or December. [Cf. Rice, Mysore Gaz., 1897, i., 131–44, 217–8; ii., 317–8, 328, 563–4.]

Burma.—The area in 1905–6 was 9,283,801 acres. The districts of importance are, in Upper Burma:—Shawbo, 365,107 acres; Yamethin, 225,170 acres; Upper Chindwin, 160,733 acres; and Kathu, 159,596 acres. In Lower Burma:—Hanthawaddy, 1,114,359 acres; Thongwa, 843,840 acres; Pegu, 778,372 acres; Akyab, 599,880 acres; Thaton, 563,973 acres; Bassein, 536,720 acres; and Myaungnya, 518,508 acres. The crop is divided into three main classes: kaukkyi or late-rain paddy; kaukkyin or early-rain paddy; and mayin or dry-year weather paddy. Kaukkyin is said to occupy the largest area, viz. in 1904–5, 8,883,716 acres; kaukkyin next with 332,117 acres; then mayin with 99,631 acres. The Final General Memorandum of the Commercial Intelligence Department estimates the area in 1906–7 at 6,988,500 acres. The yield was given as 96 cent. of normal, and the surplus available for export was 2,374,000 tons cargo rice, equivalent to 40,237,000 cwt. cleaned rice.

Methods of Cultivation.—The most fertile land, where the largest amount and the best quality is grown, is found in the delta of the Irrawaddy. There are five methods of raising the crop, practised in different parts of the country:—(1) On the ordinary swamp land in low-lying plains where the rainfall is sufficient; (2) on level land from which the
BURMA

rain-water runs off too quickly and irrigation has to be resorted to; (3) on land near the river-bank which is submerged and cannot be planted till after the highest rise; (4) in hill clearings; (5) a hot-weather crop obtained by irrigation either by means of dams or by water-wheels.

For the first three methods, ploughing commences in June, when the rains have softened the soil and rendered the use of the plough possible. Meanwhile nurseries have been prepared on higher ground and seed sown broadcast. By July or August the fields for the first two classes and the plants in the nursery are ready and the young plants are dibbled in, two together at intervals. In the case of riparian lands, the plants cannot be put out till about September; the harvest begins in November and is over by January. The hot-weather crop is planted in January–March, and is reaped about three months afterwards. The water necessary is usually obtained by throwing a dam across a stream, but at Meng-doon in the Thayet district a self-acting wheel is used.

In cultivating rice in hill-clearings, a site is first selected, thickly covered with bamboos and forest, which is all felled in April. After two months' drying, the fallen trees and scrub are set on fire, the ashes fertilising the ground. After the first fall of rain, the surface is slightly broken with a hoe, the ashes mixed with the soil, and the seed, usually rice and cotton or sesamum and cotton, sown broadcast. The rice and sesamum are reaped in September or October, and the cotton bolls picked in December to April. After this the hill-clearing is abandoned. [Cf. Dist. Settl. Oper. Repts.; Upper Burma Gaz., 1900, ii., pt. 1, 337–41; Max and Bertha Ferrars, Burma, 1900, 48–56; Nisbet, Burma under Brit. Rule and Before, 1901, i., 330–43.]

MANUFACTURE.

Mills and Milling.—An important feature of the Indian rice trade is the rise and present position of the Burma power-mills. These mills had their origin in the very high cost of labour in that province and the distinclination of the Burman agriculturist to undertake any work he can avoid. In Bengal the rice crop is as a rule husked by the growers; in Burma it is conveyed to the market as paddy. It thus soon became evident that if rice was to become an important article of export, it must be husked at Rangoon. This gave rise to the important rice-milling industry of Burma. But these mills were for a long time greatly handicapped by the cost of coal imported from England. Moreover, the question of the disposal of the husk became a serious one. The discovery soon followed that the husk, previously wasted, might be utilised as the fuel to drive the mills. The husk is accordingly conveyed by special contrivances to the furnaces and there consumed, while a stream of water flowing below carries off the ash. By these and other inventions so great economies were effected that it soon became evident that not only was a great export trade possible, but that it would no longer pay to carry rice in husk to be milled at localities remote from the areas of production. To the skill and energy of the European inventors and owners of these mills, therefore, is due the credit of this great and prosperous industry.

According to the Financial and Commercial Statistics, there were 127 rice mills in India in 1904 employing 17,814 persons (mostly Madras coolies). The industry, however, is of importance only in Burma, which had of the above totals 114 mills and 17,016 employees. According to the statistical tables, the remainder were distributed as follows:—
THE RICE PLANT

Panjáb 1 mill, with 33 employees; Bombay 1 mill, with 80 employees; Madras 11 mills, with 685 employees.

Revenue Duty.—In the Imperial Gazetteer (iv., 257–8) it is stated that the "revenue derived from rice and millet beer amounted in 1902–3 to about 6 lakhs in Bengal and 11 lakhs in Burma; elsewhere it is inconsiderable. In Bengal, *pachewi* brewed from rice or millet is consumed by aboriginal tribes, and by the lower orders in general, in certain districts. It is valued both as a stimulant and as food. The bulk of the revenue which it yields is derived from licenses for manufacture and retail sale, which are put up to annual auction, the number and sites of the shops having been previously fixed. Licenses for the home-brewing of *pachewi* for domestic purposes are granted in certain districts to the headmen of villages inhabited by aboriginal races, on payment of a fixed fee for each household. In Burma the Native beer is brewed from rice. When consumed by certain hill tribes, mostly in Upper Burma, it is exempted from taxation, otherwise the excise system is similar to that in Bengal. It is almost as easy to brew this beer as to make a pot of tea, and as the main ingredient is a staple article of food, it is almost impossible to check private manufacture." In the *Moral and Material Progress of India* the excise revenue from fermented local liquors, amounted in 1905–6 to £113,234 in Bengal and to £151,402 in Burma (see pp. 757, 760). The preparation of vinegar from rice is almost peculiar to Burma (see p. 1111). As regards Customs Revenue, rice and rice flour are the only articles on the export tariff schedule; the duty on which is levied at the rate of 3 annas per maundy of 82½ lb. The revenue thus obtained during the years 1900–6 amounted to the following sums:—In 1900–1, Rs. 84,89,433; 1901–2, Rs. 90,87,957; 1902–3, Rs. 1,26,06,624; 1903–4, Rs. 1,20,31,363; 1904–5, Rs. 1,31,75,772; 1905–6, Rs. 1,15,11,257 (£767,417). The increase in recent years is doubtless to some extent the direct expression of the economies effected by the Burma milling industry.

It was said some time ago that India held a practical monopoly of the world's supply of rice and accordingly was justified in placing an export duty on the quantities sent to foreign countries. The duty above mentioned was first imposed in 1875, when oil, rice, indigo and lac were subjected to an export duty. In 1880 the duties on the other articles were remitted, and that on rice alone retained. But the exports of rice from the Southern States of America, from Madagascar, from Cochín-China, from Siam, from Japan, etc., have given a new conception of the trade. In fact, it might almost be said that but for the economies effected by Burmese milling, the exports would have by now been lost to India.

TRADE.

The foreign rice trade of India may be said to be very ancient. So long ago as 1503 Vertomannus (Travels, in *Hakl. Voy.*, 1811, iv., 577) made special mention of the exports from Mangalore. In present-day traffic almost the entire supplies of the cereal sent to foreign countries are drawn from Burma. It is employed as food, for distillation, and in the manufacture of starch. "Formerly the bulk of the rice exported from Burma consisted of 'cargo' rice, of which five-sixths was unhusked (or 'paddy') and only one-sixth husked. Gradually, with the extension of rice-mills, the proportion of cargo rice has diminished, this description being replaced by husked and cleaned rice, to the great advantage of the
THE HIGHEST PRICED EXPORT OF INDIA

trade. For the husk is used as fuel in the mills, the bran lying between the husk and the grain is exported at a good profit for pig-feeding, and a saving in freight is thus effected." "Rice is exported to every quarter of the globe, not more than about half of the total exports being consumed in Europe. Large quantities are sent to the Straits and Ceylon, to other parts of Asia, to East Africa, to the West Indies and South America. Indian rice penetrates to every region to which the Indian or Chinese coolie finds his way. It is to be noted that other countries, such as Siam, Cochín-China and Java, are already competing with India in these markets." Again, "The rice trade is conducted under conditions as regards the effects of the seasons which are unknown in other parts of India, for as yet no failure of the monsoon in Lower Burma has been recorded. The fluctuations of the export trade from Burma depend, however, upon conditions in other parts of India, since bad seasons cause the diversion to India of rice which would ordinarily be exported to foreign markets" (Imp. Gaz., 1907, iii., 284–5). Burma has thus very properly been described as the granary of India, and it plays an important part in securing the balance of food supplies of the East generally.

Staple of Burmese Commerce.—The importance of the rice crop may be seen by the fact that the exports often constitute the highest valued commodity and have often disputed the first position with raw cotton. Thus in 1904–5 the Rice exports (all kinds) were valued at Rs. 19,62,04,232; Wheat, Rs. 18,59,32,032; Cotton (raw), Rs. 17,43,46,872; Jute, Rs. 11,96,56,462; Opium, Rs. 10,62,34,442; Hides and Skins, Rs. 9,90,58,538; Tea, Rs. 8,46,54,867; Coffee, Rs. 1,66,09,767; and Indigo, Rs. 83,46,073. But in 1906–7 these positions were seriously changed: jute headed the list, followed by cotton, then rice, hides, tea, opium, wheat, coffee and indigo. Other raw products and partially manufactured products might be added to the above enumeration, but enough has been said to show the great importance of the rice traffic—the exports in that cereal being the staple of Burmese commerce.

Internal.—The total recorded internal trade transactions by rail and river amounted in 1906–7 to 35,038,390 cwt., of which 8,039,211 cwt. consisted of unhusked rice (paddy) and 26,999,179 cwt. of husked rice. The chief exporting centres were Bengal, 10,364,281 cwt.; Madras, 4,290,216 cwt.; E. Bengal and Assam, 1,228,575 cwt.; Sind, 2,905,816 cwt.; Bombay port, 949,010 cwt.; Calcutta, 6,755,856 cwt.; and Madras, ports, 916,575 cwt. The chief imports were Calcutta, 9,470,405 cwt.; Bengal, 3,733,778 cwt.; Madras ports, 3,128,178 cwt.; Bombay, 1,754,606 cwt.; Madras, 1,195,222 cwt.; United Provinces, 460,072 cwt.; Karachi, 2,631,258 cwt.

The total coastwise external traffic by sea in the same year amounted to 19,582,791 cwt. (5,085,681 cwt. unhusked and 14,497,110 cwt. husked). Of this Burma exported 16,259,949 cwt.; Bombay, 800,618 cwt.; Bengal, 309,708 cwt.; Madras, 463,487 cwt.; Sind, 1,684,085 cwt. The chief importing centres by coast were Bombay, 3,755,193 cwt.; Madras, 5,132,772 cwt., and Bengal 5,848,337 cwt.

Foreign.—The exports of husked rice during the five years 1902–7 were as follows:—1902–3, 47,033,137 cwt., valued at Rs. 18,78,73,780; 1903–4, 44,441,186 cwt., valued at Rs. 18,95,42,429; 1904–5, 48,873,297 cwt., valued at Rs. 19,47,22,505; 1905–6, 42,211,869 cwt., valued at Rs. 18,41,06,407; and 1906–7, 38,054,054 cwt., valued at Rs. 18,32,55,332.

841
THE RICE PLANT

In addition to this, a considerable quantity of unhusked rice (rice in husk) or paddy, amounting in 1906-7 to 655,132 cwt., valued at Rs. 19,98,886, and smaller quantities of rice-flour, viz. in 1906-7, 6,165 cwt., valued at Rs. 44,484, are annually exported. Robertson (Rev. Trade Ind., 1904-5, 23-4) states that both in regard to quantity and value the trade of 1904-5 was the largest known, and that the average price was 7% cent. lower than in 1903-4. The bulk of the exports of husked rice is always from Burma, which, out of the totals above mentioned, contributed as follows:—1902-3, 36,791,543 cwt.; 1903-4, 33,346,351; 1904-5, 37,514,518; 1905-6, 31,067,895; and 1906-7, 28,105,443 cwt. Bengal comes second with, in 1905-6, 8,955,237, and in 1906-7, 4,736,786 cwt. Madras in 1905-6 supplied 1,500,945, and in 1906-7, 3,333,774 cwt. Sind in 1905-6 gave 303,354 and in 1906-7, 1,344,529 cwt. Lastly, Bombay in 1905-6 furnished 584,440 and in 1906-7, 533,443 cwt. According to Robertson, unhusked rice goes entirely to Ceylon, except as a constituent of husked rice to prevent its heating. Of cleaned rice the principal destinations west of Suez are Germany, which, in 1905-6, took 4,968,851 cwt., valued at Rs. 1,97,42,006; United Kingdom, 3,473,883 cwt., valued at Rs. 1,48,95,095; Holland, 2,513,425 cwt., valued at Rs. 89,00,902; Austria-Hungary, 2,442,632 cwt., valued at Rs. 87,55,678.

Of the Eastern section of the trade, the most remarkable feature is the development in the export to Japan, which amounted in 1904-5 to 9,277,239 cwt., valued at Rs. 3,52,13,937, an increase of 32% per cent. over the quantity for 1903-4, though it fell in 1905-6 to 6,593,531 cwt. After Japan in 1905-6 comes Ceylon with 5,976,582 cwt., valued at Rs. 3,21,23,634; then the Straits Settlements with 5,028,694 cwt., valued at Rs. 2,05,89,495.

The imports into British India do not amount to much, viz. in 1905-6, 965 cwt. unhusked rice, valued at Rs. 3,263, and 7,230 cwt. husked rice, valued at Rs. 40,018, the bulk of which comes from the Straits Settlements.

Of the trade by land (Trans-frontier) the latest available figures are for 1906-7. In that year the quantity of husked rice exported amounted to 69,050 cwt., valued at Rs. 4,31,759, and unhusked rice to 29,682 cwt., valued at Rs. 1,64,542. The Trans-frontier import trade is considerable. In the year under review, imports of husked rice amounted to 1,173,025 cwt., valued at Rs. 76,08,888, and of unhusked rice to 1,349,532 cwt., valued at Rs. 49,84,420. Almost the whole of this, husked and un-husked, comes from Nepal, viz., in 1906-7, the former, 945,640 cwt., and the latter, 1,215,852 cwt.

PANICUM, Linn.; Fl. Br. Ind., vii., 26-60; Prain, Beng. Plants, 1903, ii., 1174-80; Gramineae. One of the largest genera of grasses. Of the Indian species several are much valued as fodders, owing to their abundant yield of grain—Millet.

P. colonum, Linn.: Duthie, i.e. 4: Lisbon, i.e. 11, t. 7. The sainim, shama, sivan, borurr, wundu. An annual, abundant throughout the plains, ascending to moderate elevations on the Himalaya. In parts of the Panjâb it is cultivated for its grain. It is generally considered one of the best folderv grasses in India. [Cf. Church, Food-Grains of Ind., 1886, 50.]
SPECIES OF MILLET

P. Crus-galli, Linn.; *var. frumentaceum*, Trimen; Prain, l.c. 1177; *P. frumentaceum*, Roxb.; Dutthie and Fuller, *Field and Garden Crops*, 1882, ii. 3-4, t. xxiv.; Dutthie, *Fodd. Grass*, N. Ind., 8; Lisbon, l.c. 11. The *shamula, shama, sime, sano, jhungara, mandira, banti, chamalu*, etc. A tufted annual, extensively cultivated as a rainy-season crop over the greater part of India and on the Himalaya up to 6,500 feet. In *The Bower Manuscript* (Hoernle, trans., 151) mention is made of "gruel made of *syâmâka,*," and this has been regarded as denoting the present millet. The MS. in question was found at Kucha near Khotan, and is of the 8th century. This is the quickest-growing of all the millets, and in some localities can be harvested within six weeks of being sown. It thrives best on light sandy soil. Banerjei (*Agr. Cuttack*, 1893, 76) says it often follows *kangu* (*Setaria italicica*). The soil is ploughed twice, and the seed sown broadcast in the middle of May to the middle of June. In about a month and a half the land is thoroughly weeded. Rain is required till about the middle of August, when the crop is cut. Of the United Provinces, Dutthie and Fuller state that it is sown at the commencement of the rainy season and a spring crop usually follows. The seed is sown at the rate of 10 lb. to the acre, and the young plants require at least two weedicings. In the drier regions of the Deccan it is frequently grown as a subordinate crop with *juâr* (*Sorghum vulgare*). The yield varies from 8 to 10 maunds grain to the acre. In Bombay the area devoted to it in 1905-6 was 43,586 acres. Mallison (*Textbook Ind. Agr.*., 1901, iii., 61) states that the land is prepared as for *bajra* (*Pennisetum typhoideum*). The seed is drilled with a four-coultured plough in June-July at the rate of 6 to 8 lb. to the acre. The rows are about 12 inches apart, and the plants should be thinned out where the seed is sown too thickly. The crop is weeded and intercultured with the bullockhoe as with *bajra*. It ripens in September-October. In the Deccan it is usually grown on poor, light upland soil where the rainfall is moderately heavy, and on such land a yield of 400 to 500 lb. grain and 1,500 lb. straw is a full average crop. The grain is consumed chiefly by the poorer classes, with whom it has the special merit of ripening early. It is eaten boiled in milk or is parched. Leather (*Agr. Ledg.*, 1901, No. 10, 368; 1903, No. 7, 150, 178) gives the following analysis:-moisture, 7-72; oil, 4-39; albuminoids, 7-06; soluble carbohydrates, 67-56; woody fibre, 7-44; soluble mineral matter, 1-70; sand and silica, 4-13; total nitrogen, 1-18; albuminoid nitrogen, 1-13. In the Madras Presidency and in Mysore the straw is much used as a cattle fodder, and in the Meerut district it is sometimes grown as a fodder crop. [Cf. *The Bower Manuscript* (Hoernle, trans.), 1893-7, 137; Church, l.c. 49; Basu, *Agr. Lohardaga*, ii. 890, pt. ii., 29; Rice, *Mysore Gaz.*, 1897, i., 114-6; Mukerji, *Handbook Ind. Agr.*, 1901, 259.]

P. maximum, *seaq.*; Prain, *Beng. Plants*, ii. 1179; *P. jumentorum*, Pers.; Dutthie, l.c. 9; Lisbon, l.c. 18-22. *Guinea Grass, gini gueut, geneo-pulsi, gini hullu, nouka-thau-hau*, etc. A tall perennial native of Africa, and now cultivated in India. It is best propagated by root cuttings. A sandy soil is most suitable. After the ground has been prepared in the ordinary way, the roots should be planted out 2 feet apart on the flat, at the commencement of the rains, care being taken to arrange them so as to form lines at right angles in both directions. If planted at any other time, the field should be inundated with water immediately after planting. When the crop is established the rows should be ridged up in the direction of the slope. Subsequently, according to Mallison, Guinea Grass can hardly get too much water or manure, but the water must not be allowed to stagnate. The best manure is well-rotted farm-yard, and it should be applied in dressings of at least 5 tons per acre every fourth time the crop is cut. Crops are cut about eight times in the year, and plantations should be renewed every three years. Of the Poonas and Surat Farms, Mallison says that it has been known to give outturns of 20,000 to 35,000 lb. per acre according to season. [Cf. *Dept. Land Rec. and Agri. U. Prov. Bull.*, 1897, No. 6; Mallison, l.c. 233-6; Leather, *Agr. Ledg.*, 1901, No. 10, 368; 1903, No. 7, 156, 170.]

P. miliacenum, Linn.; Dutthie and Fuller, *Field and Garden Crops*, ii. 1-2, t. xxiii.; Dutthie, *Fodd. Grass.*, l.c. 9; Lisbon, l.c. 16. Common Millet, *chena (or chena), chin phikai, sipan-chaiten, anna, sliam, tsedze, wadi, vari, katakana, rarapu, bili bariya*, etc. This grass is supposed to have been introduced from Egypt or Arabia. It is grown in various parts of the

Panicum milaceum

Poor-man's Millet.

Six Weeks' Crop.

Seasons.

Yield.

Food.

Chemistry.

Fodder.

Guinea Grass.

Planting.

Irrigation.

Manure.

Yield.

Common Millet.
PANICUM MILIACEUM

THE COMMON MILLET

country up to 10,000 feet on the Himalaya, but nowhere to any great extent. Stein (Ancient Khotan, 376) says he found at the Niya site (3rd century) some ancient straw among which the husk of this species had been recognised by the authorities of Kew.

Bengal.—Roy (Crops of Beng., 1906, 58–60) states that this millet does best on a heavy loam and luxuriates on newly formed char lands. The land is ploughed after the 15th December, up to January or even to 15th February, and harrowed two to four times each after ploughing. By the time of the fifth or sixth ploughing the clods are broken with the hammer and the seed sown broadcast about the 15th February, at the rate of 5 seers to the acre, then ploughed in; but to cover the seed, the land is again harrowed. When the plants are 6 inches high, the field is weeded if necessary. The crop is harvested about the 15th March to the 15th May. The average yield is about 24 maunds per acre, valued at Rs. 48.

U. Prov.—It is grown as a hot-weather crop, irrigated from wells. Sown in March at the rate of 10 lb. to the acre, and ripens towards the end of May. Yield, six to eight maunds of grain per acre.

Two Varieties.

In Bandelkhand there are two varieties, phikai and rahi. The former is sown a little earlier than the latter, and yields a heavier outturn.

Bombay.—The area under this crop and under P. miliaceum are returned together. They are generally distinguished by the names of varī and saeca respectively. In 1905–6 they occupied 231,948 acres in Bombay and 2,140 acres in Sind, and are said to take the sixth place among the cereals of Bombay. Their cultivation is almost limited to the Konkan and the Ghát parts of Nāsik, Poona, Sātára, Belgaum and Dhār-wār. In these districts P. miliaceum is a kharif crop, depending on natural rainfall, and is never irrigated. According to Mollison, it is raised like nāgli (Eleusine coracana) from rābed seedlings transplanted. When the seedlings are growing, the field is ploughed three or four times during the first three weeks of the rains. About 1 lb. of seed per guntha (one-fortieth acre) is sown broadcast on the seed-bed. It is grown without manure, and is commonly hand-weeded once in August. If transplanted early in July, the late varieties of the crop ripen towards the end of October. A full average crop on good varkas land (i.e. upland soils of the Konkan) will yield 700 to 750 lb. grain per acre, worth 40 to 45 lb. per rupee. In Gujarat the crop grown is known as cheno, and according to Mollison is agriculturally very different from the crop of the Konkan and Ghát districts. It is grown in garden lands as a hot-weather irrigated crop. When ginger or other garden crop is removed in December–January, the land is ploughed several times and beds formed for irrigation. The seed is sown broadcast, 10 lb. per acre, and lightly covered. Light irrigation is given as required, and the crop is hand-weeded once. If sown at the end of January it comes into flower in March and is fully ripe in April. A good crop yields about 2 tons straw and 1,000 to 1,200 lb. grain per acre.

Uses.—The grain is considered digestible and nutritious, and in many places is eaten whole, being cooked like rice. In Bihar, when boiled and parched, it is called marha, manhra or már. Prepared with milk and sugar it is a favourite food at marriage ceremonies. Near Simla it is sometimes used as bread in the form of chapatties, called chinatti (pancakes). Leather gives the following average analysis of three samples

844
of grain:—moisture, 8.84 per cent.; oil, 4.57; albuminoids, 8.04; soluble carbohydrates, 65.20; woody fibre, 7.39; soluble mineral matter, 2.16; sand and silica, 3.79; total nitrogen, 1.36; albuminoid nitrogen, 1.29. [Cf. Agri. Ledg., 1903, No. 7, 179.]

In the green state it affords excellent fodder for cattle and horses, and in parts of the Panjâb is sometimes grown for this purpose only. The dry straw, called pral or pralâ in the Montgomery district, is sometimes given to cattle.

[Cf. Church, l.c. 42; Basu, Agri. Lohardaga, 1890, pt. ii., 33; Banerjei, Agri. Cuttack, 1893, 75–6; Lawrence, Valley of Kashmir, 1895, 337–8; Rice, Mysore Gaz., 1897, i., 117; Mukerji, Handbook Ind. Agri., 1901, 259; Millison, l.c. iii., 61–4; Crop Exper., Bomb. Pres.; Joret, Les Pl. dans L'Antiq., etc., 1904, ii., 245.]

P. milliare, Lamk.; Duthie, l.c. 10; Lisboa, l.c. 17; Little Millet, kungu, kutki, gondula, mighri, chika, varai, sava, shama, nellâ-shama, etc. One of the minor millets, smaller in all its parts than the former.

Of Bengal, Roy (Crops of Bengal, 62) states that this millet is largely cultivated in the Lower Province. No manure is used, and it may be followed in rotation by a rabi crop. The land is ploughed and harrowed from January to March and the seed sown from March to May, at the rate of 18 seers per acre. No further operations are necessary till August or September, when the crop is cut and threshed like dâs paddy. The yield is stated to be 24 maunds per acre. In the United Provinces its cultivation is confined chiefly to the southern hilly districts. It is sown in June and reaped in October, forming, together with kodon (Paspalum scrobiculatum), the crop generally taken from the poorest land in the village. In Bombay, the description from Millison given under P. miliaceum applies equally to the present crop.

PAPAVER AND OPIUM: PAPAVERACEAE. Opium is an inspissated juice obtained by scratching the unripe capsules of Papaver somniferum, Linna., and allowing the milky sap, which exudes therefrom, to dry spontaneously. There may be said to be two chief kinds of opium, that used for medicine (produced chiefly in Asia Minor), and that smoked, eaten, etc. (grown in India and China).

History.—Various species of poppy are mentioned by the early Greek writers (Homer, etc.) as ornamental garden plants or as attractive-looking weeds of the fields: the merits of the seed as an article of food and as affording oil were extolled before the discovery had been made of the somniferous property of the capsules, and certainly long anterior to the recognition of the value of the milky sap. The capsules, stems and leaves were employed by the Greeks in the preparation of an extract called meconium (cf. Hippocrates, Theophrastus, etc.), which was employed as a soporific drug and used in the fabrication of a soothing beverage exactly corresponding to the psitt of the Panjâb to-day and the kukan of Akbar’s time. Lastly came the discovery of the more potent nature of the inspissated sap, the opion of the Greeks, a word that may be spoken of as the diminutive of ἐξία—the juice. Papaver somniferum was grown in Asia Minor for its capsules, which the Arabs carried all over the East, even to China, sometime before the Greek discovery of the value of the juice.

The discovery of opium began to attract attention about the 3rd century B.C. Theophrastus was acquainted with it, and describes the method of obtaining it by scratching the green pods. Virgil (Georg., iv., 545) speaks of the lethean virtue of the plant. Pliny pays special attention to the medicinal value of
opium, while Dioscorides narrates with the minutest detail the process of extracting and manufacturing the drug, and is careful to distinguish it from the older preparation meconium. In his time the drug would seem to have come mainly from Asia Minor. Indeed, during the Roman Empire, as also the early Middle Ages, the only sort of opium known was that of Asia Minor. And even in the 13th century Simon Januensis (physician to Pope Nicholas IV.) spoke of Opium thebacinum.

But if the Greeks discovered the potent juice—opium—the Arabs were chiefly concerned in disseminating the knowledge of the plant and its uses. The Arab medical writers from about the 9th to 12th centuries give a full account of it derived almost exclusively from Dioscorides and Galen. That the followers of the faith of Islam proclaimed the properties of opium to the people of India and China there can be no doubt, since the Sanskrit and all the vernacular names in use to-day are clearly traceable to the Semitic corruption of opos or opion into afyun. Thus the Hindi afim points to afyun as the transitional stage from opion. In the same way the Arabs carried the poppy capsules and opium to China, hence the name ya-pien, also a-fou-yong, in the Chinese language. Previous to the Tang dynasty the opium poppy was apparently not known to the Chinese. According to one writer the Sanskrit name is ahishena, and, explained as meaning "snake venom," would thus not be derived from the Greek. But it is more often written ahisana, a word which most authors speak of as being quite modern, directly from the Arabic, although George Birdwood (E.J.C. First Letter Book, iv.), for example, says, "It does not occur anywhere until it appears in a Sanskrit dictionary published in Calcutta about seventy years ago." Mr. R. M. Dane (Hist. Mem., in Rept. Roy. Comm. on Opium, vii., app., 28-63) says that evidence was placed before the Commission to the effect that it mentioned in the Bhavaprakasha and other Ayur-Vedic medical works supposed to have been written not less than 800 years ago. He then adds that the history of the production and use of opium in India before the commencement of the 16th century is, however, obscure.

On the other hand, Grierson (Bihar Peasant Life) gives a complete vocabulary of words for the plant, its varieties, every part of it, as also every product it affords and every feature and stage in its cultivation and manufacture. Still there can be no possible doubt that the poppy cultivation of Bihar does not date further back than a couple of centuries or so. While that view is doubtless correct, and extreme caution is necessary, still there are words, such as post or post (already mentioned), that seem quite unconnected with Greek literature, and which indicate, as has been suggested, a more ancient knowledge of the plant than in its special sap—opium. The word post usually denotes the capsules, and in South India it becomes postakotol. Dutt tells us that in Sanskrit the poppy capsules are khakhas and the seeds kastila, but that there is no classical name for opium. The seeds are kashkash in India generally, and in South India ganshagasha. So also in China there are names for the poppy that carry the knowledge of the plant back to the 7th century. Dr. Edkins (Hist. Notes on the Poppy in China, in Rept. Roy. Comm. on Opium, 1894, i., pp. 146-58) points out that in the 10th century the Emperor Sung T’ai-tsu directed the first great medical work to be written; in that, the names given to the poppy are minang (=millet vessel) and ying-su (=jar-millet). Both names of necessity denote the poppy capsule and its seeds, and involve most probably a knowledge in their respective properties prior to the discovery of opium. Su Sung compiled the second great medical work (which appeared in 1057 A.D.), and it is there stated that "the poppy is found everywhere. Many persons cultivate it as an ornamental flower. There are two kinds, one with red flowers and another with white." This, therefore, implied that though the name that nowadays denotes opium had not come into use, the two forms of the opium-yielding plant were well known in China at the period mentioned. Lin Hung, in the 12th century, alludes to the milk from poppy heads. A poem written during the Sung dynasty speaks of the poppy fields resembling snow. Thus there can be no doubt the opium poppy was extensively cultivated in China long anterior to the importation of India opium. Wang Shih, in the 13th century, speaks of the prepared drug as simply magical in the treatment of dysentery.

At the beginning of the 16th century the opium imports into China from India had not only been fully established, but the cultivation of the poppy plant and the manufacture of opium at Malwa had become regular industries, thus
fully two centuries prior to the conquest of Bengal by Clive. And there can be no manner of doubt that prior to the British, the Portuguese controlled the Chinese opium exports from India. It is significant that while Baber (Memoires, 1519, 334) makes no mention of opium in connection with his discussion of the revenue of Bihar, his grandson, the great Emperor Akbar, on the subject of Malwa and Cambay, found the opium traffic a distinctive and important feature of these new dominions. Moreover, Abul Fazl specially mentions Fatehpur, Allahabad, Ghazipur, Lahore, etc., as concerned in poppy culture, and lays stress on the excellence of the crop in Malwa. Sir J. B. Lyall (Hist. Sketch in Rept. Roy. Comm. on Opium, vii., app., 5-28) says that it seems certain the Mogul monopoly began a little later than Akbar's time. He, moreover, came to the conclusion that it probably was confined to Bihar. The right to manufacture and sell the drug was finally placed by the Muhammadans under direct supervision; it was farmed out, and land devoted to this cultivation subjected to a higher tax than that for other produce. But as bearing on the probable date of the State monopoly, it may be mentioned that in the Mirat-i-Ahmadī we learn of the systems of taxing and the revenue realised from opium by the city of Ahmadabad in the time of Sultan Mizoffar and other Gujarāt kings, before the overthrow of the dynasty by Akbar in 1573 A.D.

The antiquity of the opium traffic may be judged of by the fact that Giovanni da Empoli (in 1511) mentions that Alboquerque had captured eight "Guzzaratate" ships that contained, among other merchandise, "afarin, for so they call opio tebaco." In 1516 Barbosa tells us that this drug was among the articles brought to Malacca by the Arab and Gentile merchants to exchange for the cargoes of the Chinese junkys. He also informs us that opium was carried from Arabia to Calicut, and from Cambay to Calicut, the Arabian being one-third higher priced than that of Cambay. García de Orta, in 1563, published a full account of the Indian habit of eating opium, and Frederike speaks of going (1568) to Cambay, where he purchased sixty parcels of opium. Shortly after, Acosta (Tract. de las Drogas, etc., 1578, 408) and Linschoten (1598) amplified very greatly the particulars made known by García regarding the Indian habit of eating opium. Bocarro (1644) laid stress on the importance of the three great products of Cambay, viz. opium, indigo and cotton. Thevenot (Travels in Levant, Indo- stan, etc., 1687, pt. ii., 97) mentions the use of opium in Persia. In the Tuzuk, reference is made to the Governor of Bihar being much given to khunar (opium-husum), and his consequent neglect of his duties. If this can be accepted as denoting a Bihar cultivation, it would be the earliest known. The first direct mention of Patna opium appears to be given by Ralph Fitch, an Englishman who travelled in the East from 1583-91 A.D., and who visited Agra, Benares, Patna (Patenaw). He describes the last town very correctly "as a very long and great town," which had a large trade in cotton, sugar and opium. The Abbé Raynal (Hist. Philosoph. des deux Indes, 1770, a work translated into English in 1777, i., 424) says that "Patna is the most celebrated place in the world for the cultivation of opium. Besides what is carried into the inland parts there are annually 3,000 to 4,000 chests exported, each weighing 300 lb." Alexander Hamilton, (New Acc. E. Ind., 1727, i., 315; ii., 22) speaks of the chiefs of Calicut vending from 500 to 1,000 chests of Bengal opium yearly; up in the inland countries where it is very much used. Mr. J. F. Finlay (Rept. Roy. Comm. on Opium, ii., 371-99) furnishes particulars of the proposals to abolish the Government monopoly. He gives the early history and fixes the present arrangements as dating from 1797.

Thus then the opium monopoly was a direct legacy from the Muhammadan rulers of India and from the early Portuguese traders, that had to be assumed by the British shortly after the battle of Plassey (1757). Mention, for example, is repeatedly made of the traffic having expanded so inordinately as to have forced the East India Company to assume its control and supervision in 1781. But prior even to the advent of the Portuguese, the Chinese had become possessed of a full knowledge of the drug. Wang Hsi (who died in 1488 A.D.) speaks of opium being obtained from Arabia and being the produce of a poppy with red flowers. He died thus ten years before the arrival in India of Vasco da Gama, and not only describes the use of opium, but the methods pursued in the cultivation of the poppy and the extraction of the narcotic. There can, therefore, be no sort of doubt that the cultivation of the poppy plant, as a source of opium, was fully established in China by the middle of the 15th century. The prohibition against foreigners trading with China, issued in 1523, was a
consequence of Japanese raids, but its immediate effect was to lessen the supply of foreign opium, and in consequence regulations were issued with the view to improve and extend Chinese home production.

Dr. Edkins, from whom most of the above historic facts regarding China have been derived, says that towards the end of the Ming dynasty the legitimate practice of taking opium medicinally was destined soon to change into that of smoking it. The new phase, he affirms, was intimately associated with the introduction of tobacco-smoking from the Philippine Islands. Tobacco reached China about 1620 A.D., or just about the time that King James I. published in England his *Counterblast to Tobacco*, and the last of the Ming Emperors prohibited the smoking of tobacco. But the habit nevertheless spread rapidly, and unfortunately various substances came to be mixed with the tobacco, such as opium, arsenic and the like. These were for some time used as flavouring ingredients, but in time they became the chief materials smoked. It may thus truly be said that tobacco was a lesser evil than the early Chinese reformers supposed, while opium-smoking proved a far greater danger than they feared. The Emperor Ch‘eng Tsung is much to be respected for his strong moral convictions. He made great efforts to cope with the evil of narcotic indulgence, but in vain. According to Bretschneider, opium-smoking is a Chinese invention and quite modern. Nothing, he adds, proves that the Chinese smoked opium before the middle of the 18th century. Dr. Edkins regards the connivance of the Chinese authorities (during 1729–96), from the highest to the lowest, as having served to render repressive measures futile, both against local production and foreign importation. Opium-smoking originated, moreover, in a lawless locality, at a great distance from Peking, and (as observed by Holmes) "while the Court at Peking was endeavouring to suppress the foreign trade in opium, from 1796 to 1840, it did not or could not put a stop to the introduction of the drug, since a Chinese Censor in 1830 represented to the throne, that the poppy was grown over one-half of the province of Chekeang, and in 1836 another (Ch‘ Tsun) stated that the annual production of opium in Yunnan could not be less than several thousand picules" (*Encyc. Brit.*).

This state of affairs culminated, and naturally so, in a conflict of interests as represented by local production on the one hand (an item of provincial revenue) and foreign importation on the other (an item of Imperial revenue). While the British and Indian Governments were in treaty with the Emperor of China, with regard to the enforcement of such restrictions on the foreign traffic as the Imperial Government of China deemed desirable, the provincial authorities of China, as represented by the Commissioner Lin Tse-hsu, demonstrated their desire for the complete discontinuance of the foreign supply by destroying £2,000,000 of opium, the property of British traders. Had the Chinese Government taken the course open to it, and, too, without arbitrary injury to a trade of large proportions (the growth of several centuries), namely to impose a gradually increasing taxation on imported opium: had it exercised also the power, which it should have possessed if it did not do so, of restricting or prohibiting the cultivation of the poppy within its own territory, little would have been heard of the perplexing Opium Question of the present day.

By the middle of the 18th century Bihar had become the province in which opium of the best quality and greatest quantity was produced. In the early days of the period, the Government monopoly had fallen into abeyance. The system under which, in the early part of the century, business in opium was conducted, in that part of India, is described by Ram Chand Pandit. In the first year of the British monopoly he was one of the joint contractors of the opium provision. There was, he tells us, a body of Native merchants, then resident at Patna, known as the native dealers, who made advances to the cultivators and received in return the opium produced, took it to their houses, and made it up in the form required by the exporters. After the growers had delivered as much as liquidated the advances received, they disposed of the surplus as they thought fit, and the price rose accordingly. In October, the opium being prepared in the required form, the merchants used first to offer it for sale to the Dutch, having previously agreed among themselves as to the rate they would accept. A dealer owning, say, 500 maunds would dispose of 200 to the Dutch. After such preliminary sales, the dealers would then go to the English merchants and offer a further quantity, at a higher rate, and finally they would go to the French and dispose of some more at a still higher rate. Thereafter, say in November, the Dutch would make a second contract with the opium merchants, but at a higher price.
GOVERNMENT CONTROL ESSENTIAL

than their first agreement, and usually by this time the pykars or small traders, who had picked up here and there odd parcels, brought their much adulterated article to market and thus lowered the price of the closing sales. The usual price averaged from 100 to 150 rupees per maund, but might rise to Rs. 200 or, during the wars among the Europeans, would fall to ruinous rates—Rs. 70 to Rs. 75.

With such a state of affairs it can be no matter for surprise that corruption became universal with the growers, the traders, and the exporters, nor that misunderstandings should have threatened both internal and external peace and thus rendered imperative some system of supervision. An end, as it was thought, was put to all disputes in 1773 by the Governor of Bengal, Warren Hastings, assuming supreme control, on behalf of the East India Company, an agreement having been entered into to supply the Danes, Dutch and French with fixed amounts annually. From 1773 to 1797, in virtue of this new arrangement, the right to the exclusive manufacture of opium, on account of the Company, was sold annually in the first instance, but from 1781, by four-year contracts, on private bargain. In 1785 the contracts were opened to public competition and assigned to the highest bidder. Definite stipulations were henceforward exacted from the contractors with a view to protecting the cultivators from the compulsion to grow the poppy: for securing to them freedom from vexatious imposts and ensuring a fair price for their produce. The cultivators, on the other hand, were made liable to penalties for keeping back the opium produced, and to a deduction of batta (assessed by arbitrators) upon opium adulterated. Dealing in opium contrary to the conditions of the monopoly was made criminal by whomever conducted. But in spite of all the regulations that could be framed, the system of farming became oppressive. Cultivators were often compelled by the contractors to grow the poppy when they had no desire to do so. The contention was advanced that the contractors must have an assured production, and hence, they said, once land came under opium, it had throughout the period of contract to continue to produce it. If the owner or cultivator of opium land objected, he should, they said, be compelled to vacate it and allow some one willing to grow poppy to be placed in charge. Instances of such high-handedness and abuse became so rife and flagrant that the Board of Directors were forced to seek some other plan of operation than that of farming out the right to produce a drug of such potency.

It had been early resolved by the Company that the profits of opium traffic should be credited to Revenue, not to Commerce. The country, and not the shareholders, thus participated in the profits. The vested interests of the Indian people were thus early recognised as demanding efficient control. Ram Chand Pandit, who could contrive the free-trade system, in which he had, in fact, participated, gave the subsequent contract system and its grievances, bribery, corruption and dishonest weights, etc., admitted that the carrying on of the opium traffic as a State monopoly was the best mode "as well for the raiyat as for the preservation of the quality and the good of the country at large." After discussing the many recommendations of the new system, viz. constant market, liberal advances, freedom from all compulsion, etc., he added that the raiyats should be punished whenever detected either delivering adulterated juice or disposing of the produce other than to the Company, and that after receipt into warehouse it should be made up with the greatest care so that its good quality might redound to the honour of the agent. It will thus be seen that in the growth of the present Indian opium traffic, free-trade was tried and found wanting: that the contract system proved defective and pernicious: hence that direct control was hailed by the people of India as a greatly needed and much valued reform.

The Government of India, in a Dispatch issued during the Marquis of Ripon's administration, stated their case fully. One passage from that dispatch gives the key-note to the whole controversy—"The economic objections to the manner in which opium revenue is raised, whether in Bengal or Bombay, may be admitted to be considerable. In the former case, the Government itself engages in private trade, a course which is open to obvious objections. In the second, a very heavy export duty is imposed. In both cases the course adopted interferes with and restricts the free production of the trade in opium. It cannot be doubted that it would be highly profitable to any private trader to pay for crude opium a very much higher sum than is paid now by the Government to the cultivators of Bengal. If, therefore, supposing such a thing to be possible, no restrictions were placed upon the cultivation of the poppy, and if, at the
same time, the export duty were taken off, it is certain that an immense stimulus would be given to the production of opium, and that China would be flooded with the Indian drug. Thus, in direct proportion to the removal of the economic objections, the moral objections would be intensified in degree." "If, therefore, the policy is to be not merely theoretical, but is to be productive of some practical good, it must proceed not only on the disconnection of the Indian Government with the opium trade, but at the total suppression of the trade itself." "

China produces locally the major portion (some writers say nine-tenths) of the opium it consumes. The province of Yunnan, where opium indulgence is carried to the greatest extent, is self-supporting in the matter of opium, that is to say, it exports opium but imports none. But Yunnan does not stand alone. Mr. A. Hosie, Consul-General, says that with the province of Su'ch'uan (Report, 1904) the greater profit of opium as a crop has driven wheat very largely from the list of surplus products exported from the province. Out of a population of 45 millions, nearly 3 millions are opium smokers. The locally produced article is gradually displacing the imported, and the province even now exports to other parts of China 20,000 piculs of opium a year. There would thus seem no manner of doubt that the exclusion of Indian opium from China would not affect materially the indulgence of the peoples concerned. The earnest words of the Hon. the Maharaja Bahadur of Durbhanga should be read by all persons interested in this subject (Rept. Roy. Comm. on Opium, 1895, vii., suppl.) and its bearings on India and the Indian people. Some few years ago the export of Yunnan opium into Upper Burma was a source of much annoyance that led to special regulations. Col. Manifold has published a vivid account of the effects of opium-smoking in Yunnan.

The Royal Commission on opium showed that the trade was simply legalised by the Treaty of Tientsin (1858). Prior to then the traffic was irregular, and disturbances were almost of constant occurrence that greatly interfered with ordinary trade. In the instructions given by the British Government to Lord Elgin there occurs the following: "There would be obvious advantages in placing the trade (opium) upon a legal footing by the imposition of a duty instead of its being carried on in the present irregular manner." The Treaty of Tientsin was to regulate general commercial relations between China and Great Britain, and opium was only a side issue. Mr. H. N. Lay (Rept. Roy. Comm. on Opium, i., 84), in fact, says that in framing the Treaty, opium was not so much as mentioned, either by the Chinese or the British Commissioners. The terms of the Treaty are such that the duty by constitutional methods might be increased indefinitely or the imports prohibited. By the authorities subsequently appointed to frame regulations based on the Treaty, opium was of their own free will accepted by the Chinese as a foreign drug, that might be imported and upon which a duty was to be levied (l.c. app., 137).

Sir James Fergusson, in a debate in the House of Commons (April 10, 1891), remarked, "The Chinese at any time may terminate the Treaty on giving twelve months' notice, and to protect themselves they may increase the duty to any extent they please or they may exclude it altogether." Sir Joseph Pease, commenting on the recital (l.c. 4), amended the interpretation of the Treaty by saying that while the Convention of Chefoo might be revoked every twelve months, the Treaty of Tientsin could only be modified every ten years. The Convention of Chefoo simply consolidated the lakin (provincial) taxes on imported opium into one common Imperial import duty, thus doing away with a source of much trouble and confusion. This was of great advantage to the Imperial Government, no doubt, and checked materially the smuggling of foreign opium through the country (l.c. app., 137). A duty levied on imports was, in other words, a simpler and more effective tax than fiscal duties on the drug being carried across provincial boundaries.

CULTIVATION AND AREA OF INDIAN PRODUCTION.

There can be no doubt that much still remains to be done in selecting stock, toward the production of desired qualities of the drug. In Bengal (Patna and Benares agencies) the plant chiefly grown is one or other of the many white-flowered races, especially that with a pale-coloured capsule (sadaf dherri). In Malwa, on the other hand, the poppy most frequently seen has purple flowers. In the Himalaya a parti-coloured form is occasionally met with. No one, subsequent to Scott,]Manual of[850
Opium Husbandry, 1877), appears to have given the subject serious attention, and the merits of the opium of India have become an accepted axiom, without the endeavour having been made to trace out how much depends on climate, soil, stock of plant, system of agriculture or purity of manufacture. Even when cultivated side by side in the garden, Scott noted that the various races which he found in the hands of the cultivators, or which he was able to select and perpetuate, yielded materially different results in quantity and quality of the drug. Nevertheless it is freely admitted that the highly valued medicinal form of opium obtained from Asia Minor is the produce of a special variety known to botanists as *glabra*. At present we possess no evidence as to whether that particular plant exists in India or could even be cultivated there. While the opium used medicinally in Europe is obtained to-day, as it appears to have been centuries ago, from Asia Minor, the opium used medicinally in India is the Indian grown and specially prepared drug obtained from *var. alba*. While in many respects the chemical nature of the two would seem widely different, Indian medical men claim that, given in the same doses, the Indian is in no way inferior to the European. [Cf. Heuze, *Les Pl. Indusi.*, 1895, iv., 91-105, 357-60; *Kew Mus. Guide*, 1907, 13.]

Area and Yield.—In modern language, “Bengal Opium” means opium manufactured at the factories of Patna and Ghazipur, and therefore grown in the provinces of Bengal, Agra and Oudh. Then again, “Malwa Opium” means opium grown in Central India, Rajputana and certain other Native States. The former class of opium is exported from Calcutta and the latter from Bombay. The area devoted to Bengal opium is accurately known; that devoted to Malwa can be ascertained only approximately, namely by estimates based on the annual exports to foreign countries. In the former, the cultivation is directly controlled by Government—a State monopoly; in the latter, by export duties only.

During the years 1872 to 1892 the area under the poppy in the British districts (Bengal opium) averaged 515,000 acres. The following were the areas returned officially as devoted to the crop for the five years ending 1901-2:—British districts, in 1897-8, 592,232 acres; in 1898-9, 602,975; in 1899-1900, 640,263; in 1900-1, 621,891; in 1901-2, 607,418. Since 1902 the net area in the Ganges valley, excluding areas on which the crop was sown but failed, has been:—1902-3, 582,807 acres; 1903-4, 642,831; 1904-5, 587,140; 1905-6, 654,928. In 1906-7 it is stated that the Government of India have decided to reduce the area to about 562,500 acres. [Cf. *Moral and Mat. Prog. Ind.*, 1905-6, 75.] In the Native States for which agricultural returns are available, the average has been about 70,000 acres. Of the British districts, approximately 200,000 acres are in Bengal, the same in Agra, and a little less in Oudh. The cultivation beyond these provinces is insignificant, and can be described as a concession practically to ancient usage or aboriginal tribes. In the Panjab, Ajmir-Merwara and Upper Burma, for example, there have been on an average about 6,000 to 7,000 acres between them under the crop, mostly in the hill districts (Karnal, Ambala, Kangra, Shahpur, etc.). Of the Malwa production, the Native States of Gwalior, 36,378 acres; Tonk, 9,733 acres; Kotah, 31,166 acres; and Jaipur, 3,077 acres, are the published returns for 1904-5. Others, such as Baroda, Indore, etc., do not furnish particulars.

Production and Profit.—The cultivator of opium, in the monopoly
PAPAVER
SOMNIFERUM
Production.
districts, is licensed and money advances made to him (if he so desires) to enable him to prepare the land for the crop in accordance with the somewhat expensive system recommended. As the advances on opium are made at the very time the rent has to be paid, they are much valued, and the profits may pay the rent of the entire holding. The cultivator is next required to deliver the whole produce at a fixed price to the Government local agents, by whom it is dispatched to the factories. The fields are surveyed when under the crop and a fairly accurate forecast of production obtained as a check on deliveries.

Price Paid.
The price paid had for some years been fixed at Rs. 5 per two pounds, but it was raised recently to Rs. 6. Still, at the former figure the value to the Bengal and United Provinces cultivators may be judged of by the fact that the average payments for some years have exceeded £1,500,000, and occasionally as much as £2,000,000. The opium is specially prepared both for the home and foreign markets in accordance with long-established custom at the Government factories. The foreign supply is sold by public auction at monthly sales which take place at Calcutta; but, in order to check speculation and steady prices, the exact amount to be offered at each sale is previously notified for twelve months. The amount to be manufactured each year is also determined beforehand, the area necessary for the production fixed, and permits issued accordingly. The opium used up in India is technically designated "Excise Opium," that which is exported being called "Provision Opium." In 1888 and some time subsequently, the estimate of required production was 57,000 chests of provision opium per annum. In 1896 the standard was reduced to 54,000 chests; and at present it is 48,000 chests. The excise opium fluctuates considerably; during the past thirty years the minimum has been 2,243 chests, and the maximum 5,554 chests. This represents the total Indian consumption, less the supplies produced within the Native States.

Most of the Native States assimilate their internal opium arrangements to those prevalent in the British districts, and, moreover, make strenuous efforts to prevent contraband dealings. Still, there must be a considerable personal traffic from the Native States into British territory. Were greater restrictions placed on the production and supply within British territory than presently prevail, illicit traffic would assume political importance and become a danger of no ordinary magnitude. As now administered, the Native States levy heavy dues on opium exported from their territories for the China market, and such opium, moreover, pays to the Indian Treasury a transit duty which in 1894 was £43 per chest of 140 lb., in 1896 became £40, and in 1897 £33 per chest. The decline stated in the exports of Malwa opium is attributed to Chinese production directly competing, and successfully so, with all inferior grades, none but the finest and purest Bengal opium finding a steady market. Thus at every stage the Government directly controls production and manufacture. There can be no doubt that with a commodity that bears such heavy taxation, an infinitely higher price could easily be paid to the cultivator than the amount actually received from Government, were the traffic free from all restraints and regulations. Here the first check is given by the prevention of the profits of production becoming an incentive to illicit traffic. The yield per acre may be put at from 6 to 8 seers, so that the profits of the cultivators are not materially greater than with other crops. It has been pointed out that the consumption locally of Govern-
ADVANTAGES OF THE CROP

Opium is much lower in opium-growing than in non-opium-growing districts—a circumstance explained on the supposition that the cultivators always retain a portion of their produce for their own consumption and that of their friends. This deduction has therefore seemed to justify the belief that an average yield of 9 seers (18 lb.) to the acre would perhaps be more like that actually attained in good seasons. Mr. W. B. Johnson of Patna, who wrote an account of the cultivation of the poppy, given as an appendix to Sir W. O'Shaughnessy's Bengal Dispensatory (1841, app., 749), puts, however, the yield still higher, viz. 15 seers per bigha, and the total value of the crop at Rs. 80. The great advantages of the crop are advances made free of interest; the wells or other permanent improvements that become possible; an absolutely certain market; no fear of sudden changes in price or demand and prompt payment for produce; while in times of scarcity and famine it is an invaluable source of income.

Cultivation in Bengal and the United Provinces.—The opium year is considered to commence in September. It is customary to follow poppy after Indian corn or other kharif crops, the soil being at once taken in hand after the removal of the corn. It is ploughed at an interval of every ten days till the middle of October, when the sowing commences and may be extended to the middle of November. Land in the immediate vicinity of the village or homestead is selected for the crop on account of its being higher, usually more richly manured and more easily supervised. It requires a rich dark, sandy loam. The soil is often specially manured to the limits of the cultivator's resources—frequently 150 to 200 maunds of farm-yard manure. Penning sheep and goats on the field is regarded as one of the most satisfactory methods. Nitrate of potash is highly commended as a mineral manure. When top-dressed to the extent desired or possible, it is next partitioned off into oblong plots 6 or 8 by 14 feet for convenience of weeding and irrigation. The seed is usually specially selected from extra large or highly productive capsules. The advantage of the exchange of seed is also fully recognised, and the seed from certain localities is regarded as specially good. Still, there are no expert seed-producers, and much therefore depends on the integrity of the person with whom the exchange is made.

The day the seed is sown the land is well watered, and the next the clods on the surface are carefully broken. Six pounds are considered sufficient for a bigha of land (3,025 sq. yards). The seed is often soaked in water the night before sowing, and for this purpose some cultivators use a liquid manure. About a week after the plants shoot up, and when about 6 inches high the plots are weeded and thinned. Vigorous plants only are retained, and in the final condition these should not be closer than 7 to 8 inches each way.

Irrigation commences as soon as the plants appear, and resowing made in places where failure seems indicated. At regular intervals right up to the maturing of the fruit, flooding of the plots must be continued, but care has to be taken that the plants are never submerged or kept in stagnant water. Where subsoil moisture exists, watering may be delayed until December, and with certain soils may not be necessary at all.

Flowering and Collection.—The plants take from 75 to 80 days until full flowering can be said to have been attained. The petals, which are four in number, are removed the third day after expansion. These are carefully preserved and are the "Flower Leaves" of the casing employed with the
provision opium. Some eight or ten days after the removal of the petals the capsules are ripe. The earliest collection of opium in Bengal is, therefore, about the end of January, and may be continued to the middle of March. In the United Provinces the seasons are a little later, flowering not being general till March and collection of the drug extended well into April, and in the hills till June. After the poppy is off the soil the land is usually left fallow till the succeeding kharif and is then sown with other crops, or in rare instances is highly manured and sown again with poppy. [Cf. Baden-Powell, *Pb. Prod.*, 1868, i., 295–7; Stewart, *Pb. Plants*, 1889, 10; Duthie and Fuller, *Field and Garden Crops*, 1883, ii., 64–8; Basu, *Agri. Lohardaga*, 1890, ii., 41–2; R.E.P., Rev., *Offic. Corresp. on Opium*, 1896; Mukerji, *Handbook Ind. Agri.*, 1901, 441–5; Shahpur Gaz., 168–70; *Excise Admin. Repts.*]

Malwa, Panjab, etc.—Of Malwa, for example, it has been said a mild climate, plentiful irrigation, rich soil and diligent husbandry are indispensable. The black cotton soils from which annual crops of wheat may be obtained without any manure are useless for poppy unless richly fertilised. In Baroda, poppy follows a crop of bajra. The following are the centres of production of Malwa opium:—In *Central India*: Indore, Gwalior, Bhopal, Bandelkhand, Baghelkhand, Malwa and Bhopawar; in *Rajputana*: Mewar, Jaipur, Haraoiti and Tonk, Eastern Rajputana States, Kotah, Alwar, Bikaner and Western Rajputana States. An interesting account of *Opium in Malwa* was prepared by Mr. H. Hastings in 1895. Shahpur is the chief opium-growing district in the Panjáb, the supplies going mainly to the chief Sikh centres of Lahore and Amritsar. [Cf. Mollison, *Textbook Ind. Agri.*, 1901, iii., 245–7.]

EXTRACTION AND MANUFACTURE OF OPIUM.

The cultivation of the poppy yields several distinct and paying substances. There are (1) the inspissated sap of the green capsules—crude opium; (2) the moisture and soluble substances that drain from the opium, known as *paseva*; (3) the poppy petals; (4) the “trash” or powder prepared from the leaves, dried stems, etc.; (5) the capsules; and (6) the oil-seed. The first-named three substances are those alone with which the Opium Department are concerned, and these, therefore, have to be dealt with here in some detail.

1. **Crude Opium.**—The green capsules are scratched in the afternoon with an instrument called the *nashtar*. This consists of four sharp blades tied together with cotton, passed between the blades so as to keep them one-thirtieth of an inch apart and allow of scratchings being made to a certain depth through the wall of the capsule and no farther. It is important that the wall of the capsule be never completely severed, but at the same time a purely superficial scratching is useless. The exact degree of penetration to ensure the best possible flow of milk requires great skill. The padding of cotton between the blades is intended to assist in this matter, since the blades can but cut up to that point when drawn at a certain angle. The incisions are usually made from below upwards, more or less perpendicularly. By modern usage this is done in the afternoon, but according to Johnson, “in the hottest part of the day, the juice as it exudes in the night may be protected by the pellicle formed in the day; the wound ought to be diagonal to prevent the juice from falling off in the night when the dews are heavy.”

Each capsule is usually lanced in this manner three or four times at
CRUDE OPIUM AND PASEWA

Intervals of two or three days, but sometimes a single scratching may exhaust the drug, while occasionally an extra fine capsule may afford eight or even ten discharges. The opium from early sowings is thin but plentiful, and that from later sowings scanty but of a high consistence. The field is usually divided into certain portions, each taken in hand and scratched in one day, the others in succession and rotation until the entire crop has been collected. This ensures regular and systematic scratching which would not be attained by promiscuous work.

The drug is collected in the early morning on the day following the scratching. The juice adhering to the incisions is scraped off with a small trowel-shaped scoop of thin iron called the setwa. On the scoop being filled the drug is transferred to a metal or earthen vessel and conveyed to the farmer’s house for further manipulation. It is stored in an earthen pan tilted to one side so as to allow the liquid pasewa to drain from the more solid extract. In Benares the standard of good-quality crude opium is 70 per cent. opium, 30 per cent. fluid. The pasewa is decanted from time to time into another vessel, and the opium turned over as occasion arises to facilitate the draining off of the pasewa. In the Bengal agency the standard is a little higher, viz. 75 per cent. opium, and to obtain this condition the opium is dried by being placed on a cloth tied over the mouth of an earthen pot. The required further draining away of the pasewa takes place, but as the cloth gets impregnated with opium it comes to possess a money value, and is purchased at the factory under the name of kaffá (kaphá). The average yield for each scarification is about 10 grains, and a healthy plant after five to eight scratchings may yield 75 grains in all.

2. Pasewa.—This is the dark coffee-coloured fluid (as mentioned above) that drains from the crude opium in the process of drying. The chief purpose in removing this substance is to prevent the physical depreciation which its presence effects on the drug, viz. it turns it black and makes it liquid. Pasewa, however, consists of the most soluble of the opium principles dissolved in dew or moisture absorbed from the atmosphere. It has a peculiar smell, is strongly acid, and contains meconic acid, resin, morphia and narcotine. It is less abundant during westerly winds or in the absence of dews at night.

3. Leaves (Petals).—As already mentioned, the flowering season is January to March. But here again considerable skill is required, since if plucked off before they are ripe, the capsule afterwards contains much less opium than if the petals be allowed to fully mature. The hand is made to gently encircle the base of the flower, then drawn upwards, when, if properly matured, the petals will come away naturally. A day is selected for collection of petals when they are not moist, as otherwise they would get discoloured. The petals are then made into what is technically called "leaves." For this purpose an earthen plate is placed over a slow fire, and over it is spread a handful of petals. These are then covered over with a damp cloth and pad until the steam from the cloth causes the petals to adhere together. The thin cake thus formed is turned over and the damp pressure repeated to ensure the union of the petals on both surfaces. When fresh they have a pleasant aroma, said to be imparted to the opium for which they are subsequently employed as the packing material. There are various grades or qualities of these petal cakes recognised and sold, separately packed in specially prepared baskets. These realise Rs. 10, Rs. 7 and Rs. 5 a maund according to quality.
he thus builds up the shul (a structure half an inch thick). The cake of opium, brought direct from the scales, is now inserted within, and leaf after leaf moistened in the leco is inserted until the space around the cake is filled up. The layers of leaves are now brought up over the opium and compacted together until the finished cake looks like a Dutch cheese in size and shape. It is now removed from the cup and rolled in a fine powder of “trash.” It is then placed in earthen cups of the size to hold it comfortably, and carried out to be dried through exposure to the sun. In this position it is retained for three days, the cakes, or balls rather, being occasionally turned round. The weight of an average cake is about 4 lb. 3¾ oz., but of that fully half consists of the shul that surrounds it.

Excise opium (known as Abkari opium) is inspissated by direct exposure to the sun until it attains the standard of 90 per cent., when its consistence resembles wax. It is then moulded into square bricks weighing about 2 lb. These are wrapped in oiled Nepal paper and packed in boxes furnished with compartments for the bricks.

REVENUE AND TRADE IN OPium.

Consumption in India.—The excise systems of the local Governments are framed in accordance with the Opium Act of 1878. To review even briefly the various enactments and methods of fiscal administration that prevail in the various provinces of India would, however, occupy many pages. For a concise statement, mention may be made of the *Moral and Material Progress and Condition of India* (1903, 171–6). Briefly, the consumption of opium is highest in the damp malarial tracts of India, where its use is universally believed to be beneficial. It is nowhere consumed to an extent to occasion anxiety; in fact, the use of opium by the people of India, as a rule, is distinctly moderate, excess being very exceptional and condemned by popular opinion. No physical or moral degradation can be regarded as occasioned by the Indian habit, at all comparable with the use of alcohol in Europe. The mean consumption expressed to head of population in British India (including the high rate prevalent in Assam) comes to 38 grains per head per annum, and if Assam be excluded it is under 30 grains. [Cf. *Papers relating to Consumption of Opium in Brit. Burm. Rangoon Press, 1881.*]

In India, opium is eaten, drunk or smoked, opium-smoking being by no means uncommon. Madak is the special Indian preparation smoked by the lower classes. Chandu is a smoking mixture made after the Chinese method, and in India is used mainly by the Chinese. Opium is, as already remarked, almost a necessity of life with certain communities, and so much faith do the people place in the drug that they by no means infrequently give it to their horses when an exceptionally heavy task has to be performed. Moreover, with the people of India the danger of accumulative action or the establishment of a craving does not seem to exist. A very large number of persons take a daily allowance throughout life, and never show any tendency to increase the amount consumed. And some of the strongest and most healthy communities, such as the Sikhs, have to be placed in this category.

Internal Traffic.—The returns of traffic by the railways were, in 1904–5, 127,509 cwt.; in 1905–6, 130,412 cwt.; and in 1906–7, 144,255 cwt. The distribution from the provinces of production to those of consumption and to the ports of export were in 1906–7 as follows:—United Provinces, 69,574 cwt.; of which 54,057 cwt. went to Calcutta, 13,830 cwt. to Bengal, 857
PAPAVER
OPium
Revenue

1,416 cwt. to the Central Provinces and Berar, and 271 cwt. to the Panjáb. The next important centre is Bengal, which exported 50,171 cwt., mainly to Calcutta. Then come Rajputana and Central India, which exported 18,500 cwt., mainly to Bombay town; and lastly the Bombay Presidency exported 2,983 cwt. to Bombay town, and these two items of Bombay town supply constitute the Malwa opium of commerce.

Opium Revenue.—The following statement of the opium revenue for five years may be instructive:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Receipts:</td>
<td>£</td>
<td>£</td>
<td>£</td>
<td>£</td>
<td>£</td>
</tr>
<tr>
<td>1. Sales (Bengal)</td>
<td>4,150,290</td>
<td>3,662,600</td>
<td>4,678,371</td>
<td>5,079,541</td>
<td>4,703,574</td>
</tr>
<tr>
<td>2. Duty (Bombay)</td>
<td>542,683</td>
<td>661,033</td>
<td>871,383</td>
<td>749,125</td>
<td>569,400</td>
</tr>
<tr>
<td>3. Sales to local Governments</td>
<td>159,049</td>
<td>174,805</td>
<td>186,291</td>
<td>192,833</td>
<td>195,866</td>
</tr>
<tr>
<td>Total</td>
<td>4,852,022</td>
<td>4,498,438</td>
<td>5,736,045</td>
<td>6,021,499</td>
<td>5,468,790</td>
</tr>
<tr>
<td>5. Less Expenditure</td>
<td>1,608,690</td>
<td>1,648,483</td>
<td>2,225,744</td>
<td>1,967,085</td>
<td>1,892,441</td>
</tr>
<tr>
<td>Net Opium Customs Revenue</td>
<td>3,243,332</td>
<td>2,849,955</td>
<td>3,510,301</td>
<td>4,054,414</td>
<td>3,576,339</td>
</tr>
<tr>
<td>7. Add Provincial Excise Revenue on 3</td>
<td>652,429</td>
<td>735,207</td>
<td>913,000*</td>
<td>991,000*</td>
<td>910,243*</td>
</tr>
<tr>
<td>8. Grand Total</td>
<td>3,895,761</td>
<td>3,585,162</td>
<td>4,423,301</td>
<td>5,045,414</td>
<td>4,486,582</td>
</tr>
<tr>
<td>Approximates.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The excise revenue on opium is composed of duty and vend fees. The former varies with local conditions, being highest where smuggling is most difficult. The average per seer in Assam is Rs. 28.5; in Bengal, Rs. 20.5; in Central Provinces, Rs. 13.5; in Madras and Bombay, Rs. 10; in the United Provinces, Rs. 8.8; and in the Panjáb, Rs. 3.6. Adding vend fees the average ranges from Rs. 34.9 in Assam to Rs. 11.5 in the Panjáb.

Foreign Sales.—The number of chests of Bengal opium sold (Finn. and Comm. Stat. Br. Ind., 1906, 56), and the average prices realised during the six years 1897-8 to 1903-4, were as follows:

<table>
<thead>
<tr>
<th>Year</th>
<th>Number of Chests of Bengal</th>
<th>Price obtained per Chest of Bengal</th>
<th>Number of Chests of Malwa</th>
</tr>
</thead>
<tbody>
<tr>
<td>1897-1898</td>
<td>39,450</td>
<td>Rs. 1,023</td>
<td>18,064</td>
</tr>
<tr>
<td>1899-1900</td>
<td>41,700</td>
<td>Rs. 1,221</td>
<td>25,822</td>
</tr>
<tr>
<td>1900-1901</td>
<td>45,300</td>
<td>Rs. 1,361</td>
<td>26,007</td>
</tr>
<tr>
<td>1901-1902</td>
<td>48,000</td>
<td>Rs. 1,297</td>
<td>17,586</td>
</tr>
<tr>
<td>1902-1903</td>
<td>48,000</td>
<td>Rs. 1,144</td>
<td>20,345</td>
</tr>
<tr>
<td>1903-1904</td>
<td>48,000</td>
<td>Rs. 1,460</td>
<td>26,737</td>
</tr>
</tbody>
</table>

The actual exports from Calcutta and Bombay were:

<table>
<thead>
<tr>
<th>Exported to</th>
<th>China</th>
<th>Straits</th>
<th>Other Countries</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
<td>Chests</td>
<td>Chests</td>
<td>Chests</td>
<td>Chests</td>
</tr>
<tr>
<td>1898-1899</td>
<td>24,284</td>
<td>14,577</td>
<td>2,308</td>
<td>41,169</td>
</tr>
<tr>
<td>1899-1900</td>
<td>24,547</td>
<td>15,592</td>
<td>2,288</td>
<td>44,994</td>
</tr>
<tr>
<td>1900-1901</td>
<td>25,068</td>
<td>16,779</td>
<td>3,147</td>
<td>48,024</td>
</tr>
<tr>
<td>1901-1902</td>
<td>29,558</td>
<td>15,114</td>
<td>3,390</td>
<td>48,154</td>
</tr>
<tr>
<td>1902-1903</td>
<td>30,655</td>
<td>14,722</td>
<td>2,777</td>
<td>48,218</td>
</tr>
</tbody>
</table>
EXPORTS

<table>
<thead>
<tr>
<th>Exported to</th>
<th>China.</th>
<th>Straits.</th>
<th>Other Countries.</th>
<th>Total.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1898-1899</td>
<td>25,940</td>
<td>Nil</td>
<td>19</td>
<td>25,959</td>
</tr>
<tr>
<td>1899-1900</td>
<td>24,608</td>
<td>"</td>
<td>14</td>
<td>24,622</td>
</tr>
<tr>
<td>1900-1901</td>
<td>24,895</td>
<td>"</td>
<td>19</td>
<td>24,714</td>
</tr>
<tr>
<td>1901-1902</td>
<td>17,500</td>
<td>"</td>
<td>22</td>
<td>17,541</td>
</tr>
<tr>
<td>1902-1903</td>
<td>19,356</td>
<td>"</td>
<td>21</td>
<td>19,377</td>
</tr>
<tr>
<td>1903-1904</td>
<td>25,341</td>
<td>"</td>
<td>78</td>
<td>25,419</td>
</tr>
</tbody>
</table>

In confirmation of these official returns of sales and exports, attention may now be directed to the commercial transactions as recorded in the *Sea-borne Trade and Navigation*:

<table>
<thead>
<tr>
<th></th>
<th>Number of Chests.</th>
<th>Cwt.</th>
<th>Rs.</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bengal</td>
<td>48,154</td>
<td>70,623</td>
<td>5,50,75,605</td>
<td>1902-3</td>
</tr>
<tr>
<td>Bombay</td>
<td>19,377</td>
<td>24,219</td>
<td>2,50,93,749</td>
<td></td>
</tr>
<tr>
<td>Bengal</td>
<td>48,218</td>
<td>70,720</td>
<td>7,04,07,908</td>
<td>1903-4</td>
</tr>
<tr>
<td>Bombay</td>
<td>25,419</td>
<td>31,774</td>
<td>3,42,93,730</td>
<td></td>
</tr>
<tr>
<td>Bengal</td>
<td>47,855</td>
<td>70,091</td>
<td>7,58,32,065</td>
<td>1904-5</td>
</tr>
<tr>
<td>Bombay</td>
<td>19,006</td>
<td>23,753</td>
<td>3,04,02,377</td>
<td></td>
</tr>
<tr>
<td>Bengal</td>
<td>48,833</td>
<td>71,620</td>
<td>7,02,34,387</td>
<td>1905-6</td>
</tr>
<tr>
<td>Bombay</td>
<td>14,103</td>
<td>17,627</td>
<td>2,44,83,280</td>
<td></td>
</tr>
<tr>
<td>Bengal</td>
<td>53,588</td>
<td>78,595</td>
<td>7,40,31,410</td>
<td>1906-7</td>
</tr>
<tr>
<td>Bombay</td>
<td>12,686</td>
<td>15,854</td>
<td>1,90,47,814</td>
<td></td>
</tr>
</tbody>
</table>

Canton is the chief market for the Indian opium. According to the Consul-General’s Report for 1905, 75 per cent. of the drug there used comes from India. The annual average imports by Canton are about 12,000 chests, or, say, about one-fourth of the total Chinese imports. But it is ascertained that about an equal quantity of local opium is smuggled into Canton via Pole and the West River from Ssu’ch’uan, Yunnan, and Kweichow provinces. The Chinese drug is 40 per cent. lower priced than the Indian, and can thus easily sustain all the risks incurred. According to Hosie (Opium Trade of China, in Pharm. Journ., Nov. 10, 1906, 512-3), the average import of foreign opium into China for the ten years ending 1904 was 52,127 piculs, and in the previous decade 72,298 piculs, so that for the twenty years since 1885 the average annual decline has exceeded 1,000 piculs. The import in 1905 was 51,890 piculs, or 2,876 piculs less than in 1904. That decline, says Hosie, is due not to a decrease in opium-smoking, but to an increased consumption of the Native drug. The greatest decline occurs in Northern China, where the import has fallen from 1,735 piculs in 1895 to 690 piculs in 1905. In Central China, the decrease in 1905 was 3,740 piculs as compared with 1904. In Southern China, on the other hand, the figures show an apparent increase. In 1895 the imports amounted to 18,708 piculs, in 1905 to 25,209 piculs. It is stated, however, that these figures must not be taken to indicate an increase in consumption of the drug by the people. They are due chiefly to the fact that with the final absorption of the Native Customs in 1901 the carrying trade for opium passed to steamers and entered and paid
THE OPIUM POPPY

PAPAVER
Seed and Oil

duty at the maritime customs. The imports, in short, are believed to have remained stationary, and that there has only been a transfer from the Native to the Maritime Customs.

The Persian production of opium and traffic with China is seemingly assuming considerable proportions. It is grown in the central provinces and carried vid Bokhara, Khokan and Kashgar, and also, more recently, by sea. The Kermanshah opium is in consequence being frequently alluded to in Consular Reports. The shipments in 1895 were 2,440 chests, and in 1903 they had become 4,859 chests. While often much adulterated, Persian opium has a good name in Hongkong.

Poppy Seed and Oil.—Buchanan-Hamilton (Journ. Mysore, etc., 1807, i., 295-6) observes: "The poppy (Papaver somniferum) is plentifully cultivated both for making opium and on account of the seed, which is much used in the sweet cakes that are eaten by the higher ranks of the Natives." The seeds form a valuable article of food in the districts where poppy cultivation occurs. They have no intoxicating properties, but are better flavoured and richer in oil when taken from capsules that have not been tapped. The seeds are exported from the districts of production all over India, and are extensively employed by the sweetmeat makers or in the manufacture of certain curries. The oil obtained from the seeds is largely used for culinary purposes, the lowest grades being employed for lubrication or burning. The cake is said to be a wholesome food, often resorted to by the poor, and is remarkably sweet and nutritious, and accordingly is greedily eaten by cattle. In India the oil is expressed by the cold process, the yield being about 30 per cent. In France three stages are observed:—1st, cold expression—a very superior oil used for table purposes and in the manufacture of very high-class paints; 2nd, cold expression—a lower-grade edible oil used also for paints and in illumination; and 3rd, hot expression—a much inferior oil to either of the others used chiefly in soap-making. The oil is rendered perfectly colourless by exposure to the sun. It is accordingly peculiarly suitable for mixing with paints; with white lead, for example, it forms a paint that does not readily tarnish. The price of the oil is the chief reason of its not being more extensively used in paint-making, as it is moreover a good drying oil. It is largely used by artists. Mixed with strong sulphuric acid, the rise in temperature is from 88° to 90° C. It takes about 19 per cent. of caustic potash to saponify it, and absorbs about 134 to 137 per cent. iodine.

Leather (Agri. Ledg., 1903, No. 7, 153, 180), in an article on Indian food-grains, gives the chemical composition of the poppy seed, in which he shows it to contain 48.95 of oil, 4.07 moisture, 17.75 albuminoids, 16.99 soluble carbohydrates, 5.09 woody fibre, 6.85 soluble mineral matter, 0.30 sand, 2.97 total nitrogen, and 2.84 albuminoid nitrogen.

Prices of Seed.

Price.— The average wholesale price does not appear to have changed materially for some years past. In Benares, for example, it was Rs. 47-21 per ten maunds, and in 1904 it stood at Rs. 35-6 for the same quantity. In Oudh, similarly, it was Rs. 45-57 in 1897, and Rs. 37-78 in 1904. In Ajmir it was Rs. 66-57 in 1897, and Rs. 66-36 in 1904. In Lahore, Rs. 56-08 in 1897, and Rs. 55-01 in 1904. These are fairly representative quotations—the price is higher in non-producing than in producing centres.

Trade in Seed.

Trade in Seed and Oil.— Perhaps the most significant feature of the foreign
trade in poppy seed (though an unimportant one relatively) is the fact that India imports this seed. The supply comes mainly from Persia, but during the five years 1901-6 has steadily declined from 3,858 cwt. in 1901-2 to 151 cwt. in 1905-6, nearly the whole quantity being taken by Bombay. In 1906-7 there was a slight increase on the previous year to 195 cwt. The exports are very considerable:—In 1900-1 they were 802,186 cwt., valued at Rs. 68,65,266; in 1904-5 they had expanded to 1,362,599 cwt., valued at Rs. 78,43,018; though in 1906-7 they declined to 802,615 cwt., valued at Rs. 65,77,231. The price seems to fluctuate very greatly, for while the quantity exported in 1902-3 was only 966,220 cwt., it realised Rs. 82,45,096. These exports go very largely to France, Belgium and Germany, only a very insignificant quantity to Great Britain. During 1906-7, out of the total indicated, the following were the shares taken:—France, 387,252 cwt.; Belgium, 326,038 cwt.; Germany, 88,260 cwt.; and the United Kingdom, 2 cwt.; all other countries the balance of the total. The shares supplied by the chief exporting provinces were Bombay, 526,262 cwt., and Bengal, 276,348 cwt. No figures are available for the exports of poppy-oil. The cake is chiefly employed as manure (see p. 771).

PAPER AND PAPER MATERIALS.—The word paper is derived from papyrus, the name of the Egyptian reed which afforded the material chiefly used to write upon in the classic times of Europe. On this subject Prof. E. Rapson of Cambridge writes me—"There is no ancient paper (in our sense of the word) in Egypt. When people speak of Egyptian paper they mean papyrus."

In other parts of the world various substances have similarly been employed as paper substitutes; for example, in classic India and Central Asia, more especially with the Sanskrit people, the birch-bark (bhujapatra) was, and to this day is still used for most of the purposes of paper (see p. 131). But in the moist climate of the plains of India, birch manuscripts would of necessity be very perishable, hence as a rule they are hardly more than 300 years old. As they exist they are copies of copies of copies. In Chinese Turkestan, however, manuscripts of the 3rd or 4th centuries A.D. have been found. On the plains of India, and from fairly ancient times, the leaves of certain palms have been employed for writing on. The oldest of all known Indian manuscripts are the palm-leaves found in Nepal, which belong to the 9th century A.D. The leaves most largely used are those of Corypha umbraculifera (ola, see p. 429) and Borassus flabellifer (see p. 170). While being written upon, the specially prepared strips of leaf are held in the left hand and the words scratched on the surface with a sharp style, the scratchings being sometimes loaded with pigment. In Assam the aboriginal tribes have for several centuries past used the inner bark of Aquilaria Agallocha (see p. 73) as a natural writing material, a substance that not inaptly compares with the thin boards of beech-wood (the material upon which the Teutons first wrote, and from which have come the words bece, boc, buche, book). It has been said that the ancient history of China was written on finely prepared strips of bamboo, and that these were destroyed during one of the dynastic wars. It is often, in fact, affirmed that bamboo as a writing material is even more ancient than the papyrus.

History.—Stein (Ancient Khotan, 1907, 345) furnishes much interesting information regarding the official documents, letters, etc., found by him during his excavations.
sonetia, while locally made paper is sometimes spoken of as procured from other indigenous plants, such as a species of *Desmodium*.

(b) The material of the Bower, Macartney and Godfrey Manuscripts was found by Wiesner (Denkschr. Akad. Wiss. Wien. Math.-Natur., 1902, lxxi., 1-50) to be usually a mixture of fibres in which *Bocneria* (ramie) and *Broussonetia* (paper-mulberry) were the chief. These MSS. being for the most part in Sanskrit, were not likely to have been written in China, while the presence of reed fibres in their fabrication precludes all idea of having been made in Khotan or anywhere in East Turkestan.

Wiesner, reviewing the information to hand regarding the paper-mulberry tree, says that in Japan the fibre has been used for the manufacture of paper since the 6th century of our era, but earlier still in China. The Chinese use the young shoots of the bamboo in paper-making. [Cf. Karabacek, *Das Arabische Papier*, 29.] Prof. Giles (in a letter to Wiesner) remarks: "The earliest paper (in China) was made from tow, old linen, fishing-nets, etc. Modern paper is made from bamboo fibre, the bark of the *Broussonetia papyrifera* and rice straw. I can find no record of different papers at different periods. It is expressly stated that in Su\'eh\'uan hemp was used for making paper, in Fukhien bamboo, in the north mulberry bark, in Kiangsu rattan, on the sea coast lichen, in Chahkiang husk of grain, in Central China silk and in Hupeh *Broussonetia papyrifera*, vide the *Pen tsow kung mu*, or *Materia Medica*." The MSS. discovered by Stein at Khotan thus prove that paper manufacture was very possibly known and practised in Persia, Central Asia, Tibet and China many centuries before the art was known in Europe.

There is no certain knowledge when the art of paper-making came to India. It is not mentioned by any trustworthy writer until the 14th or 15th century. Recently it has been affirmed in the Indian public press that paper-making was practised at Sialkot 620 years ago. Marco Polo, towards the close of the 13th century, was one of the earliest authors who made known the fact that the Chinese issued paper money, the paper being prepared from the bark of the mulberry. [Cf. *Travels* (ed. Yule), i., 378.] Kubilai Khan had paper-money made in Pekin about 1260 A.D., and thus about the time when paper, as we now understand it, was first made known in Europe. Polo, therefore, expresses no astonishment at the material paper, but simply at the fact of its being accepted in place of gold and silver. John Ray (Hist. Pl., 1688, ii. 130) mentions that the art of paper-making was introduced into Germany from Galicia in 1470 A.D., and he gives a description which is interesting from the fact of its being supposed to have been new and instructive at the time when penned.

Nicholas Conti, who visited India in the early part of the 15th century, says, "The inhabitants of Cambay alone use paper; all other Indians write on leaves of trees, of which they make very beautiful books. But they do not write as we, or the Jews do, from left to right or right to left, but perpendicularly, carrying the line from the top to the bottom of the page" (Winter Jones, transl.; also in ed. Hakl. Soc., 1857, 31). A little later Abd-er-Razzak, Ambassador from Shah Rukh, visited India in 1442 A.D., and, like Nicolo Conti, went to Bidjanagar (Vijjaianagar), the capital then, as he says, of the most civilized kingdom on earth. To-day that great city is a vast ruin, not a part of it inhabited, and palaces and public buildings that were in process of erection are left as if the stone-workers had but gone for their midday meal.

"The writing of this people," says Abd-er-Razzak, is of two kinds: in one they write their letters with a *kalam* of iron upon a leaf of the Indian nut (the "cocoa-nut tree"). "These characters have no colour and the writing lasts but a short time. In the second kind of writing they blacken a white surface; they then take a soft stone, which they cut like a *kalam* and which they use to form the letters; this stone leaves on the black surface a white colour, which lasts a very long time, and this kind of writing is held in high estimation."

It is customary to read that paper-making was introduced into Hindustan from Kashmir in the 16th century about the time of the Emperor Akbar. Lawrence (Valley of Kashmir, 379) tells us that Kashmir was once famous for its paper, which was in much request in India. It was made from rags and hemp fibre sized with rice-water. He then adds that it is believed the art was introduced from Samarkand. It is often said the Arabs learned the art on the capture of that city and thence in due time carried it to Spain. So also Gibbon mentions that the knowledge of paper-making from linen rags was diffused from Samarkand, and Cassire is of opinion that it reached Mecca in the year 710 A.D. It is,
however, highly likely that Nepal was possessed of the same knowledge, and that both States may have derived their skill from Tibet or China; and it is certain (from Nicolo Conti and others) that Nepal paper was used in India at least a century prior to Akbar's time. Pietro della Valle (Travels, etc., 1623 ed. Hakl. Soc., ii., 291) speaks of books being written on palm-leaves at Mangalore "not on paper," and Thevenot (Travels in Levant, Indostan, etc., 1687. pt. iii. 40) also mentions that palm-leaves were used by the Malabars as a writing material. But Ovington (Voy. to Suratt, 1689, 249), less than a century after Akbar's time, gives so vivid a picture of the merchant's account books that it is difficult to realise that he is speaking of fully two centuries ago. "The paper-books," he says, "in vulgar use among the Inhabitants of India, on which they write, are long Schrolls of Paper, sometimes Ten Foot in length, and a Foot broad, sewed together at the upper end, as many long Sheets as the occasion of the Writing requires. The Pen they write with is the ancient Calamus or Reed, about the thickness of a large Goose Quill. And some of their Standishes are made long and square, and above an Inch broad, and of sufficient length to contain both Pens, and a place for Ink." He then describes the manner of writing obliquely and down the long pages in such a fashion as to explain Nicolo Conti's statement of the Indians writing from the top to the bottom of the page. Ovington expressly says that the Indian writing is not like the Chinese, in straight lines downwards, but "from the uppermost corner of the left to the lowermost corner of the right." The long page of the books, however, was doubtless the idea that inspired Nicolo Conti. But Ovington goes on to say that the paper used in India "by its Sickness and Smoothness appears shining, which is of ordinary use; but that which they write upon, either to the Emperor or Person of consequence is gilt all over the surface, as ours is on the Edges."

Hronsides published in 1774 (Phil. Trans., lxiv., 99; abridg. ed., xiii., 596) an interesting account of the Indian paper manufacture practised in his day. The material was catarrh hemp (Cotula var Janea), but for paper-making "old ropes, clothes and nets, made from the same plant, were preferred to fresh fibre, presumably because of their cheapness. These san rags were cut up into small pieces, macerated in water for a few days (generally five), washed in the river in a basket, and thrown into a jar of water lodged in the ground; the water being strongly impregnated with a lixivium of "sedgi-mutti" (crude carbonate of soda) six parts, and quicklime seven parts. After remaining in this state eight or ten days, they are again washed, and while wet broken into fibres, by a stamping lever, and then exposed to the sun, on a clean terrace, built for this purpose; after which they are again steeped in a fresh lixivium as before. When they have undergone three operations of this kind they are fit for making coarse brown paper; after seven or eight operations, they are prepared as making paper of a tolerable whiteness." The pulp thus produced is taken up on a fine-wire frame just as in the English manner.

Nicholas Von Der Heyden (Rule and Before, 1901, i., 386) says the Native manufacture is now confined mainly to "the preparation of parabaik or paper-slates used at the monasteries, and of umbrellas. The inner fibre of soft bamboo shoots or the bark of the mahaling or paper-mulberry (Brassonnetia pappipes) being pounded into a pulp with water, and half its weight of lime being then added, it is boiled with water until nothing but the pulp is left. This is pounded and spread thinly over a coarse cotton muslin framework, and allowed to dry in the sun. It now forms a rough grey parchment, about a cubit in breadth, which is folded up in alternating folds of about nine inches wide. When coated with finely powdered charcoal dust mixed in glutinous rice-water it is ready for being written upon with pencils of steatite or soap-stone." The use of paper in the manufacture of Burmese umbrellas is an important branch of the local industry, but unfortunately the artistic indigenous paper umbrella is rapidly being displaced by the cheap European article, and the making of the special umbrella paper is accordingly rapidly becoming a thing of the past. The Burmese system of writing on black-coloured pasteboards (parabaik) recalls Abd-er-Razzak's story of the people of the now lost empire of Vijaianagar (see above), who wrote on black surfaces with a soft stone. The supposed close affinity of the Telega people to certain of the Burmese races gives an interest to this curious circumstance that it might not otherwise be supposed to possess. In Japan, paper-making is very ancient and the plant chiefly used is (as in Burma) the paper-mulberry. The reader will find Rein's account of Japanese paper-making most instructive (Indust. of Japan, 1889, 393-419).
THE TWO CHIEF INDIAN GRASSES

Paper Manufacture.—The Native art of paper-making in India to-day is very much like that of glass-blowing: it consists in re-making waste paper. In a country teeming with fibres, it is surprising that the question of a good paper material has not been satisfactorily determined. And this theme seems to be constantly revived by residents in Europe who overlook the immense size of India. A few hundred miles are of little concern in most questions, but with paper-making transit freight soon kill the prospects of supplies. Then again the cost of land near the centres of trade where paper mills are usually built, precludes the special cultivation of paper stuffs. Moreover, as paper fibre, like esparto, must be fit for almost immediate immersion in the vats, paper-making can never pay the cost of separation and preparation, however simple and inexpensive. No fibre known to commerce can compete with jute in point of cheapness, yet the paper-makers can afford to purchase jute waste and jute cuttings only, so that but for the demand for an altogether different purpose the paper-maker could never procure jute at all.

The two most important paper grasses in India are bhabor (Ischaemum, p. 694) and munj (Saccharum, pp. 929-30). These are now being largely used by the Indian steam-power paper mills, the supply at a remunerative price being the chief obstacle to their further utilisation. It has been demonstrated that bamboo (pp. 108-10) affords an excellent paper, but practical difficulties exist such as the cost of the chemicals required, and the fact that the wholesale removal of the young shoots, which alone are serviceable, injures the stock. It accordingly has to be added that, at present, the most valuable paper materials in India after bhabor and munj are old rags, waste gunny bags, waste jute and san ropes, old paper, etc.

Whatever may be the source of the cellulose, it has to be reduced to pulp, and in most cases bleached. If rags are used, a preliminary dusting is essential. The material is then boiled with alkalis; in the case of grasses, such as esparto, a 10-per cent. solution of caustic soda under a pressure of 10 to 50 lb. of steam is required. The pulp thus obtained is then washed to free it from the residuary alkalis, thoroughly pulped mechanically, then loaded with the mineral sizing material and coloured as desired. This is known as the magma, and to convert it into paper a fine wire cloth is passed through the trough containing liquefied pulp, when a film of the required thickness is made to adhere and is removed. This is then compressed by being passed between rollers and, if so desired, is sized with gelatine, and lastly dried off by being passed between heated rollers or colanders.

[Cf. Morris, Cantor Lect. Soc. Arts, 1895; Cross and Bevan, Textbook of Paper-making, 1900; Blount and Bloxam, Chem. for Engin. and Manuf., 1900, 344-7; Julius Habner, Cantor Lect., 1902-3; Chem. Appl. to Arts and Manuf., vii., 513-42; Clayton Beadle, Chapters on Paper-making, 1904, i.: 1906, ii.; Hanausek, Micro. Tech. Prod. (Winton and Barber, transl.), 1907, 92-4; Stuhlmann, Halfb-Gras oder Espario für Deutsch-Ostafrika, Der Pflanzer, 1907, No. 15-7.]

Paper Mills.—The first works for the manufacture of paper organised in England date from 1588, and these were established at Dartford in Kent by a German jeweller, John Spielman, who was knighted by Queen Elizabeth. A century previously similar works had been erected in Spain. So late as 1690 coarse brown paper only was made in England, the supplies of the finer white papers being obtained from France and Holland. The war with France occasioned such a rise in duty that a stimulus was given for the improvement of home production. But an
Act of Parliament had to be passed before the desired improvement became possible. The first white paper made in England was produced by a Mr. James Whatman of Maidstone. Soon, however, England made rapid progress, but so late even as 1801 English paper was entirely hand-made.

The first occasion on which cotton was used in England was in the manufacture of paper. Cotton paper superseded the more expensive parchment of previous dates. Mention is made of cotton paper in 1062 (Macpherson, *Ann. Commun.*, 1805, i., 315 (many passages)). It is often affirmed that linen paper appeared before that from cotton, but there is no very satisfactory proof of that opinion, though it is quite likely that the discovery of pulping fibrous materials may have led to the use of linen and cotton almost simultaneously. ([Cf. Yates, *Text. Antiq.*, app. A., 383–8.] One of the earliest detailed accounts of the Native methods of paper-making in India is perhaps that given by Buchanan-Hamilton (*Stat. Acc. Dinaj.*, 272–3), the material used being jute. Prior to 1840 India obtained a large share of its paper supplies from China. About that date interest was aroused in the subject, and both Hindu and Muhammadan factories for hand-made papers were established all over the country. During Sir Charles Wood’s tenure of the office of Secretary of State for India, an order was issued for the purchase of all the supplies required by the Government of India in Great Britain, and this threw back very seriously the growing Indian production.

It is not very certain when paper mills were established in India. The expression “Serampore Paper” is used all over India for a particular class of Native-made white paper. Mr. D. M. Traill wrote, some years ago, an interesting account of paper-making in which he reviews briefly some of the historic facts, especially the chief grades of paper and firms concerned in their production (*Ind. For.*, 1891, xvii., 322–30). He there tells us that the capital engaged in the paper trade is nearly fifty million pounds, of which three-fourths represent plant and one-fourth working capital. He then concludes with a brief notice of the Indian mills, in which he refers to the fact that a paper mill in Serampore was the pioneer, and adds, “we well recollect seeing the silent and rusty machinery as far back as 1864.”

“There are eight paper mills in operation—three in the Bombay Presidency, four in Bengal, and one at Lucknow. Of the eight, two are private concerns in the Bombay Presidency, one of which has stated the capital invested. So far as information is obtainable, the total capital invested amounts to Rs. 67,33,000 (of which Rs. 57,63,000 are paid up), besides Rs. 11,07,650 debentures, and shows a decrease of 6 lakhs, compared with 1902, owing to the reconstitution of the Imperial Paper Mill at Kankinara as a branch of the Titagarh Paper Mills Company, Ltd. Most of the white and blue foolscap and much of the blotting paper, note-paper, and envelopes used in the Government offices are now obtained from the Indian mills. The total quantity of paper made in 1904 was 45 million pounds, and its reported value Rs. 61,49,446. The mills employ 4,266 persons. The capital employed has been doubled in twenty years since 1885, and the production and number of persons employed have increased about fourfold. Two of the larger mills in Bengal have paid no dividends for five years, as they have been unable to compete successfully with the cheap wood-pulp paper of attractive appearance which is
largely imported from Europe" (Fin. and Comm. Stat. Br. Ind., 1906, lix.).

Trade.—Internal.—The total transactions by rail and river in paper and pasteboard amounted in 1906-7 to 457,355 cwt. The chief exporting centres were the Province of Bengal, 214,137 cwt.; Bombay sea-port, 87,116 cwt.; Calcutta, 61,121 cwt.; Madras ports, 31,530 cwt.; the United Provinces, 26,109 cwt. The chief importing centres were Calcutta, 160,162 cwt.; the Panjáb, 80,559 cwt.; United Provinces, 40,530 cwt.; Bombay, 37,916 cwt.; Bengal, 21,936 cwt. By coast, the returns are given in rupee values. In 1906-7 the exports were valued at Rs. 11,69,758 and the imports at Rs. 9,05,237. Bengal exported paper to the value of Rs. 11,56,510; while Madras imported to the value of Rs. 6,50,297, Bombay, Rs. 2,09,866, and Burma, Rs. 20,124.

External.—The Exports from India of manufactured paper amount to little. For the period 1900-7 the total value of manufactured papers of all sorts, including pasteboard, was as follows:—1900-1, Rs. 78,227; 1901-2, Rs. 53,658; 1902-3, Rs. 42,903; 1903-4, Rs. 26,781; 1904-5, Rs. 28,350; 1905-6, Rs. 13,703; 1906-7, Rs. 6,607. In 1906-7 the total was made up thus:—printing paper, Rs. 5,883; writing paper and envelopes, Rs. 167; other kinds, Rs. 507; pasteboard, Rs. 50. Almost the whole of the printing paper, writing paper and pasteboard go from Bengal, and ordinarily of other sorts also, but in 1904-5 Bombay supplied the largest share of writing paper. During the same period the export of rags and other materials for paper manufacture showed the following returns:—1900-1, 21,683 cwt., valued at Rs. 70,833; 1901-2, 26,321 cwt., valued at Rs. 67,840; 1902-3, 13,431 cwt., valued at Rs. 46,490; 1903-4, 9,077 cwt., valued at Rs. 34,705; 1904-5, 10,248 cwt., valued at Rs. 29,543; 1905-6, 19,831 cwt., valued at Rs. 83,870; and 1906-7, 12,581 cwt., valued at Rs. 67,412. India also re-exports quantities of manufactured paper, and in 1906-7 these were valued at Rs. 76,614.

The Imports of paper, on the other hand, are large, and in late years show a slight increase. For the period 1900-7 they were valued as follows:—1900-1, Rs. 45,29,996; 1901-2, Rs. 52,71,634; 1902-3, Rs. 52,48,058; 1903-4, Rs. 52,18,396; 1904-5, Rs. 64,37,288; 1905-6, Rs. 70,48,978; and in 1906-7, Rs. 80,11,105. In 1906-7 the total was made up thus:—printing paper, Rs. 28,33,632; writing paper and envelopes, Rs. 22,66,714; other kinds of paper, Rs. 25,75,366; pasteboard, Rs. 3,35,393. The largest quantities come from the United Kingdom, and in 1906-7 these were valued at Rs. 44,06,312; from Germany, Rs. 15,82,445; Austria-Hungary, Rs. 7,04,525; and Belgium, Rs. 6,66,638. In the same year the imports of rags and paper materials were valued at Rs. 86,173.

As showing the value of esparto grass as a paper-making material, it may be mentioned that Messrs. Ide & Christie, in their monthly circular of September 16, 1907, show that for the years ending August the imports received by Great Britain of that grass were in 1905, 198,508 tons; in 1906, 186,242 tons; and in 1907, 192,809 tons. Needless to say, India imports no esparto. The British supply is mainly Spanish, Algerian, Tunisian and Tripoli, and the prices shown range from £3 2s. 6d. to £5 2s. 6d. per ton.

Paper Materials.—As already set forth, the chief considerations in the selection of paper materials are cost at the mill and constancy of
PASPALUM SCROBICULATUM

supply. The chief materials are accordingly rags of linen or cotton; esparto, munj and bhobar grasses; flax in the form of spinners' waste; hemp in the form of fragments of used rope; wood; straw; jute waste and old paper remade. Hanausek (Micro. Tech. Prod. (Winton and Barber, transl.), 1907, 100-2) gives the following paper fibres—linen rags, hemp, cotton rags, jute, straw, esparto, maize, yudr, wood, etc.

Paper (as may have been inferred from the brief account of manufacture given above) is literally a felted fabric composed of vegetable cellulose fibrils. When the fibrils, of which it is proposed to be made, are cemented together as in wood, they must be liberated and the raw material thus reduced to the condition known as "half stuff," and finally "pulp." In this condition, when floated out in water, allowed to settle over a frame and the water drained away, the felting of the fibrils takes place and paper is formed. Obviously, therefore, the less bulky the raw material the cheaper its transport to the mill. From this point of view, the advantages are entirely on the side of wood; it is compact, can be transported easily, more especially if a waterway connects the forest with the mill, and requires no expensive storage. But the pulp obtained from wood is of a very different nature from that of cotton rags, so that the purpose for which the paper is to be used comes in as a governing factor in the selection of the crude material.

The following are some of the chief materials used in the manufacture of paper in India:

- Adansonia digitata.
- Agave sp.
- Antiaris toxicaria.
- Bambuseae.
- Broussonetia papyrifera.
- Corchorus sp.
- Crotalaria juncea.
- Daphne cannabina.
- Edgeworthia Gardneri.
- Helicteres Isora.
- Hibiscus cannabinus.
- Ischemium angustifolium.
- Musa sp.
- Opuntia Dillenii.
- Phoenix paludosa.
- Saccharum arundinacaeum.
- Sansevieria zeylanica.

Chief Indian Materials.

Several of these will be found discussed in their respective places in this work; for the others the reader is referred to the Dictionary (vi., pt. i., 107-9). The chief ones are Ischemium and Saccharum, but with the Native paper-makers of the plains of India, the san hemp (Crotalaria) and the hemp-leaved Hibiscus are the most important, and on the hills, Daphne and Edgeworthia afford the so-called Nepal paper. Sir W. Thiselton-Dyer (Kew Bull., 1888, 81-4) was instrumental in drawing attention to the fact that in Siam the bark of the tree Strelitzias piper is employed in the fabrication of Native paper. The tree is plentiful in many parts of India. (See Alkaline Earths (pp. 55-6, 58); Acacia Jacquemontii (p. 15); Agave (p. 43); Aquilaria (pp. 73-4); Alpinia (p. 60); Caryota (p. 286)).

PASPALUM SCROBICULATUM, Linn. ; Fl. Br. Ind., viii. 10-11; Duthie and Fuller, Field and Gard. Crops, 1883, ii., 8, t. xxvii.; Duthie, Fodd. Grass. N. Ind., 1888, 1; Lisboa, Bomb. Grass., 1896, 3, and t.; Gramineae. The kodo, kodon, kodam, kodra, koda dhan, yanhe, harik, pakodi, menyga, kirutaruga, etc. An erect annual grass, native of India, extensively cultivated during the rainy season.

Area.—Returns under this crop are available only for Bombay, where in 1905-6 there were 204,022 acres, chiefly in Gujarat, Ratnagiri, the Uplands of the
Konkan and the Ghāṭ parts of the Deccan. In the Central Provinces the area occupied is believed to be greater than in any other part of India, but it is not returned separately. Together with kulki (Panicum miliare) it occupied, in 1904-5, an area of 2,039,345 acres. In the same year in the United Provinces, *Paspalum* and other small millets covered 1,939,753 acres. In *Field and Garden Crops* it is stated to be grown more extensively than any other millet in the United Provinces, and over a large portion of these provinces it is the favourite crop for inferior outlying lands. This is chiefly on account of the readiness with which it grows on the poorest of soils, not on account of the quality of the grain. Sowing takes place at the commencement of the rains, at the rate of 12 to 20 lb. seed to the acre, and the crop is cut in October. It is either grown alone or in the Doab mixed with cotton, and in the Benares Division with dal (Cajanus). Careful weeding is required to secure a good outturn, which is estimated at 10 to 12 maunds per acre.

Cultivation.—Of Bombay, Mallison (*Textbook Ind. Agri.*, 1901, iii., 64-7) observes that the crop is important in the gorddu soils of the Kaira district and similar alluvial soils in Baroda. It is never grown alone in Gujarat, the usual mixture being *tuver* (Cajanus indicus), *tal* (Sesamum indicum), and *ambadi* (Hibiscus cannabinus). If properly manured, the mixture may be grown year after year in the same field. In low-lying damp fields rice and *kodra* are grown together, the mixture being known as *sagada.* In preparatory tillage the bladeless harrow (*kurab*) is used to loosen the surface soil and prepare a friable, shallow seed-bed. The seed is sown with the three-coultured drill (*chal*), and the seed is sown in the following proportions:—12 lb. *kodra*; 2 lb. *tuver*; 1/2 to 1 lb. *tal*; 1/4 lb. *ambadi.* After sowing, the field is levelled, and the crop should subsequently be weeded once in about a month or six weeks and bulb-hoe two or three times. It is ripe early in October, and reaped with a sickle, tied into bundles, and threshed by bullocks in the usual way. Mallison gives the yield of a good Kaira crop as follows:—

- *kodra* (12 lb. seed), 985 lb. grain per acre, 1,304 lb. straw; *tuver* (4 lb. seed), 265 lb. grain per acre, 232 lb. straw; *tal* (1 lb. seed), 130 lb. grain per acre. The cost of cultivation he estimates at Rs. 23 per acre.

Though used as food by a large number of people in India, the grain cannot be considered a wholesome article of diet, and in some seasons contains a poisonous narcotic principle. In Gujarat the poisonous and non-poisonous grain are known in the bazar as *mitha* and *mina* respectively. Damp cloudy weather towards harvest time, a damp season and damp soil are said to produce poisonous *kodra.*

Leather (*Agri. Ledg.*, 1901, No. 10, 370; 1903, No. 7, 151, 180) gives the following analysis of the grain:—moisture, 8-01; oil, 3-36; albuminoids, 5-81; soluble carbohydrates 70-06; woody fibre, 8-47; soluble mineral matter, 1-34; sand and silica, 2-95; total nitrogen, 1-00; albuminoid nitrogen, 0-93. [Of Church, *Food-Grains of Ind.*, 1886, 39-40; Basu, *Agri. Lohardaga*, 1890, pt. 2, 29; *Pharmacoog. Ind.*, 1893, iii., 619-20; Rice, *Mysore Gaz.*, 1897, l., 117-8; Murerji, *Handbook Ind. Agri.*, 1901, 30-1, 250; Stamler, *Rept. Land ReV. Sett. Betui, C. Prov.*, 1901; *Crop Exper., Bomb.*]

PENNISETUM TYPHOIDEUM

Bulrush Millet

Bājra.

CULTIVATION.—Though grown to a less extent than *juhr* (*Sorghum vulgare*), its cultivation is geographically very similar and comprises extensive tracts in Northern, Western and Southern India. The following were the acreages in British India during the three years ending 1905-6:—

- 14,137,482 in 1905-6; 10,369,765 in 1904-5; and 11,630,710 in 1905-6.

In the Native States:—1,382,473 in 1903-4; 1,305,446 in 1904-5; and 893,949 in 1905-6.

Bengal.—This crop may be described as unimportant, the area fluctu-
Pennisetum

TYPHIOIDEUM

Cumbboo

ateing between 30,000 and 60,000 acres. According to Mukerji (*Handbook Ind. Agric.*, 1901, 259) it is grown on poor, free, dry, sandy soil. Village refuse is sometimes used as manure, but no irrigation is required. It is sown at the end of July at a rate of 6 to 10 lb. seed per acre. Harvesting takes place in October and November, and the outturn of grain amounts to from 300 to 500 lb. per acre.

United Provinces.—The area in 1905–6 amounted to 1,792,526 acres in Agra and 372,848 in Oudh. In Agra the largest areas occur in Buldaun, 200,643 acres; Agra, 166,787 acres; Moradabad, 166,014 acres; Etah, 113,936 acres; Allahabad, 95,903 acres; Shahjahanpur, 99,049 acres; Bareli, 87,746 acres. In Oudh, Hardoi, 130,771 acres; Una, 59,738 acres; Sitapur, 47,884 acres; Lucknow, 36,588, acres, etc. According to Duthie and Fuller it is a *khari)* crop, sown a little later and reaped a little earlier than *ju*dr; is accordingly a useful substitute when sowing has been delayed through floods or failure of the rains until *ju*dr is impossible. It is rarely sown alone, but generally mixed with the same minor crops as are grown with *ju*dr, except that *mung* (*Phaseolus radiatus, Linn.*) is usually replaced by *moth* (*P. aconitifolius*). It generally occupies poor, light soil, and requires less rainfall than *ju*dr. It is never manured and rarely irrigated. The land is ploughed one to four times and the seed (mixed with that of the subordinate crops) sown at the rate of 2½ to 3 seers per acre. There should be at least one weeding. The grain ripens towards November, when the heads are cut off and carried to the threshing-floor. The cost of cultivation is estimated at Rs. 9–8a. per acre, and the outturn varies in different localities from about 5½ maunds of grain to 7 maunds, and the outturn of dry fodder about 30 maunds. [Cf. Agri. Ledg., 1895, No. 17, 233; Nevill, *Dist. Gaz. U. Prov.*; Cawnpore Exper. Farm Repts.]

Central Provinces and Berar.—The area in 1905–6 was 40,608 acres in the Central Provinces and 55,188 acres in Berar. In the former:—Nimar, 22,146 acres, and Narsinghpur, 11,470 acres; and in the latter cultivation is almost entirely in Buldaun with 46,080 acres.

Rajputana and Central India.—The crop is grown largely in the Native states, especially in Alwar, where in 1905–6 the area was 221,604 acres; Bharatpur, 193,465 acres; Gwalior, 184,426 acres; Marwar, 165,692 acres; Jaipur, 79,093 acres; Mysore, 39,944 acres. In Ajmir-Merwan the area was 32,043 acres. The crop is sown at the same season as barley (June–July), and on dry lands only. The average yield is stated to be 1½ cwt. per acre. [Cf. Watson, *Rajputana Dist. Gaz.*, 1904, i., a., 46, 56.]

Panjab and North-West Frontier.—*Bajra* is largely grown in the districts of the Panjab, and in the dry elevated tracts south of Rawalpindi it constitutes the principal *khari* crop. In 1905–6 the area was 829,269 acres. The largest shares are as follows:—Jhelum, 108,684 acres; Gujrát, 103,624 acres; Rawalpindi, 94,766 acres; Attock, 68,357 acres; Gurgaon, 66,091 acres; Hissar, 64,345 acres; Sháhpur, 55,746 acres; Delhi, 21,016 acres; Rohtak, 13,219 acres. In the North-West Frontier the area was 71,355 acres, mainly in Kohát. During the year under review the area seriously declined. In the districts of Hissar, Rohtak, Gurgaon, Delhi and Karnál it fell from 1,135,674 in 1904–5 to 169,116 acres in 1905–6. The average yield for the year 1901–2 was 407 lb. per acre in the Panjab, 402 lb. in the North-West Frontier. In Dera Ghazí Khan it is the most important crop after wheat; and in the Rawalpindi district is the staple of the autumn harvest. It thrives everywhere in the plains at the base of the Salt Range, and in untoward years is usefully replaced by *tıl*.
THE SPIKED MILLET

(Pennisetum typhoideum)

Cultivation

(Sesamum indicum) or some of the pulses. In the Karnál district it
thrive best on a sandy soil, and is thinly sown after the first rainfall,
mixed with the seed of some small pulse. In Kohát it is sown between
April and August, and is the principal kharif crop on the barani (i.e.
unirrigated) lands of the district. The crop is generally cut in October.
In the Bannu district it is largely grown on the stiffer than soils. It is
sown at the rate of 2 to 5 seers per acre from the middle of March to
end of July. The first-sown crops ripen about the middle of August, and
ears are plucked as they ripen till early in December. [Cf. Dist. Gaz.
Panjáb; Settl. Repts. Panjáb.]

Bombay and Sind.—The area in 1905-6 was 4,354,437 acres in Bombay
and 867,406 acres in Sind. In Bombay the largest areas were:—Ahmad-
nagar, 904,590 acres; Nasik, 808,469 acres; Poona, 681,413 acres;
Khandesh, 583,686 acres; Satara, 366,940 acres; Bijapur, 340,560 acres;
Kaira, 218,159 acres. In Sind, Thar and Parkar, with 406,033 acres, and
Hyderabad with 338,221 acres, are the chief localities.

Mollison says it is entirely a rain crop, occupying the lighter description
of soils in all districts of moderate rainfall. The crop does best when
the climate is moderately dry and when the monsoon comes in downpours,
with plenty of sunshine between the showers. Except in parts of Khandesh
it is always a mixed crop, and as such may be grown continuously on the
same land. But rotation is also frequent. In the lighter soils of Khandesh
it is considered a good preparation for varádi cotton. In the sandy soils
of Kaira, Ahmedabad, etc., it is rotated with kodra (Paspalum scrobi-
culatum); sudhia (Sorghum bicolor), juár (Sorghum vulgare), etc.
In the light soils of the Deccan it is rotated with juár, niger-seed, etc. In
the Deccan the subordinate crops with bájri (= bájri in Bombay) are,
separate rows of tur (Cajanus indicus) and a sprinkling of udid
(Phaseolus Mungo, Linn.), math (P. aconitifolius), kuthi (Dolichos
biglorus), ambádi (Hibiscus cannabinus), etc. In Gujarat the most
common subordinate mixture is perennial rozí cotton in rows and math in
amongst the bájri, but two or more of the following may also form sub-
ordinate crops; viz. mag (Phaseolus radiatus, Linn.), chola (Vigna
Catjang), guvár, tur or tuver (Cajanus indicus), sesamum and shéria
(Hibiscus cannabinus).

In Gujarat the land should be ploughed two or three times after the
first fall of rain, then left for some time. The field should again be ploughed
shortly before sowing. Sowing takes place between 1st and 15th of July.
The seed-rate mixture recommended is as follows:—bájri, 6 lb. per acre;
guvár, 1 lb.; math, 1 lb.; mag, ½ lb.; sesamum, ¼ lb.; ambádi or shéria,
½ lb.; tuver, 1½ to 2 lb. All are mixed together before sowing, except
tuver, which is sown separately in every fourth row. The seed is drilled
in rows about 15 inches apart, and the surface then levelled. When the
seedlings are about 6 inches high, the crop is bullock-hoed and hand-
weeded, and again when 2 feet high. A crop sown in early July will be
ripe the beginning of October. It is reaped with a sickle close to the
ground, left lying in the field for several days, and then stacked.

Mollison gives the following outturn (grain, seed or by-product) from
a well-managed field in the Kaira district:—bájri, 900 lb.; math, 120 lb.;
guvár, 80 lb.; sesamum, 60 lb.; shéria, fibre. The cost of cultivation he
estimates at Rs. 26-1a. per acre. [Cf. Crop Exper. Bomb. Pres.; Mollison,
Textbook Ind. Agri., 1901, iii., 18-23.]
PETROLEUM

THE BÁJRA MILLET

Madras.

Areas.

Madras and Mysore.—The total area in 1905–6 was 3,004,717 acres in Madras and 39,944 acres in Mysore. In Madras the largest areas occur in Coimbatore, 580,299 acres; Salem, 376,257 acres; Cuddapah, 341,311 acres; South Arcot, 276,284 acres; Guntur, 255,511 acres; Trichinopoly, 173,721 acres; North Arcot, 133,643 acres; Madura, 164,194, etc. In Mysore, Chitaldurg had 33,448 acres.

Soils.

In the Godavari district it is grown on regada, lanka and sandy soils. The ground is manured in March by penning cattle or sheep on it, and in May it is ploughed twice every six days for three weeks. The ground, both then and at the time of sowing, should be moist. The seed, which should be the previous year’s produce, is sown in June, 4 seeds to the acre. In Coimbatore it is cultivated on dry lands, except black. It is often grown as a mixed crop with cotton, castor-oil, pulses, etc. The land is ploughed in April, during the heavy rains, after having been manured. In July–August it is again ploughed, and the seed, mixed with various pulses, is sown broadcast, with dál or beans in rows a few feet apart. After six weeks the crop is interploughed and occasionally weeded. In November–December it is reaped by cutting off the ears as they ripen. The pulses are gathered gradually up to February, when the kambu stalks, beans, etc., are all pulled up together, leaving the cotton and castor only.

Burma.

Burma.—In 1905–6 the area was 74,802 acres, all in Upper Burma, and chiefly in Myingyan, 42,968 acres, and Magwe, 26,526 acres.

Diseases.—An interesting account of the disease known as Sclerospora graminicola is given by Butler in the Memoirs of the Department of Agriculture, India (1907, ii., No. 1). As Butler points out, however, it is not usually of sufficient intensity to attract much attention. [Cf. Maxwell-Lefroy, Mem. Dept. Agri. Ind., 1908, ii., 9.]

Food.

Bread.

Food and Fodder.—The grain is used chiefly by the lower classes of Natives, and in many parts of India is their staple food. The flour, made into cakes or bread with butter-milk, is considered more nutritious than rice. In Khandesh it is often eaten with butter and various condiments. The following is the analysis published by Leather (Agr. Ldgy., 1901, No. 10, 370; 1903, No. 7, 151, 154, 181) :—moisture, 8·77 per cent.; oil, 5·33; albuminoids, 9·52; soluble carbohydrates 73·52; woody fibre, 78; soluble mineral matter, 1·73; sand and silica, 35; total nitrogen, 1·61; albuminoid nitrogen, 1·51.

Fodder.

In the Panjab, bájra is occasionally grown for FODDER and in unfavourable seasons may be given to cattle in the green condition, especially if the crop has proved a failure. The stalks, after the grain has ripened, are more or less utilised in all the provinces where available. In the Kurnál district it is said that in some of the higher villages the stalks, called dándar, are even stacked and preserved until required, when they are chopped up and given to cattle along with green fodder. Bájra straw is much more generally employed as a cattle fodder in the Madras Presidency than in most other provinces. [Cf. Church, Food-Grains of Ind., 1886, 56–9.]

D.E.P.

Petroleum.

PERFUMERY (see Oils, p. 820).

MINERAL OIL

pt. 1, 69-77; 1906, xxxiii., pt. 1, 15; 1907, xxxvi., pt. 2, 77. The mitti-kâtêl, kala salajit, minak tanâh, manyenney, manti-layîlam, yê-nâ, etc. Petroleum, otherwise known as mineral or rock oil or naphtha, is essentially a mixture of hydrocarbons of the paraffin and olefine series. It occurs stored in loose-textured conglomerates and sandstones, in which its distribution is similar to that of water in porous strata, being retained by impervious beds of clay. It may exude through any accidental fissure at the surface of the earth and thus form natural oil-springs, but is chiefly obtained by boring through the impervious covering strata into the oil-sands below, from which the oil may be raised by pumping; or it sometimes “gushes” out by pressure of the associated gaseous hydrocarbons. As to its origin, various theories have been advanced, such as that it is derived from the action of water on strongly heated iron carbide contained in the interior of the earth: and that it has been formed by the decomposition of the remains of animal matter at a high temperature or in contact with saline deposits, and the subsequent resolution of the more permanent fatty constituents into hydrocarbons and free carbon dioxide. Ball remarked on this subject, “There can be little doubt that the formation of petroleum is intimately, though obscurely, connected with the presence of salt, otherwise it would be difficult to account for the simultaneous occurrence of petroleum and brine-springs, which have been observed in India, as well as in Pennsylvania and Virginia.”

Although much progress has been made in developing the petroleum resources of India, at the present day, according to Holland, these afford little more than 1½ per cent. of the world’s supply. The chief sources are the United States and Russia, which together produce about 90 per cent. [Cf. Redwood, A Treatise on Petroleum, 1906, for an account of the chief occurrences and a full bibliography.] The following figures show the huge increase in the Indian production within recent years:—1890, 4,132,287 gallons; 1895, 13,003,748 gallons; 1900, 37,729,211 gallons; 1904, 118,491,382 gallons; 1906, 140,553,122 gallons. The traffic of 1906 on 1905 represents an expansion of 22-6 per cent.—mainly in the new Singu field, of which it is believed a large portion is still held in reserve.

OCCURRENCE.—According to Holland, petroleum in India is confined to the two systems of folded rocks at either extremity of the Himalaya—(1) the Iranian on the west, including the Panjâb and Baluchistan, and continued beyond British limits to Persia, and (2) the Arakan system on the east, including Assam and Burma, and continued to the oil-fields of Sumatra, Java and Borneo. In both areas the oil is associated with tertiary strata.

Panjâb and United Provinces.—The districts from which oil has been reported are Shahpur, Jhelum, Bannu, Kohât, Rawalpindi, Hazârá and Kumaon. The output, however, is small, ranging between 1,000 to 2,000 gallons a year. In 1903 it amounted to 1,793 gallons, and in 1906 stood at 871 gallons.

Baluchistan.—The early efforts made to develop the oil resources in different parts of Baluchistan have been described in the Dictionary. The most prominent of these are near Khotan in the Marri hills and Moghal Kot in the Shiráni country, where springs examined in 1891 were found to yield oil of a high quality. Holland says that the oil-spring in the neighbourhood of Moghal Kot affords a good illustration of the way in which a country, well endowed with the conditions necessary for the

873
production of petroleum, may lose its resources by destruction of the natural reservoirs. "The Moghal Kot oil-bearing beds form a very open anticlinal fold, whose axis pitches to E.N.E., and if the dome possessed the necessary plastic, impervious envelope, the oil rising up from below would have become concentrated in the porous beds which form the saddle, but for the fact that along this line the rocks are more easily eroded by surface water, and the anticline thus forms the gorge of a river by which the rocks have been opened to permit the waste of oil for an indefinite time" (Holland).

Eastern India.

Assam.—In 1865 the springs in the Assam oil-fields were visited by Medlicott, who stated that, though the discharge was small, they were the most promising he had seen. In 1867 a Calcutta firm obtained permission to prospect and struck a promising oil-spring at a depth of 118 feet near Makum, but nothing more was done till 1883, and very little development occurred in the following sixteen years. These oil-fields were first systematically reported on by Mallet (Mem. Geol. Surv. Ind., 1876, xi., 356), and were again examined by Mr. R. A. Townsend, Superintendent Petroleum Works, Baluchistan. According to Mallet, the oil-springs may be classified for commercial or leasing purposes into the following districts—(1) those of the Tipam Hill, north of the Dihing; (2) those of the range between the Dihing and Disang; (3) those of the Makum coal-field, south of the Dihing between the Dirack and Tirap rivers; (4) those to the east of the Tirap. The chief locality is that of the Makum coal-field, the best wells being at Digboi. In 1899 the Assam Oil Company was formed with a nominal capital of £310,000 (Holland, Rev. Min. Prod. Ind., I, 75). The result was that the output rose from 623,372 gallons in 1899 to 1,756,759 gallons in 1902; 2,585,920 gallons in 1904; and 2,733,110 gallons in 1905.

Burma.

Holland observes that "the belt of tertiary rocks extending from the north-eastern corner of Assam for about 180 miles south and west shows frequent signs of oil, nearly always in association with coal and sometimes associated with brine-springs and gas-jets. The series of earth-folds in which this corner of Assam occurs stretches southwards to Cachar, where oil-springs are also known, through the little-known Lushai hills into Arakan, and in the same system of parallel folds occur the oil-fields of the Arakan coast on one side of the Yoma, and those of the Irrawaddy valley on the other." [Cf. Repts. of Assam Oil Coy., Ltd., 1900-3.]

Burma.—Holland furnishes the following brief account of the areas of Burma that are actually worked at the present day. "The most productive oil-fields of Burma are those on the eastern side of the Arakan Yoma, in the Irrawaddy valley, forming a belt stretching from the Magwe district, in which the well-known field of Yenanyaung occurs, through Myingyan, in which Singu occurs, across the Irrawaddy into Pakokku, where Yenangyat is situated. Oil is, however, known further south in Mibau, Thayetmyo and Prome, and further north in the Chindwin valley, but these areas have not so far been thoroughly prospected, and the great development which has recently taken place has been the direct outcome of work in the three fields, Yenangyaung, Yenangyat, and Singu."
"Yenangyaung, the best known and most developed of the fields, still holds the lead as producer. The oil in this area has been worked by Native wells on both sides of the dome for well over one hundred years, and before 1886 the annual yield was generally over two million gallons, but soon after systematic drilling was introduced in the central Kodaung tract in 1887, the output gradually rose to over 10 million gallons in 1894, and last year, 1903, reached a record of 56,920,662 gallons. In 1904 the output of Yenangyaung was 73,428,960 gallons, and in 1905, 85,668,749 gallons.

"Yenangyaat yielded very small supplies of petroleum before 1891, when drilling was started by the Burma Oil Company. The expansion was slow until 1894, when 324,086 gallons were produced, but rose rapidly to 6,036,088 gallons in 1898, to 22,665,518 in 1903." It has since, however, dropped to about 184 million gallons a year.

"Singu has suddenly come into prominence. Petroleum was first struck by the Burma Oil Company in this area on October 30, 1901, and arrangements were then made to provide tanks for its reception. Production did not consequently begin till 1902, when only 174,880 gallons were turned out, with the opening of the new wells, but the output jumped up to 5,617,381 gallons in 1903; 23,677,450 gallons in 1904; and 37,541,177 gallons in 1905. The crude oil first obtained had a specific gravity of 0.8247 and flash-point under 40° F., in consequence of which primary stills were erected on the field to remove the light naphtha's before transport to the Rangoon refineries."

"Besides the Upper Burma oil-fields, the islands off the Arakan coasts, noted for their mud volcanoes, have also been known for many years to contain oil deposits of uncertain value. The chief operations have been carried on in the Eastern Barongo Island near Akyab and on Ramri Island in the Kyaukphyu district. During the past six years the average output of the former area has been 42,926 gallons, whilst in Kyaukphyu the output in the same period has averaged about 100,000 gallons, with a distinct tendency to decline," but the output from these islands is now rapidly diminishing.

The total production of oil in Burma in 1905 amounted to 142,063,846 gallons. The output of the various oil-fields was as follows:—Akyab, 53,455 gallons; Kyaukphyu, 60,647; Yenangyaung, Magwe, 85,648,749; Singu, Myingyan, 37,541,177; Yenangyaung, Pakokku, 18,759,818.

Properties and Uses.—For particulars regarding the introduction and expansion of the demand for kerosene oil for illuminating purposes in India, the reader is referred to the particulars given under Oils (see p. 812). The following information on the composition and uses of petroleum is abstracted mainly from the account published by Mr. Edmond O'Neill (Develop. of Petrol. Indus., 1901). Chemically considered, petroleum is a liquid of varying composition. The colour ranges from clear water, white through shades of yellow, amber, and brown to black. Its viscosity varies from great mobility to a thick tar-like mass, and its specific gravity from 0.771 to 1.020. The refractive index and coefficient of expansion are high and the specific heat is low, but both vary in oil from different places. Oils from the same locality usually resemble one another, but not always.
Crude petroleum is used to a very slight extent otherwise than as a fuel, a mixture for insecticides and for coarse lubrication. A quantity is also used in gas-making. For other purposes it must be refined, and this is effected by distillation. The crude oil is made up of a number of products of different boiling-points, some gaseous, some liquid, some solid. On boiling the oil and condensing the vapours, first the gaseous, then the liquid, and then the solid pass over, leaving a non-volatile residue. These distillates and the residue are themselves made up of a number of different bodies that may to a certain extent be separated. The most valuable of these is the illuminating oil, known also as Kerosene, coal oil, burning naphtha and by various other names. The portions of the distillate boiling at lower temperatures than the illuminating oils are also of commercial value. They are known as gasolines, rhigolenes, ligroines, benzenes, petroleum spirits, etc. Their principal use is as solvents for fats, oils, varnishes, paints, and as fuel for gas engines, gas machines, ice-making machines, and other purposes. The higher boiling portions of the distillate are employed chiefly as lubricants. Still higher boiling portions that condense to solids and semi-solids are known as vaselines and paraffins.

Simple distillation is not sufficient to prepare the above substances, so that they can be satisfactorily used. They must be purified. This usually consists in distilling, washing with acid (mostly sulphuric), alkali (usually soda or ammonia), and water. Sometimes the distillates are sprayed through air to remove malodorous constituents. Some of the oils are bleached either by the sun or by chemical reagents, or they may be filtered through charcoal or bone-black. In the case of solids, recrystallisation is ordinarily resorted to, i.e. the body, such as paraffin, is dissolved in some of the low-boiling constituents, usually naphtha, and the solution cooled in ice and salt. The paraffin thus crystallises out.

Legislation.

Tests and Legislative Measures.—The term "Flashing-point" is technically employed to designate the temperature at which any sample of petroleum or its products begins to give off sensible quantities of inflammable vapour. To prevent accidents it was enacted by the American Petroleum Act, and by the British Petroleum Act of 1871, that no petroleum oil should be used for burning in lamps which gave off inflammable vapours at any temperature below 100° F. (38° C.) when tested in an open cup described in the schedule of the Act. The increase in the consumption of the article, however, between 1871 and 1877 necessitated the adoption of a system of testing less liable to vary. The question was referred to the late Prof. Sir F. Abel, who proposed the use of a closed vessel to be heated in hot water, with a standard flashing-point of 73° F., equivalent to 100° on the open-cup system. This proposal was eventually adopted as the basis of the English Petroleum Act of 1879. The law under which petroleum is tested in India is Act XII. (1886), in which the testing apparatus prescribed is an improved form of Abel’s. Several other modifications, based on the special conditions attendant on the application of the test in a warm climate, have also been incorporated in the schedule of the Act. As changes of pressure influence the flash-point, a table showing the corrections to be applied for variations in barometric pressure is also
appendix. Dangerous petroleum is defined as petroleum having a flash-point below 76° F., but a consignment guaranteed uniform is not to be considered dangerous if it has an average flash-point of 73° and no sample flashes below 70° F.

Revenue.—In 1888 an import duty of half an anna a gallon was levied by the Government of India on petroleum, and in 1899-90 the revenue obtained amounted to Rs. 1,62,392. In 1894-5 this tax was doubled, as part of the means adopted to reduce the large deficit which then existed. The revenue from petroleum in that year was Rs. 3,17,995. Since 1894 the tax has remained at 1 anna per gallon, and the revenue thus obtained during the five years 1900-6 amounted to the following figures:—1900-1, Rs. 49,29,432; 1901-2, Rs. 53,05,104; 1902-3, Rs. 53,79,857; 1903-4, Rs. 43,99,912; 1904-5, Rs. 45,88,289; 1905-6, Rs. 36,64,723 (=£244,314).

TRADE.—Internal.—The movements within India itself are instructive. Thus the total recorded Exports of internal trade transactions by rail and river in 1904-5 amounted to 4,366,522 cwt.; in 1905-6, 4,458,544 cwt.; and in 1906-7, 6,194,699 cwt. Of that amount Bengal exported 2,592,587 cwt.; Bombay port, 1,531,394 cwt.; Madras ports, 983,133 cwt. The chief importing provinces were Eastern Bengal and Assam, 1,284,710 cwt.; Madras, 892,290 cwt.; United Provinces, 851,335 cwt.; Bombay, 678,944 cwt.; Calcutta, 642,135 cwt.; Central Provinces and Berar, 587,547 cwt. The total coastwise transactions may be represented by the following quotations:—Imports, 1901-2, 17,187,223 gallons, valued at Rs. 70,97,587; in 1903-4, 40,469,364 gallons, valued at Rs. 1,62,72,273; and in 1906-7, 66,065,365 gallons, valued at Rs. 2,40,54,011. Of Exports, Burma supplied in 1906-7, 58,572,648 gallons, and Bengal, 1,231,537 gallons. Of that supply Bengal took 33,074,834 gallons; Bombay, 9,226,720 gallons; Sind, 2,428,796 gallons; and Madras, 8,896,029 gallons. But in addition to Indian petroleum, foreign oil is carried along the coast. In 1901-2 this came to 6,069,534 gallons, and by 1906-7 had decreased to 2,304,032 gallons, the major portion being from Bombay to Madras, Kathiawar and Goa. The Trans-frontier export trade in petroleum shows in recent years a steady increase. In 1904-5 the figures were 160,559 cwt., valued at Rs. 10,65,506; 1905-6, 180,748 cwt., valued at Rs. 11,15,212; 1906-7, 178,533 cwt., valued at Rs. 11,81,921. The largest quantities go to Nepal, viz., in 1906-7, 100,938 cwt., while considerable quantities are also conveyed to the Shan States and Kashmir. The imports during the same period are unimportant, amounting in 1906-7 to only 66 cwt.

External (Foreign) Exports.—The foreign Export trade in petroleum has sprung into eminence within the last two or three years. The following are the exports of kerosene and paraffin wax for the period 1900-7:—1900-1, 268,752 gallons kerosene, valued at Rs. 1,29,376, and 37,943 cwt. wax, valued at Rs. 7,94,551; 1901-2, 16 gallons kerosene, valued at Rs. 8, and 54,097 cwt. wax, valued at Rs. 9,45,443; 1902-3, 2,085 gallons kerosene, valued at Rs. 1,050, and 56,464 cwt. wax, valued at Rs. 10,43,149; 1903-4, 913,908 gallons kerosene, valued at Rs. 4,27,692, and 45,894 cwt. wax, valued at Rs. 8,13,128; 1904-5, 4,076,139 gallons kerosene, valued at Rs. 19,99,413, and 54,707 cwt. wax, valued at Rs. 11,13,777; 1905-6, 1,766,566 gallons kerosene, valued at Rs. 8,83,151, and 56,795 cwt. wax, valued at Rs. 11,58,394; and in 1906-7, 24,684 gallons kerosene, valued at Rs. 10,928, and 60,208 cwt. wax, valued at
PETROLEUM

MINERAL OIL

Trade

Rs. 12,42,601. Exports of mineral oils, other than kerosene, amounted in 1904-5 to 164,253 gallons; 1905-6, 12,962 gallons; and 1906-7, 881,462 gallons. India also re-exports large quantities, amounting in 1904-5 to 2,097,472 gallons; 1905-6, 1,161,012 gallons; and in 1906-7, 488,676 gallons.

Imports.

Imports.—The Imports of mineral oils are large and important. According to Holland, during the years 1897-1903 they averaged nearly 854 million gallons, valued at £2,314,801. Of the two great producing countries, Russia and the United States, which during the years in question supplied between them about 93-5 per cent. of the imported foreign oil, Russia has been gradually increasing its predominance over the States. “In 1897-8 Russia contributed 58-1 per cent. of the imports and the States 29-7, but in 1901-2 the former had secured 85-5 and the latter only 9-5 per cent. of the Indian custom, though a slight reversal occurred in 1902-3” (Holland). In the Imperial Gazeteeer of India (iii., 139) later particulars are given. Of the imports, it is said of the foreign oil that “about 75 per cent., amounting to 64 million gallons a year, comes from Russia, and 19 per cent. from the United States, while large quantities are now being obtained from the productive fields in the Dutch East Indies.”

In the Review of the Trade of India (1905-6, 15-6) the total value of all mineral oils imported in that year into India is stated to have been Rs. 222-9 lakhs, or 32 per cent. less than in 1904-5. Of this total, Rs. 178-3 lakhs, or just 80 per cent., had reference to kerosene. During the years 1900-5 the imports of kerosene (omitting last three figures) are quoted as follows:—1900-1, 72,602 gallons, valued at Rs. 3,10,34; 1901-2, 91,467 gallons, valued at Rs. 3,51,57; 1902-3, 81,451 gallons, valued at Rs. 3,14,61; 1903-4, 71,559 gallons, valued at Rs. 3,07,58; 1904-5, 76,190 gallons, valued at Rs. 2,97,56; 1905-6, 50,949 gallons, valued at Rs. 1,78,32. During the same period, it is interesting to note that the exports from Burma (omitting last three figures) rose from 8,299 gallons, valued at Rs. 33,53, in 1900-1 to 47,160 gallons, valued at Rs. 1,62,34, in 1905-6, and that while in 1905-6 the imports of foreign kerosene declined by 33 per cent. in quantity and 40 per cent. in value on the imports of the previous year, the exports from Burma to India are stated to have increased by 10 per cent. in both respects.

Analysing the figures of supply, we learn that Russia gave to India (omitting last three figures) in 1901-2, 84,478 gallons, and in 1905-6, 7,617 gallons; the United States, 5,768 and 22,332; the Straits Settlements, 1,023 and 10,391; and Sumatra, nil and 5,401 gallons. As a parallel to these records, it may be here added that Burma supplied India in 1901-2 with 13,463 gallons, and in 1905-6 with 47,160 gallons. It is also stated that “case oil” is giving place to “bulk oil” importation, and that “more than half of the above decline in total imports is to be traced to the falling off of 11½ million gallons in arrivals of case oil from Russia alone, this being due to the destruction and anarchy that prevailed in the Russian oil region.”

Prices.—The following average prices in Calcutta, during 1905-6, of various classes of kerosene are quoted in the Review (i.e. 16) :—American, Chester, per case, Rs. 4-2-9; Russian, Rising Sun, per case, Rs. 3-10-5; Anchor, per case, Rs. 3-6-8; Ram, per case, 3-9-7; Burma, Victoria, per 2 tins, Rs. 2-11-5; Gold Mohar, per 2 tins, Rs. 2-14-6; Borneo, Cobra, per 2 tins, Rs. 2-11-9: Sumatra, Silver Light, per 2 tins, Rs. 2-11-9;
A CONITOLEAVED KIDNEY BEAN

Sumatra, Silver Light, per case, Rs. 4-13-8. The prices of American Chester Oil, the standard illuminant, are shown to have been very steady for the last ten years. In 1896-7 the average price per case was Rs. 4-3-3, and in 1905-6, Rs. 4-2-9.

PEUCEDA NUM GRAVEOLENS, Benth. ; Fl. Br. Ind. ii., 709 ; Cooke, Fl. Pres. Bomb., 1903, i., 570 ; Duthie, Fl. Upper Gang. Plain, 1903, 396 ; Prain, Beng. Plants, 1903, i., 540 ; Umekilliperæ. The Dill or Sowa, sowá, súlpá, baluntship, samy eit, etc. (Sansk.) misrayá, satapushpa.

A glabrous herb found throughout tropical and sub-tropical India, and often cultivated for use as a Vegetable and for its Essential Oil. The fruit yields on distillation with water 3 to 4 per cent. of an essential oil, which has well-known medicinal properties and is also employed for perfuming soap. Both fruit and leaves are used to impart a flavour to curries. [Of The Boer Manuscript (Hoernle, transl.], 1893-7, 170; Pharmacog. Ind., ii., 128-9; iii., app., 159; Woodrow, Gard. in Ind., 1903, 344.]

PHASEOLUS, Linn. ; Fl. Br. Ind., ii., 200-4 ; Cooke, Fl. Pres. Bomb., 1902, 374-9 ; Duthie, Fl. Upper Gang. Plain, 1903, 223-7 ; Prain, Beng. Plants, 1903, i., 385-8 ; Leguminosæ. A genus of twining plants, usually herbaceous, of which some 15 species are indigenous to India.

P. aconitifolius, Jacq. ; Duthie and Fuller, Field and Garden Crops, 1882, i., 41-2, t. xi. The Aconite-leaved Kidney Bean, moth (muth), bhringga, banmudga kheri, bir mung, matti-kalai, tulka-pyre, kúncumá- pesálí, madí, etc. A perennial or annual herb, found throughout India from the Himalaya to Ceylon, ascending the hills to 4,000 feet in altitude, especially in the north-west.

Generally cultivated in the plains as a hot-weather crop (June–July) and reapéd in autumn (kharif, October–November), and specially suited to dry, light sandy soils and for green-manuring (Watt, Pests and Blights of the Tea Plant, 1898, 175, 177). In some localities it is an important crop, as in the United Provinces, where in 1901-5, together with urd (P. Mungo, Linn.), mung (P. radiatus, Linn.), and lobia (Vigna Catjang), it occupied an area of 1,062,783 acres; and in Bombay (including Sind), where it alone occupied in 1905-6, 299,701 acres. Of the United Provinces, Duthie and Fuller state that it grows on the worst land that can be made to bear a crop. It is sometimes sown alone, but more often in millet fields, especially of the spiked or bulrush millet (bájra). Its cultivation is very haphazard. Two or three ploughings are held sufficient, and the seed is sown broadcast at the rate of 4 seers to the acre. The highest outturn which could be taken as an average is 8 maunds to the acre with rather less than double that amount of fodder. Of Bombay, Mollison (Textbook Ind. Agri., 1901, iii., 85-6) states that this pulse is fourth in importance, and is grown to a considerable extent in all districts except the Konkan. It is rarely sown alone, and is a common subordinate crop with bájra. The best outturn is obtained on the deep alluvium sands or sandy loams of Ahmadabad and Kaira. Heavy rain is harmful, and it is most successfully grown with a well-distributed rainfall of about 30 inches. It ripens after the bájra and is reaped in November–December. A fair yield in an average season may be 120 lb. pulse per acre from a seed-rate of 14 lb. with the value of the pulse at 40 to 45 lb. per rupee.

The beans are used to a considerable extent in certain parts of India,
PHASEOLUS
MUNGO

KIDNEY BEANS OF INDIA

Medicine.

Fodder.

D.E.P.,
vi., pt. i.,
186-7.
Lima.

P. lunatus, Linn.; Kew Mus. Guide, 1907, 68. Lima or Duffin Bean, kursumbulle-pullie, bunbur-buttii, tik-bit-zim, kerow-simbii, kataridaboo mah, udadyaweli, pegyi, etc. A tall biennial, with long semicircular pods and large seeds of variable colour. According to De Candolle, this is a native of Brazil. In India it is very generally cultivated, especially in Assam, Burma, Bengal, the United Provinces, the Panjab, etc.

Seasons.

According to Firminger (Man. Gard. Ind. (ed. Cameron), 180), the seed should be sown in the plains during October (or just when the rains are over) and in rows about 4 inches apart; on the hills the sowing season is from March to June. The ripe seeds of the best kinds are pure ivory-white, and, when cooked in a similar way to haricot or broad beans, are used as a Vegetable and said to have the flavour of roasted chestnuts. Duthie says the young pods are sliced and cooked like French beans.

Vegetable.

Poisonous Property.

Interest has recently been aroused in this bean owing to the poisonous properties which the species sometimes exhibits. A report was issued by Dunstan on its chemical composition (Proc. Roy. Soc., 1903, 72, 285; also Agri. Ledg. 1905, No. 2). The first specimens examined came from Mauritius, where the plant is raised in a practically wild state and used as a green manure. Chemical examination showed the presence of a cyanogentic glucoside (phaseololactoside) and an enzyme. When these two were brought into intimate contact, the glucoside was decomposed by the enzyme, yielding, amongst other substances, about 0·04 to 0·09 per cent. by weight of prussic acid, the largest quantity being found in seeds with dark, purple-coloured tests, and the smallest in seeds with almost white tests. In partially or wholly cultivated forms, the tests is either pink with a few purplish spots, pale cream-coloured or even white. Dunstan states that these are undoubtedly less poisonous than the almost wild type grown in Mauritius. While the Mauritius beans were being investigated there were imported from India quantities of beans described as Rangoon, Burma or Pagaya beans, which were intended to be used in preparing food-stuffs for cattle. Plants were grown from some of them, and identified as P. lunatus. [Cf. Bull. Imp. Inst., 1903, i., 16, 115]. Subsequently authentic samples of the beans were procured from Pakokku district, Burma, and these were found to contain 0·009 per cent. of prussic acid, a quantity quite sufficient to render them undesirable for consumption, at any rate in the raw state. Dunstan concludes by advising the cultivators of this particular bean to grow perfectly white forms rather than coloured varieties. Leaether (Agri. Journ. Ind., 1906, ii., p. iii., 224, in a paper on Cyanogenesis in Plants, alludes to the poisonous property. "I have obtained prussic acid," he says, "from Rangoon beans (Phaseolus lunatus) and vdl (Dolichos lablab) by simply allowing the crushed seeds to remain in cold water for a few hours" (see p. 767). More recently, Dunstan and Henry (Journ. Board Agri., 1908, xiv., 722-31) have given additional particulars and reviewed the results obtained by other investigators. They then conclude that "it is undesirable that any further definite advice should be given to discontinue the use of Rangoon beans, since in spite of the fact that both the red and white varieties have now been shown to yield prussic acid, there is at present no evidence that this is formed in quantity sufficient to be injurious, and although these beans have been used as a feeding stuff now for some years, no poisoning cases have been traced to them so far as is known. At the same time, since the beans yield prussic acid in varying quantity, it is clearly not permissible to recommend them for use as a feeding material. All that can fairly be done at the moment is to place the facts on record." [Cf. Church, Food-Grains of Ind., 1886, 185.]

D.E.P.,
vi., pt. i.,
187-91.
Urd or Udid.

880
Crops, 1882, i., 39-40, t. x. The urud (or urd), dord, tircorai-kalai, másh-kulái, ramra, udid, adad, patchay-pyre, minu-mulu, hasaru, etc. There has been some confusion regarding the nomenclature of *P. Mungo* and the species which follows—*P. radiatus*—due chiefly to Roxburgh having transposed the original Linnean names. *P. Mungo, Linn.*, is the present plant, *udid* or *urd*; while *P. radiatus, Linn.*, is the plant known in the vernacular as *mung*. There are two varieties of *udid*, one with large black seeds, the other with smaller greenish seeds, and these correspond very possibly with *P. Mungo* proper and the variety *Roxburghii*.

Area.—*Urd* is the most highly prized of the pulses of this genus, and is largely cultivated in India, sometimes even in green manuring (see p. 225). Unfortunately the crop area is not uniformly and continuously recorded, so that only isolated quotations can be cited. In Bombay (including Sind) it occupied in 1905-6, 223,281 acres, but it would appear that either the wrong scientific names have been used in the official publications of Bombay (and in Mollison's *Textbook Ind. Agri.*) for this and the next pulse, or that the names *mag*, *mung* and *udid* have the opposite significations in Bombay to those prevalent in the rest of India. In the Panjáb in 1904–5 *mung* and *mash* together occupied 443,307 acres, and in 1906–7, 563,364 acres.

According to Duthie and Fuller, *udid* is grown commonly as a subordinate crop with millet or cotton, but more often by itself. Sowing takes place at the commencement of the rains, and the crop ripens, one variety in August and September, another in October and November. When grown alone it is sown broadcast at the rate of 4 to 6 seers per acre. It prefers the heavier classes of soil, and is thus unlike *mung*, which prefers lighter soil. In this respect, it will be seen, Mollison holds a slightly different opinion, since he believes that both beans prefer heavy soils.

Its average outturn when grown alone is about 5 maunds grain per acre with three times this weight of straw. In Bombay, Mollison states that *udid* is grown generally subordinate to *juár* (*Sorghum vulgare*) or other cereals. It is a very important crop in the black soils of Khandesh, and is grown fairly extensively in Násk, Sáthara, Belgaum, Thána, and Ahmedabad. Of the total area during 1905–6, Khandesh had 106,870; Sáthara 33,673; Nasik 22,200; and Belgaum 14,689 acres. The total *rābi* crop came to 2,809 acres, of which 1,482 acres were in Kanara and 731 acres in Kolaba. It is raised mostly as a rain crop, subordinate to *juár*, but to a small extent alone in the *kharij* season, and over a considerable area in the *rābi*, chiefly as a second crop after rice.

Uses.—The green pods are eaten as a vegetable and the ripe grain is the most esteemed of all pulses in India. It is boiled and eaten whole or after being dried in the form of *dál*. Parched and ground to flour it is made into balls with spice, or is eaten in the form of a sort of porrige or baked into bread—it is the chief constituent of the wafer biscuit known in Bombay as *pápad*. In the Panjáb it is used in the form of two preparations known as *bari* and *sepa*. Both are prepared by soaking the seed for a couple of days in slightly warm water, then crushing to a pulp, drying and mixing with *ghi* or buttermilk. Both the grain and the straw are valuable as horse and cattle *Food*. MEDICINALLY this pulse is highly valued by the Hindus.

PHŒNIX

DACTYLIFERA

Edible Date

D.E.P.,
vi. pt. 1,
191-4.
Mung.

THE DATE PALM

P. radiatus, Linn., Sp. Pl., 1753, 725; Prain, in Journ. As. Soc. Beng., 1898, lxvi., 422; P. Mungo, Fl. Br. Ind., ii., 203 (in part); Duthie and Fuller, l.c. 37-8, t. ix. Green Gram, mung, mag, pesara, keruva, bulat, ghora muga, chhimi, pucha-payar, widhaut, etc. This pulse is a native of India and is met with both wild and cultivated throughout the plains, ascending to 6,000 feet in the outer ranges of the North-West Himalaya. There are three varieties, characterised by having green, yellow and black seeds. The confusion in nomenclature has already been explained under P. Mungo.

Area.—Mung is cultivated all over the Peninsula, though no estimate can be given of the total production. In Bombay, where it is returned separately (Season and Crop Reports), it is the fifth pulse in value, and occupied in 1905-6, 189,942 acres, and in Sind 32,690 acres. The most important centres are Dhárwar, Ahmadnagar, Khandesh and Biijapur. In Berar it would appear there were in 1904-5, 29,306 acres under it. The method of cultivation is essentially the same as for urd. Duthie and Fuller state that it is almost invariably a subordinate crop in fields of millet or cotton. It is, therefore, a kharif crop, sown at the commencement of the rains and reaped in October. Cultivation is the same as for cotton or millet. If sown alone, the seed-rate is about 12 seers to the acre. It is reaped about a fortnight before the millet crop, and threshed out by bullocks in the usual way.

Its chief cultivation is the kharif, but in Dhárwar, Kolába and Kanara it is grown in the rabi season as a second crop after rice. It is then sown alone, subordinate to jùdr and other cereals. It does best on good, deep soil of fairly dense consistency, and with a well-distributed rainfall of 30 to 35 inches. When grown after rice in the rabi season, cultivation is the same as for vâl (Dolichos Lablab), though the seed-rate is rather less (15 to 20 lb. per acre) and the preparatory tillage more careful. In the Deccan this pulse is sometimes sown alone in the kharif season as a catch crop before sugar-cane and other irrigated crops, which are planted in the rabi season (Mollison). The preparations made from mung are the same as those described for urd.

PHŒNIX, Linn.; Fl. Br. Ind., vi., 424-8; Gamble, Man. Ind. Timbs., 1902, 730-2; Prain, Beng. Plants, 1903, ii., 1095-6; Brandis, Ind. Trees, 1906, 644-6; PALMEÆ. A genus of palms which comprises some seven or eight species, all of which yield more or less edible fruits and are important from an economic point of view.

P. dactylifera, Linn. The Edible Date; tree = khajür, kasser, mach, karmah, pind chirdi, tár, périta, sconpalveon, etc.; fruit = khirna, chákára, kukyán, pind, chirvé, jarikha, tamara, pérích-chankay, somblon-zí, etc.; sindhi, seindi, sendri are names for this tree that denote its origin from Sind. A tall tree, often 100 to 120 feet, producing, when young, offshoots or "suckers" at the base of the stem. According to De Candolle, it has existed from prehistoric times in the warm-dry zone which extends from Senegal to the Indus basin, principally between the parallels 15° and 20°.

882
CULTIVATION.—In India it is cultivated and self-sown in Sind and the Southern Panjab, particularly near Multan, Muzaffargarh, the Sind Sagar Doab, and in the Trans-Indus territory. Near Dera Ghazi Khan the trees are numerous, on a strip of country 10 to 12 miles long from north to south. A few are planted in the Eastern Panjab, at Saharanpur, in the Ganges Doab, and in Bandelkhand. It is also grown in the Deccan and Gujarat. In recent years, through Government agency, plantations have been started in various places, e.g. in Sind. The chief difficulty in cultivating the tree is to secure the exact climatic conditions necessary for success. [Cf. Sly, Exper. in Cult. of Dates, in Agri. Journ. Ind., 1906, i., pt. iii., 256-7.]

Climate.—Fletcher (Agri. Ledg., 1906, No. 1) gives a full account of the conditions under which successful cultivation is carried on in other countries. The relative low humidity and rainfall in typical date-growing regions is a marked feature. Rain at the time of flowering spoils the pollen, and during the ripening season causes fermentation of the fruit. The former, in all regions of successful production, is March to May, and the latter, August to November. Where the best dates are produced, more than half the total yearly rainfall occurs between November and March, thus before flowering commences. On an average, rainfall during the flowering and fruiting season should not exceed 5 inches.

In addition to this amount of rainfall, irrigation is absolutely essential, if there be sufficient rainfall to dispense with irrigation, it will be too great to allow the flowers to pollinate and the fruit to set fully and ripen well. The requirements as to temperature are peculiar. In a dormant condition, it can withstand temperature as low as 20° F., but an extremely high temperature is necessary to enable it to ripen its fruit. Neither flowers nor fruits are formed unless the mean temperature rises above 64-5° F., and for the best and latest varieties (e.g. the Deglet Noor, Ayata, Algeria) the mean temperature for the fruiting season (May to October) should be above 84° F., and for one month at least above 94° F.

Soils.—The physical character of the soil, sand, loam or heavy clay appears to have little influence on growth and productivity, except that perhaps on light loam and sandy soils it comes to maturity and flowers and fruits earlier than on heavy soils. It is also peculiar in its indifference to the quantity of alkali in the soil. Investigations on the soil of Algerian palm-bearing tracts have shown that though it can grow in soils with 3 to 4 per cent. their weight of alkali, it does not fruit unless the roots reach a stratum where the alkali is below 1 per cent., and does not yield abundantly unless there are layers with less than 0.6 per cent. [Cf. Swingle, Date Palm and Its Util. in S.W. States, Bureau Pl. Indust., U.S. Dept. Agri. Bull., 1904, No. 53.] The alkali in question consists of chlorides and sulphates of sodium and magnesium.

Propagation.—Propagation may take place by seeds or offshoots. The latter method is the best, for if seeds are sown, half the seedlings turn out males, and, moreover, female seedlings seldom produce fruit equal to that of the stock. The offshoots are borne at the base of the stem of trees from 6 to 16 years old. These are removed from the parent when from 3 to 6 years old. The large leaves are cut away, leaving only the rootless stump of the offshoot, with its bud protected by leaf-stalk and young leaves. For India, April to September is probably the best time for removal of the suckers. They should be planted out in rows 25 feet apart.
THE DATE PALM

Cultivation

with similar intervals between the rows. Holes 3 feet deep and broad are made. Half of the excavated earth is mixed with its own volume of farm-yard manure, with 4 to 5 lb. of oil-cake, and filled in, the offshoot being set in the centre of the hole. Care should be taken not to cover the central bud and young leaves with earth. These should be retained a few inches above the level of the ground, and a circular trench, a foot in width, dug round for irrigation. Transplanted shoots should be watered every day the first month, twice a week the second month, and then every month for a year. For the first year, also, they should be protected from November to March by wrapping them in straw or matting.

Watering.

Watering.—After planting out the offshoot, its chief requirements are irrigation and pollination. No general rule can be given with regard to the amount of water required. This depends on local conditions; and further, the palm needs more water during certain seasons of the year than others. Generally, at the time of flowering (February–March) little or no water should be given; from May till the fruit ripens (September), water should be given liberally.

Seasons.

Maturity.

Maturity.—The age at which palms commence to flower varies with the character of climate and soil, and the amount of water given. Eight years from the date of sowing may be stated as the age at which appreciable quantities of fruit begin to be produced. The male inflorescence consists of a stout stalk with a large number of slender branches to which the flowers are attached, the whole enclosed in a sheath, which is at first closed but later splits open. The inflorescence is cut from the tree generally immediately before but sometimes after the splitting of the sheath. One or two of the slender branches bear sufficient pollen for a whole female inflorescence; and as a male inflorescence bears over 100 branches, one suffices to pollinate 50 or 100 female inflorescences, according as one or two branches are used for each. The female inflorescences are also borne within sheaths, at first closed, later open. When they open, one or two branches of the male inflorescence are inserted among its branches. About three months after pollination, two of the three fruits produced by each fertilised flower fall off, leaving only one to ripen. At this time also (the beginning of June) some of the clusters of fruit should be removed from the tree to increase the supply of food to the remainder. About 10 to 12 clusters are usually allowed to remain. The period of ripening varies from June to October, according to variety and locality.

Pollination.

Fruiting Season.

Uses.

USES.—The tree yields a GUM (bukm chil), used medicinally in the Panjâb. In that province, mats, fans, baskets and ropes are made from the leaves, known as bhûtrâ, patra, khûshâb. Woodrow (Notes on Journ. from Poona to Nagpore, in Rec. Bot. Surv. Ind., i., 94) states that a species of Phoenix (identified as P. robusta, Hook., f.) grows on the Western Ghats, Poona, known locally as shela, and is the source of the so-called date-matting made in the district. The petioles (ekhâri) make excellent light walking-sticks, and split up they furnish material for crates and baskets. The fibrous network which forms the sheathing base of the petioles, called kabôl, khajûr ka bokla or khajûr mânuj, is used for pack-saddles for oxen, and the fibre separated from it for cordage. In the Panjâb the bunch of fruit stalks, bhûtrâ, is made into brooms.

Medicinal Gum.

From the fresh spathes (called târa) is obtained by distillation târa-water, a strong but agreeable perfume, which is highly valued by Arabs and Persians but does not seem to be prepared in India. The date forms a large part of the food-supply of the countries where it grows plentifully. Even in the Panjâb and Sind it is largely utilised. In Multan the hard and unripe date is called gundâr; when it turns yellow, dôkâ; when one side becomes soft, dang; when quite ripe,
pind. Pind dates may be ripened on the tree, van di pind, or ripened after gathering, pind lumi. Dates which have shrivelled on the tree are known as kuk or kukan. In Sind the fruit, when ripe, is designated khurma, and chusumar when plucked before ripe. In Musaffargarh the most esteemed kind is called chirni. This is split down the middle and dried in the sun. The second best is called pind, and is eaten as it comes from the tree. The least esteemed, bugri, is boiled in oil and water. The terminal bunch or heart of young leaves (gichi) is preserved when a tree is cut down, and eaten as a vegetable and made into curry. Like P. sylvestris, this species also yields a saccharine juice, from which Sugar and a fermented drink may be prepared; but it is comparatively little used for this purpose, as when of good quality it is too valuable to be subjected to that treatment. The hard kernels of the fruit are ground into Food for camels, goats, sheep and horses. The green date, khamal, is also given to sheep and cattle. The roasted kernels have been used as a substitute for coffee. The wood is light and fairly durable, and is used in Multan and Sind as beams for supporting roofs in Native architecture, and also for water-channels, bridges and other purposes.

TRADE.—Exports.—The exports of Indian dates are not as yet important; they have averaged about 130 cwt., valued at Rs. 1,215, during the four years ending 1904-5, but in 1905-6 were only 34 cwt., valued at Rs. 364, and in 1906-7, 14 cwt., valued at Rs. 254. The re-exports, during the same period, were as follows:—1900-1, 34,444 cwt., valued at Rs. 1,69,263; 1901-2, 27,632 cwt., valued at Rs. 1,41,939; 1902-3, 47,041 cwt., valued at Rs. 2,18,455; 1903-4, 25,330 cwt., valued at Rs. 1,27,277; 1904-5, 22,260 cwt., valued at Rs. 1,24,864; 1905-6, 23,542 cwt., valued at Rs. 1,31,373, and in 1906-7, 27,945 cwt., valued at Rs. 1,69,639.

Imports.—The foreign supplies, on the other hand, are large and important; in 1900-1 they came to 871,272 cwt., valued at Rs. 41,94,972; 1901-2, 901,006 cwt., valued at Rs. 42,11,091; 1902-3, 663,390 cwt., valued at Rs. 31,43,967; 1903-4, 725,003 cwt., valued at Rs. 36,27,590; 1904-5, 812,284 cwt., valued at Rs. 40,96,034; 1905-6, 867,229 cwt., valued at Rs. 44,87,709; and in 1906-7, 814,781 cwt., valued at Rs. 48,37,461. The largest quantities come usually from Turkey-in-Asia, viz. 479,200 cwt. in 1906-7; Arabia, 238,101 cwt.; and Persia, 73,863 cwt., and are received chiefly by Bombay and Sind, which took as their shares 562,335 cwt. and 205,571 cwt. respectively.

"CF. The Bower Manuscript (Hoenrle, transl.), 1893-7, 121; Baber, Memoirs (Leyden and Erskine, transl.), 326; Purchas’ Pilgrimes, 1626, v., 654-5, 707-8; Taleef Sereef (Playfair, transl.), 74, 137; Ligon, Hist. Barbados, 1657, 72, Ovington, Voy. to Suratt, 1689, 423; Thevenot, Travels in Levant, Indostan, etc., 1687, iii., 94; Fryer, New Acc. E. Ind. and Pers. (ed. 1698), 225; Milburn, Or. Comm., 1813, i., 106; Bonavia, Future of Date Palms in Ind., 1885, Reid, Cult. of Date Palms in Canal Plant., Ph. Irrigat. Branch Papers, Jan. 1894, No. 1; Dodge, Useful Fibre Plants of the World, 1897, 260-1; Kew Bull., 1898, 46-50; Fairchild, Persian Gulf Dates, and Their Introd. into America, U.S. Dept. Agri. Bul. 1903, No. 54; Cunningham, Plagues and Pleasures of Life in Beng., 1907, 348, 350, etc.)

P. sylvestris, Rozb. The Wild Date or Date-sugar Palm, sendhi, kejur, salma, boichand, kharak; sandoleka-nar, ichchumpanay, ita, ichal, etc.; pandakhajura, kharjura (Sansk.). A tree 30 to 40 feet high, distinguished from the former by the absence of root suckers. It is indigenous in many parts of India, being most abundant in Bengal, Bihar, on the Coromandel Coast and in Gujarat.

Like the former, this species yields a Gum, and the leaves, petioles, flowering spathes, etc., are variously utilised for purposes similar to those indicated above. The reader will find these detailed in the article Baskets and Wicker Work (pp. 115, 188). The tree flowers at the beginning of

Gum.

the hot weather and produces an inferior yellowish or reddish fruit, which is eaten by the poorer classes.

In many localities, however, especially in Jessore and other districts of Bengal, this species is of considerable importance as a source of food-supply, owing to the extensive use of its sap in making Sugar. The Government of India (Resolution dated March 20, 1889) mention that it had been ascertained after a careful inquiry that there were 168,362 acres under cultivation of this palm connected with the sugar supply. A full account of the process of tapping the trees and of the manufacture of sugar from the crude sap is given in the *Report on the District of Jessore*, 1874, by the late Sir James Westland. Tapping ordinarily commences in November, and the largest supply of juice is obtained during December and January. An average amount of 5 seers of juice per night may be got from a good tree. The juice is boiled down into a dark brown, half viscid mass, called *gūr*. About 7 to 10 seers of juice are required to produce 1 seer of *gūr*. The tapping season lasts 4½ months or 67 nights. Thus at 5 seers a night, 355 seers of juice are obtained, or about 40 seers or 1 manud of *gūr* per tree, worth, say, Rs. 2 to Rs. 2-4a. After the juice is boiled down into *gūr*, it is then sold to the sugar-refiners and by them is manufactured in various ways into different grades of sugar. The best known is termed *dhulua*, a soft, moist, powdery sugar, used largely in the manufacture of Native sweetmeats. A purer, granular and more expensive sugar than *dhulua* is called *pucka*. The waste molasses, collected during the preparation of sugar, is called *chitiya gūr*; this is boiled down into a black, sticky treacle, which is largely utilised for mixing with the tobacco for the Native *hookah* and also for making cheap Native sweets. A small proportion of the juice, instead of being used in the above way, is consumed as a drink, either unfermented or fermented, under the name of *tāri*, or is converted into vinegar (see *Spirits*, p. 1046; *Vinegar*, p. 1109).

In recent years an interesting endeavour has been made to promote the manufacture of palm-sugar in the Central Provinces. A company has been formed under the name of the Khandwa Sugar Manufacturing Company. Full details regarding this will be found in a pamphlet (pub. 1901) by Mr. Haridas Chatterji, Managing Director, and in a report on the results of the first year's operations. (Cf. *Kanjilal, Date Sugar Industry of Bengal*, in *Ind. For.*, 1892, xxviii, 451–7; *Pharmacog. Ind.*, 1893, iii, 520; *Rept. Land Rec. and Agri. Bengal*, 1895, 19–20; *Woodrow, Gard. in Ind.*, 1899, 526; *Mukerji, Handb. Ind. Agri.*, 1901, 372–84; *Chatterji, Rept. on First Year's Operat. of Date-Sugar Manuf. and Agri., Morad (near Indore)*, *Cent. Ind.*, 1903–4; *Joret, Les Pl. dans L'Assy.*, 1904, ii, 335.)

P. Emblica, Linn.. The Emblica Myrobalan, *aonlā*, *āmalki*, *dūla*, *pundhra*, *ālā thanda*, *meral, suom, nellė, usir, avalkati, bhosa āmalī, toppī, userekī, skāja*, etc. A moderate-sized deciduous tree, found almost throughout India and Burma, ascending the hills to 4,000 feet, chiefly in dry deciduous forests (Gamble).

It yields a *gum* of which little is known. Fruit, bark and leaves are employed in Drying and Tanning. *Hooper (Agri. Ledg.*, 1902, No. 1, 52–3) states that the dried pulpy portion of the immature fruit affords as much as 35 per cent. tannic acid, but in a ripe state only traces are found. The leaves are regarded by the Bengal chamars as one of the best tans, and are said by

D.E.P., vi., pt. i., 217–24.

Emblic

Myrobalan.

Gum.

Dye and Tann.
A NEW INDUSTRIAL MATERIAL

PIMPINELLA ANISUM

Anise

Hummel to contain 18 per cent. tannic acid. The bark is employed for tanning in Travancore. An extract prepared at Dehra Dun from bark supplied from the Central Provinces yielded 28-2 per cent. of tannin. As a dye, the fruit gives a blackish grey, if used alone, but is generally mixed with salts of iron or the barks of others trees to produce a black. Bark and leaves give the same colours as the fruit. Dunean (Monog. Dyes and Dyeing in Assam, 1896, 40–1) mentions that in the Jorhat Division of the Sibsagar district, the barks of three trees, viz. *Terminalia Chebula*, *Eugenia Jambolana*, *Psidium Guajava*, are used along with that of *Phyllanthus* to produce a black colour.

The fresh juice is used with that of the other myrobalans as a cooling, refrigerant sherbet and as a flavouring ingredient in vinegar (see p. 1109); while the fresh ripe fruits are largely employed as astringent and laxative medicines. The fruit is also eaten by Natives and made into preserves. An interesting use of the fruit pulp in the manufacture of pottery has been published by Hooper (Journ. As. Soc. Beng., 1906, n.s., ii., 65). This was originally made known in 1896 by Mr. James Martin in a letter from Raipur, in the Central Provinces. The fruit is boiled, Martin says, in water till it becomes soft, then pounded; and after the stones are removed, the pulp is beaten and worked up into a dark-brown sticky mass. The manufacturer now takes an earthen vessel and plaster it over with a thick layer of the pulp. It is then set aside to dry, and when quite hard, the pot inside is broken and the pieces removed. These curios pots are sold in the district at from 4 to 8 annas each, and are much sought after, as they are durable and ornamented by coloured seeds (rati) sunk in the fabric in elaboration of a pattern. I may add that publication of this curious discovery was delayed pending the investigation of its possible adaptation as a waterproofing material for or other purposes which it seemed likely to fulfill. According to Gamble, the Wood makes good poles and is useful for agricultural implements, building and furniture. It is durable under water, and can be used for well-work. [Cf. Baber, Memoirs (Leyden and Ergine, trans.), 326 ; Bontius, Hist. Nat. et Med. Ind. Or., in Piso, Ind. Utri. ex Nat. et Med., 1629, 109–10 ; Basu, Agri. Lohadaga, 1890, i., 133 ; Banerjee, Agri. Cuttack, 1893, 190, 199 ; Monographs, Dyes and Dyeing. — Banerjee, Bengal, 1896, 30 ; Hadi, U. Prov., 1896, 82 ; Russell, Cent. Proc., 1896, 18 ; Agri. Ledg., 1900, No. 3, 28 ; 1900, No. 11, 109 ; Martin, Bombay, 1903, 7 ; Chandra, 1904, 6 ; Trench, Cent. Proc., 1904, 8 ; Joret, Les Pl. dans L’Antiq., 1904, ii., 297.]

P. Niruri, Linn.; jardmãl, bhain-an-valâh, sada-hazurmani, niruri, kizhky nellâ, nelâ-uisrikâ, mi-sipithy, etc. A small herb found throughout the hotter parts of India from the Panjâb eastwards to Assam, and south to Travancore, Malacca and Ceylon, ascending the hills to 3,000 feet. The whole plant is considered a useful diuretic, and is much employed in Native medicine. [Cf. Pharmacog. Ind., iii., 265.]

P. reticulatus, Poez.: pasjoti, makhke, buin-ovela, kabonam, kamohi, panama, datuca, pillâni, nalla-parugudu, etc. A large, open scendent shrub, common throughout tropical India, Burma and Ceylon, especially on low, moist ground. Leaves, bark and juice are all used in Native medicine, while the root is said to be employed in Madras to produce a red dye. [Cf. Pharmacog. Ind., iii., 264–5.]

PIMPINELLA ANISUM, Linn.; Umbelliferae. The Anise, saurif, saofâ, ansûnun, mủhûri, cravados, sêca, burri-shep, sombû, kuppi, dodda-jirage, jeramanam, sa-mung-sa-ba, etc. An annual herb, native of Egypt, Crete, Cyprus and many islands of the Greek Archipelago; introduced from Persia into Northern India, where it is cultivated by the Muhammadans.

An odorous principle is obtained by distilling the fruit, the product being the "o ial of anisseed" of commerce. *Arak badián*, or water of anise, is a favourite perfume in India. Anise as a medicine and spice is mentioned in many of the early classical writings. The Indian trade in it is not large, the exports in 1904–5 having amounted to 1,041 cwt., valued at Rs. 11,152, and in 1906–7 to 990 cwt., valued at Rs. 11,862. This ordinarily goes chiefly to the Straits Settlements and Ceylon, but in 1905–6 the United Kingdom took 1,513 cwt. The European market is supplied chiefly by Russia, Germany, Scandinavia, etc. For a full account of the history of the oil and of its properties, the reader should consult the Oil of Aniseed.

Anise.
PINUS KHASYA

THE PINE TREES OF INDIA

D.E.P., vi., pt. i., 238–42.

Blue Pine.

P. excelsa, Wall. The Indian Blue or Five-leaved Pine. The chia, kuh, lim, longchii, lamshing, raisailla, byana, yari, kiaar, tser, bir, keiri, paral, sam, tinanza, etc. A large evergreen tree of the temperate Himalaya at 6,000 to 12,500 feet, extending westward to Kafiristan and Afghanistan; eastward, except for gaps in Central and North-West Kunmoo and Sikkim, to Bhutan (Gamble).

The wood is highly resinous and affords TURPENTINE and TAR. Tapping is done by vertical cuts as in the long-leaved pine. The trees are tapped for about three years, then allowed three years’ rest, after which tapping can recommence on another side. The more highly resinous parts of the wood are much employed for torches, which are known as *mashal* in Hindustani and Panjábi, *jagni* in Pushu. The resinous cones are valuable for lighting fires. In certain dry winter seasons, the leaves and twigs become covered with a copious, sweet exudation. The “Manna” thus found is collected and eaten by the Natives. Gamble states that the wood is good, and very largely used in construction throughout the Western Himalaya, and that it is also exported to the plains. For planking, doors, windows and furniture it is better than deodar (*Cedrus Libani*, var. *Deodara*) as it is less brittle, has not the oil, which in the deodar absorbs dirt, while it is free from strong scent. In Kangra and Kullu it is said to be used for tea-boxes. [Cf. Thurston, *Resin and Turpentine from Ind. Pine*, *Imp. Inst. Handbook*, 1893, 7–19; *Ind. For.*, 1893, xlix., 367, 407; 1894, xx., 92–4; 1897, xxxii., 282–9; 1900, xxvi., 497–503; 1905, xxxi., 369–72; Lawrence, *Valley of Kashmir*, 1895, 80; *Agri. Ledg.*, 1896, No. 14, 98; *For. Working Plans and Admin. Rept., Ph.* and *U. Prov.*]

Edible Pine.

P. Gerardiana, Wall. The Neosia or Edible Pine, gunober, ri, neer, kannuchi, shangti, ronecha, chiri, prita, galboga; seeds = chilgora, neoa, zo-ghös. A moderate-sized evergreen tree of the inner, dry and arid North-West Himalaya, generally between 6,000 and 10,000 feet; mountains of Northern Afghanistan and Kafiristan; also Hariaib district at 7,000 to 11,000 feet (Gamble).

The chief product of this species is the almond-like seed, contained in the cone. The cones ripen in October, are plucked before they open, and heated to make the seeds expand. The seeds are then removed, and are largely eaten by the Natives and stored for winter use. In Kunáwar, they are said to form a staple food with the inhabitants. They are also exported to the plains, from the hills of the Panjáb, and large quantities are imported annually into India from Afghanistan. The wood is hard, durable and very resinous, but rarely utilised since the tree is so highly valued for its seeds. [Cf. *Pharmaco-Ind.*, 1893, iii., 379–80; *Agri. Ledg.*, 1896, No. 14, 96–7.]

Khasia Pine.

P. Khasya, Roy. The dingisä, tintu, taru. A large evergreen tree of the Khasia hills, hills of the Lushai country of Chittagong, Shan hills and hills of Martaban in Burma at 3,000 to 7,000 feet. The resin of this species is perhaps the most valuable obtainable from any species of the genus. Samples were reported on by Armstrong (*Imp. Inst. Tech. Repts.*, 1903, 167–9). The crude turpentine, which is a grey, thick, pasty mass, furnishes by distillation with steam about 13 per cent. of its weight of oil. On a former occasion Armstrong obtained from a sample of *P. Khasya* 17 per cent. of oil. The original turpentine and the distilled oil have a slight but agreeable odour, less pronounced than that of French turpentine. Chemical examination also proved that the oil of *P. Khasya* is strictly comparable to French oil of turpentine, and Armstrong states that in his opinion the oil is of the highest quality and will be found to serve every purpose for which oil of turpentine (French or American) is used. Samples submitted to a London firm of brokers (see note 102) were valued at £4 to £6 per ton for the crude turpentine, and at £24 per ton for the refined spirit, while the resin

888
obtained was valued at £5 to £6 per ton in London. At present, however, it appears that the area of forest is too small to make the industry of much importance in Assam, while in Burma the distance from the rivers and coasts of the chief forests precludes its profitable extraction at the figures quoted. [Cf. Thurston, l.c. 19-22; Scott, Gaz. Upper Burma and Shan States, 1900, i., pt. 2, 317-8; 1900, ii., pt. 1, 318-9; Max and Bertha Ferrars, Burma, 1900, 116; Tschirch, Die Harze und die Harzbehälter, 1906, i., 594-5.]

P. Merkusii, Jungb. & de Vries. The tīnyū, htenrū. A large evergreen tree of the hill forests of the Shan States, Martaban and Tenasserim, at 500 to 3,500 feet. The resin of this species was examined by Armstrong at the same time as that of P. Khasya. The crude turpentine is more fluid and clearer and yields nearly 19 per cent. of oil. The two oils closely resemble each other in all respects, and correspond exactly in their properties to French oil of turpentine. [Cf. Thurston, l.c. 22-3; Agri. Ledg., l.c.]

P. longifolia, Roxb. Long-leaved or Three-leaved Pine, salla, chir, dhūp, gnet, teadoung, kolan, sapin, nashtar, ranzuru, gula, thansa; oleo-resin = gandabiroza, chir-ka-gond, koto, etc. A large, more or less deciduous tree of the Outer Himalaya and Siwalik Range, also valleys of the principal Himalayan rivers at 1,500 to 7,500 feet; extending west to Afghanistan and east to Bhutan.

Resin.—This species is the chief tree tapped for resin. Tapping in a systematic manner was commenced in Jaunsar, but has now extended both to the Panjāb on the west and to the forests of Kumaon on the east. Gamble states that in 1888-9 about 9,600 trees were tapped in Jaunsar, each giving about 8½ lb. of resin. The total yield of the year was over 1,000 maunds resin, which produced at the Forest School Factory, Dehra Dun, about 900 maunds of colophony and 1,740 gallons of turpentine, which sold for nearly Rs. 9,000. There are two methods of tapping the trees, Native and European. The system employed by the hillmen of Kumaon and Garhwal is to cut a niche into the trunk about 3 feet from the ground, the bottom of which is hollowed out. The resin is collected as the niche fills, sometimes every second or third day, usually between the fourth and fifth days. The niche has to be deepened and lengthened from time to time, and the same niche may be used for two or even three years. By the European method an incision about 1 foot long, 4 inches wide and 2 deep at the base, not including the bark, is cut into the tree, and a curved incision about 5½ inches long is made just below that, into which a piece of zinc is inserted so as to form a lip from which the resin may flow into a pot suspended beneath. The cuts are renewed about twice a month. Of the manufacture of turpentine and colophony from the crude resin a full account is given by Birbal (Ind. For., 1900, xxvi., 497-503).

Resin.

Yield.

Colophony and Turpentine.

Method of Tapping.

Sources of Supply.

At the present day the Government are the only producers of resin and turpentine in India, and the supplies come through the Conservators of Forests in the Panjāb, Central Circle, School Circle, United Provinces, Dehra Dun. [Cf. Proc. Dept. Rev. and Agric., May 1905, Nos. 12-3.] In 1901-2 the outturn of resin, colophony and turpentine was as follows:—In the Panjāb (For. Admin. Rept. Pb., 1901-2, 15), 63,188 trees were tapped, and yielded 495,850 lb. resin, 256,824 lb. colophony, 7,081 gallons turpentine; in Naini Tal (For. Admin. Rept. U. Prov., Cent. Circ., 1901-2, 14), 38,632 trees, yielding 222,300 lb. resin, 88,888 lb. colophony, 2,204 gallons turpentine; in Dehra Dun (For. Admin. Rept. U. Prov., School Circ., 1901-2, 8), 14,420 trees, yielding 135,500 lb. resin, 103,976 lb. colophony, 2,693 gallons turpentine. In 1903 turpentine was sold by the
THE CUBEBS AND LONG PEPPER

Piper Cubeba

Cubebas

Conservator, Central Circle, United Provinces, at Kathgodam railway station, for Rs. 2.4-0 per gallon, and colophony, at Cawnpore, for Rs. 4.8-0 to Rs. 4.12-0 (10 to 11 annas represents carriage to Cawnpore) per maund of 82 lb. The average price in the Panjab Circle was Rs. 6.14-0 per maund at Amritsar for crude resin, Rs. 1.14-0 per gallon at Amritsar for turpentine, Rs. 3.3-3 per maund at Calcutta and Amritsar for colophony. The colophony is sold chiefly for soap manufacture, and the turpentine is in great demand for various industries, but chiefly in railway workshops. Indian resin is softer than ordinary trade samples: to overcome this defect it has been recommended to heat the resin more completely during distillation (Bhaduri Rept., Labor. Ind. Mus., 1902-3, 22-3; also Hooper, l.c., 1903-4, 25).

The roots of felled trees are also utilised in the manufacture of Tar, which in Jaunsar has for some years been systematically prepared in closed masonry kilns. The tar is boiled down into pitch and exported to the plains for sale. The needles were found on distillation to yield only 0.1 per cent. of the essential oil. They contained a large proportion of resin, and their fibre was found unsuitable for paper-making. They, however, constitute a good litter for stables and cattle-sheds (Hooper, l.c., 1904-5, 26; 1905-6, 31).

Trade.

Foreign.

Trade.—The foreign imports of India in resin, during 1904-5, amounted to 49,003 cwt., valued at Rs. 2,98,073; in 1905-6 to 64,602 cwt., valued at Rs. 5,51,279; and in 1906-7, 96,486 cwt., valued at Rs. 8,82,060. In recent years the United Kingdom has been the chief source of supply, and in 1906-7 contributed 66,203 cwt., followed by the United States, 16,416 cwt., and then by Germany, 12,895 cwt. The Exports in 1904-5 amounted to 1,918 cwt., valued at Rs. 37,515, and in 1906-7, 60 cwt., valued at Rs. 1,815.

Piper, Linn.; Fl. Br. Ind., v., 78-97; Gamble, Man. Ind. Timbs., 1902, 554; Prain, Beng. Plants, 1903, ii., 892-3; PPERACEAE. A large genus of shrubs, rarely herbs or trees, some 45 of which are natives of, or naturalised in, India. Several are of great economic interest and value.

Chaba.

P. Chaba, hunter. As. Rea., 1807, ix. 391-2; chhāb, chavī, kankaī; wood and roots = chakath. A native of the Moluccas, cultivated in India for its fruit, the chaba of Indian Medicine. The wood and root are used in Bengal for Drying and give a pale brown on cotton if used alone, but mixed with balsam (Cusutpinion Sappum), a brownish-red. [Cf. The Bower Manuscript (Hornel, transl.), 1893-7, 81, 94, etc.; Pharmacog. Ind., iii., 176; Dutt, Mat. Med. Hind., 1900, 244. 295.]

Cubebas.

P. Cubebas, linn.; Cubebas, kabb-chini, timmace, lui-marz, himi-mirt, tada-miri, dumoki-mirchi, val-mellaghu, chalanamiriyili, bala menasu, komukula, sinbad-karaava, etc. A native of Java and the Moluccas, cultivated to a small extent in India, and the fruit imported. It yields an important gum-resin. The fruit, known as cubebas, has been used in European Medicine from the Middle Ages, and yields a thick, colourless essential Oil, with an aromatic odour and flavour of camphor and peppermint. [Cf. Acosta, Tract. de las Drogas, 890.
THE PAN-LEAF

1578, 113 ; Linschoten, Voy. E. Ind., 1598 (ed. Hakl. Soc.), ii., 130 ; Pharmacog. Ind., iii., 180 ; Gildemeister and Hoffmann, Volatile Oils, 1900, 322.]

P. longum, Linn. Long Pepper, pipulmūl, pispal, râlik, râlī darzâ, tippili, yippulâl, lada, mulagou, pek-khyn, etc. A perennial shrub, native of the hotter parts of India from Nepal eastwards to Assam, the Khasia hills and Bengal, westwards to Bombay, and southwards to Travancore, Ceylon and Malaca. As manifesting antiquity of knowledge, it may be mentioned that the Sanskrit name pippali was originally given to this plant, and only within comparatively recent times had been transferred to black pepper. Long pepper is mentioned by Pliny (Holland, transl., bk. xii., ch. 7), and is referred to in the Periplus (1st century).

Long pepper is cultivated in Bengal and South India, and is the pepper chiefly exported from Calcutta. It is propagated by suckers and requires a rich, dry soil. The suckers are transplanted after the periodical rains set in, at a distance of 5 feet from each other. Each bigha is said to produce 2 maunds of pepper the first year, 4 maunds the second, 6 maunds the third, after which the roots are grubbed up, dried and sold. The plants require no irrigation, but at the commencement of the hot season the roots are carefully covered with straw to preserve them from the heat. Radishes, barley, or brinjal (Solanum melongena) are usually cultivated in the space between the plants. The fruit is gathered when green in January, and is preserved by drying in the sun. The dried unripe fruit and the roots have long been used in medicine. [Cf. Pharmacog. Ind., iii., 176 ; The Bower Manuscript, l.c. 78, 80, 88, etc.; Gildemeister and Hoffmann, Volatile Oils, 1900, 322 ; Dutt, Lc. 243-4.]

P. Betle, Linn. ; Hunter, As. Res., 1807, ix., 390-1 ; Bot. Mag., 1832, 3132. The Betle, pān, tāmbuli, tambula, vīgyadele, videcha-pānā, nāgurel, vettilai, nāgavalli, vīlele, kūnyoe, etc. A perennial dioecious creeper, probably native of Java; cultivated for the sake of its leaves in the hotter parts of India and Ceylon.

History.—According to Hobson-Jobson (ed. Crooke, 89) the word bete is the Malayan vettuila, i.e. veru-tila, which means "simple or mere leaf" and comes to us through the Portuguese betre and betele. The Natives of India and the Indo-Chinese countries have from remote times been in the habit of chewing the leaf, generally mixed with areca-nut, lime, and catechu in the case of the poorer classes, with cardamoms, nutmegs, camphor, etc., in that of the rich. Marco Polo (ed. Yule, ii., 306, 311), in the 13th century, writes that the people of India have a habit of keeping in the mouth "a certain leaf called Tsembul," and adds that the richer classes and the King have these leaves prepared with camphor and other aromatic spices, as well as quicklime. In 1442 Abîd-er-Razzak, in the narrative of his journeys in the East, thus describes the method of eating it: "They bruise a portion of fausel (Areca), otherwise called sipar, and put it in the mouth. Moistening a leaf of the betel, together with a grain of chalk, they rub the one on the other, and roll them in the mouth. They thus take as many as four leaves of betel at a time, and chew them. Sometimes they add camphor to it, and sometimes they spit out the saliva, which becomes of a red colour." García de Orta (Coll., x.), writing in 1563, corroborates these facts, stating that the Indians are in the habit of keeping the nail of the right thumb pointed and sharp, in order to remove the midrib of the leaf. Many of the other early travellers refer in similar terms to the practice of chewing the betelleaf. [Cf. Narrative of Journ. of Abîd-er-Razzak, 1442, in Ind. in the 15th Century (ed. Hakl. Soc.), 32 ; Linschoten, Voy. E. Ind., 1598 (ed. Hakl. Soc.), ii., 62-8, etc.; Pyrard, Voy. E. Ind., 1601 (ed. Hakl. Soc.), ii., 362-3; Bernier, Travels, 1656, in Constable, Or. Misc., i., 13-4; Barbosa, Coasts E. Africa and Malabar (ed. Hakl. Soc.), 73; Mandelstam, Travels, in Olearius, Hist. Muscovy, etc., 1662, 42; Fryer, New Acc. E. Ind. and Pers., 1672-81, 40; Diary of W. Hedges, 1681-7 (ed. Yule), ii., ccxxxvi.; Hamilton, New Acc. E. Ind., 1727, i., 304; Joret, Les. Pl. dans L'Antiq., etc., 1904, ii., 261.]

CULTIVATION.—The cultivation of betel-leaf is attended with many difficulties; it requires a constant temperature, a fairly uniform degree of moisture, and much attention on the part of the cultivator. The plant is propagated by cuttings or sets grown under shade, and in many parts of India within specially constructed houses of grass, reeds or mats having...
THE PAN-LEAF

Bengal.

Varieties and Races.

Wide Diversity.

Methods of Cultivation.

Districts of Production.

Jute-stalks.

Cuttings.

Seasons.

Training the Vines.

Top-dressing.

Is a Special Craft.

flat grass roofs so designed as to admit of a diffused light. The plants are grown in parallel rows that allow spaces for the owner to pass between, but nothing more. In other cases, the vines are cultivated under the shade of trees, very often the areca-nut palm or other trees specially grown for the purpose, and planted in the form of a compact garden surrounded by a protecting hedge. Pan-leaf is hardly ever grown by the consumer, but is regarded as a special cultivation that requires expert knowledge. The methods pursued vary considerably in different localities, and may be best considered under the names of the provinces in which the leaf is chiefly produced; but unfortunately statistics are not available for all provinces, and only for certain years of those that are returned.

Bengal.—As far as can be estimated, the area under the betel-vine in 1904-5 exceeded 43,000 acres. The greatest possible confusion has existed regarding the varieties and races met with in this province. The commercial value of one form of pan-leaf is so infinitely greater than another that the comparison between them (in point of price) is as great as that between the produce of the very poorest and the very finest vineyards. A uniform rate of rental for land yielding so entirely different products would obviously be unjust.

The following information regarding the methods of cultivation is abstracted mainly from Mukerji and Roy. There are three main varieties —deshi, extensively cultivated in Central and Southern Bengal; gach, cultivated in North Bengal; and sanche, cultivated to a smaller extent all over the country. According to the former writer, the finest pan is grown at Bantul, half-way between Ulubaria and Midnapur, on a light loam slightly reddish in colour. Ordinarily a black, friable clay loam, containing a large proportion of organic matter, and situated above inundation-level, is chosen for the crop. After selecting the site, shrubs and trees growing on it are uprooted or burned down and a trench is dug round, the earth obtained being spread over the surface of the garden. Before planting the betel-vines, a roofing is manufactured for the purpose of securing shade, evenness of temperature and security from high winds. Rows of bamboo or other stakes are planted, 4½ cubits remaining above ground. Over these are placed dhaincha or jute-stalks and sometimes a thatch of ulu-grass. The garden is fenced round with the same materials. Each row of cuttings is planted between two lines of stakes, with intervals of 6 inches between the cuttings. Cuttings are taken from plants two years old or more. These are made of lengths 12 to 18 inches, each with five or six joints, two of which are buried in the earth, while the portions left above ground are made to recline on the surface. They are then covered with date-leaves and watered morning and evening till they strike root and put forth buds. Planting time is May to November. Occasionally cuttings are first planted in nurseries, and, when rooted and have sent forth new leaves and buds, are transplanted. As the plants go on increasing in length, one or two jute-stalks are stuck in the ground close to each, the upper ends reaching the roof, and the betel plants are tied to them by straw. When the plants reach the roof they are bent downwards, a portion is made to rest on the ground and is covered with a little earth, while the bud end is again bent upwards and tied to another support. This process is repeated about three times a year, and every time a few leaves are plucked away at the points where bending takes place. Pond-mud and other kinds of well dried and pulverised earth are placed between
PAN-HOUSES

the lines and used to earth up the plants. Each time earthing-up takes
place, dried and pulverised pond-mud, cow-dung, and oil-cake are used
as manure.

If planting is done in July–August, plucking commences in October–
November, but if planting be done in October–November, plucking takes
place in May–June. Two pluckings are made each month. Two to four
leaves are got on each occasion, and in the rains four to six leaves a plant.
The plants are in full bearing for some five years, at the end of which time
the garden or baroj requires to be thoroughly overhauled. Muckerji gives
the outturn from one acre as about 80 lakhs of leaves per annum, and the
total cost per acre for a period of three years as Rs. 1,422. Taking 3,000
leaves per rupee as the average price of pan, Muckerji estimates the outturn
of leaves at Rs. 2,500.

[Cf. Basu, Agrí. Lohardaga, 1890, pt. 1, 83; Banerjei, Agri. Cuttae, 1893,
96–9; Chaudhury, Note on Piper Betel in Backergunge, Nov. 1898; Muckerji,
Handbook Ind. Agri., 1901, 429–33; Roy, Crops of Bengal, 1906, 170–4.]

United Provinces.—H. R. Nevill states that the plant thrives best on
a stiff soil, retentive of moisture, and says the site selected for the garden
is generally an elevated spot with a good slope. The land is ploughed,
levelled and thoroughly cleaned, and then enclosed with stakes and brush-
wood and covered with a roof of sentha-grass. Shallow trenches are next
scoped out, 2 feet wide by 5 or 6 inches deep and 5 feet apart, which are
filled with water; and when the soil is saturated, planting commences.
Full-grown plants, stripped of their leaves, are cut down close to the root
and divided into three or four portions, which are laid horizontally in the
trenches and covered with earth. In a few days sprouts appear at each
knot. Planting goes on from February to April, and each row is watered
two or three times a day. Stripping the leaves begins about the middle of
June and is continued regularly for about a year, after which the plant is
exhausted and is used for stocking a fresh plantation while the old garden
is allowed to rest for a year or two. The leaf is sold in bundles of 200
called dhallis, the price varying according to age and quality. [Cf. Dutheie
and Fuller, Field and Garden Crops, pt. iii., 51–3, tt. 91, 14; Nevill,

Central Provinces.—In the Central Provinces one of the forms most
highly prized and sent very largely to Calcutta is known as the kafuri. In
the Settlement Report of Wardha the method of cultivation is fully de-
scribed. The leaf is cultivated by a class of people called bureis, and the
garden is known as bureja or pan-ka-tanda. The pan-gardens are gener-
ally held by a cultivating brotherhood, forming an independent section
in the village and paying rent to the landowner through the head of their
body. A portion of the village land is recognised as belonging to this
caste. The garden is enclosed on all sides with bamboo and mat coverings.
The vines are planted in ridges, varying in length with the area of the
enclosure, and the ridges are divided into a certain number of units of
length, called lani, which are portioned off among the brotherhood.
The plants require constant care, and much water and manure are also
essential. In two years they cease to bear leaves of any marketable
value, and new gardens are then made. The first year of cultivation is called
weok, the second koreea, the produce of the latter being more esteemed
and more sought after than that of the first year. At the end of the second
year the ground is allowed to remain fallow for periods of two or three
years.

893
In Nimár the method presents several interesting features. A garden once established is said to yield steadily for ten or twelve years. The ground is similarly prepared to that in Wardha, but trees are grown to afford shade, such as the saora (Sesbania egyptica). The plantation is also surrounded by poles of pāngrá (Erythrina indica), to which bamboo mats are attached. After the saora trees die down, they are replaced by poles of the sales (Boswellia serrata). Meantime plantains have been set all over the garden, at intervals of 10 or 12 feet, for purposes of shade. No matting is used overhead or for partitions. Every year, after the leaves have been gathered, the creeper is coiled down at the root till only some 3 feet are left above ground. A fresh root is thus struck, and the old coil is next year cut away. The crop is irrigated at all seasons except during the rains, and at the commencement of each hot season (March) the plants are pruned, manure is applied to the roots, and fresh earth piled round them. Before the ten or twelve years are over, the garden soil thus increases in depth by about 2 feet. After that time the garden is removed, hemp is sown to clean the land, and alternate fallows and irrigated spring crops with liberal manure follow for some years to render the land again fit for pān. [Cf. Rept. Land Rev. Settl., Nagpur, C. Prov., 1899, 68-75.]

Bombay.—The area under the crop in 1904-5 was returned as 3,958 acres, of which 1,343 acres were in Dharwar, 518 acres in Poona, 390 acres in Belgaum, 380 acres in Kanara, 372 acres in Satara, etc., and in the following year (1905-6) the total area was 4,048 acres. The system of cultivation differs in no essential particulars from the method followed in other localities. In Dharwar, pān is the most important garden crop. The shoots are planted in the open, trained on quick-growing trees, an acre of land containing upwards of 2,000 plants, and the crop lasts only four to seven years. The vines are then dug up, the leaves of the trees on which they were trained are used for vegetable manure, and the wood for fuel. The garden is deeply dug all over, allowed to lie fallow for one year, and afterwards planted with sugar-cane. After the sugar-cane, it enjoys another year of fallow, when betel plantations are again laid out.

In Poona, betel is also an important garden crop. It is grown on light red soils, requires much manure and constant watering, and if well cared for may last fifteen to twenty years. The garden generally covers about an acre, the vines are trained on various trees, planted in rows and pol- larded, and the whole garden is sheltered by high hedges or grass screens or mats. Every year in March, April or May the upper half of the vine is cut, while the lower half is coiled up and buried under fresh red earth and manure.

In Kanara the plant is described as cultivated in gardens on mango trees. The leaves are picked three years after planting the young shoots, and the yield is estimated at 100 to 200 leaves from a full-grown vine every fortnight. An acre of spice-garden containing 500 plants is said to produce some 40,000 leaves annually, worth Rs. 20 and costing Rs. 8 to grow.

Madras and Mysore.—The plant is widely distributed in the Presidency, being found chiefly in the moister regions. Cox (Man. N. Arocl, 1895, I. 265-6) fully describes the method of cultivation, which differs in no essential particulars from the methods already described. It is a three-year crop, grown on land capable of incessant irrigation. The
HEDGES AND SHADE-TREES

Plants begin to yield when nine or ten months old, and continue to yield for two or even three years. The leaves are tied in bundles of 400 each, and the usual price of such a bundle is an anna. An acre in two years produces 5,000 to 7,500 of these bundles, worth Rs. 300 to 500.

In Mysore the cultivation is thus described by Rice (Mysore Gaz., 1897, i., 160-2):—A black soil is required, and the plant thrives best in low ground where it can have a supply of water from a reservoir. In the east (e.g. Chaitra or Vaisakha), the ground is trenched over 1 cubit deep and surrounded with a mud wall, within which a hedge, chiefly of **Euphoria Tirucalli**, is planted. If there is not plenty of rain, it must be regularly watered for six months. The garden is then dug and formed into beds with a space of 20 feet between them and the hedge. By an elaborate system of channels for supplying and draining off water, the garden is divided into blocks. In the centre of each, a row of small holes is formed, 1 cubit distant from one another, and in December-January into each hole are put two cuttings of the betel-vine, each 2 cubits long. The middle of each cutting is pushed down and slightly covered with earth, while the four ends project and form an equal number of young plants, which for eighteen months are allowed to climb on dry sticks. For the first week after planting they must be watered twice a day, for another week once a day, and till the end of the second month once in three days. A small drill is then made across each division of the beds, and between every two holes in each, in which seeds of **agase** (Sesbania grandiflora), **nagge** (Moringa pterygosperma), etc., are planted. The young betel-vines must have some manure, and for four months require to be watered once in three days. Afterwards all the channels are filled with water once in four days. When a year and a half old, the plants are removed from the sticks. Two cubits of each next the root are buried in the earth and the remainder, conducted close to the root of one of the young trees, is allowed to support itself on the stem. At the end of two years, 2 cubits more of each plant are buried, and afterwards this is repeated once a year. At the end of the fourth year the cultivator begins to gather the leaves, and continues to obtain a constant supply for six or seven years.

In the west, the betel-vine is grown with the areca-palm. When the areca plantation is fifteen years old, in the month following the vernal equinox a hole is dug near every tree, one cubit deep and one and a half wide. After the earth has been exposed for a month, it is returned to the hole and left for another month. A little earth is then taken out, the surface smoothed and the ends of five cuttings of betel-vine buried in it. For a month they are watered once every two days, and shaded with leaves which are afterwards removed, and the earth in the holes stirred with a stick. In the first year, the waterings are repeated every day, and the whole must be hoed once a month and manure given to each plant. In the second year, the vines are tied to the palms, and the garden hoed and manured once in two months, but watered only in the hot season. At the end of the second year, the vines begin to produce saleable leaves. In the third year, every year after, the part of the vines without leaves next the root is buried. Once in six months the garden must be hoed and manured, and watered every other day during the hot weather. [Cf. Sturrock, Man. S. Canara, 1894, i., 206-7.]

Burma.—No statistics are available regarding the extent of **pán** Burma.

Yield.

Soil.

Cultivation.

Piper betle.
THE PEPPER PLANT

Cultivation. The following account from the Sagaing district is given by Parlett (Rept. Settl. Operat. Sagaing, 1903, 130–1). Small plots planted with betel-vines are found in most Sagaing gardens. At Tada-u, where land is devoted solely to raising betel, a site is chosen usually under tamarind-trees, and occasionally a few plantains or other trees are grown for shade. The gardens are divided into blocks, some 30 feet square, and the plants set in rows about 2 feet apart in each direction, connected by small water-channels. Between every six or eight rows is a pathway (yin-quee) about 3 feet wide. The vines are always irrigated from wells and in the hot season are watered alternate days: in the early rains at intervals of two, and in the cold weather, of three days. While rains are continuous, irrigation ceases. A top-dressing of leaf-mould every year is said to improve the yield. Leaves may be gathered within a year after planting, but plucking is often deferred to the second year, and the third to fifth years are best. After the sixth year the vines are often cut down. In Sagaing old or weakly vines are cut down from year to year and replaced by new slips, and the same ground is occupied by the vineyard for twenty years or more. In Tada-u the garden is worked as long as it is remunerative; then the vines are cut down and the land fallow for two years. Each block is usually plucked once a month or once in two months, always before 9 a.m., as plucking in the heat of the day exhausts the vine. The average price of young plants is Rs.15 per 1,000; of the leaves, Rs. 25 per 100 viss. The average mortgage price works out to Rs. 226 per acre, and the annual rent to Rs. 100 per acre. The ground-rent per acre averages Rs.113 for the life of the vine—five years—or about Rs. 22 a year. It is estimated that 1,000 vines yield an average annual profit of Rs. 35, i.e. Rs. 350 per acre. [Cf. Upper Burma Gaz., 1900, ii., 344.]

TRADE IN PÁN-LEAF.—The habit of chewing this substance is very widespread, especially in the towns and cities, the supplies being often drawn from great distances. The Central Provinces send a large portion of their produce to Calcutta on the one side, and Bombay on the other. Neither in the official returns of trade by rail and river, nor by sea coastwise, is there any mention of pán-leaf, so that no information exists as to the extent or direction of the internal movements. There are no foreign transactions.

P. nigrum, Linn.; Hunter, As. Res., 1807, ix., 383–90; Bot. Mag., 1832, 3139; The Black and White Pepper; gǔlmırch, füfjigürd, kábúk, vellajung, murichung, spot, martz, dárú-garm, miri, kálámari, choca, miláy, miryála tige, menasu, lada, sa yo maǐ, etc. A climber, usually ducious, wild in the forests of Travancore and Malabar, and cultivated in the hot, damp localities of Southern India.

CULTIVATION.—Pepper was one of the most important articles of early Indo-European trade, and has been extensively cultivated on the western coast of South India from very early times. Vincent (Periplus, etc., 1800, app., 42) speaks of it as grown in Malabar. It has accordingly been specially cultivated there since at least the 5th century. But a much earlier knowledge is shown by the frequent mention of pepper by the Sanskrit medical writers. It was also known to the Greeks from the time of Theophrastes onwards. Though cultivated from remote times in Sumatra, the Straits, Siam, and the Malay Peninsula generally, Malabar
BLACK AND WHITE PEPPER

has always been considered to produce the best pepper. The provinces where pepper is most extensively grown to-day are Madras and Bombay. Hanausk (Micro. Tech. Prod. (Winton and Barber, transl.), 1907, 374) states that pepper is adulterated with ground olivestones.

Bengal.—Pepper is cultivated to a limited extent only in the northern parts of Jessore. Elsewhere in Bengal it grows wild during the rainy season. “The creeper is planted in the beginning of the rains, and as it grows in the shade the seeds of the stout dhunecha hemp plants are sown near it to afford shelter as they grow.” [Cf. Admin. Rept. Beng., 1901-2, 17.]

Assam.—Basu (Agri. Ledg., 1898, No. 7) gives a full account of the cultivation of black pepper in Assam. The crop, it would appear, is not cultivated appreciably in any particular part. A little, however, is found in Sylhet and on the southern slopes of the Khasia hills. It is usually grown to meet home requirements, and what is left over is sold. Like the betel-vine, it is commonly raised on betel-nut palms (*Areca Catechu*), while the mango, jack, and other garden trees are occasionally utilised. It is propagated either from suckers, which spring from underground roots, or from shoots from the stem. When shoots are used, they are bent down into the ground to strike root before they are severed from the mother-plant. The young plants are generally uprooted at the beginning of the rains, and planted at the foot of the trees on which they are to grow—as a rule one plant only is placed alongside of each tree, and at first it has to be carefully tied to its support. Like the betel-vine, it requires liberal manure; cow-dung and household refuse are used and applied at the end of the rains and at intervals through the cold weather. This is simply heaped round the base of the tree on which the vine climbs; and to keep the moisture in the manure-heap, pieces of the leaf-sheaths of the plantain-tree are laid over the top and renewed from time to time. The plantation must be hoed and cleaned once a year at the close of the monsoon rains, and in May the manure-heaps are levelled down and spread over the ground. The vine begins to bear in from three to five years after planting, and continues for at least twenty years. It flowers in May and the berries are plucked in December, when just beginning to ripen.

If intended for the cultivator’s use, the berries are boiled in water for a few minutes to soften the husk, which is then removed by rubbing over a bamboo basket. If intended for the market, they are simply dried in the sun after boiling and allowed to retain the husk, which assumes a black colour. The highest output that can be obtained from a single vine is said to be about 3 seers of dry cured pepper, and the average yield about 1 seer for each vine in a plantation. The retail price for Assam black pepper varies from 10 annas to a rupee per seer, and the wholesale price from Rs. 17 to Rs. 20 per maund. [Cf. Basu, Cult. Black Pepper Assam, in Agri. Dept. Assam Bull., 1898, No. 4.]

Bombay.—The area under the crop in 1904-5 amounted to 6,736 acres, and in 1905-6 to 7,483 acres, practically the whole of which was in Kanara. The following information is mainly abstracted from Mollison (Agri. Ledg., 1900, No. 3; 1901, No. 3). The plant is propagated by layerings or from cuttings. When the betel-palms are seven or eight years old, pepper is planted at the bottom of the stems. A long, healthy shoot from an established plant is layered in the leaf-mould surrounding the palm on
THE PEPPER PLANT

which it is intended to climb. When it has taken root it is severed from
the parent plant and trained on its living support. Two or three shoots
are sometimes layered to one palm. The best months for propagating
are June and July. The main vine should divide freely into subordinate
branches so that a number of shoots can be trained to ascend. They are
secured to the stem by bands stripped from the sheaths of fallen leaves
of the betel-palm. Heavy applications of good manure are given annually
for three years after planting. Subsequently the pepper participates in
the general cultivation given to the betel, and an application of manure
is made to both crops every second year. The manure is heaped over
the bared roots of the betel-trees and pepper-plants in a circle round the stem.
The best manure is made from green leaves and twigs plucked in the
monsoon, used as litter in cattle-byres, and thence removed to a manure
pit every day or second day, together with the dung and urine of the
cattle. This manure is sufficiently decayed by the following March, and is
applied in that month or in April. A plantation is in bearing three or
four years after it is started, and if the old vines as they get worn out are
at once replaced by new layers, the plantation will keep in vigorous growth
for a long period. Flowers appear in July and August and the berries
are ripe in March. The vines, in full bearing, give in a good season
about 1,000 clusters, which should yield about 7 seers of dried pepper
(1 Bombay seer = 7 lb.).

Ordinarily the bunches are plucked when the berries are green
or changing colour. The berries are then sorted out, the ripe ones
separated, soaked in water for seven or eight days, or heaped till the pulp
ferments. They are then rubbed or trampled underfoot till the pulp is
rubbed off the "stone" which furnishes the white pepper of commerce.
But that article is prepared, to a small extent only, in Kanara. The chief
product is black pepper, which is got from unsorted berries. These are
heaped for about four days till such as are green get soft and change colour,
and the pulp of all is more or less squashed. They are then spread out
and dried. The skin and part of the pulp adhere as a dark, wrinkled
covering to the stones, and the pepper is black in appearance. White
pepper is worth Rs. 10 to 11 per maund, and black Rs. 7 to 8 per maund.

Madras and Mysore.—In certain respects it might almost be said that
we know very little more regarding the pepper industry of South India
than was understood in the first and second decades of the 16th century.
Varthéma (Travels, 1510 (ed. Hakl. Soc.), 1863, 157) will be found to give
a vivid picture of the plantations in and around Calicut:—"It is like a
vine climbing on trees: from each of the branches are produced five to
eight clusters of berries, a little longer than a man’s finger; they are like
raisins but more regularly arranged, and are as green as unripe grapes;
they gather them in October and November, and lay them in the sun on
mats, when they turn black as they are seen among us, without doing
anything else to them. And you must know that these people neither
prune nor hoe this tree which produces the pepper.” So also Barbosa,
in the beginning of the 16th century (Coasts E. Africa and Malabar (ed.
Hakl. Soc.), 1866, 219), gives a detailed account of the plant, and of the
trade in pepper from Calicut shortly after the arrival of the Portuguese
in India. The spice had to pay an export duty to the King of Calicut
and was shipped vid Cambay to Persia, Aden, Mecca, Cairo and Alexandria,
MALABAR PEPPER

thence to Portugal. Mandelslo (Travels, in Olearius, Hist. Muscovy, etc., 1662, 93, 111) gives certain particulars of the pepper cultivation of the "Cuncaem or Decam." He states that the traffic goes vid Surat.

According to modern writers the method of cultivation presently pursued is very simple. Cuttings are put down during the rains in June-July, in rich soil, not subject to excessive moisture, and liberally manured, not with cow-dung as in Bengal and Assam, but with leaf-mould. The trees selected as supports are mostly those which have a rough or prickly bark, such as the jack-tree, the murukku (madar, p. 523), etc. The vines may grow to 20 or 30 feet, or even higher—they are never pruned. All suckers are removed and the ground around kept clear of weeds. In three years the vine begins to bear. From the third to the seventh year the plant improves. After that it remains in good condition for three or four years, and then deteriorates for about the same period, when it is cut down and new shoots planted. The fruit is gathered as soon as the berries at the base of the spike begin to change colour. [Cf. Kew Bull., 1895, 178-80.]

In April of 1905 a Government farm, under the superintendence of Mr. C. A. Barber, Government Botanist (for the scientific study of the cultivation of pepper), was started at Talliparamba near Tellicherry, which may be spoken of as the centre of the South Indian (indeed of the Indian) pepper production. A very large amount of work has already been accomplished, of which Barber has published as yet only a brief note (Agri. Journ. Ind., i, pt. ii, 163-4). "Any one," he observes, "at all conversant with a plantation of black pepper, will have noted the great variation in the bearing power of different vines." This is a consequence of some plants bearing wholly male (staminate) flowers, others only female (pistillate) flowers, while still a third possess both stamens and pistils, but the former so sparsely as to lessen fertility. "In choosing vines for propagation, it will, therefore, be necessary to first determine whether the plant is fully provided with stamens." "It may be taken as a rule that any vine, if fully provided with stamens, will give a good crop, while any vine not so provided will be capricious in its behaviour, being dependent on its neighbours for the swelling of its berries."

Barber (Varieties Cult. Pepper, in Dept. Agri. Mad. Bull., 1906, iii, No. 56, 126-32, tt. 1-3) says that there are "three main types of good vines freely provided with stamens, the Balamcotta, Kallivali and Cheria-kodi. Each of these has variations in all directions."

Balamcotta.—This is all round the best pepper, is widely distributed, and apparently the main Tellicherry variety. The leaves are the largest of all. Its general colour is light green, and when full grown is twice as long as broad, oval to ovate, broadest at the middle and one side frequently broader than the other. Flowering branches, drooping. Spikes long, usually up to six inches, and the individual flowers distant. It is a strong-growing plant, flushing all over at the same time, and a heavy bearer.

Kallivali.—This has the reputation of being a heavy bearer, but the flushing is irregular. The leaves are fairly constant, but vary in width according to age. In general colour they are dark green, and the veins much more deeply impressed, almost corrugated, than in balamcotta. Flowering branches stand out stiffly and joints close together. Spikes shorter than in balamcotta and frequently seen branched; sometimes, in fact, the spikes appear tassel-like. The flowers are also a good deal closer
THE PEPPER PLANT

together, and though abundantly supplied with stamens, yet the plant may be spoken of as less fixed as a type.

Cheriakodi.—This name is given to a well-marked variety, small in all its parts—a dwarf form, under 15 feet in height. The leaves are not large and the spikes are small and crowded with small berries. The leaves are arranged uniformly over one another like the tiles of a house, almost vertically downwards, and thus hiding a large number of spikes.

Under each of these main forms there are several recognisable races as well as two well-marked jungle peppers that have found their way into estates. These are characterised by dark-green leaves, very large berries, and an immense growth on tall forest-trees, and usually hairy spikes.

Diseases and Pests.—Until quite recently very little had been published on these subjects. Butler (Agri. Journ. Ind., i., pt. i., 30–6) gives an instructive account of the Pepper Wilt. He suspects this disease first appeared in the Wynaad district of Malabar about 1900. By 1904 he found alarm general. The disease had produced a vast amount of damage in three or four years. "Its possibilities in this direction," says Butler, "are evident from the fact that over four thousand acres of pepper cultivation are in the hands of Europeans in South Wynaad, and perhaps five times as many are grown by Natives. A far greater amount is grown in the coast districts of Malabar, but it is impossible to estimate how much this may be." He then describes the appearance of the diseased plants. The leaves first droop, the production of leaf is discontinued, the stems of the vine separate from the support or standard owing to the decay of the clinging roots, the leaves turn yellow and fall off, and lastly the whole vine withers. A similar disease appeared in Cochin-China and Java about the same time as in India, and was attributed by Prof. W. Zimmermann and Dr. van Breda de Haan to the parasitic worm Heteroderma radicicola—the common root eelworm. Doubt was thrown by Barber and others on the possibility of the eelworm being the sole cause, and Butler, in the paper above indicated, has shown that the primary cause is a Nectria fungus closely allied to, if not identical with that discussed under arhar, Cajanus indicus (see p. 198). Butler concludes that a critical study of the varieties and races of the pepper-vine with a view to discover or produce a wilt-proof form, is the only satisfactory method of dealing with the disease.

TRADE.—The trade in pepper is perhaps the oldest, and during the Middle Ages was the most important branch of commerce between Europe and the East. In the early days, the Malabar Coast had a practical monopoly of the trade. Gradually, however, more and more pepper was cultivated in, and exported from, the Malay Archipelago, and localities farther east, till, as early as the beginning of the 19th century, the Indian production had shrunk into relative insignificance. The following gives a brief summary of the conditions of the trade.

900
TRADE IN PEPPER

Internal.—The total registered transactions carried by rail and river during 1904-5 were 14,745,544 lb.; 1905-6, 15,203,216 lb.; 1906-7, 14,531,776 lb. Calcutta port and the province of Bengal are usually the chief importing centres; being followed in this respect by the Panjáb. In the last-mentioned year, Calcutta town took 2,686,768 lb.; Bengal province, 2,217,376 lb.; and the Panjáb, 1,500,128 lb. Of the exporting centres, Calcutta again heads the list, having given 4,752,384 lb.; Madras Presidency, 3,654,448 lb.; Bombay port, 2,727,088 lb.; Madras ports, 1,454,096 lb.; and Karachi, 1,272,320 lb. The Calcutta and Bombay supplies are derived by rail and river as well as by sea coastwise. The chief exporting centres are Madras and Bombay, and naturally so, since they are the provinces of production. The Madras supply is, however, drained very largely from Travancore, and is consigned direct to Calcutta or Bombay; so also the production of the Madras Presidency (so far as returns of coasting trade show) is consigned almost entirely to Calcutta and Bombay. During the five years ending 1905-6 the imports averaged 16 million lb., of which Calcutta and Bombay ports each took 6½ million lb.

External.—The total Exports of Indian pepper during the period 1900-7 were as follows:—1900-1, 8,280,372 lb., valued at Rs. 28,91,835; 1901-2, 13,589,172 lb., valued at Rs. 48,01,554; 1902-3, 9,310,166 lb., valued at Rs. 32,76,476; 1903-4, 14,348,983 lb., valued at Rs. 50,71,541; 1904-5, 10,113,416 lb., valued at Rs. 35,46,209; 1905-6, 17,889,994 lb., valued at Rs. 61,07,357; and in 1906-7, 9,499,089 lb., valued at Rs. 33,01,237. The chief exporting provinces are Madras and Bombay, which in 1906-7 exported respectively 7,722,866 lb. and 1,682,468 lb. The countries to which the exports chiefly go are Italy, which in 1906-7 took 2,263,912 lb.; Germany, 1,813,756 lb.; United States, 1,034,040 lb.; Great Britain, 757,311 lb.; Turkey in Asia, 719,501 lb.; Aden, 363,899 lb.; France, 338,758 lb.; Belgium, 112,000 lb., etc. The re-exports of foreign merchandise are unimportant—10,227 lb. in 1906-7. The Imports of pepper into India come almost entirely from the Straits Settlements, which, in 1906-7, imported 990,564 lb. out of a total of 1,061,826 lb. The other countries from which India imports pepper are chiefly Ceylon and East Africa.

PISTACIA, Linn. : Fl. Br. Ind., ii., 13 ; Gamble, Man. Ind. Timbs., 1902, 210-1 ; Duthie, Fl. Upper Gang. Plain, 1903, i., pt. 1, 187 ; Brandis, Ind. Trees, 1906, 199-200 ; ANACARDIACEÆ. A genus of trees containing some six species, of which two only are natives of India. Several others occur in Afghanistan and Baluchistan and yield valuable articles of trade sent largely to India, besides some of the species being there occasionally cultivated.

**P. Khiunjuk, Stocks, in Hook., Kew Journ. Bot., iv., 143 ; Duthie, l.c. 187 ; P. integerrima, Stewart, Gamble, l.c. 210. The North-West Himalayan form (integerrima) kikra, drek, gurgi, tânhrî, etc.; galls = kâkrasingi, dushlapuchattu; the Baluchistan form (Khiunjuk) ushâgî or bûsîgî, etc. A deciduous tree of the Sullivan and Salt Ranges; outer Western Himalaya, up to 6,500 feet, extending east to Kumaon; chiefly on dry slopes and in river valleys. The hard, rugose, hollow galls, which form in October, are used to a small extent for dyeing and tanning, and have long held a place in the Hindu Materia Medica. They contain 75 per cent. tannic acid and give a blue-black colour with ferric chloride. The leaves are lopped for fodder for buffaloes and camels. The wood is used for furniture, carvings and ornamental work. According to Gamble, it is generally sold in the hill bazaars, particularly at Simla, in the form of thick, short planks. [Cf. Pharmacog. Ind., i., 374-7 ; The Bower Manuscript (Hoernle,
THE PISTACHIO NUT

P. Lentiscus, Linn. The Mastic Tree or Mastichce; resin = rúmi mastikí, kúndur-rúmi, arakh, etc. An evergreen shrub of the Mediterranean region, which yields the mastic of Chios, imported into India.

The resin (mastic) occurs in small, irregular yellowish tears, brittle and of a vitreous fracture, but soft and ductile when chewed. It has been known in medicine and the arts from the earliest periods. It is used as a masticatory by people of high rank in India to preserve the teeth and sweeten the breath, and also in the preparation of a perfume. [Cf. Milburn, Or. Comm., 1813, i., 139; Mooden Sheriff, Mat. Med. Mad., 1891, 114–6; Holmes, Cat. Hanb. Herb. Pharmacæut. Soc. Mus. Rept., 1892, 29; Kew Bull., 1897, 421–2; 1898, 190–1; 1903, 19–22; Ind. For., 1898, xxiv., 480–1; Tschirch, l.c. 468–74.]

P. mutica, Pich. & Mey.; Lace and Hemsley, in Ind. For., 1891, xvii., 449–50; Prain, Rec. Bot. Surv. Ind., i., 130; P. Terebinthus, Linn., var. mutica, Aitch. & Hemsley, Trans. Linn. Soc., iii., ser. 2, 47. The gwañ, khánják; resin = mastikí, kunzad, wanjad, shilm, etc. In the Dictionary this species is treated as the Asian representative of P. Terebinthus, the plant which yields the Chian or Cyprus turpentine, but it is now regarded as a distinct species. It occurs commonly in Baluchistan. The resin resembles that of P. Lentiscus and is used in the East as a substitute for that substance. It bears the same vernacular names, and is considered almost identical with that of P. vera. The leaves are very generally affected by a horse-shoe shaped gall, which extends round the margin and gets the name of gosh-eúra (ear-lobes) from its peculiar shape. According to Aitchison the Natives regard the galls as of no use, but value highly the leaves for dyeing and tanning purposes.

P. Terebinth-Shu, Linn. The Terebinth Tree. A tree or shrub, common on the islands and shores of the Mediterranean. It yields a resin (Chian Turpentine), the terebinth of the ancients, produced chiefly in the island of Scio, where it is collected from incisions made in the stem and branches. [Cf. Holmes, l.c. 29; Tschirch, l.c. i. 482–3; Kew Bull., 1903, 19–20; Kew Mus. Guide, 1907, No. 1, 54.]

P. vera, Linn. The Pistachio Nut; tree and nut = pista; galls = bód-ghanjí; gum-resin = kunjad, wanjad, kandur, shilm, etc. A small tree, form at 3,000 feet and upwards, in Syria, Damascæ, Mesopotamia, Terek, Orfa, the Badghis and Khorasan; extensively cultivated in Syria, Palestine and Persia. It yields a resin similar to mastic. The leaves are frequently affected by galls, irregularly spheric in shape, borne on a short stalk and usually growing from the surface of the leaf. These, with the pericarp of the fruit and the unfertilised ovaries, are used locally for dyeing silk, and are exported to Persia, Turkestan and India. The fruit, known as the pistachio nut, is oval-shaped and varies in size with the amount of cultivation the tree has received. They are exported in large quantities from Afghanistan to India, Persia and Turkestan. In India the nut is a common article of food among the well-to-do classes, being fried with a little butter and salt and brought to the table hot. The nut is also a frequent ingredient of confectionery and ice-cream. It contains about 60 per cent. of a fatty oil which is occasionally extracted for use in medicine. [Cf. Aitchison, Notes on Prod. of W. Afghanistan and N.E. Persia, 1890, 156–9; Pharmæœuc. Ind., i., 373–81; Holmes, l.c. 30; Agri. Ledg., 1902, No. 1, 21; Firminger, Man. Gard. Ind. (ed. Cameron), 1904, 262.]

PISUM, Linn.; Fl. Br. Ind., ii., 181; Prain, Beng. Plants, i., 309–9; Duthie, Fl. Upper Gang. Plain, 1903, i., 261–2; Cooke, Fl. Pres. Bomb., 1903, i., 409; Léguminœsæ. This genus comprises the grey or field pea and the common garden pea, both largely cultivated throughout India.

P. arvense, Linn.; Duthie and Fuller, Field and Garden Crops, ii., 17–8. t. xxxii. B. The Grey or Field Pea, mattar, mattar rewarí, kulon, kekí, karání, kúlůvan, karání, gádil, etc. According to De Candolle, this pea is wild in Italy. It is extensively cultivated in many parts of India, during the cold weather, in the same way as P. sativum, under which details of the method will be given. It produces a small, round, compressed, greenish and marbled seed, generally eaten as dál by the natives. It must be carefully distinguished from kheskí dál (Lathyrus sativus, p. 703), which it somewhat resembles. The straw is a valued FODDER.
THE GARDEN PEA

P. sativum, Linn.; Duthie and Fuller, Lc. ii., 17–8, t. xxxii. A. The Garden Pea, bara-mattar, bahatna, kuda, shdnna, ahandil, kalon, ahoa, sen, khandil, khr-khna, pattanie, gundusani-ghelu, pai, etc. A more robust plant than the former, compared with which it is more valuable and prolific though a less hardy crop. It is not known anywhere as a wild plant, and is regarded by some as merely a variety or sub-species of P. arvense.

The field and garden peas are generally considered together by writers on Indian crops, and the methods of cultivation explained as applying equally to both. In all parts of the country the pea is a rabi crop. According to Woodrow (Gard. in Ind., 1903, 263–6), the varieties of the white form may be sown at any time between May and January, if the rainfall is not over 40 inches. A rich, deeply cultivated soil that has been heavily manured for a previous crop and contains at least 5 per cent. lime is necessary for a good outturn. The area in Bombay for 1905–6 was 15,636 acres. As a field crop peas are sown in moist land in October or November, and receive, as a rule, no manure or irrigation. The crop is reaped at the end of February or March. Leaves and stalks are much valued as fodder, under the name of kalim. In Cuttack, Bengal, Banerjei (Agri. Cuttack, 1893, 83) states that peas grow well on loose sandy soil after maize. The maize crop is removed about the middle of August, and the land ploughed twice or thrice between 15th August and 15th September. By the 15th September the land is manured with cow-dung at the rate of twenty-five cartloads to an acre, and then laid out in ridges and furrows at intervals of one foot. The seed is sown by hand, at the bottom of the furrows, then covered over, and the field watered every evening till the plants appear, six or eight days afterwards. Watering is continued for two months more, at intervals of about six days. About a fortnight after sowing, bamboo twigs are fixed into the ground for the plants to climb on. Weeding is necessary once a month. Flowering commences about the 15th October, and the pods begin to form in the middle of November. By the middle of February the pods are dry and ready for harvesting. In the United Provinces, Duthie and Fuller write that both species of pea are largely grown in certain districts. They are not returned as a separate crop, but together with masur (Lens esculenta, p. 708) occupied in 1904–5 an area of 2,055,879 acres. They are sown from the end of September to the middle of October, and reaped in March. In the western and central districts peas are most commonly grown as a second crop after indigo or rice. As a rule they are sown on very heavy soil, which receives little if any preparation and is rarely manured. The seed is sown broadcast at the rate of 1½ to 1 maund per acre, and ploughed in. In the Oudh and Benaree Division the crop is watered once; in other localities it is not always irrigated. The cost of production per acre is estimated at Rs. 12–13a. for the coarse kind with no irrigation, Rs. 17–13a. for the fine kind, assuming that two waterings are given and the land is of higher rent. For the year ending 1902 the average outturn of peas for the province was calculated at 1,150 lb. per acre irrigated, and 600 lb. per acre unirrigated. Cultivation in the Central Provinces closely resembles that in the United Provinces, but the crop is never irrigated. The area in 1904–5 was 247,779 acres; in Berar, 10,257 acres. In the Panjab, peas are cultivated as a field crop almost entirely for fodder. Seed is sown on sandib lands in October and November after a couple of ploughings. It may be sown broadcast on the same sort of soil, if too moist to plough. The seed-rate is 20 to 30 seers per acre. The crop is pulled, not reaped, in April, and the yield is 3 to 8 maunds seed per acre.

Uses.—The green pods are collected in many localities while the plant is growing, and are either cooked and eaten like French beans, or the young seed is extracted and eaten in the same way as by Europeans. The roasted green pods are known in the Panjab under the name of ñôdhÍ and ñômtàñ. The ripe seed is also used whole, split as dál, or ground and made into bread. In Burma peas are employed in the preparation of vinegar (p. 1111). The green plant and also the straw are extensively used and valued as fodder, more especially in the Panjab and Bombay where they are regarded as equal to hay. [Ofl. de Candolle, Orig. Cult. Plants, 1882, 327–8; Bentham, Rev. of Targioni-Tozzetti, in Journ. Hort. Soc., 1855, ix., 138; Asa Gray, Scient. Papers, 1889, i., 347; Leather, in Agri. Legd., 1901, No. 10, 372–3; 1903, No. 7, 152, 155, 184–5; Imp. Inst. Tech. Repts., 1903, 235; Firminger, Man. Gard. Ind. (ed. Cameron), 1904, 172–5; Joret, Les Pl. dans L'Antiq., etc., 1904, ii., 249; Lock, Plant Breeding, Peas, Cîrc, and Agri. Journ. Roy. Bot. Gard. Ceylon, Jan. 1905, ii., pt. 3, No. 27; Roy, Crops of Beng., 1906, 64.]
in the betel-leaf houses and sold apparently by the owners to the perfume manufacturers. This may be, at least partly, the patchouli of Bombay. Gildemeister and Hoffmann, in all events, speak of the drug being shipped from both Calcutta and Bombay, but of poor quality. From the differences in chemical composition they suspect that the Calcutta herb is the Assam plant (M. cymosa). The Bombay plant, as suggested, may be derived from the pan-house cultivation, but in that case the supply must be very limited indeed. On the Girnar hills, Kathiawar, I was shown a plant (? Stroblanthus lanceolatus, Britt.) the large sticky and sweetly scented buds of which were being collected to be sent to Bombay as a perfume (? patchouli substitute).

The following is the method of patchouli cultivation pursued in the Straits. The soil most suitable is a stiff clay with a small percentage of silica. The land is trenched, the plants deposited in rows, 2 feet apart (during the wet season), and carefully shaded till the first crop is obtained. Two other crops are secured at intervals of six months, after which the land is dug up and the patches left uncultivated and manured. The crop is gathered by cutting down all but one stalk on each root, and placed to dry in the sun during the day and under cover at night. The dried stems are then made up into bales and sold. Adulteration with the leaves of ruku (Ocimum basilicum, Linn., var. pilosum) or with those of perpulul (Urena lobata) is said to be common. The oil is prepared by passing steam through the leaves in a large copper cylinder and condensing the distillate. One pikul (133½ lb.) of the raw material yields from 24 to 30 oz. of the oil, and if free from the heavier stalks, about double that amount. The oil is very largely used in European perfumery. [Cf. Sawyer, Odorography, 1892, 293–308; Kew Bull., 1897, 65; Gildemeister and Hoffmann, Volatile Oils, 1900, 656–8; Thorpe, Dict. Appl. Chem., 1900, iii., 123; Schimmel & Co., Semi-Ann. Rept., Oct.–Nov. 1905, 52; April–May 1906, 49–50.]

PRUNUS, Linn.; Fl. Br. Ind., ii., 312–7; Gamble, Man. Ind., Timb., 1902, 311–5; Rosaceae. A genus which contains some 21 species within the Indian limits, including the almond, peach, apricot, plum and cherry.

P. Amygdalus, Stokes. The Almond, baddām, bildī-baddām, bāđam-kottai, bāđam-sittutu, etc. A moderate-sized tree, indigenous in Western Asia and occasionally within the Indian limits, including the almond, peach, apricot, plum and cherry.

PRUNUS, Linn.; Fl. Br. Ind., ii., 312–7; Gamble, Man. Ind., Timb., 1902, 311–5; Rosaceae. A genus which contains some 21 species within the Indian limits, including the almond, peach, apricot, plum and cherry.

P. Amygdalus, Stokes. The Almond, baddām, bildī-baddām, bāđam-kottai, bāđam-sittutu, etc. A moderate-sized tree, indigenous in Western Asia and occasionally within the Indian limits, including the almond, peach, apricot, plum and cherry.

P. Armeniaca, Linn. The Apricot, Mishmus, or "Moon of the Faithful," chūari, zardalu, khūbāni, pating, kusum-āru, galdām, āser, cherkūsh, ḥārī, ehram, mandata, nakhāt, etc. A moderate-sized deciduous tree, cultivated in the Western Himalayas, hardly ever ripening its fruit on the eastern section. Roxburgh and De Candolle, however, consider China its original home. Stein (Ancient Khotan, 1907, 131, 337, etc.) says that the labourers employed by him, in his excavations, identified the wood found in the houses, as also in the remains of orchards, as being the ūrāk (the apricot)—a plant with which they were fully conversant. This would fix its cultivation in ancient Khotan as at least prior to D.E.P., vi., pt. 1., 342–61.

Almond.

Gum.

Essential Oil.

Medicinal.

Food.
to the closing decades of the 8th century—the date at which the last of the series of cities was abandoned and enveloped in sand.

The apricot yields a Gum similar to tragacanth, known commercially as Cherry-gum. A clear Oil is extracted from the seed and used in burning, cooking, and for the hair. As already explained, from the cake is obtained the bitter-almond oil of commerce. The seeds are brought from Asia Minor into Europe as "peach kernels." The fruit ripens from May to September, according to elevation. In the North-West Himalaya dried apricot forms a considerable portion of the Food of the people, but the fruit is also eaten fresh. By Europeans it is largely employed in this state for making jam, and when dried for cooking. The dried fruit is also an important article of trade, being brought to the plains of India from Afghanistan and the neighbouring hills. The emporium of this trade is Leh, where, according to a writer in Capital (Oct. 19, 1905), about 300 maunds are imported annually from Baltistan or Little Tibet. The same writer states that in the Afghanistan khubinia the trade is in the hands of Kabulis, who retail the moist stoneless fruits in the Calcutta market at 3 annas to 1 rupee per seer, and the dried fruit at about Rs. 1–8 per seer. Gamble states that the wood is handsome and the fruit used in the Panjab for various purposes, while in Lahoul and Upper Kunawar it is the chief firewood. [Cf. Hoffmeister, Travels in Ind., 1848, 392–3, 464; Bentham, l.c. 163; Smythies, in Agri. Ledg., 1894, No. 15, 5–6, 45–6; Ind. For., 1898, xxii, 70–2; Ind. Gard., May 18, 1899, 205; Gildemeister and Hoffmann, l.c. 457; Firminger, l.c. 245; Sly, Fruit in the N.W. Front. Prov., in Agri. Journ. Ind., i, pt. iii, 268–9.]

Dwarf Cherry.

The Soma or Dwarf Cherry, alu-bulul, gilas, olchi, jera-sayna, etc. According to De Candolle, this is a native of the region stretching from the Caspian Sea to Western Anatolia. In India it is cultivated in the Panjab Himalaya and North-West provinces, up to 8,000 feet. It yields a Gum similar to tragacanth. In Europe the kernel is used for flavouring several liqueurs and the fruit for making preserves, while the wood is valued by cabinet, musical instrument and pipe makers. [Cf. Bentham, l.c. 160; Smythies, in Agri. Ledg., l.c. 42, 46–54; Firminger, l.c. 246–7.]

F. communis, Linn. The Plum, aluca: fruit = alu, khârâ, alu-bulul, alegu, aleha, bhojiga badâm, olchi, er, gardalu, luni, alpoiguda-pasham, etc. A moderate-sized tree, cultivated (or indigenous) in the Western Himalaya from Garhwal to Kashmir, 5,000 to 7,000 feet. It yields a yellow Gum of little value, which somewhat resembles gum-arabic. An Oil prepared from the kernels, the "Plum-oil" of Europe, is used for illuminating purposes. The ripe fruit is eaten by all classes and is much esteemed. In a dried condition, a variety, the Bokhara plum, is imported in quantities from Afghanistan, and is much used as an article of diet. It also forms an ingredient of a common chutni. The true plum (var. domestica) is cultivated to a small extent in the plains of Northern India, but the fruit is inferior to that produced on the hills. Gamble states that the wood is smooth to work and is used in Kashmir for the framework of the so-called papier-mâché boxes. [Cf. Bentham, l.c. 161; Smythies, in Agri. Ledg., l.c. 42, 46; Woodrow, Gard. in Ind., 1903, 306; Firminger, l.c. 245–6.]

P. Padus, Linn. The Bird Cherry, samana, iksh-ar-u, hlo so, kot-khing, bombaksings, zamb-chule, pârus, kôlakôt, gidar-dâkh, bart, züm, etc. A moderate-sized deciduous tree of the Himalaya from the Indus and Kuram Valley to Sikkim, at 6,000 to 10,000 feet (Gamble). It yields an inferior Gum and a poisonous OIl, which may be used MEDICINALLY. The fruit is eaten by the Natives and the leaves form an excellent cattle FODDER. The wood is occasionally used for making railling, agricultural implements and spoons.

P. persica, Stokes. The Peach and Nectarine, aru, takpo, rek, sînnâ, chinnâni, bêna bêni, mandata, shafita, ghawreahit, etc. A small tree, native of China, cultivated all over India, especially on the eastern side, and often found running wild. The tree flowers, according to elevation, from January to May, and the fruit ripens between May and October. For the method of propagation the reader should consult Smythies and Firminger. Like other species of Prunus, it yields small quantities of unimportant Gum. From the kernels an Oil is obtained, used by the Natives of the North-West Himalaya for cookery, illuminating purposes, and as a dressing for the hair. [Cf. García de Orta, 1563, Coll., xlvi; Bentham, l.c. 163; Smythies, in Agri. Ledg., l.c. 17–8, 42, 46; Woodrow, Gard. in Ind., 1903, 303–6; Firminger, l.c. 242–4.]
THE GUAVA FRUIT

P. Puddum, Roxb. Wild Himalayan Cherry, paddam, kongki, póya, chamari, amaligích, padma-kasta, etc. A moderate-sized (in Sikkim a large) deciduous tree, wild in the Himalaya from the Indus to Assam, between 2,500 and 7,000 feet; Khasia hills; hills of Upper Burma; often cultivated. It yields an abundant Gum, which is not made use of, and the kernels contain an Oil similar to that of bitter almonds. The fruit is little eaten by Natives, but is sold in quantities to Europeans for the manufacture of hill cherry brandy. According to Kanjilal, the stones are made into rosaries and necklaces by fakirs. The wood is used in the Punjab Himalaya for walking-sticks (made of saplings, or root-suckers), and in Darjeeling is worked up into furniture. [Cf. The Bower Manuscript (Hoernle, transl.), 1893-7, 102, 104, etc.]

PSIDIUM GUYAVA, Linn.; Fl. Br. Ind., ii., 468; Talbot, List Trees, etc., 1902, 166; Gamble, Man. Ind. Timbs., 1902, 355; Prain, Beng. Plants, 1903, i., 487; Cooke, Fl. Pres. Bomb., 1903, i., 498; Myrtacea.e. The Guava, amrut, peyara, madhuriam, amuk, gaya, anjir, zard, perala, jámbá, guava, segapu, cova, sebe, pela, málaká beng, etc. A small evergreen tree, introduced from America and now cultivated and found semi-wild all over India.

It is grown solely for its fruit. According to Firminger, the best qualities are produced in Allahabad and its neighbourhood. Young plants are easily raised from seed during the rains, but propagation by layers is usually resorted to, and rooted suckers may also be taken from the base of the main stem. It requires no particular cultivation and thrives in any soil. The tree blossoms during the hot season and continues to do so and to bear fruit to the end of the cold season. The finest fruit, however, is said to be obtained when the general bearing season is over. There are two varieties, one known as the Pear Guava, the other as the Apple Guava, but they are so alike that they can scarcely be distinguished till cut open. The fruit is eaten by all classes, but by Europeans is generally preferred stewed or in the form of jelly or of the well-known "Guava cheese." According to Gamble, the wood is made into spear-handles and special instruments. In Vellore, North Arcot, it is said to be used for lac-tumery. In Assam, the leaves and bark are employed in DYEING, and in Bengal and the United Provinces are occasionally employed in TANNING. [Cf. Merian, Insect. Suri Nam, 1705, tt. 19, 57; Pharmacogn. Ind., 1891, 30-2; Duncan, Monog. Dyes and Dyeing, Assam, 1896, 41; Agric. Led., 1901, No. 9, 346; 1902, No. 1, 43; Firminger, Man. Gard. Ind., 1904, 235-6.]

P. dalbergioides, Roxb.; P. indicus, Fl. Br. Ind., ii., 238 (in part). Andaman Redwood or padouk, chálanga-dá of the Andamans. A large tree sparingly cultivated in Bengal and Southern India. It has frequently been confused with the next species, a Burman plant also known by the name of padouk.

In the Andaman Islands this is the principal timber tree and its wood has of recent years obtained a good place in the markets of Europe and America as a handsome wood for furniture, parquet floors, railway carriages, door-frames and balustrades, etc. In India it has long been used in gun-carriage wood, and stores are kept in the arsenals of Calcutta, Madras and the Kidderpore Dockyards" (Gamble). Recently it has been successfully employed in England in panelling, and in America in the building of Pullman cars. [Cf. For. Admin. Repts. Andaman Islands.; Todd, Rept. Explor. N. Andamans, 1905; Anderson, Rept. Explor. N. Andamans, 1905; Gilbert Rogers, Rept. Dept. Conservator of For., Andaman Islands.; Ind. For., 1905, xxxi, 511-7; also Todd, 1906, xxxii., 351-7.]

P. indicus, Willd.; Fl. Br. Ind., ii., 238 (in part). A deciduous tree believed to be indigenous in the Malay Peninsula and Archipelago; cultivated in Moul-
PTEROCARPUS
MARSUPIUM

INDIAN KINO

mein, Amherst and Tavoy. This is the species hitherto supposed to be the source or a source of the wood known generally as padouk of Burma, and with which the previous species, P. dalbergioides, was, till Prain studied these trees, commonly confused. The circumstances that led up to this are fully discussed by him (Ind. For., l.c. 5). It seems certain that the name padouk is not applied to P. indicus, and possibly that P. indicus is not an indigenous species anywhere in Burma. [Cf. Greschoff, in Nutt. Ind. Pl., in Kolon. Mus., Amsterdam, Extra Bull., 1896, 107.]

Burma
Padouk.

P. macrocarpus, kurz. Burma padouk or simply padouk. A deciduous tree of the eng and upper mixed forests of Burma; Shan, Chin and Karen hills of Upper Burma, Pegu and Martaban. According to Prain, this species alone is entitled to the name Burma padouk. Gamble states that the wood is harder and heavier than that of P. dalbergioides, but, though a fine handsome wood, is probably not used outside Burma.

P. Marsupium, Rottb.; Hooper, in Agri. Ledg., 1901, No. 11. The Indian Kino Tree, bija, bijasal, piaasal, hitin, murga, pesi, radat bera, dhorbela, bhubhi, hini, houna, dasan, vengai, pedegu, pedaggi, benga, karinthagara, etc.; the gum = hir-ā-dokhi, nāt-kā-dummul-ākhvain, kāmādmirūga-mirattam, vēnnap pasha, etc. A large deciduous tree of Central and South India and Ceylon, extending northwards as far as the hills of Bihar, Bindu and the Kumaon Terai.

This species yields the gum-kino of European Materia Medica. To E. M. Holmes is due the credit of having originated the modern interest taken in Indian kino. In a letter, September 23, 1895, he drew my attention to the high prices then ruling in Europe for the extract. He recommended that the Indian productions should be investigated, and an improved supply cautiously introduced. In consequence an inquiry was instituted all over India, and the information thus brought together was published by Hooper. The manufacture of kino from the juice of P. Marsupium is conducted in the district of North Malabar. The best season for collecting is the dry weather during February and March, when the trees are in blossom. The right to tap the trees is put up to auction. In other cases, the tapping is conducted by rangers under the supervision of the district forest officers. The following is the method of collecting adopted a few years ago by Mr. J. G. F. Marshall, the District Forest Officer. A longitudinal cut is made with an axe or knife (macha katti) through the bark of the tree down to the cambium, about 1 1/2 feet long, and side cuts are made to lead into this. A bamboo tube is then fixed at the bottom of the main incision to catch the juice. In about twenty-four hours the flow of gum ceases and the bamboo is taken down. When several of these bamboo tubes are nearly full, they are carried to headquarters and emptied into a large cauldron and boiled. During the boiling, the impurities which rise to the surface are skimmed off. When sufficiently concentrated it is exposed to the sun in shallow vessels till dry enough to crumble to pieces. It is then weighed and packed away in boxes. Another method, more recently adopted in North Malabar, is to dry the juice in shallow trays in the shade. The trays are arranged on tiers or shelves in a shelter constructed of bamboo, and the dust excluded by muslin-covered doors. The gum is poured into the trays in layers about one-eighth of an inch thick, and takes about seven or eight days to dry, producing a dark ruby kino of great purity. Marshall found the yield to be about 14 lb. of juice per tree, equivalent to 3 lb. of the dried gum, ready for medicinal purposes. The yield of dry kino from the liquid exudation depends on the consistency at the time of collection, but is usually 50 per cent. E. White has recently pointed out that the peculiar insolubility of Malabar kino in alcoholic and aqueous solutions is due to the action of an enzyme. From this Hooper infers that commercial kino is improved by boiling before evaporation to dryness (Rept. Labor. Ind. Mus., 1903-4, 31).

In North Malabar alone, it is stated that about 2,000 pounds of kino can be procured annually, at the price of 3 to 4 annas a pound, but there is some uncertainty as to the amount collected. The drug collected in Malabar finds an outlet in the ports of Calicut and Tellicherry. The Native State of Travancore exports its produce through Cochin and Alleppey, while the drug collected in South Kanara is despatched from Mangalore. Much of the kino is known as Cochin grain, probably because Cochin is the principal port of call. Gamble says "there is a considerable demand for kino gum
for export, much of it going to France." In 1897-8 the price for genuine "Cochin" grain was 10s. per lb.; in 1899 the price fell during the year from 10s. to 2s. per lb., and in 1900 it is said to have been sold at 1s. per lb. In a report by Dunstan, of September 1905, the market price in London is stated to be 4d. per lb. Recently the drug has been examined with a view to discover its value as a tanning matter, and a report (Kino as Tanning Mat., Imp. Inst. Rept., Sept. 15, 1905) was issued on the results obtained. Dunstan considers that kino would be quite suitable for use as a tanning material, on a commercial scale, provided it could be obtained at a sufficiently low cost to enable it to compete with other tanning materials. He regards a price of about 2d. per lb. as the limit. Experiment seems to prove that the kino prepared by the method of merely drying the juice in the sun is the best for use as a tan.

The bark is occasionally employed for dyeing. Sir Thomas Wardle found it to contain a brownish-red colouring matter, which produced reddish-fawn colours with tasso silk. In the territory of Goa it is also employed for its astrigent properties. The leaves make an excellent fodder, and are reported by Mollison to be specially valuable as a manure. After teak and blackwood, the kino wood is said to be the most important in South India, and to be in great demand for door and window frames, posts and beams, furniture, agricultural implements, cart and boat building, and has also been used for sleepers. It has a high reputation in the manufacture of double-headed drums, being regarded as specially sonorous. [Cf. Pharmacogn. Ind., i, 464-7; Schäfer-Strassburg, Drachenblut und Kino, Reprint from Proc. Germ. Pharm. Soc., 1901; West African Kino, in Der Tropenpflanzer., June 1902, vi, 305-8; Imp. Inst. Tech. Repts., 1903, 175-8.]

P. santalinus, Linn., f. Red Sanders Tree, Red Sandalwood, rudho-skandana, undum, nilaparni, ranjana, ratānili, tāmbada, chandana, shen-skandana, erra-gandhapu-chekka, gandham, rempgandha-cheke, sandaku, etc. A small tree of South India, chiefly in Cuddapah, North Arcot and the southern portion of the Kurnul district. On a small area, near Kodur, in Cuddapah, it has been very successfully cultivated (see p. 976).

In former years the great use of the wood of this species was as a dye, and large shipments were made annually from Madras to Europe, where it was employed as a colouring agent in pharmacy, for dyeing leather and for staining wood. The demand, however, has now greatly declined, due probably to the increase in the use of artificial dyes. In India it is chiefly employed in marking idols and for staining the forehead in certain caste markings. The value of the wood as a dye is due to a red colouring principle, santalin, soluble in alcohol and ether, but not in water. When dissolved in alcohol, it dyes cloth a beautiful salmon-pink.

The wood is highly prized for house posts, and in the South Deccan is universally employed for plough-sets and other agricultural implements. It is also in great demand for carved work, wood idols, boxes and picture frames. (Cf. García de Orta, 1563, Coll., xli.; Pharmacogn. Ind., i, 462-4; Hadi, Monog. Dyes and Dyeing in U. Prov., 1896, 81; Holder, Monog. Dyes and Dyeing in Madras, 1896, 4; Dutt, Mat. Med. Hind., 1900, 154; For. Admin. Repts. Madras; Hanansek, Micro. Tech. Prod. (Winton and Barber, trans.), 1907, 252.)

In many parts of India and Burma it is cultivated for its fruit, which, however, according to Farnington, is not to be compared with that brought down annually by Afghan traders from Kabul. It is not particular as to soil, is said to succeed even in the driest, but does not thrive in very damp climates. To yield good fruit, it must be manured every year; preferably in December. Plants may be multiplied either by seed, by cuttings, or by layers. The best method is to raise seedlings and graft on them, when of sufficient height, from trees of a superior kind. It bears fruit principally during the cold season. Before the fruit is a quarter grown, it is frequently penetrated by a caterpillar which devours the interior and causes the remainder to rot. To prevent this, when still...
PYRUS MALUS

THE APPLE

Qualities.

In various parts of India the flowers are used as a red dye, while the astrignent rind of the fruit and the bark are valuable tanning materials. The Wood is not used for any purpose, but according to Gamble it might be substituted for boxwood. [Cf. Merian, *Insect. Surinam*, 1705, tt. 9 and 49; Pharmacog., Ind., 1891, ii., 44; Cameron, *For. Frees of Myore and Coorg*, 1894, 150-1; Monographs, Dyes and Dyeing:—Duncan, *Assam*, 1896, 42; Hadi, *U. Procr., 1896*, 80; Fawcett, *Bomb. Pres.*., 1896, 34; Russell, *Cent. Procr.*, 1896, 14-5; *Agr. Ledg.*, 1902, No. 1, 43-4; Woodrow, *Gard. in Ind.*, 1903, 319-20; Firminger, *Man. Gard. Ind.*, 1904, 234-5.]

PYRUS, *Linn.* Fl. Br. Ind., ii., 372-80; Gamble, *Man. Ind. Timbs.*, 1902, 321-4; Rosaceæ. A genus of moderate-sized trees, occurring in the Himalaya, Khasia hills and Burma. Several bear edible fruits, of which the best known are the apple and the pear. In this place may be mentioned the closely allied plant *Cypodia vulgaris*, Pers.—the quince or *bili*—a small tree cultivated in the Western Himalaya.

D.E.P., iii., 449.

PEAR.

Propogation.

The pear-tree thrives well in most parts of India, and is easily propagated by layering or grafting. The latter operation should be performed in February or March. Cuttings will also strike root if put down in February during the rains. The fruit ripens about August or September; as a rule, the tree does not come into bearing before it is ten years old. A full account of the method of cultivation on the hills is given by a writer in *Indian Gardening* (Feb.—March 1899). The fruit of the ordinary hill-pear is generally hard and flavourless, and, though eaten by Natives, is little used by Europeans except for cooking purposes. In Kangra and the lower inner ranges of the Himalaya, pears from imported European stocks are grown to great perfection, and the product is exported to the hill stations and the plains. In Europe the Wood is prized for engraving and turning, but especially for drawing implements, such as set-squares, etc. [Cf. Bentham, *Rev. of Targioni-Tozzetti*, in *Journ. Hort. Soc.*, 1855, ix., 158; Smythies, in *Agr. Ledg.*, 1894, No. 15, 5, 34-47; Coldstream, Rept. on Fruit Cult. in Simla Dist. and Kulu, 1894, 7, 14; Woodrow, *Gard. in Ind.*, 1903, 308; Firminger, *Man. Gard. Ind.*, 1904, 249-50.]

D.E.P., iii., 450. (P. divaricata, Linn.)

APPLE.

Propogation.

The Apple, *seb*, *kūśhi*, *sher*, *teînt*, *sin*, *chîng*, *li*, *pâlu*, *manra*, *sêvu*, etc. A moderate-sized tree indigenous in Eastern Europe and possibly also in the Western Himalaya, between 5,000 and 9,000 feet; largely cultivated in the Himalaya, the Panjab, Sind, North-West Provinces, Central India and the Deccan. Stein discovered apple-wood (*alma*) used in the house-construction of ancient Khotan (see the remark regarding the Apricot, p. 905).

In India, apple-trees are propagated by layering and grafting on the common country, or long acclimatised stock. Firminger, quoting General Jenkins, states that cuttings may be planted in January and February near water and also during the rains. When they shoot strongly they should be planted out and cut down to two or three buds, and of these the strongest shoot only should be allowed to grow. This should be trained straight up to a height of about three feet. Grafting takes place in March. A gravelly soil is most suitable. The best fruit is produced in the Kangra Valley, whence it is exported in quantities to Simla and the plains of India. The traffic from Kashmir to Rawalpindi and the Panjab generally has become a large and important one. Government orchards have been established in Kusumon, where apples of choice English sorts are successfully grown. The Municipality of Simla has also made an effort to utilise as an orchard the tract of hills reserved as the catchment area in water supply. Sly (*Agr. Journ. Ind.*, 1907, ii., pt. i., 70-3) reviews the available information regarding the apple cultivation of the hills of India. In Afghanistan, he tells us,
the apple is raised from seed and is not grafted. Baber (Memoires (Leyden & Erskine, transl.), 281) mentions the apples of Kabul. In the Shan States (Burma) the apple is grafted on to Dacryca indica. [Cf. Bentham, i.e. 159; Synthyes, in Agri. Ledg., i.e. 3-5, 45, 38-41; Fruit Cult. on the Hills, in Ind. Gard., Dec. 1, 1898, to Feb. 16, 1899; Woodrow, i.e. 306-7; Firminger, i.e. 247-9.]

Q

QUERCUS, Linn.; Fl. Br. Ind., v., 600-19; Gamble, Man. Ind. Timbs., 1902, 671; Prain, Beng. Plants, 1903, ii., 986-7; Brandis, Ind. Trees, 624-33; Cupuliferæ. A large genus of important forest trees attaining their greatest Indian development in the Eastern Himalaya, the Khasia hills and Manipur. Thirty-one species occur in India and Burma.

Q. dilatata, Lindl. The Green Oak of the Himalaya, moru, tilangam, kilonj, ramahing, kālī rīng, chora, parāngā, bān, karāsh zāzh, etc. A large, nearly deciduous tree of the inner Himalaya, extending westward to Afghanistan and the Safedkoh, eastward to Nepal, usually at 7,000 to 9,000 feet.

According to Brandis, the wood is durable, and is used for building, architectural implements, axe-handles and jampan poles. Gamble states that in the Tons Valley Sleeper Works it is the best wood for making the runners of the sledges used in the extraction of the deodor timber. In the Simla district it is extensively used in the manufacture of charcoal. The leaves and shoots are also regularly lopped for fodder, and the bark has been tried for tanning. [Cf. Hooper, in Agri. Ledg., 1902, No. 1, 55.]

Q. incana, Roxb. The Grey Oak, banj, sīa, supārī, rin, varī, mārū, karāsh, shindar, aere, daghāhābān, etc. A large evergreen tree of the Himalaya from the Indus to Nepal at 2,000 to 8,000 feet; also the Shan hills, Burma.

According to Gamble, this is perhaps the best known of Indian oaks, and is one of the most common trees near the hill stations of Simla, Mussourie, Naini Tal, etc. The wood is little used for timber as it warps and splits badly, and it is rarely straight, but it is occasionally employed in building and for agricultural implements. Its chief use is as fuel, both as firewood and charcoal. The bark yields a reddish-fawn colouring matter and is employed for tanning and purposes. In 1894 Prof. Trimble examined the barks of various Indian oaks and found this one contained by far the largest quantity of tannin, viz., in the dry bark, 22.36 per cent. [Cf. Agri. Ledg., i.e. 55.]

Q. hamellossa, Smith. The shalali, pharat-singhali, budgrat, bāk. A very large evergreen tree of the Eastern Himalaya from Nepal to the Daphla hills at 5,000 to 9,000 feet; Manipur at 7,000 to 8,000 feet. Is said to be the finest and most important tree of the Darjeeling forests, reaching occasionally 100 to 120 feet in height. The timber is durable, if not much exposed to wet, and is used for posts and beams in the construction of houses and bridges, for doorposts, window-frames and rafters. It is also an excellent fuel. In Darjeeling the bark is used for tanning. [Cf. Agri. Ledg., i.e. 55.]

Q. lusitanica, lam.; Q. infectoria, Oliver. The Gall or Dyer's Oak, na-yphul, mazu, māyā, machakai, pujintagar-rethi, etc. A middle-sized tree or shrub, native of Greece, Asia Minor and Syria, extending to Persia, whence the galls are imported into India. These are excrescences caused by an insect puncturing the twigs and depositing its ova. They are extensively used both as a dye and medicine. In dyeing they are boiled in water till about three-fourths of the water is evaporated, and the cloth is then dipped in the decoction. Medicinally they are used either in the form of a powder or as an ointment. [Cf. Pharmacog. Ind., 1890, iii., 360-4; Hadi, Monog. Dyes and Dyeing, U. Prov., 1896, 83.]

Q. semecarpifolia, Smith. Common Brown Oak of the Himalaya, ghesi, karāsh, khareu, barchar, jangal ka parāngi, kreu, sauj, etc. A large evergreen tree of the inner Himalaya extending westward to the Safedkoh and Afghanistan, eastward to Bhutan and the hills of Manipur, usually at 8,000 to 12,000 feet.

According to Gamble, the timber of this species is not in great demand, but is of good quality, strong and durable. It is an excellent firewood and yields charcoal of the best description. The leaves and young shoots are plucked for use as a food.
THE MANGROVE

RHUS CORIARIA

ii, 81-6, and note to same by Sir H. Yule, 291-8.] Both Garcia de Orta and Linschoten state that rhubarb is brought from China (Tertiary) through Persia and thence to India. The official part of the plant is the deconticated and dried root or root-stock. Himalayan rhubarb is usually stated to be of little commercial importance, and the rhubarb sold in the bazaars of the plains is ordinarily affirmed to be of an inferior grade to the Chinese drug, and still more to that imported from London. Considerable quantities are, however, annually conveyed to the plains from the Kangra district of the Panjab. An inquiry in 1894 revealed the fact that the exports from that valley came to about 1,000 maunds a year. Further, it was stated to be largely used in the fabrication of certain external applications (Pres. Add. Med. Congress, Calc., 7). It is remarked in the Pharmacopoeia of India that were the Himalayan rhubarb cultivated with due care, there is reason to believe a drug equal to the Chinese or Turkey rhubarb might be obtained. [Cf. Paulus Apinota (Adams, transl. and Comment.,) iii., 316; app., 478-80; Mesua (ed. Marinus), 1562, 50; Garcia de Orta, 1563, Coll., xlviii.; Linschoten, Voy. E. Ind., 1598 (ed. Hald. Soc.), ii., 101-2; Boyum, Fl. Sin., 1656, S.; Du Halde, Hist. China (Engl. transl.), 1736, i., t. 17; Turner, Emb. to Tibet, 1800, 394; Milburn, Or. Comm., 1813, ii., 516-7; Pharmacog. Ind., iii., 152-7; Henry, Econ. Bot. China, 1893, 32-3; Ind. Mus. Ann. Rept., 1894-5, 31; Hesse, in Agri. Ledg., 1896, No. 29, 289, etc.; Rept. Cent. Indig. Drugs Comm., 1901, i., 144.]

RHIZOPHORA MUCRONATA, Lamk.; Fl. Br. Ind., ii., 435; Gamble, Man. Ind. Timbs., 1902, 332-3; Prain, Beng. Plants, i., 475; RHIZOPHORE. The Mangrove, khamo, bhora, rai, kunro, upu-poma, buy, bakam, etc. A small evergreen tree of the muddy shores and tidal creeks of India, Burma and the Andaman Islands.

The Bark is exported from Mergui to Rangoon, and a considerable trade is also done in it from the Pegu coast. It yields a Dye and Tan. Samples of bark of R. mucronata were sent to the Imperial Institute in 1899 (Imp. Inst. Tech. Repts., 1903, 186-90), and were found to vary greatly in yield of tannin, one sample giving over 27 per cent., while another gave only 4 per cent. An extract, prepared presumably from the former sample, contained 76 per cent. tannin. In the Report of Forest Administration in Burma (1904-5, 19), mention is made of the establishment of a tannin factory in accordance with a system recommended by Dunstan. So far the extract thus prepared sold at less than its cost. For dyeing cotton, an extract was declared superior to that of other mangroves, but much inferior to the best qualities of cutch. The fruit is said to be sweet and edible, and a light wine is made from the juice. From the aerial roots, salt is occasionally extracted. The wood is reported to be good but rarely made use of. [Cf. Ind. For., 1897, xxii., 413; Hooper, in Agri. Ledg., 1902, No. 1, 35-6; Grass, Berichte über Land-und Forstwirtschaft in Deutsch Ost Afrika, 1904, ii., 178-9, 182-3; Bull. Imp. Inst., 1906, iii., No. 4, 345-52.]

RHUS, Linn.; Fl. Br. Ind., ii., 9-12; Gamble, Man. Ind. Timbs., 1902, 207-10; Brandis, Ind. Trees, 1906, 196-9; ANACARDIACEAE. A genus of trees or shrubs, indigenous chiefly to the warmer temperate regions of both hemispheres. All are highly astringent and used as tans. Some twelve species are natives of India and Burma.

R. Coriaria, Linn. The Sumach Tree of Europe, satrak, mutoli, sumok, etc. A small tree, wild in the Canaries, Madeira, the Mediterranean region, eastward to Afghanistan; often extensively cultivated. Inzenga (Ann. di Agri. Sic., etc., Palermo, 1852) wrote an interesting paper on the cultivation of this plant (translated into English by Sir H. Yule, in Edinb. Bot. Soc. Trans., 1867-8, ix., 341-55). The leaves contain a colouring matter, and together with the twigs are largely used in Europe for TANNING. They are also imported into India, usually from Sicily, for use in the large European tanneries. Moroccan leather is tanned with this material, and it is usually held to be one of the best tans for leathers intended for use in bookbinding. In the New Bulletin (1895, 293-6) an account of the manufacture of and trade in Sicilian sumach is given. The leaves ripen about

913

58
RHUS VERNICIFERA

JAPANESE LACQUER

August, when the plant is cut down, spread on the field to dry, and the leaves stripped off and conveyed to the mills. Here the leaves are separated from all foreign admixtures and are then ground to powder. This powder is again subjected to a purifying process, after which it is ready for exportation and use as a tanning material. The real sumach is locally known as "strong," in contradistinction to a similar plant known as "somuacco femininello," the leaves of which are smaller and of less strength than those of the former, in the adulteration of which they are largely used. [Cf. Journ. Soc. Chem. Induct., 1902, xxi., 1207; Priestman, Micro. Exam. of Sumach Adulterants, in Journ. Soc. Chem. Induct., 1905, xxiv., 231–3; Hanausek, Micro. Tech. Prod. (Winton and Barber, tran.), 1907, 300.]

Elm-leaved Sumach.

R. Colinus, Linn. The Elm-leaved Sumach, tunga, chandit, ami, poan, bauru, larji, manu, darengri, erandi, etc. A shrub or small tree of the Sub-montane Range and Western Himalaya to Kumaon, ascending to 6,000 feet. Throughout the area of its indigenous habitat, leaves, bark and wood are all used in Dyeing and Tanning, but whether they could be utilised on a commercial scale for this purpose is doubtful. Gamble states that the Wood is employed in South Europe for inlaid work and makes pretty carvings, picture-frames, etc. In the Himalaya, baskets are made of the twigs. [Cf. Henry, Econ. Bot. China, 1893, 42; Britton and Brown, Illust. Fl. Northern United States and Canada, 1897, ii., 389; Hooper, in Agri. Ledg., 1902, No. 1, 21; Hanausek, l.c. 246–50.]

Wild Varnish.

R. succedanea, Linn. The Wild Varnish Tree, arkol, lakhhar, shash, sutri, ranisvealai, serhynok, dinkokin, arkhur, chokli, hala, etc. The galls are known as kakur-singi (kakur = the barking deer and singi = horns), but the true galls of that name appear to be those of Pimenta khuskhus. A small deciduous tree of the Himalaya, from Jhelum to Assam, at 2,000 to 8,000 feet. Kaempfer calls this the Wild Varnish Tree, and says that in Japan the stem of this, as well as of R. vernicifera, is incised and the exudation collected for the manufacture of the varnish used in Japanese lacquer-work. In Japan the fruits are crushed, boiled, mixed with the fruit of another tree (said to be Melia Azedarach), and pressed while hot. A wax is thus produced which is made into candles and sometimes sent to Europe under the name of "Japanese Wax." The horn-like galls caused by insects on the branches and young shoots are sold as a substitute for those of Pimenta and are used medicinally. [Cf. Lawrence, Valley of Kashmir, 1895, 76; The Bower Manuscript (Hoernle, transl.), 1893-7, 25, 98; Dutt, Mat. Med. Hind., 1900, 140.]

Japanese Varnish.

R. vernicifera, DC. This is the species which yields the famous Japanese Varnish. It grows all over the main island of Japan, and also in Kinshin and Shikoku, but it is from Tokio northwards that it chiefly flourishes. Efforts have been made to cultivate it in India, but without much success. The trees are propagated either by seed sown in January or February, or by cuttings from the roots of vigorous young plants. The juice, from which the varnish is obtained, is collected by making incisions on the stem, the punctures being repeated every fourth day at successively higher parts. The juice which oozes from the cut is scraped off with a flat iron tool. When the tree has been tapped to its topmost branches, it is felled and cut into lengths, which are tied into faggots and steeped in water for ten to twenty days, after which the bark is pierced and lacquer collected in the same way as from the living stem. The juice thus collected is a tenacious fluid of a grey-brown colour. It is allowed to stand and settle, a skin forms over the surface, the better qualities rise to the top and the impurities sink. By stirring in the open air, the lacquer dries, absorbs oxygen and gains a brilliant black colour. The articles lacquered are invariably of wood. The varnish is spread in coats of increasing fineness, the surface being repeatedly ground down with hard charcoal and polished with the ashes of deer's horn, and relacquered again and again. The pattern, says Dr. Dresser (Edinb. Review), is sketched on fibrous elastic paper, which is warmed and fitted to the surface to be decorated, when the pressure of the hand is enough to transfer the pattern. If the pattern is to be in gold, the outline is then followed by a fine hair pencil dipped in lacquer, which acts as a size. When this has so far dried as to be sticky, gold-dust is shaken on it from a spoon. From Rein's detailed account, it would appear direct painting of the patterns is also practised for the higher class works. [Cf. Rein, Induct. of Japan, 1889, 338–7; Quin, Laqg. Induct. of Japan, in Trop. Agr., Dec. 1882, ii., 514–7; Henry, Econ. Bot. China, 41: Ernest Hart, Canton Lect., May 27, 1895, in Journ. Soc. Arts, Sept. 13, 1895, 875–6; Journ. Soc. Arts, Sept. 11, 1896, 808–9; Thorpe, Dict. Appl. Chem., ii., 914]
THE CASTOR-OIL PLANT

RICINUS COMMUNIS, Linn.; Fl. Br. Ind., v., 457; Euphor.
Blac.e. The Castor-oil Plant, Palma Christi, Ricin de Palma Christi,
arrand, erand, rand, bherenda, bindi, eri, areta, orer, rak-lap, anrar, gaba or
jarra, grundii, nerinda, rendi, harness, bazanijir, haran, ind, rund, apanakakam,
kotai, amadan, andi, haralu, kesu, kayetsu, etc. These vernacular names
are mostly derived from the Sanskrit eranda and rveuka, with
the alternative vatari (= anti-rheumatic). The Arabic khirra, the Persian
bedanir, the ancient Greek kiki and the kroton (Herodotus, ii., ch. 94)
have had little, if any, influence on the origin of the existing Indian
vernacular names. The name Palma Christi is used by Holland in his

A native of the tropics, where it exists as a perennial bush or small
tree. Is in warm temperate tracts an annual and ascends the Indian
hills to altitudes of 6,000 feet. Its cultivation seems also restricted by
excessive moisture, the plant becoming again an annual (within the
tropics), thus allowing of cultivation in the drier months. Rainfall
after sowing, however, seems essential to liberal germination. It prefers
well-drained loams, hence loose sandy or heavy clay soils are alike
unsuitable. It is an exhausting crop, especially on the soil resources of
nitrogen. Is exclusively propagated by seed, and in India, when grown
as a pure field crop, is generally regarded as precarious, owing to
its liability to being completely devoured by caterpillars. Mackenzie
(Eri Silk-worm, Cachar Exper., 1889, in D.E.P., vi., pt. iii., 165)
mentions a case where 30 acres were completely defoliated by
caterpillars.

History.—Cultivated throughout India and naturalised here and there near
habitations, distributed throughout the tropics generally, but probably in-
digenous to Africa. It is not, however, uncommon to discover it in the scrubby
jungles of the outer Himalaya. Duthie speaks of it as naturalised in Merwara;
it has been reported as wild and never cultivated in Upper Burma and uni-
versally self-sown in Assam—that is to say, in the gardens and waste lands, where
its leaves are used to feed an undoubted indigenous silkworm. Taylor (Topog.
and Stat. Daco, 1840, 59) speaks of cater as found in the uncultivated parts of
the district. In the Sueruta A'gyurveda, references to the plant are made
in such terms as to preclude the possibility of the passage in question denoting
an imported drug. Two varieties, a red and a white, are described, thus showing
personal acquaintance with the plant. Its oldest Sanskrit name, eranda, has
passed into the most diverse languages and dialects of India (Dutt, Mat. Med.
Ind., 1900, 231).

Dioscorides tells us that it was called kroton from the resemblance of the
seed to the dog-tick, and it is significant that both the plant and the tick bear
the name Ricinus in Latin (Pliny, Hist. Nat., xi., 34; xv., 7). Galen, Paulus
Egineta, Messa, etc., mention the purgative property of the oil. Avicenna,
Rhases and other Arab writers add that it is a good application for cutaneous
diseases and in rheumatism. But it would almost seem as if the Arabs had made
aquaintance with the plant from India, since they call it simam el hindi (Sesamum
of India), and, as pointed out by the authors of the Pharmacographia Indica
(iii., 302), the properties assigned to the plant by the Arabs are those attributed
to it by the Sanskrit authors. Pliny, moreover, speaks of the plant as not so
very long ago introduced into Egypt.

Few of the early European travellers in India, however, make any reference to the
plant. Garcia de Orta and Linschoten are silent. Aiton (Hort. Kew, 1789, iii., 377)
mentions that it was cultivated in England in the time of Turner, 1562. Rheede
speaks of castor as cultivated in Malabar, especially in sandy situations. Loureiro

195
RICINUS COMMUNIS
Varieties

THE CASTOR-OIL PLANT

refers to it as both cultivated and uncultivated in Cochin-China, while Rumphius says it grows in Java, being raised in large fields which thus afford much oil. It would appear that the medicinal oil of the West Indies was imported into India for fully half a century prior to any mention of the Indian-grown oil-seed or oil being recorded as exported. In 1761 Lewis spoke of the Palma Christi seeds being rarely found in the English drug-shops and the oil scarcely known. In 1764 Peter Canvane, a physician in the West Indies, published a Dissertation on the Oleum Palmae Christi, etc., giving Oleum Ricini, in which he strongly recommended its use as a gentle purgative. It was shortly after 1788 admitted into the London Pharmacopoeia. Woodville (Med. Bot., 1790 (ed. 1832), iii. 624–8) speaks of the oil as having lately come into frequent use. It was at the time obtained from Jamaica. In 1804 India imported 20,207 lb. of the oil, and as late as 1808 took 3,503 lb. Gradually, however, it seems to have been discovered that India itself produced the medicinal oil, and the exports in 1813 were valued at £610, and in 1819 at £7,102. Fifty years later, the exports of the oil had expanded from 2,000 to 100,000 gallons. No mention is made of the traffic in the seed, but it is thus evident that the European demand for this oil-seed and oil from India is quite modern. [Cf. Joret, Les Pl. dans L’Antiq., etc., 1904, ii., 270.]

CULTIVATION.

VARIE TIES AND CULTIVATED RACES.—Botanical writers allude to the multiplicity of forms that exist as proof of the antiquity of cultivation. Müller (in De Candolle, Prod., xv., pt. ii., 1016–21) forms sixteen varieties or rather cultivated states that merge from the one to the other, but which are often agricultural forms of considerable value. Roughly, these have been grouped by most writers under two great types—(a) a tall bush or small tree of perennial growth, usually planted as a hedge or in lines through the fields where it affords desirable shade to other and more valuable crops. This gives a large seed with an abundance of inferior oil. (b) The other, an annual plant sometimes grown as a pure crop, though more frequently in mixed cultivation. It gives a small seed, the better qualities of which by an expensive and more careful process of expression afford the superior qualities of the oil of commerce, some of the finer grades of which constitute the medicinal oil of European pharmacy. The former, from its being extensively used in India for illuminating purposes, is often called "Lamp Oil," but it also finds a place as a valuable lubricant.

Frequent mention is made, by writers on this subject, of a third important grade, namely a castor which by special selection has come to yield a seed that contains no poisonous principle, the oil of which is edible. Smith (Contr. Mut. Med. China, 1871, 55), for example, says that a "species or variety of Ricinus is said to have smooth fruit and to be innocuous." In Ahmadabad I collected (in a garden) a perfectly smooth-fruit ed form, the leaves of which were suffused with a white farina that gave them a remarkable glaucous appearance. I was told the oil of that plant could be used in cookery.

BENGAL.—Mukerji (Handbook Ind. Agr., 1887, 276–86) says that cultivation is chiefly in the Patna and Bhagalpur Division. There are three forms grown— a small, a medium, and a large-sized plant. The first and last are sown in May to July and grown with some bhadōi crop. The seed is ripe in January and February. The winter variety is sown in September and gathered in March–April. This yields a larger proportion of oil than the bhadōi crop. On damp lands the cost of cultivation is little and the yield large. Red soils situated at the foot of the hills are specially chosen, but it is an exhausting crop, and should not be grown more frequently than once every five or six years. It is never irrigated, all the cultivation deemed necessary being a ploughing between the rows of plants to keep the weeds down. Picking usually takes place from the seventh to ninth month after sowing. When grown with other crops the yield of cleaned seed per acre is about 200 lb., and when grown by itself, 500 to 900 lb.

It is generally held that the large-seeded varieties yield the best ordinary lubricating and lighting oils, and that the small-seeded afford the finer grades, especially those used for medicinal purposes. [Cf. Banerjei, Agr. Cuttack, 1883, 88–9; Roy, Crops of Beng., 1906, 84–6.]

Assam.—Basu, writing on the possibility of castor being grown in conjunction with indigo and tea, says that in the Assam valley it is never grown for its seed, but always for the leaf, which is used for feeding the eri silkworms (p. 1065). There are two varieties of the plant (a) the eri and (b) the Bengali era. The former is indigenous and the latter introduced—a taller and stouter plant.
Generally the crop is allowed to be self-sown, and is found in small patches in the gardens of those who rear the silkworm. The seed is allowed to shed and run waste, but occasionally careful people collect and sell it. The plant is found everywhere in Assam, though much less abundant in the Surma valley. It is also grown by certain of the hill tribes, such as the Garos, Mikirs, Kukias, chiefly also for rearing the silkworm. Hindus do not engage in the production of eri silk, and its traffic is mainly in the hands of the Kacharis and Mechess in the north of the Kamrup, Goalpara and Darrang districts, and accordingly the plant is most prevalent in the tracts of country occupied by them. But it is nowhere a regular field crop. No oil is extracted from it in Assam. In Tezpur and the Khasia and Jaintia hills, experiments were conducted, but the crops were destroyed by insects to which the plant is peculiarly prone, hence the opinion that when grown in large quantities it is a precarious crop (Physical and Political Geog., Assam, 37).

United Provinces.—In the recent inquiry into castor as a possible supplementary crop with indigo, Mr. Moreland observed that he was unable to say if it would pay, since a rabi crop is usually taken after indigo, and this could not be the case were the land occupied with castor. So far as known, it is never sown mixed with indigo. Moreover, indigo does not require nitrogenous manures, so that the cake would have no special value to the indigo planter. Subsequently (in 1903) Mr. Madi (Assistant Director of Agriculture) wrote a note which affords full particulars regarding the methods of cultivation, harvesting, extraction of oil, cost of cultivation, and diseases. It would appear to be grown all over the provinces, on almost every kind of soil, though chiefly on rich loams. It is generally sown as a subordinate crop in the rainy season with bàjira, akhar, jūd or cotton, and, at the beginning of the cold season, with gram, wheat and barley. It is not uncommon as a hedge to sugar-cane fields, being in that case sown in March or April. It is seldom raised alone to any extent, except perhaps in Allahabad, where the khadar lands, on the banks of the Jumna, are often devoted to it. Castor is also largely used as a first crop on newly laid out gardens, perhaps to secure shade for young trees, for which purpose it is also occasionally grown by market gardeners.

In the khari time a furrow is thrown up parallel to the sides of the field, and seed cast into this at a distance of every 3 feet. By the return course the seed is covered over. This system is carried throughout the field, the furrows being 6 to 10 feet apart, and when the sowing of castor is thus completed a higher ploughing is given over the entire field and the chief crop sown. Occasionally the castor is cultivated on the ridges that separate the water-beds, in irrigated land, and in that case, as also when sown as a hedge to fields, the seed is usually dibbled by hand.

The crop ordinarily takes eight to twelve months to mature. The small-seeded varieties ripen earlier than the large. The crop sown in March or April along with sugar-cane takes the full twelve months, while that sown after the rainy season is harvested in ten. The plants begin to produce ripe fruits in seven or eight months, and picking thus commences about January and continues till April. Mention is often made, in connection with Oudh, of the existence of a form with dark-brown seeds that is specially rich in oil.

The fruits are collected and stacked in the corner of a house, and covered over with straw or cloth. After six days the capsules soften and the shells decay. They are then exposed to the sun for two days and when well dried the shells split open, or if they do not open naturally they are beaten with a mallet until the shell separates from the seed. The fruits of the larger forms are buried in a pit excavated in the dung-heap, and the
Ricinus communis

The Castor-Oil Plant

United Provinces

mouth closed in with straw. After a week the fruits are removed from the pit, and the shells separated from the seeds. In some parts of the country the bunches of fruits are for some time then exposed to the sun.

A vigorous plant yields as much as 8 to 10 seers of seeds in a season, but those grown as hedges do not usually yield more than 3 to 2 seers a year—the flowering being hindered by a deficiency of light and air. Usually the plants are cut down after yielding their crop, but when grown in gardens or near the homesteads they may afford a second or even a third crop in succeeding years, but in that case they are cut down each year to within two feet of the ground, the result being that they throw out numerous branches and give a large crop, though with an inferior quality of seed.

In the third year the crop is poor both in quantity and quality. The average yield for an acre is 8 to 12 maunds the first year and 12 to 18 maunds the second when grown pure, or 4 to 6 maunds as a mixed crop. The produce sells at about Rs. 4 a maund.

The strongest and largest stems are used as timber (rafters) for thatching, and are also made into pokers for sugar-cane-boiling furnaces. The dried stems and husks are used as fuel or converted into charcoal and worked up in firewoods. The green leaves are eaten by cattle with apparent relish, and are believed to increase the flow of milk in cows and buffaloes. The cost per acre of pure cultivation is Rs. 24–2–0. If the acre produces 10 maunds, sold at the low average of Rs. 3 a maund, and allowing Rs. 5 as the price of the stems, fuel, etc., obtained, the balance over cost of production would show a net profit of Rs. 10–14–0.

Mr. Hadi mentions several caterpillars which eat the leaves and young shoots; an aphid which does much damage to the flowering shoots and young leaves; white ants which do much harm—in fact the castor-oil plant is more subject to their depredations than is any other regular crop; lastly, castor is much injured by frost. [Cf. Duthie and Fuller, Field and Garden Crops, 1883, pt. ii., 38–9, t. 43; Maxwell-Lefroy, Mem. Dept. Agr. Ind., 1907, No. 2.]

Central Provinces and Berar.—There are two varieties ordinarily grown—(a) large-seeded, raised as a rainy season crop; (b) small-seeded, grown as a cold-season crop. Some few years ago (1899–1900) an estimate was made of the area under both crops, and it was then found that the total came to something like 67,943 acres. It is included in official statistics under the heading of "Other Oil Seeds," which in the kharif season of 1905 occupied 262,477 acres, and in the rabi 85,188 acres. The districts of chief production are Betul, Raipur and Bilaspur. The large-seeded plant usually occupies waste or fallow patches in cultivated land. Any kind of soil suits it so long as it is well drained. The small-seeded variety is sown as a regular field crop in the month of September, about 16 to 20 lb. of seed being required to the acre. Sandy loams are preferred, and black cotton soil does not suit it. The seed is sown with a drill plough. One weeding is considered desirable when the plants are about 6 to 12 inches high. The crop is harvested in March as the pods are found ripe enough. The outturn is about 500 to 600 lb. per acre of cleaned seed. The seeds usually sell at 20 lb. per rupee. The oil is manufactured locally to but a small extent, to meet the demands as a lubricant for cart-wheels and preservative for leather. [Cf. Sly, Note, 1901.]

Panjāb.—The plant is nowhere systematically raised as a crop in the Panjāb, but exists (mostly self-sown) on embankments near canals, especially in Jhelum and Gurgaon. It is mentioned as abundant on the Jharsa and Raisina Bunds. The people pay no attention to it nor make any use of its seeds. Mr. I. H. Burkill contrasts the castor-oil plant of Baroda with that of the Northern Panjāb and Kangra, and adds that the latter is different from the ordinary form of the plant. The oil-mill at Lahore manufactures approximately 30,000 cwt. of this oil a year, the seeds being procured mainly from the United Provinces. An oil-mill has recently been opened in Delhi, and a demand for the seed thus exists that may
RABÍ AND KHARÍF CROPS

lead to extended cultivation. The oil is largely used for lubricating cold machinery and as an illuminant in railway carriages, hence most of the Railway Companies in India manufacture their own oil. It is supposed to give a clear light, to be highly economical since it burns slowly, gives little smoke, and does not generate heat sufficient to make it dangerous. Aitchison (Afghan. Delima. Comm., 1885; also Notes on Products, etc., 1890, 178) says the plant is cultivated along the banks of irrigation channels and margins of melon, cotton and tobacco fields, the seeds being collected to afford an illuminating oil. The seeds are crushed among cotton-wool, and the wool, saturated with oil, is subsequently, as required, made up in the form of tapers (malute).

Bombay and Sind. — In 1899-1900, 44,094 acres were sown and 25,265 matured a crop—in Bombay proper, none having been recorded for Sind. In the following year, 65,646 acres were under the crop, but no mention was made of the proportion that was non-productive. In 1901-2 the cropped area was 109,475 acres, and in 1902-3 it stood at 119,049 acres. The following year it had declined to 94,257 acres; in 1904-5 there was a still further shrinkage, namely to 72,599 acres, but no mention of a Sind production, and in 1905-6 to 64,878 acres with 454 acres in Sind, practically all in Thar and Parkar. Mollison (Textbook Ind. Agric., iii., 105-8) says both perennial and annual varieties of the plant are met with in India. The annual forms are rabí crops in Bombay Presidency, and the plants are very much smaller than the perennial, which are kharíf crops. The latter grow with great rapidity, and a year's growth produces a tree 15 to 20 feet high. The foliage, branches and stems, according to variety, may be bright pale green, or green tinged with red, bright shining red, or bronze purple. Forms with the last-mentioned description of foliage are often grown as decorative plants in gardens. Mollison also states that the seeds vary in size and markings. "One Bombay variety has large seed, black in colour, with tiny specks of white. The perennial varieties are chiefly grown along irrigation water channels, on the borders of sugar-cane and in highly cultivated market garden land, and a plant soon gains the dimensions of a tree." The seed is sown, as a rule, about July. The shade which the perennial castor affords to ginger, turmeric, sugar-cane and other such crops is often valued. Perennial castors are easily cultivated and readily escape from cultivation, and consequently are often found wild in many localities.

"The plant does best in deep free working soil. The very best crops in the Presidency are produced on the bhātha (alluvial) soils which fringe the course of the Tapti in Surat." "In the sandy goradu soils of Northern Gujarát, a sprinkling of castors is usually found in the subordinate mixture (kathol) of cereal crops sown in kharíf season." "The rabí crop (a comparatively dwarf plant) requires soil of different character. A retentive clay soil or the soil of moisture-holding rice beds is suitable. On black soil the rabí crop is generally sown mixed with tuver, til or with gram, and this mixed crop is generally the sole crop of the year. In this case the land is well fallowed during the rains, and the mixed seed is sown in September. In rice-beds, castors and edil or castors and gram are second crops sown in October or as soon as possible after the rice is removed."

Castor has been grown alone on the Nadia Farm, and the best outturn obtained, Mollison observes, was 1,390 lb. of beans per acre; and this was in a specially favourable year. The kharíf (perennial) crop is very hardy, especially in fairly deep soils. It, however, does best on rich garden land freely manured and watered. Mixed castor and ground-nut is a characteristic kharíf crop. An experimental crop of this nature at the Surat
Ricinus COMMUNIS
Madras

Farm yielded 767 lb. castor bean per acre, worth Rs. 43-14a., and a good ground-nut crop with castor might yield in addition 2,500 lb. nuts per acre.

Madras.—The Madras Board of Revenue unofficially furnishes the area under castor for the five years ending 1900. It may be useful to review the figures in question. The area under the crop might be regarded as shrinking. In 1895-6 it occupied 751,173 acres, and in 1896-7 it was produced from 782,135 acres, but from that date it would almost seem to have declined, until in 1899-1900 it was returned at 600,214 acres. The districts of greatest production are Anantapur, 128,476 acres in 1895-6 and 74,422 acres in 1899-1900; Bellary, 111,599 and 90,227; Cuddapah, 110,091 and 87,023; Kurnul, 94,517 and 65,924; Kistna, 91,325 and 80,804; Nellore, 50,880 and 42,729; and Coimbatore, 39,470 and 34,567; the figures shown indicating the acreage in the years in question. The returns for the year 1905-6 show the area to have been 380,100 acres, or 32 per cent. less than the average of the ten years previous, which came to 563,100 acres; and the chief production was in the Deccan.

Seeds Ground.

Francis (Gaz. Bellary, 1904, 111) describes a method of grinding the seeds which prevails in that district. A machine is used like that commonly employed for making mortar, and consists of heavy stone wheels dragged round by bullocks in a circular stone-lined channel in which the seeds are placed. The paste so resulting, he adds, is boiled with water and oil rises to the top and is skimmed off. The stench caused is, however, most offensive, and the cake obtained is used as the fuel for roasting the next batch of seeds. [Cf. Shortt, Man. of Ind. Agri., 241-5; Castor-Bean Crop, issued by Board of Rev., 1899-1905.]

Burma.

Burma.—The Director of Land Records observes: "There is no trade in castor-oil by land or by sea, except that imported as medicine or in a semi-cruel state for lubricating purposes. The plant grows wild over a large area in Upper Burma." "The plant is not cultivated in any part of the province."

Oil.

It has still to be confessed that the report written by Col. Hawkes, in 1853, is the only authoritative statement that has appeared. Hooper (Rept. Labor. Ind. Mus. (Indust. Sec.), 1903-4, 26-7) gives certain practical results. Two samples of Nairobi (British E. African) seed were examined—the larger form yielded 47.35 per cent., the smaller 43.35 per cent. of fixed oil by ether extraction. Dubard and Eberhardt obtained an average of 46.19 per cent. with East Indian castor seed, and by the ordinary crushing and heating with water about 37.40 per cent. of oil is extracted. Leather (Mem. Dept. Agri. Ind., 1907, i. (Chem. ser.), 32-5) gives the results of numerous examinations.

Yield.

Methods of Extraction.

Bengal.—N. G. Mukerji remarks that there would appear to be four methods of extracting the oil practised by the people of Bengal. (1) The seeds are crushed in a screw-press with horizontal rollers and the resulting pulp pressed in gannies. The cold-drawn oil thus obtained amounts to 36 per cent. (2) The seeds are roasted, pounded in a mortar and placed in four times their volume of water kept boiling. The mixture is constantly stirred, and the oil skimmed off as it rises to the surface. (3) The seed is first boiled, dried for two or three days, then pounded in a mortar and boiled in four times its volume of water kept boiling, and the oil skimmed as in (2). Lastly (4), the seed is soaked overnight in water, ground in the morning in a gummy, and then squeezed within cloth till the oil has been obtained. It is generally stated that cold-drawing with proper machinery is the best and most profitable method. The kernels are pressed in gummy bags and the oil is thereafter bleached by exposure to the sun, which causes a sediment to precipitate. The oil is then filtered through vegetable charcoal and flannel bags. In some cases a fire is placed underneath the machine in which the
CALCUTTA AND MADRAS MILLS

bags are being pressed. This is said to increase the yield by 10 per cent., but it is believed some of the noxious properties of the seed are then liable to pass into the oil.

The castor-oil mills of Calcutta use up on an average close on 700,000 cwt. of seed; drawn mainly by the railways from the province of Bengal and from the United Provinces. The quantities obtained from the other provinces are inconsiderable. The large-seeded form, which they mainly use, comes from the provinces named, while the small-seeded is derived from Madras, being mainly imported by coastwise steamers. There were in Bengal 75 oil-mills that gave, in 1904, employment to 2,836 persons. These doubtless are mainly Calcutta mills, concerned chiefly, if not entirely, in the production of castor, and furnish the quantities of that oil exported from Calcutta to foreign countries. As compared with these figures, Madras had 24 oil-mills that employed 1,476 persons during 1904, but these are not by any means so largely castor-oil mills as is the case in Calcutta. The total of the oil-mills in all India came, in 1904, to 112, so that the Calcutta and Madras series represent by far the major interests in the traffic. During that year Bombay possessed only two oil-mills with 226 employees.

United Provinces.—Two different methods of extracting the oil prevail in these provinces. In one the seed is pounded and boiled, and in the other pressed in a mill. The former is the method which might be described as pursued by small growers and for domestic purposes.

The seeds are cleaned by various processes, roasted, pounded, and then boiled in water. The oil rises to the surface and by different contrivances is skimmed off or decanted, and the boiling continued, the mixture being repeatedly stirred until exhausted of its oil, the last dregs rising to the surface as the fluid cools. The water mixed with the oil is next removed by reboiling until it evaporates; the impurities at the same time sink to the bottom, while the pure oil floats on the top and is decanted. The bhurjis (or professional grain-parchers) are the persons who by caste are alone permitted to roast castor-oil seeds and prepare the oil by the above method when required for commercial purposes. All others would be outcasted were they to engage in the traffic, except for purely domestic necessities.

The extraction by pressing-mills may now be briefly described. About 12 seers are cleaned and husked by beating with a stone, the result being about 12 seers of kernel. That quantity is then placed in the ordinary wooden oil-mill. Water is then added and allowed to seep through the mill plugged up until about half a seer of oil has been formed—or, say, after the kernels have been ground for 10 to 12 minutes. Meanwhile, also, the contents of the mortar are constantly heated by means of a burning torch, since heat facilitates the flow of oil. The oil that collects from the mill is removed, heated, and again poured back through the mill to help the further separation, and this is repeated until the cake produced has been exhausted. The whole of the oil is then boiled to drive off the water and cause the precipitation of the impurities. The oil produced under this method is regarded as superior to that obtained by the boiling process. The average yield is about 33 per cent.

European Machinery and Methods.—Here and there all over the country, more especially at the jales, castor-oil is manufactured by modern European machinery. Certain centres are even famous for this oil, such as Calcutta and Madras (in the latter Presidency more especially at Godavari, Kistna, Nellore and Coimbatore). But in Europe and America improved and expensive machinery has raised the standard of the oil as well as lowered the cost of production, the result being that the competition has told seriously on the antiquated methods followed in India as a whole (Capital, Jan. 24, 1894). It has, for example, been found unnecessary to husk the seed, since the husk neither absorbs oil nor imparts colour; and by using the whole seed, 41-93 per cent. of oil may be obtained by some of the newer and more satisfactory systems. These include a hydraulic press but dispense with crushing-rollers, kettle, moulding machine, and cloths—economies that have effected a great saving on the older methods.

Industrial Uses.—The oil is largely burned, some few years ago more extensively than at the present time. It is believed to give a cooler and brighter light than other vegetable and mineral oils, and to burn more steadily. Twenty-five to thirty years ago, at most, every European resident in India, and all the wealthier Natives as well, employed either castor-oil or cocoa-nut oil exclusively for house illumination (see

<table>
<thead>
<tr>
<th>Oil Name</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcutta Mills</td>
<td>Supply</td>
</tr>
<tr>
<td>Madras Mills</td>
<td></td>
</tr>
<tr>
<td>Number of</td>
<td></td>
</tr>
<tr>
<td>Methods of Extraction</td>
<td></td>
</tr>
<tr>
<td>Caste Restrictions</td>
<td></td>
</tr>
<tr>
<td>Boiling Water</td>
<td></td>
</tr>
<tr>
<td>Heat Applied</td>
<td></td>
</tr>
<tr>
<td>Yield</td>
<td></td>
</tr>
<tr>
<td>Standard of Oil Raised</td>
<td></td>
</tr>
<tr>
<td>Economics Effected</td>
<td></td>
</tr>
</tbody>
</table>

921
The value of castor-oil as a preservative has long been known, and on that property depends its employment on leather goods of all kinds, also as a lubricant for machinery. It is frequently employed by the Indian dyers as an auxiliary in certain tinctorial results, and similarly by calico-printers. The ordinary Native oil is sold in the United Provinces at Rs. 10 to 16 per maund, the price of course varying with the quality, but the medicinal oil and the purer grades may fetch as much as Rs. 24 to 27 a maund. Medicinally the oil holds an important position, and the white seed is specially preferred for that purpose.

Turkey-red Oil.—This is a specially prepared oil used in mordanting alizarin-dyed fabrics and for dressing tanned leather. The extent to which the Indian manufacturers are using that dye may be judged of by the demand. A difficulty was long felt in turkey-red dyeing to obtain an oil that would diffuse readily in water. By the old process the fabrics and yarns to be dyed had to be soaked in oils for a week or more. By the use of a sulphataricate of soda the objects of the oil mordant may be attained expeditiously, and turkey-red dyeing has thereby been greatly simplified. Almost any oil may be employed, but Indian castor has been found the most suitable, and may be said to enjoy a monopoly in meeting this new and increasing requirement. It may be suggested that a profitable opening exists for the manufacture and exportation of turkey-red oil in place of having to import the supplies required by the Indian dyers. [Cf. Blount and Bloxam, Chem. for Engin. and Manuf., etc., 1900, 235-6.]

Castor Oil-cake.—The oil-cake is regarded as a good fuel, but it is never given as food to cattle. Is fairly largely used by cobblers for stuffing the soles of the shoes they make or repair. The cake is generally stated to contain the whole of the poisonous property of the seed, hence its not being used as an article of cattle food. It is, however, rich in nitrogen and therefore much in demand as a manure, especially for potato and sugar-cane. In some parts of India the cake, and even cheap castor-seed, are used in the manufacture of gas, which is treated exactly like coal-gas, and is in some respects superior to it. Where coal is scarce and expensive, this utilisation of castor is deserving of more consideration than has as yet been bestowed on it.

TRADE IN CASTOR SEED AND OIL.

Foreign.—It is significant that Milburn, in 1813 to 1825, should say nothing of the exports of castor-seed from India, though he makes mention of a small traffic in the oil. Hawkes states that the average export of castor-oil during 1850-5 came approximately to 100,000 gallons. By 1878-9 the exports of the oil were 2,119,755 gallons, valued at Rs. 31,53,969, and of the seed 74,214 cwt., valued at Rs. 5,00,056. Ten years later these items were (1888-9): oil, 2,092,913 gallons, valued at Rs. 20,31,467, and seed, 585,769 cwt., valued at Rs. 31,28,741. The exports for the five years 1902-7 were as follows:—1902-3, oil, 2,073,573 gallons, valued at Rs. 24,68,222; 1903-4, 1,916,200 gallons, valued at Rs. 20,83,239; 1904-5, 1,632,106 gallons, valued at Rs. 16,43,982; 1905-6, 1,432,108 gallons, valued at Rs. 17,12,088; and 1906-7, 1,445,636 gallons, valued at Rs. 22,22,015. Similarly seed:—1902-3, 1,751,688 cwt., valued at Rs. 92,05,666; 1903-4, 1,566,838 cwt., valued at Rs. 69,19,562; 1904-5, 1,460,908 cwt., valued at Rs. 69,15,892; 1905-6, 1,298,624 cwt., valued at Rs. 78,66,786; and 1906-7, 1,505,059 cwt., valued at Rs. 1,14,16,925.

It would thus appear that since 1888-9 the quantity of castor-oil exported has declined by fully half a million gallons, but the price has considerably improved. The traffic in castor-seed, on the other hand, has very materially increased within the period indicated, namely from half a million to one and a half million cwt. These circumstances thus
seem to show that the Indian castor-oil mills are not advancing with the world's demand, an indication apparently of defective methods, or of want of capital and enterprise in keeping up with the improvements in production effected in Europe. This subject seems well worthy of serious consideration. India enjoys a distinct position of advantage in the production of the seed, and an export of so bulky and weighty a product could only be profitable through greater returns in the oil-production. The exports in oil go almost entirely from Bengal, Madras coming next with about a tithe of the Calcutta traffic. The countries to which exported may be best illustrated by the figures of 1905-6 in gallons:—To Australia, 293,677; to Natal, 255,528; to the Straits Settlements, 201,169; to the United Kingdom, 191,034; to New Zealand, 111,748; to Mauritius, 105,867; to Cape Colony, 92,070; to China (Hongkong), 68,392; to all other countries, the balance on the total of 1,432,108 gallons.

The expansion in the traffic of castor-seed has been remarkable. The record year was 1902-3, and since then the quantity has somewhat diminished, but in 1906-7 the price realised considerably improved. France formerly was the chief consuming country, but within the period named the demands of the United Kingdom have greatly increased, as also those of Belgium, Italy and Germany, while France has fallen off materially until it occupied in 1904-5 the third place, and in 1905-6 the second place among the receiving countries. Bombay is the chief exporting province: out of the total of approximately 1½ million cwt. the western capital supplied fully one million, the balance having gone from Madras and Sind. The producing regions for this export traffic would appear to be the Nizam's Territory and Bombay Presidency, which between them supplied 99 per cent. of the total amount exported from Bombay town. The balance is derived from the Central Provinces and Berar. Hyderabad is the chief centre. The Karachi exports are doubtless Panjab and Rajputana castor-seed, since, as already shown, practically no castor is grown in Sind. Bengal exports no castor-seed.

ROPES AND CORDAGE.—Many fibres are used for this purpose by the agricultural communities and hill tribes of India. Rural people are never, in fact, at a loss to find a bark or twig that may be extemporised into a fairly strong green string, quite suitable for tying bundles or even
replacing cattle-yokes. Many such plants are often utilised in the systematic preparation of the ropes offered for sale at the village shops or market-stalls. More rarely they are specially cultivated in small plots or strips through the fields, as hedges on the borders of fields or by the water-courses and creeks. It might in perfect fairness be said that many of the discoveries regarding the fibrous resources of India were the outcome of the demand for serviceable ropes to be substituted in the British and Indian navies for Russian hemp. Roxburgh, the great pioneer in economic botany, wrote a special report of his experiments and discoveries (see Cannabis, pp. 253–4; also Linum, p. 722). This was followed by many other publications (Royle, Fibrous Plants, 1855, 19–26; Baden-Powell, Ph. Prod., 1866, 476–7; Gee, Monog. Fibrous Manuf., 11–3). These and such-like works give numerous details of the indigenous fibres and the local methods pursued in their utilisation. The reader should, therefore, consult the articles under the following rope and cordage plants:

- Abroma (p. 1).
- Abution (p. 2).
- Agave (pp. 35, 43).
- Aquilaria Agallocha (p. 74).
- Boehmeria (pp. 146, 152, 159).
- Calotropis (p. 207).
- Cannabis (p. 255).
- Cocos (Coir) (p. 356).
- Corchorus (p. 411).
- Crotalaria (p. 435).
- Daphne (pp. 486–7).
- Debregeasia (pp. 160–1).
- Girardinia (p. 161).
- Gossypium (Cotton) (p. 622).
- Grewia (p. 624).

The Indian rope manufacturers who prepare cordage and rope by European machinery employ a comparatively small number of these fibres. They obtain local supplies of coir, jute, san-hemp, cotton, and Deccan-hemp, but as a rule import agave and sisal, hemp (Russian), and Manila. India has recently begun to grow Agave on a large scale, and the local production, if it has not already checked the imports of that fibre, may shortly be expected to do so. The production of Manila hemp cannot be said to have been quite so successful. Recently attention has been drawn to the possibility of using linseed stems (flax), in the production of cheap fibre to be used up in the growing demand for cordage as "binders." One of the jute-mills of Calcutta made the attempt some few years ago to contest the large Indian market for cheap and neat European-made string, by producing various qualities of cordage, done up in balls after the familiar fashion and in various colours. Jute rope is also, to some extent, made at the ropeways, and cotton ropes have for long been used by the tent-makers as being more serviceable for that purpose than any other class of ropes. The other rope fibres of the above enumeration are almost exclusively employed by the people of India locally, and of these perhaps few are more important or more extensively employed, especially in North India, than munj, and in South India than coir. For fishing-lines and extra strong and
fine cordage, the fibres in most general use are *Bæhmeria, Calotropis*
and *Crotalaria*.

Trade in Ropes and Cordage.—The factories and rope-works that
give employment to less than 25 persons are not recorded in official stati-
tics. In 1901 there were 11 rope-works that gave employment in all to
2,538 persons; the year following, the figures were 12 rope-works and
2,814 employees; in 1903, 14 rope-works with 2,535 employees; and in
1904, 19 works with 2,954 employees. Of these rope-works 12 were in
Bengal and 6 in Madras, one being recorded in Burma.

Imports.—The rope and cordage brought to India in 1876–7 were valued
at Rs. 2,60,781; in 1886–7 at Rs. 3,22,940; in 1896–7 at Rs. 4,34,724;
and during the five years 1902–7 were, in 1902–3, Rs. 6,29,703; in 1903–4,
Rs. 5,90,380; in 1904–5, Rs. 6,32,651; in 1905–6, Rs. 6,75,798; and in
1906–7, Rs. 6,87,048. These do not, however, include jute rope and twine,
the imports of which seem to be increasing. In 1900–1 they were valued
at Rs. 17,722; in 1903–4 at Rs. 30,620; in 1904–5 at Rs. 26,454; in 1905–6
at Rs. 41,271; and 1906–7, Rs. 37,927. The bulk of these imports come
from the United Kingdom, the next most important country of supply
being China (Hongkong), and following that, the United States of
America. The receiving provinces are Bombay and Burma, which usually
take (in equal proportions) five-sixths of the supply, the next most
important province being Bengal.

Exports.—India also exports rope and cordage, the supplies in 1876–7
having been valued at Rs. 2,65,603; in 1886–7 at Rs. 2,93,191; 1896–7
at Rs. 5,30,959; and during the five years 1902–7 the exports were—
1902–3, Rs. 6,96,087; 1903–4, Rs. 6,18,109; 1904–5, Rs. 5,67,013; 1905–
6, Rs. 6,48,909; and 1906–7, Rs. 7,03,779. Of these exports by far the
largest quantity goes to the Straits Settlements, followed by the
United Kingdom, Cape Colony, Arabia, Persia, Siam and Turkey-in-Asia.
Of the exporting provinces, Bengal comes first, having supplied in 1906–7
one-half of the total exports, the next province of importance being Madras.

ROSA, Linn. Fl. Br. Ind., ii., 363–8; Gamble, Man. Ind. Timb.,
1902, 318–9; Roseaceae. A genus of erect or climbing shrubs, comprising
about thirty distinct species with numerous cultivated sub-species and
varieties. All are known by the vernacular generic name *gulab*, and indeed
such other vernacular names as do exist are used indiscriminately for
the various species. In spite of this fact, India has many both wild and
cultivated roses. Rashid-ud-Din, in the 14th century, spoke of Gujarät,
where the inhabitants were rich and happy and possessed no less than
seventy different kinds of roses. Baber (*Memoirs*, 1519, 341) tells us that
he never lost an opportunity of planting roses (1526). The Emperor
Jahangir (*Memoirs* (Price, transl.), 1605, 14) speaks of Hindustan as
possessing every sort of rose, particularly the musk and damask. It is,
therefore, a curious circumstance that Fryer (*New Acc. E. Ind. and Pers.,
1675, 104) should have spoken of Surat as a place where roses would grow
if they would but cultivate them. The most important Indian roses
economically are the following, in alphabetical sequence:—

R. centifolia, Linn. The Hundred-leaved or Cabbage Rose, *gulab*, *golap*,
troja, paninir, mawar, etc.—A native of the Caucasus and Assyria, but cultivated
in India from ancient times. This is said to be the chief rose cultivated in Persia
for the manufacture of *attar* and rose-water, but in India the next species is the
one most used for that purpose.
RUBIA CORDIFOLIA

Damasque Rose.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
</table>
| Damascena | The Damask, Bussora, or Persian Rose, gulda, sudburg, irojappi, etc. Perhaps the commonest Indian garden rose. In India, attar of roses is said to have been first discovered by Nur-i-Jahan Begum, in 1612, on the occasion of her marriage with the Emperor Jahangir. In English commerce attar of roses began to be recognised only in the beginning of last century. The attar imported by Great Britain is, however, almost entirely produced in Europe, chiefly Bulgaria and Germany. The Indian product is consumed in the country, and is apparently not exported. The chief seat of the industry is at Ghazipur on the Ganges, where distilleries have existed for fully two centuries. The following information is abstracted from the account by Jackson (Journ. As. Soc. Beng., 1839, viii., pt. i., 411-4). The gardens where the roses are cultivated are let out annually by their owners at about Rs. 5 per bigha for the land, and Rs. 25 per bigha for the bushes, about 1,000 of which go to a bigha. The expense of cultivation amounts to about Rs. 8-8 per bigha, and 1,000 bushes should yield one lakk of roses, which are sold to the distillers at from Rs. 40 to Rs. 70 per lakk. The roses flower in March and continue throughout April. In the early morning they are plucked and carried to the distillers. The distilling apparatus consists of a copper or iron boiler with a large body and narrow neck, united by a bamboo tube with a long-necked vessel or receiver, called a chaluka. The boiler is let into an earthen furnace, while the receiver is kept in a handi of water, which is changed as it gets hot. The boiler is charged with the roses, over which a sufficient quantity of water is poured and distillation is then proceeded with. The rosewater should always be twice distilled, the water from the first distillation being used to pour over the roses for the second. The distilled rosewater is then taken from the receiver, placed in a glass carboy and exposed to the sun for several days to become ripe. The mouth of the carboy is then covered with cotton, over which is put a coating of moist clay, to prevent the scent from escaping. To procure attar, the distilled rosewater is placed in a large metal basin which is protected by wetted muslin to exclude insects and dust. This vessel is then let into the ground, which has been previously moistened with water, and allowed to remain for the night. The cooling causes a little film of attar to form on the surface of the rosewater, and this is removed in the morining and placed in a small phial. The first few days' distillation does not procure such fine attar as is obtained afterwards (see p. 821).

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rent</td>
<td>Much of the rosewater of India is adulterated with water before being sold, and indeed the attar can never be obtained pure, since it always contains sandalwood oil. Sandal-wood chips are very generally added to the flowers before they are distilled. This was mentioned by Engelbert Kaempfer in connection with Persia so long ago as 1682. Gildemeister and Hoffmann (Volatiles Oils, 425, 423-30) state that as far back as 1787 Polier observed in Kashmir that the Indian genus (? Cymbopogon Schoenanthus, p. 461) was added to the roses for distillation. This grass does not, however, appear to be used in India for that purpose. The principal utilisation of attar is in perfumery and the manufacture of snuff and soap (rose-soap) (Alex. Watt, Art Soap-making, 1901, 149). In India it is largely employed by Natives at weddings and festivals. The best bazar attar is said to be sold for Rs. 10 per tola down to Rs. 2 for the inferior sorts. In the trade statistics, one or both of the above substances must be returned under either Essential Oils or Perfumery, details of the trade in which will be found under these headings. [Cf. Mesua (ed. Marium), 1662, 54-5 and plates (one of the earliest authors to describe and illustrate the distillation)] Milburn, Or. Comm., 1813, i., 141; ii., 237; Bentham, Rev. of Targioni-Tossi, Journ. Hort. Soc., 1855, ix., 179; Elliot, Ind. Industr., 1850, 368; Steadman, Cult. of Roses, Bot. Gard. Cull., in Journ. Agri.-Hort. Soc. Ind., 1870, ii., 1-24; Ghazipur Gaz., 1883, xiii., 82-3; Pharmaco-, Ind. i., 574-8; ii., app., 152; Pharm. Soc. Mus. Rept., 1895-1902, 64; Schimmel & Co., Semi-Ann. Reps.; Woodrow, Gard. in Ind., 1903, 281-99; Firminger, Man. Gard. Ind., 1904, 578-604; Umney, in Journ. Roy. Hort. Soc., 1906, xxxii., 137-40.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Season</td>
<td>RUBIA, Linn.; El. Br. Ind., iii., 202-4; Prain, Beng. Plants, 1903, i., 580; Rubiaceae. A genus of erect, diffuse or climbing herbs, of which the most important economically are the Indian and European Madders.</td>
</tr>
<tr>
<td>Distilling of</td>
<td>RUBIA CORDIFOLIA Linn. The Indian Madder, manjita, manjita, majitha, manjita, dandë, kukurphali, madar, shevelli, tama-wali, man-cheli, etc. A herbaceous creeper, throughout the hilly districts of India, from the North-West Himalayas</td>
</tr>
<tr>
<td>Ripening</td>
<td></td>
</tr>
<tr>
<td>Separation of</td>
<td></td>
</tr>
<tr>
<td>Adulteration</td>
<td></td>
</tr>
<tr>
<td>Ripening</td>
<td></td>
</tr>
<tr>
<td>Separation of</td>
<td></td>
</tr>
<tr>
<td>Adulteration</td>
<td></td>
</tr>
<tr>
<td>Ripening</td>
<td></td>
</tr>
</tbody>
</table>
E U R O P E A N M A D D E R

eastward and southward to Ceylon. It is a very variable plant, but there are
two easily recognised primary forms:—(1) *cordifolia*, proper, with leaves five,
rarely three-costate, veins impressed and surface rough or hispid; (2) *khasiana*,
leaves three, rarely five-costate, veins not impressed and surface smooth. The
latter is the richer in madder dye-principle.

Manjít root obtained from this plant was formerly much employed by the
Natives of India in dyeing coarse cotton fabrics into various shades of scarlet,
coffee-brown or mauve. It has been largely displaced by the tar dyes, but is still
employed for special purposes or in remote localities. The method of dyeing
practised is much the same all over India, the colour being produced by steeping
the cloth in an infusion of the stem or root-chips, subsequent to being mordanted
with a solution of alum. In former times madder was considerably employed in
Native medicine, but to-day its uses are restricted to a colouring agent for
certain oils. The trade in madder has for years been gradually declining, due
to the substitution of artificially prepared alizarin and other aniline dyes. The
imports of madder and *manjít* into India amounted in 1885-6 to a value of
Rs. 2,02,038; in 1889-90 to Rs. 29,488; in 1900-1 to Rs. 16,562; in 1904-5 to
Rs. 3,784; in 1905-6 to Rs. 11,365; and in 1906-7 to Rs. 5,405. The principal
supplying country is Persia, and Bombay the importing province.

The exports have almost disappeared, though small quantities still are
re-exported, viz., in 1904-5, 249 cwt., valued at Rs. 3,277; in 1905-6, 211
cwt., valued at Rs. 2,538; and in 1906-7, 99 cwt., valued at Rs. 1,500. [Cf.
The *Boyer Manuscript* (Hoeinle, transl.), 1893-7, 104, 107; Milburn, *Or. Comm.,*
1815, ii., 218; *Pharmacog. Ind.,* ii., 231-2; Banerjei, *Agri. Cutack,* 1888, 200;
ir,* 1895, 68, 92; *Monographs, Dyes and Dying*—Duncan, *Assam,* 1896, 44,
1896, 7, 17-8; *Rept. and Prog. Coll. Ind. Mus., Calc. and Imp. Inst.,* 1895-6,
71-3; *Imp. Inst. Tech. Repts.,* 1903, 211; Hosie, *Rept. on Ssu'ch'uan, China,*
1904, No. 5, 42-3, 48.]

R. sikkimensis, kurz. The moyum. A handsome creeper of the Eastern Hima-
laya in Sikkim and Bhútán, at 2,000 to 5,000 feet, Mishmi Mountains of Upper
Assam, Manipur and the Naga hills. This species is the source of the brilliant red
dye used by the tribes in the Naga hills and Manipur to dye both cotton and hair,
the latter mostly human, employed to ornament their spears, etc. It is probable
that the bulk of the madder plant of Assam is derived from this species, and that a
considerable portion at least of the dye exported from Sikkim may also have the same
origin. [Cf. Watt, *Cat. Calc. Inter. Exhib.,* 1883, ii., 55; Perkin and Hummel,
46-7.]

R. tinctorum, linn. European Madder, bacho, manjunct, roodang, etc. A
climbing herb with perennial roots, cultivated in Kashmir, Sind and throughout
Afghanistan; distributed westwards from Persia to Spain, cultivated or wild.
De Candolle considers its original habitat to be west temperate Asia and South-
East Europe.

The dried and ground roots formerly constituted one of the most valued
dyes-stuffs, both in Europe and Asia, but the natural dye has been almost entirely
replaced by artificial coal-tar derivatives. In the *Memoirs of the Emperor Baber*
(Leyden and Erskine, transl., 148) we read that madder was largely cultivated in
Ghazni and was carried thence all over Hindustan. To-day the plant is cultivated
to a small extent, the best-known qualities of the dye (in European commerce)
being Avignon, then Dutch, Alsatian, Levant (or Turkish madder) and Italian.
It is propagated either from seed or by root-cuttings. The roots are allowed to
remain for three or even five years before being removed for use. In India,
cultivation is carried on chiefly in Kashmir and in some parts of Sind. The Indian
methods of dyeing employed with this species do not differ from those used with
the indigenous *R. cordifolia*. Both in India and Europe the plant is employed
as fodder for cattle, and in Sind camels are said to be specially fond of it. [Cf.
Bentham, *Rev. of Targioni-Tozzetti,* in *Journ. Hort. Soc.,* 1855, ix., 150-1; De
450-8; Rawson, Gardner and Laycock, *Dict. of Dyes, Mordants,* etc., 1901, 223-7;
Wiesner, *Die Rohste. des Pflanzens.,* 1903, ii., 538-48; Goodwin (Queen's Univers.,
Toronto), *Madder and India. reprinted in Ind. Planting and Gard.,* Feb. 28,
1903, 203-4; Joret, *Les Pl. dans L'Antiq.,* etc., 1904, ii., 348.]

927
SACCHARUM, Linn.; Fl. Br. Ind., vii., 118-21. A genus of perennial grasses containing twelve species, chiefly Asiatic. Five are indigenous to India, in addition to sugar-cane, which is extensively cultivated.

SUGAR AND SUGAR-CANE.—Though chiefly obtained from sugar-cane, sugar may be procured from many other plants, of which the following, arranged alphabetically, are those best known:—

Acer saccharum, the Sugar-maple of the Northern States of America and of Canada.

Arenga saccharifera, the Sago-palm of the Malaya, also met with in Burma and Orissa. In Java, palm-sugar is prepared from the sap in much the same manner as from the date-palm in India. Marco Polo (Travels, etc., 1290 (ed. Yule), ii., 235-6) alludes to the wine of Sumatra made from this tree (see pp. 91-3).

Beta vulgaris, Linn.; Fl. Br. Ind., v., 5. Beetroot and Mangold-wurzel, palang, polak or bitpalang; CHENOPODIACEAE. Is fairly largely cultivated in Indian market gardens as a vegetable, and the seeds are used as a cooling medicine. Much attention has also been paid to the possibilities of mangold as an article of cattle food. It is mentioned by Buchanan-Hamilton (Stat. Acc. Dinaj., 194) and described by Roxburgh, but there can be no doubt it is of quite modern introduction and has neither a classic nor any very vernacular names. Most of the Asiatic names given to it are special adaptations from the names of older and better known vegetables.

But for many years the subject of beet-sugar in India became one of great moment. So long ago as 1863 Royle, in his address to the Royal Asiatic Society, commended the subject to the attention of Indian investigators and administrators as worthy of serious consideration. Numerous experiments have been conducted in India with the object of establishing beet cultivation as a field crop, but so far with indifferent results. In the Report of the Department of Land Records and Agriculture, Panjáb, 1899, it is stated that the Cawnpore Sugar Works Company had been able to produce beet up to the average on the Continent of Europe. Experiments were accordingly started in Hazara, but without much success. Mention is made of experiments at the Botanic Gardens of the Nilgiri hills. In subsequent experiments at Saharanpur the crop was considered fair, and at Cawnpore in 1899-1900 the opinion was expressed that to obtain the best result beet should be grown from the middle of October. Leather gave the opinion that both in outturn of root and yield of sugar, beet can be successfully grown in North India as a rabi crop, provided suitable land and facilities for liberal irrigation be devoted to it. The Report of the Botanic Gardens of Saharanpur for 1900 gives a detailed account of further experiments. Proudflock, writing of the Nilgiri hills, says that with ordinary care sugar-beet can be successfully grown. But the yield of sugar from all the Indian experiments rarely exceeded 13-10 per cent., while in some instances only 3/6 or even 3/3 per cent., were recorded. As a rule the roots grew too large, and in consequence the percentage of sugar decreased. A serious objection to beet cultivation is the necessity for deep ploughing, which the Indian cultivator is both unable and unwilling to perform.

P. V. Subbiah (Principal of the Agricultural School, Cawnpore) issued (Dept. Agric. U. Prov. Bull., 1901, No. 13) a complete review of all past experiences, and, commenting on that, Moreland observes, "It will be seen that attempts to make sugar by the ordinary methods were complete failures, and it seems probable that this must be the case, as unrefined beet-sugar made in Europe retains certain organic matter which gives it an unpleasant flavour." It is, therefore, assumed that "if beet is grown it will be on the central factory system, the cultivator receiving an advance and engaging to grow beet, the roots to be taken to the factory." [Cf. Mookerji, Handbook Ind. Agric., 1901, 358-9.]

BORASSUS FlABELLIFER, the Palmyra Palm or "baw" tree of Bombay and Madras Presidencies. This is one of the sources of the substance known in Indian commerce as "jaggery." Rheeds (Hort. Mal., 1868, i., 11-13, tt. 9-10) alludes to the present species of palm as being tapped for its sweet juice (raw), but says nothing of its sugar. It affords much of the sugar of South India,
SUGAR-YIELDING PLANTS

especially Tinnevelly. Buchanan-Hamilton wrote in 1807 that the jaggery of this palm was more esteemed in Mysore than that of the date-palm. It is also largely utilised as a source of sugar in Burma (see p. 170).

Caryota urens, the Indian Sago-palm or Bastard Sago, is the chief source of the palm-sugar of South Ceylon and to some extent of Bombay (see p. 287).

Cocos nucifera, the Coconut Palm, is the species most extensively used in Madras as a source of palm-sugar. García de Orta (1563) speaks of the swar or toddy which, fermented, yields fluids arrack and vinegar, or from which, when thickened in the sun or by heat, they make jagra, the best kind of which comes from the Maldives. Rheede (i.e., i–8, tt. 1–4) speaks of “jagra” (sugar) made from the juice with the aid of lime, the mixture being boiled until it thickens, when a red-coloured sugar is obtained (see pp. 362, 932).

Manna—some thirteen or fourteen plants in India are known to yield, under the parasitic influence of insects or otherwise, a sweet fluid called manna. This is regularly collected and, like honey, enters more largely than sugar into the pharmaceutical preparations of the Hindus (see Bamboo, p. 111, and Honey, pp. 125–9). [Cf. García de Orta, 1563, Coll., xxxiii.]

Phoenix sylvestris, the Common Date-palm, is perhaps the most important source of palm-sugar in India. In fact, the plant is fairly extensively cultivated in Eastern Bengal as a source of sugar. In Mysore it is also important, more so than either the palmnrya or the cocoonut sugars (see p. 886).

Saccharum officinarum, the Sugar-cane—the subject of the present article.

Saccharum officinarum, the Sugar-cane or imphee (see p. 1041).

Vitis vinifera, the Vine. According to Aitchison (Edinb. Bot. Soc. Trans., 199), also Le Mesurier (London to Bokhara, 133), the juice of the grape is used in Afghanistan to make syrup, and in Merv refined sugar.

Zea Mays, Indian-corn or maize, often yields sugar in its stem, like that of sorghum and Saccharum (see p. 1138).

Many substances other than those enumerated are known to afford sweet fluids, but are for the most part utilised in the manufacture of alcoholic beverages or sweet sherbets only, while others, such as indigo-sugar, are at present put to no economic purpose whatever. The mahua flowers (see p. 118) and the pineapple (see p. 69) are the best-known substances available in India from which a sweet juice may be prepared (if the grape be excluded from consideration), or which are actually utilised in the production of alcoholic beverages. Honey is largely traded in all over India. Halwa (a sweetmeat, much like “Turkish-delight”) is said to be prepared from camel’s milk and honey, and is brought into India from Afghanistan and ports on the Persian Gulf.

SACCHARUM ARUNDINACEUM, Setz.; Fl. Br. Ind., vii., 119. This embraces the following:—S. ciliare, Anderz., S. exaltatum (Munja) and S. procerum (Sara) of Roxb. It is the sara of the classic authors of India, and bears the following vernacular names—sara, sarvaka, sarkara, ramsar, sar, ser, munja, ikar, patā, sar, palva kanda, darga, gunda, ponika, etc. It is met with throughout the plains and lower hills and distributed to China. In the Panjnad it often covers large tracts of country and is frequently planted in lines or dividing hedges, especially in low-lying localities subject to periodic inundation.

History.—Sir William Jones (Sel. Ind. Pl., in As. Res., 1795, iv., 247–8) says: “This beautiful and superb grass is highly celebrated in the Purānas, the Indian God of War having been born in a grove of it, which burst into flame; the gods gave notice of his birth to the nymph of the Pdelaya, who descended and suckled the child, thence named Carticeya. The osád (kósá or kóna) “vulgarily cassia” (S. spontaneum) has a shorter culm, leaves much narrower, longer and thicker hairs, but a smaller panicle, less compounded, without the purplish tints of the sara: it is often described with praise by the Hindu poets for the whiteness of its blossoms, which give a large plain, at some distance, the appearance of a broad river. Both plants are extremely useful to the Indians, who harden the inter-nodal parts of the culms, cut them into implements for writing on their polished paper. From the munj, or culm, of the sara was made the maunji, or holy thread, ordained by Menu to form the sacerdotal girdle, in preference even to the cusa-grained bole: its use in the treatment of vinegar, see p. 1110.

Munj fibre is obtained from the leaf-sheaths; the blades are the sar or sara used in thatching houses and as a paper material; the contained flowering stem is the bind or vind; the panicle or flowering stem is the sirki, til or thili, used in thatching boats, carts, etc.; sentha or kana is the lower, stronger portions of the

Indian
Sago-palm
Cocoonut.
Lime.
Manna.
Date.
Sweet Fluids.

Saccharum
Vine.

Sorghum vulgare, the Sugar-Sorghum or imphee (see p. 1041).

Sorrel
Maize.

Sweet

Sacred Grass.
Pens.

Holy Thread.

Munj Fibre.
flowering stem, used in the manufacture of chairs, stools, tables, baskets and
screens; and tilak, tilon or ghua are names that denote the flowers. Some of
these names, such as munj and sara, have been supposed to denote the products
of different species, instead of different parts of one and the same plant, hence has
originated much of the confusion that prevails. Sara is used in paper-making
and munj as a textile fibre. The much prized munj is strong, elastic and has a
wonderful power of enduring moisture without decaying. It is extensively
employed in the manufacture of cordage, ropes, the famed Delhi mats, and in
the preparation of baskets, etc. Munj mats are reported to be proof against
white ants, but are hard on she-oak leather, harsh to the foot and fatiguing when
walked on for any length of time. These are largely produced in Allahabad,
Agra, Delhi, and are traded in all over India, and within recent years have
begun to find their way to Europe (see Mats, etc., p. 777). In the early spring
the old grass is often fired, when shortly after a crop of young leaves is
produced from the stools, which is much valued as fodder.

S. SPONTANAEUM, Linn.; Fl. Br. Ind., viii., 118-9. This has received various
names, such as S. egyp-tiacum, Wild., S. bengalense, H. M. (Boga, Casi, Loba, and
tennu) S. canaliculatum, Roxb. It is the kâdi of Sanskrit, and in the vernaculars
the kâna, kosa, kogara, kus, kis, kânsi, rara, jasha, padar, reliu-guddi, bilu-guddi,
thatkis kyn, etc., etc., (see p. 1122). It is contrasted with S. annuum in the above.

Throughout the warmer parts of India and Ceylon, ascending to 6,000 feet
in altitude. Is most at home in damp low-lying land, where it throws up flowing
stems often 12 feet in height. Is gregarious, the snowy white pubescence
which surrounds the base of the spikelets rendering it a conspicuous feature of
the vegetation when at all prevalent. It flowers soon after the close of the rains.
Owing to its vigorous growth it is difficult to eradicate, hence often becomes a
troublesome weed, especially in the tea plantations of Assam and Bengal. [Cf.
Batchelor, Agri. Journ. Ind., 1906, i., pt. ii., 152-8.] The grass is large and
coarse and is used mainly as a thatching material. The leaves, sheaths, etc., are
twisted into rope and worked up into mats, but are inferior to munj for these
purposes. As a fodder plant it is usually regarded as superior to the former
species, and is specially valued for feeding buffaloes. The culms are also much
more highly prized for the manufacture of Native pens. [Cf. The Boxer Manu-
script (Hoeorne, transl., 1893-7), 96, 106, 122, etc.]

Misc., 1890, i., 95-115, t. 26; Roxb., Fl. Ind., i., 237; Kohler, Mel.
Pflanzen Attas, ii., 169; Hackel, Monog. Androp., in De Candolle, Monog.
Phaner., vi., 111; Krüger, Das Zuckerrohr und Seine Kultur, 1899; Gra-
mineae. The Sugar-cane, ukh, uk, us, ikh, ik, ak, aku, ikhari, rikhu, serdi,
sherati, gamd, ghendra, nai-shalak, kumad, kushiar, purí, cheruku, chark,
khabbu, karumbi, karnip, tebu, keyan, kyin, etc., etc. The majority
of these names denote the cane-plant, others doubtless the sugar.
The selection given is, however, fairly representative of the names in current
use in India. In the Malay Archipelago the cane is known as tabu and in
China as kanche, a word believed to be derived from the Sanskrit kha,
name for sugar. As a cultivated plant cane is widely distributed in India
and numerous very distinctive forms exist, some of them known from the
earliest historic times, others introduced quite recently.

History.—The Sanskrit name for the plant is ikahu, of which the modern
corruptions are ikhu, ukh, and unik. Mention is also directly made of the sugar-
cane in the Atheravaeda (Bloomfield, transl. xl, 100, 277). The name arka is
similarly given by the very earliest Sanskrit writers for white sugar, and it
originally denoted " grit " or " gravel," hence its special signification as crystal-
ised sugar. The name kha (an ancient name for sugar), the root of which
means to crush, may be considered to denote sugar from the sugar-cane
rather than from palm-juices, where no crushing in any form is pursued.
By modern usage, however, it became restricted, like its English derivative
" candy," to a special form of crystallised sugar—the sugar-candy (arkarika).
In the same way the word guda or gula indicates a "mass" or "ball," hence its special application to thickened sap—the modern gür or raw sugar or molasses, as also the balls of sugar that were used as coins in village commerce.

The ancient name for Bengal is Gaura, a word supposed by some to have denoted the country of gür, and hence it has been affirmed that in Bengal originated the art of sugar manufacture. This seems highly improbable, since guda occurs in the classic works of India, prior to the Aryan conquests of Bengal. Lastly the name jaggery, which to-day is used with the special signification of palm-sugar or palm-molasses, is but a modern corruption of sarkari, first into the Malayal chakkara, then into the Portuguese jagara, jagra. Barbosa (Costas E. Africa and Malabar, 1516, 59) speaks of: "the sugar of palms which they call soupara." João de Barros (Decadas de Asia, 1555, ii., lib. iii., cap. 7) mentions the jagara made from the coconuts exported from the Maldives. Caesar Frederike (1567) calls it giagra. Rheeinde, in the passage alluded to in connection with the cocoanut, calls it "jagara," and Buchanan-Hamilton (Journ. Mysore, etc., 1807, i., 157-8; ii., 101; iii., 145-6, etc., etc.) uses the word jagorey. A knowledge of tori wine seems ever so much older than of sugar prepared from the same juice. Megasthenes (320 b.c.) alludes to the value of the tala trees to the people of India (Indika of Arrian (McCrimle, transl.), 199; see also Malt Liquors, p. 377). But Eratosthenes (223 b.c.) is perhaps alluding to sugar-cane when he tells us that "the roots" were sweet to the taste both when eaten raw and boiled and the sweet juice expressed from reeds (tenera arundo), Paulus Argenteus (Adams, transl.), iii., 246, in the 7th century, speaks of the sugar brought from "Araby the Blessed" as being less sweet than honey. Unmistakable reference is made to sugar-cane as cultivated on the shores of the Persian Gulf during the 9th century. "The crusaders found sweet-honeyed reeds in great quantity in the meadows about Tripoli, which reeds were called suera." Galt, who published a history of sugar, says it is certain that in the year 1148 it was largely cultivated in Sicily and that the Venetians traded in it, but he adds, "I have met with no evidence that the Saracens carried it from India to Sicily." Sanutius, who wrote of 1306, observes that in the countries subject to the Sultan, sugar-cane was produced in large quantities, and that it was likewise carried to Cyprus, Rhodes, Sicily and other places belonging to the Christians.

The Greco-Roman world had a very distorted idea of the origin of sugar. It was a kind of honey obtained from canes or mambas. In Hebrew writings there is no indication of a knowledge of sugar, so that it was not cultivated in Arabia and Egypt prior to the Jewish captivity at Babylon. The Chinese do not appear to have known of sugar from very ancient times. Brezendorfer says that he has not been able to discover any allusion to it in the most ancient books. It is first mentioned, he adds, in works that date from about the second century A.D. According to the Chinese, a man was sent about 627 A.D., from China to Bihar to learn the art of refining sugar. Marco Polo (Travels, 1290 (ed. Yule), ii., 313) visited India, and gives full particulars of the coast towns of the south and west. Of Quillon, he says "their wine they make from palm-sugar." But Polo does not definitely mention sugar, or rather sugar-cane, until he reaches China. Of Pekin, he remarks, "enormous quantities of sugar are made," and this "brings many merchants who traffic about the Isles of the Indies." In a footnote, Sir Henry Yule explains that there is still a great deal of sugar grown and made about Fuchau; indeed all the fine Chinese sugar-candy is produced at Fokien. If, therefore, this reference to Chinese sugar denotes sugar-cane, it is the only one in Marco Polo's record of his great explorations that can be so interpreted.

In one chapter Polo alludes to Bengal, but it has been shown that he never himself visited Eastern India and that his notions of Bengal were so imperfect that the particulars he affords regarding sugar cannot be accepted as necessarily denoting an ancient knowledge. Ramusio (in his edition of Polo) says the Chinese were taught the art of refining sugar by some men from Cairo who happened to be at the Court of the "Great Can" (Purchas' Pilgrimes, ii., 101). Sir Hugh Willoughby (about 1554) speaks of "such number of Ingenios for sugar" seen near Pekin (Purchas, i.e. 270). Most of the 15th and 16th century travelers in China mention sugar as being so good and cheap. It is commonly stated that Vasco da Gama (who doubled the Cape of Good Hope in 1497) relates that a considerable trade in sugar was at that time carried on from Calicut—the then capital of West Indian commerce. John Leo makes a similar statement regarding Nubian
sugar during 1500 A.D., and other travellers shortly after the time indicated discuss the sugar of India. Thus, for example, Varthema (Travels, 1510 (ed. Hakl. Soc., 1591) explored the west coast and furnished many details of the trade and industries of Calicut. He gives a full account of its fruit trees, and says of the cocanot that it is the best tree in all the world. He describes its wine and sugar and tells of the monkeys stealing the former. But he makes no mention of sugar-cane. Of a town in North Kanara, identified with Sedasavaghur (which he calls Bathacala), he observes that it possesses a "great quantity of sugar," but from the previous account of the Calicut sugar it may be presumed this also was palm-sugar. It is somewhat strange that Garcia de Orta should make no mention of sugar-cane, and it is certainly most singular that Baber (Memoirs, 1519 (Leyden and Erskine, transl.), 326-7) should furnish many interesting details of the date, the cocanot and the palmyra palms, but make no mention of the sugar prepared from them nor of the sugar-cane fields of India. He speaks of the juice of the palms being called tari, and of its being drunk both fresh and after it had fermented. But he admittedly describes only the plants and animals seen in Hindustan which were different from those of his own country—Ferghana and Bokhara. He accordingly apologises for having mentioned the date-palm, which was not confined to Hindustan. It has already been pointed out that Rheede, the earliest and even to-day one of the most accurate of Indian botanists, while describing and figuring Borassus, should make no mention of its sugar, though he describes the sugar of the cocanot; and even still more curious is it that he is silent as to sugar-cane. The Ainoi-Akbari (1590, Blochmann, transl., 60) fortunately gives us full particulars. "Sugar-cane, which the Persians call mahakar, is of various kinds, etc., etc." Linschoten has much to say regarding sugar (sura), but his reference to sugar-cane should have appeared to confuse it with bamboo (mambu, as he calls it), the old error that descended from the classic times of Greece and Rome, so that it is possible even Linschoten had not personally examined the plant. Thevenot (Travels in Levant, Indostan, etc., 1687, pt. iii., 26) mentions the cultivation of the sugar-cane in Surat.

There would seem little doubt that sugar-cane cultivation originated in Southern Asia, if not in India, but it has never been satisfactorily proved to have been met with wild in India or anywhere else, and is accordingly known purely and simply as a cultivated plant. Loureiro would, however, seem to think it was indigenous to Cochins-China (Pl. Coch.-Chin., i., 53), but perhaps with no greater justification than the statement of its having been found wild in the Car-Nicobar island. The mention of sugar, by European travellers to the west coast of India, almost invariably denotes palm-sugar, and as that part of India was first reached and explored, it seems likely that an undue importance has been given to palm-sugar (see remarks under Trade). It is, however, to say the least of it, very surprising that the early botanists who deal with the plants of India make no mention of sugar-cane. Thus, for example, Rheede (1698 A.D.) gives a brief account of one of the naked-seeded sorghums, but says nothing of its yielding sugar. Rumphius (1750) tells us, however, that the white-seeded sorghums often have the stems so sweet that they are regularly chewed for their sweet juices, but adds that sugar is never made from them as from sugar-cane. In a further passage he gives full particulars regarding sugar-cane cultivation in the Dutch colonies, but ventures no opinion as to the home of the plant. Miquel, Haskarli and Blanco make no mention of wild sugar-cane in Sumatra, Java or the Philippine Islands. Crawford tells us that he failed to find it in the Indian Archipelago. It seems fairly certain, however, that the Muhammadans were conspicuously identified with the extended cultivation of both cotton and sugar-cane. After the Muhammadans, the Portuguese were perhaps the people most closely associated with the early distribution of sugar-cane cultivation. In 1419 it was taken to Madeira from Sicily (Purchas' Pilgrimes, i., 5), and there would seem every reason for believing that this was its first appearance on the islands of the Atlantic. Sloane (Nat. Hist. Jam., 1707, i., 108-9), while describing sugar-cane and the manufacture of sugar, dwells especially on the necessity of adding an alkaline salt or "temper" to the boiling liquid, to facilitate the formation of the crystalline article. But although the story of the Muhammadan influence is generally accepted, it is somewhat curious that Browne (Hist. Jam., 1789, 120-33) should have regarded the plant as a native of the Canary Islands. He appears to have thought it existed there before its introduction by the Spaniards and the Portug.
guessed to the mainland and islands of the west coast of Africa. From Madeira it apparently was taken to Brazil, but at a very early date, for Magellan speaks of finding it there in 1519 (Purchas, l.c. 34). From Brazil it was carried to St. Domingo and Barbadoes. Of the last-mentioned island, Ligon (Hist. Barbadoes, 1657, 84 et seq.) will be found to give a detailed account. He describes all the noteworthy fruits of the island, but of sugar-cane observes, "There is one brought thencefrom as a stranger, from beyond the line, which has a property beyond them all, and that is sugar-cane." He landed in the island 1647, and found sugar-cane cultivation but little understood, though the plant had been introduced from Brazil and an "Ingenio" for manufacturing the sugar had been set up. When he left the island in 1650 the manufacture had been greatly improved, and they had discovered the period necessary for the full maturity of the cane, namely fifteen months. They had also learned to manufacture "lump sugar," "but not so excellent as they make in Brazil." Towards the close of the 18th century the French colonists of St. Domingo carried the cane to Louisiana. These brief references to the West Indies may suffice to convey the opinion that it is there an exotic, and it may not be far from the truth to add that it was the necessity for labour in sugar-planting that gave origin to the slave traffic.

John Leo, who began his explorations of Africa and Egypt about 1492, describes the sugar of Morocco and of Egypt, which appears even then to have been made from sugar-cane. Similarly Richard Jobson describes the sugar-canes of Sierra Leone and Gambia in 1620. Forster (Pl. Esc., 1786, 77) speaks of sugar-cane as grown in Polynesia for the children; in Tahiti it is known as "To." It is recorded that the Otaheite cane was introduced into Trinidad and Martinique in 1782. The date when sugar (from sugar-cane) first reached England has not been definitely ascertained. We read of its being carried from St. Lucas in Spain to Bristol in 1526. In 1503 two ships arrived at Camperre laden with Canary Island sugar, and a century and a half later the supply from the West Indies and Brazil might be said to have been fully established and become almost a necessity on every breakfast table in Europe. At the present day sugar-cane is grown throughout the tropics and sub-tropics, and even into the warm temperate tracts, especially in the West Indies, Mauritius, British Guiana, etc., and at Malaga on the Mediterranean coast of Spain. It requires a hot, moist atmosphere alternating with periods of dry weather. It rarely flowers and fruits, so that cultivation is almost exclusively by cuttings. These are called "plantes," and usually consist of two or three upper joints of the cane, the severance being by a clean cut immediately below a joint.

Hughes (Nat. Hist. Barbadoes, 1750, 244-52, t. 23, f. i.) alludes to the flowering of the canes in Barbadoes, and gives full particulars of the cultivation and methods of manufacture pursued. But with regard to the fruiting and the production of fertile seed, there is no definite record of this fact having been utilised for a century later. Rumphius says, "It never produces flowers or fruits unless it has remained several years in a stony place," Roxburgh remarks, "Where wild I do not know; I have never seen the seed." But in the West Indies, about 1858, it was recorded that seedling canes had been observed to spring up around the stems (or stools) of canes that had "arrowed" or flowered, from which circumstance it was believed and oft reiterated, that the sugar-cane actually did produce fertile seeds sparingly, though more copiously under certain climatic and soil conditions. [Cf. Joret, Les. Pl. dans L'Antiq., etc., 1904, ii., 266-9.]

Varieties and Races of Sugar-cane.—The diversity met with would appear to have been brought about primarily by selection of sports and variations as manifested in adaptation to environment; through the study of yield of sugar to the acre; the observation of freedom from disease, etc., as also by the direct cross-breeding of the stocks thus procured and matured. Leather defines a good cane as one which will yield 70 per cent. of juice in the mill, afford 15 per cent. or more of cane-sugar, and possess not more than 17 per cent. of glucose. In the Dictionary the effort was made to divide the canes met with in India into two great sections:—(a) Introduced Canes, and (b) Indian Canes. Without going into needless details regarding the various foreign canes known to be cultivated in India, the following particulars may be furnished:—

1. **Mauritius Cane.**—This appears to have been introduced into India from **Mauritius.**
SACCHARUM OFFICINARUM

Varieties

Mauritius about 1838 (if not much earlier) and was so named in consequence, but in reality the yellow-violet cane of Java. It is said to excel the red Bombay cane both in size and quality, and to yield one ratoon crop or sometimes two (when grown on rich soils), but as the roots get considerably above ground it requires a very moist surface dressing. It is not a good cane for the Indian climate. It is broad, pale green and droop considerably, especially on nearing maturity. It shows a marked tendency to arrow, especially if grown under the influence of sea-breezes. It has not proved a success in India, however, as it demands the finest soils, the most thorough agricultural methods, and perfect protection; it is withal very liable to disease and to the attacks of white ants. According to many observers it rapidly deteriorates in India.

3. Bourbon Cane.—This is by some persons supposed to have been originally discovered on the coast of Malabar, and from there to have been carried to Reunion, improved, and then returned again to India via the West Indies. By other writers both this and the straw-coloured Otaheite canes came originally from Madagascar, while still other writers assert that the Bourbon cane is one and the same as that often called the Singapore.

4. Batavian Canes.—There are several distinct forms, such as the violet cane, of which Sir John Lefroy wrote in 1794, "The Batavian canes are a deep purple on the outside." Wray says the yellow-violet and purple-violet or Java canes, as also the transparent or ribbon canes, all belong to this type. The yellow-violet differs from the Bourbon and Otaheite in being smaller, less juicy, considerably harder, slower of growth and with the foliage darker and more erect. When ripe it is usually of a straw-colour with the rind thick and the pith hard, but its juice is rich and tolerably abundant. The purple-violet, on the other hand, is fully as thick as the Bourbon, and has the joints from three to six inches long. The leaves are darker green than the yellow-violet, and it yields a juice richer in sweetness than almost any other cane; but it is hard, difficult to grind, and affords but a low percentage of juice. The transparent ribbon-cane is of a bright yellow, with a number of blood-red streaks; its leaves are like those of the yellow-violet, but more erect. In Jamaica it is generally planted on light sandy soils, where no other cane will thrive.

It yields a fair quantity of juice of excellent quality. This cane was introduced into India (via Bourbon) in 1838, from which circumstance it came to be called "striped Bourbon." Mr. Kobus, who visited India in 1891 to endeavour to procure fresh stock for the Java plantations, recognised the pounds canes of India (the canes grown especially to be eaten, and not used in the manufacture of sugar) as identical with the canes grown by the Dutch for sugar manufacture. The ukh and ganna (the kinds specially grown in India for sugar manufacture) were previously unknown to Kobus, and he accordingly took back with him a large supply of these. It thus seems highly probable that most of the edible canes of India have been developed from imported stocks, such as those briefly enumerated above.

5. China Canes.—This is the Saccharum sinensis, which Roxburgh regarded as distinct from the indigenous canes of India. The distinction that he made has not, however, been upheld by modern writers, namely in the leaves being flatter and the margins more rounded. The flowering panicles, Roxburgh says, are ovate in general outline, with simple or compound verticillate branches. The Indian forms he separates as having panicles spreading, the branches alternate, decompound, and the corolla one-valved (instead of having the two valves on the same side, seen in the Chinese canes). These canes were introduced into the Botanic Gardens of Calcutta in 1796. Most writers, who experimented with the China canes shortly after their introduction, reported that they were hardy and prolific, not liable to attack by white ants nor jackals, and moreover able to withstand the hot weather better than the indigenous sorts. These opinions are vouched for repeatedly in the Journal of the Agricultural Society of India, but it is feared that if the original stock of China canes survive to this day at all, the plants have very possibly been largely merged into the indigenous forms and their origin mostly forgotten.

6. Singapore Canes.—As already affirmed, the more important of these seem to be identical with some of the Batavian and Bourbon canes. Wray gives eight different kinds met with in Penang, Singapore and Malacca. The prin
INDIAN CANES

Saccharum officinarum

Races

Finest cane in the world.

Black Cane.

Red-purple Cane.

Classification.

Ukh Canes. Description.

Races.

Principal is the Selangor cane, known as tibbu bitong berabu (the powdery dark cane) or tibbu cappor (the chalk cane) of Singapore and Malacca. These names are due to the presence of a large quantity of white resinous substance on the stalk. By many writers this is spoken of as the finest cane in the world. But in the Straits it is often called the China cane, because grown by the Chinese settlers in the Straits before the Europeans commenced cane-planting. The leaves are very broad and deeply serrated on the edges, very dark green in colour and firmly attached to the cane. The cane-itch is usually very prevalent on this plant. The tibbu biton (or clay cane) seems to be identical with the Otaheite of most writers. The tibbu tilir (or egg cane) seems peculiar to Taume, one of the New Hebrides. The leaves are smooth and the stems bulge between the joints to such an extent as to have suggested its name. The leaves are shed as they ripen, and the stem becomes so brittle that it breaks readily. It is prolific and easily cultivated. The juice is copious and rich in quality. The tibbu clain or obat is the black or medicine cane of the Malays. It is a small cane of a rich purple colour.

The red-purple cane of Singapore is generally accepted as the stock from which has been developed the red canes of Bombay. This is interesting in the light of the other suggestions and opinions which point to Bourbon and the straw-coloured Otaheite canes being identical, and to their having originated from Malabar. Thus the early European sugar-planters appear to have obtained their stocks from Malabar, Batavia, Madagascar and the Straits. Hence it may be added, in conclusion, that nothing has been discovered in physiology, botany or history that seriously upsets the hypothesis that all the forms of sugar-cane emanated from a common species, which was very probably originally a native of India and perhaps also of the tracts adjacent to India.

7. Indian Canes.—It has been pointed out by Benson and others that foreign canes introduced into India rapidly manifest a decline in the percentage of sugar-yielding juice. The crop of cane continues high, but the merit in sugar-production declines. This fact has led naturally to greater faith being placed in the improvement of Indian stock than in the acclimatisation of foreign canes. Commenting on the Madras canes, Leather observes that "undoubtedly some of the cane which is at present grown in the Madras Presidency is second to none in the world."

A movement has, therefore, been started to study the Indian canes critically by growing them side by side at test farms. Saiyid Muhammad Hadi, having devoted considerable attention to the study of the canes of the United Provinces, published a valuable work designated "The Sugar Industry of the United Provinces of Agra and Oudh" (1902), and assorted the canes there described and illustrated into three groups as follows:

Group I. Ukh Canes.—These are the most numerous and most extensively cultivated of all races. They are grown entirely for the production of sugar. The majority have a fairly hard, firmly adhering skin, which cannot be detached with a knife beyond the joints. Stems (canes) small, thin, erect, reed-like, thickest a little above the middle, mostly lemon-green in colour, with age becoming pale yellow or, in a small subgroup, blotched with red. Leaves narrow, small, dark green and soft. Aerial roots proceed as a rule from but a few of the lower joints. The internodes are short, only slightly constricted at the joints, and often possess a distinct central cavity that is even surrounded with strong fibrous cords. Buds small, depressed.

These, Hadi refers to the following sections:—(a) canes other than yellow. Of this nature he forms three series as follows:—(1) dhaiu canes, of which he figures and describes seventeen different kinds. (2) mantle canes, of which he shows ten kinds. And (3) kuswar canes, which he refers to twelve different kinds. Then under (b) the red ukh canes, he places the chin or chan canes, of which he describes six different forms.
SACCHARUM OFFICINARUM

Races

Hadi regards the *paunda* canes as foreign, but accepts the *chīn* as indigenous. It seems possible, however, that some of these may in reality be the survivals of the Chinese canes largely experimented with in these provinces nearly a century ago.

Group II. The Ganna Canes.—Except in a few districts these are grown almost exclusively as edible canes, especially in districts where the *paunda* canes cannot be successfully raised. They are usually taller and thicker than most of the races of *ukh* canes, and have longer and broader leaves. The skin is generally hard, but easily removable. The pith is always distinctly softer than in the former group. The central cavity and filaments are also absent and the canes are juicy, though not very rich in sugar. The aerial roots are more largely produced, and the buds are large and more conspicuous than in the *ukh* canes. But the sugars manufactured from them are inferior in colour. Lastly, they are very liable to fungal diseases, such as "red smut" (*Trichosphaeria Sacchari*), and are readily attacked by wild animals and white ants.

The best-known examples of this group are known as *agaul*, *merthi*, *dikhan*, *pansāhī kālā ganna*, *katārā*, *baraθukha*, *tankā* and *ghorāra*. Most of these names denote introduction from one district to another, such as Gagaul (*agaul*), a village in Meerut; and *merthi*, Meerut—but Hadi accepts the majority at least as being indigenous to India.

Group III. Paunda Canes.—These are the acclimatised canes proper, that is to say, those admitted by the people to be of foreign origin, such as the Mauritius, Otaheite, Bourbon, Batavian, China, Singapore, etc., discussed above. They are grown almost entirely for chewing, except in one or two localities where they are used for sugar manufacture. Generally speaking, their cultivation is confined to the vicinity of large towns where a ready market may be obtained. High cultivation, involving heavy expenditure, is an essential feature for the growth of these canes; hence they are more profitable as edible canes than as sources of sugar.

They are tall plants, very thick, with hard skin (easily removable), and soft, fleshy, central solid stems. The leaves are proportionately long and broad, and aerial roots more abundant than in any other canes, but their buds are proportionately small. Many of them have been so long under cultivation in India that they have had local names assigned to them.

The best-known examples of this are: (1) Madrāsī or *țhin*; (2) Bombāi (red cane of Bombay); (3) Saharanpuri; (4) *lal* or *kula ganna*; (5) Banārśī; (6) Burmi; and (7) Poona *paunda*.

Standard in Description.—Mollison and Leather furnish a diagram showing in outline four forms of cane, and suggest the desirability of future writers accepting these as comparative standards. They furnish particulars of 46 canes, but of 11 they have omitted to say to which type they belong, and of 9 more they are apparently not quite certain themselves. The proposed classification would thus seem by no means a very satisfactory one. In type (A) the joints are constricted but the cane not materially swollen, whereas in (C) the joints (nodes) are constricted and the internodes distinctly swollen. These would seem to correspond very largely to both the *ganna* and *paunda* canes of Hadi’s classification. The following are the (A) canes of Mollison and Leather:—*kali-jadi*; *deo-jadi*; Green Mauritius; *rasdali* (*rasvali*, the juicy); Yellow-green of Bijapur; Purple Mauritius (imported in 1893), the *rāmrasdāli* of Kanara; Streaked cane of Dhārwār and Belgaum; Madras
SEEDLING CANES

paunda (of Sitapur, Barabankee, Bareilly, etc.); kajli (of Bardwan); and the puri (of Bardwan). (C) canes are: the khajuria or meva (of Surat); Malabari (of Surat); the mahim Yellow-green or Poona pundia; samsara (of Dumraon); and the Saharanpuri (of Cawnpore and Bareilly).

The (B) and (D) canes of this classification seem to correspond to the truly indigenous canes of India which Hadi groups under the most general Indian name ukh. Of the former the following may be mentioned:—censi or Bamboo or betta kabbu (of South Marathá country); hullu kabbu (hullu = grass, and kabbu = sugar-cane) (of the South Marathá); suana (= small) - bile (= white) - kabbu (of Khánápur and South Marathá); mango (of Dumraon); dhauil or dhaur (of Cawnpore, Bareilly and Shahjahanpur); matna (of ditto); and rakra (of Shahjahanpur).

The (D) canes are as follows:—pansabi (of Behees); khari (of Dumraon and Bardwan); the dikhan (of Cawnpore and Shahjahanpur); and the munga (of the same place).

Lastly, the (E) canes of Mollison and Leather seem to correspond closely with the coloured ukh canes of Hadi. The examples given by the former authors are bhuri, phojbhuri and songadi (of Surat); the Purple cane (of Bijapur, Bassein and Thana); and the kare kabbu (kare = black) (of Belgaum, Khánápur and Dharwar).

I have enumerated the chief canes mentioned by Mollison and Leather, and not those given by Hadi, because the former are applicable to a wider area, and at the same time, so far as the United Provinces are concerned, correspond with many of those given by Hadi. The Imperial Gazetteer (iii., 39) says the canes of India may be broadly grouped into (a) thick, juicy, soft kinds which ordinarily require very liberal cultivation and irrigation, and (b) thin, hard, less juicy canes which, with well-distributed rainfall, succeed with less liberal cultivation and with sparing irrigation or even without any.

Seedling Canes.—In the concluding paragraph under history, reference has been made to the flowering of the cane (p. 933). But it had long been supposed that the sugar-cane, as with some other cultivated plants propagated by cuttings, had lost the power of producing seed. Unlike the beet it was only, therefore, open to improvement by the chance occurrence of bud variations or by the chemical selection of canes individually richer in sugar.

As a matter of fact, the sugar-cane is, though sparingly fertile, not

937
THE SUGAR-CANE PLANT

absolutely seedless. As long ago as 1858 Parris had raised seedlings from it in Barbados, and in 1888 Bovell and Harrison, in the same island, and Soltwedel in Java, succeeded in accomplishing it. This opened the way to improvement by seminal variation, which was at once taken advantage of. Thousands of seedlings were raised from seed taken from known seed-parents, but of which the pollination was uncertain. Selection was made of those with a vigorous habit and a high saccharine content.

In 1904 Lewton-Brain succeeded in hybridising known varieties by artificial cross-pollination. It thus became possible to breed on definite lines so as to combine the desirable characters of particular races. One object would be to obtain those which would resist the disease which had led to the abandonment of the cultivation of the Bourbon cane. Seedlings produced in Barbados (about 1899-1900), and known as “B 147” and “B 208,” have both been found to yield fully half a ton per acre more sugar than “Caledonian Queen,” and fully three-quarters of a ton more than “Bourbon.” They have, in fact, been stated to produce, under favourable conditions, fully 34 tons per acre, the best canes formerly grown having yielded only 2-53 tons, so that these seedling stocks showed an increased yield of 37 per cent.

CULTIVATION.

Area and Yield of Sugar-cane and Sugar.—There is perhaps no other aspect of the sugar industry of India regarding which more obscurity prevails than the Provincial and Imperial averages of yield of cane to the acre and of sugar to the cane. Moreover, returns are only available for six of the provinces, though these embrace about 95 per cent. of the sugar-cane area. The provinces covered by the official Memoranda, issued by the Director-General of Commercial Intelligence, are (1) Bengal, (2) Eastern Bengal and Assam, (3) the United Provinces of Agra and Oudh, (4) the Panjáb, (5) the North-West Frontier Province and (6) Madras. The areas omitted are (7) Bombay and Sind, (8) the Central Provinces and Berar, (9) Burma, and (10) the Native States. For the past eight years the first six provinces have shown an average of 2,307,618 acres under the crop, with a yield of 1,988,211 tons of crude sugar (gur). This gives an average of 11 acres to the ton of crude sugar, or say one ton to the acre, provided it be accepted as safe to frame any such estimate. But it must be observed that the crude sugar of India is ordinarily a much inferior article to that indicated by the estimates of sugar-production in most other countries. Thus, for example, much of the imports by India from Java are considerably below the Continental standard. To correct
Indian returns of raw sugar into the crystallised article, the proportion is \(\frac{2}{3} \) or 3 raw to 1 refined sugar. The Indian yield of cane to the acre does not appear to be ever published, so that the relative merit of the Indian stock to that of other countries cannot be ascertained.

The cane areas of the omitted provinces (7 to 10 inclusive above) can be ascertained, but not their yield of sugar. In 1903-4 and 1904-5 these came to about 140,000 acres, so that if that area be added and the proportionate figure be worked out for the outturn, the result would not materially disturb the calculations based on the six provinces only. The area returned in 1905-6 as under cane in the six provinces was 2,110,800 acres, and in 1906-7 was estimated at 2,348,800 acres. The ascertained yield was 1,725,300 tons in 1905-6, and 2,223,400 tons in 1906-7. The Agricultural Statistics still further show that in 1899-1900 the total area for all India under sugar-cane was 2,541,470 acres; and the subsequent figures manifest a shrinkage, right down to the returns of 1905-6, both constant and serious, though the improvement in the succeeding year is more hopeful. This may be exemplified as follows:

<table>
<thead>
<tr>
<th>Acres.</th>
<th>Acres.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1890-1</td>
<td>2,758,000</td>
</tr>
<tr>
<td>1891-2</td>
<td>3,100,000</td>
</tr>
<tr>
<td>1892-3</td>
<td>2,798,000</td>
</tr>
<tr>
<td>1893-4</td>
<td>2,897,000</td>
</tr>
<tr>
<td>1894-5</td>
<td>2,764,000</td>
</tr>
<tr>
<td>1895-6</td>
<td>2,930,000</td>
</tr>
<tr>
<td>1896-7</td>
<td>2,651,000</td>
</tr>
<tr>
<td>1897-8</td>
<td>2,648,000</td>
</tr>
<tr>
<td>1898-9</td>
<td>2,755,000</td>
</tr>
<tr>
<td>1899-1900</td>
<td>2,693,000</td>
</tr>
<tr>
<td>1900-1</td>
<td>2,522,000</td>
</tr>
<tr>
<td>1901-2</td>
<td>2,474,000</td>
</tr>
<tr>
<td>1902-3</td>
<td>2,358,000</td>
</tr>
<tr>
<td>1903-4</td>
<td>2,280,000</td>
</tr>
<tr>
<td>1904-5</td>
<td>2,244,800</td>
</tr>
<tr>
<td>1905-6</td>
<td>2,110,800</td>
</tr>
</tbody>
</table>

Average of 8 years: 2,818,250

Thus, according to these returns, the area for the eight years preceding the enactment to countervail bounty-fed sugar in 1899, showed an annual average of 2,818,250 acres, and for the eight years subsequently, of 2,429,700 acres. But it is possible these returns are not very accurate for the provinces of minor production and for the Native States. They are possibly low estimates, but doubtless are relatively correct, and therefore would seem to justify the opinion that the sugar-cane acreage of India has for some years past steadily manifested a contraction.

Turning now to the provincial returns, the United Provinces head the list with 49 per cent. of the total area, namely 1,228,900 acres in 1905-6 and 1,386,700 in 1906-7. Then follows Bengal with 19 per cent., or approximately half a million acres. Next Eastern Bengal and Assam with 11.2 per cent., or 201,500 acres in 1905-6 and 199,900 in 1906-7. The Panjab, 13.7 per cent.; the North-West Frontier Province with 1 per cent.; and Madras, 2.5 per cent. of the total Indian area under sugar-cane.

"In the North of India and in Bengal 20 tons of cane per acre is considered a good crop, and an outturn of 1½ to 2 tons of gur per acre is obtained. In peninsular India, where sugar-cane is extensively grown under well irrigation and is very highly manured, the product is much higher, 6,000 to 7,000 lb. of gur per acre being an ordinary outturn. With very careful cultivation and high manuring, even double the yield has been obtained from soft varieties of cane" (Imp. Gaz., iii., 41). Mollison and others have often said that the experiments conducted at the Government Farms have proved that sugar-cane can be more economically produced in India than in any other country in the world. [Cf. O’Conor,

Return in Foreign Countries.—With regard to the yield in other countries, H. C. Prinsen Geerdings, Director of the Sugar Experimental Station of West Java, gave the following yields of cane to the acre:—in Java, 36 tons; in Sandwich Islands, 33·4; in Egypt, 22; in Queensland, 16; and in Japan, 15·2. Yield of sugar in tons to the acre:—in Japan, 1·1; in Queensland, 1·6; in Egypt, 2·2; in Java, 3·6; and in Sandwich Islands, 8. These results showed the further fact, namely, tons of cane to the ton of sugar:—in Java, 7·1; in Sandwich, Egypt, and Queensland, each 10; and in Japan, 14·3.

Thus there would seem a wide range both in yield of cane to the acre and in the amount of sugar afforded by the canes produced. By high cultivation the yield of cane has been immensely increased in the Sandwich Islands, but it would seem as if the lower returns in Queensland were compensated for by the superior methods and appliances used in manufacture, since the cost of sugar-production is in Java £8 12s. 6d., and in Queensland only £8 15s., and this in the face of the startling statement of the yield being 36 tons in Java and only 16 tons in Queensland. Queensland is thus able to produce sugar at approximately the same price per ton as Java. But this question of cost of production manifests a wide range. Thus it is £8 4s. 4d. in the Sandwich Islands; Egypt, £9 10s. 11d.; Barbados, £9 15s.; Trinidad, £10 19s. 11d.; Demerara, £12 18s. 10d.; French Antilles, £14 6s. 9d.; and the United States, £18 18s. 6d. These were sums worked out a few years ago for the countries with a gold standard in currency, but it may be useful to add similar figures for the chief silver-standard countries:—Mauritius, £6 2s. 5d.; Philippines, £6 16s. 11d.; Japan, from £13 5s. 5d. to £16 16s. 10d.; Argentina, £17 14s. 11d.; and Brazil, £22 6s. 11d.

The Manchester Chamber of Commerce (Monthly Record for Oct. 31, 1899) discussed the yield of beet-sugar as compared with cane-sugar to the acre, with the following results:

<table>
<thead>
<tr>
<th>Beet-sugar</th>
<th>Cane-sugar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Germany</td>
<td>Hawaii</td>
</tr>
<tr>
<td>Belgium</td>
<td>Java</td>
</tr>
<tr>
<td>Holland</td>
<td>Barbados</td>
</tr>
<tr>
<td>France</td>
<td>British Guiana</td>
</tr>
<tr>
<td>Austria</td>
<td>Queensland</td>
</tr>
<tr>
<td>Russia</td>
<td>St. Lucia</td>
</tr>
<tr>
<td></td>
<td>Trinidad</td>
</tr>
<tr>
<td>1·71 tons.</td>
<td>3·6 tons.</td>
</tr>
<tr>
<td>1·55</td>
<td>3·2</td>
</tr>
<tr>
<td>1·29</td>
<td>1·89</td>
</tr>
<tr>
<td>1·24</td>
<td>1·82</td>
</tr>
<tr>
<td>1·09</td>
<td>1·75</td>
</tr>
<tr>
<td>0·80</td>
<td>1·54</td>
</tr>
</tbody>
</table>

Martineau gives an average of 2 tons per acre as fair for all sugar-cane production, a result which, considering the improvements already effected in the stocks and methods of manufacture and in the possibilities of the future, by no means justifies gloomy forebodings for the sugar-cane planter.

MANURES AND MANURING OF SUGAR-CANE.—Leather (Agri. Journ. Ind., i., pt. i., 13-24) deals with the subject under the following among other headings: history, the demands of the plant from the soil, and the manures best suited to meet this strain. He suggests a division of the manures into—first, farm-yard, poudrette, and fish manures; second, oil-cakes; and third, bonze and
THE SUGAR-CANE PLANT

these, viz.;—(1) Shamahara, (2) Kajji, (3) Poori and (4) Poona. The results attained to the Shamahara as the best gur-producing cane. The crop grows both on clayey and loamy soils, but a mixture of the two is preferable. Mukerji states that the best canes are found at the junction of old and new alluvia on the sides of streams and rivulets, where the soils are red clay loams, rich in mineral matter. As the crop is an exhausting one, it is never grown on the same land year after year. The crops it most commonly follows are pulse, mustard, potato or jute. The best time for harvesting sugar-cane is from December to February, and the most advantageous time for planting, the month of February.

In Lower Bengal the land is prepared by frequent ploughings from the middle of October to the middle of January. In most places it is also hoed, since deep cultivation is considered essential. When the soil has been thoroughly broken up, it is harrowed several times. The field is then divided into beds, by digging broad trenches, slanting from top to bottom at intervals of 40 feet, then subdivided by cross trenches 7 feet apart. Parallel furrows, at intervals of 1 to 2 feet, are now drawn along the beds, and oil-cake put into these. The plot is then well irrigated and cane cuttings placed lengthwise in the furrows and covered up. These are taken either from entire canes or the tops of canes. The latter system is said to be that pursued in the Bardwan Division, whilst the former is adopted in Bihar and Eastern Bengal. The cuttings are previously prepared by having been kept for a week or so in a cool pit—layers of cane with wet straw and ashes between. Subsequently the land is retained in a moist condition by artificial irrigation, generally given every fifth day, and when the young shoots have come above ground, the surface is well watered and hoed between the furrows. Afterwards it is occasionally irrigated and hoed, the plants being earthed up until the original furrows are converted into ridges. During the rainy season the soil is kept well drained, loose and free from weeds. From the middle of July to the middle of October the plants are tied up in clumps. Their dead leaves are removed, and oil-cake applied as a top dressing, at the rate of 4 to 5 maunds per paula. The crop is harvested from the middle of December to the middle of February.

In some places, especially on light soils, water-channels are not made at the time of planting, but the land is simply thrown up in ridges over the cuttings. Again, in others, after water-channels have been made, as described above, holes are dug 2½ feet in diameter and 1½ feet apart, in lines 12 feet from one another. One cutting is put in each hole with oil-cake and water, and then covered up. This is known as the Mauritius system, because supposed to be the method adopted there, and in India is mostly used on undulating ground, but the furrow system is said to be best where irrigation is required and possible.

Eastern Bengal and Assam.—The area under sugar-cane for 1904–5 in Assam proper was 44,869 acres. The largest areas ordinarily occur in Sylhet, which had 20,000 acres; Sibsagar, 6,925 acres; Cachar, 5,250 acres; Lakhimpur, 3,783 acres; Kamrup, 3,688 acres; Darrang, 2,176 acres, etc. But since the separation of Bengal, 14 districts formerly treated as within that province are now returned under the new province of Eastern Bengal and Assam, and later statistics accordingly manifest an apparent provincial expansion. Thus in 1905–6 the estimated area and outturn in the new province were 201,500 acres and 188,500 tons, and in 1906–7, 199,900 acres and 193,500 tons.

The following information regarding cultivation in the Brahmaputra valley is...
abstracted from the account by Dr. E. Stack. A light loamy soil, with a light admixture of sand, is most suitable. It must be high land, beyond the reach of inundation. Favourite spots are the edges of a marsh or the banks of a river. The degree of manuring depends entirely upon the raisat’s means and inclination. Plots in the vicinity of centres of crowded population are freely manured with cow-dung and crushed mustard seed, both before and after planting with cane; on the other hand, in the more rural tracts it often receives no manure except the ashes of the grass and weeds raked out of the soil and burnt. The best cane is that raised on virgin soil or on old fallows, but land from which a crop of mustard, pulse, or summer rice (āka) has been first taken is sometimes preferred. A second crop of cane, unless ratooned, is never taken, but the land is left fallow for several years. Waste or fallow land is broken up in October, then left till January or February, when ploughing starts and is continued till the middle of April. The field is then divided into strips, 8 to 12 feet wide, by drains which communicate with a ditch surrounding the field. The cane-sets are invariably the topmost joints. From the harvest season to time of planting they are kept in a cool and moist spot, placed in a half-upright position, in ground which has been turned up by the hoe, the beds of cuttings being covered with rice-straw or plantain leaves and watered if the weather be dry. The day chosen for planting out, generally about the middle of May, must be preceded by sufficient rain. In an official publication on *Seasons of Sowing and Reaping of Crops*, issued by the Reporter on Economic Products, cane is spoken of as planted crop from April to June. The layers are placed 2 feet apart, in trenches 3 feet distant, and these run at right angles to the drains that divide the field. After planting, a little soil, often mixed with cow-dung, is lightly scattered over them. The field is then weeded and the soil around the young shoots lightly stirred with the spade or hoe, a process which is repeated at short intervals during bright sunny weather throughout May and part of June, and at the same time manure may be applied. A few more weedicings are given and the earth from the ridges is heaped about the roots of the canes in the trenches till ridge and trench are reversed. This goes on till the middle of August, after which work stops for about a month. A final weeding and earthing up is then given, in September or October, when the canes are tied together in clumps by the leaves stripped off the lower parts of the stems. Cane harvest, as a rule, does not begin till the winter rice has been reaped, that is, till after the 15th of January. The operations of cutting, crushing, boiling, etc., are carried on simultaneously from this date till the end of March, or even beginning of April. The canes are cut close to the root, the tops lopped off and reserved for layers, and the stalks, stripped of their leaves, are bound in bundles and carried to the mill. From an extensive series of crop experiments, performed from 1883 to 1902, it would appear that the yield of cane to the acre is about 10 tons and that it requires about 11-6 tons of cane to afford one ton of jaggery. A small proportion of the annual crop is ratooned. If this is done the stripped-off leaves of the previous crop are left lying on the field till April, when they are burnt, and a month later, when the young shoots begin to appear, the crop is hoed and manure added. Such a crop is called *mūrva*, and is harvested earlier than the other crop, viz. in the beginning of January. [Cf. Allan, *Assam Dist. Gaz.*, 1905 (Cauchar, Syliket, Goalpara, etc.); *Crop Exper. Repts., Assam.*]

United Provinces.—On the average of the five years ending 1904-5, it is manifested that the area under sugar-cane in these provinces amounted to 49 per cent. of the total under sugar-cane in British India. In 1905-6, the area, according to the *Agricultural Statistics*, was 1,220,716 acres, viz. 954,350 in Agra, and 266,366 in Oudh. The yield was returned as 884,000 tons, though in 1904-5 it was 1,183,400 tons or, say, one ton to the acre. In Agra the acreage in 1905-6 in the most important districts was as follows:—Meerut, 108,954; Gorakhpur, 93,599; Bijnor, 77,783; Azamgarh, 69,088; Muzaffarnagar, 56,498; Basti, 55,123; Bareli, 51,135. In Oudh:—Fyzabad, 48,157; Kheri, 41,091; Sitapur, 33,201; Barabanki, 31,691; Gonda, 27,395; Sultanpur, 22,580. The *Final Memorandum* of the Commercial Intelligence Department for 1906-7 states the area and yield for that year as 1,386,700 acres and 1,264,600 tons.

The races of cane grown in the United Provinces have already been classified, with reference to their agricultural characters and properties, into
SACCHARUM
OFFICINARUM
United Provinces

SACCHARUM OFFICINARUM

THE SUGAR-CANE PLANT

Rotation.

three broad divisions, known as \(uhk\), \(gann\) and \(paund\). The methods of cultivation for the first two are the same, but differ somewhat in the case of \(paund\) cane.

According to Pandit Muhammad Hadli, from whom the particulars here given have been mainly derived, the crop is grown under three different systems of treatment. "In one, the land is kept fallow for a whole year following the removal of a spring crop. In the second, a winter fallow is allowed after a rain (\(kharif\)) or an autumn (\(agahn\)) crop. In the third, the ground is prepared and cane sown immediately after a spring crop has been cleared from the land." The second system is that most commonly pursued, especially in canal-irrigated areas.

Under the first, ploughing commences as soon as the rains have set in and is continued till sowing time. Under the second, it begins soon after the rain or the autumn crop has been removed, the land being watered if necessary to admit of ploughing. The number of ploughings varies from fifteen to twenty in the west and from twenty to forty in the east, but when cane is grown immediately after the land has been cleared of a spring crop, it is not ploughed more than five times. After every ploughing, the land is levelled. Manure is usually applied before planting, and incorporated with the soil by ploughing in. Cattle-dung or farm-yard manure is generally used, and at the rate of 200 to 300 maunds an acre. In the east, canes which are intended to be cut up into "sets" are left standing in the field. A day or two before planting the canes are cut, stripped of their dry leaves, and left in water overnight. They are then chopped into pieces, each piece being about 15 inches long and containing three to five buds. In the west, in the Rohilkhand and Meerut Divisions, the top cuttings are planted, which consist of a portion of the top green leaves and a few of the upper joints. These cuttings are buried in a corner of the field and covered lightly with earth, a layer of dry leaves being placed above and underneath. Every fourth or fifth day, water is sprinkled over them to keep them moist. On the day of ploughing, they are dug out and removed to the field. If the moisture in the field is not sufficient, the land is usually irrigated before planting. Planting the sets is done in the following way. A first ploughing is made parallel to the side of the field, but only just scratches the soil, and is followed by a second which deepens the furrow. A man then places the sets along the furrow at a distance of about one foot from each other. A third plough brings up the rear and covers the sets with earth.

The time for putting the sets in the earth varies from the middle of February to the middle of April. The crop is watered three to seven times between planting and harvesting, and in a dry year more is necessary. Four or five days after planting, the first hoeing is done, and after every watering two hoeings are given. When the plants are very young, each hoeing is followed by levelling the ground, and after the commencement of the rains, or when the plants are about 2 feet high, the hoed field is again levelled. The number of hoeings varies from 7 to 14.

In the west and parts of the Doab, the cultivators grow a ratoon crop, known as \(p\)eri. To propagate the \(p\)eri crop, the roots are left undisturbed from the time of first cutting, and the stripped leaves of the first year's crop are burnt in the field before the commencement of the rains. After the rains have set in and the young shoots begin to sprout, the field is ploughed up, the furrows being 6 to 9 inches apart. By the middle of November the crop is believed to have attained maturity and to be fit for crushing. Ordinarily, however, the cultivator does not commence cane-crushing till December.

The cultivation of the variety known as \(paund\), grown almost entirely for chewing purposes, differs somewhat from the above. Before planting, the field is dug up one foot deep and the sets are planted earlier than the time stated above, since the sooner this variety of cane comes into market, the higher price it fetches. The method of planting is somewhat different. The sets in this case are dropped into furrows between ridges into which the field has been previously laid out, and are covered over with earth, the furrows being 24 to 36 inches apart and the distance between the cuttings about 2 inches. Poudrette instead of farm-yard manure is in this case generally applied, at the rate of 600 to 800 maunds per acre, or about three times as much as in the former case. The first hoeing is done as soon as the land gets sufficiently dry after the second watering. The field is then watered again, and subsequently the ridges are split and the field levelled and divided into irrigation-beds. Hoeings and waterings continue till the advent of the rains, and in July or August the plants are earthed up. The number of waterings varies from twelve to seventeen during the period of growth, and the number of hoeings from five to seven.
GROWN FOR EATING PURPOSES

Saccharum officinarum

Cultivation Cost.

Panjab and North-West Frontier Province. — In the Agricultural Statistics for the year 1905–6, the area under sugar-cane is given in the Panjab as 172,700 acres, and the yield 88,983 tons, while the previous year was 325,500 acres and 283,300 tons of gur, or about three-fourths of a ton to the acre. It has to be borne in mind, however, that in many tracts, especially with considerable Muhammadan populations, cane is grownlargely, if not mainly, for eating purposes, and not used in the production of gur. The more important district areas may be given for 1904–5, namely, Gurdaspur, which had 51,590 acres; Sialkot, 34,919 acres; Lyallpur, 30,672 acres; Jallandhar, 27,797 acres; Rohtak, 24,494 acres; Hoshiarpur, 24,021 acres; Gujranwala, 20,492 acres; Karnal, 19,553 acres; Delhi, 17,575 acres; Amritsar, 16,545 acres; Ambala, 15,870 acres, etc. The area in the North-West Frontier in the same year was 28,003 acres, the great bulk of which is grown in Peshawar, 18,414 acres in the year in question; Bannu, 6,387 acres; and Hazara, 1,094 acres. The area and production in 1906–7 were 257,600 acres and 212,800 tons in the Panjab; 28,600 acres and 32,800 tons in the North-West.

The following information applies particularly to Sialkot, one of the most important sugar districts of the Panjab, and is abstracted from the account given by Dunlop-Smith (Gaz. Sialkot, 1894–5, 114–6). The land which is to bear the crop must be frequently ploughed. In Sialkot the preparatory ploughings vary from ten to twenty, and the ground is always manured. Cane is never grown from seed. Each year, when a field is reaped, about 5 per cent. of the stalks are carefully selected and cut into lengths of about 9 inches and buried in a pit. They are ready for planting in about three months. When taken out of the pit they are placed lengthwise in the ground and pressed down with the foot. The ground bearing sugar-cane has to be kept moist by steady irrigation when there is no rain. But unirrigated cane is generally superior to that grown on well lands. Planting usually takes place in March. Before the crop ripens, it must be weeded about five times. Cutting begins in December and goes on intermittently for about three months. The quality of cane depends very much on the soil which bears it. The best cane is grown on the rich darp soils in Raya. The highly manured fields round the village sites bear a poor class of cane, though the outturn is very large.

When the cane is cut, the green tops (dγ or pānd) are broken off and the sheaths (chhōi) of the stalks are stripped with a sickle. The stalks are at once carried to the place where the press has been set up. The presses are of two kinds, wooden and iron. The former is a clumsy machine, sunk in a pit. The cane-stalks are made up in bundles of fifteen to twenty-five and passed through and through the press several times. The juice is received into an earthen jar sunk in the ground. The iron press is much simpler than the wooden, and stands above ground. As soon as possible after extraction, the juice is poured into a large flat iron dish (kardā) placed on an earthen oven, and boiled and stirred for two to two and a half hours till it begins to coagulate. When the mass is ready it is poured into a hole (gand) in the ground, carefully prepared by plastering with clay. The liquid is then stirred for some twenty minutes till it hardens and cools enough to be rolled into balls. [Cf. Dist. Gaz. Pb. (especially Gujranwala, Rawalpindi, Shahpur, Montgomery and Multan); Rept. on Land Rev. Admin. Pb., 1901, ix., app. B, 111.]

Central Provinces and Berar. — Recent returns of the area and yield are not available for these provinces. The totals for 1904–5 were 21,398

945

60
acres in the Central Provinces (19,601 irrigated, 1,788 unirrigated), and 2,076 acres in Berar. The districts with largest areas are usually as follows:—Central Provinces: Chhattisgarh (Sambalpur and Bilaspur), 8,730 acres; Nerbudda (Betul) 5,324 acres; Nagpur (Bhandara and Balaghat) 4,910 acres; Jabalpur 2,425 acres; and Berar: Budana, 922 acres; Wun, 350 acres; Basim, 342 acres, etc. Particulars are not available regarding the yield of gur from these provinces collectively, but the Revenue Settlement Report on the district of Betul (published in 1901) affords many useful particulars that may be here mentioned. The average yield of cane would appear to be 18 tons and the yield of gur about 2 tons (9 tons of cane yielding 1 of gur). The gur produced is, moreover, of excellent quality and fetches locally about 30 per cent. more than the average article imported from other parts of India. These results are no doubt higher than those obtained in the Central Provinces generally, and even in Betul the yield of gur ranges from 1,500 to 5,000 lb.

Sir J. B. Fuller proposed that the standards accepted for the yield of gur should range from 1,500 lb. to 4,000 lb.

Cane is grown under two quite different systems, according as irrigation is or is not used. The only soil on which it is possible to grow cane without artificial watering is that known as black cotton soil, and there is a certain amount of unirrigated cane in all districts in which this soil occurs. Unirrigated cane is planted in November, December and January, on land which has, as a rule, enjoyed a year’s fallow and has been ploughed again and again for the previous nine months. The field is manured with cow-dung at the rate of 50 to 200 maunds to the acre, it being often applied as a top dressing when the young shoots have appeared above-ground. Pulverised oil-cake is also used in Bilaspur, being placed round the roots of the plants at the commencement of the rains. An important feature in this method of cultivating cane is the covering of the ground with leaves as soon as the young shoots have come up. This checkers evaporation and renders the lack of irrigation less harmful than it would otherwise be. The field is hoed and weeded between the rows of cane three or four times during the rains, and the crop is ready for cutting in November. This system is known as palour or nagaurca.

But by far the largest and most productive portion of the cane area is irrigated. With water and manure, cane can be grown on almost any description of soil, but the kinds most preferred are clayey loams. The reddish loam of Chhindwara is one of the best suited to sugar-cane in these provinces. Montgomery (Land Rev. Settl., 1901-5, app. i) takes a less favourable view, and says that the imports of cheaper sugars are curtailling production. He gives the cost of production as Rs. 164–10–10 and the average annual profit as Rs. 38. The following account of cultivation in Betul (abstracted from the Rept. on the Land Rev. Settl., 1901, 32–80) will illustrate the method by irrigation. The field in which the crop is grown is divided into several plots, three or four in number, and the sugar-cane is grown in each in turn. It is generally irrigated from a well, but occasionally from a hole beside a river-bed. Before the rains, manure is laid down in the plot selected, and during the rains and the first months of the cold weather it is thoroughly ploughed. At the end of December or beginning of January the field is divided into numerous plots with main irrigation channels between and smaller ones across them. The furrows are made by a plough with a triangular board fastened above and at the back of the share. The “seed,” which consists of pieces of cane each with three or four eyes, is then sown. The sower lays them in the water-channels, which have been previously well watered, and partly buries them by pressure with his foot. As soon as the plot is sown a watering is given, and if well-rotted manure is obtainable, it is now spread on the land. The crop is then fenced to keep out cattle and jackals. For the first fifteen days it receives no more water, but afterwards must be regularly watered. During the cold weather no part of the crop should be without water longer than eight days, and in the warm weather longer than four days. Throughout the monsoons there is nothing to do but keep down weeds, ward off animals and bind the canes together so that they may not be broken by wind. At the end of September watering must begin again, and great importance is attached to the watering given at this time. In
HIGH YIELD IN BOMBAY

the middle of December the harvest begins. The first canes to be cut are those intended for use as "seed." The cutting and manufacturing of gur commences in March. In the same Report it is stated that the best gur is made from sugar-cane raised on soil that has never before borne the crop or been manured. As the land becomes more and more saturated with the dung which is annually put on it, the quality of the gur gradually deteriorates, till it reaches the normal. When the crop is to be turned into gur, the cane is dug up with a sharp pick. The leaves are peeled off and the stripped cane is then taken to the mill. Formerly the only mill known was a cumbersome wooden structure, but an iron mill is now in universal use. As the juice is extracted, it is poured into the evaporating pan. When evaporation is complete, in about six hours the juice is poured into a wooden trough sunk in the ground. After it has cooled and hardened it is hung up in cloths to drain, and in a couple of days is ready for the market. [Of. Fuller, Note on Outturn of Land under Crops in C. Prov., 1894, 24-46; Land Rev. Settl. Repts.]

Rajputana and Central India.—The only States of Rajputana and Central India for which statistics are obtainable for a recent year (1905-6), and in which sugar is grown to any extent, are Gwalior, 9,221 acres; Jaipur, 645 acres; Bharatpur, 459 acres; Tonk, 340 acres; Kotah, 320 acres; and Alwar, 220 acres.

The systems of cultivation pursued differ in no material respect from those already detailed in connection with the Central Provinces and the Panjab. In the Dictionary full particulars will be found of individual reports, but nothing of any great interest has since been published. The yield of gur would seem to be about 30 to 40 maunds to the acre (28 cwt.), and in some localities with good black soil and abundance of water (such as in Chitgarh) as much as 50 maunds (36 cwt.) have been recorded. Ratoon crop is not uncommonly seen in these Native States.

Bombay and Sind.—Sugar-cane is cultivated in almost all parts of the Presidency, and according to Mollison on a greater diversity of soil than is the case with any other irrigated crop. The area is ordinarily about 60,000 acres. In 1905-6 the actual area amounted to 56,333 acres in Bombay; 2,549 acres in Sind. In 1906-7 the area was 49,090 acres, and in 1907-8, 48,470 acres with a yield of 121,874 tons. In Bombay the chief centres of cultivation in 1905-6 were Poona, 12,204 acres; Sátara, 10,011 acres; Belgaum, 9,950 acres; Násik, 5,528 acres; Surat, 3,372 acres; Kânára, 5,004 acres, etc. In Sind, Karachi, 907 acres, and Hyderabad, 900 acres. In the Report of the Department of Land Records and Agriculture (1904-5, 6), the following observations occur:—"The sugar-cane crop in this Presidency is of small importance as regards area, but of considerable importance in regard to value. The United Provinces of Agra and Oudh have a million and a quarter acres under sugar-cane, and the Panjab and Bengal together have an equal acreage. We have only some 60,000 acres, but while their cane is largely grown without irrigation, and, even when irrigated, produces an outturn of not more than 2,500 lb. of gul per acre, the Bombay cane is always irrigated and produces an average outturn of 7,000 lb. of gul; with sufficient manure and skilful cultivation, near Poona, the outturn is known to reach even 15,000 lb. The cane crop pays a considerable part of the irrigation revenue on canals and is one of the most remunerative investments open to capital in Western India, the average net profit being reported to be about Rs. 150 per acre. Experiments have been in progress regarding the best methods of cultivation of this crop for ten years, and important conclusions have been published by Mr. Mollison and a pamphlet issued this year by Mr. Knight. These conclusions are (1) that excessive irrigation is ordinarily applied by cultivators from canals; (2) that water to the amount of 2 1/2 to 3 947

SACCHARUM OFFICINARUM

Cultivation

Harvest. gur

Manufacture.

Rajputana and Central India.

Yield of gur.

Ratoon Crop.

Bombay and Sind.

Areas.

Bombay and Sind.

Districts.

Yield.

High Profit.

Practical Conclusions.
THE SUGAR-CANE PLANT

inches of rainfall should be applied every eight to ten days (these conclusions now regulate the Irrigation Department); (3) that the amount of nitrogen supplied per acre in manure should be about 350 lb.; (4) that this can economically be supplied by oil-cakes (this discovery has greatly influenced sugar-cane cultivation around Poona); (5) that the Poona system of cultivation in beds is better suited to the local cane than the system adopted from Mauritius.

The cultivation of sugar-cane has thus been very fully discussed by the Agricultural authorities of the Presidency, and the following is mainly a summary of their observations, drawn for the most part from Mollison (Textbook Ind. Agri., iii., 108-81):—The varieties cultivated may be broadly grouped into two, with numerous gradations between the extremes; (1) thick, juicy, soft kinds which require copious irrigation; (2) thin, hard, less juicy kinds which require lighter irrigation. Sugar-cane adapts itself to almost any kind of soil if drainage is previously secured, as a water-logged condition is fatal. The season of planting varies in different localities. In Ahmadabad, Kaira and Baroda it is planted in May or early in June. In the Surat Maritime country, most of the cane is planted in November and December, but the season may extend to February. In the Poona district, February and March are considered the best months to plant.

According to Mollison, the cultivation in the neighbourhood of Poona is typical of what it should be elsewhere, and he accordingly describes it in full. The best soil is a clay loam and the best preparatory crop a green-manure of san (Crotalaria juncea). The san should be sown thickly in June or July (about 70 lb. seed per acre), and ploughed in when 3½ to 4 feet high. If no manure crop has been used, the land is allowed to lie waste during the monsoon. In November the field is deeply ploughed, and one or two subsequent ploughings are given in December. After ploughing, the surface is levelled with a log harrow, all clods broken, and manure applied. Poudrette or farm-yard manure, about 60 loads or 30 tons per acre, is most commonly employed. Usually, however, a smaller application is given before planting, and the crop is again top-dressed in June or July with such manures as castor-cake, karani-cake (Pongamia glabra), fish manure, etc. Experiment has shown that the most important constituent of sugar-cane manures is nitrogen in immediately available conditions. Mr. Knight states that in the case of the Pundia canes, as much as 350 lb. of nitrogen per acre is required to give the best turnout. The manure should be evenly and carefully spread, and the land then ploughed into ridges 24 to 28 inches apart. The plough is next run across the ridges to form parallel water-channels 10 feet apart. Finally, the field is laid out in beds 10 feet square. Each compartment when complete contains five short ridges and five furrows. The crop is propagated from sets, though sometimes in other parts of the province, as in Gujarat, by planting whole canes. Each set has usually three eyes (buds) and more, and may be 15 inches to 18 inches long. One acre of good cane provides sets for 11 to 12 acres. Ratoon cane—i.e. cane grown from the root-stocks of the previous crop—usually provides the best sets, and many authorities consider the "tops" better for sets than any portion of the mature cane, but according to Mollison, it has yet to be proved whether the resulting crop is better or worse than from sets planted in the ordinary way. [Cf. U.S. Dept. Agric. Exp. Stat., 1897, viii., 527; 1899, x., 546; 1901, xii., 438, etc.] The argument for using the tops is that they contain no cane sugar and that the practice of reserving whole canes for sets is wasteful. In the Poona district 16,000 to 18,000 sets are said to be required per acre. Before planting, water is conducted into each bed in turn. When it has partially soaked into the soil the sets are laid along the bottom of the furrows and trampled down 3 or 4 inches into the soft mud. The distance between sets is about 4 inches. Planting should take place in February and be finished before the middle of March. A month after planting, the land should be carefully weeded with a khurma or hand-epu. Usually, four weedicings are necessary. In June or July new beds are formed. The soil is dug, levelled, weeded, and a second dressing of manure given. The canes originally planted in the furrows are earthed up with a hand-hoe, thus forming a furrow between the rows of cane. These furrows serve as new watercourses. After July or August, in the Poona district, cane requires no further attention except protection and irrigation. The land is first flooded as the sets are planted, and

948
thereafter two or three times at short intervals. Subsequently eight to ten days may elapse between the waterings, the shorter interval in the hot weather, the longer in the cold. The rainfall in the Poona district averages about 30 inches, and Mollison states that on an average sugar-cane gets during twelve months, in addition to the rainfall, irrigation water equal to 75 to 80 inches of rain, the crop being irrigated on an average 28 times a year. During the first three months the crop makes slow growth, and it is common to grow with it subordinate crops which ripen quickly, such as maize, guádor (Cynanopsis psoralioides), onions, cucumbers, melons and tobacco.

It is difficult to judge by eye when the cane is ripe. Frequently a cane-grower tests the ripeness of his crop by a trial crushing and boiling. If a given quantity of juice gives a satisfactory weight of gùl, harvest is proceeded with. Usually the crop gets a yellow colour as it ripens, but this colour may be caused by irregular or deficient irrigation or by a want of manure. If the side leaves are all dead, and the eye-buds almost to the top of the cane fully developed and firm, the cane is probably quite ripe. If it is intended to grow a ratoon crop, the cane should be cut with a sharp sickle at the height of 1 to 2 inches above-ground. Mollison states, on the evidence of experiments made at Mánjiri, that it is risky in the Poona district to take more than one ratoon crop. Generally, however, in that district, two successive ratoon crops are taken. But Poona is the only district where ratooning is practised to any considerable extent. If no ratoon crop is desired, the cane should be uprooted and removed from the root-stock by a sharp jerk. It should be reaped or uprooted in the early morning, while the leaves are wet with dew. The dry leaves are stripped from the cane by means of a sickle. The upper green leaves, which are useful as fodder, are usually not removed in the field. Subsequently, the cane is tied in bundles and carried on the head or in carts to be crushed at the mill, which is often placed conveniently near the field. Forty tons per acre of cane is stated to be a fair average crop in Bombay. According to Mollison, the estimated cost per acre of cultivating sugar-cane by hired labour in Poona amounts to Rs. 486-12a. Mr. Knight gives as a general estimate Rs. 420-12a. per acre. In growing a ratoon crop, the cost is considerably less than for a new cane. No sets are required, less manure and less irrigation are necessary, and the saving amounts on an average from about Rs. 120 to Rs. 150 an acre. [Of. Mollison, Sugar-cane in Bomb. Pres., in Agri. Ledg., 1898, No. 8; Knight, Sugar-cane, Dept. Land Rec. and Agri. Bombay Bull., 1905, No. 25; Repts. on Crop Exper. Bombay; Esp. Farm Repts. Poona, 1896, 31-57, etc.]

Madras and Mysore.—The area under sugar-cane in Madras, according to the Agricultural Statistics for 1905–6, was 74,359 acres, while an estimated area and yield for that year were 60,700 acres and 114,500 tons. It seems desirable to exhibit both the actuals and the estimates, since the yield (expressed from these quotations) would be 1 8 tons an acre. The largest district areas in the year named were Bellary, 9,761 acres; Coimbatore, 9,689 acres; Godávari, 8,413 acres; Trichinopoly, 7,430 acres; South Arcot, 6,168 acres; Vizagapatam, 5,763 acres; North Arcot, 5,585 acres; Salem, 5,045 acres; Cuddapah, 4,932 acres; Anantapur, 2,624 acres, etc. And it may be added these express relatively the ordinary areas of sugar-cane in the Presidency. Lastly, in 1906–7, 52,500 acres with a yield of 100,400 tons. The area in Mysore in 1904–5 was 38,802 acres.

The rich alluvial soils near the mouths of rivers are best adapted to sugar-cane, but the ground must be such that it can be irrigated for ten months of the year. During the first month of cultivation the field should be irrigated every week and afterwards every fortnight, but much depends on the nature of the soil. It is not usual to cultivate the cane two years running on the same land. In parts of Kurnool, Timnevelly and South Kanara, however, the stumps of the cane are left in the ground to sprout and yield a crop the following year, and in the Nadyil taluk of the Kurnool district, the cane is left in the ground for three years, and in the Cumbum taluk for as long as ten, the yield diminishing each year. These instances of slovenly agriculture are, however, exceptional. The cultivator usually permits land which has borne some other crop to lie fallow for a year, and then prepares it for the cane by several ploughings, or by breaking it up

<table>
<thead>
<tr>
<th>Subordinate Crops</th>
<th>Tests for Ripeness</th>
<th>Ratoon Crops</th>
</tr>
</thead>
</table>

Cultivation

<table>
<thead>
<tr>
<th>Yield of Cane</th>
<th>Cost</th>
<th>Madras Areas</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>districts</th>
<th>soils</th>
<th>Ratoon Crops</th>
</tr>
</thead>
</table>

949
CULTIVATION IN BURMA

SACCHARUM OFFICINARUM

Manufacture

consumed in the raw state; (2) that of permanent cultivation, where the cane is manufactured into gur.

The first tract includes roughly all the lands on the seaboard within the region of tidal creeks. The land, as a rule, is poor and will not yield a cane crop two years in succession, so that it is met with only in isolated patches. The form of cane grown is called kyeukan or kyaykeuang, a large cane of light colour with short thick joints, so brittle that when passed through the mill it generally breaks at the joints. The timber on the land selected is cut down at the beginning of the dry weather, and burnt in March. Vegetables are then planted among the ashes and afterwards sold at a small profit. In September the land is cleared of weeds and cane pieces are placed in holes at a distance of 2 or 3 feet, the holes being in rows 3 or 4 feet apart. The cane-sets are fastened down by a bamboo lashing to prevent them being washed away. In January and February loose soil is thrown up round the young plants, and in May and June supports to which they are tied are placed near each cane-stool. In some parts trenches are made to admit water during the dry season and drain the land during the rains, and in other parts the plants are watered by bamboo water-lifts. About August and September the canes are cut and sold in pieces. If hired labour is employed, the cost of cultivation is Rs. 60 per acre.

The most important portion of the tract of permanent cultivation is situated in the valleys of the Bilin and Thëbyu rivers. The soil here is almost entirely grey loam, mixed here and there with light clay. The land is covered during the rainy season by river floods for a few days at a time, and a thick layer of alluvium deposited on it. The soil on which cane is grown for manufacturing purposes in the other districts of the province is generally a deep rich loam. Where new land is cleared, or land already cultivated has been left fallow, the cultivator turns up the soil with a hoe at the beginning of the rains (May or June), and then leaves it to rest till September, when he diggs holes 10 inches deep and one foot wide at intervals of 1½ feet from each other. Three pieces of cane (aggyaung), about 5 inches long, are then placed in a standing position in each of these holes, and partly covered up with loosened earth. Some cultivators plough the land three times at the beginning of the rains instead of turning it up with a hoe, but the more general practice is simply to run deep furrows through the land in September, and then place the cane-pieces longitudinally along the bottom. The space between the furrows varies from 2 to 3 feet. Before planting, the land is cleared of grass and weeds. Ten days after the cane-pieces have been planted, the earth is loosened between the holes and the sets further covered with mould. In the beginning of January the earth is once more loosened and the plants again covered up. About May the land is once more cleared of weeds and the canes left till August or September, when they are stripped of old and withered leaves. They are ripe about the month of November in Burma proper, and are then cut close to the ground. The branches at the top are given to cattle as food and the tops preserved for planting. The remainder of the cane is divided into bundles, tied up in bundles, and carried to the mill.

Generally three or four young shoots, or ratoons, spring from the old stool. If these are sufficiently thick, no new plants are put down after the cane has been cut, but as a rule cane-tops are planted in the intervals between the ratoons, after the land has been cleared of grass and weeds. These tops are about 5 inches long and are planted from November to January. After the second year’s crop the land is either left fallow for a year, or again is replanted with cane-tops and left fallow the following year. Mr. Bridges gives the cost of cultivation in a plantation worked entirely by hired labour as Rs. 90 per acre. The greater number of cultivators, however, work the land themselves with their families, and the average cost of cultivation is calculated at Rs. 15 to Rs. 20 per acre. With regard to the outturn of sugar per acre, Capt. H. Desveaux states that in the Kyaykto district (Settl. Rept., 1898, 58) the average from Class I. soil is 2,984-05 lb.; from Class II. soil, 1,648-76 lb., and in the Toungoo district (Settl. Rept., 1900, 57) the first-class average is 6,733 lb. per acre. [Cf. Bridges, Sugar-cane in Brit. Burma, 1885; Settl. Operat. Repts. Burma; Max and Bertha Ferrars, Burma, 1900, 85; Nisbet, Burma under Brit. Rule and Before, 1901, i, 366, 445.]

MANUFACTURE.

INDIAN INDUSTRY.—Popularly it is often said that there are two main kinds of sugar—“Muscovado” (or raw) and “Crystals.” The

Manufacture, Indian.
are bleached and dried by exposure to the sun until they form fairly white and clean sugars. *Kuza khand* is alone the equivalent of the English sugar-candy. When this is to be prepared, the boiled and clarified *khand* is thrown into an earthen vessel in which have been suspended threads. The sugar on cooling crystallises on these and on the sides of the vessel in the form of large crystals. Certain localities are famed for their *kuza khand*, such as many parts of Rajputana, Bikanir for example.

Crude though the methods may be which are pursued in the production of the various Indian sugar products, they very possibly give the suggestion of the original conceptions upon which the skilled art of sugar manufacture and refinement rests. In India, the canes of a certain neighbourhood are carried to a central locality where a crushing-mill, usually of two vertical iron rollers driven by bullocks, is owned in common by a group of cultivators. The cane is crushed and the juice boiled down there and then to *rāb*, the *megass* being used as part of the fuel. The *rāb* is then carried to the village or homestead where its further treatment is pursued, or it is sold to the dealers and in that form retailed, or is conveyed to the refinery, where it is worked up into sugar, etc.

The *Agricultural Journal of India* (ii., pt. i., which I have just received) contains three papers on sugar. Moreland deals very fully with the present position of the indigenous methods of sugar manufacture and the difficulties with which the manufacturer has to contend (l.c. 15–21). Lehmann gives many practical suggestions for the improvement of the methods and contrivances that prevail in Mysore. "The Indian sugar-cane," he says, "at least that grown in Mysore, is of excellent quality, and labour is relatively very cheap, less than one-seventh of what it is in Louisiana, where large quantities of sugar are produced notwithstanding that the quality of cane is very much inferior to ours. In the present method of manufacture heavy losses occur. The average of a number of experiments indicates that more than one-fourth of the total quantity of the juice is left in the refuse, that with a larger mill one-third of this loss can be saved (still larger mills would probably save two-thirds), that as much as 20 per cent. of the total sugar in the juice is sometimes lost by fermentation, and that, as a rule, over 13 per cent. of the total juice is lost by underliming. On the whole, the losses amount to at least one pound out of every five, that is, for every four pounds of sugar now obtained at least five could be got by stopping these heavy leaks, and probably the quantity of cane now giving three pounds of white sugar would as a rule give four pounds of such sugar when these losses are prevented."

"This would probably be quite sufficient to transform a crippled industry into a flourishing one. But there are further savings which can be introduced by manufacturing directly from the cane a sugar of much higher grade than is now being done when making jaggery. Part of this sugar, without being refined, could directly replace a portion, and possibly a very large portion, of the sugar now imported, and the rest could be sent to the refinery for conversion into the very highest grade of sugar, being thus transformed with a better outturn and at much less expense than an equal weight of jaggery."

EUROPEAN INDUSTRY.—The stages, methods and appliances used in the European factories may be exhibited briefly as follows:

1. Extraction of Cane-Juice.—The different methods pursued have been grouped under (a) Disintegration in crushing-mills; (b) Maceration; and (c) Diffusion.

By the last process, instead of being crushed in a mill (as already described), the canes are cut longitudinally in a slanting direction into slices one-sixteenth of an inch in thickness, by special cutting-machines. Very much less power is said to be required for this operation than for crushing by roller mills. The slices are then conveyed to an apparatus known as the diffusion battery. This consists of a series of cylinders, connected with each other, in which the sliced cane is subjected to water at a high temperature. This coagulates the albumen and extracts the sugar from the cells. It has been stated that 84 to 86 per cent. of the 90 to 91 per cent. sugar present is thus obtained, or about 20 per cent. more
than by the roller system. The juice, moreover, is of greater purity owing to the coagulation of the albumen. The defecation of the juice is thus rendered far more simple and easy, and is eventually drawn from the battery free from glucose and of a pale straw colour.

II. Defecation and Clarification.—These operations consist of various stages, such as straining, heating, tempering, bleaching and filtering. The most important of these is defecation or tempering with lime (see Lime, p. 712) or other chemical substance, which, combining with the acids liberated, as also with any carbonates that may be present, precipitates these in the form of insoluble compounds (see Alkaline Earths, p. 58).

III. Concentration and Granulation.—The purified cane-juice has now to be freed of much of its water so as to allow of crystallisation. This may be accomplished by heat, either in open pans (the Native method) or in basins heated by steam or boiled in vacuum pans. In the last-mentioned process the grain formed from syrup boiled in vacuo is larger and more solid than from syrups simply concentrated to crystallising point in open batteries. Formerly the crystallisation was effected by cold, the Chevalier process.

IV. Curing.—The last stage embraces the complete drying and the Whitening or bleaching of the sugar. This may be accomplished by simple drainage, as in the Native process above briefly indicated. In European trade, sugar simply drained of its molasses from casks placed over tanks was known as “Muscovado,” “grocery sugar,” “brown sugar,” etc. The trade in this form is nearly obsolete. The claying of sugar corresponds with the washing with water derived from a layer of aquatic weeds. In the European method, a layer of clay used formerly to be placed over the sugar, upon which water was poured. The water percolated through the clay, removed the non-crystallisable sugar, the colouring matter and other impurities. The sugar was thus washed and, through the removal of the insoluble sugar, was in time also dried. But these and other primitive methods have been superseded in all the larger factories by centrifugal dryers or hydro-extractors. There are many forms of this, but all consist essentially of a cylindrical basket revolving on a vertical shaft, its sides being of wire gauze or perforated metal. The basket is surrounded by a casing at a distance of about 4 inches, the annular space thus left being for the reception of the molasses expelled by centrifugal force through the sides of the basket, when the latter revolves at a high speed.

Improvement of Indian Industry.—It would be quite possible to perfect the small hand factories of India to enable them to turn out at a cheaper rate than at present a much superior sugar. In many respects sugar manufacture and refinement are eminently suited for the hand labour and small capital of the village communities of India, but machinery and chemistry the world over are depriving all such communities of their handicrafts, and the salvation of the Indian sugar-manufacturing industry, it is feared, must be rather looked for in aids toward the establishment and encouragement of power factories, where the most advanced methods and contrivances will be used, rather than in subsidies to effete and wasteful crafts. Mr. H. F. Walker of Brisbane, Queensland, in a most instructive communication (Bihar Sugar Comm. Rept., 1901, app. No. 5), discusses fully the system by which the industry has been substantially aided in that Colony. Moreland (app. No. 4) gives many
practical suggestions both as to methods of cultivation and systems of manufacture that might be adopted in Bihar. Minchin has strongly urged the Bihar planters to adopt the diffusion in place of the crushing system of treatment of canes. [Cf. Burkill, *Agri. Ledg.*, 1903, No. 8; Burkill and Weinberg, *Agri. Ledg.*, 1903, No. 12; Chapman, *Sugar, Encycl. Brit. suppl.*].

Perhaps one of the most hopeful directions of immediate improvement was dealt with by O’Connor, Hamilton and Handeck in their *Bihar Sugar Commission Report* (1901), where they discussed the advantages of the central-factory system. They studied critically the whole question of the cultivation of cane and the combined manufacture of sugar and indigo. While setting forth many agricultural and other reforms they advocated most strongly the adoption of the system of central mills and refineries as the most economical method of manufacture. But it may be urged that the possibility of the combination of two such widely remote technical industries as the production of sugar and of indigo, is the weak point of the scheme. Whichever proved the more profitable would secure the greater attention, until one or other might be ruinously neglected. Moreover, the power required for the one may very likely prove unnecessarily large and expensive for the other. But that reforms are not impossible with India generally can be seen from an inspection of the splendid results attained by Mr. F. J. V. Minchin at Aska in Ganjam. In 1882 he settled in that district, and in his own lifetime built up a great enterprise which has been described as having become the dominant feature of the trade and prosperity of a wide area. His example is one that might well be followed in every sugar-cane growing district in India both by Natives and Europeans, but in each centre a Minchin is required.

By-products.—The by-products of the sugar factory are most important. The *megass*, or bruised canes, left after the extraction of the juice or ras, is in India usually employed as part of the fuel required for boiling down the juice. Minchin holds that by the diffusion process the whole of the sugar is removed from the cane, while by the Native process a large amount still remains. To prove this point, he purchased locally 40 tons of *megass*. Passing this through his apparatus, he was able to obtain from each ton 50 gallons of molasses, which yielded 30 gallons spirits of proof strength. Assuming an equal loss all over India, he made a calculation which he graphically represented by saying that the saving effected would go far to meet the interest of the public debt in India.

So again, it has often been said that the *megass* might be employed in paper-making; but in the greater part of India, at any rate, the difficulty of procuring firewood and the cost of collecting and transporting *megass* to the paper-mill would very possibly argue in favour of its present utilisation. In the United Provinces it was estimated that the fuel required for boiling and making the *quir* from an acre of cane would be 108 maunds dry cane refuse, 50 maunds dry cane-leaves, worth say Rs. 5, and about 5 maunds firewood worth Rs. 2. If firewood alone were used, 108 maunds, costing with cartage to the field say Rs. 31, would be necessary. There is thus a saving of Rs. 24 by using all the *megass* supplemented with firewood as compared with firewood only.
THE SUGAR-CANE PLANT

[Saccharum officinarum

Trade

Rum and Spirits.—The combination of a rum or spirit distillery with the sugar factory has been often maintained as highly profitable, and by others used as an argument against the extension of sugar factories. Country brands of rum are said to be often coloured and flavoured in order to be sold as brandies and whiskies. The spirit produced pays a duty averaging from Rs. 4 to 6. The most important factory of this kind is the Rosa at Shahjahanpur in the United Provinces (see Spirits, p. 104).

Chunam.—In passing it may be here mentioned that sugar is universally used in some form along with lime in producing the much-famed chunam plaster (see p. 293).

TRADE IN SUGAR.

Centuries may be accepted as having intervened between the discovery of sugar and the time when it began to be a necessity of European life. We read of early transactions with India, which may be indicated by the following:—In Birdwood and Foster (E.I.C. First Letter Book, 338) mention is made in the commission of certain ships sailing for the East Indies in 1609, that they were to procure “sugars of the best some twenty chests for a trial.” In a similar commission (1611, 407) we read again, “sugars of the best some fewe chests for a triall.” In one of the Factor’s Records from Surat, addressed to Sir Thomas Roe in 1616 (Foster’s E.I.C. Letters, iv., 327), occurs the observation—“We deny not but that Bengalla brings wheat, rice, and sugar to Indya” (Hindustan proper), “makes fine cloths, etc., which showeth the fertility of the country and the quality of the inhabitants,” etc., etc. In a letter of date December 28, 1617 (L. vi., 280), Edward Monox threw doubt on the desirability of complying with the Company’s indents for Surat sugar. He urges that the sugar is a light, spongy article, “which I am persuaded with the damp of the hold coming into our moist climate will moulder and break to pieces and thereby prove unsaleable; besides it hath such an oily taste that it will not please our English palates.” Indian sugar, however, gradually assumed importance in Europe, and on cane cultivation being established as a European industry in the British Colonies, it obtained a fresh impetus. But the birth of the Colonial was the death of the Indian trade with Europe. The Honourable Company of East India Merchants becoming aware of the loss India had sustained in its failure to create, or even to participate in the greatly increased traffic, made strenuous efforts to awaken interest in the subject. Although many obstacles were thrown in the way, the Company succeeded in reviving and greatly enlarging India’s foreign interests in sugar. Heavy losses were for years patiently borne in the hope of ultimate success. East Indian sugar became regularly quoted, and it improved in quality as time went on. Moreover, the internal trade of India itself gave distinct indications of expansion. The demands of the people for superior qualities had grown so strong that the imported refined article gradually came to bear, in the various languages and dialects of the country, names that denoted the foreign countries of supply, such as chini (China) and misri (Egypt). There is, in fact, abundant evidence that for centuries the art of refining was not generally known to the people of India. According to Chinese records the knowledge would appear to have been derived from

956
THE BOMBAY MARKET

Egypt, and according to Indian, most probably long subsequently, from China. A century or two ago the people of India, therefore, consumed a far larger proportion relatively of crude sugar (gur) than they do even to-day. But the East India Company were wise in directing their attention to the internal trade: the demands of Bombay were obviously the most natural outlet for the surplus stock of Bengal, and the best check that could be given to the Dutch trade in supplying Bombay with sugar. But to facilitate this, the transit dues on sugar were removed and an import duty placed on the foreign supplies. Even when thus protected the Indian sugar did not, however, assume control of its own markets. Large supplies continued to be drawn from Egypt and China, as well as from Batavia and the Straits, and it was accordingly recognised that an effort must be made to improve the cheaper Indian refined sugar, more especially since still newer and more formidable producing centres had arisen in Mauritius and the West Indies which began to contest the Indian markets. And still more recently a disturbing element appeared in the supplies of cheap beet sugar, poured into India from Europe. Thus had India not only lost her European market but had become a field for European commercial enterprise in the provision of cheap refined sugar. But there has been secured at least one advantage of this new supply, namely the vigorous education of the people of India in the advantages of refined over crude sugar, and thus the opening out of a large market of which the Indian refineries have recently not been averse to avail themselves, and may do so still further in the future. It can thus be said that the people of India are able to pay a far larger sum not for sugar alone but for many other luxuries, than they ever did at any period of their past history. Further that the home market, by far the most important to the producers in India, is still largely secured to them. This is abundantly shown by the Finance Minister of India (Gaz. of India Extraordinary, March 21, 1906) by a table which exhibits the prices of refined beet-sugar at Calcutta and Bombay, and of Indian raw sugar at Cawnpore, for a number of years ending 1905. The averages of these for the past eight years would be—Calcutta, Rs. 10–14–7; Bombay, Rs. 11–7–0; and Cawnpore (gur), Rs. 5–11–0.

Countervailing Duty.—It has been urged, moreover, that about the time beet-sugar first appeared in Bombay, a series of bad years, which culminated in the famine of 1901–2, curtailed Indian production and opened the door for foreign sugar. So firmly, at all events, have the foreign imports been established, that the trade is by many believed to be secure and to have given evidence of an expansion rather than a curtailment. A duty was accordingly imposed in March, 1899, on bounty-fed sugar from foreign countries. It was framed with the intention exclusively of countervailing bounties paid, directly or indirectly, by foreign Governments. This produced an appreciable revenue, which amounted in 1901–2 to 37 lakhs of rupees (and in the six years of its existence to 94\frac{1}{2} lakhs); still, it did not stop the influx of cheap European sugar. The closing of the American markets diverted a still larger supply to India, and the Enactment of 1902 was intended to counteract this artificial surplus. The action of the Indian and American Governments thus forced the ratification of the Convention of Brussels. The immediate effect of the Indian duties was to diminish the sugar imports from Europe, and to divert the trade previously carried on with India by Germany and Austria, to countries which did not come within
to export the purer article, and indeed sugar (even of the finer qualities) was treated as a ballast cargo, to be used in place of saltpetre as occasion required. In none of the returns, therefore, were these exports raw sugar, though expressed as such. They were entirely Indian refined sugar, drawn from the indigenous refineries. It would not pay (so it was believed) to export raw or inferior sugars from India, the freights being then too high. With the growth of refineries in England and Scotland, however, combined with greater facilities of shipping and consequent cheapening of freights, it no longer paid to ship the refined sugars, and the consignments became more and more raw sugar to be used up by the British refineries.

The effect of this change may be briefly indicated. In 1877-8 the exports of refined sugar stood at 477,128 cwt. A sudden drop occurred in the next year, when these exports were only 51,043 cwt., and ten years later (1888-9) were only 34,523 cwt. But, correspondingly, the exports of raw sugar were in 1877-8, 366,997 cwt. The average for 1882-92 came to 1,145,685 cwt.; for 1892-1902, 733,654 cwt.; the actual for 1901-5, 192,890 cwt.; for 1905-6, 230,498 cwt.; and for 1906-7, 164,299 cwt.

Thus there can be no doubt that a severe blow has been dealt to the Indian sugar industry, which, but for its own immense resources and recuperative power, might have been calamitous. Had England continued to purchase Indian raw sugar there is little doubt an immense expansion of the area of production, and an enhancement of the yield, would have been the natural consequences. All this is now changed, and sugar represents 53·3 per cent. of the total value of the articles of food and drink imported, and is the second largest single article of importation, the first being cotton piece goods. Thus the two chief items of India's early export trade have become her greatest modern imports.

2. Imports from Foreign Countries.—It is perhaps not necessary to trace the history of the imports of sugar farther back than to the year 1871-2. India then received 562,559 cwt. of crystallised sugar. In 1881-2 the imports were 982,262 cwt. and in 1891-2, 2,734,491 cwt. Still a decade later (1901-2) they had become 5,565,272 cwt., and roughly in equal proportions of beet and cane sugar. Taking the traffic in both refined and unrefined sugars, the following year (1902-3) a shrinkage of the beet-sugar took place, the total imports being 4,987,195 cwt. (of which 3,529,678 cwt. were cane); in 1903-4 beet still further declined, the total having been 6,038,115 cwt. (5,485,378 cwt. cane); in 1904-5 the beet began to recover, and the total imports were 5,549,797 cwt. (4,833,309 cwt. cane); in 1905-6 they were 7,666,191 cwt. (4,263,798 cane and 3,432,393 cwt. beet); and lastly, in 1906-7, they were 9,730,713 cwt. (5,926,879 cwt. cane and 3,803,834 cwt. beet) (Rev. Trade Ind., 1906-7, 8-9).

Mr. Frederick Noël-Paton, Director-General of Commercial Intelligence, observes that beet-sugar continues to rule the Indian sugar-market; he further exemplifies the extraordinary vicissitudes of the trade by a statement of the imports of beet and cane sugar, month by month, during the year 1905-6. It is there shown that beet-sugar reaches India mainly in the months of November to March, the last-mentioned month being the most important, while cane comes more uniformly throughout the year, the chief months being August to October. Analysing the returns, it is found that 3,432,393 cwt. were beet, the average value of which was
PRODUCTION AND CONSUMPTION

total. Austria-Hungary, diminishing her contribution by nearly 723,500

cwt., drops to the fourth place with 17.53 per cent. of the total; and

Germany, with the largest arrivals she has yet recorded, takes third place

with 21.7 per cent."

Thus it may be said that the Mauritius supplies of cane-sugar have

hitherto been to Bombay what the Javan have been to Calcutta. But

all the same, beet-sugar may be viewed as having begun seriously to contest

both these markets.

INTERNAL TRADE.—Production and Consumption.—It has been

estimated that India produces a little over one ton per acre of gur (crude

sugar), or 2.5 million tons for its total acreage, which, reduced to the

standard of refined sugar, would be, say, one million tons. If the

imports of about 400,000 tons be added, we obtain a total supply of 1.5

million tons of refined sugar. Divided by the head of population, this

might be accepted as showing the consumption. But any such calculation

would be most misleading, because (1) we have no sort of certainty as

to the yield—a ton of gur per acre seems absurdly low; (2) to the bulk

of the people a pound of gur very possibly serves the equivalent purpose

of a pound of refined sugar to other communities; and (3) with a large

percentage of the people of India gur or sugar are unknown luxuries. It

has been stated that the per capita consumption of India is 35 lb., a figure

based on the assumption that the supply comes to three million tons,

which from the above showing is probably double the actual amount.

This is compared with European countries, such as Germany, where it is

28 lb., and France 24 lb. There is perhaps little to be gained by such

calculations and comparisons. But it may be useful to examine the

returns of gur carried by rail and river as indicative of local production

and consumption.

Traffic by Rail and River.—The internal trade is returned in cwt. and

divided into two sections—(a) refined sugar and (b) unrefined sugar.

The grand total of the movements of the former kind came in 1906-7 to

5,984,425 cwt. Fully three-fourths of that amount is usually distributed

from the seaport towns, and thus includes (with local manufactures) the

foreign imports. The shares taken were:—Bombay, 2,039,492 cwt.;

Karachi, 1,863,451 cwt.; Calcutta, 1,248,595 cwt.; and Madras, 111,368

cwt. And these figures are relatively correct for at least the past five

years. The CALCUTTA supply ordinarily goes to Eastern Bengal and Assam,

572,591 cwt.; to Bengal, 363,641 cwt.; and to the United Provinces, 235,573

cwt. The BOMBAY supply goes to the Bombay Presidency, 843,067 cwt.; to

the Central Provinces, 367,255 cwt.; to the United Provinces, 358,530 cwt.

and to Rajputana and Central India, 241,363 cwt. The KARACHI supply

goes principally to the Panjâb, 1,427,823 cwt., and to Sind, 345,593 cwt.

But Calcutta has, however, manifested a remarkable expansion which is

most significant. In 1906-1 exports from Calcutta by rail and river were

477,636 cwt.; in 1901-2, 505,789 cwt.; in 1902-3, 567,200 cwt.; in

1903-4, 839,210 cwt.; in 1904-5, 1,002,185 cwt.; in 1905-6, 1,059,416

cwt.; and in 1906-7, 1,248,595 cwt. This perhaps is the direct expression

of the expanding foreign imports. Thus in 1900-1 Bengal (Calcutta mainly)

imported 1,342,034 cwt. of refined or crystallised sugar, and that figure was

gradually augmented until in 1904-5 it stood at 2,107,461 cwt., in 1905-6 at

2,197,303 cwt., and in 1906-7 at 3,305,860 cwt. The increasing importance

of Calcutta in the foreign sugar trade is a feature of great consequence.
Of the consuming provinces it is curious to observe that in 1906-7 the Panjāb heads the list with 1,664,133 cwt.; then comes Bombay, 869,928 cwt.; the United Provinces, 712,559 cwt.; Eastern Bengal and Assam, 603,223 cwt.; Central Provinces, 487,717 cwt.; and lastly, Bengal, 465,493 cwt. These figures would seem somewhat at variance with the opinions often advanced (and mentioned above) that the imported sugars are mainly consumed in the regions of low Indian production. By way of illustration it may be mentioned that the imports into the United Provinces by rail were in 1900-1, 316,722 cwt.; in 1901-2, 492,921 cwt.; in 1902-3, 385,125 cwt.; in 1903-4, 614,355 cwt.; in 1904-5, 533,580 cwt.; in 1905-6, 752,091 cwt.; and in 1906-7, 712,559 cwt. These provinces are the headquarters of Indian cultivation, and even these foreign sugars seem to be finding a profitable market.

The traffic in Unrefined sugar carried by rail and river came in 1906-7 to 9,420,832 cwt.: The chief exporting centres (as might have been inferred from the Agricultural Statistics) are the United Provinces with in 1906-7, 4,054,814 cwt.: consigned to the Panjāb, 1,479,307 cwt.; Rajputana and Central India, 1,395,301 cwt.; Bombay, 363,912 cwt.; Bengal, 287,866 cwt.; the Central Provinces, 204,988 cwt.; the balance in smaller quantities. Next may be mentioned Calcutta with 1,958,828 cwt.; to Bengal, 1,005,932 cwt., and to the United Provinces, 468,063 cwt. Then Bengal, with an export of 1,190,857 cwt.: sent to the United Provinces, 380,831 cwt.; Calcutta, 250,230 cwt.; the Central Provinces, 198,377 cwt.; Eastern Bengal and Assam, 159,380 cwt.; Rajputana and Central India, 121,374 cwt. The other exporting centre is Madras, 887,837 cwt.; to Madras ports, 361,933 cwt.; Bombay, 215,871 cwt.; and the Nizam’s Territory, 137,659 cwt.

We thus learn that Rajputana and Central India were the most important consuming provinces of the gûr carried by rail and river, viz., in 1906-7, 1,857,989 cwt.; then followed the Panjāb, 1,608,556 cwt.; then Bengal, 1,331,406 cwt.; next the United Provinces, 920,815 cwt.; Bombay, 822,158 cwt.; Central Provinces and Berar, 801,722 cwt.; and Eastern Bengal and Assam, 724,821 cwt.

Perhaps the most significant fact brought out by these returns is the dependence of Rajputana and Central India, as also of the Panjāb, for their supplies of gûr on the provinces of India, and for crystallised sugar on foreign countries. Another very striking peculiarity is the small share taken by the Madras Presidency in the returns of internal trade, a circumstance perhaps due to the greater success of the Aska and other Madras Presidency mills in meeting local demands.

Coastwise: also Trans-frontier.—These do not in any material respect modify the chief features of the internal trade, and need not therefore be specially reviewed.

SALEP.—The name given to the dried tubers of various species of orchids, such as Eutrophia (D.E.P., iii., 290-1) and Orchis (D.E.P., vi., 492-3). It is commonly known in India as salab- (or salep) miri (= Salep of Egypt).

According to the authors of Hobson-Jobson, salep is correctly identified by Ibn Batūta with the satyrum of Dioscorides and Galen. Perhaps the earliest reference to salep, in connection with India, is to be found in the Voyage of Ibn Batūta, of date 1340 (French ed., 1855, iii., 382), where amongst the provisions given to the travellers by the Sūltān of Delhi, salep is mentioned. Again, Alexander Hamilton (New Acc. E. Ind., 1727, i., 124-5) speaking of Tatta on the
SALT
SODIUM CHLORIDE

COMMON OR TABLE SALT

river Indus, says: "They have a fruit, that grows in their fields and gardens, called salob, about the size of a peach, but without a stone. They dry it hard before they use it, and being beaten to a powder they dress it as tea and coffee are, and take it with powdered sugar-candy. They are of opinion that it is a great restorative to decayed animal spirits." The article obtained in the Indian bazars has been ascertained to be chiefly the product of several species of Eulophis; viz. E. campylophis, E. uina, and E. rivesii (mankund or Lahore salep of the shops), though probably also from the species of a few other genera, and is produced on the hills of Afghanistan, Baluchistan, Persia and Bokhara; but the Nilgiri hills and Ceylon are said to furnish part of the Indian supply. The salep of European commerce is procured chiefly from the Levant, and to some extent from Germany, etc., derived mainly from the tubers of Orchis moschata. The tubers are dug up after the plant has flowered, and the plump, firm ones are washed and set aside, and subsequently strung on threads, scaled, and dried in the sun or by artificial heat. The commercial article is met with in three forms—palmate, large ovoid, and small ovoid.

Various substitutes are sold in India. The kind known as Royal Salep (bhādhak sālab) has been identified as being derived from a species of Allium (A. Macleanii, Baker, Bot. Mag., t. 6707; Aitchison, Annals of Botany, 1889-90, iii., 149-55); while the tuberous roots of Asparagus adscendens (West Himalaya and Panjâb) and of A. racemosus (Deccan) are the white mūsali (D.E.P., i., 343-6); Curculigo orchioides, the black mūsali (D.E.P., ii., 650-1), and certain species of Habenaria are also so used (Watt, Comm. Letters, Upper Ind., 1899, 13). Besides these substitutes an imitation salep, made of potatoes and gum (known as banaspati salob), is largely manufactured for the Indian market.

A considerable Trans-frontier trade exists in salep from Afghanistan, Persia, Baluchistan and Bokhara into India. A little trade is also done in collecting and drying in India itself, mostly Kashmir and Lahoul, the tubers of Orchis latifolia, but the bulk of the ordinary article met with in the country is imported by sea into Bombay from Persia and the Levant. [Cf. Milburn, Or. Comm., 1813, i., 108-9; Pharmacog. Ind., iii., 384-7.]

Common Salt, Table Salt, namak, nīmak, lón, nūn, mīthā uppo, lāvanam, lāvana, sa, etc.

History.—Salt in India is perhaps contemporaneous with the birth of Indian agriculture. Its most ancient Sanskrit name, Lāvana, has few, if any, other meanings than salt or saltiness. Susruta, the father of Indian medicine, speaks of four kinds of salt, and these correspond with the four chief grades known to-day, viz. Saśindhava, the rock-salt of Sind and Kōha; Sōmdura, produced from the sea; Romaka or Sākam bari, Sambar Lake salt; and Paṇśuja or Usahasuta, salt produced from saline earth. In modern commerce, according to Mr. A. S. Judge, there are in Calcutta some thirteen forms or grades of salt; as for example:

(1) English pansy salt, imported from Liverpool, Middlesborough, Hartlepool and Bristol—the bulk coming from the mines of Cheshire. This is consumed in the greater part of Bengal and Assam. (2) Hamburg—a rock salt obtained from the mines. (3) Aden karkach salt, manufactured from sea-water by solar evaporation. (4) Aden crushed salt. (5) Rawayah karkach salt—this comes from the African coast of the Red Sea. (6) Rawayah crushed salt. (7) Salif karkach salt—this also comes from a port (Salif) on the African coast. (8) Salif crushed salt. (9) Salt from the Persian Gulf—this used to be brought by the Arab sailing-ships, but as these are rapidly disappearing the trade is on the decline. (10) Bombay karkach salt. (11) Spanish karkach salt—this is im-

History.
MINING AND EVAPORATION

"In the Warcha mine, Shahpur district, the seam of rock-salt being worked is 20 feet thick, with a one-foot parting of marl, dipping 30° to the N.N.W.

"About two miles E.N.E. of Kalabagh on the Indus, rock-salt is worked in open quarries on the east slope of Sandagar hill.

"The rock-salt raised in the Cis-Indus mines and Kalabagh quarries is principally consumed in the Panjab and North-West Frontier Province. During the last six years the average annual sales in these provinces amounted to 70,964 tons or 82-3 per cent. of the total. In the same period the rock-salt sent to the United Provinces averaged 10,049 tons a year, or 11-3 per cent. of the total, and was as much as 5-7 per cent. of the total sales, or an annual average of 4,933 tons, reached as far as Bihar, and small consignments of about 10 tons a year were despatched to Lower Bengal. The average annual amount of 580 tons which entered Sind formed 0-7 per cent. of the sales for the years 1897-8 to 1902-3.

"The Kohat salt is grey in colour with transparent patches. It is worked in open quarries, and the masses exposed may be regarded as practically inexhaustible at the present rate of output. In the anticlinal at Bahadur Kher, where the salt is seen to be at the base of the Tertiary system, the beds can be traced for a distance of about eight miles, with an exposed thickness of over 1,000 feet.

"In Mandi State, rock-salt is worked in open quarries near the faulted junction of the Tertiary and the older unfossiliferous rocks at Guma and Drang. The Mandi salt is of a dirty plum-colour, containing earthy impurities which bring down the available sodic chloride to 60 or 70 per cent."

Salt-evaporation in India.—This may be referred to two sections—
(a) direct evaporation of sea-water; (b) subsoil and lake brine. The former is chiefly conducted at Bombay and Madras, these two presidencies usually contributing between them about two-thirds of India’s total salt supplies. Holland (loc. cit. 89-91) observes:—

"Of the salt produced in Bombay, about 78 per cent. was obtained from sea-water, the rest being manufactured from subsoil brine at Kharagpora and Udu on the border of the lesser Rann of Kach, and possibly derived from infiltrated sea-water. The Madras salt is practically all made from sea-water, a very small quantity of spontaneous salt being collected at Pandraja in the Masulipatam Sub-division.

"The chief manufacture of salt in Burma takes place also along the sea-coast, but subsoil brine is evaporated at various places in Upper Burma, notably in Lower Chindwin, Sagaing, Shwebo, Myingyan, and Yamethin districts, and in smaller quantities in Minbu and Meiktila, as well as at Mawhkeo in Hapaw State. During the past six years the average annual production of this salt in Burma has been 3,432 tons."

"In Sind 88 per cent. of the salt raised during the years 1898-1903 was obtained from sea-water, and 12 per cent. from the Saran and Dilyar deposits on the edge of the great desert."

"The second form of occurrence" (subsoil and internal lake brine) is characteristic of areas in which evaporation of rain-water is excessive compared to run-off, and the salt recovered in these areas is that merely arrested on its journey to the sea, where, in the same way, it is concentrated by evaporation of the water. The most prominent of such areas is the desert-belt of Rajputana, including the salt-lakes of Sambhar, Didwana, Falodi Lonkara-sur and Kacheri Revassaa, with a brine-impregnated subsoil along the whole valley of the Luni, as well as the country to the west in Sind around the Rann of Kach and the delta of the Indus. To the north of the Rajputana country subsoil brine is raised and evaporated for salt in a cluster of villages in the Sultanpur mahal, south-west of Delhi. Other places occur in parts of the United Provinces and in Berar, where large quantities of salt were formerly obtained from subsoil brine in the alluvium of the Purna river. In Gwalior State salt is regularly manufactured from subsoil brine, the average annual production during the years 1898 to 1903 having been 434 tons. In Bihar a small quantity of salt is separated in the manufacture of salt petre. The returns for the past four years in Bengal show an average of 106 tons per annum produced.

Sambhhar Lake.—F. Ashton (Agri. Ledg., 1900, No. 13), Deputy Commissioner of Northern India Salt Revenue, wrote a brief account of the salt industry of India, also a highly instructive and copiously illustrated statement of the Sambhhar Lake salt and the other salt works of

SALT
SODIUM CHLORIDE
Supply
Kalabagh.
Kohat.
Mandi.
Evaporation.
Sea-water.
Bombay.
Madras.
Burma.
Sind.
Subsoil and Lake.
Sambhar.
Sultanpur.
Gwalior.
Bihar.
Sambhhar Salt.
SALT
COMMON OR TABLE SALT

SODIUM CHLORIDE
Supply

Rajputana (Journ. Ind. Art Indus., 1901, ix., No. 73). He tells us that
the salt industry of Rajputana produces about 200,000 tons a year and
meets the requirements of 59 millions of people. The Sambhar Lake,
it is believed, has been worked for salt for the past 1,400 years. It
is about 20 miles in length, the breadth varying from 2 to 7 miles, and it
covers an area of 90 square miles. The surrounding country is sandy
and sterile, with the great Indian desert to the westward. The density
of the lake brine varies with the annual accumulation of water. In years
of normal rainfall it is about 3° Beaumé (the density of sea-water), but
when very full is considerably less, and during years of drought it may
be as high as 10° Beaumé.

The lake was taken over by the Indian Government in 1871, and since
that date has yielded 4 million tons of salt. It lies within the boundaries
of the Native States of Jaipur and Jodhpur. Holland remarks that
"the Sambhar Lake is a silt-filled depression in the Aravalli schists and
gneisses, in which a body of mud and sand with kankar and gypsum (some
75 feet thick in what appears to be about the centre of the depression)
includes from 2 to 12 per cent. of sodic chloride, with smaller quantities
of sodic sulphate, sodic carbonate and potassic sulphate. Every year
the water brought in by the rivers, which are in flood during the monsoon,
forms a lake some 60 square miles in area and 2 to 3 feet deep. The
water, which is fresh when it first comes in, takes up salt from the accumu-
lated stocks in the silt and forms a strong brine, which is partly led into
prepared enclosures (kyars) for the separation of the salt by solar evapora-
tion, partly isolated by temporary reservoirs constructed and cut off bodies
of the lake-water in anticipation of the recession towards the centre during
evaporation, and partly forms a thin crust of white glistening salt on the
bed of the lake, where it is allowed to remain until the arrival of the next
monsoon and the usual annual flooding of the lake."

"During the past few years the quality of Sambhar salt is said to have
depreciated, and it has been suspected that the large quantities which
have been removed have at last made an impression on the great stores of
salt which must have accumulated in the lake silt, appreciably raising the
proportion of the associated compounds sodium sulphate, sodium carbonate
and potassium sulphate."

In the Records of the Geological Survey (1905, xxxii., 81; xxxiii.,
100-2) will be found a highly instructive refutation of the opinion that
the supply from Sambhar was decreasing. "The rise in the propor-
tion of other salts is small and possibly at present unimportant; the
rise in the level of the silt is perhaps more serious; but, whatever may
be the cause, it would be humiliating to watch the failure of this lake,
when one knows for certain that it contains, in its uppermost 10 feet of
silt, enough salt to supply the requirements of this section of the Salt
Department for another 300 years."

Ashton explained that the manufacture of salt at the lake is dependent
upon the monsoon rainfall. "This," he says, "greatly varies from year
to year, and the outturn of salt fluctuates in accordance with the quantity
of the brine in the lake. The greatest quantity produced in any one year
has been about 260,000 tons, and during a year of excessively heavy
rainfall only about 3,300 tons were obtained."

Pachbadra. After Sambhar, the Pachbadra salt source is next in importance. This
is situated in Jodhpur (Marwar, as it is well named—the land of death)
The town of Pachbadra has a population of 5,000, and stands on the right bank of the Luni (the salt) river and at a distance of 40 miles from the city of Jodhpur. The salt is found in the upper end of a sand-valley, the salt-bearing tract being about six miles long and under two miles wide. All over that area brine-springs exist, and from these the salt is manufactured. In 1878 the Government of India purchased by annual subsidy complete control of these brine-wells, the production of which is about 30,000 tons. Pits of an average length of 290 feet and a breadth of 60 feet are dug to the level of the brine-springs and become filled with brine to a depth of 3 feet. Thorny branches of *Lycium europaeum* are thrown into the pits and the salt precipitates on these, thus causing more flow of brine. The density of the brine varies from 20° to 25° Beaumé.

The salt source of Didwana is also situate in Jodhpur at a distance of 40 miles N.W. of Sambhar Lake. The supply of brine is abundant and believed to be inexhaustible, and in the dry climate of the desert manufacture could be carried on for nine months of the year. The rainfall has no effect on the salt-producing capabilities of this source. Since the Government acquired sole rights (1878) about 300,000 tons of salt have been made. The cost of production comes to 10s. a ton and it is sold at 1s. 6d. a ton, but the want of sufficient means of transit restricts the traffic. The Didwana salt is practically all consumed in Rajputana and the adjoining districts of the Panjab. During the years 1897 to 1903 the annual average production came to 10,502 tons.

These salt-wells thus occur in what may be viewed as a former bed of the Luni river; and lower down in the present basin, just before the river debouches into the Rann of Kach, a large delta is formed through which during floods numerous channels carry the waters to the sea. In the dry months of the year, when the bed of the main stream is perfectly dry, brine percolates into the tributary channels and salt is formed naturally in thousands of tons annually, only to be swept away when the river comes down in torrents with the monsoons.

THE SALT DEPARTMENT.—In 1894 the Government of India had a Memorandum prepared, as a conspectus of the systems and methods of the administration of the Indian salt-revenue in all its branches and in all provinces. There may be said to be four centres of administration—(1) Bengal, (2) North India, (3) Bombay, and (4) Madras. These are briefly as follows:

1. **Bengal.**—Bengal and the greater part of Burma obtain their salt by importation. Under the Muhammadan rule a tax was levied on salt by means of imposts on the privilege of manufacture, and by duties on the transport of salt from the places of manufacture to the interior of the country. Later on a system was gradually matured which provided for the control, the manufacture, and sale at the agency to the Company's servants. This was introduced by Clive and perfected by Warren Hastings in 1765 to 1780, and it survived in a modified form till 1862. A Government salt monopoly similar to that which existed in Bengal was introduced in the Madras Presidency at the beginning of the 19th century. In Bombay salt did not become a considerable source of revenue till 1837. The trade in Cheshire salt rose to importance about the year 1835, and thenceforward imported salt gradually ousted the Native product in Bengal proper, until by 1873-4 local manufacture had ceased and the accumulated stocks had become exhausted. The dampness of the climate
COMMON OR TABLE SALT

and the large amount of fresh water discharged into the Bay of Bengal by the Ganges and the Brahmaputra tell against efficient salt-manufacture on the Bengal coast, but the manufacture of salt was not finally abandoned in Orissa until 1898. Nearly half the salt imported into Bengal comes from Liverpool, and the rest principally from Germany, Aden, Maskat, Jeddah, Bombay and Madras. Since the construction of the railway along the east coast, Madras salt transported by land has begun to compete successfully with the imported commodity." [Imp. Gaz., iv., 248; Geake, Repts. Admin. Salt Dept. Beng., 1906; Keith, Repts. Admin. Salt in Burma, etc.]

2. North India.—This embraces the United Provinces, the Central Provinces, Rajputana, Central India, the Panjâb, and the North-West Frontier Province. Its sources of supply are Sambhar, Didwana, Pachbadra and Sultanpur evaporation works, and in addition the salt-mines of the Salt Range of Kohat and Mandi.

Under the Sikh Government salt was one among forty-eight articles liable to customs, excise, town or transit duties. But the Sikh Government did not establish any system of management nor a fixed scale of duties. Since taken over by the Government of India the manufacturing and preventive operations have been directly controlled by the Northern India Salt Department. "Along with salt duties, the British administration inherited an immense number of transit duties, levied at intervals along the trade routes under a system requiring elaborate customs arrangements and involving an intolerable hindrance to trade and communication. In 1843 the transit duties, with the exception of those on cotton and sugar, were abolished, and the loss of revenue was partly made up by enhancing the Provincial salt duties. The cotton duties were abolished in 1855, while the salt duties were gradually raised until in the period from 1869 to 1877 the salt tax in Lower Bengal was Rs. 3-4 a maund, in the Upper Provinces Rs. 3, in the country beyond the Indus a few annas, and in Madras and Bombay, Rs. 1-13 a maund. The salt sources of Rajputana belonged to the Native States in which they were situated, and duty was levied on their produce when it crossed the frontier. These arrangements could be maintained only by stringent preventive measures. To prevent untaxed Rajputana salt, and the lightly taxed salt from the south and west, from coming into Northern India, it was necessary to maintain a customs-line extending for nearly 2,500 miles, from Torbela, near Attock on the Indus, to the Sambalpur district of Bengal. The line was guarded by an army of nearly 13,000 officers and men, and consisted, along a large part of its course, of a huge cactus hedge supplemented by stone walls and ditches. It must be remembered, however, that this line took the place of a more annoying system of innumerable customs ports scattered throughout the interior of the country."

"In 1870 the Government of India acquired a lease of the Sambhar Lake, with a view to increase and cheapen the supply in the United Provinces; and in 1874 over 760 miles of the eastern portion of the line were abandoned, the trade in this direction having concentrated itself on the railway route. The necessity of changing the whole system was at the same time indicated by Lord Northbrook, and a few years later Lord Lytton's Government was able to acquire the remaining salt sources of Rajputana and to equalise the duties throughout the greater part of India. Treaties were made by the Native States concerned, and in 1878 the Bengal
SALT
SODIUM CHLORIDE
Duty

Common or Table Salt

It was 1,426,134 tons, and in 1904-5, 1,657,185 tons; hence home production in the former represented 68 per cent. and in the latter 70 per cent. of the consumption.

It is thus evident that the reductions of the duty on salt, made successively in March 1903 and March 1905, stimulated consumption; all the provinces except Bengal (which draws its supplies from Liverpool and Germany) have shown an increased consumption. From 1888 to 1903 the duty throughout the greater part of India was Rs. 2-8 a maund of 82½ lb., but in the latter year this was reduced to Rs. 2. Again, in March 1905, the general rate for India, except Burma, was reduced to Rs. 1.5 per maund. A further reduction was made by the budget of March 1907, and the tax is now levied at the uniform rate of one rupee per maund over practically the whole of India and Burma” (Mor. and Mat. Prog. Ind., 1905-6, 75).

Customs and Control.—It has been fully exemplified that in the production of salt in India there are two chief operations: (1) mining and (2) evaporation. Under the supervision of the various departments, preventive establishments are maintained, to guard against illicit traffic in salt removed from natural deposits; from manufactories, whether owned by Government or private persons; and from saltpete refineries, etc. The traffic coastwise is also subject to supervision, and special measures have been undertaken to check smuggling from French and Portuguese, as also from Native State, territories. Briefly, however, the modern policy has been to work salt so economically and scientifically that the tax may assume the form of ordinary profit on production and be collected before delivery to the traders, so as to place its subsequent movement free of all restraint. This, when contrasted with the vexations and expensive system inherited by the British administration, will be seen to be a vast improvement. Salt is readily available throughout the Empire, its price has been equalised, facilities of traffic increased, and a system of credit established. “At the present day, for example, a trader of the United Provinces wishing to obtain Sambhar salt has merely to deposit his money at the nearest treasury, sub-treasury, or appointed railway station or post-office, in order to receive his consignment without delay or trouble, at any railway station he chooses to name. In Madras the trade in salt is facilitated by a credit system, under which a merchant on depositing securities (with a slight margin for fluctuation of price) receives a six months’ credit for payment of duty on which he can draw from time to time. A similar system, but with a shorter credit period, obtains in Bombay.” (Imp. Gaz., l.c. 252).

The following statement exhibits the imports from foreign countries and the production of salt within India in relation to consumption and revenue:

<table>
<thead>
<tr>
<th>Year</th>
<th>Imports in Maunds.</th>
<th>Production in Maunds.</th>
<th>Total Supply in Maunds.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1890-1</td>
<td>10,790,319</td>
<td>23,649,890</td>
<td>34,440,209</td>
</tr>
<tr>
<td>1891-2</td>
<td>11,443,572</td>
<td>30,855,566</td>
<td>42,300,138</td>
</tr>
<tr>
<td>1900-1</td>
<td>9,810,587</td>
<td>27,363,449</td>
<td>37,174,036</td>
</tr>
<tr>
<td>1901-2</td>
<td>14,346,947</td>
<td>30,000,077</td>
<td>44,347,424</td>
</tr>
<tr>
<td>1902-3</td>
<td>11,835,449</td>
<td>28,316,479</td>
<td>40,151,928</td>
</tr>
<tr>
<td>1903-4</td>
<td>12,460,259</td>
<td>22,400,971</td>
<td>34,861,230</td>
</tr>
<tr>
<td>1904-5</td>
<td>13,301,600</td>
<td>30,058,737</td>
<td>43,360,337</td>
</tr>
</tbody>
</table>
REVENUE

To contrast with these figures and to show the quantity consumed and the gross revenue realised, the following table may now be given:—

<table>
<thead>
<tr>
<th>Year</th>
<th>Quantity in Maunds Consumed</th>
<th>Duty in Rs. Realised</th>
</tr>
</thead>
<tbody>
<tr>
<td>1875-6</td>
<td>24,237,730</td>
<td>5,88,09,810</td>
</tr>
<tr>
<td>1880-1</td>
<td>27,363,609</td>
<td>6,76,64,790</td>
</tr>
<tr>
<td>1885-6</td>
<td>31,690,062</td>
<td>6,02,48,710</td>
</tr>
<tr>
<td>1890-1</td>
<td>33,280,738</td>
<td>7,98,10,730</td>
</tr>
<tr>
<td>1895-6</td>
<td>34,686,981</td>
<td>8,31,14,370</td>
</tr>
<tr>
<td>1900-1</td>
<td>35,815,282</td>
<td>8,75,57,786</td>
</tr>
<tr>
<td>1904-5</td>
<td>39,377,566</td>
<td>7,06,28,401</td>
</tr>
<tr>
<td>1905-6</td>
<td>40,729,000</td>
<td>6,05,55,000</td>
</tr>
</tbody>
</table>

These tables show the share of the salt of India that is drawn from foreign countries—approximately a little over one-third, the annual supply—the quantity passed into consumption, and the duty realised therefrom. In 1875-6 the consumption was 24½ million maunds, in 1904-5 it had expanded to 39½ million maunds, and in 1905-6 to 40½ million maunds. The consumption steadily progressed and was little, if at all, affected by the fluctuations in the rate of duty charged. But during the years 1904-6, while the duty declined materially the consumption made a record expansion. And it may be added that more recent forecasts would seem to show that the increase may soon compensate for the reduction in rate of revenue. The demand for salt would doubtless decrease in the affected areas, and yet a study of the figures of salt consumption by themselves for the whole of India during the past thirty-five to forty years give no sort of indication of the years of famine included within that period. The progress has been fast with the increase in population, and has been little if at all affected either by famine or taxation. If surrendered to private enterprise the price all over India would rise and become unequal, thus leading to numerous difficulties and hardships. Thus it may be said salt is administered on a commercial basis and the profit secured returns in lessened taxation.

The returns of the salt trade manifest a continuous expansion with periods of sudden development rather than of shrinkage. Thus, for example, in 1878-9 the consumption was 25½ million maunds and in the next year it became close on 28 million. So again, in 1883-4, the consumption was a little over 30½ million maunds; and in 1884-5 it became 33 million maunds. In only two years are material shrinkages manifested, viz. 1885-6 and 1888-9, yet in these the effect was only temporary and did not in any way disturb the steady advancement. It is well known that seasons of deficient supply occur from climatic conditions retarding production, and the years 1885-6 and 1888-9 are likely to have been of that nature. At the present time salt sells on an average at one halfpenny a pound throughout the greater part of India, and still produces a net revenue of 5 to 6 million pounds sterling. The incidence of the tax prior to 1903 was 4½ annas per head of population, and by recent enactments it became only 4 annas (4 pence a head), the sole contribution of a large percentage of the people to the administration.

Uses.—It is needless to enumerate the numerous purposes served by salt. It is used as an article of food, as a manure, in fish-curing (see p. 546), vinegar purification (see p. 1111), etc., etc.
salt petre exported amounted to 405,568 cwt. a year, whilst for a similar period ten years later, 1888-1889, the average annual exports were 389,989 cwt. The highest values, ranging from £600,000 to nearly £900,000, occurred at the time of the American Civil War from 1860 to 1864, but salt petre was then an essential constituent of explosives and India had almost a monopoly of supplies.

The actual figures of the exports of salt petre during the five years ending 1906-7 were as follows:—1902-3, 410,622 cwt., valued at Rs. 43,27,283; 1903-4, 392,114 cwt., valued at Rs. 40,75,364; 1904-5, 348,741 cwt., valued at Rs. 36,23,823; 1905-6, 336,429 cwt., valued at Rs. 38,52,919; and 1906-7, 353,378 cwt., valued at Rs. 41,42,527 (=£276,165). In the last year the largest quantities were distributed as follows:—United States, 105,034 cwt.; United Kingdom, 98,804 cwt.; China (Hongkong), 78,499 cwt.; Mauritius, 26,174 cwt.; etc. Practically the whole of the exports go from Bengal (348,263 cwt. in 1906-7). Holland (Rev. Min. Prod., in Rec. Geol. Surv. Ind., 1907, xxxxi., 81) shows the average value per cwt. for the past five years as 14s. 6d. shillings, and he points out that the importance of the industry may be inferred from the fact that in Bihar (during 1906) there were 50,469 workers employed. Only very small quantities are imported into India by sea, averaging about 19 cwt. during 1901-5, but in 1905-6 the quantity suddenly rose to 4,848 cwt. (owing to the importation into Bengal of 4,820 cwt. from China), and in 1906-7 fell to 28 cwt. Considerable quantities, however, are annually carried across the frontier, almost entirely from Nepal. The actual figures of Trans-frontier imports for the period 1900-5 were as follows:—1900-1, 4,590 cwt.; 1901-2, 11,352 cwt.; 1902-3, 2,758 cwt.; 1903-4, 4,429 cwt.; 1904-5, 2,872 cwt.

SANSEVIERIA ROXBURGHIANA, Schult., f.; S. zeylanica, Roxb., Fl. Ind., ii., 161; Fl. Br. Ind., vi., 271; HEMODORACEÆ. The Bowstring Hemp,-marul, murea, murga, murgali, gorachakra, chaga, etc., the Sanskrit for it being apparently muvra (Jones, As. Res., iv., 271).

A stemless bush with a rosette of succulent radical leaves, each ending in a long spine. It is by some persons held to be indigenous to India, by others, like the remaining members of the genus, to be African. But if not a native of India, the vernacular name murea must have been adapted to it from some other plant which in ancient times afforded the murea string of the warrior caste (Institutes of Manu, ii., 42. 44). One or two species are fairly extensively grown in Indian gardens as ornamental shrubs, and here and there occasionally on account of the fibre. From the succulent leaves, the fibre is extracted and is much valued, because of its elasticity and consequent suitability for bowstrings. The reader will find much useful information on this subject in The Agricultural Ledger (1896, No. 30), where it will be found murea fibre has been recommended as a catch crop with tea. (Cf. Roxburgh, Obs. on Substitutes for Hemp and Flax, 1801, No. 12; Dodge, Useful Fibre Plants of the World, 1897. 975)
SANTALUM ALBUM, Linn.; Roxb., Fl. Ind., i., 442; Talbot, List Trees, etc., 1902, 293; Gamble, Man. Ind. Timbs., 585-8; Prain, Beng. Plants, 1903, ii., 913-4; Watt, Ind. Art. at Delhi, 1903, 147-53; SANTALACEÆ. The Sandal-wood, known in Indian vernaculars as chandan, chalal, sandal, sukhad, gandha, gandada, suket, sukhd, sundal, srigandam, sangu, etc., A small evergreen tree met with in the dry regions of South India (Mysore, Coorg, South Marathá, Hyderabad, Karnátak, the Western Ghats, Nilgiri hills, Coimbatore), and in North India chiefly as a cultivated plant. It affects open forest lands with grass and patches of other trees, usually frequented red or stony soils. It is a root parasite on a long series of host plants, and hence apparently the difficulties experienced in systematic plantations where provision has not been made for this requirement. On rich soil the plant grows well, but the wood is deficient in odour, consequently inferior commercially.

History.—Sandal-wood has been known in India from the most ancient of classic times, the Sanskrit authors distinguishing various woods according to colour. Chandana might be spoken of as the collective name for the series, aríchanda the true (or white sandal), and pitachandana the inferior (or yellow sandal), both being derived from Santalum album. They distinguish two kinds of red sandal or raktachandana, namely Pterocarpus santalinus (see p. 909) and Ceylonica Sappan (see p. 194). So, in a like manner, these various woods were known to the early Arab traders who visited India and China. Avicenna (ii., 2, 649) gives the medicinal properties of the true sandal. Serapión (De Simpl., 346) describes white, yellow and red sandal, and speaks of the finest qualities coming from Sini (China), an opinion doubtless due to the well-established circumstance that the traders from China were in the habit of treating India as a half-way house and exchanged some of their Chinese wares for Indian products and manufactures, and on arrival at Arabia all the goods ultimately disposed of came to be spoken of as Chinese, because of the traders having come from China, just as in the further distribution of these same-same wares they received the names of the coast towns of Arabia from which they were finally distributed to Egypt and Europe. [Cf. Paulus Egineta (Adams, transl. and Comment.), 1847, iii., 448-9.]

Marco Polo, in the 13th century, makes frequent reference to Red Sanders Wood and to Sandal-wood, and García de Orta (Coll., xlix.) says the white and yellow kinds grow in Timor, where it is called chundana and by the Arabs sandal, and the other kinds in the Malaya Islands, a special red form being obtained in Tenasserim. [Cf. with recent information regarding kalnet (Manosmia Gagei), Journ. Linn. Soc., 1905, xxvii., 250-62.] Sandal is described by Acosta, Linchoten, Pyrrard, Matthiolus, Boutins, Hove, etc., and for Indian writers consult the following:—Abul Fazl, Ain-i-Akbarí (Blochmann, transl.), i., 81; Jahangir, Memoirs (Price, transl.), 14, 63; Foster, E. & C. Letters, 1617, v., 267; vi., 163, 170; Alexander Hamilton, New Acc. E. Ind., 1277, i., 306; Jones, Sel. Ind. Pl., As. Res., iv., 253; Milburn, Or. Comm., i., 291; Rama Rao, Ind. For., 1908, xxxiv., 17-21.

Cultivation.—John Scott, Curator of the Royal Botanic Gardens, Calcutta, showed that sandal-wood was a root parasite on many plants (Journ. Agri.-Hort. Soc. Ind., 1871, ii., 287). Barber (Ind. For., 1902, xxviii., 340) urged that a careful study of this circumstance might lead to much-needed reforms in the methods of cultivation, as also to the true explanation of the peculiar disease known as "Spike." Brandis followed this up by a review of the literature on the parasitism of sandal (Ind. For., 1903, xxix., 3-6). Rama Rao (Ind. For., xxix., 386-9) has furnished full details of the parasitism, also excellent illustrations, and given a list of some 100 host plants upon which the sandal had been found. Lastly,
SANTALUM
ALBUM

Sandal-wood

Barber contributed a further paper (Ind. For., 1904, xxx., 545-8; 1905, xxxi., 189-201), which supplies details of his microscopic studies of the haustoria and their preferences for certain hosts. Lushington (Ind. For., 1902, xxviii., 139-40), Rama Rao (l.c., 1904, xxx., 248-67, 357-62, 397-402) and other officers of the Forest Department have also devoted much careful study to the cultivation of sandal, more especially in relation to the production of the maximum percentage of rich-scented wood. Lushington observes: "On the whole I am inclined to think that the best way of aiding the reproduction of sandal-wood artificially is to increase the scrub, and this is best effected by merely keeping out fire and grazing. As soon as the scrub reaches two or three feet, sandal reproduces naturally from seed dropped by birds, and this may perhaps be further assisted by dibbling." Rama Rao urges that weeding is dangerous, and that only surface pruning when the scrub becomes too dense should be indulged in. Lushington mentions 8 inches growth in girth per ten years as a safe average, and the exploitable age of the trees as forty years, the minimum size being then 32 inches at \(\frac{4}{2} \) feet from the ground.

DISEASE OF THE SANDAL.—In 1892 attention was drawn to the appearance of a disease among the sandal-trees which was attributed to borer beetle (Lehmann, Ind. For., 1901, xxvii., 97). Stebbing (Ind. For., 1903, xxxix., app.) furnished a useful account of the insect enemies of the plant. In the Forest Administration Report of Coorg for 1903 it was stated that 20,800 diseased trees had been uprooted. Similar reports exist regarding other districts, while many writers affirm that the extermination of affected trees has not checked the spread of the disease. Mr. McCarthy, Deputy Conservator of Forests, would appear to have been the officer who first recorded the disease, and who apparently gave it the name "Spike." The diseased branches seem to shoot up, forming narrow, thick, stiff leaves, reduced in size as the disease advances. The disease spreads to branch after branch, no flowers are formed, and finally the tree dies. Both Butler and Barber have examined with care diseased trees, but have failed to discover a fungus or other micro-organism present in or upon the diseased tissues. The roots of diseased trees have been traced from the stem to their ultimate fibris, and, long before their parasitic haustoria were reached, those roots were very frequently found dead. Butler suggested that the disease somewhat resembled "Peach yellows," and, acting upon this idea, experiments were performed to test whether it could be communicated by budding. This was found impossible. It would thus seem that as yet no satisfactory explanation of the disease has been ascertained, but most officers appear to consider that it proceeds from imperfect nourishment due to the insufficiency or unsuitability of the associated plants upon which sandal-wood is parasitic.

Sandal-wood Oil and Perfume.—It is a somewhat surprising circumstance to learn that in the region of greatest success in sandal-wood production the manufacture of the oil has hitherto proved a failure financially, and is only practised on a small scale and by a very inferior process (Holmes, Pharmaceut. Journ., 1885-6, 3rd ser., xvi., 819-22; Sawer, Odorography, i., 315). As matters stand, the sandal-wood oil of India is mainly, if not entirely, produced at Kanauj in Oudh.

From official correspondence it is learned that according to Mr. S. Ali Hussain, sandal-wood oil was formerly distilled by several firms in Lucknow and Jaipur, where the preparation of sweet-scented essences is a recognised industry. For some years past the industry in these towns has declined, and it has become the practice to purchase the oil from Kanauj. The method of preparation described by the Lucknow and Jaipur men was as follows:—Two kinds of sandal-wood, red and white, are known in these provinces. The former is used medicinally and in dyeing, while the latter alone is employed for the extraction of the oil. Trees are found here and there growing in the provinces, but good wood can alone be obtained from the Bahraich forests. Until the last ten years wood from
these forests was used largely, but latterly (owing to the low yield obtained from the local wood) supplies have been imported from Bombay which are believed to have been derived from Mysore and Malabar. The best wood for the perfume trade is held to be that from the damper tracts of the latter—it being assumed that the proportion of oil present depends on both the dampness of soil and climate of the country of production.

The wood is first reduced to a powder, about 40 to 60 lb. of which are soaked in clean water for 48 hours, then placed in a copper still. The water, carrying the oil evaporates and is condensed in the usual way, when, on cooling, the oil floats on the surface and can be collected. It is then refined in various ways—filtered, or kept for a year until the sediment of impurities has settled at the bottom, etc. It is believed that the water has an important function to perform, since certain waters are superior to others. Kanauj is supposed to soften the wood and facilitate the liberation of the oil, while that of Jaipur improves the quality of the oil. The Kanauj manufacturers, however, attribute their success to their skill and not to any special property possessed by the water.

Yield.

It is said that the yield in Kanauj is about 2½ to 3 seers of oil to one maund of wood. The oil that comes off first from the still is the best quality. The following rules are recognised by the manufacturers:— (1) the heat must be uniform; (2) the receivers must be removed directly they are full; (3) cleanliness is essential. If the tinning of the interior of the still is worn out, the oil gets greenish in colour from copper; (4) all joints must be steam-proof. There are various qualities of the oil—that made at Kanauj is called malas-giri; inferior kinds are katthia guda and jahazi. But the inferior oils are believed not to be made at Kanauj, and to be used by the traders for adulteration. The annual outturn at Kanauj is about 100 maunds of the oil; but the production is said to be declining, the reason given being the increasing price of good wood, which now fetches Rs. 30 to Rs. 35 a maund. The scarcity of fuel is given as another reason of the decline, and the adulterations practised by the dealers as a third reason. Ordinary quality of Kanauj oil sells at about Rs. 17 a seer (= 2 lb.). [Cf. Foster, E.I.C. Letters, 1617, v., 339; Gildemeister and Hoffmann, Volatile Oils, 1900, 338-45; Pharmacog. Ind., iii., 232-4; Hare, Caspari and Rusby, National Stand. Dispens., U.S.A., 1905, 1104-5; Hooper, Rept. Labor. Ind. Mus., 1903-4, 27.]

Trade. The sandal-wood of Mysore and Coorg has only not been known from the most ancient times, but has ranked as the finest quality for centuries. It is somewhat surprising, however, to read in Stein (Ancient Khotan, 447, 452) of a comb found at the Kara-dong ruins (8th century) said to be made of sandal-wood. If that determination be correct it would point to an Indian trans-frontier traffic of more varied and extensive kind than hitherto contemplated, as existing at that early period. The Indian supply of the true sandal-wood is drawn from Southern and Western India, and there is nothing to show that this was not always the case. The earliest European writers on the modern traffic refer to the sandal of Macassar, and a supply from there is still recognised in the markets of the world. A third grade is designated West Indian, though it is in reality procured from Venezuela. According to Gamble, the average annual sales of Mysore amount to 1,841 tons; Coorg, 102 tons; Madras Presidency, 75 tons; and the Bombay sales a still smaller quantity—or, say, a total annual output of 2,000 tons, valued at £40,000. Speaking of Mysore, Pigot (Mysore Sandal-wood, 1899) says the wood is found in a continuous belt, about 240 miles long by 16 broad, running from the north-west to the south-west of the province. A second and much smaller and less important zone lies farther to the east. The total area of both belts is about 5,450 square miles. This, therefore, is the chief sandal area of the world, since Mysore produces about seven-eighths of the total annual supply. Pigot classifies the grades and materials into some eighteen sections, ranging in size from billets not less than 20 lb. in weight (vilayat budh), the finest grade, down to the sawdust obtained in sawing up the
wood (the lowest). Every part has a value. The heart-wood alone, however, constitutes the odoriferous wood. In a sample reported on in the Indian Forester (1884, x., 318) this came to four-thirteenths, or, in rough figures, one-third of the total weight felled.

The former is the Soap-nut tree of Northern India and the latter of Central, Western and Southern India. They are collectively described by the Natives of India under the vernacular name *ritha*, and in Sanskrit by the names *phenila* and *urista*. Other vernacular names are, however, used, such as *rithia, rita, aritha, dodan, kamnar, tàà, ud-rak, prurança, puwandi, kunkudu, thali, thalay, chana*, etc. The fruits of the North Indian form come into market about January or February, and of the South Indian a little later, say about March to April. From time immemorial these "nuts," or, rather, dried fleshy berries, have been employed as detergents, and by the dyers of India are supposed to possess special merits as a preparation (if not mordant) for certain dyes. In Kashmir the soapnut is preferred for washing shawls to European soaps. In other parts of the country they are specially valued for washing silk, and by the Indian jewelers are resorted to for the restoration and brightening of the silveriness of plate and ornaments tarnished by exposure.

As one of the many curious uses of these nuts, it may be said that they are sometimes employed in washing and bleaching cardamoms, and are supposed not only to improve the colour but also the flavour of the spice (see p. 515). The soap-nut is used medicinally, both by the Hindus and Muhammadans, and its properties are detailed in the *Makbzan-el-Adwiya* and the *Taleef-Shareef*. More up-to-date details will be found in the *Pharmacographia Indica* (i., 367–70), and in the *Materia Medica of Madras*, by Mooden Sheriff (112–4), etc., etc. Mr. A. Starey of Oodeypore pointed out that the honey of the flowers of these trees was poisonous to bees (*Journ. Bomb. Nat. Hist. Soc.*, 1890, v., 423). The soap-nut is much used in China for the same purpose as in India (Rosie, *Prov. of Ssu’ch’uan*, 1904, No. 5, 31).

Quillai Bark (the bark of *guillaia saponaria*; *Kew Bull.*, 1904, 1–4) is sent from Europe from Chile as a soap substitute, and a demand has arisen for the same, which suggests the possibility of a foreign trade in the Indian soap-nuts—the above species—as also the pods of *Acacia concinna* (see p. 14).

**Sapium Sebiferum, Roxb.; Fl. Br. Ind., v., 470; Gamble, Man. Ind. Timbs.*, 1902, 624–5; Hooper, *Agri. Ledg.*, 1904, No. 2; Euphorbiaceae.* The Chinese Tallow-tree, *pippal-yang, mom-china, tár-charvi*, etc. A small glabrous tree, indigenous and cultivated in China and Japan; introduced into and cultivated in Northern India, having become almost wild in the Dun (Kanjilal, *For. Fl.*, 1901, 301–2) fairly abundant in Garhwal, Kumaon and Kangra. The plant is easily raised from seed, but is usually propagated by layers or cuttings. The fruit is a 3-celled capsule, each cell with a single seed, surrounded with a thick greasy substance—the so-called vegetable Tallow. In China this is used in place of animal tallow for the manufacture of candles and soap, also in dressing cloth. In addition to the solid fat, the seed-kernel yields about 50 per

979
It is said to be an efficient agent for cleaning and promoting the growth of the hair, and is reputed to be the original Macassar oil. Recently there has been a considerable demand from abroad for the seeds (Hooper, *Agri. Led.*, 1905, No. 1). A large quantity of seed was found to be available in India, but owing to its being edible, jungle tribes would, in times of scarcity, gather the fruits for their own consumption rather than for trade purposes. It is also said that none of the oil is sold or exported in any of the districts specially investigated. The tree is noteworthy from its being one of the most highly valued plants of the Lacinsect. As a lac-yielding tree it is especially prevalent in Raipur and Bilaspur in the Central Provinces. The Wood is hard, strong and durable and used for making pestles, cart-wheels, axes, ploughs; also for rollers of sugar-mills, and of cotton and oil presses. [Cf. *Pharmac. Ind.*, iii., app., 138–9; *Journ. Soc. Chem. Ind.*, 1900, xii., 254, 672; Thorpe, *Dict. Appl. Chem.*, 1900, iii., 31; Wright and Mitchell, *Oils, Fats, etc.*, 1903, 542; Hooper, *Rept. Labor. Ind. Mus.*, 1904–5, 26; *Trop. Agric.*, Oct. 1906, xxvii., 309–10.]

It yields by tapping the stem an acrid, viscid juice from which a varnish is made (see *Melanorrhoea*, p. 779), but the most important product of the tree is the fruit, the pericarp of which contains a bitter and powerful astringent principle, universally used in India as a substitute for marking-ink. It gives a black colour to cotton fabrics, but before application must be mixed with limewater as a mordant. In parts of Bengal the fruits are also used as a dye, either alone or with alum, while throughout India they hold an important place in Native medicine. The fleshy cups on which the fruit rests, and the kernels of the nuts, are eaten as food. [Cf. Acosta, *Tract. de las Drogas*, 1578, 323; Piso, *De Med. Bras.*, 1648, 57–9; also *Mant. Arom.*, in *Ind. Utri re Nat. et Med.*, 1658, 193–4; Marcgraf, *Hist. Pl.*, in *Piso, De Med. Bras.*, 94–5; Boym, *Fl. Sin.*, 1656, c.; Labat, *Nov. Voy. aux Isles de L’Amer.*, 1724, ii., 385–7; Paulus *Egineta* (Adams, transl. and Comment.), 1847, iii., 450; *Pharmacog. Ind.*, i., 389–92; Mooden Sherif, *Mat. Med. Mad.*, 1891, 124–8; The *Bower Manuscript* (Hoernle, transl., 1893–7, 83, 108, etc.; Duncan, *Dyes and Dyeing in Assam*, 1896, 47–8; Sen, *Treatise on S. Anacardium*, 1912; Dutt, *Mat. Med. Hind.*, 1900, 141–2; Achard, *Quinze Cents Plantes dans l’Inde*, 1905, 386–7.]

**SESAMUM INDICUM, DC. ; Fl. Br. Ind., iv., 387; Heuzé, *Les Pl. Indust.*, 1893, ii., 142–50; Semler, *Trop. Agric.*, 1900, ii., 472–84; Wiesner, *Die Roh. des Pflanzenr.*, 1903, ii., 768–78; *Pedaliaceae*. Gingelly (or Gingeli) or Sesame Oil, til, tir, tal, krishna- or kalà-tél, rasi, sumsum or sim-sim, khasa, tilmin, mithá-tél, bhnguru, kunjad, kala kalvca (black), purbia (red), nallenny (oil), nuvulu, ochchellu, hnon, etc. An annual plant cultivated throughout the tropical regions of the globe for the oil obtained from its seed. In India, however, it might be more correctly described as a crop of the warm temperate or sub-tropical tracts, being grown as an autumn or even winter crop in the warmer parts, and as a summer one in the colder.

History.—Botanical evidence alone might lead to the supposition that the *Sesamum* of sub-tropical agriculture was originally a native of Africa, in which continent there are some eight or nine truly wild forms, and where the present species is known to have been cultivated from remote times. De Candolle is of opinion that the plant was introduced into India from the Sunda Islands at a period prior to the Aryan invasion. "Rumphius," he says, "gives three names for Indian.
the sesame in these islands, very different one from the other and from the Sanskrit word, which supports the theory of a more ancient existence in the Archipelago than on the continent of India. He also adduces the fact that a plant found wild on the mountains of Java was determined to be *S. indicum*. If this were so, however, we might expect to discover some trace of the Sunda name in the languages of India. Instead we find a singular uniformity throughout the most diversified tongues in the names for the plant, its seed, and oil, which are clearly of unmixed Sanskrit origin. Moreover, the name enters into the early primitive conceptions of domestic life and religious ceremonial, and even assumes a generic from a specific significance, becoming “oil” (*taila*) in more recent times on the discovery of other oil-yielding plants. Sesamum is frequently mentioned by the Greek and Latin authors. Indeed some of the Indian names given to it come from Arabic or Persian; few or none belong to the aboriginal languages of India. In this connection may be mentioned the names *gingeli*, *gerelum*, and *jinjili* or *jinjal*, which Dr. Rice derives from the Arabic *chul-chulan*, and *Yule* and Burnell from the Arabic *al fuljulân*. There is, moreover, no reason to doubt that the *tila* of the Sanskrit authors is the *til* of India to-day (Dutt, *Mat. Med. Hind.*, 216–7).

Though sesame has not hitherto been recorded as found wild in any of the warmer tracts of Central Asia, it is cultivated everywhere in the Himalaya, in Afghanistan, Persia, Arabia and Egypt. There would, therefore, seem little evidence opposed to the statement that, if not originally native of the warm temperate tracts of India, it was probably brought to India before it found its way to Egypt and Europe. But it is certainly very remarkable that few, if any, of the early European travellers in India, such as Garcia de Orta, Linschoten, etc., made mention of this plant or of its oil. In the *Ain-i-Akbir* (1590) frequent reference is, however, made to both the black and the white-seeded forms, so that there is abundant evidence of its having been an important crop in India for at least the past 300 years. [Cf. *Paulus Aegineta* (Adams, transl.), 1847, iii., 331; Varthéma, *Travels* (ed. Hakl. Soc.), 86–7; Camerarius, *Hist. Med. et Phil.*, 1588, 159, t. xlv.; Prosper Alpinus, *De Pl. Egypti*, 1592, 38–9; Munting, *Phyt. Curiosa*, 1696–1702, 46, t. 239; Milburn, *Or. Comm.*, 1813, i., 292; Heyne, *Tracts on India*, 1814, 206; Taleef Shereef (Playfair, transl.), 1833, 50–60; Buchanan-Hamilton, *Stat. Acc. Dinaj.*, 1833, 174, 184; Hobson-Jobson (ed. Croke), 1903, 373–4; Joret, *Les Pl. dans l’Antiq.*, etc., 1904, ii., 269–70, 338; Hansauszek, *Micro. Tech. Prod.* (Winton and Barber, transl.), 1907, 380–4.]

CULTIVATION.—Sesame is grown as a pure crop all over India, and in certain localities, such as the United Provinces, also as a mixed crop. According to the *Agricultural Statistics*, the area in British India under the crop in 1904–5 was 4,023,847 acres. An estimated area for the same year, excluding Burma but including the Native States of Bombay and Sind, was stated at 4,178,700 acres for the pure crop with a yield of 300,400 tons; 600,000 acres for the mixed crop with a yield of 35,000 tons, the latter being in the United Provinces. In that year also the area in the Native States (as officially returned, but excluding Hyderabad, Kathiawar and Baroda) is stated to have been 457,277 acres. In Noël-Paton’s *Final Memorandum* on the sesame crop for 1905–6 mention is made of the area in Hyderabad having been 780,000 acres in 1904–5 and 431,200 acres in 1905–6. For the ten years ending 1905–6 the annual average area in British India, including Burma, was 3,904,000 acres, of which Burma had 930,000 acres; the Central Provinces, 832,000 acres; Madras, 737,000 acres; and Bombay with its Native States of Kathiawar and Baroda, 633,000 acres. For the years 1905–7 the estimated area and yield (excluding Burma) were:—1905–6, 3,914,200 acres (pure) yielding 344,800 tons, and 700,000 acres (mixed) yielding 45,000 tons; 1906–7, 3,844,100 acres (pure) yielding 441,100 tons, and 775,100 acres (mixed) yielding 90,000 tons.

There are two crops, a *rabi* and a *kharif*, and various cultivated forms of the plant, some specially suitable for growing in the *kharif* season,
TWO CROPS

others as early *rabi* crops. Two, at least, of these are easily recognised—one with white seeds (*saied til*), the other with black (*kala til*). The latter is much the more common form and is reputed to yield a superior oil.

The *rabi* crop is most extensively grown on black or medium black cotton soil in alternation with cotton or *juáir*. If sown in September it is ready in January. The *kharif* crop is usually sown with other crops, such as *juáir*, *bájra* and cotton, but is sown by itself in some localities. It ripens in October or November. A good average crop from black soil is said to yield about 450 lb. of seed per acre (*Imp. Gaz.*, 1905, iii., 38–9).

Bengal, including Eastern Bengal.—The estimated area and yield in 1904–5 were 493,700 acres and 59,000 tons. The actual area, however, was 414,200 acres. The largest areas (indicated by the returns for 1904–5) ordinarily are:—Maimensingh, 74,300; Pabna, 39,000 acres; Angul, 34,500 acres; Midnapur, 29,100 acres; Hazaribagh, 27,700 acres; Backerganj, 25,000 acres; Jessore, 22,500 acres; Noakhali, 13,600 acres; Tippera, 13,200 acres; Bogra, 13,000 acres, etc. The supplementary *Final Memorandum* for 1906–7 estimates the area for 1906–7 at 292,100 acres with a yield of 39,600 tons in Bengal, and at 221,800 acres with a yield of 25,400 tons in Eastern Bengal.

According to Roy, the best soil is an alluvial loam; high and well drained. The black variety is taken after *dús* paddy, the white after *áus* or *aman* paddy. In Dacca only white *t̄il* is grown. The land is ploughed and harrowed in February and April and the seed then sown "6 seers per acre." The crop is harvested in May–June, and the average yield is about "15 manzads per acre." In Orissa, the land is prepared and the seed sown for white *t̄il* in June–July, and the crop harvested in November–December; for black *t̄il*, the seed is sown in September–October and the crop harvested from January to March. [Cf. Basu, *Agri. Lohardaga*, 1890, pt. 2, 35; Banerjei, *Agri. Cuttack*, 1893, 89–90; Mukerji, *Handbook Ind. Agri.*, 1901, 274–5; Roy, *Crops of Bengal*, 1906, 82–3.]

Assam.—The area in Assam proper in 1904–5 was 8,376 acres and the chief localities Sylhet, Nowgong and Kâmrûp. There are reported to be three different crops, viz. the crop sown in February–March in Sylhet, the August–October crop of the Brahmaputra valley, and the May–June crop of Manipur and Nowgong. According to F. C. Henikker (*Assam Crop Exper.*, 1900–1, app.) the average outturn in 1900–1 was found to be 283 lb. per acre. [Cf. Allen, *Assam Dist. Gaz.*, 1905, ii., 120–1.]

United Provinces.—As already indicated, sesamum is largely grown as a mixed crop in these provinces. The total area of the pure crop in 1904–5 was 304,997 acres, and the outturn (estimated) 13,900 tons; of the mixed crop (estimated) 600,000 acres, and the outturn (estimated) 35,000 tons. The principal districts (according to the returns for 1904–5), where the crop is grown alone, are:—*Agra*: Hamirpur, 115,119 acres; Jhânsi, 105,404 acres; Banda, 35,164 acres; Mirzapur, 17,663 acres, etc. The supplementary *Final Memorandum* on the crop for 1906–7 estimates the area under the pure crop at 309,200 acres with a yield of 36,200 tons, and under the mixed crop at 775,000 acres with a yield of 90,000 tons. It is a *kharif* crop, sown at the commencement of the monsoon and harvested in October and November. The method of cultivation is very rough.

"The seed is sown broadcast after two or three hurried ploughings, and ploughed in. When grown with millet or cotton, it gains the benefit of the care which these crops receive. It is in this case either sown broadcast,
the seed being mixed with that of the principal crop before sowing, or it is disposed in parallel lines running across the field or along its margins. When mixed with other crops the amount of seed sown to the acre varies, of course, with the inclination of each individual cultivator. When grown alone, from 8 to 12 seers of seed are used.”

“Under the circumstances of its cultivation it is obviously impossible to frame any reliable estimate of its outturn per acre, which varies very greatly with the amount of seed sown. From 25 seers to 14 maunds are commonly gathered when it is sown with jūar or cotton. When grown alone from 4 to 6 maunds is the average return to the acre.” [Cf. Duthie and Fuller, *Field and Garden Crops*, ii., 35–7 and t. xlii.]

Central Provinces and Berar.—The estimated areas in 1904–5 in the Central Provinces and Berar were 779,600 acres and 111,500 acres, while the estimated yields were 58,900 tons and 10,100 tons respectively. The actual areas were 858,664 acres in the Central Provinces and 111,718 acres in Berar. In the Central Provinces the chief districts were:—Sambalpur, 103,401 acres; Nimar, 98,785 acres; Rajpur, 98,680 acres; Hoshangabad, 78,487 acres; Jabalpur, 68,992 acres; Chanda, 59,800 acres, etc.; in Berar:—Wun, 67,307 acres. The supplementary *Final Memorandum for 1906–7* estimates the area at 783,900 acres and the yield at 69,600 tons.

Fuller (Note on *Outturn of Land under Crops in C. Prov.*, 1894, 224) says “it can be grown on almost the poorest land in cultivation, but is also a profitable crop on good soils, and is commonly sown on newly broken lands during the first two years of the reclamation. It requires a light monsoon rainfall and in this respect resembles cotton, the *tīl* and cotton harvests generally agreeing in character. Though classed as a monsoon crop, *tīl* is largely grown during the cold weather in the southern and eastern districts, good land in this case being devoted to it and a larger outturn gathered than is usually yielded by monsoon *tīl*.” With regard to outturn, he states that “the present standards are 150 lb. per acre for the three northern districts, 250 lb. for Wardha and Nagpur, and 200 lb. for all others. They rather overstate the produce, save in the case of the Nerudda and Nagpur districts, where they are decidedly too low.” [Cf. *Rept. Land Rev. Settl. Nagpur, 1899*, 63; *Hoshangabad, 1905*, 28.]

Panjāb and North-West Frontier.—The estimated area and yield in the Panjāb for 1904–5 are given as 158,000 acres and 16,000 tons. The actual area subsequently returned for that year in the Panjāb was 113,200 acres, and in the North-West Frontier Province 4,901 acres were returned as under the crop. The largest areas in the Panjāb (in 1904–5) ordinarily occur in Gurdaspur, 30,479 acres; Multan, 13,295 acres; Kangra, 10,255 acres; Amritsar, 5,709 acres; Gurgaon, 5,242 acres; Hoshiarpur, 5,231 acres, etc. The supplementary *Final Memorandum for 1906–7* estimates the area in the Panjāb at 94,400 acres with a yield of 8,600 tons.

In the *Gazetteer* for Multan (1901–2, 217) it is stated that “the outturn is from 3 to 3½ maunds per acre, and the produce fetches the zamindar some 10 seers to the rupee, or Rs. 4 per maund. The crop gives fair returns and costs less to cultivate than most, as it can do with a light soil and moderate moisture, can be sown late, and requires very little looking after. The sowings take place in July, and the crop is cut in November.”

Lawrence (*Valley of Kashmir*, 340) says it is a very common crop, sown
in April, and ripens shortly after rice. It is a delicate crop, injured by cold winds.

Bombay and Sind.—Estimated areas, including the Native States, were given in 1904–5 as 793,900 acres in the Presidency and 89,700 acres in Sind, with yields of 52,700 tons and 5,300 tons respectively. The area actually surveyed in the British districts alone was 302,600 acres in Bombay and 79,772 in Sind. In Bombay (1904–5) the largest areas were Khandesh, 80,812 acres; Nasik, 54,989 acres; Panch Mahals, 46,768 acres; Ahmadabad, 33,524 acres; Kaira, 18,681 acres; Ahmadnagar, 16,731 acres; Dharwar, 16,446 acres, etc. In Sind—Upper Sind Frontier, 46,894 acres, etc. Although no returns are available for the year named, the crop is known to be very important in Kathiawar, Baroda and other Native States. The supplementary Final Memorandum for 1906–7 estimates the area and yield in Bombay (including its Native States) at 1,020,400 acres and 182,400 tons, and in Sind (with its Native States) at 62,100 acres and 4,700 tons. The method of cultivation is fully described by Mollison: “The kharif crop requires,” he says, “a totally different soil to that found most suitable for the rabi crop. *Til,* as a rain-crop, likes a sandy soil or light soil, whereas the crop which is sown in August–September, or later, grows best on black soil or on such soils as are retentive of moisture.”

The Kaira cultivation, he further says, is typical for the kharif crop. It is sown subordinate to *bajra* on sandy loam soils. Other subordinate crops are the usual pulses and fiber-plants. “The *til* seed rate is 1/2 lb. or less per acre.” If sown as early as possible in the kharif season, harvest should commence in September–October. A good outturn as a subordinate crop he estimates at “80 to 120 lb. per acre.” As a rabi crop it is grown extensively alone on black or medium black soil. The rotation crops are cotton and *judir.* The field is repeatedly ploughed and harrowed during June, July and August. If sown in September, the crop is ready in January.

With regard to outturn, he estimates that a good crop in Khandesh yields from 320 to 360 lb. per acre, and the seed is worth 15 to 18 lb. per rupee. From a seed rate of 1 lb. per acre, a crop experiment at Surat in 1895–6 gave an outturn of 372 lb. per acre, worth Rs. 25–13–3. The cost of cultivation is rated at Rs. 10–6–0 per acre. [Cf. Mollison, *Textbook Ind. Agri.*, iii., 90–4; *Crop Exper. Rept. Bombay Pres.*]

Madras and Mysore.—The estimated area and outturn were 674,200 acres and 55,100 tons, but the actual area in Madras during 1904–5 was 755,475 acres. In Mysore the area was 90,623 acres. The chief districts of Madras in 1904–5 were Godavari, 83,939 acres; Vizagapatam, 83,337 acres; South Arcot, 68,218 acres; Tinnevelly, 56,938 acres; North Arcot, 56,873 acres; Salem, 55,429 acres; Coimbatore, 47,334 acres, etc. The supplementary Final Memorandum for 1906–7 estimates the area and yield in Madras at 585,500 acres and 48,000 tons. In Godavari, it is stated that mixed or sandy soil suits the plant best. The land is prepared about the month of April and the seed sown in May or June. The crop is ripe about three months after sowing. In North Arcot it is said to be an early crop, being sown, if the rains are sufficient, in April or May, and reaped four months later. It is sometimes irrigated, and is then sown as early as January or February. [Cf. Cox, *Man. N. Arcot*, 1895, i., 271–2; Rice, *Mysore Gaz.*, 1897, i., 122; Francis, *South Arcot*, 1906, i., 114, 122.]
THE GINGELLY OR SESAME PLANT

Sesamum Indicum

Burma

Areas.

60,317 acres in Lower Burma. The largest areas were as follows:—Myingyan, 241,355 acres; Magwe, 185,386 acres; Lower Chindwin, 128,998 acres; Sagaing, 127,634 acres; Meiktila, 94,954 acres; Mibbu, 77,176 acres, etc. The following facts regarding Myingyan (Carey, *Settl. Rept. Operat.*, 1901, 34), where the largest area is ordinarily grown, may prove instructive. "Early sesamum is sown in May and June and is reaped in July and August. Late sesamum is sown in October and November and is reaped in January and February. The early sesamum seeds are the *thadunbyu* (white), *bokaung* (red), *shan khan* (large seed), and the late sesamum varieties are the *hnangi-net* (black) and *hnangiyi-phu* (white). The same quantity of seed is sown for both crops. The late crop is the safer, but the early crop gives the larger yield. Invariably 24 *pyis* of seed are sown to the acre, and, whereas the early crops yield from two to twelve baskets (both extreme figures), the best late crops seldom exceed six baskets. A basket of seed gives 5 *viss* of oil, the value of which varies from Rs. 3 to Rs. 5 per *viss*, but Rs. 3–4–0 is the average normal sale value." [Cf. *Settl. Operat. Repts. for Parlett, Sagaing*, etc.; Max and Bertha Ferrars, *Burma*, 1900, 51, 149.]

Seasons.

Two Crops.

Seed to Acre.

Yield.

Expression of Oil.

Manufacture and Uses of Sesame Oil.—As indicated, there are at least two easily recognised forms, one with white, the other with black seeds. The latter is the most abundant and yields the best oil. It is extracted by expression in mills, by the same process as that for mustard-oil. Is clear and limpid, varying in colour from pale yellow to dark amber. Has no smell and not liable to become rancid. Adulteration with ground-nut oil is frequent. In India it is largely used for culinary purposes, in anointing the body, in soap manufacture, and as a lamp-oil. It is also frequently employed as an adulterant of *ghi* (see pp. 479, 481). In England it is chiefly used in making soap. In many of its properties it resembles olive-oil, and is accordingly similarly utilised. The oil from the black variety is generally stated to be more suitable for medicinal purposes than the white. It is also extensively employed in the manufacture of Indian perfumes, and for this purpose the perfume is frequently extracted by the seeds direct—layers of the seeds being placed between layers of flowers, etc. (see p. 820). The white-seeded form is largely eaten as an article of food, more especially in certain sweetmeats. The oil-cake, left after expression of the oil, is in demand all over India as a cattle food, and in times of drought and scarcity is even eaten as food by the poorer classes. As a manure the cake is of less value than castor and other oil-cakes. In Madras *tanghedi* bark (see p. 290) is said to be added to the seeds before being pressed for oil. [Cf. *Pharmacog. Ind.*, iii., 26–33; *Agr. Led.*, 1893, 1895–7, 1901, 1903–4; Basu, *Agr. Lobarnada*, 1895, pt. 1, 131; Banerjei, *Agr. Outfall*, 1893, 197; Blount and Bloxam, *Chem. Engin. and Manuf.*, 1900, ii., 233; Merck, *Digest*, 1900, No. 7; Ludwig Hess, *Physiol. and Therap. Impor. of Iodipin in Pharm.-Centralhalle*, 1900, No. 1; Thorpe, *Dict. Appl. Chem.*, 1900, iii., 377–8; Leach, *Food Inspect. and Anal.*, 1905, 420; Leather, *Mem. Dept. Agr. Ind.*, 1907, i. (Chem. ser.), No. 2.]

Trade.—Internal.—The returns of *til* seed carried by rail were in 1902–3, 4,590,935 cwt.; in 1903–4, 4,675,014 cwt.; in 1904–5, 3,627,307 cwt.; in 1905–6, 2,956,419 cwt.; and in 1906–7, 4,326,824 cwt. The chief importing centre is Bombay port, which in 1906–7 drained its supplies chiefly from the Central Provinces, Rajputana, Nizam's Territory and Bombay Presidency, viz. 2,738,978 cwt. Calcutta follows next with a total of 453,979 cwt., received from the Central Provinces and Bengal; then come the Madras ports with 384,156 cwt., derived from the Nizam's Territory and Madras. The traffic of Burma is not given in the returns of railborne trade, but it is doubtless mainly toward Rangoon and the other chief towns of the province.

The total exports by coast of sesame seed in 1905–6 amounted to 479,169 cwt., valued at Rs. 37,69,577, and during the period 1900–5
averaged about 400,000 cwt. The chief exporting centres, coastwise, are Madras and Bombay, and the chief importing province is Burma. It is thus very significant that Burma, though it is the largest single producing area, drains an annual supply from India.

Foreign Exports.—In the foreign trade statistics the figures are returned under two headings—(1) Oil and (2) Seeds. The quantities of Sesamum OIL EXPORTED during the years 1902–7 were as follows:—In 1902–3, 212,728 gallons, valued at Rs. 3,33,489; in 1903–4, 285,711 gallons, valued at Rs. 4,24,403; in 1904–5, 547,456 gallons, valued at Rs. 7,22,158; in 1905–6, 308,310 gallons, valued at Rs. 4,44,293; and in 1906–7, 165,877 gallons, valued at Rs. 2,79,644. Almost the whole quantity goes from Bombay, and the chief markets in recent years have been Mauritius, Arabia, Aden, Ceylon.

During the period 1900–7 the exports of SEED were:—In 1900–1, 1,844,194 cwt., valued at Rs. 1,55,58,575; in 1901–2, 2,447,149 cwt., valued at Rs. 2,14,39,368; in 1902–3, 3,732,655 cwt., valued at Rs. 2,90,93,614; in 1903–4, 3,512,650 cwt., valued at Rs. 2,42,89,443; in 1904–5, 2,516,757 cwt., valued at Rs. 1,73,71,691; in 1905–6, 1,685,208 cwt., valued at Rs. 1,46,93,032; and in 1906–7, 2,740,815 cwt., valued at Rs. 2,53,79,919. It will thus be seen that a considerable fluctuation has taken place. Commenting on this subject, Noël-Paton (Rev. Trade Ind., 1905–6, 43) observes: “The shortage in rape-seed led to an acute internal demand for sesamum and occasioned great embarrassment to shippers; and, since in this case also the favourable nature of the crop prospects had led to depletion of available stocks, the exports, which declined by 28 per cent. in 1904–5, underwent a further contraction of 33 per cent., making a total of 52 per cent. in the two years. The average value rose by 26·3 per cent.” The condition mentioned was, however, entirely changed by the recovery of the foreign transactions in the year following. Bombay exports almost the entire quantity consigned from India (in 1906–7 its share came to 2,366,144 cwt.), and the chief markets were:—France, 1,060,589 cwt.; Belgium, 862,117 cwt.; Germany, 311,553 cwt.; Austria-Hungary, 191,795 cwt.; Italy, 158,316 cwt.; Egypt, 110,515 cwt.; and by way of contrast it may be added that the United Kingdom took only 3 cwt., valued at Rs. 24. But, as already observed, while Burma is the largest single producing province, it exports practically no sesamum seed. The production must be locally consumed, and hence to Burma this is relatively a much more important product than it is to the people of India. In Burma this oil doubtless plays very largely the part of ghi in India.

The imports of sesamum oil and seed are small and unimportant, amounting, in 1906–7, to 384 gallons of oil and to 14,549 cwt. of seed, chiefly derived from the Straits Settlements and Ceylon, and consigned to Burma.

According to a recent volume of Prices and Wages in India, the wholesale price of sesamum seed in Calcutta in January of 1906 was Rs. 5–10–6 per maund of 82·286 lb.
THE ITALIAN MILLET

lying land on the plains of India, from the Western Himalaya to Ceylon and Siam.

The stems of this plant have long been employed locally in various parts of India to yield a strong and useful fibre, which is used as a substitute for hemp. It is considered to be very durable under water, and is much esteemed by fishermen for making drag-ropes for nets. It is sown after the first showers of April or May, and the crop is ready to cut in September or October. The expense of cultivation is about Rs. 9 per acre. The method of preparing the fibre is similar to that for san (Crotalaria juncea). The stems are also commonly employed as stakes for pân (Piper betle) gardens. Recent experiments at Sibpur and elsewhere have shown that it makes a good green manure. (Cf. Banerjee, Agri. Cuttack, 1893, 88; Dodge, Useful Fibre Plants of the World, 1897, 294; Exper. Farm Rept., Sibpur, 1897-8, 10; Rept. Dept. Land Rec. and Agric., Bengal; Admin. Rept. Bengal, 1901-2, 20; Dept. Agri. Mad. Bull., 1905, iii., No. 52.)

SETARIA ITALICA, Beauv.; Fl. Br. Ind., vii., 78; Rede, Hort. Mal., xii., t. 79; Duthie, Fodd. Grass. N. Ind., 15; Duthie and Fuller, Field and Garden Crops, 5, t. xxxv; Panicum italicum, Linn., Roxb., Fl. Ind., i., 302; Gramineae. The Italian Millet, kangu, kungni, rala, kiranji, kora, kona, kaum, kâkün, china, chena, shâli, shol, tângum, che, gal, tennao, naoni, saut, etc.

Cultivation.—This millet is extensively grown in India both on the plains and the hills up to 6,000 feet, and is distributed to most warm temperate and tropical countries. It is interesting, for example, that the discoveries made at Ancient Khotan, by recent explorers, show that it was cultivated in Eastern Turkestan during at least the 3rd century of our era. Stein, for example, calls it tarigh, and mentions specimens of the grain found at Niya and also at Kara-dong which had been identified at Kew. It is perhaps somewhat significant, however, that no reference should be made to it in The Bosc Manuscripts, discovered at Kucha, seeing that two other millets are mentioned, viz. Panicum Cruc-Galli (var. frumentaceum, see p. 843) and Eleusine coracana. The Italian Millet has often been claimed as an Indian wild plant, but the majority of writers now regard it as an exotic though cultivated from ancient times. It has, in fact, been grown from time immemorial in Asia, and has been recognized in the deposits of the Swiss Lake dwellings. De Candolle thinks that the species existed thousands of years ago in China, Japan, and the Indian Archipelago. The kangni of modern writers undoubtedly denotes this grass, and it is cultivated here and there all over India, and even in Burma and the Shan and Kachin hills. It delights, says Roxburgh, in an elevated light dry soil, and two crops may be sown on the same field, two separate sowings being made, and harvested in September and January. It is grown as a kharif crop mostly, and there are two well-marked varieties, one straw yellow, the other reddish yellow. Sen (speaking of Dacca) says it is very sensitive to stagnant water. If rain-water stands on the field for twenty-four hours the crop may be lost. Roy tells us that in Orissa it is generally grown by the hill tribes and confined to the jungle-lands. Millson (Textbook Ind. Agri., iii., 69) says that this millet is cultivated all over India, but in no part is the cultivation very important. "In Bombay Presidency the crop is annually becoming more popular and the area has considerably increased." The total area for the Presidency exceeds 200,000 acres annually. It is a "quick-growing plant and a suitable crop to grow after a period of famine or scarcity." Millson then adds that a Dharwar crop tested in 1894 yielded the following results:—Seed-rate 6½ lb.; grain 433 lb. and straw 2,631 lb. an acre.

Diseases.—In Madras the crop is frequently attacked by a fungus, known as Scelerospora granimincola, some account of which is given by Barber in a paper on the diseases of Sorghum in Madras (Dept. Agri. Mad. Bull., 1904, ii., No. 49) and by Butler (Mem. Dept. Agri. Ind., 1907, ii., 14); also Maxwell-Lefroy, 1905, ii., 1-13.

Uses.—The grain is much esteemed as an article of human food in some parts of the country, and is eaten in the form of cakes or of porridge. In Madras it is specially valued as a flour to be used in making pastry, and when boiled with milk it constitutes a light and pleasant meal for invalids. It is also much valued as a food for cage-birds and for poultry, and added to beer it is said to make the
COWRY, CONCH AND CORAL

beverage more intoxicating (see p. 760). Church gives the nutrient ratio as 1:7.4 and the nutrient value as 91. As FODDER, the straw is not reckoned very nourishing and is often only used as bedding or for thatching houses. [Cf. Sen, Rept. Agri. Stat. Dacca, 1889, 37; Banerjei, Agri. Cuttack, 1893, 76–7; Roy, Crops of Bengal, 1906, 60; Lawrence, Valley of Kashmir, 1893, 337; Mysore Gaz., 1897, 1, 116–7.]

SHELLS.—Three groups of shells are of industrial value in India:

(a) Cowries or shells used as money; (b) Conch and other shells used for artistic and industrial purposes; (c) Shells, freshwater and marine, utilised as sources of lime; and (d) Ornamental Corals.

Cowry—kauri, kaward, karpord—the small white shell of Cypraea moneta. From time immemorial this has been employed in the currency of Southern Asia, more especially in China. The use is alluded to by Mas’udi (943 A.D.), by Marco Polo, and by many other writers, more especially of the Maldives, South India and Bengal. In India they are rapidly disappearing, though in the rural parts of the country they are still employed as money. Their value appears to be 6,144 to the rupee. But in addition there are largely employed as articles of adornment for horses, cattle, etc. The imports in 1901–2 came to 17,568 cwt., valued at Rs. 56,892; and five years later (1905–6) 21,405 cwt., valued at Rs. 81,710; and 1906–7, 18,638 cwt., valued at Rs. 68,845. The bulk of these foreign supplies came from East Africa and were imported into Bombay mainly, then Calcutta, Karachi, and last of all Madras. A considerable local supply is also obtained from the Laccadive and Maldive Islands. [Cf. Watt, Ind. Art at Delhi, 1903, 206.]

Conch or Chank, Mother-of-Pearl, etc.—Thomas, Pearl and Chank Fisheries, 1884; Thurston, Mad. Bull., 1894, No. 1. The sacred chank, conch or sankha (Turbinella rapa), is procured by divers in the Gulf of Manar, opposite Jaffnapatam in Ceylon, and off the coast of Travancore, Tuticorin, etc. Formerly the traffic in these shells was a State monopoly, to-day the Ceylon fisheries are regulated by an Ordinance. And so far as India is concerned, a notification is simply given when the sales will occur at Tuticorin. As much as a lakh and a half of rupees’ worth is often disposed of at one time. But so long ago as the 16th century Garcia de Orta spoke of the trade with Bengal in these shells having declined, and Bocarro in the 17th century made special mention of the manufacture of bracelets from them. A right-handed chank (that is to say, one with the spiral opening to the right) is much prized by the Hindus to be used at their temples, and being exceedingly rare often fetches a high price. Bracelets, armlets, charms, etc., are made of the ordinary conch shell, and these have been used in India from time immemorial, such bracelets being known as sankhas and the workers as sankharis. It is somewhat curious that the chief centres of this trade are all remote from the localities of production—namely Dacca, Patna, Dinajpur, Rangpur, Bardwan, Baisoren, Bankura, Sylhet, etc. Many of the smaller and more ornate shells are specially collected and used for personal adornment, or are worked up in fancy goods.

Mother-of-Pearl is procured at both the pearl and the chank fisheries. The shells are largely exported from Tuticorin, and used up in inlaying both wood and stone at Kota, Bhara and Agra (see p. 558).

SHELLS, CORAL, ETC., used as sources of LIME (see p. 712).

Coral—mujran, munga, sangi-mujran, gulli, paxhard, pag also, etc., is mainly of the coast of India in form of coral-reefs—modern or ancient—and here as sources of lime. Very little can be learned regarding indigenous ornamental corals. Mason, writing of the coast of Burma, mentions an elegant species of Actinia and of Meandria found in Amherst and Mergui. He also refers to a scarlet coral composed of cylindric tubes united together (Tubipora muscosa); a star-coral and tree-coral as plentiful on the coast of Tavoy. Black coral (Antipatharia) is also met with, of which beads are made and traded in from the Mergui Archipelago. Speaking of Tenasserim, Mason alludes to a tree-coral two feet long black coral often sold under the name of Red Coral.

There are no properly constituted coral fisheries in India or Burma, and it cannot accordingly be said that we possess the information to decide whether or not any of the Indian species are of industrial value. The Indian trade in ornamental coral accordingly centres around the imported kinds, which, being foreign products, need not be dealt with in this work further than to mention the

Fodder.

Cowry.

Uses.

Trade.

Regulations.

Sales.

Bengal Traffic.

Bracelets.

Other Shells.

Lime.

Coral.

Ornamental.

Beads.

Imported Coral.
added (upon which authority is not shown) that "the retting process is not suitable for it." The ultimate fibres were found to be 1·5-2 mm. in length, and to be similar to jute in their reactions. It was, however, softer and more uniform. Chemically it showed a high percentage of cellulose (83·4 as compared with jute 75·0). [Cf. Cross, Bevan, King and Watt, Indian Jour. 1887, 41-2; Watt, Sel. Rec. Govt. Ind., 1888, 277-82.] The most recent opinion is that given by Mr. Robert S. Finlow (Pusa, July 25, 1907) in a report on experiments: "Sida is undoubtedly a fibre of very high class; it is far superior to jute; indeed it probably ranks nearer to flax and rhea. It is a common plant all over India, but it grows especially well in the moist climate of Assam. I have sown plots at Rajshahi this year, which are doing well." (Rept. Agri. Dept. E. Beng. and Assam, 1906-7, app. ii.). Samples were sent to the Imperial Institute, and valuations ranging from £12 to £18 a ton were obtained (Imp. Inst. Tech. Repts., 1903, 59). The opinion given by Just Brothers of Bielefeld seems the rational one, namely that until a consignment of 400 lb. to 500 lb. of the fibre has been spun and woven, no definite conclusion can be arrived at.

SILK.—In perhaps no other country of the world does the necessity exist so pressing as in India to treat the subject of silk and the silk industries under two distinct sections, viz. Bombyx mori, the Domesticated or Mulberry-feeding Silkworms; and Saturniida, the Wild or Non-Mulberry-feeding worms.

I. THE MULBERRY OR DOMESTICATED SILKWORMS.

The terms mulberry and non-mulberry-feeding are more accurate than domesticated and wild, since certain of the so-called wild insects have existed for centuries, both in India and China, under what must be characterised as a degree of domestication; but, on the other hand, all the silkworms that live on the mulberry are not necessarily domesticated. "Wild silk" denotes, as a rule, the product of non-mulberry-feeding insects.

I. Bombyx (Sericaria) mori, Linn.

Habitat and Domestication.—The mulberry silkworm seems to be indigenous to the warm temperate regions of Northern China, and perhaps also of the adjacent countries. It was, for example, found by me in Manipur (during the Burma-Manipur Boundary Commission of 1882–3), under conditions that perhaps justify the suspicion that it may be indigenous, as well as long domesticated, in that little frontier State, if not of some parts of Bengal as well. But if it be not a native of certain warm temperate tracts of India proper, it occurs immediately beyond the Himalaya, more especially toward the eastern extremity, and at a very early period was successfully acclimatised on the extreme west in a tract of country just beyond the Kashmir frontier known as Khotan.

History.—In Buddhist Burma, where the objection to taking life prevails so strongly, a formidable barrier opposed any great extension of the industry, even although the Burmans for centuries past have been very partial to silk garments. Moreover, the silkworm exists on the hills of Burma and a distinctive race has for long been there reared—a fact that points to a considerable antiquity for the crafts of domestication of the worm, the reeling of the cocoons, and the weaving of silk. Moreover, a special tribe of people are identified with silk—the Yabein.

Turning now to China, it is customary to read of the silkworm having been reared from a vast antiquity (2,000 to 3,000 B.C., cf. Du Halde, Hist. China, 1736, ii., 355–6), and of the secret of its value having been carefully guarded until well into the Christian era, when a princess, who married the Chief of Khotan, succeeded, at the risk of her life, in carrying off to the country of her adoption, seed of both the mulberry plant and the silkworm. This is reported to have taken place in 419 A.D., and in this way originated the silk industry and trade of Central Asia. A century and a half later, from Khotan a knowledge in silk was diffused to Persia on the one side and Greece and Rome on the other. The silk production of Central Asia became, in fact, the envy of Europe, and led to the formation of the silk-roads which were designed to facilitate the traffic in silk toward Rome. Procopius (De Bello Gothico, iv., 17, in Yates, Text. Antiq., 1843, 231) tells the story of the monks of Serind (according to Yates—Khotan) having successfully carried the eggs of the silkworm to Constantinople (530 A.D.) at the invitation of the Emperor Justinian. This was desired so that the Romans might be able to produce the raw silk themselves instead of having to purchase it from their enemies, the Persians. A slightly different version of this story is told by Sir Thomas Herbert (Travels, etc., 1677, 183–4), viz., “From the Serra or Regio Serica (part of Scythia towards Indus and) this worm first came into Persia, not long before Alexander’s time; but until the Emperor Justinian’s time it was not known in Europe; the first being presented by the Persians unto the Emperor at Byzantium as a rarity.” A curiously interesting confirmation of the tradition of the introduction of silk into Khotan has recently been brought to light by Stein (Anceint Khotan, 1907, 259–60) in the form of a painted wooden tablet found in the sand-buried ruins of Dandán-Uliq, which Stein interprets as depicting the story of the Prince who carried off from China the silkworm eggs. There seems every reason for concurring that the tablet dates from the closing decades of the eighth century. One attendant is pointing to the headdress in which the eggs were secreted, and also to the basket of cocoons obtained therefrom, while a second is shown working at a silk-loom. The strongly Persian, in place of the Chinese, expressions of the faces is perhaps due to the stronger Iranian than Chinese influence at Khotan during that period, perhaps to some extent a direct consequence of the trade that had been by then established in silk. In Japan the domestication of the silkworm is perhaps very nearly as ancient as in China.

In India the mulberry worm has been systematically reared for many centuries, although it seems probable there have been two independent sources of the knowledge and stock possessed by India, viz. (a) Northern India, very possibly from Central Asia (Khotan) and Persia; and (b) Assam and Bengal, possibly from across the Chinese frontier, in all likelihood via the little State of Manipur. But it is curious and partly suggestive of the date of introduction into Northern India, at all events, that in the Periplus it should be stated that the silk came down the Indus (from beyond Bactria) and was conveyed to the great emporium Barygaza (the modern Broach), while no mention is made of locally produced silk. This is apparently, moreover, the first mention of the great
INDIAN MULBERRY SILKS

Silk

Bombyx

Races of Insect

West India—

silk manufacturing industry of West India—an industry that subsequently drew upon Bengal for its supplies of raw silk. It would also seem highly probable that all the early references to silk by the Sanscrit authors denote one or other of the non-domesticated worms, not the true silkworm of modern commerce.

Briefly, then, it may be said that the domesticated silkworm has been carried to all the countries of the globe where it has been found possible to grow the mulberry plant. But just as there are several distinct species, and under these many very different races of mulberry, so there are numerous forms of the silkworm. Some of these are confined within narrow limits, both as to locality and food-plant, others are less restricted and have adapted themselves to a wider range of climatic conditions and food-plants. The Roman attempt at rearing the silkworm does not, however, seem to have made much progress, for the domesticated insect of modern commerce is commonly believed to have been conveyed to Europe somewhere about the 13th century, and has since been widely diffused. There were, however, repeated efforts at aclimatisation. For example, the worm was conveyed to Italy by King Roger II. of Sicily, who brought it from Greece along with Greek silkworm rearers, whom he compelled to settle in Palermo. So again, it was in 1440 carried from Naples to France. It is now met with in Italy (Lombardy), France (Central and South), Spain, Sweden, Russia, Turkey, Algeria, Egypt, Syria, Armenia, Central Asia, Persia, Afghanistan, Kashmir, India, America and Australia, in addition to Burma, Siam, China, Japan, Corea, etc. It everywhere thrives best and gives the finest silk where the climate is temperate and its food-plant one or other of the races of Morus alba. Under skilled treatment, both of the food-plant and of the insect itself, immense improvements have been effected in Europe, also in Japan, so that it is commonly said both China and India have fallen below the modern level of quality.

As manifesting a common origin, the recurrence of the Tartar name ser and the Corean sir in many languages may be mentioned. Thus the Chinese sacu (cocoon), tai (silkworm), and the Burmese tao; also the ser in Greek: erici, Latin: serden, German: severe, French: seok, Russian: soho, Anglo-Saxon: silke, Icelandie; and silk, English. On the other hand, there seems little or no connection with these words and the names for the silkworm and silk in both ancient and modern India. The synonym urma (generally translated silk) occurs in the Rig Veda, but there is nothing to establish belief that it denoted mulberry silk. Another Sanskrit synonym, patta, gave origin doubtless to the modern Assamese and Bengali pot and the Tamil, patta, for mulberry silk. In fact, pot occurs here and there throughout India and even in Kashmir, and uniformly denotes silk. So also the Sanskrit punarika (silkworm) lives in the caste name of the silkworm rearers, the punarik-kakshas or pundas. The very common Indian name resham (silk) is derived from the Persian abresham, and is thus closely connected with the Hebrew meshi and dimashk, as also the Arabic dimakso and kus.

Life-history.—While the forms made specific by Hutton have by modern authors had to be reduced to races under the species Bombyx mori, the forms in question denote important industrial assemblages, which it is essential should be here briefly indicated.

It may be as well to sketch very briefly the life-history of the silkworm itself. Needless to say it exists first as an egg, then as a worm (or caterpillar), which later on spins a cocoon within which the chrysalis stage is spent, and lastly from the cocoon in due course emerges the winged moth, which, after coupling, lays eggs and dies, thus originating once during its lifetime the cycle above briefly indicated. The four stages (egg, caterpillar, chrysalis and moth) thus constitute one generation, and insects that take a year to pass through these stages are called univoltine. Occasionally special breeds are met with that are bivoltine, that is to say, a first batch of the eggs germinate almost immediately after being laid, thus allowing time for two generations in the year. The bivoltine insect of China was perhaps first introduced into Europe by the Genoese, but trivoltine insects occur in Tuscany, and even quadrivoltine forms are met with in many countries.
In India a still more complex condition prevails, where the heat of Bengal and Assam causes the insects to become multivoltine. The borophilo (barapsalu) insect (Bombbyx tector) is univoltine, but the desu (B. for-
tunatus), the madrasi (B. crasi), the chotapat (B. sinensis), and the
nyapae (B. arracanensis) all pass through a succession of generations in the course of the year, which sometimes amounts to as many as

eight in number.

The crop of silk produced by a generation of worms is called a band.
In Bengal the ordinary crops or bands are known as the November band,
The March band, and the July band, but there is occasionally a fourth band
attempted after the close of the July one, by such rearers as have sufficient

leaf.

Aristotle gives an interesting account of the silkworm, but he was not accu-
rate acquainted with the four stages in its life. He does not say that it was
reared in captivity but simply that Pamphilie, daughter of Plato, was reported
to have been the first to weave silk at Cos. Aristotle describes the spine or horn
at the anal extremity of the worm, a fact that proves fairly conclusively, however,
that it was the same species as the mulberry-feeding insect of to-day. But St. Basil
(370 A.D.), a native of Asia Minor, gives full particulars of the stages and muta-
tions of the silkworm, and he was the first to mention the popular suggestion of the
parallelism of the escape of the moth from the chrysalis with the resurrection
after death. Pausanias (in the 2nd century), also a native of Asia Minor, fur-
nished particulars of the rearing-houses used in summer and those employed in
winter by the silkworm-growers. Thus, when we first make acquaintance with the life-
history of the silkworm, it had probably been by then as fully domesticated as it is
to-day.

The first scientific writer who can be traced is Andrew Libavius, who bred
silkworms at Rothenburg and published his observations in 1599. He lays
stress on the horn-like tail as the most distinctive character of the domesticated
mulberry worm. But to the student of Indian agriculture a much more interesting
publication appeared nearly a century later. In 1689 the Rev. J. Ovington
wrote his Voyage to Suratt, in the Appendix to which there is given Observations
concerning the Nature of the Silkworms (see pp. 1017, 1020). This was apparently
framed as an account of the silk of India generally and not of Surat alone, but it
deals exclusively with the mulberry worm. It leaves the suspicion, therefore,
that it may have had special reference to an attempted Surat industry of rearing
silkworms, full two centuries ago. He gives the utmost details as to the seasons
of each band, then concludes—"This is the Nature of the Silkworms in the Indies
where the Heat of the Sun renders them much more fruitful than with us; for
in India the Worms breed and spin their Silk six times in the Year, and in England
only once."

"There likewise they are sooner brought to perfection, and begin to
work sooner, viz., 28 days after they are hatchet, but in England not until the 40th.
Where also they are by a third part more tedious in breaking out of their Houses
from the first day of their Spinning than they are in the East, which is there done
in ten days, but here only in fifteen."—Herbert (Travels, etc., 1677, 183-4) gives
a highly instructive account of the domestication of the silkworm in Persia. It
was a univoltine insect fed on white mulberry, and he says, "In most Villages
and Cottages we saw sheds filled with laborious People minding their enriching
Silkworms."

Races of Insects.—The following may be given as the chief races:

(c)—B. mori proer, the European Silkworm.

It is customary by writers on the Indian silk production and trade to class all
the races of the European worm as one, perhaps because under the Indian con-
ditions the differences that exist become immaterial. Mukerji gives many in-
teresting details regarding the directions under which the rearing of certain
grades of the European worm become possible in the plains. The eggs require
to hibernate under considerably lower temperatures than those for the barapsalu
(below)—viz., 20° to 40° F. But there are certain disadvantages, such as the fact
that these worms usually die of stacherie if reared from April to August. They
do not as a rule make good cocoons if fed on the ordinary shrub-mulberry of
Bengal. They require to be fed on leaves gathered from trees. Where large
mulberry trees are available it may be profitable to rear European cocoons. In

995
INDIAN MULBERRY SILKS

Races of Insect

Kashmir.

In Kashmir, largely through the great personal interest taken in the subject by Sir Walter Lawrence and Sir Thomas Wardle, much progress has been made in acclimatising the European silkworm in Bengal should consult Mukerji's work (l.c. 162-70).

More recently similar efforts have been made in Assam (p. 1015), in Baluchistan (p. 1016-7), and in Mysore (p. 1018).

Bombyx moraceous, Hutton, Trans. Entom. Soc., 1864, ii., 313; also Journ. Agri.-Hort. Soc. Ind., 1871, iii., 125; Rondot, L'Art de la Soie, 1887, ii., 483; Geoghegan, Silkw in Ind., 1880, 133-8; Liottard, Memo. Silk in Ind., 1853, 59; Manuel, Journ. Agri.-Hort. Soc. Ind., 1886, viii., 291-307; Cotes, Ind. Mus. Notes, i., pt. iii., 152; Allan, Agri. Ledg., 1896, No. 26; Cooke, Silkw Indus. in Yemethin, Agri. Ledg., 1897, No. 11; Handiman, Monog. Silk in Burm., 1901, 26-50; Quajat, Dei Bosco, 1904, 115. The nyapaw of the Burmans. This is a multivoltine silkworm. Apparently the earliest notice of it occurs in a letter from Major Bogle and referred to by Pytche, Assistant Commissioner, Arakan (Journ. Agri.-Hort. Soc. Ind., 1850, vii., 281-5). The best description of it, however, is that written by Mr. R. A. Manuel. It lives on the mulberry and the following are its stages—in the egg, 8 days; in the worm, 15-23 days; in the cocoon, 8-10 days; and in the state of moth, 2-3 days. Its cultivation in Burma, he further says, is careless, slovenly and dirty. No separate rearing-house is provided and the trays are never changed, the excreta never removed, nor the refuse food cleared out. It is no wonder, therefore, that the mortality is very high. The manipulation of the silk and the manufacture of the resulting fibre are alike indifferent, so that the industries connected with this special worm can hardly be regarded as more than of very local interest. The districts chiefly concerned are Tharawaddi, Prome, Thayetmyo and Toungoo. Breeding is confined to the higher tracts of the Pegu and Arakan Yomas. Still, the existence of a special breed of B. mori may either point to a great antiquity or denote the comparatively recent domestication of a peculiarly Burmese insect which more careful inquiry may be found to exist even to-day in a wild or feral state, much as in the neighbouring State of Manipur.

B. crass, Hutton, Trans. Entom. Soc., 1864, ii., 312; Cotes, Ind. Mus. Notes, i., pt. iii., 151; Quajat, l.c. 113. This is the nisi or nisi or madras, a multivoltine insect reared chiefly in the March and rains bands of Bengal and Assam, where it is second in importance to the des variety. It produces a succession of crops throughout the year, most of which are only reared for seed. But unlike the des, however, it thrives best in the hot weather. Cotes (Journ. Agri.-Hort. Soc. Ind., 1891, ix., 105) says the only real distinction between des and madras is that while the former thrives best in the cold weather, the latter prefers the hot season. The cocoons are generally yellow, at least externally, and are somewhat larger than those of the des, but the fibre has less elasticity and brilliancy. The moth is milky white in colour and the caterpillar has two black spots on each segment. Blechynen (Journ. Agri.-Hort. Soc. Ind., ix., 106) suggests that the name nisi is due to these spots, the comparison being to the goddess Kali, an alternative name for whom is Nisari. Hutton says that it goes through all its changes from egg to cocoon in twenty-five days but in cold weather it takes thirty-five days.

Perhaps the earliest account is that given in the Minutes of the Bengal Board of Trade in 1810 (cf. Reports, etc., of Cotton, Silk, and Indigo (pub. E.I.C.), 1850, app., 48-51). It is there stated that there are several distinct forms of the nisi-worm, such as the "madras, soomamooky, and the cranes." As to the origin of these insects, it is stated that the "Board are not able to speak with the degree of precision it were to be wished." They are peculiar to Commercolly districts, except the madras, which is also found in Bauleah, Soomamooky and Malda. The Resident at Commercolly was of opinion that the finest stock of nisi was that of Soomamooky. The madras are inferior but next to these. They all produce a silk of a greenish hue much inferior to that of the des, but are much sought after as they yield a large amount of silk. It is a hardy insect, requiring little care and not at all choice in its food.

The Resident at Malda wrote in the same papers that the madras silkworm is distinguished from the des by a black mark under the throat. He then adds,
THE NISTRI AND DESI

Its great comparative defect is that it cannot be kept in store (in these ourungs at least) longer than a few days without total destruction, whereas the desi may be kept in well-aired coconneries even twelve months without material injury. Speed (Agri.-Hort. Soc. Ind. Trans., 1839, iii., 21) speaks of this as the madras or China pului, from which it may be assumed as possible that B. sinensis or sina (China) insect may be but a degenerate state of the madras, the two names sina and madras having in Bengal come to be accepted as synonymous. That may or may not be the case, but it cannot be too strongly urged that the early writers recognised several distinct forms of nistri, of which the madras was one and by no means the best.

(8)—B. fortunatus, Hutton, Trans. Entom. Soc., 1864, 312; Wardle, Wild Silks of India, 1881, 3; Bonodot, L'Art de la Soie, 1885, i., 312; Cotes, Ind. Mus. Notes, 1889, i., pt. iii., 150-1, t. viii., c; Quajat, Dei Bozzioli, 1904, 114. The desi, choto polu, palu or pdt insect—the November or cold-weather band.

As the name implies, this is viewed by the people of Bengal as an indigenous insect, though it is probable that it is in reality only so much anterior in its acclimatisation as to be viewed as relatively indigenous. Perhaps the first definite account of this insect occurs in the volume of official papers (E.I.C., Lc. 40-7). It is there stated to be produced throughout the year but to vary in estimation and value, according to the season of production and the nutritious nature of the mulberry-leaf on which it feeds. “Hence, the worm of the cold-weather or November band, and that of the dry-weather or March and April bands, is superior from the more favourable state of the weather.” Speed (Agri.-Hort. Soc. Ind. Trans., iii., 20) speaks of this silkworm as of a small size but as yielding cocoons five times a year at periods of from 40 to 110 days. Hutton points out that the longer period occurs in the November band, hence its superiority. The official papers (E.I.C., Lc. 41) speak of the “Commercially” chassars formerly raising no cocoons except the desi until the year 1790, when two sorts of nistri were introduced by Mr. B. Becher. It is, however, observed that the desi is the best of all the silkworms. The broods are October, November, March, April and June or July. The first is the best in point of quality, but the second the most productive. The Resident at “Cossimbazar” (E.I.C., Lc. 42) describes the November band of desi silk as the largest in the year, but he adds that in his opinion the annual worm is as far superior to the desi as the latter is to the mixed breed of desi and China insect. He then remarks that in Cossimbazar the April band is mostly the Indian insect. Similar reports are given from “Hurriapul, Jungypore, Malda, Radnagore, Soonamookoy and Bauleah,” thus showing the wide distribution of this insect at the beginning of the last century. Of Hurriapul, it was stated in 1819 that the desi had only just been introduced. In Soonamookoy, on the other hand, the yield of silk from this insect in 1813 was 1,040 maunds of silk, and the Resident in Malda speaks of the produce from this particular insect having been in 1811, 2,708 maunds. He then adds that the cocoons produced in Bauleah and the vicinity in the November band alone, if a favourable one, are about 60,000 maunds.

Cleghorn recommended that in breeding the desi worm, it was imperative to select dusky moths. This observation regarding the dark-coloured insects and worms will be found to have a peculiar bearing on Hutton’s opinion regarding the original form of B. mori, more especially when it is added that Mukerji, while experimenting with certain cocoons furnished by Cleghorn, arrived at the opinion that they “were a cross between the country breeds and B. mori of Europe.” The domesticated and wild insects seen by me in Manipur would appear to belong to the desi race, a fact of no small importance in support of the belief that it is there indigenous (see below, p. 1015). [Of. Allen, Monog. Silk Cloths of Assam, 1899.]

(9)—B. sinensis, Hutton, Trans. Entom Soc., 1864, ii., 313; Cotes, Ind. Mus. Notes, 156. This is the sina (China) or chota pdt insect of the Indian seducultrists. It is a small multivoltine silkworm, which produces cocoons inferior to both the desi and the madras. In Bengal its cultivation has been almost abandoned, though it would appear to be grown successfully on the hills and seems to be the chief multivoltine insect of the plains of Assam. Hutton, speaking of Mussourie, says it was in his hands very prolific and yielded crop after crop up to the middle of December. The cocoons vary in colour from being white, yellow or greenish coloured. Unlike the other Indian races, which hatch slowly during the morning (from 6 to 12 o’clock), the sina worms come forth all in a batch, hatching day and night till all are out of the eggs. In the volume of official papers (Board of Trade, Bengal, 1819) there are several passages that deal with

D.E.P.
vi., pt. iii., 2, 12-5, 235.

Desi
Worm
Indigenous.

Annual Worm
Best.

D.E.P.,

Manipur
Wild Insect.

Sina or Chota Pát.

Hatching.
INDIAN MULBERRY SILKS

Races of Insect

this insect; the reports are unfavourable, and speak of the breed having degenerated in Bengal. Of Cossimbazar, for example, it was observed that there had been a great intermixing of desi cocoons with the China stock. The latter predominates in the April band, the distinctive mark being the length and thinness of the cocoon. This is considered by the rearers as the most inferior kind and is nearly exploded as a distinct species."

B. textor, Hutton, Trans. Entom. Soc., 1864, ii, 313; Wardle, Wild Silks in India, 1881, 2; Louis, A Few Words on Sericulture in Bengal, 1889, 20; Rondon, L’Art de la Soie, 1885, i, 320; Quajat, Des Boszoki, 1904, i, 29; Cotes, Ind. Mus. Notes, 1889-91, i, 154; Muckerji, Handbook of Sericulture, 1889, 155-62.

The boro polo or barapalu—Large Pát—the annual silkworm of Bengal. Speed (Agri.-Hort. Soc. Ind. Trans., 1839, iii, 19-20) fixed the date of the introduction of this insect into India, viz. 120 years before the date of his paper, etc. He further says that it came from Italy. There is no confirmation of these views in any of the records I have been able to consult.

Cotes speaks of this as an annual mulberry silkworm, larger than either the desi or the madras. In the official papers issued 1819, it is stated that in the district of Cossimbazar this insect predominated in the March band; moreover it was added that in the Cossimbazar factory the band was second in quantity but first in quality of all the bands in the year. Of Bauleash it was remarked in 1817 that not a cocoon of this description was produced. On the other hand, the Resident at Hurripaul spoke of it as the most valuable and as yielding the best silk in the March band. Of Jungypore, it was stated that notwithstanding every exertion, the production of this cocoon had become exceedingly precarious and uncertain. Radnagore reported that in a good season this insect was very abundant and profitable and produced in the proportion of at least two to one of the other species. The Resident of Soomnooky observed that the eggs are brought out for hatching about the end of January and in 40 to 45 days the cocoons are complete. This insect, he added, is, however, most difficult to rear and is much more delicate than the others. But the silk is of fine fibre and strong, and ought to be very mellow to the feel and of clear yellow colour with some white. The yield is about 103,500 khauns, which ought to yield about one hundred and fifty factory maunds of silk.

It is at present occasionally reared in Assam and Bengal, but owing to the fact that it produces but one crop of cocoons in the year and that its eggs do not hatch simultaneously, its cultivation has now been almost abandoned. To-day Muckerji deprecates the decline in production that has taken place. "The Barapalu is reared," he says, "by very few people. There are two reasons for neglecting such a superior class of cocoons:—(1) The eggs of the Chhotapalu, the Nutripalu, or the Champaapalu take only eight to ten days to hatch, but the eggs of the Barapalu hatch after ten months; (2) Barapalu go on hatching for seven or eight days or still longer, while the eggs of the other varieties of Bengal silkworms hatch completely in two or three days, when once the hatching does commence." Muckerji makes the practical suggestion that if arrangements could be made for hatching barapalu eggs in certain central establishments and distributing hatched worms to villages instead of eggs, the rearing of barapalu could be made to assume some importance. Muckerji (loc. 159) gives many useful particulars regarding the methods of storing and hatching the eggs, and shows that by subjecting them to a fairly low temperature for a fortnight, followed by a similar period of warm temperature, the eggs may be caused to hatch at any time desired, thus producing pseudo-broods as leaf may be obtainable. Naturally, they hatch in January and the cocoons are obtained in February, and from them four pseudo-broods may be taken, viz. a second brood in March, a third in September, and a fourth in October. Rondon writes that this variety spins a white cocoon smaller than that of B. mort and differing from it both in form and structure, being generally pointed at both ends, a little soft, the silk not closely wound and containing comparatively little gum.

MULBERRY-PLANT CULTIVATION.—(see Morus, pp. 784-5). In the temperate tracts of India various forms of Morus alba, Linna (the mulberry of the European silk-producing countries), are grown specially as food for the silkworm. This is the case in many parts of the plains of Northern India, Baluchistan, Afghanistan, Kashmir, and along the Himalaya at altitudes up to 11,000 feet. The other species even more largely grown
for the Indian silkworm is *M. indica*, Linn., of which there are many distinctive varieties or races. This is the most common mulberry of Bengal and Assam, as also of the Nilgiri hills. The plants are usually raised under what is called the bush system, the standard or tree system being hardly if ever seen in these localities. It is, in fact, only in Bengal that shrub mulberries are produced systematically and at a cost of Rs. 20 to 25 per bigha (one-third acre). There is but one advantage of this system, namely, that the leaf produced is preferred by the *chhotapalu* insect. Mukerji strongly recommends that mulberry trees should also be grown within or around the plantation, and for that purpose he suggests *M. alba*, var. *atropurpurea*. It is a fast-growing plant; the leaves are large and thick and at the same time smooth, tender and succulent. *M. serrata*, Roxb. (the *karun* or *kimu*), *M. lavigata*, Wall. (the *kimbu* and *taupesea*), though wild, the former on the western and the latter on the eastern Himalaya and the mountains of Assam and Burma, are not to any material extent employed as food for the true silkworm.

Buchanan-Hamilton (Stat. Acc. Dinaj., 210–3) gives particulars of the method of cultivation of the mulberry and the feeding of the worm that prevailed in Bengal during the closing decade of the 18th century. In the volume of official papers on the cultivation of mulberry, issued by the Bengal Board of Trade from 1813 down to 1836 (Lc. 63–113, 130–163) will be found a special report by Roxburgh entitled *Observations on the Indian Mulberry Tree, M. indica*, Linn. (Lc. 69–71), and also a similar paper by Wallich (Lc. 130–3, in which he describes *M. indica, M. atropurpurea, M. leptostachya* and *M. serrata*. These reports give a full record of the early experiments at improving the Indian silk by the production of better food for the worms, and are exceedingly instructive and valuable. Mukerji (*Handbook of Sericult., 1899, 1–4*; also *Monog., Lc. 5–9*) deals with present methods and opinions. “All varieties of mulberry are not equally suited,” he says, “for rearing every kind of silkworm. The mulberry tree which we usually see in gardens, which yields large-sized black-coloured and luscious fruits is *M. nigra*. The leaves of that tree are rather coarse and not quite suitable for rearing silkworms.” He then says that if the *chhotapalu* worm be reared on *M. nigra* it readily takes the disease *flacherie*, and the other forms of the insect, if reared on the black mulberry, yield a less proportion of silk and that of an inferior quality. Mukerji then adds that *M. multicaulis* may be regarded as the best for rearing silkworms. He doubtless means the Chinese and Philippine plant described by Perrotet, and which Rafinesque discusses in detail. *Cf. American Manual of Mulberry Trees, 1839, 64–6; also Fl. N. America, 1836, pt. iii., 48.* The attention of the Madras Government was drawn to this species of mulberry by Col. Sykes in 1839, and a supply was procured by Wight and grown in the Horticultural Society’s gardens, Madras, about 1840, and a little later was taken to Bangalore and the Nilgiri hills. The leaves are large and tender. They are thick but not coarse. The tree grows fast and attains a greater height than other varieties. The internodes are short and the yield of leaf accordingly high. It is doubtless one of the many varieties or races of *M. alba*. As a curiosity it may be added that the American Osage orange (*Maclura aurantiaca, Nutt.*) has been introduced into India and found useful for rearing mulberry silkworms of all kinds.
INDIAN MULBERRY SILKS

SILK BOMBYX Mulberry Plant

But in the early stages of the life of the worm it may be fed on the tender young leaves of the pipal (Ficus religiosa). This fact is of considerable practical value when in spring the mulberry of Bengal is in a backward state.

Diseases of Mulberry.

Diseases of the Mulberry.—Mukerji (loc. 121-7) discusses the diseases to which the mulberry trees are liable. The most serious appears to be *tukra*. This is caused by a minute scale-insect (*Dactylotus bromelio*). When attacked by this disease the leaves become curled up and the tender shoots swollen. When eaten they are shortly after voided by the silkworms, and if consumed to any material extent cause flacherie or grasserie. *Tukra* accordingly does much harm to the silk industry from January to June, and the only cure is the application of kerosene emulsion. Another somewhat similar disease is known as *naicha*. This is also caused by a member of the Coccidæ. It would seem the case that bush mulberries are much more liable to these diseases than tree mulberries. Mukerji observes that all the silk districts are not equally affected by *tukra*. In Murshidabad it prevails to such an extent that if it had not existed, there could have been obtained at least a third more leaf and therefore a third more cocoons. In Malda, Birbhum and Bogra very little damage is done by *tukra*—due possibly to greater intelligence in cultivation. Tree mulberries once started require little attention and are much less affected by dry, hot weather or disease.

Fungal Disease.

Butler (Agri. Journ. Ind., ii., pt. i., 97-8) gives useful particulars regarding a fungal disease seen on the mulberries of Kashmir. The State plantations near Srinagar had been seriously attacked. The disease is found on old trees without causing appreciable damage, but does great harm to the young plants in the nurseries. It attacks the seedlings in their second and subsequent years, does not kill them outright, but they have to be cut back below the diseased parts, thus losing several years' growth, even if they are not attacked again. The disease is caused by a parasitic fungus (*Coryneum mori*) which invades the wood or the branches, and comes to the surface to form spores. Butler adds, after his detailed description of the fungus, that it has previously only been found in Japan, where it was first described in 1904. It is thus probable that it was introduced into India during one of the attempts made to apply Japanese methods in Indian sericulture.

Rent of Mulberry Lands.—Some share in the decline of the Bengal silk industry has been attributed to the high and differential rents charged for mulberry land. Insufficiency of nourishment, due to dearness of mulberry-leaf, was, it has been said, one of the chief causes of the low yield and low quality of the silk. But Mr. Finucane (in an official paper) argues that the land usually placed under mulberry is valued for growing sugar-cane, tobacco, potatoes, and that accordingly if mulberry cannot hold its own in popular favour against these and such like crops, it would be unwise and pernicious to "prop it up by factitious encouragements." He then continues, "There can be no doubt that the rates of rent for high land on which mulberry is grown are higher than for low rice land, which is of a different quality; but the real question is—are the rates charged when mulberry is grown, higher than the rates which would be charged for the same land if sown with sugar-cane or potatoes or other upland crops?" He then answers that question by showing that in some districts an illegal practice does prevail of charging special rates for mulberry
DISEASES OF THE SILKWORM

Cultivation. But the position of affairs is summed up by the opinion that such special rents are not general, and that they have "not really had much effect in bringing about the depression in the silk industry in Bengal."

Diseases and Enemies of the Mulberry Silkworm.—From 1865 to 1870 Pasteur devoted himself to the study of the diseases of the silkworm, and the remedial measures which he recommended have since been not only widely adopted in Europe but throughout the silk-rearing regions of the world. Even in India, thanks to the energy of the late Mr. N. G. Mukerji and his coadjutors, the selection of seed by the aid of the microscope has become an every-day practice of the ordinary cultivator, who may be said fully to recognise the value of specially selected seed in the curtailment of disease. A voluminous official correspondence exists in the Annual Reports of the Dept. Land Rec. and Agri. and in the Proceedings of the Govt. of Bengal on the subject of the diseases of the silkworm, especially the papers for 1894 and 1895.

The chief diseases are:

(a) **Pebrine.**—This is known in Bengal as *kata*, or, in an aggravated form, *tali*, and characterised by the presence of microscopic corpuscles of an oval shape found within the tissues of the worm, but also in the moth and egg. Though not always fatal, this disease damages the quality of the silk very greatly. Besides being contagious, it is also hereditary. The cure is to breed only from eggs laid by healthy females (established by a microscopic examination) and general sanitary precautions to prevent infection. This is the worst of all the diseases, and, according to Mukerji, it was unknown in India twenty-five years ago (i.e. 42, 53-4). The final conclusions and recommendations deserve to be most carefully considered and enforced. [Cf. Fisher, Ind. For., xv., 165-7; Arbousset, On Silk and Silkworm (Engl. transl.), 1905, 203-5.]

(b) **Flacherie or Gatline.**—This is known in Bengal as *kala shira* or *shafla*, and is characterised by the presence of "chain ferment within the digestive tract of the worm and pupa." The disease is contagious, and to a certain extent hereditary, in that the larvae of moths that show symptoms of *flacherie* have a predisposition to the disease. The remedy is as above, namely, for breeding purposes to reject all eggs obtained from moths found by microscopic examination to manifest signs of the chain ferment. [Cf. Mukerji, l.c. 95-109; Fisher, l.c. 167-9; Arbousset, l.c. 206-11.]

(c) **Muscardin.**—This is known in Bengal as *chana* (or *chunb-bite*)—a name that indicates the resemblance to lime—and is caused by a fungus, which appears as a white efflorescence on the body of the worm some hours after it has died of the disease. It is contagious but not hereditary, and though the affection may be so slight as not to interfere with the spinning of the cocoon, the chrysalis almost invariably dies, and thus never emerges as a moth. The disease is spread by the spores produced on the efflorescence, so that the speedy removal of all dead worms is an efficient preventive to a dangerous outbreak. Next to *pebrine* this does the most harm in Bengal. [Cf. Mukerji, Lc. 74-87; Fisher, Lc. 167; Arbousset, l.c. 195-202.]

(d) **Grasserie.**—This is the disease known in Bengal as *rama*. It is of little importance, and is never hereditary. Following *muscardin*, it does, however, considerable damage to the worms in Bengal. In Europe it is not looked upon as serious, but in Bengal it becomes often epidemic. It invariably follows a heavy downpour of rain, if that succeeds to a long period of drought and high temperature, especially if the worms be then in their last stage of growth. Worms fed on mature leaf first, and tender leaf afterwards, are liable to take *grasserie*. The means of checking the disease is the propagation of large mulberry-trees. Whenever there is a sudden shower of rain, leaves from trees, not shrubs, should be given. [Cf. Mukerji, l.c. 87-95; Fisher, l.c. 169-70; Arbousset, l.c. 192-4.]

(e) The most serious pest is the Tachinid fly, *Trybolomyza bombycis* (Ind. Mus. Notes, l. 88-9). This parasite lays its eggs upon the body of the worm. These eggs on hatching produce a grub that lives within the body of the worm and finally kills it. [Cf. Mukerji, l.c. 112-21.]

Influences of Climate.—It may be briefly said that in no essential feature are the mulberry worms of India different (as far as liability to disease is concerned)
from those of Europe, America or the Colonies. Perhaps the chief difference lies in the climate enfeebling the insect by causing it to produce too many broods in the year. But the prevalence of certain of the above-mentioned diseases uncontrolled is doubtless the chief cause of the decline of the Bengal industry. Mukerji (i.e. 41-53), in an introductory chapter, discusses the general aspects of the diseases of the Bengal worm, and makes many highly practical recommendations. About 60 per cent. of the silkworms, he says, die immediately after spinning a cocoon and after having eaten the full quantity of leaf. On this account the silk-rearers have for the past twenty-five years or so (in other words, subsequent to the appearance of pebrine) been steadily giving up their ancestral craft and taking to ordinary agricultural pursuits. There would seem no great reason why this wave of unpopularity could not be stemmed by vigorous efforts to assist and educate the rearers in the methods essential to the control of the plague.

Mukerji gives many interesting details (i.e. 128-50) regarding the construction of rearing-houses, where the selection and improvement of stock might be conducted, and the elimination of disease by the microscopic selection of eggs. The rearing-house, he urges, should be established close to a large tank or river; should be surrounded by mulberry trees; should be one mile away from cocomordaining villages, fitches or cocoon godowns; and should be in a village whereby a sufficient community exists conversant with the picking of ripe worms, handling moths and planting mulberries. It is not possible to conduct sericulture under hired labour, if the workers are not drawn from the hereditary silkworm rearers. This point is of vital importance, as it takes many years' careful training to acquire the expert knowledge essential to success.

II. THE WILD SILKWORMS—THE SATURNIDÆ.

Out of the long lists of wild insects that have been published by writers on this subject, only three Indian and two Chinese and Japanese species are of commercial importance. These are:—Indian-Tasar silkworm, Antheraea paphia; the Muga, A. assama; and the Eri, Attacus ricini: Chinese-Tasar, Antheraea pernyi; and Japanese-Muga, Antheraea yamamai. The last two insects are only mentioned here because they come into trade in opposition to the corresponding Indian insects, and on that account have been classed by the trade as forms of tasar and muga silks.

D.E.P.,
vI., pt. iii.,
96-161.
Tasar.

Tasar silkworm of India, a name which in English commerce is often written “tussur” or “tuser,” and in French “tussee.” It is usually said to mean a shuttle, and to be derived from tasara or tresara in Sanskrit, but neither of these words are employed by the older authors to designate a particular form of silk. Mr. A. Yusuf Ali points out that the letter “t” in the word for shuttle is the soft dental, while in the word tasar silk it is the sharp palatal “t”—two letters that are not often inter-
changeable. The English rendering *tussur* (if pronounced *toosoor*) would be quite unintelligible to the Natives of India. Equally absurd are the renderings *tussah*, *tusseh* and *tusha*. [Cf. Milburn, Or. Comm., ii., 158, 244.]

Rumphius gives an interesting account of this insect, and appears to be the first European to call it *tasar* (or, as he wrote it, *tesser*), and the word must even then (1691) have been well known, seeing that he was able to contrast the insect of the Moluccas with that of Bengal. James Petiver (who died in 1718) gives a picture of the cocoon, and speaks of obtaining specimens from Madras through Edward Bulkeley and Sam Browne. [Cf. Phil. Trans., 1701, No. 271, 843; Yule, *Diary of William Hedges*, ii., app. cccxx.] But an even earlier usage of the word denotes a fabric of striped silk and cotton, the silk being either *tasar* or *muga*. Thus, for example, in the *Ain-i-Akbari* (1590) we read of *tasar* selling at Rs. \(\frac{1}{4}\) to Rs. 2 a piece.

Other vernacular names are used to denote this insect, or, rather, special forms of it. We read of the *tasar* found in Bengal on the *ber*-tree (*Zizyphus*) being called *bughy*; that found on the *asan*-tree (*Terminalia*) being the *jarvo*; in Manbhum, the *tasar* insect is known as *daza*, *daba*, and in Santali it is *lumam*, *lumang*; in Bhagalpur and Dinajpur (according to Buchanan-Hamilton) it is *jaru*; in the United Provinces it is *koa* (cocoon), and the insect that lives on the *ber* is called *kuwari*, and that on the *asan* the *tasar*; and in Assam it is often distinguished as the *kaktura*, while in the Deccan the name *koliassura* is sometimes given to it. Roxburgh calls the insect *bughy*, and the silk spun from its cocoons *tusseh*.

Habitat and Races.—According to Sir George Hampson it is a native of China, India and Ceylon. It may be spoken of as a denizen of the upland forests inhabited by the Santhal, the Kol, the Khond and the Gond, extending west and south-west of the Gangetic alluvial basin. In other words, commencing at the Rajmahal hills, it stretches through Karackpore, Chota Nagpur, Orissa, the Central Provinces, the Northern Circars to Hyderabad. It has thus the Ganges for its northern boundary, the Godavari for its southern, the coast ranges of Orissa to Ramgar in Hyderabad for its south-eastern, and the Nerbudda river and the Kaimur mountains for its north-western boundary. But it crosses these limitations at various points, as, for example, it passes the Ganges and enters Nepal, Sikkim, Assam, Manipur and Chittagong. It has also been recorded in Mysore. Beyond the special tract indicated, it is everywhere else more a curiosity than a commercial product.

There are several varieties or races of this insect (*Fa. Br. Ind., l.c. 19*):

"The form *mylitta* is the most yellow; *paphia* is pale brownish-yellow; *nebulosa* greenish-brown, clouded with fuscous as far as the postmedial line; while *cingalesa*, from Ceylon, is a dark brownish-yellow form."

Semi-domestication.—The term domestication can hardly be applied to the method of rearing this insect pursued in India, and still in many localities it is not strictly speaking wild. The chief districts of production are Bhagalpur, Chota Nagpur and Orissa in Bengal, and Chattisgarh, Nagpur, Nerbudda and Jhabalpur in the Central Provinces. But the experiments performed some years ago at Poona proved that, so far at least as Western India was concerned, the expectations often advanced
of greater success from special cultivation over restricted areas, as compared with collection by the ordinary method from wild sources, were misleading. The semi-domestication that ordinarily prevails is to endeavour to grow (or rather to encourage the natural growth), within a certain tract of country, the tree or trees on which it is intended to rear the insect. The seed cocoons are collected from the jungles and tied on to the trees. Thereafter men and boys, armed with pellet-bows, guard the insects, as far as may be possible, against their enemies—chiefly flocks of birds that would greedily devour the caterpillars. In some few localities specially selected cocoons are reserved from last year's supply for the purpose of seed, and it is even occasionally the practice to allow the moths to make their escape from the cocoons under confinement, and to retain the females as prisoners in a position where they may be visited by the wild males, and thereafter to tie the little cages or baskets containing the eggs on to the trees. But it has been proved beyond dispute that the worms will not feed properly in captivity. The pairing of the moths and the production of the eggs may be accomplished under cover but the feeding must be done in the open air. Moreover, the worms are very timid, and must not be disturbed while feeding. In some localities they are carried from one tree to another when the supply of leaf runs short, but even this degree of interference is resented, and the worms seem never to form proper cocoons when any such interruption has occurred during the vigorous feeding stage.

For more than a century continuous efforts have been made in India to improve and extend the traffic. In 1796 Michael Atkinson (a correspondent of Roxburgh's) wrote: "This species cannot be domesticated. I am informed that the Natives cannot even retain any of it for seed. The hill people say that they go into the jungles, and under the biyer and asseen trees they find the excrement of the insects; on which they examine the trees, and on discovering the small worms, they cut off branches sufficient for their purpose, with the young brood on them; these they carry off to a convenient situation near their houses and distribute the branches on the asseen tree in proportion to the size thereof, but they put none on the biyer." The Board of Trade of Bengal published in 1819 a series of reports on the "tussah" silk, one of which is entitled Mode of rearing the Guitia (gootee = cocoon). "The seed is purchased from the jungle people, who collect it in August. Plots in the forest are appropriated for rearing where the ashan, sal and sejah trees predominate, particularly the first, which constitutes the best food. These spots are carefully cleared of other trees and shrubs annually. Just before the perforation, the seed cocoons are tied on to the trees. The rearers live in huts erected on the plot, keeping guard night and day with pellet-bows to drive away kites, crows and other birds."

These two passages may perhaps suffice to show that a century ago the system pursued was in every detail that followed to-day. But, as already mentioned, some thirty years ago Major Coussmaker conducted, on behalf of the Government of Bombay (Admin. Rept. Bomb., 1876-7, 172; Coussmaker, Rept., March 14, 1883), extensive experiments in order to ascertain how far the Native system might be simplified and improved. He made many important discoveries and solved most of the obscure problems of the life-history of the insect, but at the same time his results demonstrated conclusively that in Poona at least, the insect could not, under any degree of domestication, be reared profitably. Accordingly his final report expressed the opinion that systematic tasar silk-growing would not pay. Another practical investigator, Mr. W. Coldstream, though he formed a slightly more favourable opinion than Major Coussmaker, admitted that the future of the industry would depend on whether it could be made to pay. Coldstream, moreover, worked with a view to discover if tasar silk production could be grafted on the village industries of the Panjab, rather than the establishment of a large commercial industry. Mr. H. C. Cookson wrote a monograph on The Silk Industry of the Panjab (1887), which republishes, as an appendix, Coldstream's report of his experiments. Later on a second monograph on The
Silk Industry of the Panjeb was written by W. M. Hailey (1899), which once more reviewed Mr. Coldstream's experiments.

The insect lives essentially in the forests remote from the railways and centres of commerce, and in tracts of country unsuited to European life. Even to the Natives, the occupation of tasar silk rearing can hardly be viewed as a favourite one, for in addition to having to leave their homes and to take up temporary residence in the jungles, they have to submit to austerities enjoined by religion that make the occupation a punishment rather than an enjoyment. Moreover, the advances of agricultural occupation are daily pressing the area of possible tasar silk production farther and farther away, hence it can easily be understood why the cocoons, even when collected from purely wild sources, can hardly be conveyed to the nearest railway station at a price at all likely to command a ready sale. Muckerji suggests that the most practicable way of introducing the tasar-rearing industry in a new locality is to settle a number of Sonthal families, acquainted with this industry, in the new locality. The Sonthals have a hereditary affection for the tasar caterpillar and certain notions regarding its treatment, acquired from childhood. This affection and these notions enable them to watch patiently the worms all day and at all seasons. They have also the conviction that they are personally liable to supernatural visitations boding evil if they neglect any of their traditional rules regarding the rearing of tasar silk worm.

All this is quite different with the Chinese tasar (Antheraea pernyi). It is a native of the warm temperate tracts of China, feeds on oak-leaves (see p. 912), and has been semi-domesticated for centuries. Moreover, it is a bivoltine insect; that is to say, it gives two crops in the year. A domesticated insect that can be reared with ease on a plantation within an accessible locality can hardly help proving more profitable than a wild one, the collection of the cocoons of which over an extensive inhospitable tract of country entails considerable labour and expense. The capabilities of A. pernyi in China are as different from those of A. paphia in India as any two subjects of inquiry could possibly be. The one is a denizen of a salubrious and invigorating richly cultivated temperate country, the other of enervating tropical jungles infested with disease and animals inimical to human life. The inhabitants of the one country are industrious and energetic, of the other apathetic and enslaved by religious restrictions and obligations that make the collection of tasar cocoons distasteful and unpopular. It is one thing to say the insect is "found in the forests of all parts of the Indian continent and to be had for the trouble of collection." It is quite another matter to make that wild insect tractable to the necessities of commerce, or even to overcome the religious prejudices of the agents who have to be primarily employed in the development of the trade.

FOOD-PLANTS OF THE TASAR WORM.—The following are the chief trees on which the Indian tasar silkworm feeds:—

- Angiosissus latifolia, dhauwa (pp. 70-1).
- Bassia latifolia, mahua (pp. 116-7).
- Bambhina variegata, kanchan (p. 121).
- Bombax malabaricum, semul (pp. 168-9).
- Careya arborea, kumbi (p. 269).
- Carissa Carandas, karaindá (pp. 270-1).
- Celastrus paniculata, mal kongni (p. 292).
- Chloroxylon Swietenia, billu (p. 294).
- Dodonaea viscosa, samna.
- Eugenia Jamolana, daman (p. 526).

Crops of tasar.—The tasar silk worm has generally two crops, but instead of being bivoltine in its wild state, it is most probably quadri-voltine. According to the Rev. Dr. Campbell, there are often three crops. The cocoons are procured in May and June, from persons who collect them in the jungles. The larger ones are generally female and as much as 8 to 10 cowries apiece are paid for these, while the smaller male ones fetch much less. From these moths emerge, and the 1st crop of caterpillars...
spin cocoons in September; 2nd crop (a small portion of 1st) emerges in
October and spins cocoons about January; the 3rd crop, moths emerge
from cocoons of the 1st and 2nd crops about June, which brings us back
to the first crop again. A proportion of the September cocoons only
emerges in the following August.

Review of
Literature.

TECHNICAL REPORTS.—H. J. S. Cotton, editor of The Statistical
Reporter (1876, i, 91–3), wrote a paper on the Development of the
Tasar Silk Industry, in which he reviewed the information available up to that date regarding the
reeling, bleaching and dyeing of this silk. A gentleman at Lyons had in 1872
invented and patented, Cotton tells us, a process which he claimed to have solved
these difficulties. Sir Thomas Wardle also discovered a process of dyeing
silk in brilliant colours, and of giving it the lustre of Chinese silk. Mention was
at the same time made of a patent taken out by Messrs. Gaddum and Bosshardt
of carding the silk of different cocoons. About the same time, Mr. Jules Deveria
of Rampur Boalia announced that he had discovered a process of reeling
tasar on the ordinary filature.

The Government of India in a Resolution, dated November 23, 1875,
financed particulars of the more important investigations that had been conducted
both in India and Europe. The chief difficulty depends on an inherent defect
in the filaments spun by the worm. It is explained that the silk is produced
by the insect from a double spinneret, and that the resulting filaments are not parallel
but spirals that touch each other at the exterior points of their curves only, and
are held in that position by the natural gum in which exuded. It is to this
peculiarity that some of the special properties of tasar silk, such as its elasticity,
are due. It is necessary that the degree of croissance should be exerted to bring
the filaments into a round thread. This could only be obtained in fully equipped
filatures, and nothing but steam could ensure the uniformly high temperature
indispensable. At the period here indicated it was accordingly regarded that
the complete reeling of tasar silk in the form that would command a large
European market could not be accomplished as a village industry. A further Resolu-
tion of the Government of India brings the knowledge of this subject up to the
date of February 1879; the Resolution and its enclosures will be found
reprinted in the Indian Forester (1879, v, 77–101). Cotton brought the information
up to the date of 1890, and furnished most admirable illustrations of the worm,
the male and female moths, and the cocoons. Mukerji (Handbook of Sericult,
India) afforded much useful additional information regarding tasar, but he
may be said to have been specially concerned to make the merits of the Japanese
and Chinese worms known. Dewar, on the other hand, observes that the mere
fact that tasar rearing, spinning and weaving are village industries, often
combined with agricultural pursuits, gives them an interest to the administrator.
The aboriginal or low-caste people who rear the tasar worm and gather the
cocoons live in the most remote and jungly villages. The weavers form com-
unities in the towns which are not too far from the jungle tracts. Dewar
remarks, in his chapter devoted to the history of tasar, that the earliest record
of its appearance in the Central Provinces "would seem to be that of Chanda
district, where in 1775, under the Maharratas, the monopoly of rearing silks
and making tasar-silk was farmed out by the ruling power, just as is
still done in some Feudatory States." Sambalpur and Chanda are the chief
districts in the production of tasar, with Raipur and Bilaspur taking good second
places. During the latter half of the 19th century the Government of India
made repeated efforts to extend and improve the production in the Central
Provinces, but with little practical results. Dewar reviews the various efforts
that were put forth, and his Monograph will be found of special value and
interest in that respect. Paranjpe (Ind. For., 1902, xxviii., 192–6) gives a
sketch of the life-history of the tasar-worm in Bhandara.

European
Commerce.

Mukerji (Monog., i. c.) observes that there are several classes of cocoons which
go by the generic name tasar. Those recognised in commerce, according to the
quality of their silks, are:—(1) The Yamamai cocoon of Japan (Antherae
yamamai); (2) the Chinese tasar (A. pernyi); (3) the muga of Assam (A. assama);
and (4) the Bengal tasar (A. paphia). All the other wild silks, he tells us, are
in Bengal grouped under the name bharuas. Of the commercial forms mentioned,
the Bengal tasar has the greatest length of fibre, though it is inferior to that of
the other three. The Yamamai is so highly prized in Japan that, by law, capital
punishment may be meted out to any person exporting the seed-cocoons or eggs.

Yamamai.
The silk afforded by its cocoons is almost as good as mulberry. The China tasar cocoon is smaller than the Bengal, and the average length of its fibre is 550 metres as compared with 700 metres in Bengal. The amount of waste is much greater with the Bengal than the China, though the amount of silk is higher—8 per cent. in Bengal tasar, as compared with 5 per cent. in China tasar.

The Bengal tasar cocoon has a few other advantages over the China tasar cocoon. The tenacity of the 'base' (i.e. the double fibre as it comes out of the mouth of the silkworm) is 284 grammes, as compared to 18 grammes, which is the tenacity of the base of the China tasar. The elasticity of the base is 21 per cent. as compared to 19 per cent., which is the elasticity of the base of the China tasar. The Bengal tasar also loses less of its weight in bleaching; China tasar losing as much as 21 per cent. while Bengal tasar loses only 11 per cent. The Bengal tasar is, however, more difficult to bleach and dye than the China tasar.

Indian Results.—Mukerji (Rept. Inquiry into the State of the tasar Silk Indust., Beng., 1905) tells us that he visited all the more important centres of tasar production and manufacture and discussed personally with those interested the issues of importance. The report opens with the following:—"The tasar silk industry is declining almost everywhere, although the demand for tasar cloths has been on the increase in Bengal, owing to the general revival of sericulture in this province, which has brought into prominent notice tasar cloths as well as silk cloths." He then enumerates the chief centres of tasar manufacture, and concludes that there are 6,500 families of weavers, or nearly 25,000 individuals, more or less dependent on tasar-weaving in Bengal. Of the Central Provinces, he remarks that it is purely a village industry, except in Sambalpur and Bilaspur, but that there are probably not more than 2,500 tasar weavers all told. The weavers, he explains, are entirely dependent on a supply of cocoons for the continuance of their industry, but that the reapers are agriculturists who give but a portion of their time to the production of cocoons, and the number so engaged fluctuates very greatly. Roughly, he estimates that the number of persons concerned in tasar-cocoon rearing may be about eight times the number of those engaged in tasar-weaving. There would be in Bengal, therefore, by that estimate, 200,000 persons, and in the Central Provinces 20,000 persons who obtain at least some portion of their annual earnings from tasar silk.

Mukerji then concludes with numerous practical deductions, amongst which the following may be mentioned:—

1. That the wild cocoons are the richest in silk.
2. That Singhbhum is the district best suited for tasar-silk rearing. Further, that the wild barra muga worm of that district is the best of all, followed by the muda muga, also of Singhbhum, then by the muga of Mourohbanj.
3. That even in the wild state, Chanda and Bhandara cocoons are inferior to those of Raipur, Bilaspur, Sambalpur, and of the Bengal tasar districts, while the home-grown cocoons of Chanda and Bhandara are the worst of all.
4. That the deterioration is more marked in the case of banela than in muda cocoons.
5. That the main cause of the decline of the industry is the disease known as grasseries, which affects weak worms more than strong ones, and worms feeding on low bushes more than those feeding on high branches of trees.
6. That grasseries being caused by irregularity of season, such as heavy showers following long-continued drought, it cannot altogether be avoided even by the use of good seed.
7. That degeneracy of tasar worms runs mainly along two lines, inferior cocoons (small size and flimsy in structure) being purposely reserved for seed, owing to the superior cocoons fetching a higher price; and semi-domestication and the use of home-grown cocoons for seed instead of wild ones.
8. That the cocoon-rearers are sometimes helpless, as wild cocoons are often not readily found.

Lastly, as measures calculated to revive the industry, Mukerji proposes the establishment of two model tasar-rearing nurseries in Bengal; the propagation of tasar trees (Terminallia) in the tasar village areas; and the reservation of certain forest tracts for the wild stock only from which the model establishments would periodically obtain fresh seed supplies. With a statement of continuous research and of vigorous efforts, such as that implied by the numerous reports thus briefly indicated, it can be hardly fair to affirm that the backwardness of the Indian industry is a direct expression of the apathy of all concerned.
Indian Wild Silks

Silk

Antheraea Paphia

Tasar

Manufacture of Taras.

Mukerji (Monogr., loc. cit., 1903, 104) points out that it is strange the cocoons should be gathered in the jungles of Singhbhum, Manbhum, Sonthal Parganas, and even of Assam, and brought down to the filatures of Murshidabad for reeling. To secure improvement the tasar-silk reeling and weaving industries should, as far as possible, be estranged from the corresponding mulberry industries, and be developed on their own lines. There should, for example, be no difficulty in establishing tasar factories in tasar-growing districts, where labour and fuel (both coal and wood) are abundant and cheap. He then adds, "A tasar reeling and weaving company organised on European principles and working in the tasar-growing districts is likely to have a very prosperous career before it."

In exemplification of these views he then deals with the industry district by district. Of Murshidabad, he says the tasar cocoons are reeled in European filatures, chiefly at Bajarpura and Narayanpur factories. Of Hugli, Jahanabad Sub-division, he speaks of some 350 families being engaged in tasar and mixed tasar and cotton weaving. Of Bardwan, tasar spinning and weaving are carried on by some 228 families. A certain amount of weaving is also practised for which yarn is imported. Of Midnapur, he observes that cocoons are found in the jungles, especially at Mourbridge and Dhalhmm—the hardest kind are preferred. The cocoons are reeled locally and also spun and woven of Birbhum, he says the tasar industry is followed by some 300 families, the cocoons being reeled and the cloth woven locally. Bankura has long been famous for its silk industry, but the tasar manufactures are not very extensive. The most important fabric produced is known as kethe. This is made from pierced cocoons, is coarse but cheap. Of Bhagalpur, the cheap bafta cloth is far better known than the kethe of Bankura. About 2,000 weavers (both Hindu and Muhammadan) gain a livelihood by producing various tasar textiles. The cocoons are imported from the Sonthal Parganas, etc., and sold at Nathnagar at rates of 8c to 250 to the rupee, according to quality—pierced cocoons fetching only from 100 to 400 to the rupee. The yield is about one tola of tasar silk from 15 to 20 cocoons—and eight to ten Tobias of tasar silk will bring in about a rupee. In the baftas the wool is usually cotton and the warp tasar silk. Of the Sonthal Parganas, Mukerji says that the cocoons are reared throughout the district for export to Murshidabad—the local reeling, spinning and weaving are practised to some extent, especially in the Godda Sub-division. Of Hazaribagh, Ranchi and Palamau, he remarks that there is no tasar weaving, but that a considerable industry exists in rearing and exporting the cocoons. The pages devoted to these districts will accordingly be found to contain many useful particulars regarding the methods and seasons of the operations concerned.

Of Singhbhum, he remarks that there are only a few tantis (tasar) weavers, and the cocoons are reeled by hand by the weavers themselves. The dhutis or saris so made are largely exported to Dacca and Lower Bengal, and fetch from Rs. 5 to Rs. 4. But if weaving be unimportant, the rearing of tasar cocoons is an industry of considerable magnitude in Singhbhum. The tasar weaving of Manbhum is, on the other hand, of considerable value. There were at the last census 12,911 tantis or tasar weavers, and Raghunathpur is the most important centre. The tasar weaving of Gaya is also fairly important, though the cocoons are
no longer locally produced owing to the curtailment of the forests. Of Balasore, Puri and Cuttack, Mukerji observes that the industry of tasar weaving is not an important one, though the rearing of the worms and production of cocoons are largely pursued.

This is the muga (mungua) silkworm of Assam, a name said to have been originally given because of the amber colour of the fibre, and hence frequently used to denote any wild silk—thus eri-muga, tasar-muga and kaktari-muga. It is met with chiefly in Assam, but its area extends east to the Naga hills, including Sylhet and Cachar, and south to Tippera and the mountains of Burma. It has also been recorded as far to the west as the valleys of Kumaon and Kangra, and a special insect mentioned from Pondicherry, and named A. perotteti, has been accepted as a form of muga.

Historic Records.—It seems probable that the first mention of this silkworm and of its silk occurs in 1662 in connection with Mir Jumla. But it must long anterior to that date have been known in India, since Tavernier (Travels Ind., 1676 (ed. Ball), ii., 281) makes special mention of the Assam silkworms that remain on trees all the year; and he does not suggest that fact as being a novelty, but rather implies that it was well known. He may, of course, be alluding to the tasar silk, but in that case the locality Assam would hardly be correct. The collection of official papers issued by the Bengal Board of Trade in 1819 makes mention of the "mogga" being "the most common and plentiful, the thread coarse but winds easily. The gusis are sold direct from the forests." This is mentioned separately from "assab," "terrah," "bonbunda," "dabba," "buggy" and "tarro" silks, so that it very possibly was intended to denote the muga proper. In the Dictionary will be found numerous references to papers by Buchanan-Hamilton, Jenkins, Hugon, Hefler, Brownlow and Stack—all of whom have afforded interesting particulars regarding this silkworm and Assam silk generally.

Domestication.—The muga exists in a state of even more complete domestication than is the case with the tasar—the eggs are hatched and the cocoons spun within doors, and while feeding on the trees the worms are carefully supervised and protected from their enemies. When they have finished eating they are removed from the trees and carried off to the rearers' houses in order to spin their cocoons. The worm is multi-voltine, has five generations during the year, but of these only two or at most three are used by the rearers. The people of Upper Assam annually import their seed-cocoons from Kamrup for their cold-season and spring crops owing to the fact that the worm soon degenerates in the Sibsagar district, and hence no seed-cocoons are retained from the last brood of the season. This is said to be due to the fact that in Lower Assam the insect is fed mainly on Litsa polyantha, the sula or howalo. [Cf. D.E.P., vi., pt. iii., 176; Allen, Monog., l.c. 14-5.]

Food-plants.—The muga worm feeds on a fairly extensive series of leaves, the most important being species of laurel, such as the sum, Machilus odoratissima. But other trees may be mentioned:—Cinna-

1009 64
Silk Antheraea Assama

Muga

Momum obtusifolium, Michelia Champaca, Symphloeo grandiflora, and several species of Litsaea. In Lower Assam it is also largely bred on the sualu, Tetranthera monopetala. The most important of these food-plants is the sum (Ind. For., 1879, v., 35–9, 202–21).

Life-history.—The cocoons intended for breeding are placed in trays and hung up safely in the house. In a fortnight's time during the warm months, and three weeks in the cold season, the insects come forth. The females, recognised at once by their bulkier bodies, are immediately secured by a thread passed round the thorax behind the wings and tied to a short length of straw hooked on to a line stretched across the room. The males are left free, but usually sufficient number consort with the female prisoners. Each female produces 250 eggs in three days. All eggs laid after then are rejected, and the moth dies about the fifth day. The pieces of straw, with their attached eggs, are then taken down and placed in baskets, covered with cloth, and the room in which stored is heated in winter, but kept dark as much as possible. In summer it is not necessary to retain the eggs within doors at all, and the straws may, therefore, be carried at once to the trees, due precaution being taken against undue exposure to sun, rain or dews. Generally, however, the worms are hatched indoors. They pass through four moltings, and, when full grown, measure about five inches long. While feeding, if the leaves get exhausted, the worms are picked off and carried to fresh trees. The worms of their own accord, in fact, descend from the tree and are caught by a trap of straw or plantain leaves tied around the stem, and thus are easily picked up and carried by the attendant to fresh trees. It is said that if placed on a tree the leaves of which have already been devoured, they refuse to ascend. When they have eaten all they desire, the worms are carried off and made to spin their cocoons in the rearers' houses. Trees from three to twelve years old are considered the best; older are avoided, as they harbour ants, and the lichen and moss on their branches impede the rapid movements of the worms. But the greatest enemies of the muga are crows, kites and many other birds by day, and owls and bats by night; constant watching is thus necessary, and abundant and continuous employment thus afforded to the young, old and infirm members of the family.

The periods and stages of the insect's life are as follows:—hatching, from 7 to 10 days; feeding, from 26 to 40 days; spinning, from 4 to 7 days; resting within the cocoon, from 14 to 21 days; and life as a moth, from 3 to 5 days. The variations in time indicated are largely a consequence of the season of the year or brood of worm under record. The cocoon is fawn-coloured, large, thin, devoid of the suspensor, so characteristic of the tasar; and the short period spent within the cocoon, when taken in conjunction with the more tractable habit of the insect generally, makes this a very much more desirable form of silkworm than the tasar. The cocoon is about 1½ inch long and 1 inch in diameter. In colour it is of a golden yellow, but there is usually a percentage of dark cocoons in every brood, for which no satisfactory reason has been assigned.

Reeling and Spinning.—Reeling is simple. The insects within the cocoons are killed by exposure to the sun or by fire. Thereafter they are boiled in an alkaline solution. From 7 to 20 filaments are rolled together between the palm of the right hand, drawn across the thigh, while the left hand works the reeling apparatus. The whole of the silk may be unwound except the innermost layer next to the chrysalis.
CHAMPA AND MEZANKURI

The quantity of silk afforded varies according to the brood. The cold-weather insect gives the least, and is accordingly usually reserved for breeding, only the inferior cocoons being spun.

No part of the *muga* cocoon is, however, rejected as useless. The floss plucked off from the outer surface of the cocoon, before reeling is commenced, the shell that remains around the chrysalis, and the cocoons from which the moths have escaped in breeding, are all reserved to be carded and spun, and the by-product thus obtained is called *era* and is often mixed with the *eri* silk—the product of the next species (see pp. 1013, 1021).

Manufacture.—The *muga* silk thread varies according to quality from Rs. 8 to Rs. 12 per seer, *era* or spun thread being sold at half these rates. The cloth woven from *muga* yarn has a bright-yellow colour and a pretty gloss. It stands washing much better than any other silk, keeping its gloss and colour to the very last. It is usually sold in pieces of 5 yards long and 4 feet broad, the price varying from Rs. 1–8 to Rs. 2 per square yard. There is no large market where either thread or cloth can be purchased, but the headquarters of the industry is the district of Siibsagar in Assam, more especially the Sub-divisions of Golaghat and Jorhat. The exports are mainly in thread, which go to Calcutta for local consumption or for export to Persia—it is too dear for the English and Continental markets—the price quoted being Rs. 6 to Rs. 12 per seer. There is no means of knowing the total production, but it has been estimated that the exports come to about 280 mannads a year.

The *Champa* and *Mezankuri* *mugas* are only the silks of the worm obtained from insects fed on the trees of these names—*Michelia Champaca* for the former and *Litsea citrata* for the latter. Moriani is the chief locality for the *mezankuri* silk. The *champa* silk seems almost quite forgotten to-day, but it was the fine white silk worn by the Ahom kings and nobles of Assam in former times. Buchanan-Hamilton (in Montgomery Martin, *Gaz. of Assam*, 1838, iii., 679–80) speaks of the *melangi* silk constituting the dress of the higher ranks, “most of which are dyed red with lac but some are white.” Until quite recently it could be said that the *muga* silk was the material of dress with the middle classes of Assam.

It may be said that commercially this silk is obtained from Assam, though Rozburgh and Buchanan-Hamilton speak of it as if in their time it had been confined to Dinajpur and Rangpur. To-day it is found throughout Eastern Bengal in the districts Puruea, Bogra, Jalpaiguri, in addition to Dinajpur and Rangpur. It is also not uncommon in Darjeeling, Nepal, Kumaon, Gaya, Shahabad, Chittagong, Puri, and its cultivation has recently been attempted in Upper India.
The textile sold in India under the name "Assam Silk" is almost invariably the produce of the insect here indicated, though of course muga silk is very much more restricted to and characteristic of the valley of Assam. This is the silk with which the poorer people of Assam used formerly to be almost exclusively clad, while the muga silk (which in India is often classed as a special grade of tasar silk) was that (as already mentioned) employed by the middle and upper classes.

Historic Records.—Perhaps the earliest European record of this silk is of the date 1676, when the agent of Port St. George wrote that large quantities were produced in Goraghaut. Milburn (Or. Comm., 1813, ii., 244) gives particulars of what may be accepted as the first European transactions. The cocoons, he observes, are remarkably soft and white or yellowish, and the filament so exceedingly delicate as to render it impracticable to wind off the silk; it is therefore spun like cotton. Roxburgh gives particulars furnished by his correspondents: Atkinson of Jangypur, Glass of Bauglipore, and Creighton of Malda. These names, and the localities with which they are associated, are interesting as forming links that connect the early records. The last-mentioned observer speaks of the worm as reared entirely in the houses of the people. Atkinson refers to his endeavours to reel the cocoons and to his discovery of this being impossible. Hugon and most other authors say the cocoons are softened by being heated in a solution of the ashes of certain plants. They are then opened out by the hand, the chrysalids extracted, the flattened-out cocoons washed, kneaded in the hand, sun-dried, and then crudely drawn out into threads and spun. Brownlow, who half a century later conducted experiments on a large scale, tells us that the cocoons may be softened before being carded by being placed in a solution of cow-dung and water. Most writers mention the circumstance that hot water injures the fibre and that both the carding of the cocoons and the washing of the fabrics should be done, as much as possible, in cold water. Coming to modern times, Sir Thomas Wardle says, "Abandon all idea of reeling eri silk; the cocoon is too soft, and the fibres mingled together too irregularly, to afford any hope of successful reeling commercially. Produce it on a large scale, comb and spin it and the success is complete."

Food-plants.—The food-plant of this silkworm, as the name of the insect implies, is the castor-oil or palma christi (Ricinus communis). There are two forms of that plant grown for this purpose, a green- and a red-coloured. But there are other food-plants, such as Heteropanax fragrans—the kesera—of Assam; Ailanthus excelsa, Coriaria nepalensis, Gmelina arborea, Jatropha Curcas, Zanthoxylum alatum, and Zizyphus Jujuba. Of these the two first mentioned are by far the most important (see p. 915).

Life-history.—The eri worm is multivoltine and reared, as already observed, entirely within doors. The castor-oil plant in Assam and Eastern Bengal is allowed to grow spontaneously in the rearer's back garden or on any unoccupied land in the neighbourhood, and no attention is paid to it. The tending of the worms goes on all the year round, and is accomplished by the females of the household. As many as eight to twelve broods have been recorded, but those actually reared are about half that number. In fact the autumn, winter and spring broods, or those that spin their cocoons in November, February and May, are most highly valued. The broods of June to September are only reared for the purpose of perpetuating the stock. The stages in the life of the insect are as follows:—hatching, 7 to 15 days; feeding as a worm, 15 to 32 days; spinning the cocoon, 3 to 6 days; resting within the cocoon, 15 to 30 days; and lastly, life as a moth, 3 days. The range indicated is due to the influence of the seasons.

Crop.—Mukerji estimates that from an acre of castor-oil plants it would be possible to obtain from 60 to 90 seers of pierced cocoons a year.
ASSAM CARDED SILK

The price of these would be about Rs. 60. But in this way it will not pay. It is when grown on odd bits of land and the worms reared and the cocoons spun by the women, during their spare moments, that the industry becomes profitable. Until the price rises materially, it will probably not pay as a separate industry. But as a supplementary crop it is very remunerative, and the insect is more easily reared and is less expensive than the mulberry worm. Since the cocoons cannot be reeled, there is no object in killing the insects within them. In every instance, therefore, they should be allowed to escape. Green eri cocoons, that is to say, cocoons with live chrysalids, sell for 500 to 800 to the seer (2 lb.). If they are killed and dried in the sun, 1,500 to 2,500 go to the seer. When the insects have escaped (pierced cocoons), 3,000 to 7,000 go to the seer. In other words, while a maund of pierced cocoons may fetch Rs. 100, the same weight with the chrysalids inside may only realise Rs. 20.

Carding and Spinning.—The eri cocoon, it is said, has been successfully reeled in Italy, but from time immemorial it has in India been opened out crudely, then spun. No sort of information can be furnished as to the extent of the manufactures nor the probable margin available for export. Mention has been made of a traffic in cocoons from Goalpara to Calcutta of 400 to 500 cwt. yearly. The spun thread, though coarse, is woven into textiles that are exceedingly durable (see pp. 1011, 1021). In fact eri silk is stronger than wool, cotton or mulberry silk. But the European trade demands white eri cocoons, and this somewhat restricts the supply.

Manufactures.—The thread and cloth are largely traded in all over Assam and Cachar, though the effect of the imports of Manchester cotton goods has been to largely displace eri as an article of clothing. Hugon speaks of large quantities of the cloth being exported to Lhasa by merchants known as “Kampa Bhotias,” but he adds this trade has entirely died out. Stack says that throughout the whole range of the southern hills, from the Mikir country to the Garo, eri thread is in great request for the weaving of those striped cloths in which the mountaineers delight. The Mikirs, Kukis, and Garos cultivate the worm for themselves, but the handsome and durable cloths worn by the Khasias and Santengs are woven of thread procured from the Mikirs. T. N. Mukerji (Agri. Ledg., 1894, No. 19) refers to the fact that within recent years a new market has been found for the cloth, in supplying suits of clothes for the Europeans and Natives of India. The supply, he adds, is not equal to the demand. Efforts have been made with that object in view, in many parts of Bengal and Assam and even in the United Provinces, but so far with indifferent success. A more recent, and in some respects fuller account of the eri silk industry, will be found in N. G. Mukerji’s Monograph. He there gives details of the industry as it exists to-day in Bogra, Rangpur, Jalpaiguri and Maimensingh. Speaking of the increasing demand, he observes that this is now being met by imitation eri, made out of waste mulberry silk. He then adds, “At present little skill is brought to bear on the production of eri silks either in Assam or in Eastern and Northern Bengal. The spinning might be more uniform and the weaving more varied and artistic.

INDIAN SILK PRODUCTION AND MANUFACTURE.

In official statistics of filatures and mills, all village industries are disregarded and returns furnished alone of factories, etc., that employ twenty...
five or more harris. This gives an unnecessarily low and imperfect conception of the interests involved, since here and there throughout India and Burma there is a fairly extensive village or domestic industry in rearing, reeling and manufacturing, entirely disregarded by official returns. Moreover, recent statistics would seem to mark a serious decline, whereas the explanation of the shrinkage shown is largely the discontinuance to chronicle certain factories.

Filatures, Mills, etc.—According to the latest volume of the Financial and Commercial Statistics, there were 75 silk filatures in India in 1904, employing 9,526 workers, all in Bengal. There were also in the same year 11 silk mills, employing 2,964 workers, distributed thus:—in Bengal, 8 mills with 1,465 employees; in Bombay, 2 mills with 1,299 employees; and in the Panjâb, 1 mill with 200 employees. According to the Imperial Gazetteer (1905, iii., 209) three large silk mills (two in Bombay and one in Calcutta) are worked by steam-power and are almost exclusively concerned in catering for the Burmese market, a trade that was formerly concentrated in Glasgow but is now mainly in the hands of Indian and Japanese manufacturers. “The Bengal factories of to-day largely work up tasar silk in place of preparing the korah silks formerly turned out by them; they are owned and managed by Natives and do not employ European machinery. Besides the registered mills and factories, numerous weavers own one or two looms worked by themselves and their families. Silk-weaving seems intimately associated with Gujarât. From one end of India to the other Gujarati silk-weavers may be found, speaking a dialect of Gujarati or using Gujarati names for most of their appliances and for the textiles they produce.”

The extent and location of the silk interests may now be indicated:

BENGAL (see p. 1019).—This, as already stated, is the great centre of the silk-reeling industry. Formerly a large trade also existed in the manufacture of korah (karah) silks—plain undyed silk piece goods, the demand for which has fallen off very greatly in consequence of the greater popularity of Japanese and Chinese silks; but at the present moment the traffic in the Bengal korahs seems reviving. (Of. Indian Art at Delhi, 1903, 302—7.) Muckerji says, in his Monograph, that with the exception of Chittagong Division, all the other portions of Bengal have a silk-weaving industry. The following particulars may be given of the chief centres:

Presidency Division.—The industry is confined to Murshidabad. Mulberry-growing, cocoon rearing and reeling, as also silk-weaving, are all practised, and the town of Mirzapur produces the most superior fabrics in the whole of Bengal; but Baluchar and other centres are also famous, especially for artistic and brocaded fabrics. The trade in reeling is mainly concentrated in Berhampur and Jeggaj, and there the wealthy merchants reside. During the last decade the industry seriously declined, both in cocoon-rearing and korah-weaving. The census of 1901 shows 41,615 persons dependent on this industry in Murshidabad against 55,143 ten years previously.

Bardwan Division.—Silk-weaving is carried on in all the districts. Baba Sukumar Halder gives an interesting historic sketch of the silk industry of Jahanabad, in the Hugli district, during the seventeenth century. In the Bardwan district silk-weaving is mainly carried on in Katwa and Kalna Sub-divisions, but not in Raniganj. The cocoons reared in Midnapur, and even from all parts of Howrah, are utilised in the looms of Chandrakona. In Howra the silk-rearing industry is of minor value, but the silk-weaving of Bankura is of great importance, even more so than the rearing of cocoons and the spinning industries. It is a curious circumstance that the East India Company should have striven for years to establish Hugli as the centre of their silk industry and have failed to induce the weavers to settle in that district.

Midnapur.

Bankura.

Bhagalpur Division.—In Maldah, cocoon-rearing and silk-spinning are carried on more or less extensively throughout the district, while silk-weaving is con-
Kashmir

Kashmir insect in Amritsar, where an abundant supply of leaves from standard mulberries were to be had. Passing over many other investigators and adventurers in sericulture, we come to the time when Lister & Co. commenced operations in Gurdaspur and Capt. Bartlett in Kangra. But all this has been already told so fully in the Dictionary that it seems only necessary to refer the reader to that work. [The following publications in sequence of date may assist the inquirer:—Liotard, Lc. 34–46; Cookson, Monog. on the Silk Ind. Ph., 1888-7; Mukerji, Rept. on Sericult., Lc., 1890; Halley, Monog. Silk Ind. Ph., 1899; Hoshahpur Dist., Panjab Gaz., 1904, 135–8.]

Kashmir

KASHMIR.—Lawrence (Valley of Kashmir, 1895, 367–9) says that Mirza Haidar in his history (A.D. 1536) alludes to the abundance of mulberry trees in Kashmir and to the leaves being used for the food of the silkworm. Adams (Wanderings of a Nat. in Ind. (ed. 1867), 198–9, 269) describes the silkworm industry as seen by him. Drew (Jumnao and Kashmir, 1875, 409) speaks of the silkworms of Gilgit being reared in small quantity and of the worm being smaller than that of Kashmir. Several writers mention a small wild insect seen on the mulberry trees of Kashmir, the cocoons of which were collected and sold. Liotard (Memo. on Silk in India, 1883, 46–55) traces the industry to his time and gives tables of statistics from 1869 to 1881. The effort made in 1869 by the Maharaja Rambir Singh to extend and improve the industry is mentioned by most of the writers on this subject. The cocoons raised in 1876 were valued at 1,70,064 (Indian rupees). But disease appeared, and the industry rapidly declined until taken up by hand by Lawrence. In his address to the Society of Arts on April 26, 1896, he tells the story of the efforts that had been put forth to resuscitate the industry. This is followed up by a series of reports and official correspondence (Agric. Ledg., 1898, No. 10). In his report, dated September 15, 1909, addressed to Sir Adelbert Talbot, Resident in Kashmir, Mr. C. B. Walton, Director of Sericulture, narrates the work accomplished during the year. The crop attained came to 11,019 mounds of cocoons, which when reeled was worth Rs. 7,71,000, which represented 100 per cent. on the cost of production. N. G. Mukerji (Rept. Sericult., Lc. 1–17) gives many interesting details and practical observations. He mentions that he had procured for the State from Signor Susani of Italy, 100 ounces of purely cellular seed of the three best classes of cocoons. Lastly, Sir Thomas Wardle (Kashmir, Its New Silk Industry, 1904) tells in some 360 pages the rise and present position of the silk industry of Kashmir. He gives particulars of the supply of eggs personally procured, and of the machinery purchased on behalf of the State and which he had taken out to Kashmir and seen established in working order. He also affords details of the subsequent results attained. In a note written by the officiating superintendent of sericulture, Mr. H. D. Douglas, in 1906, it was ascertained that in 1903 the crop of cocoons was 10,000 mounds; in 1904, 13,000 mounds; and in 1905, 23,000 mounds. The net profit to the State in 1905 came to 14 lakhs of rupees, and in 1906 to over 3 lakhs. In the year April 1905 to 1906, 600 bales of silk of 150 lb. weight were reeled. The price realised at the beginning of the year was about 12a. 1b., whilst later 15e. were obtained. Last year 10 looms were started to produce cloth in competition with Japan, and, these proving successful, 200 more looms had been ordered and arrangements made for these to be in working order by June 18, 1906. Thus the revived industry bids fair to be of the utmost value not to Kashmir alone but to the British Empire.

Afghanistan

SIKKIM, NEPAL AND KUMAON, BALUCHISTAN, ETC.—Very little information exists regarding the attempts that have been made to establish a regular silk industry on the Himalaya except at Dehra Dun, to which reference has already been made. Further to the west in Afghanistan and Baluchistan there has always existed a small industry. Thus Moorcroft (Travels, 1841, ii, 416) mentions that the town of Yang Arek in Bokhara is supported chiefly by its filatures of raw silk. There are two kinds of silk, white and yellow, exported to Kabul and Feshtawar. This is the survival of the early traffic from Central Asia to India (repeatedly alluded to in connection with Khotan) convoyed down the Indus river to Bombay and Surat.

Baluchistan

Speaking of Baluchistan, it may be observed that the present industry is due very largely to Mr. Rogers, who, at his own expense, conducted in 1901 the experiments at Kirman near Quetta. The silk produced was so favourably spoken of that efforts have been since made by Government to extend the adventure, the locality selected being Mustang in Khelât, where many villages were known to possess large numbers of mulberry trees. His Highness the Khan
(under the advice of Major Showers, Political Agent) has entered enthusiastically into the scheme of a new industry for his people. In April 1905 Showers wrote a long official report that not only gives the history of the Khetlā experiment but the results hitherto attained, and the opinions of the brokers, as also of Sir Thomas Wardle, on the silk produced. These all combine to confirm the high expectations entertained regarding the future of the Baluchistan and Khetlā silk industry.

BOMBAY.—The silk manufactures of Ahmadabad were famous alike during the time of its own kings and of its Muhammadan Viceroys. The chief excellence lay in the bright colours of the plain stuffs and the strength of the brocades. (For Ovington's account, see pp. 995, 1020.) Under the Marathas (1755–1817), however, Dunlop wrote in 1817 that it was taxed when raw, as it passed through every process of manufacture, and again when ready for sale, and was thus so weighted that in competition with foreign silks, the local manufacture almost ceased to pay and all but died out. Geoghegan (loc. 55) says that the first attempt at silk-rearing in Bombay was made in 1795 by Dr. H. Scott. Hove, the cotton expert, lived with Scott, but in his *Tour for Scientific and Economical Research*, written in 1787–8, no mention is made of silk. In 1679 the Governor of Fort St. George recorded in his Diary, of 5th December of that year, his having come across Gujarati silk merchants buying silk for Ahmadabad. It is thus highly likely that the raw silk exported from Western India was to some extent at least Bengal silk, seeing that there is no evidence of silk-rearing having been successfully established in Western India until well into the 19th century. As just stated, frequent mention has been made of a silk supply drawn to Western India from Central Asia, the route being down the Indus. The earliest record of cultivation in Bombay Presidency is in 1825, when the worm was conveyed from Mysore to Dhawar. Shortly after (in 1827) Mr. Giberne planted his garden at Dhulia in Khandesh and Signor Mutti opened out his silk farm at Poona in 1829. During the first year of British occupation of Ahmadabad (1818) the import of raw silk amounted to 11 tons (300 Indian maunds), during the second year it came to 37 tons, and in 1847 stood at 109 tons. Since then the trade has witnessed extreme fluctuations. Numerous explanations have been offered, such as the rise of the cotton traffic—both local production and foreign imports; changes of fashion, more especially the decline of the demand for brocades by the Kathiawar chiefs; and lastly the growth of the trade in Chinese and Central Asiatic woolen silks.

There are three chief classes of silk goods produced in Ahmadabad, viz., plain silks, brocades, and silk prints. The plain goods are also largely produced in Surat, and the markets for these are Kathiawar, Rajputana, Central India, Bombay, the Deccan, the Central Provinces and the Nizam's Dominions. The brocades, as also cloths of silver and gold, are much less used for robes nowadays than formerly, but are in demand for upholstery and elephant and other trappings.

Surat has for long years past been largely concerned in the supply of silks to Burma, and a Native of Surat, seeing the advantage of proximity to the Bengal silk supply and the facility of export to Rangoon, some years ago organised a silk factory in Calcutta to be run exclusively for the Burmese market. But for many years past the demand by Burma for Indian silks has shown a decided tendency to decline, and an inquiry was instituted as to the cause. It was pointed out that in the first instance the silk-weavers of Surat were primarily responsible, in that yielding to the recommendations of Native merchants in Rangoon, they had gradually lowered their price by reducing the quality until it was recognised in Burma that the locally manufactured silks, though more expensive, were infinitely more lasting and the colours and patterns more in accord with the prevailing fashion. It was also pointed out that the advances of European commerce and the necessities of the people had led to a substitution of cotton for silk goods.

Madras.—Brandt (Résumé of the Rec. of the Mad. Govt. relative to the Cult. of Silk in the P. C. P., Oct. 1871) says that no mention occurs of silk in connection with Madras prior to the year 1791—a statement that is hardly correct (see p. 1019). Tippu Sultan appears closely associated with the rise of the modern industry. A Native of Trichinopoly was by him sent to Bengal to learn the silk trade. But there must have existed an industry prior to that date, since we read of a present made to an Englishman, in 1793, having consisted of "kineobs" made at Trichinopoly. Dr. James Anderson, Physician General at Madras, established in 1771 a plantation of 5,000 white mulberry bushes from Hyderabad stock at Nungumbankum—a suburb of 1017
Indian Silks

Mysore.—And in December 1790, after many failures, succeeded in acclimatising the Bengal worm. It would seem that this insect, subsequently conveyed back to Bengal, may have given origin to the name Madrasi, the alternative name for the nistri—the Bombyx erasii of Hutton. Dr. Anderson urged that the Peninsula, owing to its more equable temperature, had great advantages over Bengal. In consequence, a vigorous effort was made by the Madras Government to distribute Dr. Anderson’s acclimatised insect to all parts of South India deemed likely to prove suitable new areas, and every encouragement was given to extend mulberry cultivation. Collectors, surgeons, paymasters, etc., became superintendents of Government plantations all over the Presidency. About this time Dr. Anderson reported a successful experiment to improve the Bengal silkworm, 10 lb. grains of silk being obtained as against 6 grains, the average outturn in Bengal. Cocoons were wound on the Piedmontese reel and ultimately a brilliant white silk was obtained. But it soon began to be believed that Dr. Anderson had taken a too sanguine view of the possibilities of the Madras Presidency in the rearing of silk. All parts of South India were not alike suitable, and a uniform climate, that might admit of breeding throughout the year, was soon realised as by no means a desirable state of affairs. This story of the Madras experiments is very largely that also of many other enterprises in India—ignorance of the conditions upon which alone success depends being the foundation of a superstructure of failure and disappointment greatly calculated to retard legitimate endeavours. The Madras Government spent £20,000 in four years, and a further sum of Rs. 78,736, for the silkworm constructed at Vellavedu. They shortly after advertised their plantations and property for sale, but obtained no offers.

Notwithstanding the failures and disappointments in the acclimatisation of the silkworm and the establishment of a silk-reeling industry, the manufacture of silk and satin made considerable progress in the Madras Presidency. And beyond the Presidency the silk brocades and the plain silks of Mysore are famous even to the present day. A century ago Buchanan-Hamilton (Journ. to Mysor. etc., i. 208, 222; ii. 263) gave an account of the industry that to this day has hardly been excelled for its fulness and thoroughness. Persons desirous of studying the subject of silk in South India could not do better than begin their inquiry by perusing Hamilton’s account.

MYSORE.—In Mysore and Travancore greater success was attained than in any part of the Madras Presidency proper. In 1849 Surgeon Smith published a report of the silk experiments of Mysore from the date of its introduction by Tippu Sultan to the date of his report. Coming down to recent times, the story of failure has to be replaced with a record of success. The late Mr. J. M. Tata started an experimental silk-rearing farm in Bangalore with a view to resuscitate the industry. In 1897 he personally visited Bangalore and chose the land for his plantation and rearing-houses. He then sent off to Japan to obtain the services of a superintendent; and a selected number of trained operatives, both men and women. It was soon ascertained that the tableland of Mysore approximates in climatic conditions very closely to that of the warm zone of Japanese silk culture. The services of Mr. T. Odzu were in 1899 procured as manager and the farm was started a little beyond the Basavanagudi extension at the village of Yediyur. A similar experiment was started by Mr. Partridge at Yellahanka near Bangalore. Henceforward we read of steady progress in the Tata Farm, the Mysore authorities having made it a grant of Rs. 3,000 a year in return for obtaining permission for its utilisation as a sort of school where the Japanese methods of growing the mulberry and rearing the insects might be taught in return to the people of Mysore. And it may be added that it soon exercised even a wider influence in connection with the proposed new silk farm of Pusa in Bihar. The Mysore farm was also visited by Major Shower, in order to study the methods pursued. That officer has since organised a silk industry in Khelat (official letter dated April 29, 1900), and says, "I may note here that about the best Indian silk that has reached London yet, is that produced at the Tata experimental silk farm at Bangalore. A sample of this silk was shown me by Mr. Frank Durant (Durant, Bovan & Co.), and he advised our taking that as a model at Mastung. This silk realised as much as 17s. a pound." Such high testimony is thus fully expressive of the great success attained by the Tata Farm.

The Silk Trade of India.

Early Records of Indian Silk Trade.—Varthéna (Travlés, 1510 (ed. Hakl. Soc.), 38) speaks of the silk of Bengal being conveyed to Mecca. In a
further passage he discusses the cotton and silk goods of Cambay. In a third, makes mention of the silk being made in large quantities at a place identified as having been Masulipatam. These three statements thus exemplify the three great centres of the early silk trade of India. Sir George Birdwood and Mr. W. Foster published, in 1893, The First Letter Book of the East India Company, or a register of the official correspondence from 1600-19. We there read, in the Commission granted to the commander of the Company’s second voyage (1605), of provision being made for the purchase of raw silk, but there is nothing to show that the entry in question denotes that the silk was to be procured from India. In subsequent commissions of other ships, such as of the date 1609, special mention was made of the Chinese and Persian silks. The former are spoken of as Lamking (Nanking) and Canton. Persian silk was sent in 1617 to Surat in exchange for sugar and other Indian commodities. It would seem that the Company’s first efforts at silk manufacture were made in Surat, though everything points to the raw silk having had to be carried to the manufacturers of that town (see pp. 995, 1017). Mr. W. Foster, in a series of volumes entitled Letters Received by the East India Company, 1602 to 1619, affords many useful additional historic facts regarding the silk trade of India. We there learn that, disregarding letters that deal with China, Japan, Malay, Siamese or Straits silks, one of the earliest mentions of Indian commercial silks occurs in a letter from Cambay, dated 1614. It is there stated that silk used formerly to be brought to that city from the interior. One of the earliest references to Bengal silk occurs in a letter from Sir Thomas Roe, written at Ajmir, December 1616, in which he discourses against the proposal then made to found special factories in order to purchase Bengal silks. He says that these are to be “had cheaper at Agra,” “I am of opinion your residences are sufficient and best chosen as they are.” He then adds that there exists “Silk of Bengal plenty at reasonable rates” (E.I.C., l.c. iv., 250). Subsequently, in 1619, a letter was issued from the factors at Surat to those at Masulipatam, in which an acknowledgment is made of “Musters of Bengal silke.” Foster (The English Factories, 1618-21, 153) furnishes a letter from Masulipatam, in which the following occurs, “I am in good hope after some small time to furnish you with good quanteties of that sort of Bengal silke which Lawrence Walse also first, and Robert Young after, shewed you musters of in England.” In a further letter, of date 1620, we read of Robert Hughes, having been deputed from Surat and Agra to organise a factory at Patna. He purchased a maund of “serbandy” cocoons, for he adds it is “the cheapest and surest dealing to buy the serbandye and wynde it of myselfe.” Further on, doubt is thrown on the advantage of a filature at Patna, seeing that the silk cocoons had to be conveyed from “the cityte of Mucksoudabad (Mushidabad) where it is made, which would bee worth bothe labor and charge, for wee are assured that there it may be provided in infinite quanteties at least twenty per cent. cheaper than in anye other place of India, and of the choysest stuf, wounde off into what condition you shall require it, as it comes from this worme; where are also innumerable of silk wynders, experte workmen and labour cheaper by a third than else where” (l.c. 229-30). Bernier (Travels, 1656-8, 439-40) says, “There is in Bengal such a quantity of cotton and silks, that the kingdom may be called the common storehouse for those two kinds of merchandise, not of Hindoustan or the Empire of the Great Mogol only, but of all the neighbouring kingdoms and even of Europe.” Tavernier (Travels in Ind. 1676 (ed. Ball), it., 2-3) tells us that in his time Kasimbarz (“Cosenbazar”), a village in the kingdom of Bengal, furnished about 22,000 bales of silk annually, each bale weighing 100 lb. “The Dutch,” he continues, “generally took, either for Japan or for Holland, 6,000 to 7,000 bales of it and they would have liked to get more, but the merchants of Tartary and of the whole Mogul Empire opposed their doing so, for these merchants took as much as the Dutch, and the balance remained with the people of the country for the manufacture of their own stuffs. All these silks are brought to the Kingdom of Gujarat, and the greater part come to Ahmedabad and Surat, where they are woven into fabrics.” “The crude silk of Kasimbarz is yellow.” Bernier says, “The Dutch have sometimes seven or eight hundred Natives employed in their silk factory at Kassem-Bazaz, where, in like manner, the English and other merchants employ a proportionate number.” There would thus seem no doubt that long anterior to the arrival of the Dutch and English traders in Eastern Bengal, a fairly large silk industry existed, both in rearing the worms, reeling and throwing the silk, and in weaving all
manner of silken goods. The practical silence of Muhammadan writers on the subject is, however, significant, and tends to the conclusion that until the advent of the East India Company, little progress was made toward extending and improving the Native industry. Of the European traders, the Dutch were probably the first to find their way to the Bengal silk districts. It seems, in fact, to have taken the British the greater part of a century before their knowledge of the Bengal production took definite shape and they had assumed direct control. Most of the early books of travel, in discussing silk, speak either of the silks of Gujarat or of Masulipatam. Mandelslo (Travels, 1638, in Olearius, Hist. Muscovy, etc., 83) discusses the "Cotton and Linen Cloaths" and "Silk Stuffs" either conveyed to Surat or worked up there. In fact the British merchants seem to have striven hard to make Surat the chief centre of their Indian silk traffic, though they do not appear to have ever made the attempt to rear the silkworm there nor to build filatures at Surat. They carried the raw silk from Bengal to their looms. It is, therefore, surprising how Ovington could have written his most admirable account of the silkworm to which reference has been made above (p. 995).

Sir Henry Yule, in his Biographical Sketch of Sir Strype's Master (Diary of William Hedges, ii, app., cxxxvi.), gives passages from a letter by Master descriptive of Kasimbazar, in which he speaks of all the country being planted with mulberry trees. Sir Henry fixes the Company's establishment of an agency in Kasimbazar at 1658 (L.c. iii., exciv.), though they had occasional agencies there as early as 1633. The reader will find much interesting information regarding the establishment of the East India Company's silk industry in the late Mr. C. R. Wilson's Early Annals of the English in Bengal (1., 39, 35, 375–8, 394; ii., 196, 228, 369).

EXPERIMENTS AT IMPROVEMENT OF INDIAN SILK.—Between the dates mentioned for the establishment of the agencies and the records of the Company's erection of filatures in Bengal, there is a gap of a century of which we knew little more than has been indicated. In the volume of Reports and Documents published by the East India Company in 1836 (to which repeated reference has already been made) much interesting information will, however, be found. It is there stated that the trade of the Company in raw silk was insignificant in extent before the middle of the last century. The chief places then producing silk were "Cossimbazar, Commericoally and Rangpore." The class of silk procurable was described as country wound. But it was freely admitted that the fault of that silk was its inequality, some portions being single, others double or even quadruple. Accordingly, in 1767, Mr. Richard Wilder, a gentleman trained in every department of the silk industry, was sent to Bengal to examine into the cause of the defective quality of Bengal raw silk. Wilder continued in India until his death in 1761, and was enabled to lay the foundation of great improvements in the winding of silk. Mr. Joseph Pouchon was appointed to succeed Wilder, and he claims to have so improved the reeling that Bengal silk became equal to that of Italy or any other country. In 1768 the Court of Directors advised the Government of India that it was to the increase in raw silk that they looked chiefly for the means of bringing home their revenue. Subsequently the Court advised the Government that although there was no branch of their trade which they more ardently wished to extend than that of raw silk, still they could not think of effecting so desirable an object by any measures that might be oppressive to the Natives, and, therefore, no compulsory methods were to be adopted to increase the number of the silk-winders. With regard to planting mulberry, it was suggested that deductions from rent should be made on lands planted with it so as to amount to a bounty by rendering it more profitable than any other article of culture.

But complaints continuing to be made by the purchasers of Bengal silk, it was resolved to adopt the methods of winding practised in the filatures of Italy and other parts of the Continent. For this purpose the services of experts (both English and foreign) were secured and located at the Company's agencies. For example, Mr. James Wiss, a native of Piedmont, was stationed at Commercioally with four Italians under him, engaged as drawers and winders. Mr. J. Robinson was stationed at Rangpur with three Italian experts under him. While Mr. W. Aubert, with three expert reelers from Languedoc, was appointed to another aurung, but Aubert died at Martaban in 1771, and thus never reached Bengal. The first report on the silk produced was to the effect that Mr. Wiss had succeeded to admiration in drawing a tolerable silk from the most ungrateful
of cocoons, the sickliest of worms, and under the most unfavourable season possible. This led to recommendations to improve the stock, both of the worms and the mulberry, and a long correspondence ensued, in which ultimately Mrs. Roxburgh, Wallich and Lush took part, and which culminated in the attempt to adopt the Italian standard method of growing the plant in place of the Bengal bush system.

The great difficulty in conveying live eggs from Italy to India seems to have suggested two alternatives:—1st, to get Italian eggs from St. Helena as a half-way house; and 2nd, to obtain China stock. In 1771 eggs were accordingly procured from China, and at the same time the Chinese mulberry was brought to India. In 1774 it was reported that the Italian method of reeling had been so far successfully introduced that it promised in a reasonable time to fulfill all expectations. Wiss retired from India in 1776, but was appointed by the Company to a post in England by which he was enabled to afford much valued advice to the manufacturers in India. It would occupy too much space to follow the course of events farther. The purpose in view has been served, namely to exemplify the enlightened action of the East India Company and the far-reaching efforts which they expended in their endeavours to improve and extend the Indian silk production. It need only, therefore, be added that the Board of Trade in Calcutta established in 1822 an experimental filature in Howrah for the purpose of instituting comparisons and experiments, with a view to improve the manufacture of raw silk. This was intended to guide the operations of the Company’s Residents in the chief silk-producing districts.

Under the fostering care, therefore, of the East India Company, the Indian silk trade prospered greatly. During the early years of its existence it had only Turkey, China and Japan to contend against. Gradually, however, the efforts to acclimatise the silkworm in Italy and France, and to engratify sericulture among the regular industries of these countries, were crowned with success, and India had thereby to face formidable rivals. The East India Company gradually also found new and more immediate outlets for their enterprise, and silk, in consequence, passed into the hands of private persons. Discouraged by the lessening demand for Indian raw silk, the industry fell behind and degenerated until it was held that Indian silk could not compete with that of Europe.

Many writers had reported that the cocoons of the silkworm that feeds on the leaves of the castor-oil plant could not be reeled, but that the Natives of Assam carded these and spun them like cotton (see pp. 1011, 1013; also Roxburgh, Trans. Linn. Soc., 1804, vii., 45). Up to 1858 no advantage was taken of that fact in Europe, but in the year mentioned, the discovery was at last made in England that the silk waste and wild silks of India might be utilised in the manner mentioned. A new demand arose for these materials, and, in consequence, a complete change took place in the nature and location of the Indian silk trade. The waste silk of the village reeling business found a ready sale. A market was created for wild silks, and an export trade made its appearance in official returns under the heading of waste silk. Moreover, the reeled silk of India, about the period indicated, was recognised as possessing special features of its own for which a distinct demand existed. To Sir Thomas Wardle is due the credit of having urged, and successfully accomplished, the renewal of the efforts to improve the methods of reeling. He pressed for the introduction of better reeling machinery, even although M. Gallois had pointed out that he had some time previously introduced the Tavelette conose machine, and found that the silk made by the ordinary process was quite as good. It has, however, been freely admitted that great improvements might be carried out by more care in reeling on the lines advocated by Wardle.

FOREIGN TRADE.—Milburn (Rise and Prog. of the Silk Trade, in Or. Comm., ii., 244—60) gives the early returns of India. The first consignments of wool from India to England were made in 1772, and during the five succeeding years the returns of that nature averaged 180,000 lb. In 1785 they came to 324,307 lb.; in 1795, to 380,352 lb. About this time the Company’s purchases were made by contract, and it is recorded that a loss of £884,744 had been sustained. The total imports of Great Britain in raw and thrown silk were in 1773 returned as 777,373 lb., of which, under the heading of raw silk, were 145,777 lb. from Bengal; 203,401 lb. from China; 187,099 lb. from Italy and Turkey; and 6,190 lb.
from other parts; while under thrown silk, the total receipts were 234,906 lb. Twenty years later the corresponding figures were, total imports 1,261,963 lb., of which (raw silk)—Bengal supplied 736,081 lb.; China, 165,435 lb.; Italy and Turkey, 110,276 lb.; and other parts 8,216 lb.; with fully one quarter of the total consisting of thrown silk, viz. 241,954 lb. But shortly after a complete revolution took place. The silkworm was acclimatised in both France and Italy, and immediately thereafter the demand for silk in Europe not only increased very rapidly but the demand for the Indian fibre declined. The returns of the exports of raw silk from Bengal to England about this time began also to manifest a new feature, viz., it was referred to two sections, Company’s and Private exports. In 1805 the total exports came to 835,904 lb., of which 460,303 lb. were made by the Company. In 1825 the total exports were 919,436 lb., of which the Company’s share came to 699,230 lb. In 1835 the total exports of raw silk came to 727,535 lb., of which the Company exported 721,509 lb.

From 1867, when the utilisation of waste silk began to be understood and practised in Europe, the exports of India changed their character. The returns rapidly manifested a decline in value, due largely to the growth of the traffic in chasam (waste silk) and cocoons, in place of the reeled silk of former times. In 1867–8 the exports of raw silk from India were 2,226,201 lb., valued at Rs. 1,55,32,290. In 1877–8 the total exports from India were 1,512,819 lb., valued at Rs. 70,35,493; in 1880–1 they were 551,000 lb. reeled silk, plus 788,000 lb. waste silk and chasam, valued at 55 lakhs. Thus in twenty years from 1867–8, the exports declined from a valuation of 1½ millions to ¾ a million sterling. In 1900–1 the figures were 560,000 lb. reeled and 1,031,000 lb. waste, with a total value of 51 lakhs.

RAW SILK.

It is not always possible to refer the traffic in Raw Silk to the two important sections Wild and Domesticated, but where this can be done, the proportion which the former bears to the total will be exemplified.

Exports.—The following table exhibits the Foreign Exports for the past seven years, arranged under the three chief classes, viz. Reeled Silk, Chasam or Waste, and Cocoons.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1900–1</td>
<td>559,776</td>
<td>1,030,523</td>
<td>13,976</td>
<td>1,604,275</td>
</tr>
<tr>
<td></td>
<td>43,02,707</td>
<td>8,09,619</td>
<td>9,731</td>
<td>51,22,057</td>
</tr>
<tr>
<td>1901–2</td>
<td>727,651</td>
<td>1,165,754</td>
<td>42,356</td>
<td>1,935,761</td>
</tr>
<tr>
<td></td>
<td>57,53,220</td>
<td>8,49,948</td>
<td>31,041</td>
<td>66,34,299</td>
</tr>
<tr>
<td>1902–3</td>
<td>681,852</td>
<td>1,240,689</td>
<td>67,281</td>
<td>1,989,822</td>
</tr>
<tr>
<td></td>
<td>55,24,418</td>
<td>9,66,154</td>
<td>57,181</td>
<td>65,47,753</td>
</tr>
<tr>
<td>1903–4</td>
<td>624,064</td>
<td>1,136,566</td>
<td>101,686</td>
<td>1,862,316</td>
</tr>
<tr>
<td></td>
<td>52,51,669</td>
<td>9,89,979</td>
<td>1,00,820</td>
<td>63,42,468</td>
</tr>
<tr>
<td>1904–5</td>
<td>506,318</td>
<td>751,355</td>
<td>85,990</td>
<td>1,343,663</td>
</tr>
<tr>
<td></td>
<td>42,49,181</td>
<td>6,40,937</td>
<td>79,837</td>
<td>49,69,975</td>
</tr>
<tr>
<td>1905–6</td>
<td>578,450</td>
<td>1,131,960</td>
<td>68,906</td>
<td>1,779,316</td>
</tr>
<tr>
<td></td>
<td>47,32,832</td>
<td>8,43,059</td>
<td>63,788</td>
<td>56,39,679</td>
</tr>
<tr>
<td>1906–7</td>
<td>777,654</td>
<td>1,095,193</td>
<td>70,591</td>
<td>1,943,438</td>
</tr>
<tr>
<td></td>
<td>59,38,726</td>
<td>8,57,700</td>
<td>68,592</td>
<td>68,65,018</td>
</tr>
</tbody>
</table>
TRAFFIC IN RAW SILK

Of these amounts, the WILD SILKS were as follows:—In 1900-1, the exports of reeled wild silks were 62,693 lb.; in 1901-2, 16,884 lb.; in 1902-3, 3,919 lb.; in 1903-4, 10,494 lb.; in 1904-5, 19,287 lb., in 1905-6, 28,904 lb.; and in 1906-7, 23,990 lb. The traffic in reeled wild silk has thus fluctuated very greatly. Of chasam or waste, the figures given are much higher, and seem to have been on the whole increasing, though in 1904-5 a shrinkage occurred. The figures were in 1900-1, 447,488 lb.; in 1901-2, 492,113 lb.; in 1902-3, 626,977 lb.; in 1903-4, 727,545 lb.; 1904-5, 350,514 lb.; in 1905-6, 634,593 lb.; and in 1906-7, 463,440 lb. So also the traffic in cocoons seems to have marked an expansion, though a shrinkage occurred in 1905-6. Let it be observed, however, the exports of this nature are almost entirely wild cocoons. The returns of wild cocoons exported were in 1900-1, 13,976 lb.; in 1901-2, 32,940 lb.; in 1902-3, 53,125 lb.; in 1903-4, 87,952 lb.; in 1904-5, 80,540 lb.; in 1905-6, 46,725 lb.; and in 1906-7, 36,965 lb.; which figures, it will be seen, leave very small balances annually that have to be accounted for as being domesticated cocoons.

Turning to the provincial transactions, it may be pointed out that practically the whole of the reeled silk exported from India goes from Bengal. Of the chasam, it may be said that two-thirds go from Bengal and one-third from Madras, the other provinces contributing negligible quantities. So also of the traffic in cocoons, two-thirds go from Bengal and one-third from Madras. Thus it will be seen the exports from the province of Bengal are by far the most important, since, as a rule, they amount to three-fourths of the total. Following Bengal come the Madras ports, which usually contribute from a fifth to a fourth of the total foreign exports. As manifested by the returns of railborne traffic, these Madras exports must be Mysore silk carried to the Madras port towns by rail, and then exported to foreign countries. But if anything, the Madras traffic seems to be declining, while the exports from Bombay are expanding. In 1900-1 the Bombay exports stood at 10,091 lb., while in 1906-7 they had expanded to 233,774 lb. From the returns of railborne traffic, the raw silk that drains into Bombay town (from which the foreign exports are largely made) appears to be mainly Panjâb silk, or silk conveyed into the Panjâb from across its land frontier—doubtless to some extent Kashmir silk. Of these foreign exports about three-fourths go to France and approximately one-fourth to the United Kingdom.

Imports.—Perhaps the most significant feature of this aspect of India's foreign silk trade is the circumstance that more raw (reeled) silk is imported by Bombay and Burma than is exported by Bengal. The figures for the years 1900-7 have been:—1900-1, 2,555,377 lb., valued at Rs. 1,01,69,402; in 1901-2, 2,128,483 lb., valued at Rs. 80,96,200; in 1902-3, 1,639,189 lb., valued at Rs. 55,16,149; in 1903-4, 1,544,315 lb., valued at Rs. 59,29,527; in 1904-5, 1,858,709 lb., valued at Rs. 73,41,121; in 1905-6, 1,645,696 lb., valued at Rs. 71,19,049; and in 1906-7, 1,422,467 lb., valued at Rs. 56,80,273. Of these quantities practically the whole comes from China and the Straits, the former furnishing about four-fifths of the supply. It has often been pointed out that this large import trade is mainly a consequence of the cheap freights by the return opium steamers to Bombay. But there would seem no doubt that Bengal for a century or more had failed to meet the demands of Western India.
SILK
Trade

The Bombay demand was, however, the incentive for the Gujarati silk merchants and weavers permeating the whole of India and forming the colonies that exist to-day all over the chief silk-producing localities of the Empire. It is needless, therefore, to add that out of the imports, Bombay takes by far the major portion, only about one-seventh going to Burma, while the other provinces take practically no share in these imports.

Thus while Bengal is the great producing province, Bombay is the chief distributing centre. By rail and river the Chinese silks brought to Western India are carried not only through the Presidency of Bombay, but very largely to the Panjab and even to the United Provinces. Hence it may be said that while Bengal is the chief producing province, the Panjab is the chief consuming province of India.

Re-exports.—It only remains to briefly indicate the re-export trade, practically the whole of which goes from Bombay, and is, in consequence, Chinese silk. The quantities of foreign silk re-exported during the period of 1900–7 were as follows:—1900–1, 97,519 lb., valued at Rs. 1,89,475; 1901–2, 59,941 lb., valued at Rs. 1,46,265; 1902–3, 85,249 lb., valued at Rs. 1,62,279; 1903–4, 68,131 lb., valued at Rs. 1,40,829; 1904–5, 54,522 lb., valued at Rs. 1,48,729; 1905–6, 69,330 lb., valued at Rs. 1,35,045; and in 1906–7, 105,288 lb., valued at Rs. 3,78,860. These re-exports go mainly to the United Kingdom and Arabia.

MANUFACTURED SILK.

Repeated reference has been made to N. G. Mukerji (Monog. Silk Fabrics of Beng., 45–82); his chapter on fabrics will be found to give every possible detail regarding the rise and present position of the Indian industry, the class of goods manufactured, and the extent of the trade. He mentions, for example, the Murshidabad silk manufacturers turning out many different classes of goods, such as gown-pieces, corahs, silk-muslins, handkerchiefs, mathas, imitation Assam silk, etc. The last mentioned was specially introduced by Mukerji himself as a relief measure, but the success attained has "given rise to a hope that under a fostering care the silk-weaving industry of Bengal may be developed in other directions also." Speaking of the corahs, Mukerji observes that "these are the cheapest silk fabrics which form the staples of export to Europe, where they are used mainly for lining purposes. Corahs are generally woven 7 yards by 1 yard, and sold at a rupee (= 1s. 4d.) per square yard. They are made out of unbleached and untwisted thread, and bleached in the piece after they are woven. Corahs are also woven 10 yards by 42 inches, like ordinary gown-pieces, and worn as saris by widows. Like gown-pieces, corahs are valued by the number of warp threads (called shänd), 2,400 warp threads per yard making the best gown-pieces and corahs, while 1,200 or 1,000 warp threads per yard make the poorest gown-pieces and corahs. The price of corahs varies from 6 annas to Rs. 1–8 per square yard." In the Review of Trade of British India (1904–5, 38), the statement occurs: "The exports have steadily diminished during the last five years, the decrease compared with 1903–4 being 12 per cent., and what was once a trade of some importance is rapidly approaching insignificance." This has reference mainly to the decline in the exports of corah silks, in which there seems some prospect of a revival. But at present the exports from India are "chiefly
INDIAN SILKS

SOLANUM MELONGENA
Egg-plant

Into Bombay and Burma.

importing centre is Bombay, which takes almost three-fourths, the balance going chiefly to Burma. Reviewing the trade returns for 1904-5, Robertson (Rev. Trade of Ind., 1904-5, 17) says: "Piece goods of pure silk are chiefly of Chinese and Japanese make, the latter predominating, and jointly (including re-exports from the Straits Settlements) they amounted to 16'3 million yards, valued at 102 lakhs, out of a total of 18'9 million yards, valued at 124½ lakhs. The value of the silk goods mixed with other materials, 43'8 lakhs, is 30 per cent. greater than in 1903-4. There is also an advance of 25'8 per cent. in 'other sorts,' of which the value rose by 51'7 per cent. to 42'9 lakhs. This includes warp and yarn of Italian silk imported into Bombay for hand-weaving."

The expansion of the imports in mixed silk and other textiles and in thread, warp and yarn, is therefore a highly significant feature of the modern silk traffic that gives a useful hint as to the demands of the hand-loom workers.

Re-exports.—Have been increasing in recent years, and in 1904-5 were not far behind the exports in value. The figures for the period discussed were as follows:—1900-1, Rs. 5,33,749; 1901-2, Rs. 6,72,841; 1902-3, Rs. 7,33,519; 1903-4, Rs. 6,98,160; 1904-5, Rs. 6,01,942; 1905-6, Rs. 6,47,797; and 1906-7, Rs. 6,77,683. Bombay exports practically the whole amount, and the chief markets for these re-exported goods appear to be Natal, Arabia, British East Africa, Cape Colony and Persia.

Trans-frontier Trade.—Turning from the foreign to the Trans-frontier land trade, the returns may similarly be indicated under exports and imports of raw and of manufactured silks. Of Raw.—The exports during recent years have been as follows:—1904-5, 189 cwt., valued at Rs. 85,233; 1905-6, 190 cwt., valued at Rs. 93,586; 1906-7, 94 cwt., valued at Rs. 51,175. The chief markets are the South Shan States, Bhutan and North-East Afghanistan. The imports during the same period have been:—1904-5, 2,960 cwt., valued at Rs. 19,98,484; 1905-6, 4,121 cwt., valued at Rs. 29,37,592; 1906-7, 4,165 cwt., valued at Rs. 30,88,935. Kashmir and Western China supply practically the whole amount. Of Manufactures.—The following are the returns of re-exported silk goods:—1904-5, 667 cwt., valued at Rs. 8,97,079; 1905-6, 710 cwt., valued at Rs. 8,11,581; 1906-7, 969 cwt., valued at Rs. 9,36,406. The chief markets are the South Shan States, North Siam, North Shan States, South Siam and Tibet. The imports for the same period were:—1904-5, 196 cwt., valued at Rs. 4,72,833; 1905-6, 445 cwt., valued at Rs. 7,33,319; 1906-7, 250 cwt., valued at Rs. 5,01,206. The largest quantities come from North and South Siam and the South Shan States.

SOLANUM, Linn. ; Fl. Br. Ind., iv., 229-37; Prain, Beng. Plants, 1903, ii., 743-7; SOLANACEÆ. A genus of shrubs, herbs or small trees, comprising numerous species of economic importance, such as the brinjal and the potato.

Egg-plant, Brinjal.

S. Melongena, Linn. The Egg-plant, Brinjal, baigan, bhanta, brinjal, bertaak, mahoti hinpoli, wangan, vengan, vange, rigana, kuthirekai, chiru vanga, badane kayi, badnikai, trong, khayan, etc. Introduced into India and now extensively cultivated. De Candolle considers it a native of Asia (not America), and other botanists have viewed it as Arabian. There are many very distinct forms or races distinguished by
EARLY SUMMER VEGETABLE

the shape and colour of the fruit, egg-shaped to an elongated pear or even cylindrical, while in colour it ranges from white through yellow to red and even dark purple. None are eaten in the fresh state but are cooked as vegetables.

Cultivation.—The seeds are sown at the beginning of the rains and the plants put out at the distance of a foot and a half apart. They come into season in August or September and bear till the end of the cold weather, certain varieties yielding till June and in Madras right through summer to October. In the suburbs of Calcutta, Bombay and Madras, in other words, in the vicinity of large towns, the **brinjal** is cultivated as a field crop. Full accounts of cultivation have recently been given by Mukerji and Roy for Bengal, and by Mollison for Bombay. The latter states that the varieties with purple fruits grow into much-branched shrubs about 3 feet high. The small-fruited forms are not so tall. The field varieties, he further adds, have prickles. The crop is grown chiefly in Gujarat, especially in the **goradu** or **besar** garden lands of Kaira and Baroda. The crop is obtained from transplanted seedlings. The seed-bed is carefully prepared in May, and the young plants are ready for transplantation in six weeks or two months. The field into which they are transferred is prepared as for chillies, i.e. ploughed two or three times and then harrowed till a fine tilth is obtained. Before the first ploughing, a dressing is given of not less than 20 tons old farm-yard manure per acre. The seedlings are planted two together in rows, 2½ to 3½ feet apart in both directions. When well established they should be earthed up, before which a top-dressing of 500 lb. of nitre or 1,000 lb. of castor-cake placed round the plants will be found very beneficial. Beds for irrigation and watering are arranged as in the case of chillies (**Capsicum**). Mollison gives a table showing the yield, cost of cultivation, and value of outturn per acre under fairly high-class cultivation. The table shows that nitre as a top-dressing has a remarkable effect on the crop. With a manure of dried fish and nitre, at the rate of 1,451 lb. fish and 433 lb. nitre per acre, the outturn was found to be 16,322 lb., cost of cultivation Rs. 138–6, and value of outturn Rs. 325–5 per acre.

In Bengal, according to Mukerji, the seed is sown at the end of March or early in May. The field to which the seedlings are transferred is prepared in December or January and should be ready for planting in May. The plants begin to bear in August. A variety, known as **koli begun**, is sown in September and October; the seedlings are transplanted in October or November and the plants bear from February to June. He estimates the cost of cultivation at Rs. 60–8 per acre, and with an outturn of 150 maunds per acre, worth Rs. 90, the net profit would amount to about Rs. 30 per acre. Roy puts this matter more pointedly. There are two principal varieties, he says—(1) the winter and (2) the spring. The finest **brinjals** are known as **elokeshi** and **mukta keshi**. When grown as a spring crop **brinjal** follows **dus** paddy or jute. But where the rainfall is heavy it is grown in the **rabi** season.

Uses.—**Brinjals** are much eaten by the Natives whenever procurable, and by the Europeans during the early summer months, when other vegetables are not available. The Natives use them (a) in curries; (b) roasted in hot ashes and mashed with salt, onions, chillies, and lime-juice or mustard-oil; (c) cut into slices and fried in oil; and (d) pickled while young and tender with mustard-oil, chillies, salt, etc. By Europeans they
are usually prepared by being half boiled, the interior scooped out and mashed with pepper, salt and butter, then replaced and baked.

S. tuberosum, Linn. The Potato, alū, bilati ālu, batata, wallarai, kilangu, utalay gudda, etc.

With reference to the indigenous habitat of the potato, De Candolle (i.e. 45-53) states that the only locality in which a species is found really wild, that could be accepted as representing the cultivated plant, is Chili, but that it is very doubtful whether its natural home extends to Peru and New Granada. According to Baker (Journ. Linn. Soc., xx., 459), however, undoubted forms of *S. tuberosum* have been found wild in Lima and in New Granada also, but the plant is everywhere one which occurs at a comparatively high altitude and in a dry climate, and is met with nowhere in the near neighbourhood of the coast. It is proved beyond doubt that at the time of the discovery of America the cultivation of the potato was practised with every appearance of ancient usage in the temperate regions extending from Chili to New Granada (Asa Gray, Scient. Papers, 1889, i., 317). In Europe it was introduced at some period between 1580 and 1585, first into Spain, thence to Portugal, Italy, France, Belgium and Germany. It had reached Ireland in 1585 or 1586 (Rozé, Hist. de la Pomme de Terre, Paris, 1898). The first mention of it in connection with India appears in Terry's account of the banquet at Ajmir given by Asaph Chan to Sir Thomas Roe in 1615 (Voyage E. Ind., 197). Fryer (1675, New Acc. E. Ind., and Pers.) (ed. 1698), 104, 179 describes the gardens of Surat and the Karnátak as containing among other vegetables *brinjals* and potatoes. It would thus appear that within a remarkably short interval, after the discovery of the potato in America, it had been conveyed to India and was apparently at once taken up by the better-class Muhammadans as a desirable addition to the ordinary articles of diet.

CULTIVATION.—To-day, it may be said to be cultivated more or less in all parts of India. The methods pursued will, therefore, be now briefly indicated under provincial headings:

Bengal.—The chief potato-growing districts are Hughli, Bardwan, Rangpur, Jalpaiguri and Darjeeling. Full accounts have recently been given by Mukerji and Roy, as also in the publications of the Bengal Agricultural Department. Various kinds of the tuber are grown, of which the Patna, Naimi Tal, and Cherrapunji are best known and most highly valued. A loose soil such as sandy loam is preferred. The crop requires moisture, but water must not be allowed to settle about the tubers. In rotation it may follow *âsū* paddy or jute, but is often grown year after year without an intervening crop, especially in the vicinity of large markets, the fertility being preserved by high manuring. Previous to planting the land is prepared by numerous ploughings and is thoroughly pulverised. Manure, preferably cow-dung at the rate of 240 maunds per acre, or castor-cake
at the rate of 20 maunds per acre, should be spread on the ground after the first few ploughings and thoroughly mixed with the soil. The field is then divided into sections by water-channels and laid out in ridges and furrows. Sets consisting of entire tubers or portions with two or three "eyes" are planted along the ridges, 9 to 12 inches apart in a single or double row. Experiments at the Sibpur Farm showed that the average outturn per acre from double rows was about 9,500 lb., and from single rows about 7,300 lb. Planting the sets should not ordinarily take place in the plains before October. Between planting and harvesting, the crop should be watered if necessary, but not in excess, the earth stirred and weeded and heaped up several times round the base of the growing plants. Harvest takes place from 15th January to 15th March. Mukerji estimates the cost of cultivation at Rs. 170 per acre and the outturn at 150 maunds valued at Rs. 225, giving a net profit of about Rs. 50.

Assam.—Potatoes are extensively grown on the higher slopes chiefly in the Khasia hills, and in lower land which has been well drained. In the *Gazetteer of Assam* (1906, x., 73-4), which deals with the Khasia, Jaintia, Garo and Lushai hills, it is stated that the crop was first introduced in 1830 by Mr. David Scott and in 1881-2 the export of potatoes from the province reached 127,000 maunds. Five years later, however, the tuber was attacked by disease and in 1887-8 the export fell to 42,000 maunds, and in 1899-1900 had decreased to 5,000 maunds. A change then came, due to the introduction in 1897 of the Naini Tal potato, and in 1903-4 the exports reached 51,000 maunds. Two crops are raised: "The first is sown in January and February, and is gathered in June and July; the second is sown in July and August and is harvested in November and December." [*Cf. Ind. Gard., Sept. 29, 1898, 429-30; Repts. Dept. Land Rec. and Agri.; Agri. Dept. Assam Bull., 1904, No. 10, 5-7.*]

United Provinces of Agra and Oudh.—The potato is said to flourish well in the hills at Naini Tal, Almora, Paori Lohygat, and beyond Mussourie and also in the plains. Guthie and Fuller (*Field and Garden Crops*, pt. iii., 15-6) state that cultivation is conducted on the European method, and differs in no material respect from that described above for Bengal. Two hundred maunds is stated to be no extraordinary outturn, but the cultivation is very expensive. "The eyes are planted in November and the potatoes are ready for digging up in February. They are sold in the bazar at the rate of 12 annas to one rupee and four annas per maund." On the authority of the late Mr. Gollan, it is also stated that "the best time to sow the acclimatised varieties is from the middle of September to the middle of October, and that the hill kinds and those imported from Europe must be sown later. Water is freely given during growth, but the quantity is reduced when the leaves begin to turn yellow. If the soil is naturally rich, manure is not essential, but in the plains manure is always given."

In recent years three varieties have been experimented with at the Cawnpore Farm, viz. the Madrasi white, country red, and hill variety. In the report for 1903-4 it is stated that the average outturn for six years...
THE POTATO

SOLANUM TUBEROUS
Bombay

Yield.

of Madrasi and hill varieties amounted to 13,527 lb. and 8,546 lb. respectively, while the average for five years for country red amounted to 13,119 lb. [Cf. Nevill, Dist. Gaz., 1904, iv., 46; 1904, xxxiv., 56, 63, 150, etc.; Cawnpore Exper. Farm Repts. (several years.).]

Bombay.

Area.

Bombay.—The potato is grown to a small extent on garden lands in all parts of the Presidency. The chief cultivation, however, is in the Poona district, which, according to Mollison, claims 75 per cent. of the total area. The following is the method of cultivation which he says is there pursued:—The soil is mixed black, and the field usually fallowed during the rains. The land is ploughed two or three times between June and September and farm-yard manure, 15 to 20 tons per acre, applied before the third ploughing. The crop is planted in October. Tubers of medium size are selected for sets, and 900 lb. to 1,100 lb. of potatoes furnish sets sufficient to plant an acre. The tubers are each cut into three or four pieces and are planted 7 to 8 inches apart, in furrows 9 to 10 inches distant. The crop must be weeded and irrigation given every eight days. In March the haulms begin to wither and turn brown, and water is now withheld for a fortnight or three weeks. When gathering the crop, the potatoes are exposed by ploughing, first along the rows, then across. According to Mollison, an average crop in Poona tested by himself gave an outturn of 10,230 lb. per acre, worth Rs. 201. The cost of cultivation, estimated for the Surat district, is stated to be Rs. 130–8 per acre, and an average outturn of about 12,000 lb. to be worth Rs. 200 (at wholesale rate of 60 lb. per rupee). [Cf. Crop Exper. Repts.; Repts. Dept. Land Rec. and Agrt.; Exper. Farm Repts. Poona; Mollison, Textbook Ind. Agrt., 1901, iii., 200–6.]

Uses.

Uses.—It is much to be regretted that no sort of statistical information can be furnished regarding the extent of cultivation of potatoes nor the magnitude of the traffic in these tubers throughout India. As already mentioned, within access of the great markets of the plains it is customary to find large plots of suitable land thrown under the crop, during the season of the year that may be suitable. And on the hills the cultivation is even more extensive, such as on the Khasia and Garo hills, and the Himalaya at Darjeeling, Nepal, Garhwal, Kumaon, Simla, Kangra, Kullu and Kashmir. So also on the tableland and lower hills of the central tracts of India, such as the Nilgiri hills, Bangalore, etc., extensive potato cultivation exists, the produce being largely exported to the plains.

As an article of food, potatoes are now valued by all classes, especially the Hindus on days when forbidden the use of grain. At first potatoes were eaten by the Muhammadans and Europeans only, but for some years past they have got into universal usage, and it is now no uncommon circumstance to find cooked potatoes offered for sale at refreshment stalls, in various cold preparations, to be eaten along with so-called sweetmeats that form the midday meal of the city communities. The dried small tubers are also a common adulterant for the more expensive salép. Potatoes are also fairly extensively employed both in the manufacture of starch and in the distillation of alcohol. Ligon (Hist. Barbados, 1657, 31) speaks of the beverage called moggie being made from potatoes. The knowledge of their possible employment in distillation is thus by no means a recent discovery.

The following are the returns of the wholesale prices per maund (82 lb.) of potatoes in Calcutta during January of the years 1900–6: — 1900, Rs. 2;
SPECIES AND VARIETIES

SORGHUM VULGARE
Great Millet

1901, Rs. 2-8; 1902, Rs. 1-10; 1903, Rs. 1-4; 1904, Rs. 1-4; 1905, Rs. 2-3-9; 1906, Rs. 3-4-3.

SORGHUM, Pers.; Gramineae. A genus of grasses which embraces several useful species, as, for example, the important millet juār—a cereal, which, after rice, is perhaps the most valuable single article of food in India. The present brief review of information may therefore commence with a botanical statement of Sorghum halepense, the plant from which the cultivated S. vulgare (juār) is believed to have originated. [cf. Watt, Agri. Ledg., 1905, No. 6.]

S. halepense, Pers.; Andropogon halepensis, Brot.; Frain, Beng. Plants, 1903, ii., 1204; A. Sorghum, subsp. halepensis, Hackel, in DC., Monog. Phaner., 1889, vi., 501; A. (subgen. Sorghum) halepensis, Fl. Br. Ind., vii., 182; Duthie, Food. Grass. N. Ind., 1888, 40-4; Lisbon, Bomb. Grass., 1896, 74. The Johnson Grass, Cuba Grass, etc., barī, brāham, kālā-muchā, gālla-jari, padla-jalapadi, gadi-janu, kartāl, bikkonda, etc. A tall perennial grass, common throughout India and Burma on cultivated and uncultivated lands. There are two forms met with in India, which were treated by Roxburgh as separate species but exhibited thus in the Flora of British India:—

1. Var. genuina (Andropogon multiflorus, Roxb.). Lisbon mentions navrus and bhonda as vernacular names for this plant.

2. Var. effusa (A. laxus, Roxb. (non Linn.)). According to Roxburgh, this is the plant denoted by the names kālā-muchā, gadi-janu. He says it grows in hedges, on banks of watercourses and on land lately cultivated.

It is considered a good fodder grass both for grazing and for hay, but is held to have frequently poisonous after-effects, especially if eaten when too young or when stinted by drought. In many parts of India it is believed to be injurious till after the rains. The name bikkonda, given to S. halepense in certain mountainous countries, may be intended to denote its evil reputation. The grain is often collected and eaten, though the plant seems nowhere to be specially cultivated. Hamilton, for example, speaks of a kind of bread being made from it in Rajmahal, and Tod (Rajasthan, ii., 170) mentions the seed being collected, mixed with bōjra and eaten by the poorer classes in Bikaner. [cf. Sny, Exotic Drought Resisting Plants, in Agric. Journ. Ind., 1907, ii., pt. ii., 168.]

S. vulgare, Pers.; Holcus Sorghum, Linn., Sp. Pl., 1753, 1047; Andropogon Sorghum, Brot.; Holcus Sorghum, Roxb., Fl. Ind., i., 269; A. Sorghum, Prain, Beng. Plants, 1204, ii.; A. Sorghum, subsp. satureus, Hackel, in DC., Monog. Phaner., vi., 505; Fl. Br. Ind., viii., 183. The Indian or Great Millet, Guinea Corn, Turkish Millet, etc., juār, (jonear), jondhala, kurbi, chari (stalks), phag, kanga, shālu, sundia, cholam, talla, jonna, yenjara, pyoong, etc. A tall, handsome grass, cultivated throughout India since very remote times.

Though botanists are agreed that the juār is derived from S. halepense it has been dispersed by cultivation to latitudes considerably to the north and south of its indigenous habitat. In most countries it is cultivated between latitudes 45° N. and 35° S.—the area of cotton. In India and
Africa it is of greatest value in the upland tracts between latitudes 15° and 30°. In warmer, moister regions, as in Bengal, in large portions of Madras, in Lower Burma, and in Ceylon it hardly ranks as an important cereal, since in these regions the grain ripens but indifferently.

History.—According to Crooke ("Rural and Agri. Gloss., 1888, 139; also his edition of Hogben-Johnson, 1903, 468), the word judâr has been derived from the Sanskrit yava-parkâra or akâra, which means "of the nature of barley." Dutt ("Mat. Med. Hind.," 324) mentions yavanâla and rakta-khurna as its special Sanskrit names. From yavanâla it would become javanâla, javaunâla, and finally judâ. The Arabic dûra (or, as it is variably written, dhûra, dhûra, doura, etc.) readily becomes zûra and has been Sanskritised as zûrna, and is thus but a variant of judâ. It would seem probable that the earliest mention of the name dura (or dorah) occurs (9th century A.D.) in Avicenna's reference to the people of Zanzibar living very largely on the grain of that name. The Javanese name for it is diayomutri. The cholam is probably also the tejolam of the Malabar (Rheedee, "Hort. Mal.," xii, 113, t. 60). It certainly is the battari of the Malays (Rumphius, "Hort. Amb.," v., 194, t. 75).

The origin of the name sorghum or Sorgho might be expected to throw much light on the history of the crop. Rees ("Cyclopaedia, 1819), followed by Paxton, Johnson, and most botanical lexicographers, says it is an Oriental word and comes from the Indian sorgi. This doubtless is a mistake, since no such name for it exists in any Indian language. Körnicke and Werner ("Handbuch Getreide- baues, 1885, i, 294–315) seem to think that it came direct from the Arabic dorah. The initial letter, on its passing westward, became softened into "th" and ultimately into "s." Sadebeck ("Kulturgesch. der Deut. Kolon.," 1899, 48–52) and many other authors speak of it as the sirk of the Southern Tyrol.

Jahn Arduin in his notes on Pliny (ii., 105, n. 23), published 1723, observes that Sorghum ("Exercit.," 1557, 292, 860) is responsible for the statement that his countrymen, the Italians, called it surgum. Schweinfurth ("Heart of Africa, 1873, j., 246) says that Petrus de Crescentius, about the year 1290 A.D., is the first author who definitely alludes to sorgo. However, in the editions of the Agricultura, dated 1471, 1519, and 1553, melica (milica) and in Italian versions sagina occur, but not sorgo. Porta ("Vilke, etc.," 1592, 865), accepting Pliny's statement that this millet came from India to Italy in the time of Nero, observes that it was called by the Italians sagina, melica, or surgo. He then gives a derivation of the last name from "sorgo, to rise," in allusion to its towering above all other crops. It would seem that the word Sorghum, as it now exists, originated in Europe, and is strictly speaking the name for the warm temperate grain-yielding races of the plant, the forms that correspond with the rabâ judâ of India presently to be described.

Few, if any, of the European travellers in India, whose writings, as a rule, are so fruitful of historic evidence, make any reference to this grain. Yet we can have little doubt that it was extensively cultivated in India during at least the period of the explorations indicated. In the Ain-i-Akkari—the Administration Report of the Emperor Akbar for the year 1590—its price is quoted in a list of autumn grains, and in a further passage (Gladwin, transl., ii., 62) it is remarked that:—"Jewary and Baiera are the grains chiefly cultivated in the Subah of Guzerat." So again, speaking of Khandesh (Jarrett, transl., ii., 223), we read—"Jewari is chiefly cultivated, of which, in some places, there are three crops in a year, and its stalk is so delicate and pleasant to the taste that it is regarded in the light of a fruit." It is, however, comparatively little grown on the Malabar coast even to the present day, and was hardly likely, therefore, to have been seen by the traders and travellers who for the most part visited the coast towns. Koernicke, who maintains with De Candolle, that as a cultivated plant it originated in Africa, not India, observes that it probably reached Asia by sea and not by land routes, as was often the case. But if that were so, we might expect to find it most extensively cultivated near the coast, whereas when we first learn definitely about it in India, it is the staple food of the people who occupy the interior and drier tablelands, not the warm, moist regions near the sea. It is, in fact, met with approximately in regions where its presumed wild stock sorghum halepense is most plentiful. judâ has been

We may, therefore, conclude that in all probability the Sanskrit people first learned of this grain in India, but gave themselves very little concern regarding it. Everything, however, points to its having been cultivated in the peninsula
VARIETIES AND RACES

Sorghum Vulgare
Food

FOOD SUPPLY.

Varieties and Races.—Speaking in a very general sense, there are two great crops of judar. Of these one is the kharif, which ripens in autumn. The majority of the kharif forms would fall under the botanical varieties bicolor, cernuus, and vulgaris proper. They have usually compact heads, the grains are more or less rounded, and the floral envelopes almost completely glabrous. The second crop is the rabi, or that which ripens in spring. It seems likely that most of the races placed in this position would be found to fall under the varieties hians, Roxburghii and saccharatus, and to approximate nearer to S. halepense than do those of the kharif series. They have lax feathery panicles with the grains elongated and the floral envelopes often more or less hairy. As a rule the best kinds are creamy white (the extremity only being darker coloured) and of a pearly lustre. It is customary for the grain to be slightly flattened near the apex, a peculiarity often much increased until in some forms it becomes almost hooped or even indented. The curved grains are generally the most highly prized, for the purpose of being parched. The glumes or envelopes are usually darker than the grains themselves, and may be awned or awnless. In some forms the envelopes (chaff) are coloured and the grain-husk (or seed-coat) white; in others the seed-coat also is uniformly or parti-coloured. Lastly, the floral envelopes may firmly embrace and almost adhere to the seed, while in other conditions the attachment may be so slight that (as in certain barleys) the grain may deserve the description of being naked.

Mollison (Textbook Ind. Agri., iii., 10-11) says: "The most noticeable differences between varieties are that kharif, i.e. rain crops or early varieties are much more numerous than rabi or late varieties. Early or late varieties do best if sown at their approximate seasons. A rabi variety may or may not thrive if sown as a rain crop. None of the rain crop varieties are likely to succeed if sown in the rabi season." In the experiments conducted at the farms in the Bombay Presidency it was established that forms of judar procured from goradu (light) soils—for example, those of Kaira and Baroda—could not be cultivated on the black cotton soils of the Deccan. Thus there would seem no doubt centuries of selection and special cultivation have directly adapted this plant into the numerous recognisable races that exist in India.

Area and Yield.—From the Agricultural Statistics, 1900-1 to 1905-6, this crop is shown as occupying in British India approximately 22 million acres. To these figures have to be added 2½ million acres for the Native States, making the total of some 24 million acres for all India and Burma. The chief provinces in order of importance are Bombay, Madras, Berar, the United Provinces, Central Provinces and Panjib. An almost identical

1033
distribution exists in the Native States: juandr becomes important on land not inundated. Out of the total mentioned, Gwalior takes usually close on half, that is, a little over one million acres. This is followed by Mysore with about half a million acres, by Kotah State with 350,000, and by Tonk and Jaipur, having about the same acreage between them.

It has been estimated that a yield of 6 maunds (or, say, 500 lb.) an acre might be a safe though probably a low average for the crop. To be rather under than over the mark, therefore, this would come to an annual production of, say, 5 million tons of grain. Mukerji (Handbook Ind. Agrir., 1901, 254) says of juadr, “It yields a nourishing grain about the same quantity per acre as wheat or rice (900 lbs.) and ten times as much in fuel and fodder as ordinary cereal crops.” Mollison (l.c. 8–9), speaking of the Deccan kharif juadr, remarks: “An average crop in the Deccan will vary, according to the quality of soil, from 500 to 900 lb. per acre of jowâr and 100 to 200 lb. subordinate pulses with 350 to 450 bundles of kadii” (fodder). Referring to the Gujarät rabbi juadr, Mollison continues: “An acre produces 800 lb. to 1,000 lb. grain and 300 to 400 bundles of kadii; each bundle weighs 4 to 6 lb. The fodder is usually of excellent quality, because the crop stands fairly thick upon the ground and the stalks are neither very tall nor very coarse. A rabbi crop in other black soil districts yields generally in a fair season 550 to 700 lb. per acre.” In the Report of the Experimental Farm at Surat for 1903, the yield is given as 1,213 lb. grain, by-products 3,974 lb., the value of the outturn Rs. 34–3–1, and the cost of cultivation Rs. 30–14–0 an acre. These returns, as also Mollison’s figures, may be accepted as in accord with the numerous crop experiments that have been performed in Bombay.

DISEASES AND PESTS.—The Sorghum crop is exposed to four chief adverse circumstances:—(1) fungal blights; (2) parasitic flowering plants; (3) insects and other animal pests; and (4) climatic disturbances. Maasee (Textbook Plant Diseases, 216) gives particulars regarding smut. Much advantage might be anticipated from the systematic washing of the seed in hot water (at a temperature of 135° to 150° F.), or in sulphate of copper (4 per cent. solution), before being sown. By this process the crop would be protected against smut and bunt. Of the parasitic flowering plants found on this crop the most curious is the small _Striga_ (known in the vernacular as _tavi_ or _taluk_), which sometimes effects frightful havoc. One or two parasitic insects do much damage (such as the sugar-borer and an aphid), but birds and squirrels are by far the most destructive. To safeguard the crop, the owner watches it from sunrise to sunset for some twenty days before the harvest. For this purpose he and his assistants sit on elevated platforms, placed at intervals all over the field, and make discordant noises by beating on old tins, or cast by slings small stones or hardened pellets of mud at the flocks of birds which every now and again settle on the field. The climatic disturbances may be briefly stated as want of rain at the proper season, excessive humidity and cloudy weather, or unnaturally high temperatures. In a further paragraph, while dealing with the production of this plant as a source of fodder, reference will be made to the evil reputation of the stems for becoming poisonous. This peculiarity is not constant, though it often occurs in an epidemic form such as to justify belief that the germ concerned in the production of the poisonous property is dependent upon accidental climatic or disease conditions. The plant stunted because of deficiency of rain is always a dangerous fodder for cattle. A study of the races of the plant, more critical than hitherto attempted, might therefore be looked to as likely to result in the discovery of forms better suited to certain tracts of country than those at present grown. On this aspect Mollison’s pertinent observation may be given here:—“Some varieties mature much more quickly than others. It is important to know which varieties reach maturity earliest; because after a period of scarcity or famine, varieties which produce grain and fodder in the least time would be most in demand.”
ROTATION AND MIXED CULTIVATION

It may be added that since the above was published in *The Agricultural Ledger*, Maxwell-Lefroy has given many useful particulars regarding the Moth-borers found in the Sugar-cane, Maize and Sorghum (Agric. Journ. Ind., i., pt. ii., 97–118; also Mem. Dept. Agri. Ind., 1907, i., No. 2). No one has as yet, however, written a complete account of the diseases and pests of this crop for the whole of India, but Barber (Dept. Land Rec. and Agri. Mad. Bull., 1904, ii., No. 49) gives a review of the available information so far as the Southern Presidency is concerned. He there deals with the subjects of Smut, Shredding of the Leaves, Wet Weather Mould, Reddening of the Leaves, Rust, Mites, Red-spot Disease, Insect and Other Animal Pests, Borer, Plant Lice, Plant Bugs, Weevils in the stored grain, Striga, etc. An interesting account of the fungal disease caused by *Sclerospora graminicola* (also described by Barber, i.e. 278) is given by Butler (Mem. Dept. Agri. Ind., 1907, ii., No. 1, 13–4). [Cf. Watt, *Agric. Legd.*, 1895, No. 20, 285; and Barclay, 375, 378.]

Rotation.—The advantage of sowing mixed with the bushy pulse *tur* (* Cajanus indicus*) turns very largely on the protection afforded from severe droughts and destructive winds. The action of leguminous crops on the soil is, however, valuable, and a mixed crop may on that account serve part of the purpose of a rotation. The rotations most frequently seen are cotton, and *juár* with *tur* mixed; cotton, *juár*, *tül*; cotton, *juár*, san herup (the last often ploughed in as a green manure); or cotton, *juár*, fallow. *Juár* is supposed to participate in the nourishment and cultivation bestowed on the cotton. Farm experiments have proved the three rotations distinctly preferable. The special value of the use of *tül* (*Sesamum*) lies in the fact that being a late crop it allows of the land being thoroughly ploughed every third year. Besides the plants mentioned many others are used, but as these may now and again be referred to in the observations below, nothing further need be added to the scheme of rotation just indicated.

CULTIVATION.—**Bombay and Sind.**—There are usually 51⁄2 to 8 million acres under this crop in Bombay, and about half to three-quarters of a million in Sind. But this may be more fully exemplified thus:—In 1905–6 the total area in Bombay was 6,570,339 acres, and the chief districts within the area were—Bijapur, 1,209,066 acres; Sholapur, 1,313,422 acres; Ahmadnagar, 662,918 acres; Poona, 681,413 acres; Satara, 600,097 acres; Belgaum, 583,184 acres; Dharwar, 567,091 acres; Khandesh, 432,638 acres; Nasik, 74,541 acres; Ahmadabad, 249,881 acres, etc. In the *Season and Crop Report*, published by the Department of Agriculture, the area in 1906–7 is stated to have been 5,643,000 acres in Bombay, and 630,000 acres in Sind. Mention has already been made of the large number of recognisable forms of the plant in this Presidency. Discussing the merits of those grown at the Surat Experimental Farm, the Superintendent, in his Report for 1902–3, speaks of 23 having been found superior grain varieties, and then adds that 269 forms have been under experiment.

Stress may be laid on the relatively greater importance of the *rabi juár* crop in Bombay than in the other provinces of India. It follows accordingly that a larger percentage of the Bombay forms of the plant might be looked for as belonging to the group with open featherly panicles and saccharine stems. Many valuable reports and special publications have appeared, such as those in connection with the Experimental Farms and the Crop Experiments. Mollison tells us that *juár* is the staple grain crop where black and mixed black soils predominate, provided the rainfall is moderate and well distributed. Where rainfall is excessive, it gives place to rice, and on sandy loams and shallow soils to bajra. Mollison then refers his account of this cereal to the sections shown in the following abstract:—

(a) The *Kharif Juár* of the Deccan.—The land should be ready for sowing by the end of June; later sowings are not so satisfactory. The amount of seed to be used depends to a large extent on the kind cultivated. Large-headed forms require more space. But the ordinary rate of seed is 6 to 8 lb. an acre along with

Deccan.

Season.
Sorghum Vulgare

The Great Millet

Madras

1½ to 2½ subordinate pulees. The seeds are mixed and drill sown, the rows being 14 inches apart. In successful cultivation the crop is hand-weedied as well as hoed once or twice. The crop will come into flower in August and September and ripen in October and November.

(b) The Kharif Juár of Gujarat.—Usually alternates on black soil with cotton: after removal of the latter, the land is repeatedly harrowed and scarified in April and May, but no ploughing is, as a rule, given since juár likes a firm seed-bed. In June or July the seed is drilled in rows 20 inches apart. When the crop stands 9 inches high, it is again hoed and the plough passed between the rows of seedlings. The principal crop is ready five months after sowing.

(c) The Rabi Juár of Gujarat.—In Broach this form of juár is called shiela. It is drill-sown in September or October, after one ploughing and several harrowings of the soil. The seed is sown at the rate of 7 to 8 lb. an acre. The rows are 20 inches apart, and the seedlings appear in the furrows. The crop is twice intercultiuatre with the bullock hoe. “As the ears begin to fill, the stalks are tied up to each other so that they may not be lodged.” This is only necessary in a good year, with a heavy crop. Harvest takes place in February to March, or five to six months after sowing.

Madras. Areas. Districts.

Madras.—In 1905–6 there were 4,740,841 acres under the crop. The areas in the chief districts in that year were as follows:—Bellary, 725,444 acres; Coimbatore, 704,559 acres; Kannur, 655,290 acres; Cuddapah, 414,359 acres; Anantapur, 304,499 acres; Guntur, 381,929 acres; Nellore, 356,589 acres; Madura, 297,693 acres, etc. According to the Season and Crop Report, the area in 1906–7 was 4,479,193 acres. Large portions of Madras, being rice-producing countries, have only small areas under juár (or cholam, as it is called in South India).

Mysore. Early and Late Crops.

Mysore has usually a little over half a million acres, chiefly in Mysore and Chitraldrug districts. Of Mysore, the published averages of yield have shown from 453 to 800 lb.

An exhaustive account of Sorghum in Madras has been written by C. Benson, Deputy Director of Agriculture, and C. K. Subba Rao, Sub-Assistant Director of Agriculture (Dept. Agri. Med. Bull., 1906, No. 55, 58 et seq.). These authors state that the outturn varies within wide limits. “The punasa or early crops of Sorghum give a larger outturn of comparatively poor fodder, but less grain, than the hingâri or late crop. The outturn of unirrigated Sorghum varies from 200 to 600 lb. per acre. Under irrigation, the yield on the average is double that amount. The outturn of dry straw from an unirrigated crop on fairly good land is two full cartloads per acre” (l.c. 117–8).

Climatic Characteristics. Soils.

“The chief characteristic of the climate of the principal areas in the Madras Presidency where sorghum is an important field crop, is the lightness of the rainfall. The only exception is that part of Nellore and Guntûr adjoining, where the annual rainfall is 30–40 inches. Elsewhere the usual fall is less than 25 inches and in some places as little as 20 only.” There are two main seasons for sowing, an early at the beginning and a late towards the end of the southwest monsoon. The early-sown crops are raised chiefly on the lighter soils. “On the mixed and more loamy soils, the middle season varieties are usually found, and the late-sown crops on the heavy soils.” The crop is regarded as an exhausting one, and its growth, year after year, on the same land, is considered bad practice, but is not uncommon. It is stated that “speaking generally, on loamy or sandy soils sorghum, following castor or horsegram, is looked upon as the best rotation, while the ryots will not grow sorghum if they can avoid it after a crop of Italian millet or varagâ.” Again, “The commonest practice is to sow sorghum mixed with other crops, which vary according to the nature of the soil, the season and the local customs.”

Rotation. Mixed Cultivation.

“In the Deccan districts green gram and other pulses, gingelly and gâya (Hibiscus cannabinus) are mixed in small and irregular quantities with the sorghum seed for an early crop and sown through the drill, while red gram, amanuul (Dolichos Lablab), cow gram (Vigna Catjang), and castors are sown in lines amongst the crop.”
AN IMPORTANT GRAIN

"In the southern districts, somewhat similar mixtures are made and the whole is sown broadcast, while it is a common practice to sow the red gram in lines at intervals of about six feet apart in the furrow made with a plough." (I.e. 94).

The methods of preparatory tillage, of sowing, and treatment during growth are fully described, but cannot be gone into here.

Berar and Hyderabad.—The area under the crop in 1905-6 was 2,660,144 acres in Berar. The average for the five years previously was approximately three million acres. Hyderabad furnishes no returns.

The following information is abstracted from an interesting account by S. Harcourt King (Agri. Bull., 1900, No. 3). While written professedly for Amraoti, F. W. Francis comments that the account is applicable to all the Hyderabad Assigned Districts (Berar). Juá is undoubtedly the most important grain crop of the province—more than one-third of the total cultivated area being devoted to it. There are no less than 43 varieties, 12 of which come under the denomination sani, or forms which are baked in hot ashes and eaten green, when the grain is tender. Of the other forms, four groups are formed according to their value as sources of bread, viz.—(1) the yellow juá—which bread made from these is considered best; (2) whitish juá—bread is hard and wanting in taste; (3) reddish juá—bread is of the same colour as the grain; (4) dirty-coloured juá—seldom utilised for bread, but in making lâhi (parboiled grain). Unless the soil is very hard or full of weeds, juá lands are ploughed once in four or five years only, and then in April or May. Usually the soil is simply harrowed, generally three times. The crop is rotated with cotton, sesamum, gram, wheat, láth (Lathyrus sativus) and tobacco, and is generally grown as a mixed crop, along with certain pulses. Weeding is done three or four times at intervals of a fortnight. Juá is never specially watered in Berar apparently, nor is it customary to grow the crop on land systematically irrigated. This is the rule for the grain crop, but when required to make up deficiencies of fodder, thickly sown and irrigated crops are taken. Juá requires good rain in August and it comes into ear from three to four months after being sown, and ripens in five months (November to December). In a good season the yield would be 833 lb. to the acre, and, after making all allowances, an estimate of 600 lb. would be a fair average production.

In Hyderabad it is stated that there are two crops of juá: the one sown from the 6th June to the 17th July and reaped from the 22nd October to the 30th November. The second crop, known as white juá, is sown between the 25th September and the 3rd November and reaped between the 17th February and the 15th March.

United Provinces.—In 1905-6 the area in Agra was 2,095,995, and 353,161 acres in Oudh. In Agra the largest areas are:—Jhânsi, 235,287 acres; Hamirpur, 169,346 acres; Cawnpore, 160,903 acres; Mattrâ, 122,021 acres; Aligarh, 106,150 acres; Balandshahr, 102,440 acres; Meerut, 102,354 acres; Agra, 95,002 acres; Farukhabad, 92,894 acres; Budaun, 85,283 acres; Etah, 78,822 acres; Mainpurî, 77,777 acres, etc. No district in Oudh, except Rai-Bareli, has usually over 55,000 acres under the crop. The Season and Crop Report states the area in 1906-7 to have been 2,371,154 acres in Agra, 335,839 in Oudh.

Dothie and Fuller (Field and Garden Crops, i., 25) mention three well-marked varieties:—(1) the double-seeded form with two grains within a single husk; (2) a dwarf kind, grown at Allahabad; (3) the variety known as châchâ in Cawnpore, in which the grain is completely covered by the husk. In the report of the Cawnpore Experimental Farm for 1901-2, mention is made of 90 varieties.
Sorghum vulgare

Central Provinces

being under cultivation. The yield is given at 10 maunds grain for irrigated land and 8 maunds for unirrigated. In the reports of crop experiments, returns ranging from 440 to 820 lb. have been ascertained.

C. Prov.

Areas.

Districts.

Chief Food.

Juár constitutes the chief food of the working class, wheat and rice being alike but little used by them. The white variety is the most highly prized. In certain districts, such as the Upper Godavari and the neighbourhood of Sironecha in Chanda district, a rabi as well as a kharif crop is obtained. Repeated mention is made (in reports on this plant) of a cold-season form known as ringni. Some writers even speak of this as a hot-weather plant that has recently been successfully grown as a cold-season crop. It is commonly produced in the rice-country of Ramtek and Umrer.

Sir J. B. Fuller published in 1894 A Note on the Outturn of Land under the Chief Crops in the Central Provinces, in which he gives most useful particulars regarding juár. He points out that the loss through its being grown as a mixed crop with a pulse (mostly tur, p. 196) is very little indeed, so that the pulse is a clear gain. The yield per acre averages from 450 to 950 lb.; 500 lb. has been accepted as the average standard. He further remarks that Nagpur, which has the largest district area, is also the chief importing province and that it draws on Berar. This is due very possibly to the place of juár being taken by linseed and cotton. In the Settlement Report for Seoni (1900, 17), it is observed that a few years ago juár was of very little importance in that district, but since the last three years it has been greatly extended, and outrun the area under wheat. In recent Annual Reports by the Director of Land Records and Agriculture, interesting particulars will be found of valuable experiments made with a view to improve the quality of the juár and the cotton grown, as also the methods of cultivation pursued in the districts of Bilaspur and Raipur. Trained ploughmen had been sent from the Government farm, furnished with superior seed and improved ploughs, to prepare and sow certain fields. The result would appear to have been so satisfactory that many indents were subsequently made by the cultivators for a supply of improved seed. Demonstration farms have since been organised where local men, specially trained at the Government farm, would continue to exemplify the advantages of the improvements recommended.

Panjáb and North-West Frontier.—The area in 1905–6 was returned as 694,181 acres in the Panjáb, and 32,593 acres in the North-West Frontier. The largest areas in the Panjáb occurred in Dera Ghazi Khan, 38,754 acres; Ferozpur, 77,701 acres; Multan, 60,429 acres; Gujrat, 52,413 acres; Jhang, 48,910 acres; Shahupur, 38,223 acres; Hissar, 35,014 acres; Karnál, 34,501 acres; Delhi, 28,030 acres; Gurgaon, 24,335 acres; Rohtak, 11,719 acres, etc. In the Season and Crop Report for 1906–7 the area of the Panjáb is stated to have been 1,557,813 acres, of which 1,172,362 were unirrigated. In certain crop experiments performed in the Panjáb in 1892, the yield ranged from 276 to 800 lb. per acre. The areas manifest extreme fluctuations, the unirrigated juár being chiefly grown in Dera Ghazi Khan, Gujrat, Rawalpindi.

There are said to be many races of the grain, and in most districts it would appear as if special fodder (chari) forms had only recently been systematically cultivated. The Gazetteers afford useful particulars, but it would seem that since the date of Baden-Powell’s Panjáb Products (1866, 236) no publication has discussed the juár cultivation of the province as a whole.

Bengal and Assam.—Although grown by the hill tribes to a limited extent, juár cannot be regarded as an important crop in these provinces,

1038
Sorghum vulgare

Poisonous Property

irrigated crops and should be sown any time between November and February. Mollison then observes (l.c. 16): "No other crops can compare with the Sorghums in yielding a heavy weight of green fodder of good quality. Succulent fodder of this class is specially valuable in the hot weather for all farm animals, and hundi and kalbondi are the most suitable varieties yet found for the purpose."

Ensilage.—Mukerji (Handbook Ind. Agr., 255) says that sorghum fodder may be sown "in May, and sowing should continue through June and July, that there may be a succession of fodder crops of first, second, and third cuttings from July to March or April, a portion of which can be dried and preserved for use from April to June. The dried stalks should be stacked and thatched." Mollison describes the manner of preserving sorghum fodder followed in the Southern Marathá country. "The bundles are built into neat oblong heaps in the field. Each heap is built with a slope from the ground to the ridge, and when complete is protected along the sides, ends and top with big lumps of black soil, which are built or packed closely together. These heaps when complete look like large boundary marks. Cattle can freely graze over the stubble, but can get no access to the stored fodder." Voelcker has expressed himself as opposed to the introduction into India of the European methods of siloing sorghum fodder, and the reports published by the Experimental Farms of India are as a rule unfavourable.

Poisonous Property.—It has been already observed that the name bikhonda given to the wild S. halepense may be intended to denote the well-known poisonous property which that grass sometimes manifests. It may perhaps be accepted as a further proof of the descent of at least the fodder-yielding cultivated forms of Sorghum vulgare from that wild plant, when it is added that under certain circumstances the cultivated sorghums also become poisonous. In this connection attention may be invited to the fact that the Hemp Drugs Commission in their Report (1893, i., 156), and more recently the Excise Commissioner of the Central Provinces, have made known a new use of the root of the juár plant that seems to have escaped the observation of previous writers (see p. 758). It would appear that it is employed to increase the potency of Indian hemp (bhang and ganja) as well as of country liquor, but is viewed as too powerful to be used by itself. A poison residing in the root is certainly remarkable and worthy of the most careful and searching future inquiry, and it may be added that it is said to occur also in the roots of rice, but so far as juár is concerned, is reported as found only in the cold-weather or ringni (Central Provinces) and shálu (Bombay) varieties.

The occurrence of this poisonous property is, moreover, often simultaneous over a large tract of country, appearing and disappearing within certain fixed limits of time and locality. It would thus seem that the effect of climatic disturbances in modifying the quantity and quality of the crop has not received the degree of consideration which it demands. Peace (Agric. Legd., 1896, No. 24, 225) has recorded the death of a large number of cattle at the Sirsa fair, due to their having eaten juár stems. The young plant has frequently been found to be poisonous to cattle in Egypt, the West Indies, United States and elsewhere. Dunstan and Henry have examined young sorghum plants from Egypt and India and have shown that these when ground up in contact with water yield prussic acid, and that the prussic acid originates from the interaction of a crystalline glucoside sharris and the unorganised ferment emulsin, both of which occur in the plants and are brought into contact in the manner just indicated. In Egypt the amount of dhurrin, and consequently the quantity of prussic acid obtainable, is at a maximum when the plants are about 12 inches.
Sorghum Sugar and Spirit

high, after which it gradually disappears as the plant matures (Phil. Trans., 1902, ccxcix. a, 399). Apart from the variation in the amount of prussic acid of tannable, which accompanies the ripening of the plants, variation appears also to be caused by climatic and other influences since sorghum plants at the same stage of growth yield different quantities of prussic acid in different countries. Dunstan and Henry's observations have been confirmed by Leather in India (Agric. Journ. Ind., 1906, i., pt. iii., 220-5), Brunswick in Queensland, Avery in the United States and other investigators, so that there can be no doubt that the toxicity occasionally exhibited by green sorghum is due to this property of producing prussic acid. Stephenson has recorded that a sample of Indian sorghum examined by him contained considerable quantities of potassium nitrate, and suggested that this might be the cause of the poisonous character of the plant; but apart from the fact that potassium nitrate, the facts recorded above leave no doubt that Stephenson's assumption is erroneous. His observation is, however, of special interest since many of the plants which contain cyanogenetic glucosides of the dhurrin type have been found to contain also notable quantities of potassium nitrate, and Trent has shown that in such plants there is reason to believe that the potassium nitrate is utilised as a source of nitrogen for the synthesis of the characteristic glucosides they contain. [Cf. T. A. Williams, Sorghum as a Forage Crop, in U.S. Farmer's Bull., 1899, No. 50; Lyon and Hitchcock, Forage Crops, U.S. Bureau of Plant Industr. Bull., 1904, No. 59.]

SUGAR SORGHUM OR IMPHEE.—In Bikanir and Ajmir a form of sugar-yielding Sorghum, designated the Alipura, has been known and cultivated from time immemorial and used in the preparation of the sugar-candy for which these towns are famed. This statement was discussed some years ago in The Indian Agriculturist, but seems to have been contradicted and then forgotten. In 1890 an official inquiry in the Panjab resulted in the report that while in Ferozpur, Sialkot, and elsewhere sweet sorghums were known, the saccharine property was lost after a few years' cultivation in other districts to which these plants had been experimentally conveyed. Of the exotic forms, the amber and the collier seem to have attracted most attention. But according to the Poona Farm Report (1893, 9) there was little to choose between them either in percentage of sugar or the fodder crops. The weight of molasses per cent. was found to be—collier, 1,174 lb., and amber, 1,072 lb. [Cf. Wigley, Note on Sorgho, Rev. Dept. Govt. Ind., 1877; Prod. of Sugar from Sorghum, U.S. Dept. Agri. Bull., 1890, No. 26; Wiley, Esper. with Sorghum, Bull., 1890, No. 29; 1891, No. 34; 1892, No. 37; U.S. Yearbook Agri. Dept., 1897, 80; 1899, 242-3; Esper. Stat. Record, 1899, x, 345; 1900, xi, 141, 319, 883; 1901, xii, 236, 547, 942; 1902, xiii, 42-3, 242; 1903, xiv, 757; U.S. Farmer's Bull., 1889, Nos. 90, 92; Agri. Gaz., 1891, 134; 1894, 679; Journ. Agri. S. Australia, 1902, v, 876; Rev. deu Cult. Colon., 1891, xii, 51; Journ. Soc. Chem. Industr., 1902, xxii, 628.]

Spirit.—Many writers allude to the fact that the Africans manufacture a sort of beer from the grain of sorghum. In 1884 Minchin Brothers of Aska, Ganjam, reported that the sorghum was most valuable to distillers. The spirit prepared is said to have tasted much like rum, but after being opened was liable to throw down a gelatinous-keeping substance. Nothing further has been heard on the subject in India, and of the United States of America it has generally been said that changes in the fiscal laws would be necessary before it could be utilised.

TRADE IN JUÁR.

It is exceedingly difficult to furnish any very definite statement regarding the traffic in the products derived from Sorghum vulgare in India, for the simple reason that as a rule the official statistics treat of the two millets—judr and bôjra—conjointly. It would, however, seem fairly safe to assume that two-thirds of the quantities recorded are in reality to judr, the balance being bôjra. The estimate of total production given above for judr alone comes to 100 million cwt. of grain. The exports of judr and bôjra together during the years 1901-2 to 1905-7 have averaged about 1½ million cwt.; assuming that two-thirds are judr, we learn that the total exports do not exceed 1 per cent. of the production. Judr is, therefore, grown primarily to meet the food necessities of the people

1041 66
and not (as in the case of rice in Burma) as a rent-paying article of export.

The quantities of juâr and bdjra conjointly shown as carried by rail and river average about 4 to 5 million cwt. in normal years. In the year 1899-1900 the traffic became 11 million cwt.; in 1900-1 it stood at 9 million cwt.; in 1901-2 at 8 million cwt.; in 1902-3 it fell to its normal condition of 4 1/2 million cwt.; in 1903-4 it was close on 4 1/2 million cwt.; in 1904-5 it again rose to 8 1/2 million cwt.; in 1905-6, to 9 1/2 million cwt.; and in 1906-7 was 7 1/2 million cwt. During the years of scarcity and famine (1900-3), Bombay Presidency imported in 1899-1900, 4 million cwt.; in 1900-1, 5 million cwt.; in 1901-2, 3 million cwt.; in 1902-3, 1 1/4 million cwt.; while the town of Bombay itself took in addition 2, 3 1/4, and 1 million cwt. These supplementary supplies were drawn from Madras, the United Provinces, Sind, etc. In 1903-4 the imports into Bombay Presidency fell to less than a quarter of a million cwt., while those into Bombay town stood at 2 million cwt.; in 1904-5 they were about 2 million and 2 1/2 million cwt. respectively; in 1905-6, 2 1/2 and about 1 1/2 million cwt.; lastly, in 1906-7 they were 1 1/4 million and 3 1/2 million cwt. The traffic with the other provinces and chief towns is hardly worthy of special comment.

Turning now to the records of the coastwise traffic, we obtain a similar indication of the interdependence of the provinces of India for this all-important foodstuff, especially during abnormal years or local climatic disturbances. The returns of imports show that Bombay draws on Sind, Madras and Burma, and exports to Kathiawar and Kach.

Prices.—The official returns (*Prices and Wages in India*) afford some useful particulars. The mean average price of juâr for all India during the years 1871-5 is taken as 100, the standard of comparison of relative prices in the districts and provinces of India, also of accidental disturbances. During the quinquennial period 1896-1900 (which includes a term of scarcity and famine) the mean average for the whole of India was 153-6, and in 1903, when the effect of the famine had been effaced, it stood at 109-23; but if three provinces be removed from consideration, namely Berar, the Panjáb and Sind, the mean average for the whole of the rest of India becomes 100-6. In the three provinces named (except some districts of the Panjáb), juâr never seems to have been procurable at the price expressed by the standard of 100. As exhibiting the actual average prices of this millet, it may be here stated that, expressed in seers (= 2 lb.) and decimals of seers obtainable for one rupee (or 1s. 4d.), the returns of Burma in 1906 show 20-07; Bengal, 12-51; Agra, 14-36; Oudh, 14-05; Rajputana, 14-53; Central India, 15-26; Panjáb and North-West Frontier, 16-24; Sind and Baluchistan, 16-4; Bombay, 13-52; Central Provinces, 15-45; Berar, 18-3; Nizam's Territory, 13-8; Madras, 14-24; Mysore, 14-6.

It may thus be said that approximately in districts of chief production, the number of seers obtained per rupee is higher than in localities where the millet is not very largely grown. A similar series of quotations for a number of years would show that railway extension has equalised the price in relation to production. The most significant feature of the internal trade returns is perhaps the circumstance that Bengal practically takes no part in the traffic. Millets are, in fact, very little consumed in Bengal. Another feature may be said to be that the great producing areas export to tracts of country inhabited by simple agricultural communities or to
regions where modern civilisation with its concomitant luxury has not penetrated to any material extent.

SOYMIDA FEBRIFUGA, Adr. Juss.; Fl. Br. Ind., i., 567;
Gamble, Man. Ind. Timbs., 1902, 155–6; Brandis, Ind. Trees, 1906, 144;
Meliaceae. Indian Red-wood, Bastard Cedar, rohan, rakat rohan, sohan, shem, wood, sümi, etc. A large deciduous tree of the dry forests of Central and South India.

The deep red bark contains a Gum, said to afford a good mucilage; it also yields a strong fibre, which is made into ropes in Chota Nagpur. The bark is astringent and has been used as a Tan. For long it has been employed medicinally as a substitute for quinine. The most important product of the tree is, however, the Wood, which is utilised for almost every purpose. It is much prized for house-building, ornamental furniture and carving. It is commonly formed into pestles and pounders for oil and grain mills. [Cf. Pharmacoq. Ind., 1890, i., 338–8; Russell, Monog. Dyew. Ind., C. Prov., 1896, 17; Rept. Cent. Indig. Drugs Comm., 1901, i., 12, 146–7; Agril. Legd., 1902, No. 1, 19.]

SPIRITS, and Indian Distilling.— Many of the intoxicating liquors sold in India perhaps hardly deserve the name of Spirits. They embrace both fermented and distilled liquors, and can be conveniently grouped as Foreign and Country. To a small extent Wines and Brandy are produced in Kashmir, but the bulk of the vintage beverages are imported. Beers and Ales are brewed in India under the most improved European methods (see Malt Liquors, pp. 757–62), but they are also largely imported; Spirits are distilled both after the most primitive Native and the most advanced European methods, so that country spirits (arak), as well as rum, brandy and whisky can be had all over India—both of foreign and Indian brands.

Dutt (Mat. Med. Hind., 272) observes that the fermented and distilled liquors that cause intoxication are by Indian classic authors called madya or madīrā (Sansk.). He then enumerates some 20 forms of spirits which appear to have been recognised as different, such as those distilled from the grape, the date, sugar-cane, rice, barley, wheat and from the flowers of the mahua. Ray (Hindu Method of Manuf. Spirit, Journ. As. Soc. Beng., 1906, ii., No. 4, 129–42) gives a highly instructive and interesting sketch of the Indian knowledge in spirits.

Arak is perhaps the most generally accepted vernacular name for spirits. Moodeen Sheriff (Pharmacoq. Ind., suppl., 56, 275) gives, among others, the following synonyms:—shardb, Hind.; mad, surap, Beng.; dāru, Guz., Duk.; śhārāyam, Tam.; sārāyi, Tel. and Kan.; aye, Burm. Regarding the name arak, or, as it is often rendered by Europeans, arrack or raxk, the observations in Hobson-Jobson (ed. Crooke, 36) may be exhibited briefly:—"This word is the Arabic 'arak, properly "perspiration," and then, first the exudation or sap drawn from the date-palm (arak al-tamar); secondly, any strong drink, "distilled spirit," "essence," etc. But it has spread to very remote corners of Asia." Thus ariki, arki, Mongolia and Manchuria; rāki, Turkish, etc. The word pachwai (see p. 757) denotes a beverage (beer) made from malted grain, but when distilled this becomes pahāti or madīrā. In Sanskrit, three kinds are distinguished according to the grain used—surā (rice), kokhala (barley), and madīhūlika (wheat). So also fermented sweet liquors, such as palm-juice (tari) or honey and water or cane-juice, would correspond closely with ale, and when
SPIRITS

History

Sweet Liquids.

Distilled become the spirit more especially designated arak. In Sanskrit the spirits or grades of arak from sweet liquors would be sidhū (from sugarcane = rum), gauḍī or gourī (from treacle), kharjurā (from date-juice), and madhīka (from grapes = brandy). It would thus appear that the English word alcohol came from the Sanskrit through the Arabic al-kohl, namely from kōhala, which is derived from ku (the earth) and hala (poison).

History.—The knowledge possessed by the Natives of India in spirits of various kinds is very widespread, and dates back to the classic periods. Rajendralāla Mitra has shown (Journ. As. Soc. Beng., 1873, xlii., pt. i., 1, 58) that spirits and other intoxicating drinks have been extensively used in India at all times and by all classes. Rice spirit was both drunk and used in sacrifices during the earliest Vedic times: the leading characters of the Mahābhārata were addicted to strong drinks; in the Ramayana the use of spirits is mentioned with approval; in the time of Kalidāsa, drinking was common not only among men but even with women of high rank: the Puranas abound in descriptions of spirits and of drinking: and lastly the Tantras afford abundant proof of the attachment on the part of a large section of the Hindus to over-indulge in spirituous drinks. Manu condemns the use of surū; kōhala and jagara are described in Susruta, a medical treatise of the 5th century. In Buddhist works, on the other hand, the use of spirits is stringently prohibited, and in Muhammadan writings, more especially the Koran, it is similarly proscribed, so that with the orthodox followers of the Prophet the use of strong drinks is dis- countedenance. But during the time of the Mughals in India, intemperance was the rule rather than the exception. The Emperor Baber (Memoirs, 258, 354) takes pains to describe, with minute detail, his drinking parties, and his subsequent renunciation of the use of wine. The Ain-i-Akbari gives full particulars of an intoxicating liquor made from sugar-cane, and the still employed in its production is that often seen in use to-day in the rural parts of India. The author of the Ain also records the fact that excessive spirit-drinking prevailed among the grandees at the Court of Akbar. [Cf. D.D.E., vi., pt. iii., 331; also Sir George Birdwood's account of the strong drinks of India (E.I.C. First Letter Book, intro. and n., xxiii.).]

Coming down to the commencement of European influence in India, Barbossa speaks of the "hurassa" of Surat in 1516. Linschoten, in the 16th century, deplored the fact that the Portuguese soldiers were learning from the Natives of India the pernicious practice of drinking spirits in place of the wine imported from their own country. So also Pyrrard (Voy. E. Ind. (ed. Hakl. Soc.), i., 358; ii., 73, 383) and Tavernier (Travels (ed. Ball), 1676, i., 243) mention a spirit distilled from palm wine which was largely drunk by the people of India at certain feasts. The latter also gives details of the method of its preparation. Thévenot (Travels in Levant, Indostan, etc., 1687, pt. iii., 16), speaking of Surat, says that spirits were made of jogre and babul bark, also of tury. Thus the Natives of India certainly did not learn from Europeans the art of distilling spirits nor the habit of alcoholic indulgence. But there would seem little doubt that the special use of puxgh originated with the Europeans resident in India. That word is accepted as derived from the Persian pani and the Hindustani panch, and means five. It thus denotes the ingredients of a special concoction in favour with the Europeans, viz. arak, sugar, lime-juice, spice and water. It would thus appear that the Europeans were not prepared to consume the Native arak undiluted and invented the above concoction much as the Greeks prepared their pentaploia (wine, honey, cheese, flour and oil). There is no evidence that the Natives ever used the special beverage indicated nor employed the word panch in the sense implied. Thus Mandelslo (1638) calls the Indian special mixture palepuzen. Hedges (1658) speaks of having often remembered the Company in a bowl of the clearest panch, while Fryer (1675) actually gives panch the etymology of denoting the five ingredients of the special beverage.

Legislation.

Restriction and Legislation.—So far as can be learned, the system of supervision over the traffic in intoxicants, exercised by the Muhammadan rulers of India, was that of farming out the right of manufacture and sale to the highest bidder. The British Administration inherited that system, but soon began to introduce wholesale reforms. For some years past the policy pursued has been to tax the traffic to the utmost limit possible, short of originating illicit production. The aim has been to secure the maximum revenue from the minimum
consumption. Thus out of the uncontrolled farming sprang the direct control of the British system. The first step taken was the limitation of the number of shops in the area farmed. Hence came the outstill system, under which the right to manufacture and sell at a specified shop was granted. But by neither of these measures was any limitation fixed on the duty per gallon—hence it became the interest of the producer to extend his transactions by lowering the price and thus to encourage consumption. This led to the Central Distillery system, in which the manufacture and storage are both under Government supervision, and a still-head duty had to be paid before issue from the cellars. But unfortunately it has not been found possible to enforce this system all over India.

Revenue.—The revenue derived from intoxicating beverages appears under "Customs" for imported liquors and under "Excise" for locally produced. The excise revenue on liquors would seem to have been steadily increasing for some years past, due, it is presumed, to two chief causes:—
(a) the increasing prosperity of the lower classes and (b) the more complete supervision of the Excise Administration. This result may be exemplified thus—in 1860-1, the Excise revenue on liquors came to 91 lakhs of rupees (≈ £606,700); in 1870-1, to 156 lakhs; in 1880-1, to 212 lakhs; in 1890-1 to 349 lakhs; in 1900-1 to 427 lakhs; and in 1902-3 to 486 lakhs of rupees (≈ £3,240,000). Taking the last year, the following analysis exemplifies the relative importance of the chief kinds:—Revenue from country spirits, 325 lakhs of rupees; palm-juice, 111 lakhs; grain beer, 17 lakhs; country rum, etc., 12 lakhs; malt beer, 4 lakhs; and foreign liquors, 18 lakhs. Since then the revenue has continued to increase till in 1905-6 it reached over 625 lakhs or £4,166,767, made up as follows:—foreign liquors, £378,724; country spirits, £2,914,067; toddy, £873,976 (Moral and Mat. Prog. Ind., 1905-6, 81). It is believed the total revenue for 1906-7 came to £6,510,000, but the increase shown by no means necessarily manifests expansion in consumption: to a much larger extent it denotes more complete control.

Incidence of Taxation.—"The average incidence of taxation per gallon of distillery spirit amounted in 1902-3 to Rs. 4-6-8, of which Rs. 3-4-6 was derived from still-head duty, and Rs. 1-2-2 from vend fees. Among the larger provinces, the average rate was highest in the Panjāb (Rs. 6-1-0) and in Burma (Rs. 6 plus vend fees), and lowest in the Central Provinces (Rs. 3-8-4). The average consumption per thousand of the population in distillery areas varied from 14 gallons in the Panjāb and 10 (roughly) in Burma, to 127 gallons in the Bombay Presidency proper" (Imp. Gaz. 1904, iv., 16). In the year 1900-1 the estimated consumption in gallons, per thousand of population, in distillery tracts, was as follows:—in Bengal, 18; in the United Provinces, 30; in the Panjāb, 11; in Madras, 22; in Bombay, 112; in Sind, 46; in Burma, 10; in Coorg, 162; in Hyderabad Assigned Districts, 65; and in Ajmir-Merwara, 59.

Materials Used.—Except in the Madras Presidency, country spirits (including the Panjāb country rum) is the main source of the revenue from intoxicating liquors. "It is usually prepared by distillation from the mahua flower, molasses and other forms of unrefined sugar, fermented palm-juice and rice—the last mainly employed in Bengal, Assam and Burma. Country spirit is prepared by Native methods in Bengal, Assam, the United Provinces, the Central Provinces, Sind, the Frontier Province and Baluchistan. The ingredients are generally fermented in pots and then distilled in rudely constructed stills. The system is very crude and the product apt to contain a considerable percentage of fusel oils. In Madras, Bombay, the Panjāb and Burma, manufacture of country spirit
or of Indo-European spirit (local brands of rum, whisky, etc.) is, as a rule, carried on in highly organised private distilleries with European appliances" (Imp. Gaz., l.c. 14).

The following may be given as a fairly complete enumeration of the materials used (or which may be used) in the distillation of various alcohols, chiefly consumed as intoxicants. The pages (when cited) denote positions in this work where details will be discovered:

Agave.—The Mexican *mezcal* spirit (p. 35).
Anacardium occidentale.—The Cashew-nut. A spirit is said to be distilled from this fruit in Goa (pp. 65-6).
Ananas sativa.—The Pine-apple (p. 69).
Anthocephalus Cadamba.—Spirit distilled from the flowers.
Arenga saccharifera.—The Sago-palm, employed in preparation of Batavian *arak* (p. 92).

Bassia latifolia.—The Mahua flowers, perhaps after grain and sugar the most important alcohol-yielding material in India. The spirit distilled from these is called *madhei* (p. 119). It is discussed by Baber (Memoirs, 1510, 325).

Borassus flabellifer.—The Palmrya or Teddy Palm (p. 170).
Caryota urens.—The Indian Sago-palm (pp. 286-7).
Cocos nucifera.—The Coconuts (p. 361).
Coffee arabica.—Ripe pulp of coffee-berry (p. 366).
Cotx.—Beer (p. 396).

Cymbopogon.—*Rusa* and other perfumes (pp. 450-63).
Eleusine coracana.—The *marua* or *ragi* (pp. 519-21).
Eugenia Jambolana.—The ripe fruit is distilled in Goa (p. 526); also largely used for vinegar (p. 1109).

Hordeum vulgare.—Beer. See Malt Liquors (pp. 643, 757). In Spiti a liquor is distilled from the grain called *chang* (p. 758).

Malt Liquors (pp. 757-62).
Meilis Azadirachta.—The *nim*. A fermented liquor is obtained from the sap that is sometimes distilled (p. 780).

Morus alba.—The Mulberry fruit affords a beverage sometimes distilled in Kashmir (p. 785).

Oryza sativa.—Rice. This is the chief grain used in the production of *pachewi*, and a spirit is often also distilled from specially prepared rice cakes (pp. 826, 840). The spirit from rice and barley cakes, J. C. Ray tells us, is called *paish*it. The reader desirous of particulars regarding the method of distillation pursued in Bengal, should consult Ray's instructive paper (l.c. 130-42). The revenue from rice and millet beer amounted, in 1902-3, to about 6 lakhs in Bengal and 11 lakhs in Burma—elsewhere it is inconsiderable.

Phoenix.—The sap of the Date-palm is largely employed in Bengal in the manufacture of crude sugar, and the fermented toddy is distilled or alcohol is made from the sugar (see p. 886). The sap of the date, palmrya and coconuts palms (called tori in the north, and toddy, a corruption of tori, in the south) is used as a drink fresh or after fermentation. The total excise revenue derived from these sources in 1902-3 amounted to over one crore of rupees, of which about 72 per cent. was collected in Madras, 12 in Bombay, 10 in Bengal and 5 in Burma. Thivenot (Travels in Lusant, Indostan, etc., 1837, pt. iii., 17, 97) makes interesting mention of "tary" wine.

Saccharum officinarum.—Sugar-cane. Rum is obtained chiefly by the distillation of the uncrystallised portion of the expressed juice (p. 956). Country brands of rum and the so-called brandies and whiskies are distilled from cane-juice, etc., and are coloured and flavoured as desired. Recently, however, some of the European breweries have started to distil whisky (proper) from barley, and this promises to be a profitable new industry. The cane-sugar liquors are produced at private distilleries situated in different part of the country. In the United Provinces and the Panjab such liquors pay duty at the rate of Rs. 4 per proof gallon, in the Central Provinces at Rs. 5, and elsewhere at the Customs tariff rate of Rs. 6. The most important factory is the Rosa Distillery at Shahjahanpur, in the United Provinces, which, in addition to supplying these provinces, exports considerable quantities to the Panjab, the Central Provinces, Bengal and other parts of India (see p. 956).

Sorghum.—A spirit is distilled from the grain (p. 1041).

Vitis vinifera.—The Grape. Brandy is distilled in Kashmir (p. 1114).
IMPORTED WINES AND SPIRITS

Materials Used to Aid the Formation of Alcohol or to Flavour or Strengthen the Beverages.

Acacia leucophloea.—Distillers’ Bark (p. 15).
Cannabis sativa.—Indian Hemp (pp. 258–63).
Cerevisia Fermentum.—Yeast. D.E.P., ii., 257–60; see Malt Liquors Yeast. (p. 758). The special preparation used in Bengal known by the name of bakhar (Ray, Lc. 130, 133) contains a diastase enzyme that possesses the power of converting starch into dextrine and maltose, but Ray adds the caking of the rice is an essential as the addition of bakhar but no caking takes place without bakhar.

Datura.—(p. 488).
Humulus Lupulus.—See Malt Liquors — Hops (p. 759).
Ligustrum Roxburghii.—The bark put into the toddy of Caryota in Madras.
Phyllanthus Emblica.—The fruit put into Native spirits (p. 887).
Sorghum vulgare.—Root added to increase the poisonous property of the liquor (see p. 1040).
Strychnos Nux-vomica.—The seeds added to beverages to make them intoxicating (p. 1052).
Terminalia bellerica and Chebula.—The fruits used to increase the potency of spirits (p. 1073).
Vatara tuberosa, Linn. (see pp. 1105–6).

TRADE.—Production.—No sort of tabular statement can be furnished that could make any pretensions to completeness in the exemplification of the production and consumption of intoxicating liquors in India. We know that there were 14 registered distilleries in all India during 1901 and that these employed 520 persons, each having at least 25 employees. But there were many smaller distilleries, each employing on an average fewer than the number of persons that justify registration. In 1902 and 1903 the registered distilleries were only 9, and in 1904 only 8, so that there would appear to have been some curtailment.
The quantities of spirits issued from the regularly constituted and registered distilleries is of course ascertainable, but not the amount of other intoxicating liquors issued by the smaller concerns, nor the production that is either authorised or not but which, nevertheless, takes place domestically. In 1903–4 the spirits issued from the distilleries came to 8,439,167 gallons; in 1904–5 to 8,744,302 gallons; and in 1905–6 to 9,288,013 gallons (Rev. Trade Ind., 1905–6, 8).

Foreign Imports.—To contrast with these figures of regular production of spirits, the following particulars regarding the imports from foreign countries of supply may be given:—The returns of foreign trade show that the imports of spirits into India have been steadily increasing. The following are the quantities of imported Spirits of all sorts during the six years 1901 to 1907:—1901–2, 1,275,525 gallons, valued at Rs. 88,69,374; 1902–3, 1,380,953 gallons, valued at Rs. 95,18,881; 1903–4, 1,409,831 gallons, valued at Rs. 99,15,068; 1904–5, 1,444,207 gallons, valued at Rs. 1,00,69,285; 1905–6, 1,620,492 gallons, valued at Rs. 1,08,78,491; and in 1906–7, 1,489,361 gallons, valued at Rs. 98,69,497. Taking the figure for 1906–7, we find the total was made up thus:—Brandy, 333,957 gallons, valued at Rs. 27,49,931; Gin, 68,375 gallons, valued at Rs. 2,63,877; Liqueur, 12,262 gallons, valued at Rs. 1,53,953; Rum, 66,579 gallons, valued at Rs. 1,00,245; Whisky, 592,514 gallons, valued at Rs. 37,78,813; Spirit used in Drugs, etc., 86,891 gallons, valued at Rs. 15,73,906; Spirit Perfumed, 16,351 gallons, valued at Rs. 6,23,266; Methylated Spirit, 181,369 gallons, valued at Rs. 2,72,998; Other Sorts, 130,863 gallons, valued at Rs. 3,43,508. The shares of the chief countries in the total for 1906–7 were:—United Kingdom, 766,686 gallons; France, 256,472 gallons; Germany, 193,575

1047
MEdICINaL BULBS

be planted in ridges about 1 or 1½ inches below the surface just before the monsoon, much in the same way as onions are cultivated. The bulbs selected for medical use should be of medium size, neither too young nor too old. In the wild state, other bulbs are found growing with the Scilla indica, and have to be differentiated. Also bulbs collected on the hills are apt to be offered for sale as Scilla indica. The bulbs growing with the Scilla indica are oblong, not so spherical as the latter, and are yellowish in section. The hill bulbs are generally of larger size. The process of preparing the bulb, called killing, consists in cutting it up into fragments and drying; this should be done in the early morning so that the segments may be at once exposed to the sun for some hours, otherwise they blacken.'

Urticina indica, (Scilla indica, Roxb.); Fl. Br. Ind., vi., 347; Prain, Beng. Plants, 1903, ii., 1075; Cooke, l.c. 708; Liliaceae. Indian Squill, kaođa, jangli-pi∫ka, ñikil, phaphor, kochinda nari-vengiyam, nakka vulti-gadda, adari-trulli, katuñuli, to-kesan, etc. A bulbous herb found in the drier hills of the Lower Himalaya and on the Salt Range, ascending to about 6,000 feet in altitude. It is a larger plant than the preceding. Is considered an efficient substitute for the genuine squill (Urticina Scilla). But there are several other species of Urticina met with in India, and these are doubtless used in some cases as inferior grades. The most general substitutes or adulterants for the above are Crinum asiaticum and latifolium; Dipcadi unicolor; Paneratum trilobum. [cf. Pharmacog. Ind., iii., 1893, 476-9; Rept. Proc. Cent. Indig. Drugs Comm., i., 1901, 125, 233, etc.]

Adulterants.

StEaTITE or TALC.—Ball, Man. Econ. Geol. Ind., iii., 439-45; Mallet, Note on Ind. Steatite, in Rec. Geol. Surv. Ind., 1889, xxii., pt. 2, 59-67; Royle, Further Note on Indian Steatite, 1890, xxxii., pt. 3, 124-30; Hayden, Steatite Mines, Minbu Dist., Burma, 1896, xxix., pt. 4, 71-6; Holland, 1905, xxxii., 115-6. A soft magnesium or talcose mineral commonly called Soapstone from its smooth, soapy feeling. A coarse variety is known as Potstone, on account of its being generally used in making pots, dishes, etc. In the Indian vernaculars it has the following names:—abruk, silkhari, appractum, sang-i-palaun, bulpum, etc.

According to Holland, "there is a trade" in this substance "of undetermined value in nearly every province, but it is impossible to form even a rough estimate of its value." Again, he states that "the returns, which are confessedly incomplete, give an average annual production in India of about 35,000 tons, valued at £1,900."

OCCURRENCE.—Steatite is said to be one of the most widely distributed minerals in India, occurring very commonly in metamorphic rocks. The provinces in which good qualities chiefly occur are Madras, the Central Provinces, Rajputana and Burma. The following gives a brief summary of the supplies:—

Madras.—The best forms are met with in Betumcherla and near Maddavaram village in the Kurnul district. After that, the soapstones of Anantapur, North Arcot, Bellary, Cuddapah, Salem, Malabar, Vellore, South Kanara districts and Puddukotai State may be mentioned. In 1896 a request was made that a consignment of some 20 tons from Maddavaram village should be furnished for trial as tops for gas-burners. The mineral was collected by local officers, under the superintendence of the Geological Department, and shipped to England. It was found, however, that nearly the whole of the consignment was useless for the purpose contemplated. In 1899 the quantity produced in Madras is stated to have amounted to 103 tons, valued at Rs. 4,900. [cf. Foote, Rec. Geol. Surv., 1895, xxv., pt. 1, 33-5; Mem. Geol. Surv., 1895, xxxv., pt. 3, 203; Francis, Dist. Gaz. Mad., Bellary, 1904, 29, 255, 294; Anantapur, 1905, 11, 196.]

Central Provinces.—The marble rocks in the Jabalpur district and Kanheri in the Bhandara district are said to yield excellent stone. According to a report by the Deputy Commissioner of Bhandara, the quarry at Kanheri was leased in 1898 by Government for Rs. 118, the output being approximately 2,000 maunds of stone. "This stone is used for making cups and other vessels, and there are about 10 factories called 'jantar' all in the above village at work for making

1049

Medicine.

Substitutes.

D.E.P.

Steatite.

Soapstone.

Potstone.

Gas-burners.

C.Prev.
STERCULIA
FÆTIDA

STERCULIA
STEATITE OR TALC

them." "The business is carried on for eight months of the year, of which half the period is given to extracting and dressing the stone for work and the other half is spent in making cups in the 'jantar.'" The outturn in 1900 was 82 tons.

Rajputana.

Agra Carving.

Burma.

Burma.—There are mines in the Prome, Pakókku, Katha, Bhamo, Kyaukpyu and Minbu districts. The Minbu quarries and those in Kyaukpyu district are all in a group on the borders of Arakan and Upper Burma. In 1896 those of Minbu were reported on by Hayden, according to whom there are two chief localities where steatite is worked—(1) some 30 miles west of the village of Hpaanang, and (2) near the village of Semlan in Ngapé township. The total number of mines in the first locality amounts to about 28, but only 4 were being worked at the time of Hayden’s visit in 1896. In the second locality, according to the same writer, there are 9 pits in all, but only a few yielded sufficient steatite to be worth working. In 1900 the outturn of steatite in Burma is reported to have been 51 tons, valued at Rs. 10,131. [Cf. Rept. Dist. Prod. in Burma, Rev. Dept., Sept. 1888, No. 154–27 M; Rec. Geol. Surv. Ind., 1897, xxx., pt. 1, 6; Scott, Gaz. Upper Burma and Shan States, 1901, ii., pt. 1, 305.]

Uses.

Uses.—There is a large demand for steatite in India, chiefly for the manufacture of bowls, plates, cups, fancy boxes, etc. Many ornamental articles, such as paper-weights, pen-holders, etc., are also made of it. It is largely used in the manufacture of idols, and a special form found at Mysore has, owing to its suitability for this purpose, received the name of pratima killer, or image stone. Many temples and palaces also contain ornamentations of sculptured steatite. Ground to powder it is commonly employed as a white ink, or is added to plaster (e.g. the chunam or lime-plaster of Hyderabad) to make it shine (see p. 714). In Burma, pencils are made of it and used for writing on black-paper slates. In Madras Presidency, Cuddapah soapstone is largely used for polishing chunam walls. Out of India it has come into prominence through the property it possesses as a pigment of protecting steel against corrosion. Mixed with a quick-drying varnish, it produced a paint of great covering capacity and firmness. Owing to its refractory nature, it is largely employed in the manufacture of gas-burners and crucibles. It is reputed to be almost unaffected by atmospheric agencies, and in China is commonly used to preserve structures built of sandstone or other substance liable to disintegrate.

S. fætida, Linn. A large tree known as the jangli-badam, pûn, pindâ, gurapubadam, letkop, etc. It occurs on the west coast of India, in Martaban and Upper Tenasserim in Burma; often cultivated. It is remarkable for the disagreeable odour of its flowers, which appear in March. It exudes a gum resembling tragacanth, and an oil is extracted from the seeds by boiling in water. Flowers and leaves are used medicinally, and in times of scarcity the seeds are roasted and eaten.

[Cf. André, Veg. Fats and Oils, 1897, 160, 218; Woodrow, Gard. in Ind., 1903, 188; Cunningham, Plagues and Pleasures of Life in Beng., 1907, 335.]
ASSAM INDIGO

S. urens, Roxb.: The gaui, kanrai, odla, tabus, veilay pataki, dwalea, pandruk, etc. A large deciduous tree of the dry forests of Northern India; throughout Central India and the Deccan; common on the west coast in the Konkan and Kanara; as also the dry forests in Burma.

It yields a gum, called katila or katira (see p. 95), which is of the tragacanth or bassora or "insoluble" series, and has been used in the Bombay hospitals as a substitute for tragacanth. Guibourt (Pharm. Journ., 1855, 13, 57) has observed that the gum gives off acetic acid when exposed to moist air, and that consequently it develops an odour of vinegar when kept in closed bottles. The origin of this acetic acid in a similar gum from Australia has been investigated by Robinson (Journ. Chem. Soc., 1906, lxxxiv., 1496). From the bast a good fibre is procured and made by the Natives into ropes and coarse cloth. "The bark is obtained when the trees are over ten years old. The trees are cut down, and after lopping off the branches, the trunk is cut into pieces, six feet long, from which the bark is separated by making a perpendicular incision" (Ind. Text. Journ., Aug. 22, 1894, 205). Gum, leaves and branches are all employed in Native Medicine, and the seeds are roasted and eaten by the poorer classes. Gammie (Rec. Bot. Surv. Ind., ii., 177) states that the roots are also edible. "They are first cut into small pieces, then boiled and mixed with either spices or sugar." The twigs and smaller branches are used as cattle fodder, especially in times of scarcity (Indrajali, in Ind. For., 1900, xxvii., 167). The Wood is made into guitars and toys. [Cf. Pharmacog. Ind., 1893, iii., app., 129-30; Cameron, For. Trees of Mysore, 1894, 32; Agric. Ledg., 1901, No. 9, 346.]

S. villosa, Roxb.: The udal, gul-bodla, poshuva, kanhlyem, baringa, buti, omak, yake nar, siti, savaya, shawni, etc. A moderate-sized tree of the Sub-Himalayan tract from the Indus eastwards; common in forests throughout India and Burma. It is valuable on account of its fibres, which is coarse and strong but made into ropes and bags. In Southern India and Burma it is said to be much esteemed for making elephant-rope, and for use in Northern India for cattle-halters. [Cf. Agric. Ledg., 1894, No. 12, 202; Cameron, I.c., 32-3; Dodds, Uttils, The Plants of the World, 1897, 305; Kew Bull., 1897, 8; Nisbet, Burma under Brit. Rule and Before, 1901, i., 371, 384; Hooper, Rept. Labor. Ind. Mus., 1905-6, 35-6.]

STROBLANTHES FLACCIDIFOLIUS, Nees; Fl. Br. Ind., iv., 468; Bot. Mag., 1887, 6947; Gamble, Man. Ind. Timbs., 519; Acant. Flaccidi.; The Rüm or Assam Indigo Plant, rämpát, bar-rüm, khuma, sapro, chimohu, tonham, mai-gyee, etc. A shrub of North and East Bengal, Assam, Manipur, and distributed to North Burma and Southern China.

This plant yields the rüm Dye of Assam and is probably the source of much of the so-called indigo of Burma (see Indigofera, p. 663). It is fairly generally cultivated, for the purpose of obtaining the dye, by the hill tribes throughout the region of its distribution. The plant is propagated freely by root cuttings made in May or June or earlier if the rains set in. It yields prunings twice or three times a year, and is perennial. The two chief crops are in April or May and again in September or October. Mr. Srijit Lakhi Nath Kakoti, a sub-deputy Collector in Assam, has recently contributed an interesting paper on the cultivation of bar-rüm. He speaks of one cotah of land yielding 8 to 10 soers of the dye. The Native methods of utilising the dye are fully described in the Dictionary. [Cf. Duncan, Monog. Dyes and Dyeing in Assam, 1896, 48-50; Rec. Bot. Surv. Ind., i., 221, 257; Hosie, Rept. on Prov. Sauch'uan, China, 1904, No. 5, 43-4.]

1051
STYRAX BENZOEIN

THE BENZOE TREE

forests in the Boribay Presidency; deciduous forests all over Burma; dry regions of Ceylon" (Gamble).

The tree is important as being the source of the alkaloids, STYRCHININE and BRUCINE, which are obtained from the SEEDS. The fruits are collected and the seeds washed out and dried in the sun, or the seeds are simply gathered from the ground, but in the latter case have little market value. They are roundish, flat or concavo-convex and silvery in colour. "Cochin nux-vomica is collected in the dry deciduous forests at the foot of the Travancore hills and is sold to small Native dealers at a low rate, who send it to the merchants. Coconada nux-vomica is obtained from the Ganjam district and the Godaveri. The Madras seeds come from Nellore and several other parts of the Presidency" (Pharmacog. Ind., ii., 500).

"The London market quotation is usually about 7 to 10 shillings per cwt. The exports are chiefly from Madras, Bombay and Cochin, and are of considerable amount." (Gamble). In addition to the alkaloids just mentioned, they yield a DYE, which produces light brown shades on cotton cloth, and an OIL employed medicinally by Native practitioners. By the hill tribes of the Nilgiris they are used as a fish poison and are employed by Native distillers, who add small quantities to arak to render it more potent (p. 1047). The bark and wood also contain brucine and are employed medicinally in India. The Wood is said to be used in Burma for making carts, agricultural implements and for fancy cabinet work. [Cf. Paulus Agineta (Adams, transl. and Comment.), 1847, iii., 258–60, 461–2; Fryer, New Acc. E. Ind. and Pers., 1675, 178; Faber, Strychnomania, 1677; Milburn, Or. Comm., 1813, i., 284; Taleef Sherif (Playfair, transl.), 1833, 29–31; Mason, Burma and its People (ed. Theobald), 1883, ii., 342; Pharmacog. Ind., ii., 458–500; iii., 178, app.; Rept. Ind. Mus. Calc. and Imp. Inst., 1897–8, 28; 1898–9, 32; 1901, 42; 1904, 20; Brit. Pharmacop., 1898, 117–9, 222, 314; Dhargalkar, Notes on Ther. of Indig. Veg. Drugs, 1899, 13, 119; Dutt, Mat. Med. Hind., 1900, 198–9; Nisbet, Burma under Brit. Rule and Before, 1901, i., 283; Barry, Legal Med., 1904, i., 447–56; ii., 494–8; Ghosh, Treat. Mat. Med., 1904, 495–501; Achart, Quinze Cents Plantes dans L’Inde, 1905, 407–8; Yearbook of Pharmacy (many passages); Journ. Soc. Chem. Indusc.; Pharmaceut. Journ., etc.]

STYRAX BENZOEIN, Dryand; Fl. Br. Ind., iii., 589; Gamble, Man. Man. Ind. Timbs., 1902, 466; Brandis, Ind. Trees, 1906, 442; Styraexe. The Benzoin Tree. The Resin — lubón (Ind. bazará), hussi, shambirání, kaminian, etc. A small tree of the Malay Archipelago, important as yielding the true Benzoin or Gum Benjamin of commerce.

This substance appears to have been first mentioned by Ibn Batuta (Voy., etc., Fr. ed. 1858, iv., 228, 240), who visited Sumatra (A.D. 1325–49). He calls it Lubón-Jarí (= incense of Java), the name Java being used among the Arabs and Persians of that time for the Eastern Archipelago. According to the Pharmacographia Indica (iii., app., 160) there are four kinds of the resin met with in the London market, viz. — Siam, Sumatra, Penang and Palembang. It is well known that the present species is the source of the Sumatra resin, but there is considerable doubt regarding the plants which yield the other three sorts. The Siam resin is the costliest and most esteemed, and is imported by India in cubic blocks which take their shape from the cases in which packed while still soft. The resin is largely used both in India and Europe in Medicine, as an INCENSE and as a source of benzoe acid. The import trade is considerable, amounting in 1905–6 to 16,090 cwt., valued at Rs. 4,14,649. Almost the whole comes from the Straits Settlements, viz., in 1905–6, 16,074 cwt., and goes chiefly to Bombay, 9,717 cwt. in the year named.Exports of the resin in 1905–6 amounted to 52 cwt., and re-exports to 1,394 cwt. (Cf. Varthéma, Travels, 1510 (ed. Hakl. Soc.), 1863, 234; Garcia de Orta, 1563, Coll., ix.; also in Ball, Proc. Roy. Ir. Acad., 1889–91, i., ser. 3, 394; Ain-i-Abbári (Blohmann, transl.), 82; Foster, E.J.C. Letters, 1602–17 (numerous passages); Milburn, Or. Comm., 1813, ii., 305–6; Pharmacog. Ind., ii., 369–73; iii., 169–73, app.; Kew Bull., 1895, 154–5; 1896, 195–8; Greshoff, Nutt. Ind. Plants, in Extra Bull., Kolon. Mus. Amsterdam, 1894, 115–9; Thorpe, Dict. Appl. Chem., 1898, i., 278–9; Hobson-Jobson (ed. Crooke), 1903, 86–7; Tschirch, Die Harze und die Harzbehälter, 1906, i., 195–212.)

1052
TACHARDIA

LACCCA

History

Lac mixed with Resin.

To this circumstance is due also the fact of its being often mentioned in lists of spices in place of among dyes or resins. Acosta supplemented, however, Garcia de Orta's account by the interesting particular that the resin lac was mixed with, or, as he calls it, adulterated with, common resin and wax. Thus then the adulteration in recent years, often much complained of by the trade, is not a product of the greed of modern commerce. Mandelslo (Travels, in Olearius, Hist. Muscovy, etc., 1639, 27), speaking of the lacquer work of Gujrat, says: "They give them such a lustre as none yet could ever imitate in Europe." Tavernier (Travels Ind., 1676 (ed. Ball), ii., 281-2) observes that—"The country also produces an abundance of shell-lac. There are two kinds of it. That which is formed on trees is of a red colour and is what they dye their calicoes and other stuffs with, and when they have extracted this red colour they use the lac to lacquer cabinets and other objects of that kind, and to make Spanish wax. A large quantity of it is exported to China and Japan." Thevenot (Travels in Levant, Indostan, etc., 1657, pt. iii., 112) repeats the statement that lac was exported from Pegu. Lastly, Salmasius (Plinius Exercitaciones, 1689, 810) asserted that the very name "lac" had been derived from the Greek and originally denoted a red wood. He arrived at that conclusion chiefly through his own supposition that the Indian name for the substance was tree, not lakk. Tree is doubtless a variant of the Pegu name cheik, and, as already abundantly indicated, was carried to Europe through the Spanish trade between Burma and Sumatra. While a knowledge in lac was thus being gradually disseminated over Europe, there are not wanting indications that within India itself the subject was not being neglected. Thus in the Ain-i-Akbari (Blochmann, trans., 226), a work often spoken of as the administration report of the Emperor Akbar for the year 1590, we read of the proportions of lac resin and certain pigments to be employed in varnishing chicks or screens on the doors of public buildings. It would from that circumstance seem highly probable that a coloured spirit varnish made of lac has been known and used in India long before Europe possessed any knowledge of that valuable substance. Fryer (New Acc. E. Ind. and Pers., 1672-81, 83) also alludes to elegantly coloured chicks, but it may be added the modern chicks are crudely stained with mineral dyes, never with lac varnish.

The period of the struggle for European supremacy in the East was practically that of the birth of all definite knowledge in lac. But the scenes and the persons change rapidly and the interest shifts from the dye to the resin, back again to the dye, and finally once more to the resin. From the Portuguese on the west coast of India the trade passed to the Spanish and Burma via Sumatra, while a little later on (and in the hands of the British) it returned once more to Bombay. In the Records of the East India Company (First Letter Book, 1600-19, 388, etc.) we are given certain glimpses of the Company's instructions to its servants. "Gum lacare" was to be obtained from Cambay. "Gum lack" of first and second sort was to be procured at Surat, "but none of the worst of any hand." Private trade in gum-lac was prohibited. So again, of date 1616, "much gum-lac, both of the sort used for dyeing and also that of which wax is made" was to be purchased in Surat. The following year the "lack" of Baroda is said to be in "grains like mastic pure as amber." Of Agra it is observed there are two kinds: "The one is in small sticks usually carried hence to Mocho: the other is in great cakes. They both cost one price, viz., 8 rupees per maund." The amber-coloured grains of Baroda were doubtless "washed seed lac," and the great cakes of Agra would imply manufacture. Is the canna (kanza = grain) locke mentioned in 1623 as purchased at Baroda simply washed lac? But in these early records of the East India Company there is apparently no mention of shell-lac nor of some of the chief centres of the present manufacture, such as Mirzapore and Calcutta—but of course the town of Calcutta was not in existence at the time indicated. The fact remains the same that the early records manifest localities of production that are quite unimportant compared with other more recent centres.

The demand for cochineal served the useful purpose of pointedly directing attention to the lac-dye. This, though inferior, was found quite good enough for most of the purposes to which cochineal was put, and had the additional advantage of being considerably cheaper. A large trade in lac-dye accordingly sprung into existence that gave the impetus for numerous lac factories owned directly or indirectly by the East India Company. At this time was invented (and by Europeans doubtless) the method of manufacturing lac-dye into special cakes ready for use. Such importance did this new industry assume that it dwarfed
the gum-lac of the earlier commerce until it might almost be said that the resin (lac) became a by-product of the lac-dye factory. To this circumstance is due the fact that the methods of cultivation, of collection and of manufacture, that exist to the present day, were invented and perfected with a view to produce the dye, one might almost say, at the expense of the resin. The dye gave the profits of the industry. But Sir W. H. Perkin's discovery of aniline struck at once the death-blow of both the Mexican cochineal and the Indian lac-dye industries.

By this time, however, new methods and directions of using the resin lac had been discovered in Europe, and the interest of the factory shifted until the dye became first the by-product and ultimately the useless or waste material of the factory. Here then we are presented with a demonstration of the startling fact that a by-product that can be produced at an almost nominal cost cannot of necessity contest the market against the products of the chemical laboratory. Attention was thus concentrated on the resin, and it soon became the chief feature of interest. James Kerr (*Phil. Trans.*, 1781, lxxi., 374) was one of the first to mention and describe the manufacture of shell-lac. From about that date, therefore, the modern factory industry may be assumed to have originated. In the story of lac we have once more a demonstration of the indebtedness of India to England for her modern commerce.

ORIGIN OF LAC.

Life-history of the Insect.—The minute Hemipterous insect *Tachardia lacca* lives upon the plant juices sucked up by a proboscis. In the adult state the females have no power of locomotion, but the males on attaining maturity emerge from their pupal cases, become possessed of a pair of long transparent wings, and fly away to visit the females and shortly after die. At two (in some cases three) seasons the swarming of the larvae takes place, viz. July and December or also January. The larvae are seen to emerge from the dead bodies of the females and to crawl away in quest of fresh feeding grounds. They are then minute creatures of an orange-red colour, have no recognisable separation of body into head, thorax and abdomen, have fully formed feelers and powerful legs, but are devoid of any characteristics by which they can be separated into male and female. They measure about one-fortieth of an inch in size.

For some days the swarming continues until the twigs become distinctly reddish in colour and literally alive. The vast majority, however, perish; the more fortunate are wafted on the breezes or are carried by the bees, birds, squirrels, etc., or by their own exertions, to new situations. The larvae thus becomes fixed, and their legs, being useless, drop off. Lastly, a resinous excretion begins to form around their bodies, which by the aggregation of many in time assumes the condition of a more or less complete encrustation of the twigs. If at this stage the encrustation be cut open lengthwise, it will be seen to be of a cellular structure and to comprise two kinds of cells—large circular caverns and smaller oval cells. The former will, moreover, be noted to be much more numerous than the latter. The circular cells are the females and the oval ones the males.

About two and a half months after the swarming, the males escape from their cells, become (as already stated) winged, and fly or flutter away to visit the females. Shortly after this the bodies of the females become greatly enlarged, assume a bright red colour, and in due course develop viviparous larvae. The mother then dies, her body becomes the resting chamber of her offspring (about 1,000 in number), which at their appointed time make their escape by swarming, and thus twice (or it may be thrice) a year this strange cycle of life is repeated.

PRODUCTION OF LAC.—The system of propagation that at present prevails consists in lopping off a few twigs of well-formed lac, a little before the expected date of swarming. These are carried to fresh trees or fresh
FOOD PLANTS

TACHARDIA

LACCA

Improvement

Probabl
Reform.

Effect of Dye.

Seasons.

Several
Species.

Races.

Climatic
Adaptation.

White Insect.

Food of the
Lac.

Food of the
Lac Insect.

boughs of the same tree and tied in convenient and suitable positions. The larvae on swarming crawl to new wood and become fixed. If the object in the collection of lac be to procure the red dye, the stick-lac (that is, the lac-encrusted twigs) should be gathered before the larvae have swarmed. But if the resin-lac be sought, there would seem every reason to delay collection until the swarming has taken place. The industry assumed its present form while lac-dye (if not equally valuable with the resin) was a profitable by-product. It is now valueless; its presence admittedly depreciates the shell-lac very greatly; it necessitates expensive and possibly to the resin injurious methods of removal; and the decomposition of the larvae gives the offensive smell to the factory, which well-nigh becomes a public nuisance. It would therefore seem that the time has more than come when this state of affairs might be mitigated by some change in the season of collection, that would allow of the colour being very largely removed before the stick-lac comes to the factory. The collecting seasons at present adopted are May to June for the one brood and October to November for the other; a delay of a month or six weeks in each case would see the swarming accomplished. [Cf. with opinion of Hooper, Rept. Labor. Ind. Mus., 1906-7, 7.]

Improvement in Quality.—There would seem to be little or no doubt that in India there is not one species of _Tachardia_, but several. The well-known different qualities of lac are due, it has been said, to the plants on which the insects feed. This is, however, likely to receive an even more rational explanation, viz. that the grades of lac are due to being the resins of different species of insect. It is also well known that the forms of lac found on leguminous plants (or on soft-wooded plants), such as _Butea frondosa_ and _Cajanus indicus_, can with difficulty be induced to live upon hard-wooded trees, such as _Schleichera trijuga_ and _Shorea robusta_, upon which lac is nevertheless found. But there is still a further consideration of importance. It has been observed that there are special cultivated races, such as those found on _Acacia arabica_. In Sind and adjacent tracts that plant is used as a food-stock, but hardly anywhere else is lac to be seen on that tree. We have here either a special race or a remarkable climatic adaptation. Further, all over India albino-broods have been recorded as occasionally seen. It would thus appear that were the selection of stock placed on a rational and scientific basis vast improvements in quality might be effected, if it were not possible actually to evolve a white insect or at all events one to a large extent devoid of the objectionable colour, the removal of which so seriously enhances the cost of the present-day resin.

Food of the Lac Insect.—The insect lives upon a large number of widely different plants. In _The Agricultural Ledger_ (l.c. 210–3) I have given a list of some 56 trees. Those best known are _Butea frondosa, Ficus religiosa, Schleichera trijuga, Shorea robusta_ and _Zizyphus Jujuba_. These are all indigenous Indian trees, so that the lac obtained from them may be called wild lac (the insect being at most semi-domesticated); but two plants are specially grown for it, and where this is the case, the lac may be regarded as a plantation product and accordingly spoken of as existing under a greater degree of cultivation than the wild insect. The plants specially grown are _Acacia arabica_ in Sind, Rajputana and Gujarat; and _Cajanus indicus_ in Assam. But lac does not, in many localities at least, pay as a special plantation product. The
crop is most capricious both in yield and price. One year it may be highly profitable, the very next sold on so narrow a margin that no inducement exists for extension. In support of this statement, witness the fact that in 1902-3 the exports of shell-lac were 195,000 cwt., valued at 15½ million rupees (£1,048,991), while next year, 1903-4, they were only 178,000 cwt. but were valued at over 21 million rupees (£1,456,067). That is to say, while there were 17,290 cwt. less exported, the sum realised was nearly half a million pounds sterling more in 1903-4 than in 1902-3. And the fluctuation might just as likely have been toward a loss as a gain of half a million in the sum realised. No other item of Indian trade manifests anything like such extreme fluctuations in price as lac, and it can, therefore, be no matter for surprise that the supply should correspondingly fluctuate.

LOCALITIES OF SUPPLY AND COST OF PRODUCTION.—Lac is met with practically throughout the warm tropical areas of the whole of India, but most abundantly in the Central Provinces, Bengal, Assam and Burma. In Sind and Gujarat, as already stated, the babul tree (*Acacia arabica*) may be said to be that on which it is met with most abundantly. In Bengal, where both the babul tree and the lac insect are plentiful, it is extremely rare to find lac on that tree. But, as already suggested, the question naturally arises, is the babul-feeding insect of Sind the same species as the palas-feeding one of Bengal and the Central Provinces? The climates and soils of Sind and Bengal are about as different as it is possible to imagine, although both are tropical. The one is extremely dry, the other extremely moist, and that alone may account for the behaviour of the insect.

Cost of Production.—Mukerji (*Handbook Ind. Agri.*, 1901, 496) gives the following calculation of expenditure based on an actual experiment conducted by an Assam planter:

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost (Rs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rent at Rs. 3 per acre for 80 acres</td>
<td>240</td>
</tr>
<tr>
<td>Hoeing or cutting jungle between trees</td>
<td>320</td>
</tr>
<tr>
<td>Upkeep of necessary buildings</td>
<td>100</td>
</tr>
<tr>
<td>Cutting branches and putting in seed</td>
<td>340</td>
</tr>
<tr>
<td>Total</td>
<td>1,000</td>
</tr>
<tr>
<td>Manufacturing charges at 5 per cent.</td>
<td>3,500</td>
</tr>
<tr>
<td>Packing and dispatching at 2½ per cent.</td>
<td>1,750</td>
</tr>
<tr>
<td>Calcutta charges for forwarding and river freight, at 2½ per cent.</td>
<td>1,750</td>
</tr>
<tr>
<td>London charges for sea freight, Dock and Broker's charges</td>
<td>3,000</td>
</tr>
<tr>
<td>Total</td>
<td>11,000</td>
</tr>
<tr>
<td>Proceeds of Sales, £1,750 at 14d.</td>
<td>26,250</td>
</tr>
<tr>
<td>Deduct discount to buyers</td>
<td>656</td>
</tr>
<tr>
<td>Total</td>
<td>23,594</td>
</tr>
<tr>
<td>Balance of profit</td>
<td>14,594</td>
</tr>
</tbody>
</table>

"Lac worked in connection with tea, etc., the amounts for European and Native supervision and upkeep of coolie lines, etc., may be added proportionately according to circumstances. The planter referred to, however, lost nearly his whole crop next year from the attacks of a night moth."
Bengal.—According to the Administration Report (1901–2, 31), "it is found over the large tract of hilly country covering the Chota Nagpur Division and overlapping the west of the Bardwan and the north of the Orissa Divisions. The principal lac factories are in the districts of Ranchi and Manbhum in the Chota Nagpur Division, and in the Bankura and Birbhum districts in the Bardwan Division. Stick and shell-lac are largely exported from Ranchi, Manbhum and Bankura." It is also stated that the manufacture of shell-lac is an important industry in the Bankura district, and is chiefly carried on in the town of Sonamuki. The main supply of this article for all the factories in Bankura is obtained from the districts of the Chota Nagpur Division. The industry is carried on to a large extent at Elambazar, in Birbhum. Shell-lac and lac-dye are also manufactured at Mankur and Dernuggur in Bardwan; but the industry is on the decline here also. There is a lac factory at Cossipore in the suburbs of Calcutta.

Assam.—In 1900, Basu (Agri. Dept. Indus. Bull. (ser. 1), 1900, No. 6) wrote an account of the lac industry of Assam, from which the following may be abstracted. "Kamrup and the northern part of the Khasia and the Garo hills bordering on the Brahmaputra valley are at present the chief seats of its cultivation. In Kamrup lac-rearing is chiefly confined to the south bank of the Brahmaputra, the annual outturn of stick-lac in two mauzas (Rani and Chhayani) being estimated at about 2,000 maunds. A small quantity is reared by a few Kachari families in mauza Jhargan on the north bank. The bulk of lac exported from the district is, however, obtained from Garos inhabiting the northern slopes of the Khasia hills, who are said annually to bring in about 2,000 maunds of lac to the weekly markets at Palasbari and Chhaygaon and about 300 maunds to the markets at Boko. A small quantity of lac, averaging about 400 maunds a year, is brought in by Bhutias to the annual cold-weather fairs at Darranga and Subankhata in the north of the district."

"In the Garo hills lac-rearing is chiefly confined to the north and north-eastern parts of the district, comprised in the northern range of the Garo hills Forest Division. The people of the south and south-western parts are said to have a superstition against lac cultivation. The annual exports of crude lac from the northern range is estimated at 1,300 to 1,400 maunds. In 1894 the Assistant Conservator of Forests, Garo hills Division, estimated the annual production and export at 2,000 maunds, and reported a serious decline in the cultivation of lac, which he attributed partly to the low prices and partly to the depopulation of the district through kala-ázár and migration. Considering that the bulk of lac exported from the Brahmaputra valley is the produce of the Kamrup and the Khasia and Jaintia hills and the Garo hills districts and that the exports have during the past five years averaged over 16,000 maunds a year, the foregoing estimates of outturn of lac in those districts would seem to be much below the truth."

Central Provinces.—The lac insect is found throughout the Central Provinces, but the main centres of collection are the Jabalpur, Saugor, Damoh, Nagpur, Raipur, Bilaspur, Sambalpur, Chanda and Mandla districts. A Note on the Lac Industry of the Central Provinces (Bull., 1902, No. 8) gives useful particulars regarding production. The lac-collectors and sellers in these provinces were given in the census as 2,592 persons. Of the amount collected by far the greater part is exported, only a small
TACHARDIA

THE LAC INSECT

LACCA

Lac

Exports.

quantity being retained for local use. During the five years ending 1900–1 the exports fluctuated very greatly; in 1899–1900 they came to 99,961 maunds, valued at Rs. 11,96,394—the highest return in point of quantity—and in 1898–9, 39,713 maunds, valued at Rs. 5,42,391, the lowest record for the period mentioned. These exports, moreover, were almost entirely from Jabalpur and Chhattisgarh, and were consigned to the United Provinces almost entirely, thus feeding the Mirzapore factories.

Burma.

Burma.—The large forests of Burma are said to be capable of producing an almost unlimited quantity of lac. The chief sources of commercial Burmese lac are the Shan States and Upper Burma, stick-lac from these places being imported into Calcutta, where it is manufactured into shell-lac for export. For some years the supplies received by the Calcutta factories from Burma have begun to be appreciated as important. According to Sir J. G. Scott (Gaz. Upper Burma and Shan States, 1900, ii., pt. 1, 393), though lac is found all over these States, it seems to be only in Karen-ni that its production is stimulated artificially. “Elsewhere if a tree happens to be attacked, or settled on by the insect, the deposit is collected when it is found.”

MANUFACTURE OF LAC.

Lac Factories.—In the Imperial Gazetteer (1905, iii., 173–4) it is stated that though steam power has been successfully applied to the industry, the hand-labour factories still hold their own and for some grades produce qualities hardly, if at all, attainable by machinery. Lac factories are almost confined to Bengal and the United Provinces. In 1904, according to the Financial and Commercial Statistics, there were 128 lac factories giving employment to 7,831 persons. Of these 92 were in Bengal and employed 4,116 persons; 36 in the United Provinces, employing 3,715 persons. The number in Bengal is said to be not fully recorded. With the exception of the factory at Cossipore they are, however, in most cases small. Those in the United Provinces are all situated at Mirzapore. The value of the manufactures turned out has been stated at about two-thirds the total foreign exports, while the very large Indian consumption has to be met, and thus mainly by small factories possibly not included in the above returns.

Stick-lac.

Stick-lac.—Stick-lac is the name given to the twigs encrusted with lac that are collected from the trees in May to June and the second crop, October to November. These are dried in the shade, by which the wood shrinks, thus often leaving the lac as hollow tubes, but much of the wood still adheres. It is packed in sacks and conveyed to the marts, and sold through various brokers or middlemen to the manufacturers. There is a quaint practice usually followed in most sales of lac. The buyers and sellers join hands and sit facing each other, a cloth being thrown over the hands. The buyer presses certain fingers of the seller’s hand, thus making an offer. This is usually rejected by a motion of the head, and further finger-pressing ensues. Finally the bargain is struck without a word having been uttered.

Seed-lac.

Seed-lac is stick-lac crushed and reduced to roundish pieces that more or less correspond to the female cells. The dust produced, when sifting the seed-lac, is known as khud. The pure seed-lac is then washed in large stone troughs and left covered over with water for 24 hours. The wood floats to the top and is removed, dried, and used as fuel. A man or woman

1060
his left hand he holds the end of the bag and resists the twisting action produced by his assistant. The fused lac, in the portion most exposed to the dry heat, is thus squeezed through the bag. Every now and then the foreman gives his end of the bag a reverse twist, and this causes the portion from which the lac has been removed to coil up like a rope. Steadily the bag is drawn forward as portion after portion is exhausted. With his right hand the foreman wields at intervals three weapons—one a long iron hooked poker with which he stirs the fire: a wooden spoon with which he every now and again sprinkles with water the tiled floor in front of the fire: and an iron scraper with which he removes the molten lac as it oozes on to the surface of the bag and allows it to drop on the damp floor. If not sufficiently cooked, the fused lac is picked up from the floor and placed once more on the top of the bag and fused again, and even two or three times. There seems to be great skill in knowing when the lac has been cooked to the proper extent. It is freely admitted that the hand-made lac possesses certain properties never attained by the steam-machinery factories.

Shell-lac.—The next stage is the production of shell-lac. For this purpose a mass of molten lac is handed to an assistant and placed by him on an earthen or zinc tube filled with hot water (or on a green banana stem) fixed in the ground at an angle of about 45° to the floor. By means of a ribbon of palm-leaf stretched between the hands, the assistant spreads the lump of molten lac into a thin skin perhaps one-eighth of an inch in thickness. But in this operation, which looks so simple, great skill is required in exerting just the right pressure to cause the lac to spread out in a compact sheet of uniform thickness. The sheet or skin is now clipped off the tube, trimmed into a rectangular form, and handed to still another assistant, who, carrying it in front of the fire, seizes it between his toes, teeth and hands, and widening his legs as he expands his arms and straightens his body and neck, stretches the sheet into three or four times its original size and reduces it to the thinness of tissue paper. It is then laid on a mat and allowed to cool gradually.

When quite cold the sheets are given to persons who assort them according to colour and break out all impurities and darker coloured portions. The rejections either constitute lower grades or are mixed with dark-coloured seed-lac and used up in the manufacture of shell-lac where colour is no objection. In the production of garnet-lac, the sheets are taken at the hot-tube stage, no further stretching being necessary. Garnet-lac is very largely, however, the special product of the steam-power factories. As its name implies, it is of a deep rich red colour, and is in demand for industries where colour is not a disadvantage. In the preparation of button-lac, the molten material is not stretched at all but is simply allowed to drop on to a smooth substance, such as a green leaf-sheath taken from the banana stem. Garnet and button lacs contain as a rule no arsenic, though they may possess a high percentage of resin.

The refuse that remains in the melting-bags is removed and the bags cleaned by being boiled in alkali. The refuse is then made into large circular cakes 6 inches in diameter and 1 inch or more thick. These are very possibly the "great cakes" alluded to by the East India Company as procured in 1816 from Agra, as also the lump-lac of the early commercial returns. They are sold, like the khud and gaud, to the manufacturers of sealing-wax, bangles, toys, etc., and by the cabinet-makers such crude lacs are largely employed to cover up cracks in wood.
TACHARDIA
LACCA
Lac

The reader who desires particulars regarding these various art utilizations should consult the special Agricultural Ledger mentioned above, as also Indian Art at Delhi, 1863. I have gone into the above details of Indian methods and experience from the belief that they throw some sidelight on the nature of lac. The systems of work mentioned are mostly very ancient. Barbosa, Garcia de Orta, Terry and other European travellers give such details regarding lac tummery, for example, that there can be little doubt the art was as fully known three or four hundred years ago as it is to-day. But it is singular that no mention is made by any traveller of having seen lac factories in India, or even of the manufacture of shell-lac, till the early decades of the nineteenth century. It is not clear when and how that name came, in fact, into use. Pomet (Hist. Drugs (Engl. transl.), 1712, 202–4) describes the molton lac being (in Burma) spread out on marble surfaces, but does not call the article thus produced shell-lac. That name was, however, used by James Kerr in 1881 and by Vincent in his Appendix to the translation of the Periplus (ed. 1800, 25), so that it had by then come into general use. The production of lac in former times thus appears to have been a village craft practised all over India, which was most likely not concentrated into factories till the European demand arose.

Uses in Europe and America.

—The uses of lac in Europe and America are similarly very varied. Perhaps its most important applications are in the manufacture of spirit varnishes (French polish) and in the supply of the chief material of sealing-wax. Large quantities are employed as a stiffening material in hat-making, as a cement, as an ingredient in lithographic ink; and as modern demands it may be mentioned that lac is largely employed in the manufacture of gramophone records, as an insulating material in electric appliances, etc. Through the last-mentioned utilisation a fresh impetus has been given to the traffic, which perhaps largely accounts for the recent expansion of the exports from India.

TRADE IN LAC.

The first recorded exports of lac to Europe, as already stated, took place about 1607, but for nearly two centuries the traffic was entirely a Native commodity, as it had been still earlier (while in the hands of the Arab traders). Milburn (I.c. 217) tells us that the exports from India in shell-lac were in 1805, 2,377 cwt., valued at £12,978, and that in 1808 they stood at 239 cwt., valued at £1,243. The trade was thus not well established, and the expansion had been slow, for even in 1839 the total exports in “lac-resin” were only 7,226 cwt., and in 1840, 6,043 cwt., and, correspondingly, in 1839 the “lac-dye” stood at 4,756 cwt., and in 1840, 5,440 cwt. But in 1868–9 the shell-lac sent to Europe had reached a valuation of just under 12 lakhs (£80,000), and that of the lac-dye of 8 lakhs of rupees (£53,300). Since then the trade in lac-dye has gradually disappeared, while the exports of shell-lac have expanded to over two crores of rupees (£1,400,000 at present rate of exchange). This state of affairs is, perhaps, best exemplified by the following table:

Exports of Lac-dye and of Shell-lac from India.

<table>
<thead>
<tr>
<th>Year</th>
<th>Lac-Dye</th>
<th>Shell-Lac</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cwt.</td>
<td>Rs.</td>
</tr>
<tr>
<td>1868-9</td>
<td>17,748</td>
<td>7,96,655</td>
</tr>
<tr>
<td>1878-9</td>
<td>8,261</td>
<td>1,95,285</td>
</tr>
<tr>
<td>1888-9</td>
<td>333</td>
<td>8,038</td>
</tr>
<tr>
<td>1898-9</td>
<td>146,395</td>
<td>70,07,781</td>
</tr>
<tr>
<td>1899-0</td>
<td>1</td>
<td>24</td>
</tr>
<tr>
<td>1900-1</td>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>1901-2</td>
<td>195,787</td>
<td>1,37,44,872</td>
</tr>
<tr>
<td>1902-3</td>
<td>178,497</td>
<td>2,18,30,905</td>
</tr>
<tr>
<td>1903-4</td>
<td>193,305</td>
<td>2,58,93,713</td>
</tr>
<tr>
<td>1904-5</td>
<td>217,593</td>
<td>2,64,53,774</td>
</tr>
<tr>
<td>1905-6</td>
<td>205,473</td>
<td>2,89,75,551</td>
</tr>
</tbody>
</table>

= £1,031,703

Progress of the Resin.

Rise and Fall of Lac-dye.

Modern Demand for Shell-lac.

1064
I have not dealt with the button-lac nor with the unmanufactured forms of lac, since the exports of these are comparatively unimportant. The figures as they stand exhibit strikingly the way in which the traffic in the resin-lac has compensated for the loss of the trade in lac-dye.

Production and Local Traffic.—In the return of railborne traffic, lac is not treated under its separate headings, viz. of stick, seed, shell-lac, etc., but collectively. In 1906-7 the total quantity shown as exchanged came to 446,574 cwt. Of that amount, Bengal is exhibited as having exported 172,614 cwt., chiefly as follows:—122,155 cwt. to Calcutta, and 50,076 cwt. to the United Provinces. On the other hand, the United Provinces exported 134,356 cwt., almost entirely to Calcutta. Next come the Central Provinces with an export of 45,430 cwt., chiefly to the United Provinces. Lastly, Assam exported 35,159 cwt. entirely to Calcutta. It has already been shown that the lac factories of India are almost confined to Mirzapore in the United Provinces and to Calcutta in Bengal. This accounts for the traffic being toward these centres. But all over India small quantities are worked, so that the statistics of lac factories by no means convey a full conception of the Indian production and consumption. For example, the Indian dyers, when they use lac-dye, prefer to obtain it direct from the stick-lac, so that they are continually producing a certain amount of seed-lac, which they dispose of to the local dealers and lac manufacturers. It is, however, probably correct that the railborne traffic gives us the only satisfactory indication obtainable of the chief items of production. A total supply of 446,674 cwt. of stick-lac should be more than sufficient to furnish the raw material for the export of 205,473 cwt. of shell-lac. The production of the registered lac-factories is commonly believed to represent two-thirds of the actual production, so that one-third (or thereabouts) of the annual supply escapes all trade registration.

Receiving Countries.—Another feature of importance may be here stated, namely the direct dealings of India with Europe and America instead of through the United Kingdom. The following classification of the returns for the past twenty-one years will exemplify this feature:

<table>
<thead>
<tr>
<th>Analysis of the Exports of Shell-lac from India.</th>
</tr>
</thead>
<tbody>
<tr>
<td>---------</td>
</tr>
<tr>
<td>United Kingdom</td>
</tr>
<tr>
<td>United States</td>
</tr>
<tr>
<td>Continent of Europe</td>
</tr>
<tr>
<td>Total (includes above and all others)</td>
</tr>
</tbody>
</table>

It will thus be seen that, while the exports from India have steadily expanded, the share drawn by the United Kingdom has not maintained its supremacy. America has become by far the most important single consuming country for lac, and what is still more remarkable, all the finer grade lacs go to the States and are purchased direct from the factories and not through Indian or British merchants. The traffic is, in fact, controlled by the United States dealing with the manufacturers direct. The possibilities of expansion are also extremely problematic.
PREPARATION OF TAMARINDS

TARAKTOGENOS KURZII
Chaulmugra

amber colour is prepared from the seeds by expression. From a very remote period the tree has been valued in Sanskrit Medicine as an antiscorbutic in place of limejuice, and accordingly the fruit is official in modern Pharmacopoeias. The fruit is a large swollen pod, 4 to 6 inches long, filled with an acid pulp. It matures in February and is largely used as Food, being a favourite ingredient in curries and chutneys, and for pickling fish (see Fish, p. 547). It is also employed in making a cooling drink or sherbet. According to Lakshaman Dhargal Ker (Therap. of Indig. Veg. Drugs, Bombay, 1899, 16, 36, 48), the sherbet is a useful laxative for children. Marco Polo (ed. Yule, ii., 328) mentions tamarindi and seawater being used as an emetic preparation.

According to a recent writer (Philippine Bureau of Agric., Press Bull., No. 6: Trop. Agrit., Nov. 1905, xxv., 887-8), "In British India the average annual yield from an adult tree is 350 pounds of pods, and this shrinks to about 200 pounds of the prepared fruit pulp." The same writer states that a new market has recently sprung up for the tamarin in Genoa, where the pulp is employed in the manufacture of syrups and sweetmeats. The East Indian tamarinds, he says, are packed in salt, but the best market now seems to be for the unsalted article, of the preservation of which in Jamaica he gives the following account:—

"After gathering, the ripe pods are first stripped of their outer shells and the pulp contents are laid down in the bottom of wooden casks or barrels, and there sprinkled over with a layer of cheap, low-grade sugar. Then follow alternate layers of fruit and sugar, until the receptacle is filled to within 8 to 10 centimetres. The whole is now covered with boiling-hot sugar, headed up, and is then ready for export. So packed, tamarinds may be preserved for years without deterioration." He also adds, "The current price of salted tamarind in the Bombay market is at this time only about $30 per long ton of Madras fruit for Ceylon; while the prevailing average price for the sweetened Jamaica fruit in the Genoa market for nearly a year past has been about 40 liras per 100 kilos (220 pounds) or, in our values, about $80 gold per long ton."

The seeds, boiled or fried after removal of the outer skin, are also eaten by Natives, especially in times of scarcity, while the seedlings, leaves and even flowers, are utilised as food in various preparations. Cameron mentions a cement or paste as made from the seeds which is used in dressing country-made blankets. The Wood is regarded as very durable, and is highly prized, though difficult to work. It is used chiefly for wheels, mallets, planes, furniture, rice-pounders, oil and sugar mills, and is excellent for turnery. It is also valued for fuel when great heat is necessary. [Cf. Baber, Memoirs, 1519 (Leyden and Erskine, transl.), 1826, 341; Mesua, Opera (ed. Marinus), 1562, 52; Garcia de Orta, 1563, Coll., iii.; also in Ball, Proc. Roy. Ir. Acad., ser. 3, 1889-91, 670; Acosta, Tract. De las Drogas, 1578, 66; Prosper Alpinus, De Pl. Ægypti, 1592, 15; Ligon, Hist. Barbados, 1657, 69; Bonitus, Hist. Nat. et Med. Ind. Or., in Piso, Ind. Utiti. re Nat. et Med., 1658, 94; Mandelslo, Travels Ind., 1662, in Olearius, Hist. Muscovy, etc., 149; Fryer, New Acc. E. Ind. and Pers., 1675 (ed. 1698), 178; Labat, Nouv. Voy. aux Isles de L’Amérique, 1724, ii., 192; Milburn, Or. Comm., 1813, ii., 276; Heyne, Tracts on Ind., 1814, 18; Paulus Ægineta (Adams, transl. and Comment.), iii., 439-40; Cameron, For. Trees of Myore and Coorg, 1894, 109-10; White and Humphrey, Pharmacop., 1904, 491-2; Basu, Agri. Lohardaga, 1890, pt. i., 131-2; Banerjee, Agri. Cuttack, 1893, 198; Duncan, Money Dyes and Dying in Assam, 1896, 51; Dutt, Mat. Med. Hind., 1900, 157-8; Ponder and Hooper, Mat. Med. Ind., 1901, 64; Woodrow, Gard. in 1903, 280; Ghosh, Treat. Mat. Med., 1904, 619.]

TARAKTOGENOS KURZII, King, in Journ. As. Soc. Beng., 1890, lix., pt. 2, 121-4; Gamble, Man. Ind. Timbs., 42; Frain, Beng. Plants, 1903, i., 231-2; Hooper, Agri. Ledg., 1905, No. 5; also Rept. Labor. Ind. Mus., 1905-6, 29-30; BIXINEE. The Chaulmugra Oil, chaulmugra, kalawbin (the tree), kalawethee (the seeds), oung pun, etc. A large tree, 40 to 50 feet high, of the forests of Sylhet, Chittagong and Burma. The seeds yield the true chaulmugra oil, long supposed to be the product of Gymnocardia odorata.

The identification of the true source of the chaulmugra seed originated with a
TECTONA GRANDIS

Teak

French pharmacist, D. Desprez, in 1899 he discovered that the seeds received in Europe did not belong to Gynocaridina odorata and the fact was communicated to Lieut.-Col. D. Prain, who had found about the same time that the seeds sold in the Calcutta bazaars were not those of a Gynocaridina, and subsequently that the tree which yields the Chaumugra seed was Tarkakogenus Kurzii, a plant described by Sir George King in 1890. The two seeds can be easily distinguished. Gynocaridina is about one-half shorter than that of Tarkakogenus. The shell of Gynocaridina is thicker and harder, marked on one side by a few radiating ridges or furrows, and the kernel is pale yellow. The shell of Tarkakogenus is plain and the kernel dark-coloured.

Chaumugra: Oil has long been known and used in India as a remedy for cutaneous diseases, and has become a drug of some importance in European practice (p. 204). A full account of the history and composition of the oil is given by Hooper. The seeds are brought to Calcutta, chiefly from Chittagong, and are of two kinds—(1) mature seeds with brown kernels, rich in oil; (2) immature seeds with black kernels, poorer in oil. The seeds arrive in the market at the end of the rainy season in November and December. At present the price of the seed is stated to be Rs. 3 to Rs. 4 per maund at Chittagong and Sylhet, and the Calcutta price Rs. 6–9 per maund. To extract the oil the kernels are separated from the shells and dried in the sun. They are then pounded with a pestle and mortar, and the broken kernels put into canvas bags and the oil expressed with the aid of fire in a castor-oil mill. The oil is of two kinds—(1) clear, bright, straw-coloured; (2) muddy and precipitating a sediment of earthy colour. One maund of oil is obtained from 4 to 5 maunds of seed. The price of the oil is Rs. 60 per maund. [Cf. Mason, Burma and Its People. The Teak Tree, 1900, p. 446; Gynocaridina] Pharmacop. Ind., i., 142–6; Bories and Desprez, Contrib. to Study of Gynocaridina Chaumugra Oil, 1898; Holmes, Pharm. Soc. Mus. rept., 1903, 57; Power and Gornall, Constit. of Chaumugra Seeds, Willcome Chem. Res. Lab., 1904, No. 45; Constit. of Chaumugroic Acid, No. 46; White and Humphrey, Pharmacop., 1904, 555–6.]

TECTONA GRANDIS, Linn.; Fl. Br. Ind., iv., 570; Stat. Atlas Ind., 1895, 29–31 and map; Gamble, Man. Ind. Timbs., 1902, 526–34; Prain, Beng. Plants, ii., 828; Cooke, Fl. Pres. Bomb., 1905, ii., 424; Brandis, Ind. Trees, 1906, 505–6; Verbenaceae. The Teak Tree, ságún, sākhu, chinggaág, ság, ságvan, khaka, teka, loherú, ságván, tógu, tékku, pedda téku, tyagada mara, jádi, kyún, etc. A large deciduous tree, indigenous in both peninsulas of India. The wood is that chiefly exported from India, more particularly Burma, and is the most important building timber of the country.

Gamble discusses the teak areas under two divisions, the western or Indian and the eastern or Burmese. "The Indian region has for its northern limit the rivers Nerbudda and Mahanadi, but here and there it may occasionally be found north of this line, as in Jhansi and Banda, while south of it, it scarcely occurs in Orissa or the Circars. It is found in deciduous forest, but is not gregarious; and the localities where the most important forests are found are (1) Chanda district, Central Provinces; (2) North Kanara; (3) Wynad, especially the tracts known as Benné and Mudumalai; (4) the Anamalai hills; (5) Travancore. There are also considerable extents of teak forest in other parts of the Central Provinces; in Berar and Bombay; on both sides of the Godavari in Bhandralam, Rumpa and Yenagudem; in the Nallamal hills of Kurnool and Cuddapah; in South Aroeat and in Myssour. But teak may be found sporadically in places in forests throughout the Indian region, and even in such very dry apparently barren rocky hills as those of Western Kármól and Bellary, patches of stunted more or less gregarious teak are not uncommon. In the Burmese region, teak is chiefly found in what are called by Kurz the 'upper mixed forests,' which occupy the parallel ranges of (1) the Arrakan Yoma, eastern slope; (2) the Pegu Yoma; and (3) the Martaban hills and the hills which continue these ranges northwards. The northern limit, according to J. W. Oliver, is about Myitkyina and Kamaing, in lat. 25° 30', though there it is mostly of stunted growth. Teak has been largely planted about stations all over India, even so far north as Saharanpur, Dehra Dun and Lahore, in avenues and gardens; and forest plantations have been made.
in many provinces, the chief of which is that at Nilambur in Malabar, commenced by Mr. Conolly, who was Collector in 1844. In Bengal it has been grown about Kaptai in Chittagong and Bamumpokri in the Darjeeling Teraí; and in the Assam Valley there is a plantation as far up as Makum near Dibrugarh.

Cultivation and Management. — The above paragraph gives a general idea of the distribution of teak throughout India and Burma. For further details regarding the distribution and general management of teak plantations the reader might consult the Dictionary (I.c. 5–10), where particulars will be found of climate, soil, cultivation, seed, nurseries, growth, felling and diseases. The voluminous Forest Administration Reports and Working Plans issued by the Imperial and Provincial Departments of India and Burma, as also the pages of the Indian Forester, are full of much important and practical information. [Cf. Brandis, Teak Forests of Pegu, 1856.] But the following are a few of the more important facts relative to the growth of the tree. It is said to thrive best with a mean average temperature of between 72° and 81°. Regarding the large plantation at Nilambur in Malabar, Percy Lushington (Rept. and Working Scheme of Nilambur Teak Plantat., 1898, 41) states that "the distinguishing characteristic of the Nilambur climate is its damp heat so favourable to rapid growth. The temperature in the shade ranges from 75° to 95°. The average rainfall for the past ten years is 94-5 inches." He then explains that the soil of the plantation is very varied, alluvium overlying gneiss rock or laterite derived from the hills. Gamble states that teak thrives best on sandstones and metamorphic rocks, but may also be found on trap, laterite and even limestone. At the Nilambur plantation it has been recorded that the teak growing on alluvial soils was of first class; that on laterite second class. Damp alluvial soils are, however, unfavourable, and there must be good drainage if straight timber is to be obtained. The tree also requires full light for its head and free circulation of air. It seeds freely even when young, and the seed germinates well if it gets sufficient warmth and moisture. According to Gamble, "germination is best if the seeds are simply mixed with sand and dead leaves after being thoroughly soaked." J. W. Oliver says that in Burmese taungyas the practice is to spread the seed in a corner of the area chosen for the plantation, and then pick out and transplant to their proper places those which germinate. Gamble then continues, "as teak has an enormous tap-root, which resents being cut, the seedlings cannot be kept long in nursery, but must be planted out when quite small, and succeed best when planted out straight into the forest after germination," as has been mentioned above; "but when this is not feasible, basket or pot plants will give good results." McIntosh (Ind. For., 1905, xxxi., 129) observes that at Nilambur the seed is collected in February and sown early in April, after having been soaked for forty-eight hours in water. With copious waterings the seeds germinate in fifteen to twenty days. Regarding the management of natural teak forests, Oliver says that reproduction of teak is hardly satisfactory unless the forest is burnt, because, being usually mixed with bamboo, shade is too dense until the bamboo flowers, and then, unless the forest is burnt over, the bamboo seedlings choke such teak plants as may germinate. Gamble, summarising the Working Plans, says: "It has been ascertained by experience that great improvement takes place if certain well-defined operations are carried out, and these are usually prescribed. They are—(1) not to girdle isolated trees unless with the object of relieving existing seedlings; (2) to leave sound trees, likely to improve, in localities whence
large timber can be extracted; (3) to fell and not girdle trees attacked by epiphytic Ficus; (4) to continue taungya plantations with energy, and to weed such plantations regularly; (5) to sow or plant up areas of flowering bamboo; (6) to pay much attention to creeper-cutting." According to P. Lushington (l.c. 67–8), the method adopted in the Nilambur plantation is "a system of high forest with a clean felling of the final crop and artificial regeneration. The felling to be accompanied by thinning with a view to the improvement of the final crop. The felling to commence not earlier than the year in which the average girth at breast-height will be 6 feet 6 inches. The measurements taken show that the centre girth will not be less than 4 feet 6 inches. On first-class soil the final crop should consist of not less than forty trees, and on second-class of not less than fifty per acre." Lushington further states "the age of exploitability has been found out to be 95 years on first-class, and 140 years on second-class soils." "The total yield per acre on first-class soils is 3,000 cubic feet per acre, and on second-class 2,000 cubic feet per acre. The annual yield, if spread over 50 years, will be 147,910 cubic feet of first-class and 73,780 cubic feet of second-class timber. According to the present market this will fetch not less than Rs. 3 per cubic foot standing for first class, and Rs. 2 per cubic foot for second class. The total revenue to be derived will, therefore, be Rs. 4,43,750 and 1,47,560 — Rs. 5,91,290, or with the net profit derived from miscellaneous sources such as third-class bamboos, etc., may safely be fixed at 6 lakhs per annum." Tar. Minor Products.—A somewhat liquid, black tar may be prepared by destructive distillation of the wood; this is used for medicinal purposes in South India and Burma. The leaves yield a dye, of which little is known, and are employed as food for the tasar silkworm (p. 1005). An oil is also extracted from the wood, used in Burma as a medicine and as a substitute for linseed-oil in painting. Wood.—Teak owes its value chiefly to its great durability, ascribed to the fact that it contains a large quantity of fluid resinous matter, which fills up the pores and resists the action of water. As manifesting its durability, mention may be made of the fact that the great umbrella over the Htee in the Karli cave is still in existence, though it is most probably at least two thousand years old. Gamble observes that the weight may be taken at approximately 45 lb. per cubic foot and the value of P (the coefficient of transverse strength) at 600. When quite fresh teak hardly floats, but when seasoned it floats easily. The oil in the wood prevents its getting waterlogged, and seems also to safeguard it against weevil and other timber-boring insects. It is specially valued because it does not rust the iron with which worked up. It is exported chiefly for shipbuilding, especially for the decks of vessels, for the construction of railway carriages, and for the best class of house-carpentry, being admirably suited for staircases, balustrades, door and window frames and furniture. In India it is used for all purposes of house- and ship-building, for bridges, railways, sleepers, furniture, shingles, etc. It is used for carving, the Burmese carved teak-wood being especially noted; in Burma itself carved "kyuangs," or monasteries, are prominent in almost every village of any importance (Gamble, l.c. 532). The ease with which teak-wood lends itself to carving has, in fact, originated special art conceptions; these may be learned by perusal of the observations on this subject recorded in Indian Art at Delhi in 1903 (100, 124, 129, 135–40). Trade.—Grave apprehensions have on more than one occasion been expressed that the diminished supply and high prices of late years favour
the substitution of other woods to the permanent injury of the teak-wood trade (Hauxwell, in *Ind. For.*, 1905, xxxi, 618-85). No statistics are available of the Indian internal trade by rail and river, but the transactions by coast show that a large demand exists in India for teak-wood. This demand in former years was almost entirely supplied by Burma, but in recent years, as will be seen, one of the chief features of the present-day Indian trade in teak has been the gradual displacement of the Burmese timber, especially in the Bombay market, by wood imported from Siam and Java. Turning to the coasting trade, we find that for the five years 1900-1 to 1905-6, the registered imports averaged annually 116,639 cubic tons, valued at Rs. 93,38,559, and the registered exports 134,412 cubic tons, valued at Rs. 86,70,414. In the last year, 1905-6, the exports were 131,458 cubic tons, valued at Rs. 88,25,140. Of this Burma exported 85,749 cubic tons (to Bengal, 47,578; to Madras, 24,253; to Bombay, 11,870); Bombay 44,084 cubic tons (to British ports within the province, 26,410; to Kathiawar, 9,599); Madras, 1,469 cubic tons (to Kathiawar, 654; to Bombay, 265; to British ports within the province, 195); Bengal 153 cubic tons (to British ports within the province, 113; to Madras, 39). Perhaps it may be said that an important feature of the Indian traffic in teak-wood is the imports brought across the land frontier. In 1899-1900 these were 73,912 tons, valued at Rs. 44,16,143, which came from Karen-ni (45,434 tons) and Zimme (19,067 tons). Five years later the imports were valued at Rs. 54,34,063—imported by the Salween. [Cf. *Dipl. and Cons. Repts.*, 1902, 6-11; 1903, 4-5.]

With regard to the foreign trade, as already pointed out, the chief feature has been the rapid rise, within recent years, of a large import trade in teak from Siam, Java and the Straits. The figures of imports for the years 1901-2 to 1906-7 have been—1901-2, 17,842 cubic tons, valued at Rs. 13,03,968; 1902-3, 32,081 cubic tons, valued at Rs. 24,96,317; 1903-4, 34,588 cubic tons, valued at Rs. 30,55,695; 1904-5, 46,915 cubic tons, valued at Rs. 42,46,190; 1905-6, 71,676 cubic tons, valued at Rs. 62,17,331; and 1906-7, 61,696 cubic tons, valued at Rs. 60,71,557. Almost the whole quantity comes from Siam, whose exports to India during the years in question increased from 17,572 cubic tons in 1901-2 to 61,657 cubic tons in 1905-6, and in value from 12 to 53 lakhs of rupees. Three-fourths of these imports go to Bombay and the remainder chiefly to Bengal. Turning, by way of comparison, to the latest figures of the coasting trade, we learn that in 1905-6 Burma consigned to Bombay 11,870 cubic tons, while the supply of foreign teak, almost entirely Siamese, in that year amounted to 53,253 cubic tons. Noël-Paton points out (Rev. *Trade Ind.*, 1905-6, 44) that "practically the whole of the teak trade in the north of Siam is controlled by British Companies." [Cf. *Siam Trade, Ind. For.*, 1905, xxxi, 464-71.]

The exports from India during a similar period have been—1901-2, 60,671 cubic tons, valued at Rs. 71,53,855; 1902-3, 57,500 cubic tons, valued at Rs. 68,67,879; 1903-4, 73,913 cubic tons, valued at Rs. 91,45,605; 1904-5, 46,912 cubic tons, valued at Rs. 60,05,383; 1905-6, 52,768 cubic tons, valued at Rs. 70,41,690; and in 1906-7, 44,202 cubic tons, valued at Rs. 61,48,291. Four-fifths of the total go from Burma, amounting to 41,469 cubic tons in 1906-7, the surplus from Madras, Bombay and Bengal. The great bulk of the exports is consigned to the United Kingdom, which in the last year took 30,318 cubic tons,
while the other chief markets are ordinarily Germany, Ceylon and Australia.

Commenting on the price of teak, Noël-Paton states: "A great expansion in shipbuilding and in some other branches of construction in the United Kingdom, Germany, and the United States, has synchronised with a contraction in the available supplies of teak, and has induced a rise of price—in some cases prohibitive. The average price in 1904-5 at Calcutta was Rs. 111 to Rs. 116 per ton of 50 cubic feet. In 1905-6 it was Rs. 120 to Rs. 125. Exports of teak have increased in quantity by 12-5 per cent. to 53,000 cubic tons, and in value by 17-25 per cent. to Rs. 70-4 lakhs. But the difference between these two percentage rates of increase does not gauge the enhancement in average value of a uniform quality of timber, for it is understood that a good deal of inferior wood has gone forward in the twelve months under report. Exports from Burma to India proper decreased by a further 5-9 per cent. and reached a value of only Rs. 71,30,683, while imports into India from Siam and Java increased by some 34-7 per cent. to a total of Rs. 57 lakhs."

Myrobalans.

TERMINALIA, Linn.: Fl. Br. Ind., ii., 443-9; Gamble, Man. Ind. Timbs., 337-45; Prain, Beng. Plants, 1903, i., 481; Cooke, Fl. Pres. Bomb., 1903, i., 477-81; Duthie, Fl. Upper Gang. Plain, 1903, i., 335-7; Brandis, Ind. Trees, 1906, 307-12; COMBRETACEAE. A genus containing many species distributed over the tropics of the world. There are some 16 representatives in India, many being large trees, valued for their timber and as producers of the tanning fruits—Myrobalans. An interesting historic sketch of the knowledge of myrobalans will be found in Hobson-Jobson (ed. Crooke, 1903, 607-10).

T. Arjuna, ñada. The arjan, kahu, garu-hatana, kanka, mangi, san-madat, vellai-muruda, tanda, tella-maddi, toukkan, etc. A large deciduous tree on "banks of rivers and streams throughout Central and South India, extending as far north as Oudh. Beyond that, towards the north-west and in the Panjab, it is found only as a cultivated tree: Burma; low country of Ceylon." (Gamble).

It yields a clear transparent gum with in the bazaars of Northern India as a drug. The astringent bark is sometimes used as a dye and tan, and also in Native Medicine. The wood is apt to split in seasoning and is not easy to work, but is used for carts, agricultural implements, boats and for building. At the Mysore gold mines it is used for supports and is called "white matti." The ash from burning the wood contains a very high percentage of lime (Trop. Agrist., 1906, xxv., 870-1). [Cf. Pharmacog. Ind., ii., 11-2; Cameron, For. Trees of Mysore and Coorg, 1894, 135-6; Duncan, Monog. Dyes and Dyeing in Assam, 1896, 52; Dutt, Mat. Med. Hind., 1900, 163-4; Hooper, in Agri. Ledg., 1902, No. 1, 38; Chandra, Monog. Tanning and Working in Leather, Beng., 1904, 7; Trench, Monog. Tanning and Working in Leather, C. Prov., 1904, 7.]

Belerica. T. belerica, baxa. Beleric Myrobalan, bharir, sajond, laping, halluch, yehala, yella, tare, tani, tandi, kattu, elupar, sanini, thitein, etc. A large deciduous...
USEFUL TANNING MATERIALS

TERMINALIA CHEBULA

Chebulic

Gum.
Tan.
Food.
Wood.

Indian Almond.

Gum.
Oil.
Medicine.
Food.

Saj'or Asan.

Gum.
Dye.
Tan.
Extract.
Wood.
Lac and tasar.

Chebulic.

Varieties.

T. CHEBULA, Retz. The Chebulic or Black Myrobalan, harra or hár, hilihka, silim, karedha, halra, rola, mahoka, kadakai, karaka, hirada, alalé, pangu, etc. A very variable deciduous tree, found throughout India and Burma. The Flora of British India enumerates six varieties. "In high-level rocky and dry places on the outer Himalaya, the hills of the Deccan and South India, it is only quite a small tree, but in valleys and forests of big trees it also grows dry and gives a hard, dark-coloured timber" (Gamble).

History.—The tree yields a GUM, said to be largely collected in Berar and mixed with various other gums (Acacia arabica, Anogeissus latifolia,

1073

68
Terminalia Chebula

Bassia longifolia, etc.) The mixed gums are taken to the local markets by the Gonds, who collect them, and are sold for medicinal purposes or to dyers to mix with their colours. The chebulic myrobalan was highly extolled by the ancient Hindus as a powerful alternative and tonic. Indian writers describe seven varieties, which, however, are mostly the same fruit in different stages of maturity. The classic citrine myrobalan, of which Rhases, Serapion, Avicenna, Mesua, etc., all speak favourably, was at one time much in demand in Europe. Even so late as 1813, Milburn (loc. 218) gives directions for selecting the drug, which, he adds, the Natives frequently candy. Fleming (As. Res., 1810, xi., 182) ascertained the zengi har (black myrobalan) to be the unripe fruit of this species (Sprengel, Hist. rei. Herb., 1808, i., 262; Paulus Egineta (Adams, Comment.), iii., 440-3). The Wood takes a good polish, is fairly durable and used for furniture, carts, agricultural implements and house-building.

Dye and Tan.— The dried fruit of this species constitutes the "Chebulic" and "Black" myrobalan of commerce, one of the most valuable of Indian tanning materials. In India it is also used as a dye occasionally by itself, the rind of the fruit being powdered and steeped in water. With alum it is said to give a good permanent yellow. But the most extensive use to which harra is put as a dye is in the production of various shades of black, in combination with some salt of iron. The chief commercial value, however, of chebulic myrobalan is as a tanning material; it forms the greater part of the ground myrobalans of commerce, though belleric myrobalans are occasionally mixed with it. The liquor prepared from harra is not only a powerful tan, but imparts a bright colour to the leather, and hence is highly esteemed for mixing with other tanning agents.

Chemical Nature. The tannins in myrobalans appear to consist almost entirely of pyrogallol tannins, gallotannic acid being present; consequently the material blooms well. It gives a greenish-yellow colour to the leather and a porous tannage, so that it is not used alone but may be advantageously employed with materials such as hemlock, which yield a dark colour; it is much used with oak bark and valonia" (Blount and Bloxam, Chem. for Engin. and Manuf., ii., 377). Considerable difference exists in the proportion of tannin contained in the fruits. Specimens supplied from Madras, Bombay, Bengal and the United Provinces furnished percentages of tannin ranging from 13 to 38. It has also been shown that the fruit exhibits two well-recognised forms. The best qualities are known in trade to be oval and pointed, and of a pale greenish-yellow colour in section, solid in structure. The less valuable qualities are round and spongy. It has been ascertained that the oval form is simply a less mature condition. Some interesting facts regarding the commercial value of various samples of myrobalans are given by a writer in *Capital* (Jan. 7, 1904). [Cf. Ind. For., xxx., 188-91.] "In English," it is stated, "there are five chief varieties of myrobalans, called after the districts in India from which they are obtained. These are (1) 'Bhimies,' from Bimlipatam in Madras; (2) 'Rajpores'; (3) 'Jubbelpores,' from Jabalpur in the Central Provinces; (4) 'Vingorias' from the Bombay forests; and (5) 'Madras Coast.' The price and quality of these nuts vary exceedingly, whilst the opinion as to their actual value in the tanning trade is widely conflicting. Some tanners maintain that Jubbelpore myrobalans, or J's, as they are technically called, are worth more than Bhimies or B's; while others are equally strong in their preference for B's in comparison with J's. Some tanners prefer the

1074
light-green coloured nuts, which are higher priced than the others, while some like the dark or browner kind. One remarkable instance is recorded of a tanner who rejected a delivery as being darker in colour than the sample, and on arbitration secured an allowance of £1 per ton. It was afterwards found that the myrobalans were 3 per cent. stronger in tannin than the original sample, which in the opinion of the arbitrators was worth £1 a ton more than the delivered bulk. Some tanners buy myrobalans for their strength and cheapness, when compared with the price of oak bark and valonia, others use them on account of their brightening colour, while others use them because of the light-coloured bloom they deposit on leather."

In the *Journal of the Society of Chemical Industry* (1903, xxii., 1181-4, 1338) will be found an interesting paper by Dr. J. Gordon Parker and Mr. F. A. Blockley on the relative tanning values of different species and growths of myrobalans. The authors discuss (1) the content of tannic acid in various samples, (2) extent of bloom, (3) acidity, and (4) price of unit of tan in the samples examined. The tannic content was found to vary from 27·3 per cent, in a sample of Jabbalpur, to 38·4 in a sample of Bhimley. With regard to bloom, it was found that Jabbalpur and Vingorla myrobalans were much superior to other sorts, both in the amount yielded and the readiness with which their solutions deposited the same, while with regard to acidity, the Bhimley variety developed most and the Jabbalpur least. The value of the unit of tan per ton was found to be 4s. 33½d. in the most expensive variety (picked Bhimley), and 2s. 2½d. in the cheapest (Bhimley 2).

Trade.—Internal.—The *Report of Forest Administration* issued annually by the Inspector-General gives the exports from the forests under his control. The average for the five years ending 1902–3 came to 1,022,540 cwt., and for 1903–4 they were 1,299,600 cwt., valued at Rs. 42,10,288, or an increase of 41½ lakhs on the value of the preceding year. The internal transactions in myrobalans as registered by rail and riverborne traffic amounted in 1905–6 to 1,080,094 cwt., and in 1906–7 to 869,427 cwt. The chief exporting centres are the Central Provinces and Berar, Bombay, Rajputana and Central India, Bengal and Madras; the chief importing towns are Bombay, Calcutta, the Madras ports, and the importing provinces the United Provinces, and Bengal. Similarly the exports by coast in 1905–6 amounted to 218,146 cwt., valued at Rs. 4,62,454. Practically the whole of this export trade goes from Bombay to British ports within the province.

External.—The foreign trade is large and important. During the period 1900–7 the following quantities have been exported:—1900–1, 945,648 cwt., valued at Rs. 31,68,173; 1901–2, 1,085,174 cwt., valued at Rs. 35,63,652; 1902–3, 1,157,650 cwt., valued at Rs. 37,72,255; 1903–4, 1,229,609 cwt., valued at Rs. 42,10,288; 1904–5, 1,187,585 cwt., valued at Rs. 42,59,063; 1905–6, 1,206,398 cwt., valued at Rs. 44,60,676; and in 1906–7, 1,162,219 cwt., valued at Rs. 43,97,591. Analysing the figures of the last year, we find that of the total, Bombay exported 748,279 cwt., Bengal 292,816 cwt., Madras 121,123 cwt., while the chief markets, with the quantities received by each from India, were, in order of importance, the United Kingdom, 581,481 cwt.; Belgium, 200,729 cwt.; Germany, 191,669 cwt.; Austria-Hungary, 67,476 cwt.; and France, 46,304 cwt.

THEOBROMA CACAO

Chocolate

THEOBROMA CACAO, Linn.: Hayne, Gewächse, 1825, ix, 33; Bentley and Trimen, Med. Pl., 1880, i., 38; Köhler, Med. Pflanzen, ii., 157, tt. a and b; Morris, Cacao, How to Grow and How to Cure It, 1882-87; Hart, A Treatise on Cult. and Curing, etc., 1892; Lecomte et Chalot, Le Cacaoyer et sa Cult., 1897; Gamble, Man. Ind. Timba., 93; Brandis, Ind. Trees, 79; STERCULIACEAE. The Cacao (sometimes also written Cocoa) and Chocolate. A small tree indigenous to Central and South America, now largely cultivated in many moist tropical countries.

Oil. Oil or Butter. A light-yellowish opaque, solid oil, known as “Cacao Butter,” is expressed from the warmed seeds. This has the pleasant odour of chocolate, melts in the mouth with a bland, agreeable taste, has a specific gravity of 0.911, and fuses at 20° to 30° C. Recently a large trade has been organised in the less expensive solid oil or butter prepared from Coconut Oil. (see p. 359-60), which has unfortunately also come to be sometimes described as “Cocoa Butter.”

Nibs and Chocolate. Cacao Nibs and Chocolate. The chief product of this plant is the CACAO BEANS or Nibs—the specially prepared seeds—from which Chocolate is manufactured. The tree is raised from seed, is grown at distances of 15 to 20 feet apart, comes into full bearing in the fifth to seventh year, and fruits for a number of years subsequently. The flowers, which are very small, are formed on the naked stems and older branches; the fruits become 6 to 9 inches long, and each contains 40 or more large seeds—the beans or nibs of commerce. A tree will yield from 1 to 10 lb. of dry nibs in the year, according to climate, soil, and treatment to which the plant has been subjected. The seeds are separated from the pods, conveyed to the fermenting-house, and subjected to a process of “sweating” for three days. They are then examined, their positions changed, and repacked for a further fermentation of three days. Next comes the process of rubbing or washing to free them from dirt and the ruptured seed-coats, lastly the drying or “curing.” To accomplish the final treatment, they are subjected to the sun, the while being protected from rain or dew, and the term of exposure extended each succeeding day until they are quite dry; but a too rapid drying is regarded as injurious. The nibs are now ready and are in consequence passed and dispatched. In the production of chocolate the nibs are usually treated, ground to a fine powder and flavoured with sugar, vanilla, etc., etc. In estimating for trade purposes the various confectionery, the proportion of chocolate they contain is stated, as also the amount of alcohol present, if any. A singular feature of this branch of the trade is the very large quantity procured from Belgium (404,544 lb., valued at £36,818 in 1906).

Trade. Trade. The tree has been repeatedly introduced into India (Kew Rep., 1873, 7; 1881, 28). It is grown to some extent in Malabar, the Nilgiri hills, etc., but not with the success attained in Ceylon; there seems, however, no good reason why this should be so. The imports of “Raw Cocoa” mentioned in the
returns of Great Britain have ranged from 50 to 60 million pounds during the five years ending 1906, and these quantities have been returned at approximately 1.5 million pounds sterling in value. The traffic in Chocolate is much smaller in quantity, but of course relatively much more valuable, namely from 8.4 to 10.4 million pounds in weight and close on one million pounds sterling in value. In addition to these supplies of chocolate, there is the traffic in confectionery to which reference has already been made. The trade in cocoa butter is still smaller, but, as already mentioned, some proportion of the published returns of that substance must denote coconuts "Cocoa Butter" and not "Cacao Butter."

Of the imports of Raw Nibs, the British West Indies (especially Trinidad and Granada) head the list of supplying countries (17 million pounds on the average of the five years named); then come Portugal with 14 million (re-exporting, no doubt); Ceylon with 4.7; France with 4; and Brazil with 3; and lastly, the British West African (Lagos) supply has expanded from 303,635 lb. in 1902 to 2,112,352 lb. in 1906. (Cf. De Candolle, *Orig. Cult. Planta*, 313: *Agri.-Hort. Soc. Ind. (Trans.),* 1839, iii., 39; *vi.,* 127; 1840, viii., 81; *Proc.)* 1843, ii., 208, 397, 443, 591; *Journ.)* 1845, iv., 140; *Proc.)* 1854, v., 48; *Journ.)* 1857, iv., 292; 1860, i., 83; *Corresp. and Select.)* 1882, vi., 71; *Proc.)* 31; *Journ.)* 1886, vii., 20; *Corresp. and Select.)* 29-40, etc.; *Ceylon Cacao, Kew Bull.,* 1890, 170; also Honduras Cacao, 1893, 327; and Ecuador Cacao, 1899, 42, etc.; *Cacao Indus. in Granada, West Ind. Bull.,* 1900, i., 415-22; also *Art. Drying of Cacao, 1901, ii., 171-4.}

Occurrence.—Within India proper tinstone may be said to be but rarely found, but in Burma, more especially the southern portion of Tenasserim, it forms extensive and valuable deposits. According to Holland (i.e. 1905, 90-1), however, "tin has a wider distribution than is generally recognised, and its minerals are often overlooked through the difficulty in distinguishing them from other heavy minerals. Isolated crystals of cassiterite have been found recently in pegmatites associated with gadolinite in the Palanpur State, whilst in the Hazaribagh district of Chota Nagpur instances have been recorded of the accidental production of tin from river-sands by the Native iron-smelters, in addition to the recorded occurrences of ores in situ. The principal deposit, which has either been wrongly described or has received less attention than it deserves, occurs in the Palganj estate near the Barakar river.

The only persistent attempts made to work tin have been in Burma, where cassiterite is obtained by washing river gravels in the Bawlake State, Karen-ni, Southern Shan States, and in the Tavoy and Mergui districts of South Burma. The work done on these deposits hitherto has been, however, on a smaller scale than might be expected from the favourable reports which have been made as to their extent and richness.

He further states that the average output of tin-ore in South Burma, during the period reviewed (1898-1903), was 1,645 cwt., valued at £6,876, and in 1906, 1,919 cwt., valued at £13,574. "The metal is exported mainly, in the form of block tin, almost all of it going to the Straits Settlements. This, during the years 1897-8 to 1902-3, averaged 661 cwt. a year." During the same period, Holland points out that the average consumption of foreign block tin in India itself was 24,959 cwt.: "the tin exported from

D.E.P., vi, pt. iv., 57-82. **Tin.**

Burma Supply.

Exports.

Occurrence.

TIN

INDIAN USES OF TIN

Burma is a small quantity compared to the requirements of the country. The average daily attendance at the tin mines in the Mergui and Tayoi districts was 145 persons in 1905 and 141 in 1906.

USES.—A salt of tin is a highly important material in certain methods of dyeing, as practised in Europe, but in this respect it is apparently unknown to the Natives of India. It has, however, been used from a very remote period in Native medicine. [Cf. Dutt, Mat. Med. Hind., 1900, 69-71.] By certain classes, especially the Muhammadans, the metal is also extensively employed in tinning copper vessels. Copper vessels, to be free from poisonous deposits, must be tinned or kalaied once a month, thus affording constant employment to a large number of workmen, known as qu'al igura or kalaigura, who are Muhammadans. In Northern India, vessels which are tinned for the first time are boiled in a solution of alum, verdigris, sulphate of copper and sal ammoniac. On subsequent occasions they are simply coated with tin without any previous preparation save that of removing the old kala by scrubbing the vessel with ground kangar (brick dust). Tin, reduced to powder, is mixed with sal-ammoniac and applied by means of a piece of cotton, the vessel being heated on a charcoal fire. It is then polished with sand and ashes.

Artistic manufactures, in which tinning forms a definite feature, assume importance in several centres. Of these the most noted are Moradabad, Jaipur, Peshawar and Kashmir. The art seems to have come from Persia, and is essentially Muhammadan in origin (Ind. Art. at Delhi, 1903, 16). Tin metal is also beaten into leaf or tinfoil, and, after being coloured with lac, is sold in that condition and largely employed in the manufacture of cheap jewellery, tinned decorations, and as an adjunct in ornamental turnery. Powdered tinfoil may also be mixed with lac to produce a metallic effect. Still another use to which the metal is put may be mentioned, namely the preparation of certain alloys, such as that of Bidri ware (Ind. Art., 46, 211, 211-8).

Trade.—Although the uses of tin are both varied and widespread, relative to other items of trade the metal may be spoken of as comparatively unimportant. And as already indicated, the supply consists chiefly of that obtained from foreign countries. Imports for the period 1900-7 have been as follows:—1900-1, 22,741 cwt., valued at Rs. 22,08,560; 1901-2, 26,002 cwt., valued at Rs. 23,54,456; 1902-3, 28,000 cwt., valued at Rs. 25,58,162; 1903-4, 40,486 cwt., valued at Rs. 39,29,787; 1904-5, 39,923 cwt., valued at Rs. 39,36,023; 1905-6, 21,152 cwt., valued at Rs. 24,17,290; and 1906-7, 20,336 cwt., valued at Rs. 29,44,061. Analysing the figures for the last year, we find that 19,967 cwt. consisted of unwrought (block) tin and 369 cwt. of wrought tin. Of the total imports, Bengal takes roughly one-half, 10,864 cwt. in 1906-7, the balance being divided between Bombay, Burma and Madras. Of the unwrought tin, practically the whole quantity comes from the Straits, viz., in 1906-7, 17,486 cwt., and the balance chiefly from the United Kingdom. It should be noted, however, that a considerable shrinkage occurred in 1905-6, the imports from the Straits having declined by almost a half, and the total imports from 39,323 cwt. (in 1904-5) to 21,152 cwt.

It has already been mentioned that the exports go entirely from Burma, and consist mainly of block tin. During the period reviewed by Holland (1897-8 to 1902-3), these averaged 661 cwt. Since then the figures have been:—1903-4, 480 cwt., valued at Rs. 38,829; 1904-5, 457 cwt., valued at Rs. 38,268; 1905-6, 426 cwt., valued at Rs. 36,761; and 1906-7, 929 cwt., valued at Rs. 72,312. They have thus been increasing. Practically the whole of the exports are consigned to the Straits. Small quantities of foreign tin are also re-exported from India, chiefly from Bombay to Persia and Turkey-in-Asia. The averages during the six years 1900-6 came to 1,500 cwt. ; the actual in 1905-6 was 844 cwt., valued at Rs. 90,926.

Commenting on the production, consumption and prices of tin for the
TORTOISE-SHELL

year 1905-6 throughout the world, Noël-Paton (Rev. Trade Ind., 12-3) affords many interesting particulars that will repay perusal.

TORTOISE AND TURTLE, and Tortoise-shell Manufacture.—The two animals of chief importance that fall into this place are:

The Natives eat the flesh but it is unpalatable to Europeans, though the eggs are regarded as equal to those of other turtles. One of the errors of commerce is to speak of "tortoise-shell"; the name should rather be "turtle-shell"; and though other species afford shells sometimes used as substitutes, this animal affords the true tortoise-shell. Its value depends on a warm translucent yellow colour, dashed and spotted with rich brown tints, and on the high polish which it may take. In China, shells with white ground and black spots that touch each other are most admired. The finest shell is obtained from the Western Archipelago, but is exported from the southern coast of the Indian continent, Ceylon, the West India Islands, and Brazil. The scales are detached from the turtle either by actual force after the animal is killed or by immersion in boiling water. If taken from the animal that has died a natural death or after decomposition has set up, the shell becomes clouded and milky. From very earliest times tortoise-shell has been a prized ornamental material; it was brought from the East to ancient Rome by way of Egypt, and was used as a veneer for furniture. Vincent (Periplus, etc., 1800, app., 48) says that in the time of the Periplus this article was largely traded in, being procured from Africa, Socotra, Malabar, Laccadive and Maldives Islands, etc. In modern times it has been employed in Europe for the characteristic inlaying work known as Shat Marquetry. It is used as a veneer for small boxes and frames and moulded into snuff-boxes and cigar-cases, also formed into knife and razor handles or cut into combs. Visagapatam may be said to be the chief Indian locality where tortoise-shell is utilised in ornamental work. [Cf. Fryer, New Acc. E. Ind. and Pers., 1675, 211; Ovington, Voy. to Suratt. 1889, 517; Milburn, Or. Comm., 1813, i., 53; Bruce, Travels, v., app., 215; Brandt and Ratzeburgh, Medicin-Zoolog. 1829, i., 181-98, ii., xxii., xxiii.; Journ. Bombay, Nat. Hist. Soc., 1897, x., 153; Watt, Ind. Art at Delhi, 1903, 153-4, 193-4.]

C. mydas : Boulenger, l.c. 48. The Green or Edible Turtle or the leik-pyen-won or leik-kyae of Burma. This is a herbivorous animal found in the tropical and sub-tropical seas, though rare in the Bay of Bengal. Its flesh forms an important article of food, though at certain seasons it is said to become poisonous. The turtle of the Indian seas is believed to rival in size and flavour that of the Atlantic. The eggs are very rich and have a taste somewhat like marrow; they may be kept for weeks even

Hawk-bill Turtle.

Flesh and Eggs.

Shell.

Sources.

Separation of Scales.

Early Knowledge.

Vizagapatam Ware.

Edible Turtle.
TRICHOSANTHES ANGUINA

when exposed to the sun (Crawford, *Journ. to Asia*, 1834, ii., 178; Collingwood, *Rambles of a Nat.*, 1868, 426.)

The following are species of less value:

Emys granosa : Bouleniger, Lc. 17. The *bunyama* is a river turtle found in the Indus and Ganges. Its flesh is eaten.

Testudo elegans : Bouleniger, Lc. 21; Rice, *Gaz. Mysore*, 1877, i., 157. A land tortoise, found all over India except Lower Bengal. Its flesh is eaten by the Natives, and in Burma is especially esteemed as a delicacy. [Cf. Terry, *Voy. E. Ind.*, 1655, 8.]

Water Chestnut.

This aquatic plant has been grown in India from the most ancient times. Ball suggests that it may be the edible fruit which Garcia de Orta describes under the name *das ceceras* (1563, Coll., xi. ; also in *Proc. Roy. Ir. Acad.*, 3rd ser., 1889-91, i., 397), but that I am disposed to regard as a mistake. It is, however, mentioned in the *Ain-i-Akbari* (1590) as one of the crops on which revenue was levied (Jarrett, *transl.*, 1891, ii., 65). In certain parts of the country the kernels are ground down and employed for making the coloured powder (*gudal*) used during the *Holi* festival. The flour, moreover, is considered by the Natives a cooling and useful article of food in bilious affections and diarrhoea, and it is in addition employed in the preparation of polichies. Both the kernels and the flour made from them are largely used as food, and in all localities where the plant occurs in any quantity. In fact it may be said to be extensively cultivated, e.g. in Kashmir, the United and Central Provinces, etc. For this purpose the fruits or nuts are scattered over the water at the end of January and pressed into the mud. In a month they begin to throw out shoots, and in June the plants are thinned out and transplanted. The nut forms under water in October, and is gathered in November and December. A highly instructive account of *singhâra* cultivation will be found in Sir Walter Lawrence's *Valley of Kashmir* (1895, 72, 345, 354-5). He speaks of it as less cultivated now than formerly.

Moorcroft (Travels, 1829, ii., 136, 227) estimated the production at 384,000 maunds of nuts a year, but in Lawrence's opinion the production to-day might be more safely returned at 100,000 maunds. He observes, "Of the chief varieties the best is called *basmati*, in honour of the rice of that name. The *basmati* is a small nut with a thin skin, and gives one-third of kernel for two-thirds of shell. The *dogru* is a larger nut with a thicker shell, and the *kangor* has a very thick shell with long projecting horns and gives the least kernel of all."

THE SNAKE GOURD

bitaceous plants, several species of which are cultivated throughout India for use as vegetables.

T. anguina, Linn.; Duthie and Fuller, *Field and Garden Crops*, ii., 45, t. xlvi. The Snake Gourd, puruwul, chichinga, ṣajhinda, galar tori, pandol, rebhri, padwal, linga potta, etc. An annual creeper, considered by De Candolle to have been originally wild in India and the Indian Archipelago. It is cultivated throughout India as a rainy-season crop. The long cucumber-like fruit is eaten as a vegetable, either boiled or in curries. Gathered when very young and cut into strips, it is extensively cooked in the same way as French beans. [Cf. Woodrow, *Gard. in Ind.*, 1903, 330; Firnninger, *Man. Gard. Ind.*, 1904, 172.]

T. cucumerina, Linn.; Kirtikar, in *Journ. Bomb. Nat. Hist. Soc.*, 1892, vii., 487–8, t. E. The jangli-chi-chōnda, banpatoī, gwal kākri, rān purul, rān-chapadavali, kāttāp-pēpulād, adāv-potta, etc. A climbing annual, found throughout India and Ceylon. It has various medicinal qualities ascribed to it, and the tender shoots, dried capsules, seeds, leaves and roots are all used in Native medicine. The ripe fruit is said to be stewed and eaten by the Natives. [Cf. *Pharmacog. Ind.*, 1891, ii., 72–4.]

T. dioica, Roxb.; Duthie and Fuller, *Lc.*, iii., 23. The paurar, potōl, kumundal, kommu-potta, patolam, etc. An extensive climber common throughout the plains of Northern India, from the Panjāb to Assam and Eastern Bengal. It is extensively cultivated during the rains. In Bengal, cuttings are planted at the end of the rainy season and fruiting goes on from March to September, after which the crop may be kept for a second year by ploughing and weeding in October and irrigating in February and March. Mukerji estimates the cost of cultivation in Bengal at Rs. 26 per acre and the outturn at 100 maunds, worth about Rs. 60. The leaves, fresh juice, and the fruit and root are all used medicinally, while the unripe fruit is eaten by the Natives and the tender tips are cooked as a pot-herb. The young or unripe fruit is valued by Europeans, and next to potatoes and brinjals is perhaps the vegetable in greatest favour. [Cf. Randeria, *Agri. Cuttack*, 1893, 117, 197; Dutt, *Nat. Med. Hnd.*, 1900, 169–71; Mukerji, *Handbook Ind. Agri.*, 1901, 347–8; Firnninger, *Lc.*, 172; Roy, *Crops of Beng.*, 1906, 143–5.]

T. palmata, Roxb.; Kirtikar, *Lc.*, 71–6, t. B. The lālindrājan, mākāl, paurar, kaundal, kauandāla, korattai, avaygida-panda, etc. A very large climber, common in moist thickets from the Himalaya to Ceylon. The fruit and root are medicinal, and the former, though inedible in the wild state owing to its severely drastic properties, is cultivated as a pot-herb. Hamilton observes that it is as good as spinach and is cultivated in the same manner. [Cf. *Pharmacog. Ind.*, *Lc.*, 70–2; Woodrow, *Lc.*, 330–1.]

TRIGNONELLA, Linn.; *Fl. Br. Ind.*, ii., 87–9; Prain, *Beng. Plants*, 1903, 1, 413–4; Duthie, *Fl. Upper Gang. Plain*, 1, 208–10; LEGUMINOSÉE. A genus of annual herbs which comprises some 50 species, two of which only are of economic interest in India.

T. Fenugreek. *Foenum-Graecum*, Linn.; Duthie and Fuller, *Field and Garden Crops*, iii., 46, t. xxix. The Fenugreek or Fenugree, méthi, haenggeeb, shaml, bhajri, vendayam, mentulo, méndhikax, ulve, pe-nán-ta-ré, etc. A robust annual herb, wild in Kashmir, the Panjāb and the Upper Gangetic Plain; cultivated in many parts, particularly in the higher regions. No estimate can be given of the area under the crop, except in Bombay (including Sind) and Berar, where, according to the *Season and Crop Reports*, it occupied 2,713 acres and 519 acres respectively during 1904–5. Subsequent areas do not appear to have been recorded. It is grown near wells and on salīūd lands. On well lands, it is generally sown after cotton or jurd. The seed (30 lb. per acre) is sown in February and the crop is ready to cut in April. On salīūd lands it is sown at the end of October or beginning of November, and the crop ripens about the same time as on well lands. The seeds yield a yellow Dye, and the plant has been known and valued as a Medi- cine: from the root chiefly as a food and fodder crop, and as a perfume. [Cf. *Paulus Egineta* (Adams, Comment.), 184, iii., 375; Serapion, *De Simpl.*, 1473, § 17]; *Taleef Sheereef*, 1650 (Playfair, transl.), 1833, 1081
THE WHEAT PLANT

Wheat (froment, Fr.; weizen, Germ.) has numerous Indian synonyms. The grain would appear to be most widely known in Sanskrit by the name godhumam, and according to Dutt (Mat. Med. Hind., 269), "three varieties of wheat are mentioned in the Bhāvaprakāṣa, namely mahāgodhumam or large-grained, madhuli or small-grained, and nihukī or beardless." The first, we are told, came from the West, and the second was indigenous to India. The most general vernacular names are often closely connected (like the Persian gandum) with the Sanskrit godhumam, thus:—gehun or guin, gahu, ghum, gohum, gahung, gheum, gaun, gom, gh, kanak, kank, rozatt, dro, do, zu, gandum, godumai, gōdu-mul, godhi, kōtanam, givonsaba, etc., etc.

History. — History. — The cultivation of wheat, says De Candolle, is prehistoric. It is older than the most ancient languages, each of which have independent and definite names for the grain, such as the Chinese mai and the Hebrew chittah, etc., in addition to the Sanskrit names already mentioned. The Chinese grew wheat 2700 B.C. Heer found a small-grained wheat in the deposits identified with the earliest lake-dwellers of West Switzerland—date about the time of the Trojan war or earlier. Unger detected the same grain in a brick of the pyramid of Dushur in Egypt, to which he assigned the date of 3359 B.C. Another form of wheat has been found in the less ancient deposits of the lake-dwellers of Switzerland and Italy (Stone Age), and still a third or intermediate form at Aggtelek in Hungary. According to Hackel, the wheat found in the most ancient of these deposits is T. dicoccum. This is a summer wheat grown occasionally in Southern Germany, Switzerland, Spain, Servia and Italy, and used largely in the manufacture of starch. The more recent forms, that author identifies as belonging to T. monococcum. Hitherto it has been affirmed that the wheats found in association with the lake-dwellings were quite distinct from any known modern wheats, but Hackel’s determinations would seem to remove that impression, while confirming the belief that the wheat named preceded the appearance of those which constitute the bread wheats of to-day. On the authority of Herodotus—a Chaldean priest—wild wheat is accepted as having been seen in Mesopotamia. But similarly, the evidence of Strabo (who lived 50 B.C.) is often given as supporting the belief that wild wheat had been discovered in the Indus valley. In another place (p. 823), I have produced evidence, however, in favour of the idea that the wild plant that looked like wheat—of which Strabo spoke—may have been Erynia corvulata and not wheat at all. Other early references to wild wheats might still be given, but their value may be questioned when it is added that no modern botanist has recorded the discovery of wild wheats nor, in fact, given any very satisfactory evidence of the existence of feral wheats (that is to say, of wheats that had survived in a self-sewn condition from former cultivation). The authentic cases of wild wheat recorded by modern travellers, so far as can be ascertained, are unconnected with the true wheat.
VARIETIES AND RACES

Modern wheat would appear to be a product of cultivation of which little trustworthy evidence exists as to its origin, except perhaps that it is more closely connected with Asia than with Europe.

A remarkable silence may be said to characterise the writings of European authors regarding wheat in India, until well into the 18th, if not the beginning of the 19th century. Perhaps the earliest references are found in the records of provisioning the ships which in 1607 sailed from England to the East. These were commanded by William Keeling and William Hawkins, the latter, on reaching Surat, having had instructions to proceed on a mission to the court of the Great Mughal. In the list of articles supplied to the Pinnacle, we read of so many ‘bushels of Steale Wheate’ (see p. 256). Sir George Birdwood, in a footnote to the above passage (E.I.C. First Letter-Book, 99), says that it was French wheat that the ships took on board, the word ‘Steale’ being probably derived from the ‘steelies and hardines’ which was supposed to be the peculiar property of the foreign-grown commodity, and to make it therefore more suitable for the manufacture of biscuits for long voyages. The passage may be accepted as suggestive of the early introduction from Europe of some of the forms of hard wheat presently grown in Western India, as for example the’spelta.

But if that be so, a very different story is given by Terry (Voy. E. Ind., 1655 (ed. 1777), 87), who speaks of the wheat of Surat as ‘more full, and more white than ours, of which the inhabitants make such pure, well-relished bread, that I may say of it, as one sometimes spake of the bread made in the bishoprick of Leige, it is panis pane melior, bread better than bread.’ So also Fryer (New Acc. E. Ind. and Pers., 1762–81, 110) mentions the Deccan as possessing ‘wheat as good as the world affords.’ It is, however, significant that Millburn (Or. Comm., 1813) makes not the slightest reference to Indian or Eastern wheat, though under most commodities he gives important chapters, such as The Present State of the Tea Trade, The Rise and Progress of the Trade in Sugar, etc.

Species, Varieties, and Races of Wheat.—The distinction between Spring wheat (T. aestivum) and Autumn wheat (T. hybernum) can have no importance, since these names do not denote structural differences, and, moreover, are interchangeable climatic conditions according to the country where grown, and even in the same locality, according to the dates of sowings. If gradually changed, the autumn sowings being year by year made a little later, and the spring a little earlier, autumn wheat may become spring wheat, and vice versa. A wheat sown in the autumn in the plains of India, if carried to the temperate Himalaya or to Europe, would have to be treated as a spring wheat.

In point of actual botanical priority, however, the name T. aestivum should be given to both spring and autumn wheats; in other words, to all the wheats that by Lamarck were called T. sativum, and by Villars T. vulgar.

According to some writers, the assemblage of the so-called true wheats has been evolved from T. monococcum (Vilmorin, l.c. 21, t. 156), a plant indigeneous to Servia, Asia Minor, the Crimea and the Caucasian area of Mesopotamia. As its botanical name implies, it is characterised by the presence of but a single seed within the little ear, and its other structural characters place it as a form of spelt rather than of wheat proper; indeed it is often called ‘small spelt.’ It has a pale green colour and a flat, short ear. It is, however, still cultivated in Spain, and more rarely in France and Germany. The grain is not often used for bread, but rather for mush, and the plant is valued as a cattle fodder. The yield is said to be from 25 to 35 bushels an acre. Vilmorin would appear not to have been successful in his attempts at crossing this with other wheats. Moreover, Hackel and most modern authors regard it as quite unconnected with the true wheats, and entirely infertile with them. Hackel accordingly refers the important grain-yielding forms of Triticum (apart from Elytrigia), to the following chief forms: T. monococcum, T. sativum and T. Polonicum. Having isolated T. monococcum by itself, he considered that under cultivation many races have been produced, of which those with the rachis articulated are most probably nearest related to the original stock, whatever that may have been. The brittle-

1083
THE WHEAT PLANT

TRITICUM VULGARE

Races:

Sativum Spelta.

ness of the rachis exists, however, in different degrees, and is correlated with the more or less firm closing of the glumes. Hence he isolates the forms of T. sativum into:

(A) Rachis articulated at maturity and grain firmly enclosed by the glumes:
(a) spikes loose, almost four-sided = T. sativum, var. spelta, and (b) spikes very dense, laterally compressed = T. sativum, var. dicoccum (= T. aestivum, Series, also Vilimorin, l.c. 21, tt. 152, 154). Two-grained spelt is grown in certain parts of Southern Europe and is sown in spring. Its grain is used chiefly in the manufacture of starch.

Both the forms (or groups of forms) thus indicated approximate closely to T. monococcum, however, and according to De Candolle and other writers, that species may be the ancient form of the spelt wheats (Spelta and dicoccum just mentioned).

Spelt wheat (T. Spelta, Linn., Vilimorin, l.c. 20, 146, 148, 150) is, in fact, one of the oldest grains, and there are awned and awnless, hairy and glabrous, also white, grey and reddish-coloured forms of it. It was in ancient times the chief grain in Egypt and Greece and was cultivated everywhere throughout the Roman Empire. Its cultivation has been largely discontinued, and, except in Northern Spain, is unimportant in Europe. In India its cultivation is met with from Sind to Mysore, especially in Bombay. Apparently the first definite intimation of the existence of this wheat in India was made by Buchanan-Hamilton, and subsequently by myself in the Journal Royal Agricultural Society of England (1888, xxiv., 30–8). A long and interesting account of it was published by the late Mr. E. C. Ozanne in the Statistical Atlas of Bombay (an account reprinted by Lisbon, List. Bombay. Gras., etc., 1896, 129–30). It is known in India as kapite (or kaphit), a name which is said to denote the difficulty experienced in separating the grain from the husk. It is also called by other names, such as jod, hette godhi, and pamban. Its value lies very largely in the fact that it is grown during the kharif season, all the other wheats being rabie crops. Hamilton speaks, however, of two seasons of cultivation in Mysore. It can be profitably raised on poor soils, where the other wheats could not be grown. Its demands, says Hackel, are less, its liability to disease lower, and the grain being firmly retained within the glumes, makes it proof against the attacks of birds. According to Hamilton, T. monococcum (sace godhi) and T. spelta are the two wheats of Mysore, and Mollison, in the opening paragraph of his article on wheat (Textbook Ind. Agr., 1901, iii., 24), mentions T. monococcum as a wheat "said to be cultivated." (See Mysore below, p. 1099).

Polonicum.

In this place it may be useful also to dispose of T. Polonicum (Vilimorin, l.c. 20, and t. 144)—Polish wheat. It is a very striking species with large compressed, mostly bluish-green (glaucescent) spikes, readily distinguished by its empty glumes, which may be one inch long and enclose all the flowers of the spikelets. Hackel suspects that it is, perhaps, not a true species, but may have been contaminated by culture. But Poland is, however, by no means its native country. Perhaps Spain, where it is still cultivated on a large scale, has a stronger claim. It is also met with in Italy and Abyssinia, but apparently is not grown in India. It much resembles in its long and slender fruit some of the forms of rye, and is in fact, often sold under the name of Giant Rye.

This leads now to the consideration of Hackel's group—

(B) Rachis not articulated at maturity, grain visible between the open fruit glumes and thus readily falling out. This he distinguishes as T. sativum, var. tenax, which he further says is referable to four imperfectly characterised races. These may be indicated thus:

1. Empty glumes distinctly keeled on the upper half, rounded below:
 a. Spikes long, more or less loose in T. sativum, race vulgare (Vilimorin, l.c. tt. 28–122).
 ** Spikes short, dense, distinctly four-sided in T. sativum, race compactum.

2. Empty glumes, sharply keeled at the base:
 *** Fruit short, thick, not compressed in T. sativum race turridum (Vilimorin, l.c. 18, tt. 28, 130, 132, 134).
 **** Fruit oblong, narrow, somewhat laterally compressed and acute in T. sativum, race durum (Vilimorin, l.c. 19, tt. 136, 138, 140, 142).

Races:

Vulgare.

The race to which Hackel thus restricts the name vulgare embraces numerous forms, such as awnless and bearded, naked and hairy, white, bluish and reddish spikes. It is perhaps one of the oldest of the modern wheats and the most valuable in Europe, America, India and Australia. Several hundred forms
of this wheat have been described. They are commonly grouped into red and white. The white, as a rule, requires a good soil and a dry climate. The red can endure much wet weather, but the red and white forms are interchangeable with altered environment. A better classification is perhaps into beardless and bearded forms.

The race compactum—the dwarf or hedgehog wheats (the latter name being given to the awned forms)—is cultivated in the Austrian Alps, Wurttemberg, Alsace, Switzerland, Chili, Turkestan and Abyssinia. They are specially adapted to stormy regions, and are at the same time profitable on soils where other wheats could not be grown. They have short stiff straw.

The form to which the name turgidum or Rivet Wheat has been assigned is generally designated English Wheat on the continent of Europe. It has dense, four-sided spikes, the leaves are broader than in vulgare and usually velvety, and it affords long, rigid, nearly useless straw. The grain is generally red-coloured, short and thick, with a blunt apex. It is rich in starch but poor in gluten, and for bread-making the flour has to be mixed with more glutinous wheats. This class of wheat is largely grown in the Mediterranean countries, more rarely in England and Germany. English wheat gives a good harvest, but the flour is poor in gluten and usually greyish in colour. The so-called Miracle Wheats (Egyptian wheats) constitute a sub-race under compositum and have branched spikes.

Lastly, the race or group of forms designated durum comprehends all the hard spring or flint wheats—the Macaroni Wheats. They are recognizable by their long, bristling awns, almost solid culms, very hard, pointed, usually vitreous, rarely mealy grains, and often black awns. Cultivated in the Mediterranean countries and Asia Minor, and are most important in Spain and Northern Africa. The grain is specially rich in gluten, hence their being largely used in the manufacture of macaroni.

At the third Hybrid Conference held in London in 1906, Philippe de Vilmorin of Paris put the position regarding the origin of the forms of wheat thus: "When my father began, in 1878, cross-fertilization between the different types of wheats, the object he had in view, and which he fully proved, was that all our wheats—with the exception of Triticum monococcum—came from one and the same common origin. In consequence of his experiments, he was able to base his argument on two well-proved facts, namely: (1) that the six species (T. sativum, L., T. turgidum, L., T. durum, Desf., T. Paloiniun, L., T. Spelta, L., and T. amylaceum, Stirling) of cultivated wheats can be crossed amongst themselves and give products indefinitely fertile. (2) That on crossing any two of these six, the other four may appear among the results."

Only the briefest possible abstract has been attempted in the foregoing observations regarding the classification of the varieties and races of wheat usually adopted by writers on this subject. The student who may wish fuller details should consult Körnike and Werner (Handbuch des Getreide baues, 1885, ii., 209-529), where it will be seen several hundred forms are discussed.

Practical Aspects.—From the study of an extensive series of Indian specimens sent to London, some years ago, the late Dr. Forbes Watson propounded the following classification:—(1) white, soft; (2) white, hard; (3) red, soft; and (4) red, hard. The vernacular term pisi usually denotes soft wheats, and these are the wheats chiefly exported from India. To a certain extent these four groups are cultivated side by side in the same district, but on the whole a geographical isolation may be perceived. Northern India, for example, produces mainly soft wheats, while Southern India and Bengal grow mainly hard forms. The cultivation of the finer
qualities of soft wheats would appear to be for the most part comprised within the upper basins of the three great rivers—the Ganges, the Indus, and the Nerbudda. South of the Nerbudda, the true soft wheats may be spoken of as very nearly unknown. The prevalent wheats of the United Provinces and of some parts of Bihar and Tirhut are soft white, and of the Panjab soft red. Some years ago the late Col. Wace estimated that out of the 7 million acres of wheat then in the Panjab, 5 million were under soft red wheats. But the soft red extends farther to the south than the soft white. Hard wheats predominate in the Deccan, Berar and some parts of Bengal, and the less valuable form, hard red, extends farthest to the south, and is the only wheat capable of cultivation in the moist climate of the lower Gangetic delta, in Orissa and in Burma. In many parts of the Bombay Presidency, south to Mysore and Madras Presidency, an extremely hard red wheat becomes prevalent, namely that already mentioned under the name spelt.

Bengal. Prain (Note on Races of Beng. Wheat, in Dept. Land Rec. and Agri., l.c.) discusses the value of the characters based on the consistence of the grain—the hard and soft; also the distinction according to colour—white and red; and lastly, the condition of bearded and beardless grains. He finally comes to the conclusion that little reliance can be placed on such distinctions taken by themselves. He, however, points out that white or grey wheats, whether soft or hard, have, as a rule, distinctly broader leaf-blades than have the red wheats, and adds that in Bengal the wheats grown are practically all bearded. Summing up his observation of these aspects, Prain comes to the conclusion that Watson's classification, which combines consistence and colour of grain, is of practical value. The soft white wheats of Bengal are called *dukhia*; the soft red wheats, *jâmâl*; the hard grey wheats, *gangájuli*, and the hard red, *khari*. Mukerji (Handbook Ind. Agri.) mentions fifth and sixth forms, namely *puusa* and *nangia*.

In the United Provinces the *daudi* wheat is spoken of as the finest. *Mundia* denotes a white, soft wheat of good quality, which is beardless. This wheat is met with here and there: thus Russell alludes to it in his Gazetteer of Damoh as grown in embanked fields, since it requires more moisture and is less liable to rust than the bearded wheats. The account given by F. G. Sly of the wheats of Hoshangabad (Rept. Land Rev. Settl., 1891-1905, 26-7) is probably more or less applicable to the whole of the Central Provinces. "The principal kinds of wheat grown are *pissi*, soft and starchy, white; *jalalía*, hard and glutinous, white; *daudia*, soft and starchy, white; *sakaria*, soft and starchy, white; *kathia*, hard and glutinous, red; and *bansi*, hard and red. All kinds are bearded, no beardless wheat being grown, which cultivators say is because birds attack it more freely. At present no less than 80 per cent. of the wheat sown is *pissi*, whereas at last Settlement *pissi* is described as an inferior kind, little sown, *jalalía* and *kathia* being grown in about equal proportions. This remarkable change has been brought about by the export trade, *pissi* being in the greatest demand. *Jalalía* is still preferred for home consumption, because it makes better *suji*. The cultivation of white soft wheats in most provinces of India has greatly expanded with the foreign demand.

G. A. Gammie (Provis. Class. of Ind. Wheats, l.c.) subordinates the characters based on the consistence and colour of grains to the presence
HYBRIDISED AND PEDIGREE

or absence of a beard. He forms six sections:—two of which are beardless and correspond, he says, to *T. hybrorum, Linn.* (l.c., t. ii., iii., iv.). These would appear to be for the most part white wheats both soft and hard, though one of them, the *jonaria* group, is described as hard red, and the illustration shows it to be shortly bearded (certainly not beardless). Gammie’s third section he designates as the *kali kushal, bakshi* or *kakho* wheats, which he identifies with *T. pilosum* (l.c. t. v.). In these, the spikelets are velvety, bearded, and the grains described as hard white, yellow or red. The *bakshi* wheats are almost confined to Bombay, more especially the Deccan, and are not met with in the Konkan. Then the fourth and fifth sections are also bearded wheats, which Gammie regards as being forms of *T. aestivum, Linn.* The former he calls *popatia* wheat (l.c., t. vi.), a form met with mostly in Bombay and the Central Provinces, and possessed of hard yellow or hard red grain. The latter he designates the *daudkhani* wheats (l.c. t. vii.): these are shortly bearded and the grains soft white, hard white or hard red. They are met with in the Panjâb and, Gammie says, may be viewed as the transitional forms between the long bearded and beardless wheats. Lastly, his sixth section (l.c., t. viii.) embraces the various forms of *khapli* already discussed (p. 1084). These, he says, are awned and have a covered, hard red grain. An American correspondent of Gammie’s, it would seem, had identified the Bombay *khapli* to be the same as *Emmer* wheat of Siberia—"a variety used to transmit rustproof qualities." But in 1903, Gammie tells us, the *khapli* "became decidedly rusted, so that it has now lost its long maintained reputation of immunity."

Hybridised and Pedigree Wheat.—The improvement of the stock of wheat has for many years been recognised as an essential feature of rational cultivation. Recent research would seem to show, however, that not only better but more immediate and more enduring results are likely to be attained by hybridisation of stock than by the tedious process of selection that hitherto has resulted in what are known as pedigree wheats. It is, in fact, not enough to know the species and varieties of *Triticum*; it has become imperative to be able to recognise the races and to successfully cross these in directions ascertained to secure the fixation of properties of value in direct adaptation to environment. For example, the property of certain flours, known technically as "strength," that is to say the capacity to afford a large loaf, has been established as a racial characteristic that may be secured by the adoption of certain stocks, or by their utilisation in hybridisation. At one time it was assumed that strength was due to manuring, to methods of cultivation, to soil and climate, or to season of reaping, but each and every one of these opinions have been tested and found unconnected with the production of "strength." All English wheats are admittedly deficient, but Red Fife Wheat (among others that might be mentioned) has been found not only to possess that property, but to preserve it when grown in England, and to transmit the same when employed in crossing with standard English wheats, such as Golden Drop. [Cf. Hall, in *Journ. Board Agri.,* 1904, xi., 321–33; *Rept. Confer. on Genetics, Roy. Hort. Soc.,* 1906, 384.] In a brief note by Howard (*Agri. Journ. Ind.*, 1906, i., pt. iv., 401–3) it is very properly urged that the first step towards improvement is to secure uniformity. He has accordingly pointed out that in India it is not uncommon to find wheat not only grown mixed with barley, gram and other such

1087
crops, but to discover several distinct races of wheat mixed in one and the same field.

Properties and Uses.—The methods of employing wheat for human food in India vary somewhat in the different provinces. From the grain, three chief kinds of flour are made, viz. suji, maida and atta. The first is a granular meal obtained by moistening the grain overnight, then grinding it. The fine flour passes through a sieve, leaving the suji and bran above. The latter is got rid of by winnowing, and the round, granular meal or suji remains. This preparation may be described as a form of semolina, and is most easily produced from the hard wheats rich in gluten. It is employed in confectionery, and in place of oatmeal in making a kind of porridge. The hard white wheats are also valued in the preparation of macaroni. Maida and atta may be prepared from the flour separated in the preparation of suji by regrinding it and passing it through a finer sieve than used formerly, the finer flour that passes through being maida and the coarser atta. They are, however, most largely prepared without going through the process of separation of suji, the dry grain being at once ground and sifted into the two qualities. Maida is the luxury of the rich while atta is the flour of the poor and is generally cooked in the form of coarse cakes—chapattis—toasted by the side of an open fire. These are eaten along with dal and ghi or other relish, and constitute the chief food in the wheat-consuming tracts of India. In many localities, however, the atta is not obtained from pure wheat but from a mixture of wheat-barley or wheat-gram, the two grains being ground in the mixed form—a habit that has led to cultivation of the mixed crops already alluded to and also to the sale of the mixed grains, a condition by some persons incorrectly regarded as deliberate adulteration. In the larger towns of India, bread and biscuits, prepared from flour leavened and baked in the European fashion, have come greatly into use and seem destined to even more general consumption. But the fermenting of wheat flour in the manufacture of bread seems to have been unknown prior to the advent of the Europeans. The uses of wheat in the arts and medicine need hardly be detailed. Wheat starch is, as a rule, too expensive for extended use in India. Like that of rice, the gluten mixed with fine lime is employed as a special cement.

For microscopical results consult Hanusek (Micro. Tech. Prod. (Winton and Barber, trans.), 1907, 37, 334–49).

Adulteration of Indian Wheat.—The opening of the Suez Canal brought India into direct touch with Europe and demonstrated the possibility of Indian wheat and other foodstuffs being conveyed to Europe in thirty days. Prior to 1870, no mention occurs of India’s participation in the world’s supply of wheat. And when it did appear in the corn markets of Europe, it was viewed by many as introducing an undesirable disturbing element which it became necessary to ward off rather than to encourage. The delusion that rice was the staple food of India, and, therefore, her chief agricultural (food) crop, seems never to have been more rudely dispelled than by the emphatically demonstrated fact that India not only grew wheat, but was prepared to contest certain markets and to land special wheats at a price lower than they could be produced elsewhere. This was first met by the outcry that, for greed, the better classes of the community were exporting the surplus stocks that formerly were stored against times of scarcity and famine. When this failed, the tendency to uncleanly wheat, instead of being removed by emulation, was stereotyped
ADULTERATION OF INDIAN WHEAT

into "refraction"—in other words, percentages of impurity were standardised as unavoidable and therefore permissible, below which no enhancement of price was paid but above which deductions were authorised. The practical effect of this system was the payment of freight on mud and the charges for cleaning in Europe, both of which told against India's success as a wheat-supplying country for Europe. Viscount Cross, at a meeting held at the India Office in 1889, pointed out that an enormous amount of dirt was in this way imported annually and freight paid on it as if it were wheat. Assuming an average of 3 per cent. adulteration, that would come, on the 1905-6 exports of wheat conveyed to the United Kingdom, to half a million cwt. of mud, on which freight and other charges had to be paid. Voelcker (Improv Ind Agri, 277-8) and others have shown that this state of affairs is in no way due to bad cultivation nor to careless threshing on the part of the Indian cultivators, but is entirely a consequence of deliberate adulteration to suit the requirements of the English corn trade. A similar state of affairs characterised the American wheat trade, since the wheats that first came into Europe contained as much as 10 per cent. of prairie oats, rye and other impurities. It was sold on a standard of "fair average quality" (f.a.q.). But the American producers soon saw the necessity for reform and turned out a clean wheat, and were thus able to establish the standards of sale on their own side of the Atlantic. So far, India has failed to attain that position, though more than one effort has been made to remedy the evil of adulteration both by the Government of India and the Indian merchants.

In an official dispatch, dated November 29, 1906, the Government of India sum up the present position and then add that "The replies received have been considered, and the Government of India now feel justified in announcing for general information that, if buyers of Indian wheat desire to obtain regular supplies containing not more than 2 per cent. of impurities (that term covering all foreign matter other than food-grains) the mass of Indian shipments can be made on that basis."

By the opponents to reform, it has been upheld that Indian wheat is of necessity less pure than the wheats of Europe, America and Australia, due to the imperfect methods and appliances of the Natives; that accordingly it has to be washed, and may as well contain 2 per cent. impurity as one. But if the shippers are prepared to do the cleaning in India, a saving in freight would be effected that might go a long way toward covering the cost of cleaning and, moreover, Native methods might easily be improved. The demand for pure wheat to be made by the buyers in Europe would accordingly seem the natural and only solution of the present anomalous state of affairs, if the further position be not upheld as the ultimate result of the controversy, namely the expansion of the milling interests of India and the export of flour in place of grain (see p. 1101).

Seeds found in Wheat.—The seeds obtained during Indian wheat screenings are gram, polygonum, rape and piazi—the last being a species of Asphodelus, which in the Panjab is often very prevalent in the wheat-fields—especially in the Jhelum districts—and to such an extent as to give much trouble to the cultivators. [Cf. Howard, Agri. Journ. Ind., 1907, i., pt. iv., 403-5; ii., pt. ii., 210.]
CULTIVATION.

Range of Seasons and Crop Adaptations.—The antiquity of wheat cultivation in India can be at once realised by the evident direct adaptations of the forms of the crop grown to the varied conditions of soil and climate under which produced. As indicative of this wide range of racial adaptations to climatic and other conditions, the following passage from a paper written by me on *The Crops and Climatic Conditions of India* (Agri. Ledg., 1895, No. 3, 38) may be here given:—"As a result of these considerations we have the startling state of affairs that a journey from one extreme of India to the other may reveal the cultivators engaged in every stage of the operations connected with certain crops, such as preparing the soil, sowing, watering the advanced crop, reaping, threshing and carrying the produce to market. For example, were the journey made in June from the Panjáb to South India, the cultivators would in the north be found engaged in the early preparation of the land, for the crop to be sown in September to December; in mid journey they would be seen tending the mature kaplé wheat of the Konkan; and in Mysore and some parts of Madras Presidency, they would be found sowing wheat—a crop that will be harvested in September and thus practically at the very time that the great wheat crop of Northern India is being only sown." In general terms it may be said wheat cultivation increases on passing to the north, in other words, on leaving the humid atmosphere and inundated soils of the south. Indian wheat as a whole might, moreover, be spoken of as comprising a varied assortment of winter wheats, that is to say, the bulk of the Indian crop is sown in autumn and reaped in spring (rabi crop), but except on the hills it has rarely to pass through a winter of frost, so that from the climatic standard the Indian wheats might rather be spoken of as spring wheats. Frosts are, however, not unknown, and often do much harm as the grain is ripening. But unlike the spring wheats of Europe, the Indian crop may in general terms be said to ripen with an increasing, not a decreasing temperature. That is to say, from January onwards the approach is rapidly made to the hot season, and by April and May the hottest temperatures of the year are usually recorded. This circumstance, so dissimilar from that of most other wheat-producing countries in the world, may have much to say to the "ricey" character attributed by the trade to the Indian wheats as a whole.

Yield.—The seed is ordinarily sown in October and ripens in three and a half to four months—a good average crop would be about 800 lb. to the acre. But there may be said to be two subordinate groups, namely dry-crop wheats and irrigated wheats. The increased facilities of canal irrigation account largely for the recent expansion of the area and production of irrigation wheats in the Panjáb. The possibilities of the future in this direction cannot by any means be regarded as definitely established. Irrigation wheat on land liberally manured may yield from 1,200 to 1,600 lb. an acre.

Rotation. Associated Crops.—To a large extent wheat is in India interchangeable with other rabi crops, such as linseed or gram, and it is accordingly rotated with these and may be sown alone or mixed with barley or gram or with intervening rows of mustard or safflower. The value of a rotation with leguminous crops is fully understood by the Indian cultivator and universally taken advantage of all over the wheat area. Recently Howard (ib. ii., pt. ii., 210) has pointed out that in the Eastern Panjáb it is

AREA OF PRODUCTION.—The chief wheats exported from India are the Muzaffarnagar soft white (duddhi) and the Bombay and Central Provinces hard white (bakshi) above indicated, but the wheats most popular within India itself are those produced in the Panjāb. With the vast majority of the people of India wheat is not, however, a necessity of life; it is indeed rarely if ever eaten by them. Wheat becomes an important article of food in the Panjāb only. In India as a whole, therefore, its cultivation is governed more by external than internal considerations. When the markets of Europe give indications of profit, its cultivation is immediately increased. But the mere fact of a definite proportion of this foodstuff being produced as an article of export (far from being a source of danger) is of the very greatest value to India, since, when the necessity arises, exports can be stopped by increased local demand and a new source of food thereby rendered available. It is not to be wondered at, therefore, that exceptionally good harvests in Europe and America are immediately followed by lessened cultivation in India. The effect of famine on wheat exports may also be clearly demonstrated:—The exports for the ten years ending 1899–1900 averaged 12½ million cwt.; in 1900–1, a year which followed a serious famine, the exports were only half a million cwt., and two years later (1903–4) they expanded to 26 million cwt. If wheat displaces any crop it would be cotton, certainly not the food-grains of the people. Few cultivators are likely to be found so ignorant as to grow the millets on the rich lands on which alone wheat and cotton can be successfully produced. The best lands have always been devoted to rent-paying crops, that is to say, to export crops—such as oil-seeds, wheat and cotton—and only during times of famine would these lands be thrown under the millets and other necessitous food crops.

From these and such like considerations it may readily be understood that the area in India (British and Native States) normally under wheat manifests extreme fluctuations. Thus in 1891–2 it was 27,032,772 acres with a production of 6,093,741 tons of wheat; in 1893–4 it stood at 28,716,735 acres with 7,268,982 tons; in 1895–6 it had fallen to 24,071,320 acres with a production of 5,380,342 tons. Then it rose in 1898–9, and in the very next year, 1899–1900, fell to 18,687,782 acres with 5,357,142 tons. For the three succeeding years it fluctuated around 23 million acres, and in 1903–4 suddenly expanded to 28,413,743 acres with 9,641,145 tons; and in 1905–6 stood at 26,226,200 acres with a production of 8,560,340 tons. The Final Memorandum for 1906–7 estimates the area at 29,444,200 acres, but the yield at only 8,508,040 tons.

The provincial distribution of these acreages may now be discussed. The Panjāb (including the North-West Frontier Province) heads the list with its lowest area (in recent years), namely 6,223,600 acres in 1891–2, and its highest record, 10,184,200 acres in 1906–7, with a production of 3,588,100 tons. During the past six years it has shown an average of over 8½ million acres under the crop, and has manifested on the whole a steady expansion. Then follow the United Provinces, which normally fluctuate between 6 and 7½ million acres. The Central Provinces stand next in order, with a normal area of from 2 to 3 million acres and Berar adding about half a million more. Then comes Bombay with from 1½ to 2 million
acres, while SIND and its Native States add to the Bombay Presidency about half a million more acres. Lastly Bengal (including Eastern Bengal) normally possesses about 1¼ million acres. Except in the Panjáb, therefore, the area in the other provinces cannot be regarded as giving any indication of expansion.

The Native States have collectively about 5 million acres under wheat. The Final Memorandum issued by the Commercial Intelligence Department estimates their area for 1906–7 at 5,176,000 acres, with a production of 1,048,540 tons. The largest proportion is in Hyderabad and Rajputana, which each have on an average 1 million acres, while Central India has approximately 2 million acres. Included under these areas mention may be made of Gwalior, which during the past five years has had from 298,872 to 726,674 acres under the crop: Bhopal in 1905, 419,766 acres; Indore, 287,681; Bandelkhand, 215,468; Bhagalkhand, 289,128 acres; and, lastly, Kotah has annually from 100,000 to 300,000 acres of wheat.

Panjáb and North-West Frontier.—One-third of the total cropped area of the Panjáb is usually under wheat, an area which represents about 29-3 per cent. of the total wheat area of British India. According to the Agricultural Statistics, the actual wheat area in the Panjáb in 1904–5 was 7,681,700 acres and in the North-West Frontier 821,586 acres, the yield having been 3,122,900 tons. In 1905–6 the total area for the two provinces was 9,596,700 acres and the yield 3,790,000 tons, while the Final Memorandum for 1906–7 estimated the area and yield, as already mentioned, at 10,184,200 acres and 3,588,100 tons. As representative of distribution, it may be added that during 1904–5 the following districts in the Panjáb had each over 300,000 acres of wheat:—Lyallpur, 591,818; Ferozpur, 565,433; Lahore, 438,360; Attock, 407,768; Siálkot, 396,837; Gujránwála, 363,367; Amritsar, 350,397; Sháhpur, 342,483; Gurdáspur, 330,586; Jhelum, 325,793; Gujrát, 310,725; and Multan, 305,051. In the North-West Frontier the areas are smaller, the chief being—Peshawar, 299,347 acres; Bannu, 209,136; and Hazara, 122,068.

The crop is sown on what are known as *rausi* and *rohí* lands; the former are light, easily pulverised loams, very prevalent in Upper India; the latter, rich well-drained soils approaching what is known as *dákár*. *Dákar* proper is as a rule too heavy and not sufficiently drained for wheat. The crop occupies the soil for about six months—the first sowings are made by the middle of October, and the harvest operations are completed by the latter end of May. The systems pursued vary to some extent locally, but mainly in consequence of the nature of the soil and source of water supply. The following particulars derived from *Hoshiarpur District Gazetteer* (1905, 93–5) is representative of the Panjáb generally. The common wheat grown is a reddish bearded variety called *káthi*, the kind most commonly used for mixtures with gram and other crops. The number of ploughings given to wheat varies according to the crop that precedes it. If it follows maize, the time for ploughing is short, and not more than three or four can be given. If the two-year course is followed, continuous ploughings can be given for ten months; but even so, the majority of farmers do not plough more than eight or ten times. The best time for sowing is from the middle to the end of October, but wheat can be sown up to the end of December. In the riverine villages the land is often not dry enough to sow till November, and if the seed is sown too early it is eaten by a small grasshopper called *toka*. The subsequent
THE WHEAT PLANT

operations are simple. The field should be occasionally weeded in
November and December. After December, nothing need be done be-
sides the protection of the crop from stray animals till it is ripe in April.
About the middle of April is the proper time to begin reaping the wheat
harvest."

Seed to Acre.

"The quantity of seed used is half a maund per acre, but a good deal
depends on weather conditions at the time of sowing, and also on the
class of soil. The average outturn varies much from tract to tract. Ex-
tensive crop experiments were carried out for five years during the First
Revised Settlement, and the results seem to show that in the best plains
Tahsilis, the average produce is 8 to 9 maunds an acre; in Dasiya
about 7 maunds; and in the hills only 4 maunds."

Yield.

Of course the difference is enormous between the outturn of the best land, highly
manured, 12 to 14 maunds, and that of the poorest sandy soils or badly
manured land, 6 to 9 maunds. "In the light soils of Kandi the yield
falls in bad years to 3 or 4 maunds per acre."

Averages.

According to the Agricultural Statistics, the average yield per acre
in the Panjáb for a period of five years ending 1901-2 was 935 lb. irrigated
and 642 lb. unirrigated land, and in the North-West Frontier, 883 lb. on
irrigated and 563 lb. on unirrigated. In the Panjáb the largest yields were
obtained in Gurdás pur, Amritsar, Jalandhar, Ferozpur, Delhi, Ludhiana,
Lahore, Ambala and Mianwali; and in the North-West Frontier in Dera
Ismail Khan, in all of which average yields of over 1,000 lb. (12½
maunds) per acre have been recorded on irrigated lands.

[Cf. Wace, Panjáb Wheat (Panjáb Govt. publicat.), 1884; Dist. Gaz.; Repts.
Lahore; Howard, Weeds in Panjáb Wheat Fields, Agri. Journ. Ind., 1906, i.,
403-5.]

U. Prov.

United Provinces.—The crop is very important in these provinces,
ordinarily occupying about one-fifth of the net cropped area, an amount
which on an average of the five years ending 1904-5, represented 27-9
per cent. of the total wheat area in British India. According to the
Agricultural Statistics, the area in Agra in 1904-5 was 5,533,542 acres
and in Oudh 2,197,224 acres, giving a total of 7,730,766 acres. The
outturn for the same year was estimated at 1,897,000 tons. In the Final
Memorandum on the crop for 1906-7, the area is stated to have been
in 1905-6, 6,478,900 acres and the yield 2,428,700 tons; and in 1906-7,
7,039,100 acres and 2,164,500 tons. In Agra the largest areas are usually
in the Meerut and Rohilkhand Divisions. In the former, Meerut district
had 383,916 acres in 1904-5, Saharanpur 355,272 acres, Muzaffarnagar
276,864 acres, Bulandshahr 258,377 acres, and Aligarh 229,100 acres;
in the latter (Rohilkhand Division), Moradabad had 383,555 acres, Budaun
344,345 acres, Shahjahánpur 276,703 acres, and Bareli 222,895 acres.
In Oudh—Lucknow Division—Hardoi had 320,938 acres, Sitapur 269,836
acres, and Kheri 221,264 acres. In Fyzabad Division, Gonda had 277,487
acres, and Bahrain 247,823 acres.

No general statement regarding cultivation has been published since the Field and Garden Crops appeared, but the annual reports of the Cawn-
pore Experimental Farm and the bulletins issued by the Agricultural
Department contain much valuable information, especially regarding
the experimental manuring of wheat. The crop is entirely a rabi one,
being sown at the end of October or beginning of November, and cut
in March and April. According to Duthie and Fuller, it is grown on
almost every soil, except the lightest sands, but a rather heavy loam is considered best. The better class of wheat-fields are manured every second or third year, and the land is sometimes prepared by herding sheep on it. As a rule, wheat is sown only on land that has lain fallow during the preceding kharif (known as chaumás or píral), but in highly manured lands near village sites it occasionally follows maize. No particular rotation is known to be pursued, but in tracts where cotton is widely grown, wheat is generally said to follow. In the Meerut district an elaborate rotation is practised in which wheat is grown only twice in five years. On an average the land is ploughed about eight times before sowing. The seed rate is said to vary from 100 to 140 lb. per acre. After sowing, the field is divided into irrigation beds. If the soil is sufficiently moist in October to allow of the seeds germinating properly, the necessity for irrigation will depend on the occurrence and extent of the winter rains. Should the soil be too dry for germination, a watering (called paleo) is given before sowing. As a rule, three or four waterings are said to be ample even in the driest localities. As regards outturn, it has been estimated that 15 maunds per acre for wheat grown alone, as also for wheat-barley, and 13 maunds for wheat-gram, are the lowest averages which could be taken. According to the Agricultural Statistics, the average yield for the whole province for the five years ending 1901-2 was 1,250 lb. (15 maunds) per acre for irrigated wheat, and 800 lb. (9-75 maunds) per acre for unirrigated. The largest average yields during that period were obtained in Bulandshahr and Bahraich, viz., for irrigated wheat, 1,300 lb. per acre, and in Bahraich and Naini Tal, viz., for unirrigated, 1,050 lb. and 1,000 lb. respectively.

Central Provinces and Berar.—In these provinces wheat occupies about one-eighth of the total cropped area, a figure that represents 11% per cent. of the total wheat area of British India. The actual area in 1904-5, according to the Agricultural Statistics, was 3,070,421 acres in the Central Provinces, 427,236 acres in Berar, and estimated yields 751,900 tons and 80,000 tons. The Final Memorandum on the crop for 1906-7 states the combined area and yield to have been in 1905-6, 3,443,800 acres and 834,400 tons; and in 1906-7, 3,689,800 acres and 904,700 tons. According to the figures for 1904-5, the districts with largest areas expressed in acres in the Central Provinces were Hoshangabad, 424,588; Jabalpur, 362,354; Satpura, 332,788; Seoni, 261,674; Nagpur, 214,258; Chhindwara, 197,767; Damoh, 191,511, etc. In Berar—Buldána, 145,582; Básim, 98,862; Amraoti, 67,429, etc.

The system of cultivation is practically the same as that pursued in the heavy black soils of Bombay (see below). Unlike the United Provinces and Panjáb, manure and irrigation are here unimportant. For ordinary wheat cultivation, preparatory operations commence in April or May and the field is ready for sowing by October. The seed rate varies from 80 to 120 lb. per acre. The crop is left entirely to itself till
harvest in the beginning of March. A different system is pursued in a tract of country which includes a considerable portion of the Jabalpur and a small portion of the Narsingpur and Seoni districts. The fields are surrounded with banks, and rainwater is allowed to accumulate in them. The water is let off at the beginning of October, and the seed is then drilled in without any preliminary preparations. The average outturn for the province for the five years ending 1896–7, according to the Agricultural Statistics, is estimated to have been 925 lb. per acre for irrigated wheat, 570 lb. for unirrigated. Returns for irrigated wheat are given only for Betul, Chhindwara, Nagpur and Nimar.

The method of cultivation pursued in Berar differs but little from that in the Central Provinces. It is sown in October and reaped in February, and is cultivated in rotation with other crops. The Agricultural Statistics give an average yield, for a period of five years ending 1901–2, of 687 lb. per acre.

[Rajputana and Central India.—The returns published annually in the volume of Agricultural Statistics would appear to give actual areas for which definite surveys have been made. The figures, on the other hand, published by the Commercial Intelligence Department would appear to be forecasts and estimates. According to the former, the area in 1904–5 in Central India and Rajputana (viz. Gwalior, Jaipur, Bikanir, Marwar, Tonk, Alwar, Kishengarh, Bharatpur, Jhalawar and Kotah) came to 1,277,872 acres, with Ajmir-Merwa adding 17,167 acres. According to the latter (the Commercial Intelligence Department), particulars of other States are afforded, and thus manifest larger areas, viz. 2,171,019 acres in Central India and 1,023,773 acres in Rajputana, with yields of 472,658 tons and 188,981 tons respectively. Accordingly, if we accept the areas given in the estimates for Central India and Rajputana as approximately correct and add to them the area for Ajmir-Merwa from the Agricultural Statistics, we would obtain a total of 3,211,959 acres under wheat in 1904–5. The Final Memorandum on the crop for 1906–7 states the area to have been in 1905–6, 1,552,100 acres with a yield of 420,600 tons in Central India; 604,000 acres and 145,000 tons in Rajputana; and in 1906–7, 2,895,000 acres and 639,800 tons in Central India; and 810,000 acres and 215,000 tons in Rajputana. In Central India the most important districts are Gwalior, Bhopal, Indore, Bandelkhand, Bhagalkhand and Bhopawar; and in Rajputana—Kotah, Jaipur, Tonk and Bharatpur.

There is little information regarding cultivation available beyond the facts given above. The climate and soil closely approximate to the Panjáb on the one hand and to the Central Provinces on the other, and the wheats are accordingly similar. In Ajmir-Merwa the best land is said to be selected for wheat, generally near a tank or well. To obtain a full crop, the land is fallowed during the rainy season (June to September), and is ploughed two or three times. Sowing begins about the end of October and lasts till the end of November, the crop being reaped in April. The quantity of seed sown is said to be about 2 bushels per acre, and the outturn, if the crop be manured and irrigated, is about 34 bushels.

Bombay and Sind.—The area in the British districts of Bombay and
THE WHEAT PLANT

TRITICUM VULGARE
Bengal

Irrigation.
Seed Rate.
Outturn.

It should be sown in October, and the seed for dry-crop wheat is always drilled. The rate varies from 40 to 55 lb. per acre. Irrigated wheat, on the other hand, "is sometimes broadcasted, sometimes drilled and occasionally sown by hand in the furrows behind the plough." The seed rate is higher than for dry wheat; "70 to 80 lb. per acre are ordinarily sown, and in the case of spelt wheat in husk, 100 lb." After sowing, the crop requires little attention beyond regular irrigation.

"The outturn of grain varies much with the season. A well-managed irrigated crop produces about 2,000 lb." (24.4 maunds) "of grain and over a ton of straw, whilst a good dry crop will not often exceed 1,000 lb. of grain and about the same weight of straw. 600 to 650 lb. grain per acre probably represent a full average crop in an ordinary year from deep, black soil, cultivated in the ordinary manner."

The cost of cultivating dry wheat in Khandesh, Mollison estimates at Rs. 12-7a. per acre.

Sind.

Sind may be said to be intermediate between Bombay and the Panjâb as regards wheat cultivation. In parts of the country, the methods of cultivation, the nature of the soil and the character of the wheats are similar to those in the Panjâb, but in other parts an approximation to the wheats of Northern Bombay is seen. The Sind wheats are generally said to be superior to those of Bombay, and possess a larger proportion of soft white forms. Most of the Sind wheats are, as in the Panjâb, repeatedly watered or flooded during their growth. A dry crop is, however, raised on lands that are inundated during the rains. For a period of five years, ending 1901-2, the average outturn in Sind, according to the Agricultural Statistics, was 1,066 lb. per acre. [Cf. Monteith, Wheat Cult. in Bombay Pres., Govt. Publicat. Rev. Dept., 1883, No. 505; Lisbon, c. 128-34; Rept. Director Bot. Surv. Ind., 1902, 8; Crop Exper., Bomb. Pres.; Rept. Dept. Land Rec. and Agric.; Exper. Farm Rept., Poona, Manjri, etc.]

Bengal.

Area.

The area in 1904-5 (including Eastern Bengal), according to the Agricultural Statistics, was 1,455,500 acres, which gave a yield of 444,100 tons. This represents only about 2 per cent. of the net cropped area of the province. The Final Memorandum on the crop for 1906-7 states the area and yield in Bengal (excluding Eastern Bengal) to have been in 1905-6, 1,248,300 acres and 396,600 tons; and in 1906-7, 1,402,600 acres and 388,700 tons. The districts of the Patna Division ordinarily contain about one-half of the total area, amounting, in 1904-5 to 746,300 acres, and those of Bhagalpur about one-third, or 422,100 acres in 1904-5. The areas in the other divisions were:—The Presidency, 120,900 acres; Rajshahi, 113,600 acres; Chota Nagpur, 36,000 acres; Bardwan, 14,000 acres, etc. According to the Agricultural Statistics, the average yield has been fixed provisionally at 12 maunds or 284 lb. per acre for the Bihar districts, 101 maunds or 861 lb. per acre for the Bengal districts, and 451 lb. per acre for the districts of Chota Nagpur.

Soils.

Mukerji states that a "clay-loam, easy of irrigation, situated in a dry locality, is the best soil to choose for wheat"; and again, "The best crops of wheat are grown on land mainly brought under canal irrigation." The land should be prepared for sowing as soon as possible after the rains are over. Sowing should be made when cold weather has been established, say, in November. In rocky and laterite soils, sowing should be done earlier, about the 20th or 25th October, or even earlier still if the rains cease in October. About 100 lb. of seed are used per acre, but
Mukerji thinks that is too much and that 50 lb. should suffice. After sowing, the field should be laid out in irrigation beds, and one or two floodings given. One hand-weeding should be done within ten days after the first watering, and two hoeings may be subsequently given. The crop is harvested when the grain is quite ripe. Mukerji estimates the cost of cultivation at Rs. 26 per acre and the value of a crop consisting of 12 maunds grain and 16 maunds straw at Rs. 37-8, giving a profit per acre of about Rs. 11.

Eastern Bengal and Assam.—Wheat is a very unimportant crop in Assam. The area returned for 1904-5 was 10,012 acres, practically the whole being in Goalpara. The Final Memorandum on the crop for 1906-7 states the area and yield in the new province of Eastern Bengal and Assam to have been in 1906-6, 159,800 acres and 50,000 tons; and in 1906-7, 168,700 acres and 44,000 tons. Cultivation in Assam as yet is almost entirely of an experimental nature. An account (Rept. Dept. Land Rec. and Agri., 1904, 20-1) of some of the experiments made in 1903-4 in Manipur and certain localities in Cachar and the Assam Valley is given. "In Manipur," it is stated, "one of the four experiments made gave a very successful result, the yield being no less than 2,140 lb. of grain to the acre," but in the other localities they generally proved a failure. Summarising the experiments, it is said that "wheat will undoubtedly thrive and give a good yield in Manipur; it promises well in the Naga hills, but the people need to be educated to appreciate and tend the unacustomed crop. The same remark applies to Nowgong and Kamrup, and there is a fair prospect of success with wheat in these two districts." The area in Eastern Bengal does not usually much exceed 150,000 acres. Taking Eastern Bengal and Assam together, they may be said normally to possess a wheat area equivalent to 1 per cent. of the total wheat area of British India.

Madras and Mysore.—Wheat is unimportant in the Madras Presidency, and occupied only 15,276 acres in 1905-6. In Mysore the corresponding area was 1,178 acres, and according to the Final Memorandum there were in 1906-7, 4,600 acres. The largest tracts are in Kurnul, Bellary, Kistna, Guntur, Cuddapah, the Nilgiris, Anantapur and Madura. In Mysore, Chitraldrug and Shimoga are the most important districts. A brief statement of Mysore is given in the local Gazetteer (1897, i., 129-30) by B. L. Rice, compiled largely from Buchanan-Hamilton. Two kinds are said to be cultivated, jave godhi (affirmed to be T. monococcum) and hotte godhi (T. Spelta). Rice tells us that in Kolar jave godhi (whatever species it may be botanically) is sown broadcast in May-June, after frequent ploughing, and the crop ripens in three months. In the black clay of Madgiri, jave godhi is also the most common crop. In Sira, when there is a scarcity of water, both jave and hotte are sown on rice-lands. A small quantity of jave godhi is raised near Periyapatna on fields of a very rich soil, from which alternate crops of kadale (Cicer arietinum) and of wheat are taken. Near Narsipur hotte godhi is grown, and there are two seasons for its cultivation, known as hain and kar. When the rains
set in early, the kar season is preferred, because the wheat is more productive and it may be followed by cotton. When the rains are late, the kain wheat is taken after kadale. The cultivation is the same as for the kar crop, only the season is different. In the kain crop the produce is said to be only about one-half of the kar crop (Mysore Gaz., l.c.).

Burma.—The area in 1905-6 was 35,178 acres, all in Upper Burma. The most important district is Sagaing, which had 24,361 acres in the year in question, while smaller areas are found in Kyaukse, Minbu, Mandalay and Lower Chindwin. The subject of wheat cultivation in the Southern Shan States and in Burma is fully discussed by a writer in Capital (Sept. 20, 1906, 587-8; Oct. 18, 749-50), who affords much useful and practical information which deserves careful consideration. He there states that "experimental cultivation with the object of ascertaining whether wheat could be grown as a staple crop was begun as early as 1888-9, and the results tend to show that this crop can be successfully grown in the Upper Chindwin district, the Pyinnama Sub-division of the Yamethin district, in Magwe, Maymyo and in the Chin hills. Wheat also succeeded on the river silts in the Toungoo district in Lower Burma, but the outturn was in every case poor."

The efforts made by A. H. Hildebrand to establish wheat cultivation in the Southern Shan States have been repeatedly told in official publications (Repts. Dept. Land Rec. and Agri. Burma).

The Agricultural Statistics give the average outturn of wheat in Burma, for a period of five years ending 1901-2, as 635 lb. for the province as a whole. Separate returns are shown for Mandalay, Sagaing, Minbu and Kyaukse, and these range from 320 lb. in Mandalay to 800 lb. in Minbu. It has sometimes been affirmed that Burma was to India a great granary. It certainly produces an immense amount of rice, which is mainly exported but of course is available should India require it. That it could similarly afford a large supply of wheat may very possibly be found to turn more largely on the deficiency of labour supply than on defective climate and soil.

MANUFACTURES.—For the minor uses of wheat straw see p. 116. Very little can be recorded regarding the indigenous industries of milling wheat and producing flour. Loaf-bread (p. 1109) is now produced in the larger villages and towns, and in some few localities (such as around Delhi) the baking of biscuits, specially designed to meet the growing demand for imported goods of that nature, seems to be fairly successful and to give promise of a great future. In other parts of India, as for example the towns of Gujarat, the manufacture of macaroni is well understood and fairly largely practised. The use of flour in the production of certain sweetmeats has originated a demand for the commodity. In the Panjab, as already mentioned, wheat becomes the staple food and is consumed in the form of large cakes cooked over the open fire. All over India, therefore, the chakkiswala or grinder may be met with plying his craft, either by employing women to work the ordinary hand-mill (chakki) or, where a fall in the water-level can be obtained (as for example on the hills), by using the water-driven flour mill. But in addition to such indigenous methods, within the past twenty years or so flour mills after the most improved European fashion have been established and very superior flour may now be procured everywhere, and of such quality as to have checked the imports
FLOUR MILLS

of the foreign article. In a further paragraph, particulars will be found of the imports and exports of flour, but it may be added that the growth of the Indian flour traffic is one of the most encouraging indications of the birth of industrial enterprise. So far, the exports of Indian flour have gone to Indian Ocean ports, but the day is perhaps not far distant when the problem of the exports of clean versus adulterated wheat may be solved, as already stated, by the export of flour (see p. 1089).

Flour Mills.—According to the Financial and Commercial Statistics (1906, 399) there were 42 mills, employing 3,016 persons in 1904, but the statement is said to be defective. These were distributed thus:—The Panjâb 21, with 1,281 employees; Bengal 9, with 755 employees; Bombay 4, with 562 employees; United Provinces 4, with 273 employees; Madras 2, with 58 employees; Sind and the Central Provinces, 1 each, with 52 and 35 employees respectively.

INDIAN TRADE IN WHEAT AND FLOUR.

For many years it was an accepted belief that Indian wheat appeared on the markets of Europe chiefly in order to supplement deficiencies. In 1899, the author of The Wheat Problem (Sir William Crookes) practically excluded India from consideration in his study of the world's supply, on the ground of the insignificance of the surplus available for export. In a most emphatic manner that view has been disproved by recent returns. In 1904, for example, India actually headed the list of countries that contribute towards England's demands—a circumstance that at once placed it in an altogether new position, notwithstanding that the very next year it fell far short of its record. But what it did one year may be repeated and even exceeded. The explanation of this new state of affairs may be learned from a study of the causes that have brought about India's extended wheat production. Nearly 75 per cent. of the wheat grown is raised in the Panjâb and the United Provinces. And in these provinces vast tracts of fertile land have been brought under cultivation, through the improved and increased canal and well irrigation accomplished by the Indian Government. Indeed fully half the wheat area of the provinces named is ordinarily under irrigation wheat. Howard (Note Prod. of Wheat, in Agri. Journ. Ind., 1906, i., pt. iv., 399–401) regards the irrigation wheat as securing the internal consumption and as thus releasing a large proportion of the dry crop for export. The expansion of the irrigation wheat area is, therefore, a matter of superlative importance to the British Empire, in addition to being of vital interest to India itself.

Prices of Wheat in India.—These are expressed by the number of seers (= 2 lb.) procurable for Rs. 1 (= 1s. 4d.). A higher figure, therefore, denotes cheap wheat (more being obtainable), and a low figure dear wheat. It is perhaps only necessary to select three centres, Calcutta, Bombay and Delhi, to exemplify the fluctuations in price. During the twenty years ending 1905, the cheapest wheat in Calcutta was in 1887, when 14·17 seers (28·34 lb.) were obtained for the rupee. So again the dearest wheat was in 1897, when only 8·05 seers were given. The quantities procurable for the past four years were 1902, 10·68 seers; 1903, 12·1 seers; 1904, 11·42 seers; and 1905, 10·67 seers. In Bombay, the record year for cheapness during the twenty years was in 1896, when wheat sold at 11·84 seers to the rupee, and the dearest year 1900, 6·06 seers, while for the following years
THE WHEAT PLANT

it sold at—1902, 7·37 seers; 1903, 8·12 seers; 1904, 8·31 seers; and 1905, 8·33 seers. Wheat in Bombay during the term of years mentioned has manifested much more violent fluctuations than in Calcutta. Thus in 1895 it sold at 13·18 seers, and in 1897 at 6·66 seers. In Delhi, wheat is naturally very much cheaper than in either Calcutta or Bombay; and its record years were, for cheapness 1885, 22·5 seers, and for dearness 1897, 9·91 seers to the rupee, while during the last four years ending 1905 the prices were—1902, 15·14 seers; 1903, 15·26 seers; 1904, 15·9 seers; and 1905, 12·95 seers. The price in Delhi is representative of all towns within the wheat-producing areas, such as Lahore, Lucknow, Cawnpore, Raipur, Patna, etc. A careful scrutiny of the returns of the wheat production and trade for India gives no sort of justification for the opinion that the exports to foreign countries are raising the price of wheat to the people of India, while on the contrary the annually increasing surplus has even now assumed the position of a valuable safeguard against famine.

PRODUCTION AND EXPORT TRADE OF WHEAT.—The wheat exports of one year are very nearly entirely drawn from the area of production of the year previous. Similarly it is often the case that the area of production in the British provinces is spoken of as that from which the foreign exports are drawn, thus neglecting the Native States, which undoubtedly contribute considerably to the amounts shown as exported. A mean average yield per acre for all India would be a perfectly misleading figure, since the range between irrigated manured land and dry land without manure (without taking into consideration the difference in yield between pure and mixed crops) would be perhaps three of the former to one of the latter. But accepting the official returns as they stand, we obtain an average for the ten years ending 1905–6 of 24,299,149 acres, with a yield of 7,170,551 tons (or 143,411,020 cwt.) of grain, while the actual figures for 1905–6 were 26,226,200 acres and a yield of 8,560,340 tons (or 171,200,000 cwt.). The decennial average is perhaps the safer figure to employ in all comparisons, since it is considerably below the actuals for the past few years and errs on the side of under-rather than over-stating production. It would, however, serve no useful purpose to strike averages for the exports from India, since these are open to none of the errors mentioned. The following abstract table exhibits the exports from India for the years 1902–7, and contrasts these with the chief items of wheat imports into Great Britain:

<table>
<thead>
<tr>
<th>Exports from India to Foreign Countries.</th>
<th>1902-3</th>
<th>1903-4</th>
<th>1904-5</th>
<th>1905-6</th>
<th>1906-7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total from India</td>
<td>10,292,150</td>
<td>25,911,312</td>
<td>43,000,502</td>
<td>18,750,467</td>
<td>16,028,914</td>
</tr>
<tr>
<td>Share consigned to Great Britain</td>
<td>6,683,228</td>
<td>21,231,863</td>
<td>28,928,757</td>
<td>14,183,363</td>
<td>14,610,524</td>
</tr>
<tr>
<td>Shares in total Exports taken by</td>
<td>8,848,234</td>
<td>17,385,110</td>
<td>28,380,715</td>
<td>12,956,926</td>
<td>15,434,900</td>
</tr>
<tr>
<td>Sind (Karachi)</td>
<td>300,748</td>
<td>3,690,762</td>
<td>5,965,438</td>
<td>3,455,263</td>
<td>458,537</td>
</tr>
<tr>
<td>Bombay</td>
<td>1,032,978</td>
<td>4,832,819</td>
<td>8,646,680</td>
<td>2,297,499</td>
<td>129,996</td>
</tr>
</tbody>
</table>

1102
BRITISH IMPORTS

Imports into Great Britain.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Imports taken by Great Britain</td>
<td>81,002,227</td>
<td>88,131,030</td>
<td>97,782,500</td>
<td>97,622,752</td>
<td>92,967,200</td>
</tr>
<tr>
<td>Russia</td>
<td>6,540,457</td>
<td>17,176,300</td>
<td>23,539,500</td>
<td>24,703,200</td>
<td>15,017,500</td>
</tr>
<tr>
<td>Germany</td>
<td>229,910</td>
<td>310,176</td>
<td>251,000</td>
<td>300,000</td>
<td>71,800</td>
</tr>
<tr>
<td>Roumania</td>
<td>2,362,453</td>
<td>3,140,727</td>
<td>1,491,500</td>
<td>2,082,200</td>
<td>3,780,900</td>
</tr>
<tr>
<td>United States</td>
<td>43,312,561</td>
<td>24,197,895</td>
<td>7,051,600</td>
<td>6,834,700</td>
<td>22,409,000</td>
</tr>
<tr>
<td>Argentina</td>
<td>4,315,165</td>
<td>14,120,454</td>
<td>21,440,400</td>
<td>23,236,400</td>
<td>19,176,500</td>
</tr>
<tr>
<td>Australia</td>
<td>4,174,753</td>
<td>26</td>
<td>10,272,600</td>
<td>10,064,700</td>
<td>7,785,100</td>
</tr>
<tr>
<td>New Zealand</td>
<td>156,628</td>
<td>204</td>
<td>358,100</td>
<td>339,900</td>
<td>79,400</td>
</tr>
<tr>
<td>Canada</td>
<td>9,527,475</td>
<td>10,802,127</td>
<td>6,195,300</td>
<td>6,522,030</td>
<td>11,309,700</td>
</tr>
</tbody>
</table>

The table exhibits many instructive features, some of which may be here dealt with. For example, of the exports from India by far the most important purchasing country is the United Kingdom. The next important countries are—Belgium, France and Egypt. In 1905–6 these three together took 3,039,881 cwt., or little more than one-fifth of the supply consigned to the United Kingdom alone. And what is perhaps even more significant, the demands of all countries (other than Great Britain) have practically remained stationary for some years past, while the supply to the United Kingdom has gone forward in a most significant manner. So also the figures of shares taken by the ports of shipment from India exhibit a remarkable parallelism with recent extensions in irrigation and facilities in transport. The port of Karachi taps the Panjab, Rajputana and to some extent also Central India and the United Provinces. The expansion of the Karachi traffic has been phenomenal, and the extension of railway communication toward Calcutta must to some extent account for the progress made by that port.

Reverting to the decennial standard, it may now be shown what proportion the exports bear to production. The average production of the ten years ending 1905–6 has been shown as 143,411,020 cwt. The exports from India in 1905–6 came to 18,750,467 cwt. (valued at Rs. 8,53,43,996), or 13 per cent. on the average standard; but if the figure of actual production for the year named be accepted, viz. 171,206,800 cwt., the exports would represent only 10'9 per cent. of the supply. The year 1903–4, as also 1904–5, was notable in the wheat trade. India exported in the former 25,911,312 cwt. (valued at Rs. 11,08,89,546), which expressed to the decennial standard would be 18 per cent., and to the actual crop of 1903–4 13'4 per cent. In 1904–5 the exports were 43,000,502 cwt. (valued at Rs. 17,90,60,692 or £11,937,379), or 30 per cent. on the decennial standard and 28'2 per cent. to the recorded actual production.

An examination of the table given reveals the further fact that in 1904–5 India headed the list of countries concerned in the supply of wheat to Great Britain. In that year it furnished the United Kingdom with wheat valued at close on 8 million pounds sterling. India’s contribution was then close on 29 million cwt., while Russia supplied 23½, the Argentine 21½, Australia 10, the United States 7, and Canada 6 million cwt.

TRIFICUM VULGARE

Trade

United Kingdom.

- **Singular Progression.**
 - Karachi the Chief Port.
 - Exports versus Production.
 - Percentages.
 - India’s Contribution.

Flour.

PRODUCTION AND TRADE IN FLOUR.—The proportion of flour exported from India gives, of course, no evidence of the magnitude of the

1103
TRITICUM VULGARE
Trade

Balance over Exports.
Exports.

Exports of Flour.—There is, however, a considerable trade in exporting wheat flour, and this has manifested recently a noteworthy expansion, although the traffic of last year showed a decline from the returns of the years immediately previous. In 1900-1 the exports were 497,346 cwt., valued at Rs. 35,83,176; 1901-2, 529,328 cwt., valued at Rs. 37,12,876; 1902-3, 718,077 cwt., valued at Rs. 46,54,631; 1903-4, 810,422 cwt., valued at Rs. 52,98,843; 1904-5, 1,031,495 cwt., valued at Rs. 69,21,610; 1905-6, 899,056 cwt., valued at Rs. 63,83,264; and 1906-7, 818,462 cwt., valued at Rs. 58,57,116. The great bulk of these exports goes from Bombay, viz. 661,368 cwt. in 1906-7, the balance being divided between Bengal and Sind, while the chief markets are Arabia, Aden, Ceylon, Mauritius, British East Africa, the Straits Settlements and Egypt. A considerable export trade in wheat flour to the United Kingdom appeared for the first time in 1904-5, amounting to 52,523 cwt., but contracted to 1,800 cwt. in 1906-7.

Imports of Wheat and Flour.—A certain amount of foreign Wheat is imported into India, and according to Noël-Paton (Rev. Trade Ind., 1906, 31), “in times of shortage it is taken in considerable quantities even by ports from which grain is commonly shipped.” The quantities have been:—1902-3, 783 cwt., valued at Rs. 4,757; 1903-4, 18,852 cwt., valued at Rs. 97,764; 1904-5, 129 cwt., valued at Rs. 432; 1905-6, 454,614 cwt., valued at Rs. 22,53,648; and 1906-7, 209,696 cwt., valued at Rs. 11,38,976. Of the total for 1905-6, Australia supplied 395,696 cwt. and Turkey-in-Asia 58,798 cwt. Noël-Paton points out that “this total was exceeded only in 1896-7 and in 1900-1, when 601,356 cwt. and 559,351 cwt. respectively were imported; but in each of the famine years, 1877-8 and 1878-9, the imports exceeded 400,000 cwt.” Small quantities of wheat flour, subject to duty, are also imported, and have averaged for the years 1902-7, 18,500 cwt.

Internal Traffic.—Rail and Riverborne Traffic.—The total transactions by these routes on the average for the years 1902-7 were 31,874,712 cwt. wheat and 1,699,091 cwt. flour. In 1906-7 the figures were 28,556,137 cwt. wheat and 2,350,388 cwt. flour. Of wheat, the Panjāb exported that year 20,537,369 cwt., viz. to Karachi, 14,959,915 cwt.; to Rajputana and Central India, 1,594,477 cwt.; to Calcutta, 1,217,100 cwt.; to the United Provinces, 1,119,578 cwt.; and to Bombay, 1,025,751 cwt. It will thus be seen that the bulk of the railborne traffic is from the Panjāb to Karachi. But Karachi obtains wheat also from Sind province and from the United Provinces; the grand total of its supplies having been in the year under notice 17,018,238 cwt., an amount which it will be seen would have sufficed to meet the foreign exports of 15,434,060 cwt. Of course it is not always safe to assume that the actual amounts shown in the internal traffic appear again in the foreign transactions, but the average of several years would overcome the overappings that take place. It is sufficient, therefore, to show that the wheat exported from Karachi to foreign countries is drawn mainly from the Panjāb.

1104
addition that it is employed to control fermentation in arak manufacture. The wood is not in much request, but is sometimes utilised for making canoes, masts of Native vessels and coffins. [Of Brant, Pract. Treat. on Anim. and Veg. Fats and Oils, 1888, 325-4; Pharmacog. Ind., 1890, i., 196-7; Cameron, For. Trees of Mysore and Coorg, 1894, 24-5; Capital, May 28, 1903; Sabin, Tech. of Paint and Varnish, 1905, 105-6, 140-1, 300.]

THE KHAS-KHAS GRASS

D.E.P., l., 245-7.
Khas-khas.

VETIVERIA ZIZANIOIDES, Stapp, Kew Bull., 1906, 346-9, 362; *Anatherum muricatum, Beauv.; Andropogon muricatus, Retz.; A. squarrosus, Linn., f.; Fl. Br. Ind., vi., 186; Vetiveria odorata, Virey; Rheede, Hort. Mal., 1703, xii., 137, t. 72; Watt, Ind. Art at Delhi, 1903, 161, 198; Gramineæ.**

The khas-khas or Vetiver; the khas, bená, panni, balé-ká-gháns, shanadér jhar, sirom, tin, válo, vetti-ver, lávanchá, etc., etc. Is found throughout the plains and lower hills of India, Burma and Ceylon, up to 4,000 feet, occurring on moist, heavy soils, more especially the margins of lakes or streams.

Fibre.

The root or khas-khas is extensively made into the aromatic scented mats which are hung in doorways and kept wet to cool the atmosphere during the hot season. They are used for making fans, ornamental baskets, etc., which are very largely produced at Savvantvadi, Poona, Chanda and elsewhere. The raw material is exported to Europe chiefly from Madras ports. Gildemeister and Hoffmann (Volatile Oils, 289) say, "The root is of a reddish colour and often contaminated with red sand. A half-distilled root is frequently found in commerce, and can be recognised by its light colour." It seems more than probable that much of the so-called half-distilled root is in reality the roots that have been used in tatties for a season and are bought back by the traders to be exported. The constant application of water and exposure to the fierce sun might easily exhaust a large proportion of the oil and bleach the roots in the manner described. According to certain inscriptions, taxes were levied on khas-khas in 1103 to 1174 A.D. (As. Soc. Beng., 1873, 161). The roots when distilled with water yield a fragrant Oil (known in European trade as Vetiver), which is used as a perfume and for flavouring sherbet. It commands a high price in Europe, being employed in many favourite scents. It is the most viscid of essential oils, and hence its sparing volatility is taken advantage of in fixing other perfumes. The oil is hardly, if ever, exported from India, European supplies being either locally made from the Indian roots or derived from Réunion. According to Piesse, the yield is about 10 oz. per cwt.; other observers have found it to vary from 0.2 to 3.5 per cent. Rheede, who was perhaps the first European author to allude to this plant, calls it ramacciam, and says that with the Brahmins it was bocals. It was in his time both wild and cultivated in Malabar on account of its roots, which were used medicinally.

Oil.

In Medicine the root has been regarded by European physicians as a diaphoretic and as a preservative against cholera (Pereira, Mat. Med., ii., pt. i., 132). In The Bower Manuscript (which appears to date from the 5th century) frequent mention is made of usira or virana, which Hoernle renders as the present odoriferous grass; it was an ingredient of a plaster beneficial to the complexion. A paste is rubbed on the skin to relieve excessive heat; an aromatic cooling bath is made by adding to a tub of water a powder of the root with that of *Pavonia odorata* (red sandal-wood), and the wood of *Frunus Puddum*. The grass (leaves, etc.) is suitable for paper-making, and it is said that 60,000 to 70,000 maunds are annually available in the Hissar district of the Panjab alone. When young, the grass affords good Fodder, and is also in universal demand for thatching purposes. It is also used for Fodder (Playfair, transl.), 1833, 14; Taylor, Topog. and Stat. Dacca, 1840, 57; Hoey, Monog. Trade and Manuf. N. Ind., 1880, 160; Journ. Ind. Art., 1884, i., No. 3, 7; Duthie, Fodder. Grass. N. Ind., 1888, 37; Gee, Monog. Fibrous Manuf., 1891, 2; Pharmacog. Ind., iii., 571; Kanny Lall Dey, Indig. Drugs Ind., 1896, 28-9; Dodge, Useful Fibre Plants of the World, 1897, 60; Mod. For. Admin. Rept., 1902, 34.]

D.E.P., vi., pt. iv., 234-5.

Broad Bean.

VICTIA FABA, Linn.; Fl. Br. Ind., ii., 179; Duthie and Fuller, Field and Garden Crops, iii., 4; Duthie, Fl. Upper Gang. Plain, 1903, 259; Prain, Beng. Plants, 1903, i., 367; Firminger, Man. Gard. Ind., 1106
THE COW PEa

1904, 178; Leguminosae. The Garden Bean, bāṭha, anhuri, nákshan, kālīūn, chāstāng rāùliūn, sein, etc. De Candolle considers its introduction into India to be quite recent, though this would seem to be true only of the plains. In the higher Himalaya it is not unlikely that its cultivation has passed down from the most ancient times.

At the present day it is cultivated in the plains here and there in European gardens, and chiefly in the United Provinces. There are two distinct forms, the long-podded and the broad-podded, the latter originating the name "Broad" or "Windsor bean." The former is said to succeed best in India, though Firminger recommends the "broad bean" for garden cultivation. The seed should be sown about the middle of October, and previous to sowing should be steeped in a basin of hot water for twelve hours or more. [Cf. Bentham, Rev. of Targioni-Tozzetti, in Journ. Hort. Soc., 1855, ix., 188; De Candolle, Orig. Cult. Plants, 1884, 316; Church, Food-Grains of Ind., 1886, 132; Assa Gray, Scient. Papers, 1889, i., 349; Pharmacog. Ind., 1890, i., 485–6; Hosie, Rept. on Prov. of Sūch'āun, 1904, No. 5, 12.]

VIGNA CATJANG, Wāt'p.; Fl. Br. Ind., ii., 205; Duthie and Fuller, Field and Garden Crops, ii., 12, tt. xxix.----xxx.; Prain, Beng. Plants, 1903, i., 389; Duthie, Fl. Upper Gāng. Plain, 1903, 227; Leguminosae. The Cow Pea, Chowle (India), Tow Cök (China); lobīā or lōbyā, chowli, rāni ās, barbati, ghanga, urohi, soultā, rawdān, chaunro, hurreja, chācli, caramunny-pyre, boberlu, tadagunny, etc. A sub-erect herb cultivated in the hotter parts of India. Var. sinensis, Prain; Dolichos sinensis, Roxb., Fl. Ind., iii., 392; the Asparagus Bean; a climbing herb cultivated in most parts of India.

It has been pointed out, under Dolichos Lablab (p. 508), that the name lobās (lobos of the Greeks) is commonly applied to that plant and loosely by Indian market gardeners to any pulse, but more especially denotes the present plant. The word lōbyā may be, however, derived from the Sanskrit lōbya (=alluring); it occurs among the list of autumn (kharif) crops known to Akbar, and since Vigna Catjang comes into season in the autumn it is probably the plant referred to. The crop, as a rule, is grown in fields for its seed, and used as a pulse. It may be cultivated alone, but is generally a subordinate crop. Various races exist, one of which, with long pods, is raised by market gardeners as a vegetable and sold as a substitute for French beans.

CULTIVATION.—In Cuttack Bengal, where it is cultivated alone, Banerjoi (Agri. Cuttack, 1893, 81–2) states that "it is grown on high loamy lands, and in rotation generally follows bāliū and mandāia." The soil is prepared and the seed sown broadcast in September–October. In December–January, when thoroughly mature, the plants are plucked up by the root. "The variety raised for vegetables begins to yield fruit in November–December." Basu remarks that in Lohardaga it is "always grown as a second crop along with māru (Eleusine coracana) and occasionally with gōrd or upland paddy." In July the seed "is thinly scattered over the fields at the rate of 1½ seers per acre. The pods when they ripen are hand-picked at the same time, or just before harvesting māru. The average outturn is one maund per acre, the heaviest yield never exceeding 2 maunds; the value of the produce is about Rs. 1–8 in a year of ordinary prices."

In the United Provinces there were 1,062,783 acres under Ṽrād, māng, moth and lōbiū during 1904–5. Later figures are not available. "It is less frequently grown as a sole crop than either māng (Phaseolus radiatus) or ēvd (P. Munga), and the area which it occupies by itself is quite insignificant except in the Rohilkhand Division. On the other hand it constitutes a distinct feature of the undergrowth in a large proportion of kharif millet and cotton fields, with which it is associated at the commencement of the rains. It ripens in October or November, and yields a produce of about the same quantity as that of ēvd (Field and Garden Crops, l.c.). In the Season and Crop Report for 1905–6 it is stated that the area under this pulse was 32,703 acres, of which 1,766 were raised in the ēbāli. With regard to Bombay, Mollison says "it is grown with other pulses subordinate to bōjpī in light alluvial soils in the Kaira district. It does better in moderately light soil than in soils of heavier or denser consistence. It is

Bombay.
VINEGAR

History

grown alone in the ıkarif season in garden lands to produce a green vegetable—the so-called French bean of India—and in the rabi season is grown like mug and widi, to a limited extent as a second crop in rice fields.

The grain is eaten either as flour or split as dál, and, as already mentioned, the green pods, especially of the long-podded form, are plucked while young and eaten as a vegetable. As a curiosity it may be mentioned that the stalks and leaves are said to be employed in the preparation of a green dye. [Cf. Church, Food-Grains of Ind., 1886, 136; Pharmacog. Ind., 1890, i., 489; Basu, Agri. Lohardaga, 1890, pt. i., 68-9; Gollan, Ind. Veg. Garden, 1892, 127; Duncan, Dyes and Dyeing in Assam, 1896; Burma, Sett. Repts.—Meiktila, 1899, 9; Myingyan, 1901, 35; Mallison, Textbook Ind. Agri., 1901, iii., 88-9; Leather, Agri. Ledg., 1903, No. 7, 153, 191; Dept. Land. Rec. and Agri. Bombay Bull., 1904, No. 24, 4: F irminger, Man. Gard. Ind., 1904, 176; Roy, Crops of Beng., 1906, 76-7; Repts. Dept. Land. Rec. and Agri. Bombay.]

D.E.P., i., 72-8.
Vinegar.

VINEGAR (ACETUM).—Vinegar is an acid liquid, used largely as a food auxiliary, as a preservative for certain articles of diet, as a medicine, and lastly for certain industrial purposes. It is produced by (a) what is known as acetous fermentation of a mixture of malted and unmalted grain (forming malt vinegar), and (b) the oxidation of white or red wine (yielding white or red wine vinegar). Chemically it is a dilute solution of acetic acid with certain organic substances derived from, and peculiar to, the material from which made. It is, in other words, a weak solution of acetic acid, produced by the fermentative action of a vegetable organism (Mycoderma aceti), the process of transference being called acetous fermentation.

History.—Mr. F. W. Thomas informs me that suktaka is the most general Sanskrit name for the true or fermented liquor. This occurs in the Brähmanas, Sūrõuta and elsewhere. Sautkika is an adjective form of the word met with in Charaka (1st century a.d.). It denotes very possibly the vinegar prepared from a sweet liquid, such as sugar-cane juice, palm-juice, etc. But malted vinegar seems also to have been understood, and is possibly denoted by the word kānjika (sour or fermented), rice gruel (see the account under Burma, p. 1111). The Bhāvaprākāśa defines vinegar as a substance fermented from bulbs, roots, and fruits with oil and salt, and this use of oil and salt will be found frequently alluded to. The Rājanihrghanta alludes to the employment of grain in the production of cukra. Lastly, cukra or cukraka is applied to sour substances (such as the fruits of the tamarind and the sorrel) which are used as substitutes for vinegar. These occur in Sūrõuta, Hariwamsa, etc.

Vinegar is known all over India by its Hindustani name sirk. In the provinces the following vernacular names are given to it:—kādi in Tamil; pulla nilla in Telegu; chuça in Malayän; and pon-ye in Burmese. While thus doubtless a substance of universal knowledge to-day and one which bears a fairly ancient record, it is significant that most works on India, both ancient and modern, have remarkably little to say about it. Writers on Materia Medica, as well as most of the standard authors on travel, etc., in India, are silent regarding vinegar. Even the Institutes of Manu makes apparently no reference to it. With the Muhammadans, however, vinegar always has been a more important dietetic luxury than with the Hindus, and to this circumstance perhaps is due the scant attention paid to it by early writers. It is, however, alluded to by Thevenot (Travels in Levant, Indostan, etc., 1687, pt. iii., 16) and one or two other European travellers.
PROVINCIAL PRODUCTION

MANUFACTURE.—Most of the Indian vinegars are prepared from sweet liquids derived from palm-juice, sugar-cane juice, crude sugar, honey, mahua flowers, grapes, raisins, and other fruits. They are thus not malted, though of course fermented and mostly by the slow process. Each kind of vinegar is named after the substance from which it is produced; thus târi-kâ-sirka would be the vinegar of toddy, etc.

Bengal.—N. C. Chaudhury, Travelling Inspector, Department of Agriculture, writes that in Calcutta there are some twelve shops where sherka (sirka) is manufactured. Each shop turns out about 300 maunds annually on the average. No sherka is imported into Calcutta from Bengal districts, though it is known to be prepared on a small scale in Bihar. It is made chiefly from cane-juice (see p. 952), but also from gûr (raw sugar), and occasionally from the fruits of the jâmân (Eugenia Jambolana, see p. 526). The manufacture from cane-juice may be briefly indicated:—Cane-juice is kept in a big earthen pot (jala) (sink in the ground up to the middle) in an open place and exposed to the sun. The mouth is covered with an earthen basin (gamia). The jala may contain 10 to 16 maunds of juice. Ordinarily it takes three or four months, sometimes six, to complete the operation. After a month or two, when fermentation has taken place briskly, the juice is transferred to a fresh jala till the fermentation is finished. The liquor (sherka) is then conveyed into smaller jâlas and is thus ready for sale. Out of 40 seers of juice, 30 seers of sherka are obtained. In the case of gûr or date sugar—* to one maund of gûr or sugar, 4 to 5 maunds of water are added, and the solution thus prepared is treated just as with cane-juice. It takes a little longer time—say about fifteen days more—to finish the preparation of the vinegar from the materials named. Forty seers of the sugar or gûr solution yield about 34 or 35 seers of sherka. No special details are furnished regarding the production of vinegar from jâmân fruits. Cane-juice sherka is sold at Rs. 5 per maund, the gûr sherka at Rs. 4, the sugar sherka at Rs. 4–8 per maund, and the jâmân sherka at Rs. 12 per maund.

E. Bengal and Assam.—Information has been received from the Deputy Commissioner, Sylhet, and the Collector, Dacca. The former writes that vinegar is prepared on a very small scale and for home consumption only. It is made from the juice of (1) bhûb (Garcinia paniculata, see p. 555), (2) blackberries (Eugenia Jambolana), (3) pine-apples (Ananas saltea, see p. 69), (4) amriti (Phyllanthus Emblica, see p. 587), and from that of sugar-cane and date-palm. The Collector, Dacca, states that in the town the vinegar sold is chiefly imported from abroad. “In Dacca there are only two firms who carry on the manufacture, and in both the business done is very small. The process is exceedingly simple. In one case the substances used are (1) the juice of the date (see p. 886) or palmrya palm (see p. 170), (2) bread (see p. 1100) and (3) gram (Cicer arietinum, see p. 300). The earthen jar is filled with date or palm juice, and then a few slices of bread and a few handfuls of gram are thrown into it. The mouth of the jar is closed with a cover, and the liquid allowed to ferment in that state for a month or six weeks or until the fermentation is complete. It is then passed through a clean cloth and put into bottles. The vinegar thus manufactured is sold at 2 or 3 annas per bottle.” In the other manufacture the ingredients are (1) cane molasses, (2) putrid pine-apple and (3) gram, while the process of manufacture is exactly the same. The addition of bread and gram and the utilisation of the waste materials and wild pine-apples are interesting features of this special Eastern Bengal industry.

United Provinces.—Hoey (Monog. Trade and Manuf. N. Ind., 1880, 180–1) tells us that the chief material used in the manufacture of vinegar is shîra (see p. 952). “When sugar-cane is crushed it gives out the juice called ras. This is boiled and gur and rôb are made. The froth is skimmed off and put aside. The crushed stalks of the cane are laid in a vat (haus) with a small outlet below and the froth is thrown on them with a little water. The substance which comes trickling off is boiled and becomes shîra. This is the stuff which is purchased by the vinegar-makers and tobacco manufacturers.” (see p. 807). In a long and highly interesting communication, the Assistant-Director of Agriculture in these provinces states that there are a great many substances employed in the preparation of vinegar, but that the liquor is chiefly obtained from cane-juice and cane-juice products. The other better known sources are palm toddy, grapes (see p. 911), raisins, jâmân, barley (see p. 643), etc. The methods of

1109
VINEGAR

Panjāb.—In connection with the correspondence above indicated, communications were received from Lahore, Delhi, Multan, Jalandhar and Rawalpindi. Of Lahore, it is stated that vinegar is prepared in the usual way from sugar or sugar-cane juices (rarely from molasses), but in combination with grapes, with alum (jaatkhār) or with salt as adjuncts. The price for one gallon of one-year-old vinegar is Rs. 20, of vinegar six months old, Rs. 10. In Delhi there are four principal manufactorys, and sugar-cane is almost solely employed. A maund of cane-juice gives 30 seers vinegar. The vinegar in greatest demand is arak-orta (or -orta) already described, namely that made from crude vinegar by adding mint and subsequently distilling the mixture. Vinegar is also occasionally made from grape-juice, raisins, jamana and oranges (see p. 327). The total output of vinegar in Delhi is estimated at 1,200 maunds a year. In Multan three kinds are made—anguri from grapes, kishmashi from raisins, jamana from jamana, but it is prepared only in small quantities for local consumption.

The Deputy Commissioner of Jalandhar gives the method of preparation practised there. To one maund of sifted rae (sugar-cane juice) are added five bottles of superior country vinegar and placed in a jar polished inside with lakkh. The mouth is closed and the jar set on one side for three or four months. It is then filtered through a cloth at intervals "to rid it of worms or insects which collect in it." A quarter-seer of ground tej pat (Cinnamomum Tamala, see p. 313) leaves and half a chittack of ground kaunhanji (Nigella sativa, see p. 81) and chillies (see p. 268) are added, the mixture being left for a month or so more. It may now be ready for use. The vinegar prepared from cane-juice is reddish in colour, but this may be corrected by the addition of alum (see p. 61).

In Rawalpindi district, according to Robertson (Settl. Rep., 1880-7, 1883, app., xxiv.), the manufacture of vinegar is a fairly important industry, the exports being carried by river from Attock to Sukkur. In the town of Rawalpindi only one vinegar-maker exists, who prepares it either from raisins (see p. 1114) or from gur.
A large earthen pot polished on the inside with goat's-grease is charged with one part raisins and four parts water, and the mouth closed as tight as may be and placed "in a room where there is little air, since there is a possibility of it being spoiled otherwise. After twenty days a tola of Peshawari salt and a tola of mercury in the ratio of a seer of raisins used, is mixed with it and the mouth of the vessel is again sealed. Twenty days after this operation the vinegar is ready for use (i.e. in forty days) and is then filtered and kept either in bottles or jars." Price Rs. 2-8, or 3$. per maund.

Central Provinces.—Very little vinegar is made in these provinces. In a communication from Seoni it is observed, "The vendors of vinegar, and the confectioners who use it, in making up chutnies and other preserves, procure their stock from outside : from Nagpur, Jabalpur and even from Delhi. The Deputy Commissioner of Betul speaks of a small manufacture from sugar-cane juice, as also from the berries of the jāman tree (Eugenia Jambolana). The berries are placed in an earthen jar along with some common salt and left for a few days. The juice is then squeezed out and placed in the sun for a short time. Mr. Sadaasheo Narain of Gadarwara describes three forms of vinegar as prepared from sugar-cane juice, from jāman fruits and from raw sugar."

Madras.—In the series of Official Papers mentioned above, a report issued by the Board of Trade, Madras, gives the particulars regarding that Presidency. The producers there are the toddy-shopkeepers, and they convert their unspent toddy into vinegar in either of the following ways. The toddy is placed in a closed earthen pot and kept there till fermentation is complete and the liquid has become sour. The pot is either kept above ground for a month or two, or is buried underground for three or four months or more, and then taken out. The longer the pot is kept closed and underground, the better the quality of the vinegar. In either case pure vinegar is obtained when the pot is opened and the sediment has been removed. Vinegar is also made by heating fermented toddy either by fire or by exposure to the sun. It is procured in a shorter time by this method, but the quantity is less than by the slow natural fermentation. The vinegar thus obtained is, however, used both for medicinal purposes and in cooking. There is no shop or bazaar in Madras where country-made vinegar is specially sold, and the trade is not so extensive as that in either English or German vinegar (see p. 170).

Burma.—The information procured from the various districts show two main classes of vinegar as made, namely, from grain or from sweet fluids. The substances chiefly used in the manufacture are rice, peas, toddy, jaggery, sugar, dates and plantains. The observations regarding the preparation of vinegar from rice and peas are interesting, and amplify the Indian knowledge already exemplified. The rice (see pp. 826, 840) is boiled and then cooled for about three hours; it is then mixed with cool or warm water obtained from previously boiled rice. The mixture is then put into a pot of clean water and kept for three days in the shade. Some salt is now added (1 tola to 1 viss of liquor). The liquid may be seen to have turned slightly green and to have become sour. This is called san-pon-ye, and may be described as the domestic vinegar of the province. It is a crudely formed malt vinegar.

With the peas (see p. 903) the process is similar. They are boiled till they turn soft and the water becomes reddish. This is strained off and put into another pot or jar, the mouth of which is tied up with a cloth. The fluid is boiled again, salt (3 tolas to 1 viss) added, and the boiling continued till the fluid is reduced by one-third, the result being crude vinegar. Speaking of the manufacture of vinegar from sweet fluids such as palm wine (toddy), mention is repeatedly made by the Burmese correspondents of the advantage of adding a few slices of bread so as to facilitate fermentation. In Mergui, vinegar of local manufacture is largely employed in preserving fish. It is prepared from stale toddy, chiefly the produce of the Nipa palm. Vinegar is said to be improved by placing a hot brick in it.

Trade.—There is no export trade in vinegar from India, and imports of vinegar, together with pickles, sauces and condiments, were recorded in the Official Returns for the first time in 1905-6, when the total quantity received amounted to 14,878 cwt., valued at Rs. 4,13,653; and in 1906-7, 16,300 cwt., valued at Rs. 4,77,033. The bulk of this import traffic is shown to come from the United Kingdom.
VITIS VINIFERA
Hindu Knowledge

Grapevine.

VITIS, Linn.; Fl. Br. Ind., i., 645-62; Planchon, DC., Monog. Phaner., v., pt. ii., 321-414; King, Journ. As. Soc. Beng., 1897, lxv., pt. 2, 108-14; Gamble, Man. Ind. Timbs., 189-91; Duthie, Fl. Upper Gang. Plain, 1903, i., 170-5; Talbot, List Trees, etc., 1902, 99-104; Cooke, Fl. Pres. Bomb., 1902, i., 247-58; Brandis, Ind. Trees, 1906, 175-9; Ampelidæ. A large genus of climbing shrubs to which the Grape-vine belongs. The fruits of several of the wild species are edible (for example, V. parvifolia, V. rugosa, and V. barbata), and it seems highly probable that some of them may have contributed by hybridisation in the production of the somewhat characteristic cultivated grapes of the mountains and tablelands of India.

V. vinifera, Linn.; Semler, Trop. Agrik., 1892, iv., 8-186. The Vine or Grape, angur, dakh, buri, tanaur, nevala, māmre, gandeli, lāning, kwār, kodi-mun-dirrip-pazham, draksha-pondu, buangār, sabi-si; raisins = kismis, manakkā, zirishk, mitha, kuru zuum, kismisuchettu, zabb, etc.

Wild Grapes.

The Grape Vine is said to be indigenous in the temperate regions of Western Asia, Southern Europe, Algeria and Morocco (De Candolle). According to the Flora of British India (i., 652) it is "perhaps wild in the North-West Himalaya; cultivated extensively in North-West India, rarely in the Peninsula and Ceylon." Gamble (l.c. 190) says, "Has been introduced and successfully cultivated in Kashmir and other parts of India." Lawrence (Valley of Kashmir, 351) remarks that in the old days Kashmir was famous for its grapes, but now, if a few vineyards at the mouth of the Sind Valley be excluded, it is difficult to obtain a good dessert grape in the country. "Everywhere one sees giant vines climbing up poplars and other trees, but they are often wild, and their fruit is poor and tasteless."

History.

History.—Grapes have been known in India from a very remote period. In Sanskrit works the best-known names for the fruit are drikasaka and mridvikā, while a spirit distilled from grapes (maddhika) is distinguished from that from sugar-cane, rice, barley, etc. As showing the antiquity of the knowledge in grapes, Dutt mentions that they are alluded to by Charaka and Susrūta. Prior to the Muhammadan conquests of India we possess, however, no very precise information as to the cultivation of the grape in India proper.

Stein (Ancient Khotan, 1907, 448) tells us that while working in the ruins of Kara-Dong (8th century), he came across a cupful of "large black currants dried perfectly hard." In other passages (l.c. 253, 255) he invites consideration of the fact that in one of the paintings of Dandān-Uliq, instead of the conventional fig-leaf, the vine-leaf had been substituted, and in still another passage (l.c. 245) he draws attention to the frescoes of Dandān-Uliq, which manifest a vine-leaf and grape pattern. It is thus quite clear that the grape was well known at these early times, just beyond the north-western frontier of India.

In The Bower Manuscript (Hoernle, transl., 1893-7), moreover, numerous references are found to the use of raisins in various medicinal preparations.

Vine-leaf Designs.

But the medicinal uses of the vine recorded in Hindu literature are mostly concerned with the dried fruits or raisins and the spirit (maddhika), so that it is probable that prior to the Muhammadan conquests, both the fresh fruit and the various forms of raisins were, as at the present day, imported from across the northern frontier. Many writers (Hehn, Kulturpfl. und Haust, 1894, 65-94) have dwelt on the influence of the faith of Islam on vine-growing in the
MUHAMMADAN INFLUENCE

East, seeing that the drinking of wine is contrary to Muhammadan law. Siraj-ul-Hasan (Journ. Roy. Hort. Soc., xxxix., p.l., 671-4; xxxii., 222-6) furnishes, however, many useful particulars regarding the vineyards of Daulatabad. These, he thinks, date from the time of Taglugh (1335 A.D.), but on Taglugh’s death the capital was transferred to Delhi, and that event had a disastrous effect on the gardens. The following passages, perhaps, sufficiently indicate the Syed’s views:—

“During the time of the Bahmani Kings (1436 A.D.), Daulatabad became a military station under Parwiz-bin-Karanfan. Once again the people began to pay attention to gardening, growing, however, only those kinds of vines that had survived the neglect of previous years.” Then, in another passage, he remarks:—“A great stimulus to grape cultivation was given by the Portuguese Christian Missions located at Aurangabad, which were liberally endowed by the early Bijapur or Ahmadnagar Kings in 1550. Their monasteries grew both purple and white grapes. Ibn Batuta, the Moorish traveller who visited Daulatabad in 1430, and the French traveller Thevenot, who made an extended tour in 1667, were much struck with the gardens that met their eyes throughout the Sarkar of Daulatabad.” “This state of things continued till 1685 A.D., when Aurangabad became the capital of Aurangzeb. The city grew rapidly, and with it the demand for all sorts of luxuries.” In Daulatabad itself, the passion for cultivating vines knew no bounds. Places of recreation provided by their own owners were entirely covered with vines. Even Fakirs looked upon the vine as a gift from Paradise, and had their mosques and monasteries adorned with it.”

The Emperor Baber (Memoirs, 1519 (Leyden and Erskine, transl.), 205) gives a full relation of the first occasion on which he tasted wine. His grandson Akbar, however, fostered and encouraged grape cultivation, and, by his direct aid, grapes of high merit were successfully acclimatised in the Panjab and throughout the greater part of Northern and Western India. But on accession of Akbar’s grandson the order went forth for the destruction of the vineyards of Kashmir, and grape culture in India shared in the neglect that followed. The seventeenth and eighteenth centuries, therefore, witnessed a decline of interest in vine culture, sufficient to account for the low position the industry now occupies, and naturally the references either to the vine or to wine in the works of the early travellers are few, and mostly of a negative character. Nicolò Conti, who travelled in India early in the 15th century, speaking of a town called Panconia (supposed to be Pegu), says, “This is the only place in which vines are found, and here in very small quantity: for throughout all India there are no vines, neither is there any wine.” This, doubtless, was not a very accurate statement, since shortly after other writers speak of grapes as seen by them in various parts of India and Burma. Thus of Gujarath, Mandelslo (1635-40) says: “They want nothing but wine; but to supply their own gardens of that, they have Terri, taken out of the Cocotrapez; but Tavernier (1676) says that in Assam “There are quantities of vines and good grapes, but no wine, the grapes being merely dried to distil spirits from.” Thevenot (Travels in Levant, Indostan, etc., 1657, pt. iii., 16) tells us that the Dutch made wine from the grapes of Surat; and that in Golconda they made white wine (l.c. 104); also that wine-drinking was punished in Kandahar (l.c. 56). Ovington (1689) observes that Banniins, though they “are under restraint from the blood of the grape, yet will they freely taste the grapes themselves luxuriously with their juice, while it is innocent and harmless. We have grapes brought to Suratt, from the middle of February till towards the end of March; some from Amadavat, some from a village called Naapour, four days’ journey distant from Suratt.” These would doubtless be described as the Deccan grapes of the Bombay shops to-day.

There is thus no doubt that large tracts of Upper and Western India are eminently suited for grape cultivation. Many quotations might be furnished to prove the extensive and diversified nature of the knowledge that exists in India and its chief frontier countries regarding the vine. Kanawar, for example, is one of the Indian localities where what may be described as indigenous viticulture is a recognised industry, and Kashmir as an area of both acclimatised and wild grapes, so far as the present-day cultivation is concerned, and lastly the trade in the produce of the vineyards of Afghanistan, Baluchistan and Kashmir is of no mean importance, and moreover capable of indefinite extension.

To that category there seems every prospect in the near future of Mysore having to be added, namely as an important centre of grape cultivation. [Cf. Paulus Aegineta (Adams, transl. and Comment), i., 172-8; iii., 271-3; Jauensis, 1113]
VITIS
VINIFERA
Kashmir

VITICULTURE AND WINE AND RAISIN MANUFACTURE.

According to Woodrow (Gard. in Ind., 1903, 227), “The favourite varieties of grape that are grown in Europe have been introduced many times into India, but with few exceptions fail to become established.” He then mentions the following forms as having been acclimatised and as being cultivated successfully in India generally:—White Mascadine (safed angoor); White Portugal (Cashmere or White Tokay, valayut angor); Black Monukka (bae-danae angor); Black Hamburg (hubshee angor); and Faquirra. Details regarding the methods of propagation, etc., as applicable to India, are given in detail in the same publication, but space does not permit of full treatment in this work. Perhaps one of the most important points to which attention should be paid, is the influence of atmospheric moisture. The fruit will not ripen when once the rains have broken, so that early maturity stock in direct adaptation to climatic conditions is essential. Firminger (Man. Gard. Ind., 1904, 271) states that “the driest and hottest period of the year is when grapes ripen finest. This will be March in the Deccan, May in the vicinity of Cuttack, and June in the Upper Provinces.”

Panjab.—Henderson remarks that “in many parts of the Panjāb, the vine thrives quite as well as in Europe,” and Baden-Powell (Ph. Prod., 271) enumerates twelve different forms recognised there. Practically no information, however, is available regarding viticulture in recent years in the Panjāb. The reports of the experiments carried on at the Agri-Horticultural Gardens of Lahore contain little information, and are mostly a record of failure. While that is so, there are several very distinctive grapes regularly sold in the larger towns (such as the small seedless grape of the Delhi market) that seem well worthy of special study. Sly (Agri. Journ. Ind., i., pt. iii., 268–9) discusses the fruit culture of the North-West Frontier Province. He says that 4,000 acres are under orchards, of which 2,700 are in Peshawar. He then discusses the grapes of Peshawar, Kohat, Kuram and Bannu. (For raisin Vinegar, see pp. 1110–1.)

Wines of Kashmir.—But the interest in Upper India centres very largely in the vineyards of the State of Kashmir. In the time of the Emperor Akbar, as already indicated, wine production was a very general industry, and held then a much more important place than at the present day. During the time of the Emperor Jahangir, the grapes of Kashmir were improved, but shortly after the decline set in which has been already alluded to. Coming down to modern times, the subject next assumed interest in 1876, when the late Maharajah Ranbir Singh took up the enterprise of vine-growing, and in 1885 had 352,525 plants in his various vineyards. At the Calcutta International Exhibition of 1884, red and white wines and also brandies made in Kashmir from the pure juice of the grape were exhibited, and obtained a gold medal and were highly commended for purity and excellence. This circumstance has often been overlooked, and the old tradition of India not producing wine been every now and
KASHMIR AND KANÁWAR

again commented on. It can and does produce wine, and no one can say that its wine industry of the future may not become one of its commercial triumphs. In spite, however, of the great expenditure lavished on them, the vineyards of Kashmir have not as yet proved the success anticipated, and in 1890 it became evident that the vines were suffering from *Phylloxera*. With reference to this, Lawrence (*Valley of Kashmir*, 1895, 351–2) states that “American vines were at once imported, and are now gradually replacing the unhealthy Bordeaux plants.”

Commenting on the decline of the production of the eating grape, Lawrence observes that the people cut down their good vines in order to avoid the exactions of officials. “The grapes, white and red, from the State vineyard at Raipur in the Sind Valley are delicious, and efforts are being made to reproduce the Raipur vines in other parts of the valley. With the decline of the eating grapes, there has been an attempt to introduce the wine grape, and at present there are 389 acres of vineyards on the shore of the Dal Lake. The vines were introduced from the Bordeaux district.” “Perhaps the vines of Burgundy would have been more suitable to Kashmir. Costly distillery plant was imported and set up at Gujarkar on the Dal Lake, and wines of the Medoc and Barsac varieties, sometimes good, sometimes bad, have been manufactured year by year.” “Besides the Medoc and Barsac, which are sold at Gujarkar, a large amount of apple brandy is distilled and finds a ready sale.” “The vineyards are under the direct management of the State, and, in spite of supervision, the vines do not receive the sedulous cultivation which alone can give success.” “The business in present circumstances does not pay.” [Cf. Smythies, in *Agri. Ledge*, 1894, No. 15, 24–5, 27–8; Coldstream, *Vine Cult. in Kanauar*, in *Ind. Gard.*, Aug. 14, 1898; Repts. *Agri.-Hort. Gardens, Lahore.*]

United Provinces.—Practically nothing of a definite nature has been written regarding grape cultivation in these provinces. The vine is said to fruit well in most districts throughout the plains, but the grapes are quite unsuited for wine manufacture. On the hills, however, it is otherwise, since at Kumaon, Kanáwar, etc., a fairly large industry exists in vine cultivation. In Kanáwar the vine has been cultivated since the early classic period, and several writers have spoken in high terms of the vines of Dehra Dun (*Ind. For.*, 1889, xv., 313–5). In the *Reports* of the Botanic Gardens at Saharanpur will be found some information regarding the experimental cultivation of foreign, mostly Afghan, varieties.

“In Upper Kunawur,” says Cleghorn (*Journ. Agri.-Hort. Soc. Ind.*, xiii., 382), “the vine is extensively cultivated and ripens its crop at an elevation of from 6,000 to 9,000 feet. The first plants are seen at Nachar, but the climate there is not suitable; beyond the Miru ridge which intercepts the heavy clouds, the smaller amount of rain favours the ripening of the grapes. The vineyards occupy sheltered situations; generally on the steep slope facing the river. The vines are supported on poles three or four feet from the ground, connected by horizontal ones. The fruit hangs below the shade of the leaves, never exposed to the sun. A considerable portion of the crop is dried on the house-top and stored as raisins for winter use, but without care, and many grapes are spoiled in the process. For several years the crop has been deficient, the grapes dropping off before they were ripe from unseasonable falls of rain and snow. This year, 1864, the rainfall was moderate, but the *Oidium* or vine disease appeared in the valley, and destroyed many vineyards. The fresh fruit is exported to Simla for sale in *kitlas* or large hill baskets, and the small seedless grapes dried are also sold there as ‘fine Zante currents’ at 2 rupees per pound. At Akpa and Poari the
price of fresh grapes is about one rupee for a kitta-full." "Sungnam is the highest point in the valley where the vine thrives."

In Kanawar, says Mr. Atkinson (a later writer), the fruit is called dakhang and the plant länang, and there the vine is extensively cultivated as a field crop, and ripens its fruits at an elevation of from 6,000 to 9,000 feet. He then adds that a spirit called rak or ark is prepared from the juice, and also a wine called shao.

Bashahr Grapes. According to Hoffmeister (Travels, 1848, 377-8) there appears to have existed a large trade in carrying fresh grapes from Bashahr to Simla. This traffic can hardly be said to exist to-day, though the exports of raisins may be considerable and, moreover, capable of infinite development. The available information regarding the Kanawar industry is, however, both meagre and contradictory. But with a community of cultivators possessed of an ancient tradition and centuries of experience as vine-growers, much might be expected were viticulture organised on more scientific principles, and with sufficient capital and commercial enterprise.

Bombay. Bombay.—The earliest definite information regarding the cultivation of the vine in the Deccan would appear to be that already briefly alluded to in the paragraph above on history, viz. the passages from Ibn Batuta, Thevenot, Mandelslo and Ovington, etc. Syed Siraj-ul-Hasan (Lc. 224) says, "Looking at the present condition of the fruit trade at Poona and Nasik, one realises what treasure lies buried in Aurangabad and its vicinity. These two places send fruit to the value of many lakhs of rupees to the Bombay market. The writer has personally seen thousands of acres of lands under vine cultivation around Nasik. One merchant alone—a Bohra—exports as much as £33,000 worth of fruit. Why should not Aurangabad compete with the other cities on equal terms? The soil is excellent, as proved by the experience of centuries."

The moist climate of the Konkan is not suitable for vine-growing, but in parts of the Deccan, e.g. Ahmadnagar, Aurangabad, Poona, and especially Nasik, grapes of fair quality are grown for the Bombay market. The vines are usually trained on live posts cut from Erythrina indica, a tree known in the vernacular as the pangara. The account of cultivation given by Woodrow, which has been already referred to, has special application to Bombay, and should be consulted in this connection. More recently P. S. Kanetkar, Superintendent, Empress Gardens, Poona, gives a full account of viticulture in Poona and the Deccan (Ind. Plant. and Gard., April 21 and 28, 1906). He names five distinct varieties which are cultivated there, viz. abhi or bhokari, jakri or jakari, habshi or kali, gokali and sahebi. The field selected "has a kind of garden soil that is neither black clay nor light red (murrum), but is a mixture of these, and contains a fair proportion of lime." In the hot weather it is ploughed four or five times and during the rains is left fallow, or Crotalaria juncea (tag) is grown and ploughed in as a green manure in September. The young vines are reared in nursery beds and then transplanted. The season for transplanting the vine stocks is the month of January. The stock is prepared from the cuttings of the October prunings. "The cuttings, about a foot long, with four eyes or buds upon them, are chosen from ripe wood and are planted in beds, the soil of which is manured with ashes or well rotted farm-yard manure." They are put down in twos, and by January throw shoots about 6 to 9 inches long and become fit for planting out. Previous to planting out the young vines, the field is ploughed along and across, the points of intersection of the furrows being 7 feet apart. At the points where the furrows cross, pits are dug, in each of which a basketful of manure is placed. A pair of young vines is then planted in each pit.
DECCAN GRAPES

The furrows between the pits serve as water-channels, and water is applied immediately after planting. A second and third watering are given at intervals of four and six days, and later the plantation is watered every eight days till June. When the vines are established, karei stakes (Strobilanthes callosus) are driven into the ground and two of the healthier shoots tied to them, while the others are cut off. In this way the vines grow till April, during which time half a basketful of farm-yard manure, or preferably poudrette, should be given twice to each vine and all side-growth removed. When the vine has grown over 5 feet (towards April), the ends are nipped off. As a consequence, side shoots are thrown out near the top. About three or four of these shoots are kept and all the lower ones are removed." Stronger stakes of the pangara (Erythrina indica) are now supplied in place of the karei. "The three or four shoots kept at the top of the vine continue growing till October next, when the pruning for the mitka bar (sweet crop) becomes due." After pruning, the ground between the rows of vines is ploughed. No water is given till the shoots blossom, and form small fruits. "About four weeks after pruning the blossoms appear and the fruit sets in a short time afterwards." The bunches are ready to be gathered in March, about six weeks after the grapes begin to get soft. "A well-established plantation about ten years old yields about 10 or 12 lb. of grapes per vine." After the fruit is gathered (in March), no water is given for about a month, and in April the hot-weather pruning is done. "At this pruning the spurs or kalam which had three or four buds left on them at the cold-weather pruning for giving the fruit-bearing shoots, are shortened and cut back to two buds, from which alone one or more shoots will spring up to bear the sour fruit of the rainy season." After the hot-weather pruning, the land is again ploughed, harrowed, and manure applied. Water is then given and continued weekly till the rains. In October pruning commences again, as already explained. [Cf. Repts. Dept. Land Rec. and Agri., Bombay.]

Diseases.—Very little is known regarding the diseases of the vine in Western India. Recently, however, Butler (Agri. Journ. Ind., ii., pt. i., 94–5) furnished a brief report on the subject and identified two out of the four diseases mentioned by Mr. Kanetkar. The four diseases are—(1) kharda rog (red or brown rust), (2) buri (mildew), (3) khajalya rog (black rust), and (4) karpa rog (drying-up disease). The second and the fourth are well-known diseases of the vine. Buri is Oidium Tuckerti, one of the most destructive of mildews; while karpa rog is anthracnose (Spatoceloma ampelinum). Both can be controlled if not checked by flowers of sulphur. [Cf. Maxwell-Lefroy, An Insect attacking Grape-Vine, in Agri. Journ. Ind., 1907, ii., pt. iii., 292.]

Baluchistan and Sind.—One of the many surprises that meet the visitor to Quetta is the profusion and superior quality of the grapes that are offered for sale. On inquiry these are found to be frequently raised in vineyards where there is practically no rainfall and where few or no streams are seen to carry surface water. Underground, however, the people have excavated drains that communicate from one well to another, until a fairly good flow is established from the upper (often rocky regions) to the more fertile lower plains, where vineyards and fruit gardens abound. The system of subterranean drains (or tunnels) has been adopted as a matter of economy, since the great dryness of the surface soil and

1117
high temperature of the atmosphere would absorb all the water long before it reached the orchards.

Little information exists as to the methods of cultivation or of manufacture of raisins, but Mr. R. Hughes Buller has furnished some interesting particulars regarding the chief varieties of grapes grown in the Quetta-Pishin district. He enumerates some eighteen, but the most widely distributed are known as haita and spin kishmishi, followed by kalamakk, husaini, tor, sra kishmishi, and tandán. The rest, he says, are only met with occasionally. Haita is a large oval-shaped grape, with hard skin, of a green colour tinged with yellow. It is very lasting and is the grape commonly packed in wool and sold in Indian bazárs. It is obtainable from August to the end of November. In Kandahár haita grapes are made into raisins (abjosh) by dipping them in boiling water mixed with lime and carbonate of soda, and then drying in the sun. Spin kishmishi is a small green grape, oblong in shape, found in all parts of the district, especially in Quetta and along the Khwája Amrán. It begins to ripen in August and lasts till the end of October. Kalamakk is green, oblong, of medium size, larger than spin kishmishi and smaller than haita. It ripens from September to 15th November. Husaini is a soft fruit, distinguished by its loose growth and by the narrowing of each grape in the centre. It grows in Gúlistán, Mazarri, Kamálzái, Arambi and Sariáb, begins to ripen in August, and lasts till the end of October. Tor is described as an oval grape, dark in colour and fairly sweet. It ripens early, about the middle of July. Sra kishmishi is a small grape, light purple in colour, with soft skin. The Kandaháris make raisins from it. It begins to ripen about the 25th of August and lasts to the 15th of October. Tandán, the last mentioned, is a large round, green grape of inferior quality. It contains a large quantity of juice which is extracted in Kandahár, boiled and kept for use as a relish. It ripens in September.

Traffic.—The traffic in grapes (preserved in wooden boxes), arranged layer upon layer, with sheets of cotton-wool between, constitutes one of the characteristic features of the so-called Kabul (Afghan) trade of India. The wandering fruit traders carry grapes, raisins, pistacio nuts, almonds, and pomegranates all over India; and, barring the traffic in Kashmir fruit into the Panjáb and of Deccan grapes into Bombay, the Kabuli traders practically supply the grapes and raisins consumed in the whole of the rest of India. The traffic is, therefore, by no means an unimportant one, and the share taken by the Quetta-Pishin district perhaps the most valuable single contribution.

Pedley wrote an interesting paper (Agri. Ledg., 1893, No. 7) on the possibility of a raisin industry being organised in Sind. He contrasted the Fresno district of California with the Schwan Sub-division of Karachi, and came to the conclusion that with its cheap labour Sind might easily do a large trade in this dried fruit.

Bengal and Assam.—The annual rainfall of the province is too high for vine cultivation to be of much importance. In the upper divisions of the province, however, e.g. in Bihar, where the climate approximates to that of the United Provinces, greater success has been attained than in Bengal proper, and fairly good grapes are often produced, as at Dinapore and Tírhtú. [Cf.: Repts. Dept. Land Rec. and Agri.]

Madras and Mysore.—On the plains of Madras the vine can be grown only under careful garden cultivation, and viticulture can never
therefore become an established industry. On the mountains and tablelands, on the other hand, it is grown with complete success. An account of an interesting experiment at present being conducted in Mysore by an Australian (Mr. M. Paul), is given in the Indian Agriculturist (Jan. 1, 1907). Mr. Paul appears to consider the Mysore climate an absolutely ideal one for the vine, and he hopes in a few years to place on the Indian market some twenty varieties of the finest grapes grown in Australia, and equal to any produced on the Continent of Europe. The cuttings imported from Australia were kept partly on the Nilgiri hills and partly in a small nursery at Bangalore, but have now to a large extent been planted out, and are said to be doing very well. In a year it is asserted by Mr. Paul, that he will have a good show of grapes; in two years his little Bangalore vineyard will produce some tons. These grapes, he considers, will sell at a few annas a pound, and he declares that they will be equal to grapes sold in London at five or six shillings a pound. [Cf. Cameron, For. Trees of Mysore and Coorg, 1894, 74-5; Rice, Mysore Gaz., 1897, i., 83; Repts. Govt. Bot. Gard., Bangalore.]

Uses.—It is chiefly as a fruit that grapes are cultivated on the table-land of India. But they are at the same time largely eaten in a dried state as raisins or currants, and at one time constituted a fairly important article of food with the people of Kanawar. The industry of drying grapes is not practised, however, to any very great extent anywhere in India. According to Dutt (Mat. Med. Hind., 1900, 138) raisins have for many centuries been employed medicinally by the Hindus, and he adds that they enter into the composition of numerous demulcent and expectorant medicines in use at the present time. The other products manufactured from the grape are wine, brandy and vinegar (see pp. 1109, 1110).

TRADE.—In the internal trade returns, wines are classed along with spirits (see p. 1047). The foreign trade consists chiefly of imports and re-exports. The exports of Indian produce are quite unimportant, and when compared with the immense population, the imports also are remarkably small. The following table shows the foreign imports of wines of all sorts for the five years 1902-7:

<table>
<thead>
<tr>
<th></th>
<th>1902-3</th>
<th>1903-4</th>
<th>1904-5</th>
<th>1905-6</th>
<th>1906-7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rs.</td>
<td>Rs.</td>
<td>Rs.</td>
<td>Rs.</td>
<td>Rs.</td>
</tr>
<tr>
<td>Champagne</td>
<td>10,07,620</td>
<td>8,07,144</td>
<td>7,84,015</td>
<td>9,66,182</td>
<td>7,57,812</td>
</tr>
<tr>
<td>Claret</td>
<td>2,91,766</td>
<td>2,54,248</td>
<td>1,99,156</td>
<td>2,03,961</td>
<td>1,66,360</td>
</tr>
<tr>
<td>Port</td>
<td>7,61,932</td>
<td>7,30,754</td>
<td>7,52,877</td>
<td>8,00,934</td>
<td>7,79,522</td>
</tr>
<tr>
<td>Sherry</td>
<td>1,89,657</td>
<td>1,76,279</td>
<td>1,67,478</td>
<td>1,82,307</td>
<td>1,68,006</td>
</tr>
<tr>
<td>Other Sorts</td>
<td>7,50,956</td>
<td>7,59,022</td>
<td>7,15,456</td>
<td>8,21,963</td>
<td>7,68,188</td>
</tr>
<tr>
<td>Total</td>
<td>30,01,931</td>
<td>27,27,947</td>
<td>26,18,982</td>
<td>29,75,347</td>
<td>26,39,828</td>
</tr>
</tbody>
</table>

From these figures it will be noted that the imports do not show much tendency to increase. The chief supplying countries and the shares taken by the various provinces may be exemplified by the following analysis of the trade of 1906-7. Of the total quantity (329,342 gallons) imported in

1119
that year, 150,899 gallons came from the United Kingdom; 99,887 from France; 15,982 from Italy; 11,672 from Belgium; 11,782 from Germany. The quantities from other countries were comparatively insignificant. The shares received by the various provinces (in gallons) were as follows:—Bombay, 105,200; Bengal, 99,308; Madras, 52,360; Sind, 38,290; Burma, 33,998. The shares (in gallons) taken by the chief importing countries in the different sorts of wine may be similarly exemplified by the figures for 1906–7:—CHAMPAGNE—United Kingdom, 13,292; Belgium, 7,819; France, 6,638. CLARET—France, 27,353; United Kingdom, 8,084. PORT—United Kingdom, 77,080; Germany, 7,544. SHERRY—United Kingdom, 18,023. OTHER SORTS—France, 63,416; United Kingdom, 34,420; Italy, 11,418; Spain, 7,022, etc.

W

WITHANIA, Fauq.; Fl. Br. Ind., iv., 239–40; Gamble, Man. Ind. Timbs., 1902, 508; SOLANACEÆ. A genus of shrubs, two of which are natives of India.

W. coagulans, Dunal. The Cheesemaker or Indian Rennet, akri, panir, ashvagandá, spín baijá, sháhpian, khámazora, kákhái, amúkka, pennérū-gadda, etc. A small herb common in the Panjáb, Sind, Afghanistan and Baluchistán.

The fruit, both fresh and dried, is used medicinally, but is chiefly important as possessing the property of coagulating milk, and is used for that purpose instead of rennet in Sind, North-West India, Afghanistan and Baluchistán. This property was first noticed and made known by Stocks in 1849 (Journ. As. Soc. Bomb., 56). Mr. S. Les published an account (Proc. Roy. Soc., 1883, xxxvi., 55–8) of experiments made on the seeds for the purpose of ascertaining whether they contained a definite ferment with the properties of ordinary rennet. The seeds were subjected for 24 hours to the action of various solvents which were then added to milk. A 5-per-cent. solution of common salt in water was found most effective in extracting the ferment, which rapidly curdles milk. In summing up, Les states that the results of the experiments proved “that the seeds of Withania can be used as an adequate and successful substitute for animal rennet.” [Cf. Pharmacog. Ind., ii., 560–72; Agri. Ledg., 1893, No. 17, 114; 1895, No. 5, 64–6; Kew Bull., 1903, 27–8.]

W. somnifera, Dunal; Prain, Beng. Plants, 1903, ii., 750. The panir, aswagandhá, ashvagandhá, kádtul, tília, gholá, amúkka, pennérú-gadda, etc. An erect shrub found throughout the drier parts of India; frequent in the west and in Hindustán, rare in Bengal.

Leaves, seeds and root are used in Native MEDICINE, being reputed to have diuretic and narcotic properties. The root, however, according to Dymock (Mat. Med. W. Ind., 1885, 643) “has universally been confounded with a root met with under the same names in the bazars, but which bears no resemblance to the root of W. somnifera.” The aswagandhá of the shops is the tuber of a convolus, which, though much smaller and different in habit, does not appear to differ botanically from Ipomœa digitata (p. 686). In Bombay the seeds of this species are employed to coagulate milk in the same way as those of the former, already detailed, and both plants accordingly often bear the same vernacular names.

[Cf. The Bowser Manuscript (Horneié, trnsl.), 1893–7, 18, 87, 108, etc.; Matthiolius, New Kreuterbuch, 1563, 465; Bruce, Travels in Africa, 1790, v., 54–6 (the Wansley); Paulus Eginiae (Adams, Comment.), 1847, iii., 339–60; Pharmacog. Ind., ii., 566–9; Banerjia, Agri. Cuttack, 1893, 190; Agri. Ledg., 1896, No. 28, 282–3; Dutt, Mat. Med. Hind., 1900, 210–1.]

WOOL AND PASHM

Wool is a natural fiber obtained from the skin of sheep. It is a versatile material used in various forms, such as yarn, fabric, and yarn. The production of wool involves shearing the sheep to collect the wool. Wool is known for its thermal and insulating properties, making it suitable for clothing, blankets, and other textiles. In addition to its practical uses, wool has played a significant role in cultural and religious practices, particularly in the context of the Vedic traditions. The production and trade of wool have a long history, with records dating back to ancient times. The wool trade has been important for economic development, especially in countries with sheep farming traditions, such as those in the Middle East and Asia. The quality of wool varies depending on the breed of sheep and the region where it is produced. Therefore, understanding the history and production of wool provides insights into the cultural and economic significance of this natural fiber.
WOOL AND PASHM

garments. With most it states the bridegroom attends the wedding service with a woolen charm tied around the waist. Brahma created fir, woollen cloth, the Brahman, and the kisā grass (see p. 930). From these and such-like references, we are justified in assuming a vast antiquity for the Indian knowledge of wool, as also the arts of spinning and weaving it.

But even with the Muhammadans, the knowledge in wool is no less extensive than with the Hindus. Frequent mention of it occurs in the Arabic and Persian classics. Ali, Fatima, Hasan and Hussain are spoken of as the children of the blanket. But in Asia the very earliest woollen garments were produced by plaiting, much after the fashion of grass-mats, and there would seem reason for believing that the property of felting wool was discovered before the art of spinning it. When viewed under the microscope, the individual fibres of wool are seen to be coated with minute scales, and the fibres are, moreover, curly and elastic. To these physical properties there is a large extent due the felting of wool, as the fibres, on being shrunk, get intertwined and bound together. But the wool of sheep reared in tropical countries is less scaly, less curly and more rigid than that of temperate countries, and becomes, in fact, hardly separable from the hair of goats. Hence it follows (to some extent at least) that the knowledge in wool and the position of the woollen industries of India become less and less evident as the approach is made toward the warm moist regions of the tropics or descent is made from the hills toward the plains. It is thus highly probable that the knowledge in wool came to India through the Aryan invaders (who doubtless were largely shepherds), and even to-day wool takes a very subordinate position in the art-crafts of India proper, owing doubtless to its unsuitability as a material of clothing under the climatic conditions that prevail for the greater part of the year.

During the early years of the British rule in India much attention was paid to wool, more especially shawl-wool (pashm) of the Panjāb, Kashmir and Tibet. The papers written by Webb, Raper, Moorcroft and Hearsay, and later by Smythe, Hutton, Hodgson, Conolly, Cooper, etc., may be specially mentioned as the outcome. But long prior to these, many travellers make mention of wool. Thus, for example, Fryer (New Acc. E. Ind. and Pers. (ed. 1698), 224) tells us that the English Company’s trade was in his day small from Persia but that they carried a few drugs, Carmania wool, etc. This is, therefore, one of the earliest references by a European to the Kirman wool, which for many years past has constituted a very important item in the imports of raw wool drawn by India to its looms.

Characteristics of the Fibre and Trade Classification.—The nature and value of the fibre depends first upon the breed of animal from which obtained; next, the climate, soil and herbage of the country in which reared; and lastly, the method and care with which the fleece has been removed from the animal and sent to market. But it is well known that with every precaution observed, departures and irregularities occur. From the standpoint of buying and selling wool, its merit turns on softness, soundness, fulness and freeness. The individual hairs may vary in length, thickness, and number of scales to the inch very greatly, even within the most carefully selected breed, and moreover they are different on the various parts of the body or during the various seasons of the year, and may even be irregular side by side on the same animal. Mr. N. Burgess, for example, gives the measurement of one hair in a sample of Saxan wool as $\frac{1}{16}$ of an inch, while another lying by its side measured $\frac{1}{16}$ of an inch. But to compare with these, he records hair of Southdown with a measurement of $\frac{1}{16}$ of an inch and another $\frac{1}{16}$, the coarsest fibre being $\frac{1}{16}$ of an inch.

As with cotton, so with wool, the merit of the fibre is generally expressed by lengths to which it can be spun. 32's would be the lowest and 80's the highest average yarn. That is to say, in the former 32 hanks of 560 yards each can be spun from the pound of wool, and so 80's would mean that the wool was so fine that one pound could be spun into 80 hanks of the length mentioned, or 44,800 yards. But if the wool be harsh and devoid of elasticity, while in length of staple it may be suited for a certain count, a much lower yarn may actually be possible. Much, therefore, depends upon the condition or texture of the fleece.

As mentioned above, the under-fleece of the Tibetan goats yields the finest of all Indian wools—pashm. This is used for the most expensive and artistic purposes in the Indian woollen industries, more especially the shawls and chadars presently to be described. It is imported across the land frontier and almost exclusively through Kashmir. Waddell (Lhasa and Its Mysteries, 1905, 476-7)
affords some interesting particulars of the *pashm* of Southern and Eastern Tibet. He remarks that the Kashmiris have a monopoly of the trade in Upper Tibet, whence they export it all by way of Rampur on the Sutlej, Kashmir and Ladakh, and canvass for it chiefly in the tracts adjoining there. "In Southern Tibet, however, most of this important product, the felted silky underwool, which should amount to hundreds of tons annually, is wasted, as the Tibetans do not know its great value, and do not collect it from either the yak, when shedding its winter coat in spring, or the goats and sheep."

Imported Kirmani wool and the still more inferior wohat shah k pashm (from Persia and Afghanistan), after being treated in a special manner, is extensively employed as a substitute for or in admixture with Tibetan *pashm* in the production of much of the *pashmina* of modern commerce. A more recent and even more pernicious practice is the use of foreign, mostly English, woolen yarns in the fabrication of Indian textiles, for which both the colours and the quality of the yarn are unsuited.

Indian Wool.—The best wool is that of the Panjab and Frontier Province, of which perhaps Hissar would take the foremost place, but Ferozpur, Lahore, Jhang, Shahpur, Peshawar, Dera Ismail Khan, Amritsar, Multan, Rawalpindi and Jhelum each produce wool in fair quantity and quality. In the United Provinces the most useful wool comes from the Himalayan tracts—Garhwal, Almora, and Naini Tal—while the important districts in the plains are those of Agra and Mirzapur. A large drain is, however, made on the Panjab, Rajputana and Sind, and also on foreign countries, to meet the manufactures of these provinces. The best-known local woofs of Western India are the black Deccan and Khandesh and the white woofs of Sind, Gujarat, and Kathiawar. Sind and Baluchistan woows are exported from Karachi, along with the fine wool obtained from Bikanir. The rearing of sheep in the Central Provinces is fairly important, especially in Jabalpur, Nagpur, Chanda, Wardha and Raipur. In Rajputana and Central India, Bikanir, Jodhpur, Jaipur and Ajmir produce wool, and that of Bikanir is much prized all over India, especially for carpet-weaving. In Southern India the woods of Bellary, Karnul, Coimbatore and Mysore are well known; but the sheep of most other districts of Madras, like those of Bengal, yield hair rather than wool.

Prices.—In an official report from the Director of Land Records and Agriculture in the United Provinces, the following occurs regarding prices. The price depends upon the purity of the wool, but 2½ seers per rupee may be assumed as a fair average. Bikanir wool (white) fetches from under Rs. 20 to over Rs. 35 per maund, according to fineness and freedom from burrs. Goats' hair costs 10 to 12 seers per rupee and camels' hair 5 seers per rupee.

Indian Woollen Manufacture.

Mr. J. E. O'Conor (Rev. Trade Ind., 1893, 51) made the somewhat significant comment: "The trade is as yet quite unimportant and is likely to remain so for a long time to come, unless the Indian mills are able to find markets in Asia for coarse blankets and horse-clothing, the only descriptions of goods for which there would be a fair demand in the regions we could hope to supply and the only kinds we could manufacture with profit to compete outside India with European goods." In 1895, however, the imports from Great Britain had fallen off by 9½ per cent., while those from Germany had increased sixfold, from France threefold, and from Austria twofold. It had thus almost immediately been demonstrated that the attractively got up cheap shoddy and mixed woollen goods of the Continent of Europe (more especially of Germany) were not only ousting the superior manufactures of England, but had undermined the ground which
the Indian mills were believed capable of holding. In Calcutta, for example, there has existed for many years past a large demand for coolie blankets and shawls, and this has recently been entirely usurped by cheap foreign supply. It is hardly to be wondered at, therefore, that the pioneer woollen mills of India, such as the Cawnpore Woollen Mills Co., Ltd., should have been driven to turn their attention almost exclusively to the production of high-class goods of pure wool in direct competition with the British supply, since their woollen blankets could no longer compete with the cheap low-grade foreign articles. Similarly it has been realised that there was a more profitable market open to the Indian mills in the production of ordinary average quality and even high-class woollen goods than in contracts with the Army Clothing Department of India. Thus it may be said that recent years have witnessed a complete revolution, and a wholesome one, since the date when the original Dhariwal Woollen Mills Company was established, almost exclusively, it might be said, to meet official contracts.

The Dhariwal and Cawnpore Mills may be regarded as favourably placed to tap the supplies of India's finest wools, such as those of Kangra, Simla, Garhwal, Kumaon and Nepal, the South-East Panjab (Shahpur, Dera Ismail Khan, etc.) and South-Western Afghanistan. In some cases these wools have to be carried by road for 200 to 300 miles before they reach the nearest railway station. This is the chief drawback to the Indian mills—the long road transit and consequent heavy charges.

Mills and Woollen Manufactures of India.—In 1876 the Cawnpore Woollen Mills were established, and ten years later (1886) there were four woollen mills in India with a combined capital of Rs. 18,00,000. These gave employment to 1,372 persons, had 242 looms and 5,420 spindles under use. They produced goods to the extent of 798,062 lb., valued at Rs. 5,27,420. Still a decade later (1896) there were 6 mills at work in India with a capital of Rs. 32,50,000, and these gave employment to 3,017 persons, had 530 looms, 18,658 spindles, and produced 2,345,570 lb. of goods, valued at Rs. 24,96,751. During 1904 there were 6 mills with a capital of Rs. 46,25,000, employing 3,468 persons, 737 looms and 25,931 spindles, with a production of 3,508,700 lb. valued at Rs. 36,74,678. That is a record of thirty years' progress of which India has no cause to be ashamed, yet it should be viewed as giving but a foretaste of still greater advancements.

It may perhaps suffice to complete this reference to the Indian power-loom woollen mills to repeat that, as a rule, they concern themselves with the growing demand for goods on a European pattern and style, such as serges, broadcloths, flannels, tweeds, blankets, travelling rugs, etc. They have also given attention to the production of worsted, knitting yarns, Berlin wool, as also knitted goods of all kinds, such as socks, cardigans, jackets, jerseys, caps, gloves, etc., etc. They use pure wool: for the lower grade goods, Indian wool, and for the higher, the finer imported wools, either alone or mixed with Indian. They do not attempt the imitation of Indian special textiles, nor have they as yet engaged in any branch of the European carpet industry.

Indigenous Woollen Industry.—But the official returns of mills take cognisance only of factories that each employ not less than 25 persons and keep these at work mainly, if not exclusively, on the production of woollen goods. Scattered all over India, however, more especially in
the upper provinces, there are small hand-loom workshops in woollen manufactures, and these each employ only one or two hands. In the aggregate they are important, though out of the large number that exist, recognition is made officially of only some 10 or 12, because, though not woollen mills in the strict sense, they are weaving establishments that employ annually from 4,500 to close on 6,000 hands. These larger wool-weaving indigenous establishments are all located within the Panjab and are concerned for the most part in the production of shawls, chadars (see next page), pashmina, jamawar (or patterned alwans), pattu, etc., etc. But here and there throughout India there is a fairly large industry in Oriental carpet-weaving (see Carpets and Rugs, 272–5) and in felted rugs (namdas), and this does not appear to be included in the official returns above indicated. But if the study of the Indian woollen industries be extended so as to include the production of mixed fabrics, that is to say those in which wool constitutes but one, and perhaps the least important ingredient, an extensive assemblage of textiles would be thereby embraced, such as the himrus, mashrus, ghuttus and the like. These are mostly made of silk and cotton mixed, but occasionally of wool and silk combined. The name mashru (i.e. permitted textile) gives the key apparently to the explanation of the richly varied assemblage of fabrics so designated. Pure silk was forbidden to be worn by Muhammadans except on special occasions, and thus the weavers conceived of numerous methods by which an admixture, perhaps of but a small amount, of silk might be thrown on the surface of a woollen or cotton textile to give it the rich effect of being constructed almost entirely of the more expensive and luxurious material. The word himru literally means a textile intended to be worn in the cold season. It is woven of cotton so treated as to give it the effect of wool, and is usually brocaded with silk. Occasionally such textiles are made entirely of silk, and are, strictly speaking, amrus, but when, in place of cotton, wool is used, they are commonly designated jamawars. These are pieces of a fixed length, such as would be required for the preparation of a choga or coat, or suitable for a lady’s dress. They are simply brocaded woollen goods with the pattern either in very fine pashm or in silk, or they may be in cotton, with pashm or silk ornamentations. In the jamawars of Kashmir, the end pieces are woven straight on, but in Amritsar and Ludhiana they are sewn on. A large percentage of the Kashmiris settled in British India have abandoned the shawl trade and concentrated their attention exclusively on the production of plain pashmina or of jamawars. They found a lucrative field in the larger towns, especially where these possess a fair percentage of Muhammadans, such as Lucknow, Hyderabad, etc., and in time the weavers adapted themselves to the requirements of their markets and produced himrus and other brocaded textiles in which wool was largely replaced by cotton or silk. Within recent years a soft form of wool has been imported into India (and in increasing quantities) originally from Kirman in Persia, more recently from Australia and Afghanistan. So also by special treatment soft staple can be produced from almost any wool. These special wools are worked up alone or in admixture with pashm in the production of pashmina, a textile imitated in Europe by a fabric known as “Kashmir,” which, needless to say, is not made in Kashmir nor in India, any more than a tithe of pashmina sold in India and exported to Europe and America is made of pashm. [Cf. Imp. Gaz., 1907, iii., 212–8.]
Shawls and Chadaras.—Some years ago the Indian supply set the fashion of wearing these special articles and gave the name shawl (shal) to Europe. These textiles are woven of the finest wool (usually the under-fleece of the Tibetan goat), known as pashm, an extremely fine hair (which in Europe is called shawl-wool, the textile being pashmina). The Rampur chadar is usually white or of some plain colour. It is woven of a woollen (pashm) warp and a specially prepared silk, sometimes even cotton weft, though occasionally the weft also is of pashm. In manufacture, chadaris are twilled or damasked, but they may be embroidered in the shal-stitch fashion, and may even be possessed of narrow ornate borders or be embroidered in pale-coloured or white silk. A large proportion of the soft shawls sold in India to-day as Rampur chadaris, and which are often carried away by visitors in good faith as being genuine, are made in Europe and sent to India on purpose to meet the demand that exists for these goods.

Much has been written on the Kashmir shawls. Perhaps the earliest account of any note is that given in the Ain-i-Akbari, 1590 (Blochmann, transl., 91–2). “His Majesty encourages, in every possible way, the manufacture of shawls in Kashmir. In Lahore also there are more than a thousand workshops.” Bernard, who travelled in India in 1656–8, gives some interesting particulars regarding the Kashmir shawls and the woollen manufactures of the Panjâb generally (Travels, in Constable, Or. Misc., 1891, 402–5). Great pains, he says, have been taken to manufacture shawls similar to those of Kashmir, in Patna, Agra and Lahore, but, notwithstanding every possible care, they never have the delicate texture and softness of the Kashmir article. Vigne (Travels in Kashmir, 1842, ii., 125) affords many useful facts, but Moorcroft (Travels, ii., 164–217) produced what might be described as a full technical report of the materials used, methods of fabrication, and trade in Kashmir shawls during the period of his special studies. Lawrence (Valley of Kashmir, 1895, 375) carries the story down to the present position of the craft—a tradition, a memory of the past, a degraded industry starved through the loss of the European demand. Dr. A. Mitra, in a pamphlet on the Arts and Industries of Kashmir State, says the time was when 60,000 persons were employed in shawl-weaving and brought into the State fifty lakhs of rupees a year. Now, instead of prosperity, the people are sunk in the most abject poverty. [Cf. Ind Art at Delhi in 1903, 338–65.]

Kashmir shawls are classified according to size, shape or purpose for which made, e.g. plaids, shawls, handkerchiefs, table-covers, curtains, scarves, etc., but it may be said there are two chief modes employed in their artistic ornamentation—(a) tili or kanikar (patterns elaborated on the loom), and (b) amilikar (patterns worked by the needle). The one is woven, the other embroidered, but curiously enough and contrary to what might have been anticipated, the needle (or hand-work) is less expensive and at the same time less artistic than that produced by the loom. A sort of intermediate condition, however, also exists in which the imperfections and shortcomings of cheap loom-work are removed, or made up for by subsequent needle embroidery. But the loom commonly used is hardly more than a few inches in diameter. Strips (braids) or patches are thus woven, then pieced together with the necessary pieces of pashmina cloth to form the shawl. The unions are next cleverly obliterated by needlework that can hardly be distinguished from the loom-work. The ground material is usually the finest and purest pashm, and

Two Chief Forms.

Loom. Needle.

Combination. The Loom.
the field \(\textit{matan} \) may be of one piece (when the shawl is called a \textit{khali-matan}) or consist of four squares of differently coloured \textit{pashmina} (when it is described as a \textit{char-baghlan}). If in the centre is placed a medallion of flowers, the shawl is spoken of as a \textit{chand} (moon), and if it has only corner flowers, it is a \textit{kunj}. Lastly, when one end has a deeper band of embroidery than the other, and both ends are much broader than the side strips, the shawl is spoken of as a \textit{shakpasand} or \textit{palledar}.

The chief centres of the Kashmir shawl manufacture to-day are Kashmir, Amritsar, Sialkot, Ludhiana, Gurdaspur and Lahore. The returns given below of the exports of Indian woollen goods afford the only indication of the extent of the traffic. But for centuries past expensive Kashmir shawls have been much sought after by the princes and nobles of India. The possession of one or more of priceless value was an admitted mark of nobility, and accordingly such shawls were treasured and handed down from generation to generation. Some of the finest known examples of Kashmir shawls are, accordingly, those belonging to the older families. It was perhaps an unfortunate circumstance when the French nobility sought out these expensive garments. French traders visited Kashmir to purchase their annual supplies and year by year dictated the changes in style which they deemed necessary to meet the ever changing fashions of Paris. An incalculable injury to the art conceptions of the Kashmir people was a necessary consequence of this new trade, and when the Franco-Prussian war put a complete check on the demand, the Kashmir weavers who had become dependent on their French customers were ruined. Meantime Paisley had imitated completely and successfully the Kashmir shawls, and at a price far below what the hand-weavers could accept. Although these imitation shawls had the severity of all power-loom fabrics, they reproduced every detail of the originals and were marvellously woven and extremely beautiful and delicate in texture, so much so that by many they were preferred to the more clumsy though more artistic shawls of Kashmir. The cheapening process soon, however, effected its own ruin. Paisley shawls became so common as to cease to be popular. The demand terminated and the Paisley new industry had to be abandoned, its expensive and ingenious machinery sold as old iron, and its weavers converted into sewing-thread spinners, just as the bulk of the Kashmir shawl-weavers had to become either carpet-weavers or agriculturists. But Paisley has recovered from the loss of its shawl-weaving industry; Kashmir has not. And this is ever the story of art and industrial instinct. The latter lives by conquest, the former dies by contest. \[\text{Cf. Andrew Blair, } \textit{The Paisley Shawl}, 1906.\]

INDIAN TRADE IN RAW WOOL.

Prof. Clapham of Leeds, in an address to the Yorkshire Association for Promoting Commercial Education, gave some striking facts regarding the wool trade of Great Britain. In 1840 the imports from Australia were 40,000 bales; in 1850, 140,000 bales; in 1860, 200,000 bales; and in 1870, 500,000 bales of wool. If by \textit{bales} was meant \textit{sacks} of 364 lb., the imports mentioned for the last year would have been 182,000,000 lb., or just one-half the amount recorded thirty years later.

Up to the opening of the Suez Canal, London was the world's chief emporium for wool, but the establishment of steam shipping and of cable communication, when taken in conjunction with the quick route through the Canal, had the natural effect of bringing the sellers in Australia into
direct touch with the buyers in Europe, and hence London lost its supremacy in the traffic. In modern returns of the British trade, wool is dealt with under the following headings:—(1) Alpaca, Vicuna and Llama; (2) Goats’ Wool or Hair, Mohair (Angora goats’ hair); and (3) Sheep or Lambs’ Wool. Of the last mentioned, the following statement for the past five years may be given: the countries that supply 10 million pounds and over being alone mentioned and the last three figures omitted as a matter of convenience:

Statement of Wool Supplies into Great Britain (omitting last three figures).

<table>
<thead>
<tr>
<th>Chief Countries of Supply</th>
<th>1902.</th>
<th>1903.</th>
<th>1904.</th>
<th>1905.</th>
<th>1906.</th>
</tr>
</thead>
<tbody>
<tr>
<td>France</td>
<td>lb.</td>
<td>lb.</td>
<td>lb.</td>
<td>lb.</td>
<td>lb.</td>
</tr>
<tr>
<td></td>
<td>27,766</td>
<td>15,781</td>
<td>20,026</td>
<td>21,388</td>
<td>23,854</td>
</tr>
<tr>
<td>Chili</td>
<td>14,862</td>
<td>16,133</td>
<td>16,212</td>
<td>15,056</td>
<td>17,260</td>
</tr>
<tr>
<td>Argentina</td>
<td>24,482</td>
<td>24,149</td>
<td>13,367</td>
<td>26,675</td>
<td>29,984</td>
</tr>
<tr>
<td>Cape of Good Hope</td>
<td>68,479</td>
<td>66,878</td>
<td>57,876</td>
<td>58,331</td>
<td>53,997</td>
</tr>
<tr>
<td>Natal</td>
<td>8,819</td>
<td>11,435</td>
<td>7,250</td>
<td>9,370</td>
<td>13,273</td>
</tr>
<tr>
<td>Bombay</td>
<td>23,933</td>
<td>28,816</td>
<td>38,658</td>
<td>36,593</td>
<td>42,268</td>
</tr>
<tr>
<td>West Australia</td>
<td>14,338</td>
<td>12,410</td>
<td>12,407</td>
<td>15,916</td>
<td>13,232</td>
</tr>
<tr>
<td>South Australia</td>
<td>27,456</td>
<td>26,095</td>
<td>24,443</td>
<td>26,447</td>
<td>35,776</td>
</tr>
<tr>
<td>Victoria</td>
<td>82,742</td>
<td>58,005</td>
<td>65,950</td>
<td>67,415</td>
<td>64,924</td>
</tr>
<tr>
<td>N.-S. Wales</td>
<td>118,338</td>
<td>105,786</td>
<td>94,793</td>
<td>114,884</td>
<td>109,920</td>
</tr>
<tr>
<td>Queensland</td>
<td>21,696</td>
<td>15,035</td>
<td>19,968</td>
<td>25,908</td>
<td>23,290</td>
</tr>
<tr>
<td>New Zealand</td>
<td>148,233</td>
<td>155,127</td>
<td>133,752</td>
<td>139,268</td>
<td>146,759</td>
</tr>
<tr>
<td>Total of all British Possessions</td>
<td>525,397</td>
<td>492,452</td>
<td>463,475</td>
<td>503,944</td>
<td>515,204</td>
</tr>
</tbody>
</table>

Grand Total of British Supply from all countries | 637,129 | 599,500 | 561,677 | 615,708 | 639,342 |

It will thus be seen that the supply of wool drained from British India, when compared with that from Australia and New Zealand, is unimportant. From the Indian point of view, however, it is very considerable, since it represents an amount that might with great advantage have been worked up locally and been thus employed to contest the import traffic in foreign manufactured woollen goods.

Raw Wool. RAW WOOL.—Little or no information can be furnished as to the total production of wool in India. According to the Agricultural Statistics, there were estimated to have been in India during 1905–6, 18,029,181 sheep and 25,172,701 goats. It has further been ascertained that a yield of one seer (2 lb.) of wool per annum would fairly represent the yield of each plains sheep, and something like three seers that of the hills. But it may be added that the returns just mentioned ignore the sheep and goats of the alpine tracts, more especially those across the frontier, from which a large portion of the finest wool of India is derived. And moreover, in the tropical portions of the plains, the sheep yield very little true wool: in fact their fleeces are so poor that they are often not even clipped, the animals being reared purely and simply as sources of mutton. On the other hand, many of the goats yield hair of such a quality that it may be used for some of the purposes for which wool is employed, if indeed goats’ hair be not sometimes mixed with wool. And, of course, the underfleece of the Tibetan goat constitutes the pashm or wool, of which repeated mention has to be made in this article. It thus seems safe to assume that one seer per sheep, on the herds actually registered, might be ac-
INTERNAL AND TRANS-FRONTIER

accepted as fairly representing the annual supply of wool in India, or say 36,058,362 lb. But that estimate may be checked by reference to various records of actual transactions:

Trans-frontier Traffic.—The imports of wool into India for the latest years of official returns were—1902–3, 92,990 cwt., valued at Rs. 23,91,242; 1903–4, 97,125 cwt., valued at Rs. 27,10,041; 1904–5, 105,954 cwt., valued at Rs. 30,89,138; 1905–6, 141,771 cwt., valued at Rs. 42,45,286; and in 1906–7, 171,783 cwt., valued at Rs. 57,88,817. The chief countries that contribute wool to India are South-Western Afghanistan, which in the last-mentioned year gave 105,686 cwt., and Tibet, 34,869 cwt., while the supply from Khelat came to 13,071 cwt. To allow of comparison with other returns, the total imports may be expressed in pounds, viz. 19,239,696. The growing importance of the Trans-frontier wool traffic is one of the most encouraging aspects of the modern trade.

The exports of wool across the frontier are unimportant, and consist chiefly of foreign wool sent to Southern and Western Afghanistan and to Kashmir—the total exports in 1906–7 came to 92,960 lb.

Internal Traffic—Rail and River.—The totals carried during the past six years have been as follows:—1901–2, 197,341 cwt.; 1902–3, 249,797 cwt.; 1903–4, 284,680 cwt.; 1904–5, 359,700 cwt.; 1905–6, 354,725 cwt.; and 1906–7, 383,102 cwt. If the last figure be expressed in pounds to allow of ready comparison, we learn that 42,907,424 lb. were distributed by the railways during the year in question. Of that amount 19,239,696 lb. would doubtless correspond with the supply received across the land frontier from foreign countries, thus leaving a balance of 23,667,728 lb. as derived from the sheep of India proper—a figure that, on estimated production, would leave a balance to meet purely local or homestead requirements of 12,390,634 lb.

In an official report of the Department of Land Records and Agriculture in the United Provinces, it is estimated that the local production in these provinces for the year under review (1896–7) may have been something like 2,624,000 lb. The balance available for local consumption (chiefly at the Cawnpore Mills), after adjusting imports and exports on local production, would have been 2,333,556 lb. This view would be in accord with the returns for rail and river traffic, and is perhaps a fairly representative statement of one of the chief provinces in the wool trade of India.

Foreign Exports.—The following were the total exports from India to all foreign countries during the past six years:—1901–2, 19,592,620 lb., valued at Rs. 79,38,259; 1902–3, 27,892,898 lb., valued at Rs. 1,16,53,204; 1903–4, 33,234,775 lb., valued at Rs. 1,37,73,957; 1904–5, 38,571,968 lb., valued at Rs. 1,89,16,747; 1905–6, 42,514,498 lb., valued at Rs. 2,11,47,283; and in 1906–7, 45,909,898 lb., valued at Rs. 2,42,65,349. Last year’s exports thus show an expansion of 8 per cent. in quantity and 14.73 per cent. in total value on the figures of the year preceding, and of 134 per cent. quantity and 205 per cent. in value on the exports of 1901–2. At the same time they maintain a continuous record of progression for the sixth year in succession. Of the total exports in 1906–7, Great Britain took 43,184,135 lb., the United States coming next with 1,578,903 lb. Another significant feature is the rise of the Karachi traffic. In 1901–2 the share taken by that port came to 64½ million pounds, but in 1906–7 it stood at 184½ million pounds. Karachi is to-day about co-equal in im-

Wool
Trade

Trans-frontier.

Afghanistan.

Khelat.

Internal.

Foreign Contribution.

Local Production.

Foreign Exports.

Karachi and Bombay.
importance with Bombay in the export of wool, the two ports between them having taken close on 33 million pounds out of the 45 millions exported in 1906–7. An inspection of the railborne traffic reveals the interesting fact that while the Bombay portion of the exports is drawn from the Bombay Presidency (Rajputana and Central India mainly), that of Karachi is drained from the Panjāb and Sind.

Imports.

Foreign Imports.—The demand for foreign raw wool may be accepted as contributing toward the higher class woollen goods, both hand- and power-loom, though in the former case the foreign wool appears to be largely employed as an adulterant or even a substitute for the more expensive pashm. In 1896–7 the imports were returned at 4,725,899 lb., valued at Rs. 14,02,284; in 1898–9 they were 3,283,905 lb.; in 1900–1, 2,871,319 lb.; in 1902–3, 2,756,071 lb.; in 1904–5, 2,117,734 lb.; in 1905–6, 2,908,036 lb., valued at Rs. 9,18,395; and in 1906–7, 2,451,237 lb., valued at Rs. 8,64,505. Practically the whole of these imports are drawn from Persia, with smaller quantities from Mekran and Sommānī, and are imported into Bombay and Karachi, a fair portion being thence carried by rail to the Panjāb and the United Provinces. The traffic by sea would seem to have improved steadily up to 1896–7, since which date it might be described as having declined. In 1876–7 the imports of raw wool were valued at Rs. 5,32,116; fifteen years later (1890–1) they stood at Rs. 11,56,154, and attained their maximum five years later still (1896–7), but have ever since almost steadily declined. Against this shrinking demand, however, for foreign wools (brought by sea) has to be placed the expansion of the Trans-frontier traffic already dealt with, especially that across the north-western frontier, which may be regarded as bringing Kirmani wools to India by land routes, to some extent doubtless an expression of increased railway facilities within India itself. [Cf. Kermanshah Wool, in Dipl. and Cons. Rept., 1903–4, ii., No. 3189, 25–7.]

Manufactures.

MANUFACTURED WOOL.—Imports.—The encouraging conception of the Indian woollen industries receives a somewhat severe set-back by an inspection of the foreign traffic. It is not possible to give the returns in pounds, since most of the articles are sold by number or by the yard. The value may, however, be accepted as a sufficiently satisfactory standard. In 1896–7 the IMPoRTS of woollen manufactures were valued at Rs. 1,69,24,447; in 1898–9 at Rs. 1,52,37,310; 1900–1 at Rs. 2,11,25,756; 1902–3 at Rs. 1,40,59,122; 1904–5 at Rs. 3,07,64,281; 1905–6 at Rs. 2,42,51,878; and in 1906–7, Rs. 2,05,21,666. Thus in the past eleven years the imports of manufactured wool have expanded from a valuation of £1,128,296 in 1898–9 to £1,368,111 in 1906–7, but if the study be carried still further back, the expansion becomes more marked. In 1876–7 the imports of woollen goods came to only £541,101, whereas the highest record during the past thirty years was in 1904–5, when the supply drawn from abroad by sea was valued at £2,050,952. The Indian mills are thus seen to be securing but a small portion of India’s demand for European manufactured woollen goods. But by way of contrast, it may be here mentioned that the exports of Indian woollen goods (mostly Oriental carpets and shawls) rarely exceed £120,000.

Turning now to the nature of the imports and countries of supply, the chief item is “piece goods.” Out of the total of Rs. 2,05,21,666, the share taken by piece goods alone came to Rs. 1,39,52,624. Of that amount the United Kingdom supplied Rs. 1,03,31,105 and Germany Rs. 26,76,231.
WOOLLEN MANUFACTURES

Fully half these imports are consigned to Bombay, one-third to Calcutta, and the balance to Burma, Sind and Madras. Following the "piece goods" came "shaws." During the five years ending 1906-7 these have manifested an average valuation of Rs. 33,07,815 (or, say, £220,521). They come chiefly from Germany, from which the average annual amount consigned to India for the five years ending 1906-7 showed a valuation of £159,324, while from Great Britain the quinquennial average came only to £42,658. What is, however, far more significant, the supply from the United Kingdom contracted from a valuation of Rs. 14,75,354 in 1901-2 to Rs. 81,272 in 1906-7, while from Germany it expanded from Rs. 14,74,562 in 1901-2 to Rs. 46,86,246 in 1904-5, and contracted to Rs. 24,35,951 in 1905-6 and to Rs. 13,04,494 in 1906-7. The shawl traffic is almost entirely with Calcutta, and is very largely the expression of the demand made by the coolies employed in the tea industry for shawls and blankets, so that Germany has not only driven the Indian mills, but the British as well, out of this particular market.

The imports of woollen carpets and rugs into India have for some years past manifested a continuous expansion. In 1896-7 these were valued at Rs. 4,67,836, and during the past six years the traffic has been as follows:—1901-2, Rs. 8,49,168; 1902-3, Rs. 5,76,304; 1903-4, Rs. 8,96,738; 1904-5, Rs. 13,98,640; 1905-6, Rs. 14,47,131; and in 1906-7, Rs. 10,56,679. During the last-mentioned year carpets and rugs to the value of Rs. 7,30,496 came from the United Kingdom, Rs. 2,04,540 from France, and Rs. 72,219 from Germany. It is only necessary to add (in view of the activity of the Indian woollen mills) that the imports of hosiery came in 1906-7 to Rs. 8,05,614, of which Rs. 6,97,490 worth came from the United Kingdom, two-thirds being taken by Bengal and Bombay and the remaining third by Burma, Sind and Madras.

Exports.—The total value of the exports of woollen goods came, on the average of the returns for the five years ending 1906-7, to a valuation of Rs. 23,78,833, but the figures as they stand would seem to indicate a shrinkage, the year 1905-6 showing the lowest valuation of the series. But taking 1906-7, the total exports came to Rs. 22,92,838, of which Rs. 16,04,573 represented the portion taken by the United Kingdom, and this is followed by the United States with Rs. 4,03,973; China with Rs. 33,390; and Germany with Rs. 31,699. Thus while Germany supplies India with a yearly increasing quantity of inferior woollen goods, she takes in return practically none of India's manufactures of wool. But it may be added that the exports from India to the United Kingdom, the United States and Germany just mentioned, are almost entirely Oriental carpets and rugs. The exports in shawls are made mainly to the Straits Settlements, and the exports in piece-goods (possibly for the most part Native-made pashmina) go to the United Kingdom, Ceylon, Hongkong, the United States, China and Japan.

WRIGHTIA, Br.; Fl. Br. Ind., iii., 652-4; Gamble Man. Ind. Timbs., 1902, 486-7; Cooke, Fl. Pres. Bomb., ii., pt. i., 136-8; Brandis, Ind. Trees, 1906, 461-2; APOCYNOACEAE. A genus of shrubs or small trees of which about six species are found in India, the following being those of economic importance:—

W. tinctoria, s. Br.; āndarjau, hyamaraka, khirni, dudhi, kālakado, pāla, veypalē, tedlapē, amkudu, kodurki, etc. A small deciduous tree of “the
Peninsula of India, common in the Deccan and Kurnâta and the Bombay Presidency, extending north to Rajputana and Banda, in deciduous forest; also in Burma (Gamble).

It yields a crude rubber, which was found to give the following analysis: water, gum, etc., 25.8 per cent; resin, 45.8; catechu, 28.4. [Cf. Ind. For., 1903, xxix, 406-7.] The seeds are said to be used as an adjunct to other materials in dyeing, while from remote times the Natives of Southern India have employed the leaves as a source of blue dye or indigo. The root-bark and seeds, though of no value medicinally, have been the cause of considerable confusion in the literature of Indian Materia Medica, being frequently mistaken for and used to adulterate those of Holarrhena antidysenterica (see p. 640). The wood is of good quality for carving and turning, and is fairly extensively used for both these purposes. It is said to resemble ivory in colour and texture, and according to Rice (Myres Gaz., 1897, i, 81) is employed for making the celebrated Chennapatna toys and for wooden idols. [Cf. Pharmacog. Ind., ii., 397-8; Cameron, For. Trees Mysore and Coorg, 1894, 186-7; Pharm. Journ., 1901, lvii., 690.]

W. tomentosa, Roem. & Schult. : Prain, Beng. Plants, 1903, ii., 674. The dudh, dharaul, sandi-huya, atkura, karingi, selemnyok, pal kurvan, harido, tella pal, lettoothe themis, etc. A small deciduous tree throughout India, chiefly in deciduous forests, extending in the Sub-Himalayan tract westwards to the Beas, eastwards to Sikkim; mixed forests of Burma (Gamble).

Every part of the tree discharges, on being wounded, a yellow milky juice, said to yield a good yellow dye when diluted with water. The seeds are reputed to afford a medicinal oil, and both stem and root bark are said to be useful in cases of snake-bite and scorpion sting. The leaves are eaten as a pot-herb by the Santala. The wood is even-grained, easy to work, and used for making combs, and in carving and turnery, etc. [Cf. Cameron, Lc. 187; Duncan, Dyes and Dyeing Assam, 1896, 55.]

Z

A tall annual grass, according to De Candolle originally native of New Granada, but now cultivated almost throughout the world. The cultivated races are very numerous and show great power of adaptation to local environment, so much so that efforts to introduce American forms into India have generally resulted in degeneration towards the existing (now often called indigenous) forms. There seems no doubt that maize came to India from America, and was possibly brought thence direct by the Portuguese. But it appears to have been cultivated in India for at least a hundred years before forms were evolved, for each tract of country, of sufficient merit to justify extensive production. When, however, India had obtained its own special forms, maize moved rapidly over the whole continent, assuming tropical conditions in some parts, temperate and even arctic in others.

History.—The admirable account of the origin of this plant furnished by De Candolle (Orig. Cult. Plants, 387-97) leaves little that can be here added of any material value. Maize was unquestionably introduced into India just about the time of the advent of the East India Company, and the first mention in their Proceedings, of what may possibly be this grain, occurs in a letter of date October 1621, addressed to the Surat agent by Capt. John Weddell, in which he suggests that a "warehouse be hired at Swally for the temporary housing of the 'chanderouze'" (khandarus = an Arabic name for maize) (Foster, Engl. Factory Ind., 1906, 296). It is, however, highly likely the khandarus in question was judr and
not maize—that Arabic name being now applied to both grains. Baber (Memoirs (portion written 1520–9)) makes no mention of having seen maize on his arrival in India, though he carefully describes all the animals and plants new to him. Moreover, the early European travellers in India, including the botanists Rheede and Rumphius, are silent regarding this cereal. Abul Fazl (Ain-i-Akbari—the Administr. Rept. of the Emperor Akbar for 1590 A.D.), in his long list of grains and pulses grown in India during the 16th century, does not include maize, but he remarks under kéura (Pandanus, see p. 777) that its leaves are like those of maize (Blochmann, transl., 85). The word "maize" is of course furnished by the translator, and must be an incorrect rendering. It is interesting to note, however, that Mendoza (Hist. China, 1585) mentions amongst the plants observed by him "the plant called maize, which constitutes the principal food of the Indians in Mexico" (Bretschneider, Hist. Europ. Bot. Disc. in China, 1898, 10). In the 18th century Burmann published his Thesaurus Zeylanicus and his Flora Indica, but in neither does he allude to Zea. Hove, who at the close of the 18th century (1787) visited Bombay in order to study its cotton, wrote a report full of information on all the crops seen by him, but does not mention Indian-corn. But it would perhaps be unsafe to assume that, although the pine-apple was fully known in the 16th century, so extremely valuable a plant as the maize had not reached India until after the date when Rumphius wrote his great work (Herb. Amb., 1750), which to some extent figures and describes the plants of India. If we can accept the passage above indicated from Foster as satisfactorily establishing the existence of the grain in India, it must have been an article of commerce nearly a century previous to the date at which Rumphius wrote.

The most general vernacular name in India for this corn is makkâi (Mecca corn), which may be regarded as meaning the association of the grain with the Muhammadan rulers of India and at the same time accepted as strongly suggestive of the Portuguese influence at the court of the Mughal. The displacement that accomplished by the new introduction of corn and other grains formerly given to certain forms of Sorgum may, be viewed as denoting the innate propensity of Asians to contrast all new ideas with previous conceptions. The origin of its other most general name, bhuta, is more obscure, but is probably derived from bhukta or bhutta to eat. Both names are clearly modern, however, and do not occur in any classic works of even the most recent date. So very little progress had, however, been made with maize cultivation that Roxburgh wrote, about the beginning of the 19th century, that Indian-corn was "cultivated in various parts of India in gardens, and only as a delicacy; but not anywhere on the continent of India, so far as I can learn, as an extensive crop." Buchanan-Hamilton (Kingdom of Nepal, 1819, 284, 312), while dealing with the ancient State of Yumila (its capital Chhina-chin) says that they had maize. In a further page, he remarks of Kangra—"the poor live much on maize." Very shortly after the appearance of Roxburgh's Flora Indica, however, Graham (Cat. Fl. Bombay, 1839, 240) wrote of Western India that maize was "commonly cultivated." Dalzell and Gibson (Fl. Bomb., 1861 (suppl.), 100), some thirty years later (1861), said that it was "extensively grown in the early part of the rains, especially near large towns." These authors also add—"The grain is seldom used in India as a flour." But as illustrative of the extremely local character of the information often furnished by Indian writers, it may be added that Stewart (in 1862) wrote of Bijnour that "much of the maize was ground into flour and made into bread, although very much less is here used in this way than in the Panjab." It is thus very probable that in Upper India (a region, comparatively speaking, unknown to Roxburgh) maize was much more extensively grown at the beginning of the century than might be inferred from Roxburgh's words. At the present day it would be more nearly correct, at any rate, to speak of maize as of equal value to the people of India collectively with wheat, instead of its being grown purely as a garden "delicacy." It is a field crop upon which at least the bulk of the aboriginal tribes of the hilly tracts of India are very largely dependent for subsistence. Thus its diffusion over India, during the present century, might almost be said to be one of the most powerful arguments against the statement often made that the Natives of India are so very conservative that they can scarcely be induced to change their time-honoured customs, even when these can be shown to be inimical to their best interests. So completely has India now appropriated the makkâi that few of the village fathers would be found willing to admit that it had not always been with them, as it is now, a staple article of diet.
THE INDIAN-CORN PLANT

Cultivation. Though grown practically all over India, the area of maize cultivation as a ripe grain may be said to be the central tableland, the northern extremity of the plains, and the Himalayan slopes and river valleys up to an altitude of 9,000 feet above the sea. On the lower or Gangetic plain it is grown chiefly as a green vegetable. In the vicinity of large towns the sale of the unripe cob is so remunerative that by peculiar systems of cultivation and selection, special forms have been matured that could scarcely be eaten in the condition of ripe grain. On the other hand, within the region where maize is grown for its ripe grain, it is hardly possible to procure green cobs as a vegetable. But adaptation to local conditions is perhaps more strikingly seen in the fact that in many parts of India there are forms of maize that require six months to mature, others not more than three months. In some parts of the country, indeed, both kinds may be seen growing separately or as mixed crops. Further it may be added that where the transition of the seasons into kharij and rabi crops allows of tropical cultivation during the former and temperate during the latter, two widely different forms of maize may be found. In the greater part of the plains of India, maize is a kharij crop, but rabi maize is by no means unusual, i.e. maize sown in autumn and reaped in spring along with wheat and barley.

Area. — According to the Agricultural Statistics, the area under the crop in British India for the six years 1900–1 to 1905–6 averaged 6,083,484 acres, and in the last year, 1905–6, was 5,790,543 acres. In the Native States the area during a similar period averaged 269,017 acres, and in 1905–6 was 221,687, giving a total for all India in that year of 6,012,230 acres. Bengal had the largest average area during the period in question, viz. about 2 million acres; followed by Agra with about 1½ million; the Panjab, from 1 to 1½ million; Oudh, ½ to ¾ million; the North-West Frontier, ¼ million; while the Central Provinces and Bombay had 130 to 160 thousand acres under the crop. But it should be here recorded that the above areas do not include production as a green vegetable, an important admission, since nearly every peasant grows a few plants near his homestead, which of necessity escape registration in agricultural statistics.

Diseases. — Barclay described a species of Rust found by him on Indian-corn (Agri. Ledg., 1893, No. 20, 284–5); a species of Smut (Ustilago) has also been recorded (I.c. 278). More recently Maxwell-Lefroy (Agri. Journ. Ind., 1906, i., pt. ii., 97–113; also Mem. Dept. Agri. Ind., 1907, i., No. 2) discusses the Moth-borer of the sugar-cane, maize and sorghum.

Bengal. — The area in 1905–6 was 1,825,400 acres and the yield, according to the Season and Crop Report, 448,670 tons. The largest areas were Patna Division with 820,500 acres, Bhagalpur with 657,800 acres, and Chota Nagpur with 307,800 acres. The yield per acre varies considerably, but the provincial average for the years 1901–2 (Agricultural Statistics) shows so little difference between the returns for unirrigated as compared with irrigated, that the latter may be disregarded. The yield for unirrigated land comes to 1,522 lb. to the acre. The districts that show the highest yield are Santal Farganas (2,739 lb.) and Manbhum (2,447 lb.). Mukerji (Handbook Ind. Agri., 1901, 249–53) states that "5 to 8 maunds of grain per acre is considered a fair yield, but 30 to 40 maunds are sometimes obtained."

Maize cultivation may be said to manifest three phases:—(1) the homestead cultivation in Lower Bengal, to produce green cobs; (2) the cultiva-
tion as a staple food-grain on the hilly tracts, such as Chota Nagpur; and
(3) the cultivation in Bihar, which differs in no essential from that in the
greater part of the United Provinces. The method of cultivation described
by Basu (Agri. Lohardaga, 1890, pt. i., 65–6) may be considered typical
for the hilly parts of the Lower Provinces. Two varieties are there dis-
tinguished, a dull yellow and a red. It requires a rich soil and is usually
grown for two to three successive seasons on the same plot, followed by some
cold-weather crop like mustard. In June–July the land is ploughed and
the seed sown broadcast, 4 to 5 seers per acre, and buried by a light plough-
ing. The field is then weeded and hoed two or three times from June
to August, and the cobs ripen from the middle of August to the middle
of September. If they are to be roasted and eaten, they are picked a
fortnight before ripening (Basu). According to Mukerji, "the value of
a 5 to 8 maunds' crop is only about Rs. 10. An acre (if ravages of
jackals are prevented) may produce 20,000 green cobs. If these are sold
at an average price of 8 cobs per pice, the produce of one acre may come
up to Rs. 35 to Rs. 40." [Cf. Grierson, Bihar Peasant Life, 1885, 223–4;
Banerjei, Agri. Cuttack, 1893, 77; Roy, Crops of Beng., 1906, 51–4;
Sibpur Exper. Farm Repts.]

Assam.—The area in 1905–6 was 1,300 acres, chiefly in Nowgong and
Sylhet, but it is nowhere grown to any appreciable extent. In Cachar,
Darrang and Sibsagar it is said to be grown in small patches, chiefly by
foreigners. In the Khasia, Jaintia, Garo and Lushai hills, B. C. Allen
states that "it is either grown in garden ground or is sown in the potato
fields at the time when the tubers are earthed up. It is usually sown in
April and May and ripens in August and September. The maize fields
are well hoed and treated with manure." (Assam Dist. Gaz., 1906, x., 72–3).

United Provinces.—The area in Agra in 1905–6 was 1,374,267 acres,
and in Oudh 796,976 acres. The average outturn for the provinces for the
years 1897–1902 is stated to have been 950 lb per acre. The acreage in
the chief districts during 1905–6 was as follows:—Agra—Meerut, 121,307;
Districts Balandshahr, 120,481; Gorakhpur, 115,587; Aligarh, 97,905;
Jaunpur, 88,216; Saharanpur, 83,054; Bareli, 78,936; Etah, 65,745,
etc. In Oudh—Bahrain, 255,914; Gonda, 206,471; Kheri, 96,487, etc.

Maize is one of the crops which has for many years been systematically
studied at the Cawnpore Experiment Station, and much valuable informa-
tion relative to the varieties grown, the manures used and the seasons of
sowing and reaping, will be obtained by referring to the voluminous annual
reports. The account given by Duthie and Fuller (i.e. 22) may, however,
be considered typical of the ordinary Native methods. It is a kharif crop
sown, as a rule, when the rains break, and harvested at the end of August.
If the cobs are to be sold as vegetables they are pulled while green; oth-
erwise they are left till the leafy envelopes surrounding them are dry and
shrivelled. Generally it is cultivated alone, but sometimes "cucumbers
are grown between the lines. It is not uncommon, too, to mix a certain
proportion of the lesser millets (kakuni and mandwa) and a little pulse
(urd)." The average outturn for the provinces, Duthie and Fuller estimate
at 10 maunds for unirrigated and 14 maunds for irrigated maize.

With regard to the Cawnpore experiments, an interesting summary
of these is given by Mr. Subbiah, Principal, Cawnpore Agricultural School
(Dept. Land Rec. and Agri. Bull., 1901, No. 16), to which the reader is
referred. He there states that "since 1895 outturns ranging from 30 to
THE MAIZE PLANT

35 maunds of grain have been repeatedly obtained on a number of plots, and occasionally as much as 40 maunds and more." Regarding varieties, he remarks that "about eighteen American and the two common North Indian varieties have been tried at the station with a view to test their merits as regards hardihood, productiveness and suitability to the climate of North India. The results of these trials showed that American varieties could be grown without any difficulty the same year the seed was imported; that one or two Americans might excel the Indians in productiveness; but that, taking everything into consideration, the two country varieties are the best for our present local conditions; that much better practical results could be immediately achieved by improving these two varieties by a careful selection of seed, etc.; and that with the light-yellow country variety as improved at Cawnpoore the best results that the North Indian climate and soil would admit of might be attained within a few years."

Subbiah further states that to secure yields approaching those obtained at Cawnpoore, the agents at the cultivator's disposal are (a) regular spacing of each individual plant; (b) selection of seed or using Cawnpoore maize seed; (c) two diggings between the crop in addition to the usual weeding and earthing; (d) one or two waterings during breaks in the rains that occur in most years; (e) liberal manuring; (f) either deep ploughing or digging with phaora before sowing."

By the ordinary method of cultivation he estimates the cost per acre to be Rs. 13-13 and the normal produce 13 maunds, worth Rs. 22-12, giving a profit of Rs. 8-15; by the Cawnpoore method, the cost is Rs. 31-12, outturn 35 maunds worth Rs. 61-4, giving a profit of Rs. 29-8.

Central Provinces and Berar.—The area in 1905-6 was 134,329 acres in the Central Provinces, and 2,445 acres in Berar. The chief districts in the former are Chhindwara, Mandla, Betul, Bilaspur and Jabalpur; in the latter, Wun and Buldana. Practically no information is available regarding the cultivation of the crop. The Nagpur Experimental Farm Reports deal only with the efforts to acclimatise American races and races from other parts of India.

Panjâb and North-West Frontier.—The area in 1905-6 was 896,241 acres in the Panjâb and 341,862 acres in the North-West Frontier. In the Panjâb the area would appear to be declining. For the five years ending 1901-2 the average outturn for the Panjâb is stated to have been 1,133 lb. per acre irrigated and 841 lb. unirrigated; in the North-West, 1,665 lb. irrigated and 583 lb. unirrigated. From returns submitted from various districts it was calculated in the Dictionary that an average yield for the province would be about 886 lb., or 10½ maunds per acre. In the Panjâb the districts with largest acreage were Kangra, 140,585; Hoshiarpur, 118,853; Jalandhar, 83,204; Gurdaspur, 59,808; Sialkot, 54,482; Ludhiana, 54,228; Ferozpur, 52,627; Ambala, 52,405; Lahore, 42,076; Amritsar, 42,013, etc.; in the North-West—Hazara, 162,699, and Peshawar, 130,002.

In a volume entitled Selections from the Records of the Financial Commissioner's Office (1887, No. 36, 780–836), the subject of maize cultivation in the Panjâb was fully discussed. The periods of sowing and reaping vary
greatly. Speaking generally it is a kharif crop in the plains, sowing being dependent on the rains taking place, usually from June to August. The crop begins to bear green cobs (from the earliest sowing) in August, and ripe grain (from later sowings) in September, October or even November. On the hills the sowings are generally much earlier, and the higher reaches are even earlier than the lower. In Hazara, Kullu and Simla, for example, early sowings are in April and May. While these are the general principles, remarkable variations occur in some districts, such as Rawalpindi, where there are two widely different crops that correspond very nearly to the kharif and rabi seasons. [Cf. Lawrence, Valley of Kashmir, 1895, 336–7; Sett. Repts. and Dist. Gaz., Panjab and N.-W. Frontier; Repts. Govt. Agri.-Hort. Gardens, Lahore.]

Bombay and Sind.—The area in 1905–6 was 158,115 acres in Bombay; 1,400 acres in Sind. In Bombay, Panch Mahals claims two-thirds of the total area, 110,950 acres, and in Sind about two-thirds of its total are confined to Karachi. Mollison (Textbook Ind. Agri., iii., 52–3) describes the cultivation in Panch Mahals and the Deccan. In the former, he says, “it is grown either as a rain or late irrigated crop.” With sufficient rainfall it does best on the rich brown soils of the district, recently brought under cultivation, but rice land also suits the crop. It is usually grown alone, and requires a soil deeply and carefully tilled. The land is liberally manured, usually in May. “The crop tests of the Presidency show that 10 to 15 lb. per acre of seed is the ordinary rate.” It is harvested when dead ripe. “In the Panch Mahals an average crop may be estimated at 1,200 to 1,500 lb. per acre.” In the Deccan it is often grown for fodder. “A heavy crop will yield over 20,000 lb. of green fodder per acre.” The cost of cultivation Mollison estimates at Rs. 13–6 per acre. [Cf. Exper. Farm Repts., Bombay.]

Madras and Mysore.—The area in 1905–6 was 76,377 acres in Madras; 231 acres in Mysore, but this represents a great contraction, the average being about 2,000 acres. The area in Madras also shows a decrease on previous years. The largest acreages were in Guntur, 37,237; Tanjore, 14,059; and Kistna, 12,897. Maize does not appear to be a crop of much importance in South India, and it is better described as a plant of gardens rather than of fields. [Cf. Cox, Man. N. Arcot, 1895, i., 269.]

Burma.—There were 94,942 acres under the crop in Upper Burma in 1905–6; 18,003 in Lower Burma. In Upper Burma the chief districts are ordinarily Magwe, Pakókku, Myingyan, Minbu, Yamethin and Meiktila; and in Lower Burma, Thayetmyo. There is little information available regarding cultivation. It appears to be most frequently grown as a mixed crop. Parlett (Sett. Rept., Sagaing Dist., 1893–1900) states that it is “common all over kainy lands, as a rule sown sparsely among pegya.” Harvest, he states, is usually completed by April 1, and the cost of cultivation is estimated at Rs. 2-50 per acre. [Cf. Sett. Oper. Repts.; Repts. Dept. Land Rec. and Agri.]

ECONOMIC AND INDUSTRIAL.—The chief uses of this cereal are as an article of human and cattle food—the stems and leaves being also valued as fodder. It is mainly in Upper India that the ripe grain is reduced to a flour and made into bread. In some parts of the country it is ground into meal and eaten as porridge, known as laphi or gathá in Bengal. But, as already stated, the green cobs are extensively eaten after being roasted or boiled. The ripe grain is also often parched and eaten as a mid-
day meal. The preparation known in Bengal as *satu* is the parched grain reduced to flour, much as in other parts of India *satu* is the flour of parched grain and barley mixed. The straw of the ripe crop is not of great value as fodder (except for elephants), but reaped in a green state it is very valuable. Both in Europe and America, Indian-corn is largely employed in the production of special articles of food that differ in some cases but little from the ancient *satu* of India; these bear the names Hominy, Maizena, Polenta, Indian-corn flour, etc.

In the United States it is perhaps but natural that a fuller knowledge and more complete utilisation of maize should have been attained than in India. Next perhaps to cotton, maize is the most valuable crop grown in the States, and the utilisation of its various by-products has given rise to numerous flourishing industries. A full account of these is given by Wiley (*U.S. Dept. Agric.* (Chemistry), *Bull.*, 1898, No. 50). The grain is largely employed in the manufacture of *starch* and *starch sugar* or glucose, which in the United States is extensively employed in the manufacture of whisky and alcohol (Hanausk, *Micro. Tech. Prod.* (Winton and Barber, transl.), 1907, 40-1). A sugar is also prepared from the juice of the stems (*D.E.P.*, vi., pt. iv., 332). Recently the waste material from the manufacture of glucose has been utilised in the production of a rubber said to have both the resiliency and wearing power of genuine Para rubber. From the germ of the seed is obtained by expression a valuable oil, used for lighting, lubrication, soap-making, and as a salad oil. Among minor uses it may be mentioned that the pith of the stalk "has been used with the greatest success in the construction of battleships in the American Navy, the compressed blocks being placed between the two walls of armour." The pith is also "easily nitrated into all the various forms of material commonly made from cotton," and is said to have "many advantages over cotton for nitrating purposes, especially in the manufacture of explosives of all kinds, by reason of its more perfect keeping qualities" (Wiley, *l.c.* 27). Finally the stems, leaves and spathes are used in the manufacture of paper which is spoken of as suitable for bank-notes, while the residues from the manufacture of starch, glucose, whisky and alcohol are utilised in the production of a special article of *cattle-food.* "Formerly it was the custom to employ these waste matters in the moist state, but in most parts of the country this method has been superseded by the method of drying the residues and selling them in the anhydrous condition. In this state they are much more easily transported, the objectionable odours which were the predominant characteristic of the moist foods are removed, and the wholesomeness of the food is in every way promoted" (Wiley, *l.c.*, 25, 30). Similarly a special preparation of the whole plant, except the root and ear, is discussed by Wiley under the name of "Maize Stover." "As has before been intimated, this fodder is often fed in the coarse state without any preparation whatever. In this condition a very large percentage of it is wasted, the cattle eating little except the blades and perhaps some of the smaller and tenderer parts of the stalk. In the older parts of the country, it is now becoming quite general to have the maize stover finely shredded before being fed. This not only increases the quantity which becomes available for feed, but also leaves the manure in a much better condition for spreading on the field."

Trade.

*TRADE.—*Unfortunately no information of this nature can be furnished. Jackson (*Comm. Bot. 19th Century*, 47-8) mentions that the
BRITISH TRADE IN MAIZE

imports of Great Britain came to 444,453 cwt. in 1856, and by 1889 had expanded to 36,203,069 cwt. The traffic continued to expand, and in 1899 stood at 66,741,350 cwt., valued at £12,978,025, but in 1903 it declined slightly, to 50,099,328 cwt., valued at £12,465,583; in 1904 to 42,897,880 cwt., valued at £10,247,134; in 1905 to 42,101,210 cwt., valued at £11,034,748; and in 1906 stood at 48,685,200 cwt., valued at £11,972,694. About one-half comes from the Argentine, a little less from the United States, and the balance from Roumania, Canada, Russia and British East Indies, in the order named. The Indian traffic in maize appears under the designation of "other sorts of grain and pulse," but as the foreign exports in these collectively are comparatively unimportant and, moreover, fluctuate extremely, they may be disregarded. In 1904-5 the total exports under this heading came to 1,691,672 cwt., in 1905-6 to 112,042 cwt., and in 1906-7 to 21,236 cwt. The imports of maize taken by Great Britain from India are returned as 206,900 cwt. in 1904; 917,700 cwt. in 1905, and 23,800 cwt. in 1906.

The following are the average wholesale prices (minimum and maximum) of maize per 10 maunds in the various provinces of India for 1905:

BENGAL, from Rs. 18-65 in Bhagalpur to Rs. 21-05 in Patna; UNITED PROVINCES, from Rs. 18-12 in Shahjahānpur to Rs. 26-29 in Aligarh; PANJAB, from Rs. 16-78 in Ferozpur to Rs. 21-58 in Multan.

ZINGIBER OFFICINALE, Roscoee; Fl. Br. Ind., vi., 246; Roxb., in As. Res., 1810, xi., 346; Semler, Trop. Agrik., 1900, ii., 360-71; Prain, Beng. Plants, 1903, ii., 1045; Scitamineae. Ginger; plant = adrak adi, ale, allam, khyen-seing, etc.; and root = sondh, sindhi, adhukka, sunt, zangzabil, shukku, inji, vana-sunthi, hasisunthi, shukka, inchi, ginis-khua, gin sin, etc. It is not known in a truly wild state, but is doubtless a native of tropical South-East Asia. Introduced into the West Indies (Jamaica), Africa—the warmer parts of both worlds—and now cultivated in most tropical countries.

History.—Ginger is known to have been cultivated in India and China for many centuries. Its most general Chinese name is k'iang. Bretschneider tells us that "Confucius was never without ginger when he ate." It is mentioned in the Li Ki, among the articles of food there enumerated. Turning to India, the word "ginger" is generally believed to come from the Sanskrit "sringamvara," through the Arabic "zangzabil," and from the same source was doubtless derived the corresponding Greek name "zingiber." Knowledge in the tuber seems, accordingly, to have reached Europe via Africa and Arabia, and to have been very ancient in India. Dioscorides describes the country of ginger, and gives the distinctive features of the best kinds. Galen, Paulus Aegineta and other Greek and Roman authors give full details of the medicinal virtues of the drug, and are followed by the Arab medicinal writers, such as Mesna, Serapion, Avicenna, etc. Coming down to more recent times, Marco Polo (13th century)

United Provinces.—Ginger is extensively grown in all hotter valleys in Kumáon. A piece of ground not liable to be flooded is selected and protected from excessive rainfall by trenching round the upper side. The soil is well hoed and manured and the ginger planted in furrows in April. The whole field is then covered with leafy branches kept in place by bamboo or wooden poles. The rhizomes are gathered in February.

Panjáb.—As in the United Provinces, ginger cultivation is carried on chiefly in the lower hot valleys of the Himalaya. The rhizomes selected for planting are preserved in heaps covered with cow-dung. The land is ploughed at the end of June or beginning of July, divided into beds, and saturated with water. Leaves are applied as in Kumaon, but a layer of manure is placed over the leaves in addition. After the rains cease, artificial irrigation is necessary from October to January. In January the rhizomes are dug out and removed to another place for a month, after which they are exposed to the sun for a day, and are then fit for use. A bigha is stated to require 8 maunds of ginger to plant it, and yields 32 maunds in a good crop.

Bombay.—According to the Season and Crop Report, there were 596 acres under ginger in 1905–6, chiefly in Thána, Surat, Satára and Kaira. Mollison (Textbook Ind. Agri., iii., 182–6) has recently described fully the methods of cultivation. "It grows to great perfection on the deep, alluvial, sandy loams (gorádu) of Kaira and Baroda. The garden land of Surat, in which the crop is important, is somewhat heavier, but of the same general character and consistence. In the Thána district, where the rainfall is heavy, the crop is only grown in the strip of deep, sandy soil which fringes the coast in the Mähim and Bassein Tálukas."

"In Thána, ginger is rotated with betel vines, plantains, and sugar-cane. In Northern Gujarát it is rotated with a number of other garden crops, such as sugar-cane, surans, turmeric, onions, garlic, chillies, brinjals, cabbages, methi, etc. Most of these crops are found in different patches in the same garden in a single year."

"Ginger in Thána is grown alone. In Northern Gujarát, a thick sprinkling of guevar is sown with the crop. Yams are planted at the corners of the beds and along the báindhs which separate the beds, or, instead of yams, turmeric may be so grown." Mollison then describes in detail the methods pursued in Kaira, for which the reader is referred to the original. Planting the sets takes place in May or early in June before the monsoon breaks, and Mollison estimates that about 77,000 sets are required per acre, varying in weight from about 1,200 lb. to 2,000 lb. The crop is ready for harvest by November or December. "Under favourable conditions, an acre may yield 12,000 lb. of dry cleaned rhizomes. The sun-dried partially cleaned rhizomes are sold by the cultivators to dealers at 40 to 50 lb. per rupee in ordinary seasons. Selected pieces of rhizomes after storage for several months are worth as sets for replanting about 25 lb. per rupee. A crop test which was taken in the Surat district in good garden-land in 1895–6 gave for a mixed crop of ginger and turmeric the following outturn:—ginger, 8,337 b. per acre; turmeric, 3,564 lb. per acre." Mollison estimates the cost of cultivation in Surat at Rs. 183 per acre. In the *Pharmacographia Indica* mention is made of many qualities.
of ginger. "One variety found in gardens in the Konkan has a darker color than the ordinary ginger and somewhat of a zedoary flavor; it is known as kala-alu or black ginger." [Cf. Repts. Dept. Land Rec. and Agr., Bombay; Crop Exper., Bombay.]

Madras.—The best Malabar ginger, spoken of so highly by Linschoten, is said to be the produce of the district of Shernnaad to the south of Calicut. The soil is a rich red earth, and cultivation generally commences about the middle of May, after the ground has been thoroughly ploughed and harrowed. At the commencement of the monsoon, beds are formed, and on these, holes are dug and filled with manure. Cuttings of the rhizomes are placed in the holes and the beds covered up with a layer of leaves. A fair supply of rain is necessary, but, as inundation entirely ruins the crop, great care is taken in draining. The rhizomes are dug up about November. There are no statistics available relative to area or outturn.

PREPARATION AND USES.—The rhizomes are dug out with a small hand-pick and then consigned to a dealer, who sells them as fresh ginger or converts them into suth (dried ginger). The pieces of rhizomes are known by spice dealers as "races" or "hands." Nicholls [Textbook Trop. Agr., 1892, 196] describes two methods of drying the rhizomes after they have been dug out, viz. they may be plunged into boiling water for some minutes and then dried in the sun, or they may be scraped with a knife till the black outer skin is removed and then sun-dried. The former is known as "unscraped," "coated," or "black" ginger, the latter as "scraped," "uncoated," and "white." Uncoated Cochín ginger is reputed to be the best kind produced in India. Mollison thus describes the preparation in Surat: "The first operation in suth-making is to soak the partially cleaned rhizomes in water. This with rubbing cleans the rhizomes, and also softens them. The soaking facilitates the removal of the outer skin. It is scraped off with a shell or broken piece of earthenware. The scraped ginger is now washed and exposed for three or four days to the sun on an ordinary threshing-floor. The ginger is thus bleached and dried. It is now rubbed by hand. The object is not clear. The operation is done carefully, so that the shoots are not broken. The ginger is then bleached in the sun for three or four days, and again hand rubbed. It is now steeped in water for two hours, and exposed on a clean floor to the sun until it gets dry. When dry it is rubbed on a coarse cloth or coarse sacking. This removes any outer skin not previously removed by scraping. The suth is now ready for market. The cost of suth-making is about Rs. 3 per khandi of 20 maunds of green ginger.

Ginger has long been known both to Hindu and Muhhammadan medicine, and its uses in European Medicine are well known. It is sold in almost every bazaar throughout India, and is largely employed as a condiment, especially in the preparation of curries. Gildemeister and Hoffmann (Volatile Oils, 1900, 313–5) give particulars of the ginger oil trade. The rhizome is also pickled and an excellent preserve made by cooking the fresh young rhizomes in syrup. The manufacture of ginger-beer and ginger-ale forms a large portion of the mineral water trade in England and the States. Besides being used as a spice, confection or medicine, ginger is thus used in gingerade, ginger-ale, ginger-beer, ginger-brandy, ginger-wine, gingerbread, ginger lozenges and ginger essence. Soluble essences are required in the manufacture of most of the liquors, etc., in which ginger becomes an important ingredient. The traffic in Jamaica unbleached ginger is very considerable. [Cf. Pharmacop. Ind., iii., 420–5; Waring, Bazar Med. Ind., 1897, 69–70; Parry, Chem. of Essential Oils and Artif. Perfumes, 1899, 136–7; Dharlagul Ker, Notes on Therap. of Indig. Veg. Drugs, 1899, 64; Dutt, Mat. Med. Hind., 1900, 253–5; Blyth, Foods Compos. and Anal., 1903, 25; Journ. Agric.-Hort. Soc. Ind., 1902, xii., n.s., 85–7; Ghoseh, Treat. Mat. Med., 1904, 656; Leach, Food Inspect. and Anal., 1905, 345–50.]

TRADE.—The Indian internal trade in ginger is fairly large and important. During the five years 1901–2 to 1906–7 the total transactions by rail and river averaged 90,639 cwt., amounting in 1906–7 to 86,211 cwt. The largest quantities in that year were exported from Eastern Bengal and Assam with 20,009 cwt. (almost all to Calcutta),
THE INDIAN JUJUBE

followed by Bombay Port, 13,110 cwt. (to Bombay Province, Central Provinces and Berar, Panjáb, United Provinces, Rajputana and Nizam's Territory); Panjáb, 10,728 cwt. (to Karachi, United Provinces, etc.); Madras, 6,648 cwt. (to Madras ports); United Provinces, 10,002 cwt. (to the Panjáb and Bengal).

Similarly, by coast the exports in 1905-6 amounted to 2,634,020 lb., valued at Rs. 3,21,160. The great bulk of these coastwise exports went from Madras, viz. 1,984,040 lb., and were consigned chiefly to Bombay, viz. 1,902,294 lb. Bombay is the only other exporting centre of any importance, from which the exports in the same year amounted to 587,461 lb.

Turning to the foreign trade, the following have been the quantities Exported for the six years 1901-2 to 1906-7;—1901-2, 5,758,616 lb., valued at Rs. 13,02,323; 1902-3, 7,397,702 lb. and Rs. 16,59,499; 1903-4, 12,061,517 lb. and Rs. 24,91,055; 1904-5, 11,164,019 lb. and Rs. 19,26,784; 1905-6, 9,869,174 lb. and Rs. 12,52,740; and in 1906-7, 5,415,531 lb. and Rs. 9,67,209. Analysing the figures for the last year, we find that from Bombay there were exported 2,314,778 lb., from Madras 2,032,033 lb., and from Bengal 1,068,620 lb. The chief markets were the United Kingdom, which received 1,565,020 lb.; Aden, 1,517,696 lb.; United States, 960,801 lb.; Arabia, 378,544 lb.; Ceylon, 242,373 lb.; and Germany, 219,920 lb. For a similar period the Imports were:—1901-2, 863,837 lb., valued at Rs. 1,68,313; 1902-3, 664,041 lb. and Rs. 1,29,036; 1903-4, 2,104,746 lb. and Rs. 3,41,204; 1904-5, 874,625 lb. and Rs. 1,07,071; 1905-6, 1,089,515 lb. and Rs. 1,35,876; and in 1906-7, 1,026,344 lb. and Rs. 1,70,421. These quantities come almost entirely from Japan and China, which contributed in the last year (1906-7) 875,360 lb. and 117,820 lb. respectively, and go chiefly to Bombay and Bengal, which imported 824,561 lb. and 187,560 lb.

ZIZYPHUS, Juss.; Fl. Br. Ind., i., 632-7; Gamble, Mon. Ind. Timbs., 1902, 180-5; Cooke, Fl. Pres. Bomb., 1903, i., 240-1; Prain, Beng. Plants, 1903, i., 333-4; Brandis, Ind. Trees, 1906, 169-72; Rham. Ind., i., 632-7. A genus of trees or shrubs, of which some 18 species are natives of India.

Z. Jujuba, Linn. The Indian Jujube or Chinese Date, bér, bur, bûr, kûl, janumjan, dedhaori janum, ringa, jîbang, khalis, clandap, yellande, kurkandhavu, regu, gvlachu or jailachu, zi, etc. The cultivated form is known as pusandi, pendí or pemdi-ber, the wild form being jharberi (Duthie, Fl. Upper Gang. Plain, 1903, 163). The grafted ber is called poyní. Burkill (M.S. Notes on Tour in Rohtak) remarks on four kinds extensively grown, viz. umari, nasuk, pendí and kutia. Lisboa observes of bordi that it is one of the commonest fruit trees of the villages of Western India. A moderate-sized deciduous tree, "distinctly wild in the forests of the Siwaliks and Sub-Himalayan tracts of the Panjáb and United Provinces, and also in the Deccan and in Upper Burma and Ceylon in dry forests. Elsewhere mostly cultivated or run wild" (Gamble).

The bark is said to be used for TANNING in Northern India, Bombay, Madras and Burma. In Chota Nagpur it is similarly employed, but along with the fruit. Occasionally it is thrown into indigo-vats to aid in precipitating the feacula. Hooper (Agr. Ledg., 1902, No. 1, 20) states that a sample of bark from Madras gave 4·1 per cent. of tannin, and a sample of thick root examined at Dehra Dun gave 2·6 per cent., while some thin roots afforded 9·3 per cent. Most parts of the tree are employed in Native MEDICINE. The fruit of the wild ber, which ripens in the cold weather—the cultivated one almost in any season (Collett, Fl. Sim., 1902, 90)—resembles the crab-apple in flavour and appearance, and is much eaten, as well as that of most species, by the poorer classes;

Exports.

Foreign Trade.

Imports.

Indian Jujube.

Habitat.

Tan.

Medicine.

Fruit Eaten.

1143
ZIZYPHUS
VULGARIS

THE COMMON JUJUBE

in fact, in times of scarcity these fruits are specially prized. By cultivation it is
greatly improved botâ© in size and flavour, and there is great variety among
the cultivated forms. According to Marshall Woodrow, "the best are elliptical,
two inches in length by one in thickness and are propagated by inarching or
budding on seedlings of the common sort." The unripe fruit is pickled; the
ripe pulp is dried, mixed with salt and tamarinds, to form a condiment or is
made into chutneys. The kernels are also eaten, and the leaves constitute a
useful FODDER for cattle and goats. The Wood is hard and reddish in colour,
weighing on an average 48 lb. per cubic foot. It is largely employed in ordinary
constructive work and has been recommended for furniture. It is also said to
make excellent CHARCOAL. The lac insect is commonly reared on the tree (see
Tachardia lacca, p. 1057), and it is one of the food-plants of the tasar silkworm
(see p. 1005), while in Assam the eri silkworm is sometimes fed on it as well (see
silk, p. 1012). [Cf. Baber, Memoirs, 1519 (Leyden and Erskine, transl.), 326;
Garcia de Orta, 1563, Coll., xxviii.; also in Ball, Proc. Roy. Ir. Acad., 3rd ser.,
1889-91, i, 413-4; Prosper Alpinus, De Pl. Ægypti, 1592, 8; Linschoten, Voy.
E. Ind., 1598 (ed. Hakl. Soc.), ii, 32; Thevenot, Travels in Levant, Indostan,
etc., 1687, pt. ii., 117, and pl.; Millburn, Or. Comm., 1813, i, 138; De Candolle,
Orig. Cult. Plants, 1884, 197-8; Pharmacog. Ind., 1890, i, 351; Moodeen Sheriff,
Mat. Med. Mad., 1891, 108-9; Banerjea, Agri. Cuttack, 1893, 191; Cameron,
For. Trees of Mysore and Coorg, 1894, 72-3; Rept. Oper. Dept. Land Rec. and
Agrî., 1897-8, 19; Agri. Legd., 1901, No. 9, 213, 221; Kanjilal, For. Fl., 1901,
72; Woodrow, Gard. in Ind., 1903, 236-7; Firminger, Man. Gard. Ind., 1904,
273; Rec. Bot. Surv. Ind., 1904, iii., 35.]

Common
Jujube.

Z. vulgaris, tank. The Common Jujube, titi- (or phitni-) bér, kandika, singî,
bân, bârf, ganyeri, shamor, amlai, relmû, andb, unnâb, rân-bor, etc. A large
shrub or small tree "wild in the Panjab from the Indus to the Ravi; much
cultivated in the Panjab, Kashmir, Baluchistan, etc." (Gamble).

Fruit.
The tree is chiefly important on account of its FRUIT, which is very similar
to that of F. Jujube, being an oval pulpy drupe about the size of a plum. It
varies much and can be greatly improved by cultivation and grafting. The
dried fruit is the jujube of Arabian and Persian works on Materia Medica,
and has long been known as an article of commerce. The Indian market is supplied
from China and the Persian Gulf, the Chinese fruit being preferred as it is larger
and sweeter. In Europe it is used in the preparation of syrups, confections and
lozenges (pate de jujube) taken to allay cough. In order to ascertain the
composition and value of these fruits a consignment was sent to London in 1904,
and a report was submitted by Dunstan (Imp. Inst., March 3, 1905). The
fruits were chemically examined, but the results showed that they contained no
constituents to which definite medicinal qualities could be ascribed. The report
further adds that "it was considered possible that confectioners might be able to
make use of such materials for the preparation of confections fed fruit", or in some
similar way, but the absence of any peculiar flavour and the somewhat mawkish
taste of the pulp were considered insuperable difficulties by the firms to whom
samples of the fruits were submitted for consideration from this point of view."
Specimens of the fruit were also submitted to dealers in cattle-food in the hope
that it might be used for mixing with ground pulse and similar products as a
sweetening agent. The fruit was considered suitable for this purpose, but ex-

Dried.
Imported.
Chemically
Examined.
Cattle-food.
"Specimens" of the fruit were also submitted to dealers in cattle-food in the hope
that it might be used for mixing with ground pulse and similar products as a
sweetening agent. The fruit was considered suitable for this purpose, but ex-

Cattle-food.
INDEX

This work being alphabetical, a complete index to the subjects dealt with becomes superfluous. In the pages that follow, therefore, will be found all the vernacular and other names mentioned in the text, as also cross references to subjects that might otherwise have escaped observation. Minor products that find positions in collective articles and do not therefore appear in their alphabetical positions are included in the index. Scientific names of unimportant products, such as species of birds, fish, insects, etc., are not included, except their English and vernacular names. Names of places, persons, books consulted and analytical details have been purposely omitted. It is believed the marginal notes and cross references within the text fully meet these requirements. The citations to the Dictionary of Economic Products of India have been uniformly given on the margin as "D.E.P." Vernacular names, as also scientific synonyms (when given), are in italics, English names in ordinary type, and modern scientific names in small capitals.

A
Ababai, 269; Ababik-ka-ghesium, 138; Abaca, 790; Abai, 248; Abang, 627; Abashai, 195; Abassi, 600; Abattichim, 317; Abelmoschus, 786; Abhuchahar king, 534; Abi, 1116; Abir, 444; Abi shora, 973; Abjosh, 1118; Abrus, 498-9; Abor Lamigera, 521; Abrak (Mica), 781; (Steatite), 1049; Abresham, 994; Abr-i-amber, 64; Abroma, 1, 924; Abrus, 1, 743; Abisebne, 93; Abutilon, 2, 924; Acacia, (arabica), 55, 114, 192, 638, 1057, 1073; (concinna), 979; (Farnesiana), 821; (leucophleia), 1047; Acer saccharum, 928; Aceti, 696; Acetum (Vinegar), 1108-12; Ach, 785; Acha, 498; Achar, 7, 265; Acheellu, 981; Achem, 352; Achi, 264; Achi Manni, 402; Achiras, 627; Achroite, 563; Achyranthes, 49, 281; Acid Benzoic, 1052; ... Boheic, 239; ... Prussic, 766, 880, 1040, 1041; ... Sulphuric, 50; Aconitine, 22, 24, 48; Aconitum (Aconites), 18-24, 258, 491; (Napellus), 23-4; Acorus, acoron, acorin, 24, 521; Acrocarpus, 383; Adii, 1139; Adad, 881; Adak, 708; Adamboe, 701; Adansonia, 868; Adavi-bura, 755; Adavigóránta, 525; Adavi-iruilli, 1049; Adavi-potta, 1081; Addalai, 700; Addannik, 563; Adhatoda, 25, 49, 122, 771; Adhatodi, 25; Adhruka, 1139; Adike, 83; Adi-kódei, 837; Adina, 436; Aditya, 205; Adjuntan, 140; Aduak, 1139; Aduka theni, 124; Aduke, 25; Agele, 26-8, 293, 429, 821, 1110; Ėschynomené, 28-30, 44; Afix, 846; Afta, 16; A-fou-yong, 846; Aseanthum, aseanant, 93-4; Agyun, 846; Agy, 945; Ager, agar, 72; Ager-agar, 695; Ager-atar, agar-batis, 73; Agar, 161; Agas, 780; Agase, 995; Agate, 561, 716; Agaul, 936; Agave, 30-45, 188, 293, 775, 868, 924, 1046; Age, 123; Ageratum, 377; Ages, ajes, 496; Aghya, 123; Agi, 264; Agia, 161; Agil, aglay, 294; Agnisekha, 224, 278; Agrotis yešilon, 387; (segetia), 679; Agya-ghise, 459; Ahak, 710; Ahandil, 903; Aheta-mangha, 249, Ahipana, ahišphena, 846; Ahlada, 537; Ahọ, 903; Ahu (Rice), 565, 708, 943; Ahu (Lime), 710; Aila, 14, 16; Ailanthus, 95, 1012; Aim, 1073; Aira, 124; Air-ulação, 439; Ajaji, 442; Ajano, 285; Ajave, 285; Ajhar, 701; Ajmot, ajmud (Carum
INDEX

Roxburghianum), 285; Ajmúd (Apium graveolens), 72; Ajocsean, ajwain, ayvan, 285, 820; Ajwain-kaphul, 285; Ajwain-kaputa, 72; Ák, akanda (Calotropis), 205, 436, 627; Ák, aku (Sachcharum), 930; Akákia, 7; Akbal, akalber, akalbar, 487, 492; Akbára, 1032; Akkrt, akkor, 700; Akki, 824; Akri, 1120; Akyaù, 72, Al, 447, 783, 1053, 1121; Ala, 537. Alabaster, 122, 716. Alakta, 1053; Alalé, 1073; Alarka, 205; Alash, 287; Alashí, 720; Alá thanda, 886. Alhizzi, 45-6, 163, 226, 237, 379, 383, 546. Alcatat, 271. Alcohol, see Spirits, 285, 457, 1030, 1043-9. Alder (Alnus), 115. Ale, 757-62, 1043. Ále, 1139; Alecha, 906. Aleurites, 46-7, 280, 503. Alsfalfa, 778. Alí, 538; Alid, 665; Alipuru, 1041; Alish, 720; Al jultulán, 982. Alkaline or Pearl Ashes, 48-50. Alkaline Earths, 48, 57. Alkaloids, 47, 58. Al kare, 366; Al-kohl, see Alcohol; Allam, 1139; Alí, 71. Allium, 58, 293, 963. Aló, 161; Almás, 556. Almond, 905; Earth, 465; Indian, 1073; Java, 247; Oil, 905. Al-nil, see Anil. Alnus, 115. Aloe, American, 31; Barbados, 59; Bastard, 34; Blinding, 74; Common, 38, 59; Curacao, 58; Lepisma, 72; Scooptrine, 59; Zanzibar, 59; and Sisal Fibre, 35-45, 437, 779; Wood, 72. Altpogóddá-pazham, 906; Al-ruz, 825. Alsubanda, 508; Alsi, Alshi, 720. Alstiona, 49, 627. Altingia, 61, 821. Alú (Colocasia), 398; Plum, 906; Potato, 1028; Alu-bulú, alubukhára, alucha, 906; Allen, 69. Alum, Aluminium, 61-2, 492; Aluminia (Silicate), 51. Alung-u-bhad, 1079; Alubinda, 317; Alwan, 1125; Am, 764; Ambódá, 443; Amadán, 915; Amalgách, 907; Amal-kuchí, 192; Amaltás, 287; Amam, 285. Amán (Rice), 828-9, 831, 983; Amánakkam, 915. Amaranthus (Amaranth), 62-4, 257; (spinósus), 49. Amari, 1073. Amba, 764; Ambódí, see Ambórí; Ambalú (Lakh), 1053; Ambár-bára, 130; Ambórí, ambódí, 430, 630, 869, 871; Ambchúr, 765; Ambé, 443; Ambeng, 64. Amber, 64, 555. Ambía, 499; Ambí, 583; Ambor, 785; Ambásh, 765; Ambá, 915. Améthyzt, 561. Am-baládi, 443; Amí, 914; Ámíán, 903; Amkudu, 1131; Ambá, 1144. Ámlik, 886, 1109; Amla vetasamú, 202; Amleche-paut, 409; Amli (Tamarindus), 1066; ... (Bauhiniá), ... -taki, 120; Amiák, 499; Ammáh, 1079; Ami, ammi (Amni Visnaga), 285. Ammoniacum, 534. Ammoniüm, 48, 346, 771. Amomium subulatum, 65, 511, 512. Amorphophallus, 65, 496. Ampullaria globosa, 712. Amrad, 5; Amratphal, 326; Amrer, 160; Amritphal, 326; Amrúd, 910; Amru, 1125; Amrúd, 907; Amnul, 553; Amusk, 907; Amukka, 1120. Amusa, 788. Amyrise commiphora, 400. Ana, 161; Anáb, 1144. Anacademicium, 65-6, 1046. Anakimca cócculus, 546. Ananas, 66-9, 1046, 1109. Anána, anánach, 66; Anantamól, 628; Anáras, 66; Anardaha, 63; Anará-ká-pér, 909; Anása, anásahappazham, 66. Anatherum muricatum, see Vetiveria zizanioidea, 1106. Anati, 787; Anber, 64. Andrographis, 69-70, 1053. Andropogon, 54, 70, 98, 450, 1031, 1106. Andúku, 174; Angaria, 484; Angür (Vinegar), 1112; Angur (Vinegar), 1110. Anguría (Melon), 317. Angú-kha, 95; Angushe, 534; Angüza, anguza-kema, anguzan, 533-4; Anhuri, 1107. Anil (Indigofera), 661, 663, 664. An-ing-kiyo, 564. Aniseed (Anise) Anisún, 820, 887. Anjálí (Anjeli-wood), 94; Anjan (Antimony), anjanak-kálú, anjanam, 72; (Blue Heron), 139; Anjana, 707; Anir (Fig), 557; (Guava), 907; Anjuda, 534; Anna-bódi, 171; Annapa, 508; Ánne, 843; Anúl, see Anil. Anogeissus, 70-1, 188, 1005, 1073. Anrar, 915; Ansari, 834. Ant (Képet), 569, 610. Antelope (Black Buck), 632, 644. Antheléa (Silkworm), 912, 1092-11. Anthocéphalus cadamba, 1046. Anthracose (on the Vine), 1117. Anílra, 742.
INDEX

ANTIVUS, 71-2, 868.
Antlers, 644.
Anamulu, 1036; Anzerut, anzrud, 95; Aonâ, 886; Aoasha, 742; Apakva, Apakva kâpâra, 244.
Apple (Plant Louise), 387, 680.
Aphids (Bee), 123-5.
Apple, 910: Adamâ's, 325; Custard or Sugar, 71; Malay, 552; Mendragora, 29; May, 904; Rose, 526.
Appalach, 781: Appalachian, 1049.
Apricot, 905.
Aquilaria, 72-4, 531, 821, 861, 924.
Arabia, 64.
Arabian Resin, 1054.
Aracris, 74-83, 225, 812, 821.
Aradal, 552, 554: Arag, 403; Arak, 902; Arak, arack, arack (Spirit), 92, 170, 488, 760, 1043-8, 1116; Arak, Batavian, 1046; 'Arak al-tamar, 1043.
Arakan Gamboge, 553.
Arak baidian (Fennel Water), 552; Arak bâdiân (Anise Water), 887; Arakklu (Lakh), 1053; Arâknânâ (arâknâna) (Mint-Vinegar), 1110.
Arra, 30.
Arando (Orange), 320; Arand, 915; Arânjâli, 71; Arar, 16; Ararū, 773; Ararut-ke-gadde, ararût-ke-
shangu, 444; Arasa, 538, 539; Arata, 24; Arca, 205; Archu, 912; Ar-
danda, 264.
Areca Catechu, 83-91, 166, 891, 897.
Arecoline, 90; Areca, 121.
Arenga, 91-2, 187, 760, 928, 1046.
Aretha, 915; Areu, 16; Arjum, 847; Arghellon, 551; Argue (Pheasant), 135; Aṛkhr, arar, oror, 196-200, 603, 606, 675, 900, 917.
Ari, 121; Ariki, 1043; Arih, 1011; Ariñi, 15; Arishi, 824; Akshina, 445; Ariis, 825.
Arjumana Tortuosum, 445.
Arjusìma Setacea, 187.
Arjutha, 979; Ariñi, 787; Arjuma, 269; Arjan, 1072; Arjua-san, 430; Ark (Spirit), 1116; Arka, arkaparna, 205; Arkar, 746; Akhar, Akkol, 914; Arki, 1043; Arma, 70; Arna, 732.
Arnott (Anmatto), 49, 142-3, 477.
Arrack, see Arak.
Arrowroot, E. Indian, 444; W. Indian, 773.
Arsenic, 92-3, 258, 1061.
Arainaguri mantra, 554; Arsoyga, 65; Artem, 103.
Asentimia, 50, 93-4.
Arthrocemum, 112-3.
Artocarpus, 94, 383.
Arù, 906; Arigam-pilla, 463.
Arum, see Colocasia antiquorum.
Arunda, 1005.
Arundinaria, 98-9, 115, 775.
Arundo, 986.
Arusa, 25; Aruzz, al-ruzz, uruzz, 825; Arře, 398; Aryūla, chaota aryl, 486-7; Ass, 249, 533.
Asafetida, 533, 535, 1110.
Asali tâs, 744; Ashan, 908; Ashan, assain, 1005, 1005, 1073; Aşarâth, 249; Aśrâh seioun (Indigo), 675; (Tobacco), 799; Aśār, 491; Aśvāndh, 1120; Aṣmotn, 586, 600; Aśvagandhā, 1120; Aśvattha, 538; Aśv-rāi, 180; Asok-
yu-r, 742; Aoter, 121.
Asphagus, 963.
Asperag, 492.
Asphodelus, 1089.
Asra, 831; Assseon, 1004.
Asses, 751.
Assis, axis, 249; Aṣugach, 782; Aṣundol, 121; Aṣwaththa, 538; Aṣw-
̣at, 538, 1005; Atā (Anona), 71; (Wheat Flour), 1088; Ata, ate (Anglo-Saxon), 96; Atāchha, see Aṭīvisha, 20.
Atalanta Monopryulla, 190.
Atasi, 721; 'Ati har—-the Elephant), 696; Aṭibâdā, aṭi-ballah chettu, 991; Atia, 19-20.
Atisine, 19.
Ativāsa, 21; Aṭivika, atīvisha, 19-20; Aｔkura, 1132; Aṭnak, 1073; Aṭo
̣sang, 496.
Atriplex, 114.
Atjeor, 265; Aṭjor, 912.
Attacus Ricini, 1002, 1011-2.
Atlaḥ, 651.
Attaelea Funifera, 286.
Aṭṭar, Rose, 821, 925.
Aṭṭi, 533; Aṭṭ-illupei, 117; Aṭunete, 28; Aye (Elephant), 696; Auma, 720; Aupta, 121; Aṣ (Rice), 788, 826-9, 831, 983, 1027-8; Aus, 430; Ausarakhovan, 554; Aou, 71; Aural, 289; Auralkati, 886; Avere, 508; Awar, 289; Avel, 361; Avoa, 398; Avagida-
panda, 1081; Aoua, aoua, 161; Awa, 16; Awora, 103; Azi (= Achi, agi), 264-5; Axis, see Aṣṇīs; Aye, 1043; Ayna, 269; Ayni, 94.
Azadirachta indica (= Melia Aza-
dirachta), 780.
Azhkīr, 462; Azpa, 552.

B

Babain, 99; Babal jak, 774.
Babblers, 132; Babbler, Scimitar, 132.
Babhori, 462; Babir, 294; Babhi, 694.
Baboi, 412, 694; Babui, 294; Babul, babula, babola, 2, 9, 290; Bac, bakam (Cusalpinia), 1053.
Bacchara, 783.
INDEX

Bacha, 24; Bachkron, 694; Bachnag, 21; Bacho, 927.
Bacon, 758.
Badal, 715; Badal-sunn, 430; Badam (Almond), 905; ... (Cashew Nut), 65; ... (Indian), 1005, 1073; Badami (Kingfisher), 139; Badam-vittulu, 905; Badane kaiy, 1026; Badishep, Badisopu, 552; Bad janvar, 752; Badnikai, 1026; Badra-kêma, 535; Baddshah sàlab, 963; Badyan, 552; Bae-danae angr, 1114; Bael, 26–8, 821; Bajta (Cloth), 1008.
Bajú, 9; Bagar (Cotton), 580; Bagherenda, 690; Baggar, 694; Baghah (Pigeon), 136; Baghaira (Ortolan), 134; Baghi, 45; Bagla (Heron), 139; Bashav, 287; Babana, 310.
Bajhn Piassava, 286.
Bahira, 910; Bahthana, 903; Bai, 537; Baijan, 1026; Bail (Ox), 732; Bairaithe, bairati (Cotton), 594–5; Baiash, 115; Baitaka-kharu, batailu, 441.
Bajraj, bajal, 104; Bajjar-battuler, 899; Bajjera, 1032; Bajri, 487; Bajra, bajir, 15, 197, 281, 479, 505, 509, 598, 601, 630, 843, 869–72, 879, 917, 983, 985, 1031, 1035, 1041, 1107; Bajurjet, 429; Bajierca, 576; Bakairn, 780; Bakam (bokom), 194, 890, 1053.
Bakam Wood (Cesalpinia), 194.
Bakar (Rhizophora), 913; Bakar, babul, 2; Bakas, 25; Bakker (ferment), 759, 1047; Bakla, 1107; Bakti (Anogeissus), 70; Bakti (Lagerstrenna), 701, 1005; Bakshi, 1087, 1092; Baló, 991; Balu-chare, 792; Balachong, 544; Balai, 499; Bala manaus, 890; Balanc, 325.
Balanties Roxburghii, 546.
Balasán, 400; Balbí, 2; Bale (Ebony), 498; Bâlé (Banana), 787; Balê-khánás, 1106; Bailamba, see Bilimbi; Balkua, balku (Bamboo), 100, 105.
Balamsam (Balm of Mecca), 400; ... Aden, 113.
Balxamodendron, 400.
Bâlu-char, 792; Balanshep, 879; Bâl-vach, bâl-vekhand, 24.
Bamboos (Bambusa), 49, 98–112, 114–5, 188, 715, 868; ... Golden, 101; ... Jilli, 99; ... Kyello, kyelova, 101; ... Spiny, 99; ... Monastery, 104.
Ban (Jujuhe), 1144; ... (Oak), 911; ... ben, bun (Coffee), 364; Bana, bans, 99; Ban-alu, 494; Banana (Plantain), 787; Banar, 287–8; Banana-mitha, 110; Banawati salab, 963; Ban-banar, 43; Banbee, 269; Banchak, 284; Ban-chow (Yak), 733; Bandar-karan, 409; Bandhari-bet, 202; Ban dhenrus, 629; Banela, 1007; Bang, see Bhang; Ban-gab, 499; Bangai, 578; Bangra, 161, 250; Ban hardi, 782; Banii (Cotton), 580–1, 594; Banii, 629; Banj, 911; Ban-kkari, 904; Bankeas, 694; Bankati, 115; Bankok, 284; Bankura (Bee), 128; Ban-kush, 694; Ban-mudgda kheri, 879; Banii, 9; Ban pâlu, 428; Ban-pát, 408; Banpotol, 1081; Banraj, 121; Ban-rika, 14; Bâns (Bamboo), 102; Bansa-rechana, 110; Bansii, 1086; Bânsini (Bamboo), 101; Bâne kaban, 102; Bane-kapür, 110; Banekgora, 31; Bâns khârd, 102; Bane-kóchan, 110; Bânsmati, banshedal (Rice), 831; Bantha, 498; Banti, 843; Banting, 644, 733.
Ban-titùr, 135; Banuwa, bhanuwa (Aconite), 22; Banuwa (Snakebird), 141.
Banyan Tree, 536–7.
Banyerts, 296; Bao, 830; Baonli, 14; Bab (Pheasant), 142; Bappayi, 269; Bar, 537; Bara-bagila, 140; Bara batta, 837; Bara-bet, 202; Bara kanar, 31; Bara-kulijan, 60; Bara-mattar, 903; Barana, 429; Baras, 245; Barasingha, 644; Bara-singoli, 311; Barát, 504; Baraukha, 936; Barbari, 1107.
Barberry, 130, 1091.
Barbráma, 3.
Barbus (Mahasir), 542, 545, 547.
Barchar, 911; Barelli (Banyan), 537; Bares kát, 532; Barpaj, 537; Bar-geel, 135; Bari, 881; Baridla, 101; Barirá, béröd, 991; Bari-gumchi, 25; Bari-ilaci, 65.
Barilius Bola (Trout), 542.
Barilla, 50, 56, 112–4.
Baringa, 1051; Bariridan, 823; Barishopa, 552.
Barites, Barityes, Baryta, 57.
Barium and its Salts, 57.
Bárj, 1144.
Barley, 251, 640–4, 726, 759, 834, 891, 917, 1043, 1134.
Barli-ariasi, 640; Barmal, 429; Barra muge (race of tasar), 1007.
Barringtonia, 546.
Bar-rum, 1051; Bar-ráti, 140; Bar- rote, 906; Barta, 1026; Bártundi, 783; Barú, 1031; Barua, 486; Bárval, barval, 749; Barún, 429.
Barya, see Barium.
Barzed, 535; Baso-dahi, 475.
Basic Slag, 694, 772.
Básini, 101.
Básmati (Rice), 833–4; Basmati (Water Chestnut), 1080; Basri, 53; Bass, Patent (Bamboo), 105; Basusa (Fish), 541–2, 547; Bassari, 538.

1148
INDEX

Bassora Guns, 78, 95.
Bastaj, 174; Basanta, 25; Báscura, 538; Bat, 54; Batata, 1028; Batári-nebu, 324; Batbar, 538; Batári-bijir, 465; Batiie, 317; Bathu, 63, 257; Batho-sag, 293; Batiec indri, buttik, 317.
Batiste d’ananas, 69.
Bat-mika (Bustard), 140; Battari, 1032; Battí (Lac Sticks), 1063.
Bauhinia, 120–2, 1005.
Baura, 686; Bauru, 914.
Bauxite, 61–2, 428.
Bayo, 518; Bawa, 104; Bawa ghori, 562; Bazahr, 131; Baz-ajír, 915; Bazhoorat, 429.
Beddium, Beddllium (Indian), 174, 400.
Beans, 122; Bead Tree (Melia), 780; ... (Utricularia), 511.
Bean, Asparagus, 1107; Broad, 1107; Carob, 1144; Cluster, 449, 741; Duffin, 880; French (Indian), 248; Garden, 872, 1107; Kidney, 879; Lima, 880; Patagonian, 248; Soy, 564; Sword, 248; Windsor, 1107.
Bear, 632.
Beda, 115; Beda, 778; Bedana, 130; Bedémír, 915.
Bee-eaters, 132, 142.
Beef, 754.
Beefsteak Bird, 134.
Beetle, Rhinoceros, 354; ... Bliister, 610.
Beetroot, 928; Beet-sugar, 957–61.
Begami, 833; Begam, 788; Beg-pura, 325; Begti (Fish), 540–1, 547; Behari (Limes), 326; Behor, 99; Beidelsar, 205; Beji ghar, 504; Behk-kurphus, 792; Beksha, 161; Bel, Bael, 26–8, 429, 1110; Belambu, 97; Belati-Khadiab, 577; Beligiri, 27; Belledi, 1140.
Belladonna, 95.
Bell-pota, 629.
Bell-metal, 401.
Belloti, 58; Bémi heimi, 906; Bená (Vitteira), 1106; Bená (Musk Deer), 785; Benáda, 525; Benda, 28; Bendekoi, 631; Beneng, 99; Benga, 908; Beng bhadang, 249; Bengonari, 490.
Bennicaca, 438, 440.
Benn Oil, 784, 812.
Ber (Willow), 113; ... (Cane), 201–2.
Benzoë, 876.
Benzoin, Benzoic Acid, 1052.
Beer, 757.
Bér, byer (Zizyphus), 1003–5, 1143.
Berberine, 405.
Berberis, 405, 546.
Bergamot, 327.
Berhui, 466.
Bermuda Grass, 463.
Beru, 100.
Beryl, 556.
Bés, 115; Bét, see Bent.
Beta, see Beet-root.
Beté-nut, 83–91, 897.
Betel (paan), 891–6.
Betta, 89; Bettá kabbu, 937; Betíshak, 293; Betú, betw, 100; Betga, 161.
Beverages, Intoxicating, see Spirits.
Bevina, bèwu, 780–1; Bhobar (Ischsmum), 694–5; 865, 868; Bhóbar (Girardinia), 161; Bhadder, 1110; Bhádi (Soils), 51; Bhádi (Cotton), 607; ... (Rice), 828, 832; Bhádarakshtha, 291; Bhága-mohu, 123; Bhági-runn, 430; Bhabh, 694; Bháins (Buffalo), 732; ... (Willow), 115; Bhai, 1072; Bhádi, 1081; Bhál; Bhálu, 100; Bhamburi, 15; Bhámerga, 250; Bhámmar, 123; Bháng (bhang), 19, 249–52, 258–9, 284, 409, 483, 1040; Bhángakata, 259; Bháng-jala, 487; Bháng-massala, 65, 438; Bhánta, 1026; Bháradvájí, 570; Bháral, bháral, 644, 746; Bhárat, 409; Bhárat, 746; Bháts, bhátnas, 564; Bhá-tóla, 29; Bhátta, 824; Bhávan-bakra, 904; Bhávaprákasa, 1082; Bhávra, 123; Bhéham, 99; Bhédi, 981; Bhén, 250; Bhéra, bhéra, 294; Bhérawá, 285; Bherenda, 915; Bhésh, 115; Bhévd, 981; Bhiriraj, 133; Bhímséini, 245; Bhímséini, 244, 313; Bhínd, 634; Bhínskwa, 128; Bhírá, 952; Bhírand, bhírandel, 553; Bhíra, 102.
Bhojplá, 581; Bhój, 258; Bhókri, 1116; Bhól, 755; Bhómroti, Bhóm réti (Lodh Bark), 555, 1053; Bhoná, 1031; Bhóra, 913; Bhós, 70; Bhósito badám, 906; Bhózh ámali, 886; Bhíngga, 879; Bhúbi, 1109; Bhúb, 694; Bhádara, 775; Bhútavalli, 987; Bhuí-chana, 74; Bhúk-kólah, 1048; Bhuí-kólah, 686; Bhúli, 278; Bhuí-mung, 74; Bhúinán-való, 887; Bhúi-singh, 74; Bhúi-tawar, 288; Bhúipatya, 131, 861; Bhúnga, 441; Bhúnguru, 981; Bhúra, 952; Bhúrbůroi, 54; Bhúri, 937; Bhúripatya, 131; Bhús (Peso), 507; Bhús (Cattie Food), 643, 726; Bhútavír, 451, 461, 462; Bhútra, 115, 884; Bhútavír, 451; Bhútta, bhútta (Maize), 1132–3; Bhutta-jatt, 792; Bhúmi, 285; Bhúri, 134.
Biala, 1107; Bíaar, 888; Bítta, 908; Bìbu, 981; Bítka, (Girardinia), 161; Bítchú (Urtica), 163; Bít, 464; Bítarupp, 110; Bítão, 100.
INDEX

Bidri (Bauhinia leaves), 122; Bidri ware, 707; Bier, 757; Bija, 908; Bijasal, 908; Bijaura, bajauri, 320; Bijoro, 324; Bijri, 720; Bijuli, 100; Bik, 20-2; Bikhan mineral, 20-1.

Bikma, bikma, bishma, 20; Bik-khonda, 1031, 1040; Bil, see bel; Bila, 429; Bulaai, 1110; Bili-kand, 686; Bili-sara, 429; Biliatu duli, 1028; Bili-tadi-badam, 905; Bilaar, 561; Bilde, 686; Bilgu, 294; Bili, 912; Bili baragu, 843; Bili manavare, 508; Biliwbibi, balimba, 97; Billa, bella, billu, biqiu (Satin-wood), 294, 1005; Billan, 26; Billigaru, 172; Billu-paddi, 930; Billa, 910; Bilsa, 26; Bimbal, 465; Bin, 115; Bina, bani, 98; Bindaal, 755; Bindhi, 915; Biné, 428.

Biotite, 781.

Bira-denah, 83; Bira (vira) viti, 83; Bir biar, 732.

Birch, Indian Paper, 131.

Birds, Agricultural, 132; Cage, 133; Edible, 134; Edible Nests, 138; Industrial, 138.

Bird Skins, see Feathers.

Biraja, 535; Biridi, 485; Birinj, 825; Birinjmad, 285; Bir mung, 879; Birrali, 543; Bir sang, 496; Bisa, 115.

Bischoiia, 383.

Bish, see Bik; Bishma, see Bikma.

Bishop's Weed, 285.

Bislambhi, 440.

Bison, Indian, 644, 733.

Bistendu, 499; Bisuwul, 16; Bithúa, 484; Bitt-palang, 928.

Bittern, 142.

Biti, 429; Bial, 624.

Bixa Orellana, 49, 142-3, 477.

Biyam, 824.

Blackberries, 1109; Black Buck, 644; Black Lead, 624; Black Oil, 192; Black Salt, 56; Blackwood, 484.

Black, 547.

Blight, Blister, 229; Grey, 229; Mosquito, 228; Scale, 554; Thread, 229, 385; Blights (Coffee), 384; (Sugar), 941.

Blinds Tree, 531.

Bloodstones, 561, 716.

Blue Stone, 403.

Blumea, 245, 377.

Bo, 538.

Boar, Wild, 752.

Bobbi, 204; Boberii, 1107; Bo-Bo, 395; Bobolowa, 528; Bodham jam, 526; Bodai, 141; Bodki, 278.

Bojru, 333; Borga kupa, 595; Boholawa, 528; Boichand, 885; Bojah, bojali, 521; Bokem, 194; Boktaung, 956; Bola, 629; Bolainga bans, 103.

Boll-worms, 610.

Bombaksing, 906; Bombalinus, 324-5.

Bombax Malabaricum, 96, 232, 523, 570-1, 812, 991, 1005.

Bombay Ducks, 541-2, 546-7.

Bomyx, 992-1012, 1018-26.

Bom, 365; Bombanda (Silk), 1009; Bondara, 701.

Bone-liquor, 48.

Bon-kokkora, 164; Bon-methi, 991; Bon riha, 102, 164; Bor (Banyan), 537; Bor (Chinese Date), 1143.

Bor (India-rubber Fig), 651; Bora Bamboo Nett, 312; Bora (Elephant Grass), 777; Boran amán, 828.

Borassus, 49, 115, 169-71 188, 293, 361, 428, 760, 861, 928, 1046.

Borax, 56, 448.

Borboti, 508; Bor-bur, 538.

Bordeaux Mixture, 229, 403.

Bordi, 1143.

Borecole, 182.

Borer (Insect), 386, 941, 1035.

Bori, 437; Borkapah, 578; Bora, 121; Boro (Rice), 828-30; Borobans, 100.

Boror, 832; Boropolu, barapalu, 995, 998.

Bos (Oxen), 644, 732-3.

Bosa, 257; Bossonoto (Rinderpest), 742.

Bostrichus Beetle, 100-1.

Boswellia, 894.

Botan, 504.

Bottle-gourd, 440.

Bown, bun, ban (Coffee), 364; Boura, 168.

Boxwood and Substitutes, 190, 1063.

Box, bor, 743; Boza, 257, 760; Bozghan, 902; Brab-tree, 169, 760, 928.

Brachytytes (Cricket), 804.

Braham, 1031; Bráhmamanduki, 646; Brahami, 646.

Brahmin Nut (Cocoanut), 352.

Braining, 114-7, 141.

Brain-fever Bird, 133.

Brandt, 956, 1043; Cherry, 907.

Brant, 532.

Brasia, baria, 429.

Brass, See Copper.

Braunite (Manganese), 762.

Brazilian wood, 194.

Bread-fruit, 94.

Bres, 532; Brewari, 800.

Brewing, Indian, 757-60; English, 760-2.

Bricks (Clays, Pottery), 237-8.

Brighat-chakramed, 987; Brindoo, 553; Brindoisja, 553; Brindola, 553.

Brindonias Tallow Tree, 553.

Brinpah, 79, 446, 494, 497, 891, 1026-8, 1141.

Briquettes, 347.
INDEX

Bristles, 188, 752.
Broccoli, 182.
Bromo, 96.
Brong-pong, 733.
Broom, Spanish, 431.
Broommataick-grass, 187.
Brousseoneta, 862-4, 868.
Brucine (Strychnos), 1052.
Brül, 201; Buaangir, 1112.
Buck, Black, 644.
Buckwheat, 532.
Burudurmi, 269; Budrat, 911; Bûûde-euppâ, 48.
Buffalo, 644, 732.
Buffalo Horn, 645.
Bugly, buggoy, 1003, 1009; Bûûri, 885; Bugs (Insects), 229, 386, 610, 1035.
Bugulawean, 528; Bûûdorâ, 884; Bûûkawean, 528; Bûû; Buû; Bûûnewâ, 887; Bûûk; Bûûl, 256.
Bulat, 882.
Bulbula (Birds), 132-3, 142.
Bull (Oxen), 644, 732, 737-40.
Boll, Blue, 644.
Bullock’s Heart (Fruit), 71.
Bulpum, 1049.
Burlush, 869; Cat’s Tail, 777.
Burlush Millet, see Bajra.
Bumalo, 542.
Bummelo Fish, 541-2, 546-7.
Bun, ben, ban, see Coffee.
Bunbur-butt, 580; Bunch, 543; Bunch, buncho, bunco, 364; Bûndû; Bûndû; Bûng; Buogum, 565; Bungoma (Turtle), 1080.
Bunium Bulbosatrum, 283.
Bunu, bunia, see Coffee.
Butlerum, 283.
Butrestris (Beetle), 686.
Bur (Cymbopogon), 462; Bur, ber, bor; Burada, 580; Burakuru, 531; Bûruwê, 463; Buri (Crape), 1112; Buri (Milkew), 1117; Burî, 131; Burlo, 168.
Burmite (Amber), 64.
Burrallia Fibre, 991; Burri-shep, 887; Buruga, 521; Buru mat, 102; Buru rager, 449.
Burstars, 132, 134, 140.
Bût, buta; But, 537; Butana, 298.
Butea and Gum, 28, 49, 55, 189-90, 1053-4, 1057.
Buti, see Bang; (Sterculia), 1051.
Butter, 475-8, 812-41; Cacao, 1076; Ilîipo, 120; Kokum, 553; Milk, 470, 881; Tree, Indian, 116; Vegetable, 359.
Buz, boz, (Ibus), 743.
Buzza, buza, buzzeh (Beer), 519-20, 757; Buzza, 901; Bvëechin, 121; Byans (Blue Pine), 888; Byer, see Ber.
Byas, Bobol, 400.
Byu (Mangrove), 913.

Cabbage, proper, ... China, ... Cow, ... Leaf-beet, ... Savoy, ... Siam, 182, 1141.
Cacao (cocoa), Cacao Butter, 360, 1076.
Cacho (Catechu), 10; Cadjan, see Cajanus.
Cesalpinia, 49, 190-6, 290, 890, 976, 1053.
Café, Caféier, 364.
Caffine, Theine, 237, 390.
Câyên, 749; Cahua, 364.
Cairnorgorn, 561.
Cairo, 354.
Calbah, 700.
Calumbac, 72.
Calambas, 73.
Calamus, 91, 114-5, 201-4, 775, 864.
Calamus aromaticus, 24.
Calcium, 58, 709.
Calysaya Bur, 304.
Caluce, 144.
Camellia, 209-44, 812.
Camphire, 706.
Camphor, Barus, ... Japan, ... Nagai, 10, 245, 812.
Camphora, 244-7, 310.
Camphor-wood, 310.
Camphre, 244.
Canab, 249; Canamo, 249; Canangal, 360, 821; Canapa piccola, 254; Canape, 249.
Canaries, 133.
Cancumum, 1054.
Candle-nut, 47.
Candles, 812-4, 819.
Candy, Sugar, 96, 114-5, 201, 202-4, 775.
Canfora, 244.
Cangkek, 528; Canhamo, 249.
Cannabis, 249-63, 430, 812, 924, 1047.
Canna lacke, 1055.
Canthium, 384.
Causa, 365.
Cautouchouc, 647-60; Indian, 651.
Cautouchoucin, 648.
Cap; Edible, 204.
Capo-molago, 265.
Carapa, 131, 644, 743.
Capsicum, 264-9, 489, 1027.
Capsular Corchorus, 408, 431.
Carambola, 97; Caramunny-pyre, 1107.
Carata, 31.
Caraway, Black, 283; European, 284, 442, 820.
Carbasa, carbass, 570-1.
Carborundum, 428.
Carbuncus, 713.
Cardamon, 511; ... Ceylon, 512; ...
INDEX

Chuwara, 885; Chye, 101; Ciccarra, 94.
Cicer, 295-302, 507, 598, 704, 706, 770, 1099, 1109.
Cicerchia, Ciceren, Ciche, 295.
Cigarettes, 808-11.
Cigars, 795, 807-11.
Ginchna, 302-10, 524, 686; ... Substitute, 94.
Cinnamomum, Cinnamon, 244-5, 310-6, 527, 821, 1010, 1110.
Cionano, 710.
Citril, Citron, 325-7.
Citronella, 360, 456-7, 821; Citronellal, 457.
Citruless, 316-7, 438, 440.
Citrus medica, 317-27, 821.
Clap-syepe, 490.
Claviceps (Ergot), 456.
Clavo (Clove), 526.
Clay, Bengal, Moulmein, 56; ... Porcelain, 530; ... Rotas, Singapore, 56.
Climbing Fish, 542; Climbing Mango, 660.
Clinogyne dichotoma, 170, 775.
Clou, Clove, 526-30.
Clupea (Hilsa Fish), 542, 544-5, 547.
Cluster Bean, 449, 741.
Cnicus, 277.
Coal, 332-44; ... Gas and Tar, 344; ... Coke, 345-6; ... Patent, 347.
Coca, Coca Plant, 523-4.
Cocciidae (Scale Insects), 348, 354, 386.
Cocculus villosus, 473.
Chinch Grass, 457.
Chicloperum gossypium, 95, 168, 812.
Cockatoos, 133.
Cockchafer, 387.
Cockscamb, 63.
Cock-up (Batig-fish), 540, 547.
Cocoa, 1076-7.
Cocoon Palm, (Cocos nucifera), 85, 87, 188, 293, 349-63, 479, 741, 760, 771, 776, 812, 815-7, 829, 924, 929, 1046, 1113; ... Butter, 350-60; ... Desiccated, 362; ... Fibre (Coir), 354-7, 362-3, 776, 778, 924; ... Oil and Copra, 357-9, 363, 812, 816.
Coco motah (Bummelo Fish), 542.
Cocoanada Cotton, 580.
Coco-olein, 361.
Cocos nucifera, see Cocosanot.
Cocotins, 360.
Codda-pani, 428.
Cod-liver Oil, 361.
Cocolesterna, 4.
Coffee (Coffea arabica), 363-92; 523, 1046; ... Chufas, 465; ... Negro, 288, 390.
Coke (Coffee), 365; Coi, 542.
Coir Fibre, see Cocosanot.
Coix, 392-8, 521, 758, 1046.
Coke, see Coal.
Colchicine, Colchicum, 398.
Colleotrichum, 941.
Collocalia (Edible Nests), 138.
Colocasia, 398-400, 446-7, 496, 788, 1140.
Colocynth, Colocynthin, 316, 439.
Colombina, 1140.
Colophony, 889-90.
Colza, Indian, 176.
Commercy, see Marahout.
Commiphora (Balsamodendron), 174, 400.
Conch, 989.
Conda-panna, 285.
Conessi Bark, 640.
Coniothyrium, 41.
Cocch-murden-paut, 409.
Comptas Cotton, 584.
Copal, Indian, 1105.
Copper and Brass, Sulphate, Copperas, 50, 601-5, 691.
Copra (Kopra), see Cocosanot.
Coptis Tetra, 130.
Coracias indica (Roller), 132, 140.
Corals (Silks), 1014, 1024.
Coral, 122, 710, 712, 989.
Coral Trees, 523; ... Wood, 25.
Corchorus (Jute), 148, 405-27, 868, 924.
Cordage and Ropes, 43, 923-5.
Coriander, 427, 598, 820.
Coriaria nepalensis, 1012.
Cork Substitute, 29, 35.
Corn, Guinea, 1031; ... Indian, 929, 1132-9; ... Mecca, 1133.
Cornflower, Indian, 1138.
Coromandel Nut, 352.
Corsula Mullet, 546.
Corydalis, 130, 405.
Coryneum mali, 1000.
Corypha, 115, 170, 188, 428-9, 776, 861.
Coscinium, 405.
Costus, 980.
Cotton, 477, 479, 569-824, 726, 741, 771, 812, 815, 834, 868, 917, 924, 983-5, 1035, 1037, 1081, 1091, 1097.
Cotton, Devil's, 1; ... Kapok, 521-3; ... Sea Island, 588; ... Tree, 576; ... Tree, White, 521.
Cow, 907; Coralam, 26; Cowra, 552.
Cowry, 989.
Crab's Eye, 1.
Crame, 996.
Crane, 132, 134.
Cratopsis, 190.
Crataeva, 26.
Cream, 470-4.
Cret, 69, 1053.
Creepers (Birds), 132.
Creeping Panic Grass, 463.
Crinum, 1049.
INDEX

Crotalaria, 250-2, 254, 256, 408-9, 430-7, 603, 770, 776, 864, 868, 924, 948, 988, 1117.
Crotalaria paniculata, 546; ... striata, 225; ... Burhia, 483.
Crotan, Purging, 437; ... Oil (Physic Nut), 699.
Crown Bark, 305.
Crowns, 132.
Cryptostegia grandiflora, 651.
Cubeb, Cubibs, 890.
Cucach, savakari, 542.
Cuckoo, 132; ... Common Hawk, 133.
Cucumber, 439-40, 949.
Cucumis, 437-440.
Cukra, cukraka (Vinegar), 1108; Cúmári, 59.
Cumbo, cumbu (Pennisetum), 605, 869.
Cumin, Cummin (Cuminum), 442-3, 820; ... Black (Nigella sativa), 283, 442, 811.
Cuprum, see Copper.
Curculigo orchioides, 963.
Curcuma, 491, 506, 773, 788.
Curvura, Bengal, 270.
Curva, 542.
Custard-apple, 71.
Cutch, Catechu, 8-14, 638.
Cutworm, 387.
Cymopnis psoralioides, 449-50, 504, 741, 949.
Cybium, 545-7.
Cydonia, 26, 910.
Cyrene, 665.
Cynodopogon, 70, 450-63, 792, 926, 1046.
Cyxodon, 54.
Cyperus, 114, 464-8, 776.
Cypress-babul, 3.
Cyttise des Indes, Cyttisus pseudocajan, Cyttisus Cajan, 196.

D
Dab (Eragrostis cynosuroides), 54; ... (young coconut), 361; Daba, 1005; Dabba, 1009; Dabmo, dammo, 743; Dabwulo, 462.
Dace, 547.
Dacer karah, 546; Dódam-ni-fháda, 909; Dapad, 225; Dadasaal, dadssel, 92, 760; Dadhi, dahi, 470, 474-5; Dáddhirán, 903; Dadhuri, 538; Dáddurand, 287.
Demonomorops, 201.
Dággál, dógal, 163; Daghánbán, 911; Di, 21; Dákh-chhena, 475; Dákhi, 1121; Dakhán, 624; Dakar-tólalá, 204; Dákh, 1112; Dákkh, 1116; Dákkda, 249; Dél (Cedar), 290; Dal (Pigion Pea), 196, 383, 872; Dél (Split Pea), 507, 565, 704, 709, 880-1, 902-3, 1088, 1108.
Dalbergia, 55, 226, 383, 484-6.
Dálchini, dãrchini, 311; Dalla, 55; Dalmark, 294; Dámádi, 499; Dámbrá, 543; Dámbrú, 777.
Dammar (Bees), 127.
Dammar, Black, 248.
Dammar (Pine Resin), 30.
Dammar, White, 500, 1105.
Dampel, 555; Damù Aýub, Damù Dăul, 393; Dan, 706; Dámá-lak, 1053; Dánti, 437; Dándalón bin, 784; Dándalóu, 496; Dándar, 872; Dándou, 484; Dándú, 926; Dăng, 84; Dãngar, 824; Dangara, 123; Dangribet, 216; Dán, 776; Danímna, 909; Danálás, 171; Dàudia, 1086.
Dapene, 486-7, 862, 868, 924.
Darakh-tínnab, 249; Darakhte-tori, 169; Daral, 103; Daramba, 554; Dararhi, 449; Darbahra, 760; Dare kudrum, 680; Dárengri, 914; Darja, 929; Dárhal, 130; Dári, 271, 275, 775; Dármó, 775, 777.
Darter, Indian, 141.
Darús (Beer), 119, 521, 1043; Darú (Pomegranate), 909; Darú-gurum, 986; Darú-karidá, 782; Darumulla, 28; Das caceras, 1980.
Date Plum, Chinese (Diospyros), 498.
Date, Chinese (Zizyphus), 1143.
Date, Edible, 760, 777, 882, 929, 1109, 1111.
Date, Wild, 855, 1043, 1046.
Dateya, 141.
Datúra, 119, 487-9, 1047.
Datovan, 887.
Daucus, 284, 487-91.
Dáudi, 1086; Dáudkhan, 1087; Dáulo, 886; Daung-saba, 824; Daungthan, 742; Daur, 1121; Dauri, 290; Daurva, 463.
David's Tears, 393.
Dawai, dawii, 1120-1; Dazu, 1003.
Deadly Nightshade, 95.
Deregresia, 160, 164, 924.
Devahaut janum, 1143.
Deer, 644; ... Mask, 785; ... Skins, 632.
Dega, 132; Deikna, 780; Demehek, 994.
Dendrocalamus, 101, 104, 115.
Dendu, 399; Dengá, 102.
Dentoxide, 1077.
Deo, 197; Deoband kawára, 449; Deo-bans, 100; Deodár, deobar, see Cedrus; Deo-gadi, 936; Deo kopas (Cotton), 576, 986; Deo ningal, 99; Deora, 418.
Derbesia elliptica, 546.
Deschoma, 251; Désée, deshi, deshi (country), 395; ... (Aloe), 34; ... (Betel Vine), 892; ... (Cluster Bean), 449; ... (Cotton), 581, 583-4, 593; ... (Jute Fibre), 418; ... (Silkworm), 995, 997; (Tobacco), 798.
Deshi pdt (Jute), 408.
INDEX

Desmodium, 863.
Desseal, 407, 418.
Devadaram (Bastard Sandal), 525; Devadaru, see Cedar.
Devil Fish, 543, 546.
Dhau (Tecca pinnatifida), 116: ... (Woodfordia floribunda), 1121; Dhaincha, 892; Dhák, 188-9; Dhakkar, 833; Dhak chamboi, 486; Dhakkai, 787; Dhakki, 14; Dhalim, 909; Dhaman, 624; Dhan (Rice), 824; Dhanid, dhanya (Coriandrum), 427; Dhanichha, dhuncha, 987; Dhanda, 22; Dhanna, 446; Dhammas, 552; Dharauli, 1132; Dhattaki, 1121; Dhattura, dhatura (Datura), 258, 488; Dhu, 71; Dhuak-gond, 1121; Dhuakra, 71; Dhaul, dhaur (Sugarcane), 935, 937; Dhaula-khepra (Accacia), 18; Dhauria (Anogeissus), 70, 188, 1005; (Indian Millet), 1032; ... (Lagerstroemia), 701, 1005; ... dhaulua (Woodfordia floribunda), 1120-1; Dhauda, 70; Dhashadina, 1121; Dhea-phal, 94; Dheili, 759; Dhenras, 631.
Dhobi's Earth, 113, 339.
Dhobi-ghas, 463; Dholi ki gagli, 399; Dhorbela, 908; Dhoti, dhoti, dhotar, 618, 623; Dhowa, 640; Dhubat pathar, 562; Dhula, 886; Dhumuriya, 22; Dhuna, dhuva, 247; Dhunchhi, 987; Dhundul, 755; Dhup (Indian Olibanum), 174; ... (Pine tree), 889; ... Himalayan (Jurinea), 821; Dhupsada, 1105; Dhupadi-enni, 553; Dhupdani, 402; Dhur danger, 732; Dhurra, dhaura, dura (Sorghum), 1032.
Dhurrin, 767, 1040.
Dhusturia, 488; Dhutia and Sari, 1008; Dhui, 1121; Dho, 733; Dialacca, 1054; Diamb, 250.
Dinand, 556; Kob-i-nur, 1; Vallum and paste, 561.
Didr, 291; Dib, 777.
Dichoris (= Palaquium) (Guutta-percha), 627-8.
Dieng latyspar (Cassia Lignea), 311;
Dik Oil (Anacardium), 66; Dikehan, 936-7; Dila (Cyperus), 465; ... (Reed), 777; Dilya, 22.
Dill, 879.
Dilenna Speciosa, 405.
Dilpasand (Luffa ægypitica), 755; ... (Water-melon), 317; Dimako, 994; Dimeri, 538; Dingkain, 914; Dinya, 888; Dingkurlong, 781.
Diospyros, 498-9, 546.
Dipcardi Unicolor, 1049.
Diplachne Fusca, 54.
Dipterocarps, 128, 499-503, 640, 812.
Distiller's Bark, 15, 759, 1047.
Dita-bark, ditaín, 60; Divo, 116;
Dive-dive, 71, 191-2; Divey-hala, divey-jack, 94; Diyamutri, 1032;
Do, 1082; Doar, 124; Dough, 250.
Docynia Indica, 911.
Dodon, 979; Doddada-batta, 833; Dod-
dadan, 737; Doddada-jirage, 887.
Dodonæa Viscosa, 190, 1005.
Dogla, 736; Dogru, 1080; Doka, 884;
Dogkayenabara, 46; Dola, 502.
Dolichos, 295, 301, 503-10; 779, 871, 880, 882, 1039, 1107.
Dolomite, 710.
Doló Oil, 120; Dolu (Himalayan Rhubarb), 912; ... (Teinostachyum Dullooa), 104; ... kurta, 628.
Domba Oil, 204.
Don, 733; Dongi, 99.
Donkeys, 751.
Don-zat, 140; Doman, 73.
Doorwa Grass, 463.
Dord, 881; Doron, 532; Dosray, 439;
Douro, 1032; Doutha, 403.
Doves, 133, 135-6.
Dracula, 640; Doyer sadha, 124; Dosa-
kaia, 439.
Dráskha, dráskha-pondu, 1112; Drá,
169; Drek (Persian Lilac), 780; ... (Pistacia Khinjuk), 901.
Drills, 623.
Drinkhari, 487; Dró, 1082.
Drongo, Racket-tailed, 132-3.
Drawi, 290.
Dryobalanops, 244-5.
Dzechoma, 249; Dua, duan, 189;
Dúb, 54, 403.
Ducks, 1, 134, 136.
Duck's-foot, 904.
Dud-chhena, 475; Dudeli, 531; Du-
dhar, 732; Dudh (Euphorbia pili-
iferae), 531; ... dudhia (Wheat),
1086, 1092; ... (Wrightia), 1131-2;
Dudhia (Aconite), 20, 23; ... (Great
Millet), 741, 1039; ... (Hemp Nar-
cotic), 258; Dudla mara, 521; Dúgá
Gant, 744-6; Dukák kandar, 174;
Dukkar, 752; Dula, 629; Dulose,
104; Dumai, 831; Dumba, 747, 749; Dumbur, dumer, 583; Dumbi-
miri, 890; Dummele, 525; Dün,
Dundigayo, 700; Dungri, 437;
Dunkotah kaghuti, 486; Dupa ma-
ram, 1105; Dupatti, 311; Dúra,
1032; Duren, 510; Duramji, 71;
Durik, 542; Duri, 135.
Durian, 510.
Durm (wheat), 1085.
Dushtapuchattu, 901.
Dusta, 140; Duyin, 510; Dewadáram, 525; Dvasula (Elephant), 697.

1156
INDEX

Dye, Akalb., 487; ... Al, 783; ... Alizarine, Alhahine, 345; ... Asbarg, 491; ... Butea, 189; ... Carthamine, 276-80; ... Chay-root, 821; ... Cochineal, 349; ... Cutch, 8-14; ... Gamboye, 554; ... Henna, 708; ... Indigo, 660-85; ... Kamela, 785-6; ... Lode, 1003; ... Madder, 927; ... Myrobalans, 1074-5; ... Rânum, 1051; ... Sappan, 194-5; ... Turmeric, 445-8;

Dryow bâns, 100; Drya nermâ capass, 580; Dzu (Beer), 396, 758; Dzu (Egyptian Arum), 398.

Eagle-wood, 72.
Earth-grass, 451.
Earthnut, 74, 83, 771, 812, 815.
Ebony (Eban), 498; ... Coromandel, 499.
Ecdysanthera (Rubber), 651.
Ecorce de Quinquina, 302.
Eddoes, 398.
Edgeworthia, 486-8.
Ec-jin, Ec-jin, 396.
Egg-plant, 1026.
Eggs, 136-7.
Eggs, 139-40.
Elkmez, 701; Ellya, 59; Essex, 781; Eth, 91; Etku (Pony), 751; Elâ, elâchi, elchi, 511-7.
Elleocarpus, 28.
Elkai, 511; Elâ-kandies, 514; Elandap, 1143; Elâ-tari, elâ-tari, 511; Elkho, 65; Elemenchum, 326.
Elecharis, 446.
Elephant, 606; ... Foot, 657; ... Grass, 777; ... Tooth (Ivory), 697.
Elellaria, 65, 511-7.
Eleusine, 78, 257, 510, 758, 988, 1046, 1107.
El hule macho (Mule Rubber), 650; Eliso, 59; Elkaue, 366; Ella-kura, 114; Elokeshi, 1027; Elupay, 1072.
Embrevade, 196.
Emery-stone, 428.
Emmer (Wheat), 1087.
Emperor's Seeds, 257.
Emuda (River Turtle), 1080.
End, 1011; Eng tree, 500, 640, 812; En-bhen, 990; Ennei, 499; Ensal, 511.
Ephephra, 759.
Er (Plum), 906; Era, 1011.
Eracrostis, 54.
Erand, eranda (Castor), 915; Erandi (Sumach), 914.
Erebélhose, 295.
Erga, 456.
Eri (Castor-oil Plant), 915; ... Silkworm, 1011-3; 1144; Erica, 205; Eri-muga, 1009; Eringolam, 313.
Enteris, 610.
Erlichoton, 229.
INDEX

Tamarind, 547; ... Tooth (Ivory), 699; ... Walking, 542.
Fistula, Purging, 287.
Flacherie, 995, 999, 1000, 1001.
Flache, see Flax.
Flag-annatto, 143.
Flag, Sweet, 24.
Flax, 719-25, 868; ... Travancore, 431.
Flea-bane, 93.
Floricans, 134, 138, 140.
Flour, 1100, 1101-4.
Flowerpickers, 132.
Fluegglia, 546.
Fly-catchers, 132.
Fly, Green (on Tea), 228; ... Tachinids, 1001.
Funiculum, 212, 551-2.
Fungicidum, see Fungicideum.
Folia Malabathri (Trichat), 311, 313.
Fosay, 101.
Foot and Mouth Disease, 742.
Forgo-nari, 493.
Fox, 639.
Frangolinus (Black Partridge), 133-4.
Frankincense, 173.
Froment (Wheat), 1082.
Fuel, Patent, 347.
Fufal, 83.
Fuller's-earth, 51, 329.
Fumo-crespo (Tobacco), 794.
Funtumia Elastica (Rubber), 655.
Fur, 632.
Furcula, 33, 38-9, 43.
Fusarium (Tobacco Disease), 803.

G
Gáb (Diospyros, 498; Gaba (Castor-oil Plant), 915; Gabina, 95; Gaborus (Check Fabrics), 618; Gabur, 2; Gach (Betel Vine), 892; Gach (Plaster of Paris), 716; Gach-chakaya, 190; Gachi, 885; Gach-marich, 267; Gad, 746; Gadja-janu, 1031; Gadoreji, 987; Gadwala, 441.
Gaddwall (Bird), 134.
Gagal, 73; Gagar, 489; Gagli, 504; Gahat (Horse-gram), 504; Gahu, 1082; Gahang, 1082; Gai, gau (Oxen), 732; Gai bogla, 139; Gainsis, 734; Gajjar, 489; Gajarghota, 191; Gajjara-kellangu, 489; Gaji, Gakai, 190-1; Gal, 988; Gaádá, 1053.
Galangal, 60, 821.
Galar tori, 1081.
Galbanum, 535.
Galbocha, 888; Gal-chekan, 117; Gallad, 905.
Galena, 57.
Gáli, 604; Galichas (Carpets), 271; 275; Gallah, 202; Gallà-jari, 1031.
Gallinago (Snipe), 134.
Gallus (Fowls), 134, 136, 140.
Galona, 72; Gam, 1082; Gambe, 144.
Gambier, 10.
Gamboge, 552, 554.

Game-birds, 134.
Gámar, 842; Gana-bhang, 255; Gandha-biroza (Ferula Galbaniflua), 533; Gandabiroza (Ene Resin), 889; Gandada, 976; Gandalum, 486; Gandel, 96; Gandel, 1112; Gandar, 482; Gandha, 976; Gandha-bená, 450; Gandhans, 909; Gándhi, 482; Gandi, 451; Gandórá, 884; Gandum, 1082; Ganer, 96; Ganési, 755; Gangojale, 250; Gangojuli, 1086; Ganganuría, 446; Gango toria, 177; Ganganj, 581; Ganga, 531; Ganhé, 63; Ganhé, 96; Ganha (Jute), 409; Gánja, 189, 249, 260-3, 1040.
Ganja agrestis, 408.
Ganja-gaha, 249.
Ganja sativæ (= Corchorus capsularis), 406, 408.
Ganjás, 249; Ganná (Sugar-cane), 930, 934, 936, 944.
Gandalj, 866; Gandhan, 686; Ganyeri, 1144; Gao-shir, 535; Gara-hatana, 1072; Gara-tiril, 499; Garbanzos, garevances, garevances, etc., 295, 298.
Garcinia, 143, 812, 1109.
Gardalu, 906; Gari bhanga, 260.
Gardening latifolia, 190.
Gar Fish, 546.
Garman, see Garman.
Gari-kulay, 584; Gariolus (Carpo-
yphylon), 527; Garjan (Garjan or Wood-oil), 499, 501-3; Garjara, 489.
Garlic, 58, 1110, 1141.
Garnet, 428, 559, 716.
Garri (Rice), 824; Garri gari (Bam-
boo), 99; ... (Lignum Aloe), 72; Garir, 140.
Garvance, see Garbanzos.
Gare (Eleusine), 518.
Gas, Chlorine, 56; ... Coal, 344; ... Liquor, 48; ... Mond or Water, 347.
Gasahagasha, 546; Gathá, 1137; Gathë, 525; Gathé, 1001; Gathë-banga, 252; Gaud, 1061; Gáudi, 1044; Gaukungkhë, 192; Gaumeti, 527; Gaujdëhi, 1; Gáunir, 1080; Gaur (Indian Bison), 733; Gusam, 980; Gavari, 248; Gavuldé, 269; Gavm, 1082; Gaya (Guava), 907; ... (Betel-nut), 83; Gaya-bábil, 14.
Gayal (or Mithan Ox), 644, 733.
Gazara, 489.
Gazelle, Indian, 644.
Gebelt, 1140.
Geese, 134, 186.
Geh, 428; Gehún, 1082; Gela-mák, 196.
Gelatin, Gelose, 695.
Gelophyllis (Laughing Leaf of Pliny), 259.
Genas, 496; Geno-pullu, 843; Gen-
gré, 484.
Gentiana Kuruoo, 405.
Geor, 531; Gera erumi, 732.
INDEX

Geraniol, 452, 457.
Geranium, 405;... East Indian, 451;... Wallowichianum, 130.
Gergetium, 926; Geria (Blinding Tree), 531;... (Sueda nudiflora), 114; Geru, gerwar, 1091; Gerua, 531; Ghafiz, 402; Ghale, 902; Ghangra, 1107; Ghantot, 402; Ghamum, 442; Ghari, 76; Ghari, 73; Ghat, 433; Ghatts, 1125; Ghatyari, 461; Ghavum, 1082.
Ghee, see Ghi; Ghena, 930; Gherkin, 439; Gheri, 981; Ghesi, 911; Ghi (Ghee), 118, 120, 168, 281, 399, 469, 473, 478-82, 555, 739, 742, 812-5, 986, 1088, 1105.
Ghdi-taroi, 755; Ghi-kuswär, 59; Ghī-nālu pāt, 408; Ghītā-kuswär, 59; Ghoda, 1120; Ghogal, 466; Ghol-dāhī, 475; Ghora, 100; Ghora muga, 882; Ghora nīm, 780; Ghoraī, 936; Ghore-bann, 400; Ghorkpul, 552; Ghoropalla, 748; Ghoselé, 755; Ghosha-lātā, 755; Ghoti, 238; Ghōtā-gahua, 554; Ghīta, 470, 478; Ghuā, 930; Ghuī, 446; Gham, 1082; Ghītī, 751; Ghū, 113; Ghūker, 73; Ghūrāmba, 316; Ghūrashatī, 906; Gīgāra, 951; Gīm, 291; Gīdār-dākī, 906; Gidkho, 437.
Gigantochloa, 103-4.
Gīh, gēkūn, gīn (Wheat), 1082; Gīl (Clay), 327; Gīla, 190; Gīlas, 906; Gīlanda, 117; Gīlikē mara, 537; Gingelī, Gingelly, see Sesame.
Ginger, 48, 60, 446, 497, 1139-43;... Black, 1142;... Mango, 443.
Ginger-grass Oil, 451-67.
Gīnī, gīnī-lakṣī-lakṣī, 249; Gīnī gaurī, gīnī hallū, 843; Gīnījī-ačīlāchī, 249; Gīnī-khiāvā, gīn sin, 1139.
Girardinia, 151, 161-2, 250, 924.
Gīrībūt, 95; Gīn, gīyonsāba, 1082.
Glass, Potaash, 49.
Glauber’s Salt, 56.
Glue, 695.
Gmelina arborea, 94, 1012.
Gnathiet, 138; Gniet, 889; Gnoa, 531; Gnoa-mircha, 205.
Goats, 644, 743.
Goat-antelope, 644.
Goat, Pashm, 744;... Persian Wild, 131, 743.
Goatsuckers, 132.
Gobaria, 23; Gobsia, 101; Gōbi, 3; Gobriya, 22; Goda, 99; Godu, 466; Godhi, godhumu, 1082; Godi-bubul, 3; Godumai, godumula, 1082; Godūnīka, 775; Goghar, 583-4; Gogu, 630, 1086; Gohum, 1082; Gonda, 499; Godī, 15; Gokal-dhup, 248; Golab, 202; Golab jam, 163; Gofulā, 742; Gola-methi, 467; Golāp, 925.
Gold Thread, 405.
Gōl, 742; Goli ganja, 261; Golkali, 1116; Gol-methi, 466; Golpatra, golfallāh, 776; Gom, 1082; Gomen, 64; Gomode, 528.
Gomuta Fibre, 91.
Gondhong, 886; Gondola, 845; Goni, 406, 409; Goopakupally, 548; Gope, 101; Gora, 326, 1107; Gorachakra, 975; Goraka, 552; Gor, 644; Gora land, 113; Gorān, 293; Gordon, 531; Gorwa, 99; Gosai, 610; Gosham, 980; Gosh-va, 902.
Gossampines, Gossypium, 521, 571.
Gossypium, 569-624, 812, 924.
Gota, 89; Goura, 543; Gouri, 1044; Gouri-bat, 201; Goura-tota, 141; Gourubhī, 120; Goyar, 141; Gowaz, 96.
Gracilaria (Agar, agar), 695.
Gracke, Indian, 133.
Grain, Musk, 786.
Grains d’Ambrette, 629.
Gram, Common or Bengal (Cicer arietinum), 295-302, 597, 598, 603, 643, 704, 706, 725, 728, 835, 917, 1037, 1080, 1109; Kabuli, 298-9.
... Cow, more correctly Cow Pea (Vigna Catjang), 1036, 1107;... Green (Phaseolus radiatus), 882;... Horse (Dolichos biflorus), 300-1, 503-7.
Grana fina and G. Sylvestris, 347.
Grape Fruit, 325.
Grass, Bermuda, 463;... Blue, 463;... Cuba, 1031;... Esparto, 103, 432, 865, 867-8;... Ginger, 461;... Guinea, 843;... Johnson, 1031;... Lemon, 457-60;... Perfume yielding, 450-61.
Grasses, 1000-1; 1007.
Gravancos, see Garbanzos.
Gray-fowl, 134.
Grebés, 142.
Grevellea, 383.
Grewia, 624, 924.
Grim (Barley), 642.
Grisamber, 64.
Groom, 201.
Ground-nut, 74-83, 225, 477, 741, 986.
Grouse, 134.
Grub, Black, 387.
Grundi (Castor), see Araud; Gser (Gold), 565; Gua, 85.
Guaiacums officinales, 484.
Guano, 138, 769.
Guár (Cluster Bean), 449;... (Horse-gram), 504.
Guava Cheese, 907.
Guch, 746; Guda, gula, 931; Guda-
teach, 313; Guga, 499; Gugal (Shorea), 990; Gugul, gugul, gugul, gugul, gugol, gugol (Commiphora), 400; Guggl dhrup, 243; Guggar, guggula (Bowellia), 174; Gugli, 1105; Gugul, see Gugol dhrup.

Guinea Corn, 1031; Fowl, 136; Grass, 843.

Guizotia Abyssinica, 500, 625, 812.

Gajar, 95; Gā-lib, 14; Gukul, gukkal, see Gugala; Gul (Sugar), see Gār; (Woodfordia floribunda), 1121; Gula (Pinus), 880; Gulab, gulāk (Rosa), 925-6; Gulab-jamun (Eugenia), 526; Gulal, 195, 1080; Gūlar (Ficus), 538; Gul-bodla, 1051; Gūlap (Nipa), 776; Guli (Capparis), 264; Gul jali, 492; Gullī (Coral), 989; Gullī bonli, 14; Gūlimīrch (Piper), 896; Gūli (Sterculia), 1051.

Gums, Resins and Insipidated Saps (Extracts): Almond, Plum, Cherry, etc., 905-6; Amritsar, 15; Arabic (European), Barbary, Blue Nile, Kordofan, Mogador, Morocco, Senegal, Soudan, Suakim, etc., 15-8; Arabic (Indian and East Indian), Ghati, 2-6, 16-8, 290; Areca, 80-90; Asafetida and Galbanum, 533-8; Bael, 20-7; Bausora, Hog, Katla, 95, 168, 1050-1; Bdellium (Indian), 400; Benjamin (Benzoin), 1052; Burmese Varnish, 779-80; Camphor, 244-7; Catechu, 9; Dammar (Black), 247-8; Dammar (White) (Finey Varnish), 1105-6; Dragon’s-blood (East Indian), 292; Dhaura, 70-1; Eaglewood Resin (Lignum Aloes), 72; Frankincense (Indian Olibanum), 174; Garjan, 501-3; Guttapercha, 625-8; Hanza, 14-5; Indian-Hemp (Bhang, Charas, Ganja), 258-63; India-rubber, 647-60; Kino, Bengal (Butea), 189; Kino (Pinus petersianus), 908; Lac, 1053-66; Marking-nut, 981; Mācha-ras (Silk Cotton), 108; Nis and Bastard Cedar, 789-1; Opium, 845-61; Pīla, 189; Rusat, 130; Siirta, 45-6; Tacamahaca, 204; Tragancanth, 95.

Gumacree or Gum glad (Tachardia), 1055.

Gummadī, 441; Gummi Guttī, 17; Gumūnī, 91; Gun (China or Rhea Grass), 144, 152, 161, 250; Gun (Yam), 494, 496; Gunara, 842; Gūnch, 543; Gunda-gulla, 120; Gundhabena, 451; Gundra (Sacharum arundinacum), 929; (Cyperus rotundus), 465; Gūndre, 310; Gundūsanī-ghelū, 903; Gunogōli, 396; Guniγun, 233; Gunj, 250; Günjah, 1; Gunmī, gunny (Sacking), 161, 400-10; Gunobor, 888; Gun-serai, 310; Gār, gul (Coarse Sugar), 170, 293, 399, 807, 886, 931, 941, 945, 1109-10; Guraniya-alu, 494, 496; Gurapabadam, 1050; Gūr-bhāṅga, gubhanga, 250; Gurēlla, 625; Gūrgiyah, 461; Gurgā, 901; Gurgur, 592; Gūrīal, 139; Guri-ginjī, 1; Gūrijat ganja, 261; Gurmāna, 287; Gurseva, 16; Gūtī, Gutherevan, 742; Gūtī, 1005.

Gutta-percha, 205, 530, 625-8.

Gutta-pulei, 627; Gutī bīra, 755; Gūvar (Cyanopsis), 449, 871, 949, 1141; Gūžhād, 95; Gwal-kakri, 1081; Guwan, 902; Guwan, 144, 250; Gyavu, 104.

Gymnema Tinges, 664.

Gymgey, 666.

Gynocardia odorata, 546, 1067.

Gys, 886.

Gypsium, 53, 534, 716, 771.

H

Habenaria, 963.

Habet, 445; Hahshi, 1116; Habush, 896; Hadis, 572; Hadru, 446.

Hadua, 446.

Haenugreeb, 1081.

Hahik, 661; Hain, 837; Hainofoom, 97.

Hair, 188, 273, 1121-31.

Haita, 1118; Hala, 914; Halada, 445; Hald, 294; Haldī, 445; Haldi, 156; Halsim, 903; Halja, 445; Hallati, 633.

Halocharis, 114.

Haloxylon, 113-4.

Halpa, 102; Halra, 1073; Halud, 445; Halūk, 748; Halei, 618; Halvina, 70; Haleva, 929.

Ham and Bacon, 752-3.

Ham (Monal Pheasant), 141; Hammet, 295.

Hamp, hampa, hampar, hanaf, hanf, hanfr, hemp, 249.

Hana, 430.

Hancornia, 655.

Handia, 757; Hankus, 543; Hanza, 14; Háráka, 506; Haralu, 915; Haramay, 144; Harbar, 295; Harbarbara, 14, 17.

Hardwickia, 502.

Harsylo, 140; Hari (Apricot), 905; Hari (Hemp), 250; Harțăi, 463; Harībāyel, 15; Harīdo, 862; Harīdrā, 445; Harīk, 868; Harīmanîskam, 295-6; Harīman t'kaka, 296; Hari-rūd, 114; Harītaki, 251; Harītala, 92; Haruni, 915; Haro, 531; Harona, 197; Harra, hör, 1073; Harion, 542; Hasarau, 881.
INDEX

Jade, Jadeite, 560–1, 716.
Jādī, 1068; Jādu palang, 113; Jādūvar, 20; Jādwar, 491; Jafra, 142; Jāfrān, 429; Jāgala, 1044; Jagan-
taganti, 499; Jagger, jagara, jagra, 170, 293, 361–2, 714, 928, 931, 982, 1111; Jagahl, 141; Jagpm, 888; Jaguna dharan, 535; Jamahi, 978; Jai, 96; Jaimanak, 275; Jaishal (Indian Walnut), 47; ... (Nutmeg), 791; Jalal, 1086.
Jalap (Ipomoea Purga), 686.
Jalap, Indian (Operculina Turpethum), 822.
Jālī (Cane), 202; ... (Cassie Flower), 14; ...(Filagrose Screen), 715; ... (Gum Arabie Tree), 3; Julla bet, 202; Jalpai, 51; Jalpin, 294; Jām, 526; Jāma betu, 100; Jamul-gota, 437; Jāmālī, 1086; Jaman Plam, 525–6; 1005, 1109–11; ... (Pomegranate), 909; Jamana (Bird Cherry), 906; Jāmari, 1110; Jamavat (Textile), 1125; Jamb (Cannabis sativa), 249; ... (Guava), 907; ... (Eruca sativa), 180, 184; Jambava, 526; Jambho, 180; Jambiri, 326.
Jambu, jambul, 526; Jamandi (Textile), 618; Jamnapari, 745; Jamos, 675; Jangād, 555; Jandel, 96; Janghe, 54; Jangal ka parangi, 911; Jangal-murgh (Jungle Fowl), 134–5, 140; Jangi (Indian Hazel), 428.
Jangil (=Wild) agar, 73; ...-akrot, 47; ...-badam (Indian Almond), 1073; ...-badam (Sterculia foetida), 1050; ...-bhang, 225; ...-bhindi, 629; ...-chi-chend, 1081; ...-halidd, 443; ...-methi, 991; ...-pipili, 538; ...-pipila, 1049; ...-sawar, 85; ...-takla, 288; Janhe, 868; Janjita, 252; Janthori, 755; Janumjum, 1143; Jao, 100.
Japan Wax, 914.
Jara, 915; Jārāmkush, 462; Jārāmkō, 887; Jargi-gi, 543; Jarat, 142; Jargadi, 392; Jargi, 1121; Jahan, 832; Jari (Cotton), 577, 581, 594; ... (Ficus religiosa), 538; Jari, Jerry (Indigo), 665; Jaria shora, 973; Jarilha, 882; Jaru, 1093; Jariāl, 701; Jave, 1093; Javvanda, 629; Jasha, 930.
Jasminum, 820–1.
Jasper, 562, 716.
Jasta, 402; Jasind, 71; Jāsīt, 629; Jata, 405; Jatam antis (Spikenard), 792; Jatamansi, Indian (Cyperus rotundus), 463, 466; Jati (Bamboo), 100; ... jatri (Mace), 791; Jatiko, 1121.
Jatropha, 699–700, 1012.
Jatuka, 533; Jaw, 116; Java, 1032; Javanala, 1032;
INDEX

Javasa, 720; Jave, 1121; Jave godhi, 1084, 1099; Jave, 96; Javane, 296; Jawdishir, 535; Jawi, 96; Jawolum, 134.

Jay, Blue, 132, 139-40, 142.

Jayg, 251; Jaygiri, 987; Jayga-pala, Jaypal, 437; Jazigiri, 71; Jegachu, 764; Jei, 96; Jeku, 486; Jelachchi, 1143; Jemodu, 531; Jena, 59.

Jequrry, 1.

Jeramahis, 887; Jerasayna, 906; Jeri, 192; Jerry, see Jari; Jeru, 1091.

Jeusis's Bark (Cinchona), 302-10.

Jethi (Cotton), 581; ... (Rice), 832; Jeevar, 135, 141; Jeyvar, 1032.

Jew's Mallow, 405.

Jhadica-mitha, 48; Jhampi, 2; Jhan, 1073; Jhajhinda, 1081; Jhara, 824; Jharberi, 1143; Jharkarnamak, 48; Jhilmu, 831; Jhinga, 754; Jhinia, 833; Jhinna, 22; Jhonki, 392; Jhoto, 406; Jhulas, 115; Jhingara, 843; Jhut, jhuto, jhoto (Jute), 406, 410; Jia, 249; Jibang, 1143; Jidi-mamidi vi, Jidi vate, 65; Jigurana, 141; Jiluedu, 205; Jili (Bamboo), 99; Jinjali, injali, see Sesame; Jinjini, 685; Jinsonke, 196; Jotiah-mati, 292; Jirja, jiraka, jirana, 442; Jirah, 716; Jiral, 294; Jitangi, 484; Jiti, 774; Jivadali, 525; Joba, 629.

Job's Tears, 392-8.

Jod, 1084; Jofu, 249; Jojo, 1066; Jokul, 785; Jom, 121; Jonaria (Wheat), 1087; Jondhalu, 1031; Jondharinya, 889; Jon-khar, 48; Jonima, 1031; Jonua, 535; Jotia, 100; Joui, 538; Jugwa, 100; Jowri, 584.

Jukar, jowar (Indian Millet), see Sorgum vulgare; J Kol, 463; Judd, 581; Jugi jugi, 132.

Juglans, 700, 812.

Juki, 821.

Jujube, 1143-4.

Junala, 1132; Junab, 430.

Juncus, 432, 431, 466, 776.

Jungle Fowl, see Jangal-murgh.

Junga, 312; Junri, 1132; Junson, 526; Jury, 114.

Jurnnea (Himalayan Dhup), 821.

Jurkandali, 161; Jusbar, 330.

Jute, juta (Corchorus), 405, 865, 868, 924, 1027-8; ... American (Abutilon Avicenna), 2.

Jultli, 61; Jutta (Villebrunea), 164.

Jvani, jvani, 285; Jwaa, 629.

Jyree Tea, 45, 237.

K

Kaat-amunak, 699; Kabab-chinni, 890; Kabaiing, 293; Kabal, 884; Kabarra, 264; Kabang, 1051; Kabbar, 463; Kabb, 990; Kabanon, 887; Kabri, 276; Kabhing, 700; Kabud, 559; Kabit, 134; Kach, 480; Kachakra, 1079; Kacan, 499; Kachang, 723; Kachra, 486; Kachhe shara, 973; Kachchi, 398; Kachir, 449; Kachkela, kach-kula, 787-8; Kachkhul, kachmuri, 121; Kachiola, 489; Kachra, 438; Kachi, 640; Kach (Catechu), 9; Kach (Egyptian Arum), 398, 788, 1140; Kachira, 444; Kadakai, 1073; Kadali, 295; Kadale, 1099-1100; ... (Bengal Gram), 295; Kadali, 701; Kadami, 521; Kadhi, 1034; Kadhah (Lasenaria), 70; Kadat, 429; Kadi, 1105; Kadhi, 295; Kadsambal, 248; Kado (Cardamom), 512; Kadu (Squash Gourd), 411; ...-khasur, 781; ...-sirola, 755; Kadwe-pal, 531; Kajfa, 855; Kafree-muirch, 266; Kajf, 244; Kajfiri, 893; Kagara, 930; Kajdalia, kajdalia-dendor, 28; Kagutti, 487; Kaghzi-nimbus, 326; Kajiri ranket, 651; Kajli, 9; Kajzi, 24; Kah, 445; Kakhmi, 583-4; Kakh, 1087; Kahrub, 64; Kahruba, 1105; Kahu, 1072; Kahuwah, 364-5; Kaisar, 888; Kaida, 777; Kail (Blue Pine), 888; ... (Himlayan Ibex), 743; Kaim, 538; Kaimu, 121; Kainad, 135; Kaing, 777.

Kamit, 771.

Kajyeni, 401; Kaji, 186; Kajla, 141; Kajli, 937, 942; Kajra, 1051; Kakachia, 191; Kakadi, kabad, kakkarik (Cucumis utilisimus), 439; Kakari-kat, 438; Kakar-sing, 914; Kak-tati, 498; Kakhan, 479; Kakh, 579; Kakkatan-vira, 868; Knak (Cucumis sativus), 439; Kanaia, 1120; Kaka, kakrasing, 901; Kakri, kakur, kankur, see Kakadi; Kokaun, kakumi, 988, 1135; Kala-ala, (black-ginger), 1142; Kalebachang, 21; Kala bandu, kabalob, 59; Kalacli, 191; Kaladan, 856; ... dhatari, 488; ... ganna, 936; Kalaha, 538; Kalu, 443; ... kul, (Quicklime), 710; ... ka-pattar (Limestone), 710; Kala-jerah, zera, 283; Kalaja, 811; Kala, 99; Kalaka, 270; Kalakado, 1131; Kalakat, 906; Kala kataw, 981; Kalakut, 21; Kalamakk, 1118; Kalomari, 896; Kalambak, 325; Kalame, 976; Kalame, 838; Kalamoskar, 21; Kalamuch, 1031; Kala-nagyuras, 311; Kalangari, 317; Kalango, 255; Kalanu, 946; Kalap, 295; Kalap, 56; Kalapa, 350; Kalapai, 295; Kalar, 51; Kalarkh,
INDEX

484; Kāla sākā, 405; ... salaij, 873; ... ahim, 248; ... ghīra, shalsha, 1001; ... -siris, 46; Kalath, 504; Kālā-til (Niger Seed), 625; Kala til, kalo-tél (Sesame), 981, 983; kalatit, 12; Kala trimbha, 532; Kala wath, 743; Kala-watthe, 1067; Kala-souní, 97; Kálër, 487; Kālbondi, 1039.

Kali, 182.

Kalengi-canajaya, 249; Kaleyin, 191; Kaisah, 314-5; Kalhenyok, 821; Kali, 1116; Kali, see Kali; Kalía, 103; Kaliéchas, 275; Kali-duhdi, 441; Kali-ghōa, 463; Kalié, 135; Kali-jadé, 936; Kali-kachuna, 710; Kali ke go nal, 399; Kali kushal, 1087; Kali lara, 774; Kali-munnu, 327; Kaliínabk, 325; Kalinda, 316; Kalinda, 640; Kalinding, 317; Kalin, 271; Kalins, 317; Kali ring, 911; Kaliiri, 270; Kalkashundā, 288; Kalkastari, 629; Kallb, 100; Kallar, 767; kali, 530; Kalla, 69; Kambil-sūk, 680; Kall mungil, 102; Kall-bikhum, 21; Kalon, 903; Kalniri, 811; Kallpam (Hemp), 249; ... (Substitute for tobacco), 11; Kallpami, 499; Kallpam, 1107; Kallana, 833; Kallabuvara, 498.

Kamad, 833; Kamákk, 780; Kama-raka, kamarmed, kamcam, 97; Kamarikas, 189; Kamblá, 755; Kam-bilá-piích, 785; Kamá, 78, 803, 869; Kamela, kamala, 55, 755; Kamfer, 244; Kamhym, 100; Kamhian, 1052; Kammá-nebub, 322; Kammá-regu, 94; Kamohí, 887; Kamrup, 1005; Kamug, 83; Kamún, 442; Kamrú, 329; Kan, 270; Kan, 929; Kanabíra, 249; Kánaní, 791; Kanak, 1082; Kanakaphóla, kanako, 437; Kanal-myle, 140; Kanalu, 196; Kanag, kanas, 249.

Kanara Nut, 352.

Kanbí, 354; Kan-bhendí, 755; Kanch, 563; Kanchan, 1005; Kanchecha, 565; Kan-ce, 930; Kancheru, 1051; Kanda (Onion), 58; ... (Tacea pinna
tílica), 116; ... -podla, 65; Kandál keña, 534; Kandámiru-gu-marratam, 908; Kándár, 990; Kande, 204; Kandíra, 276; Kandika, 1144; Kandír, 249; Kandla, 121; Kandur, 902; Kangar, 1080; Kanki, 2; Kangi, 537-8; Kángmí, 988; Kangra, 1031; Kang (Italian Millet), 843, 988; Kanha, 1072; Kanhyem, 1051; Kanhyia, 538; Kanja, 190; Káŋjita, 1108; Kanjiram, 1051; Kanb, 1082; Kankala, 890; Kanke (Cassie Flower), 14; ... (Lime), 608, 711; Kánkíra, 144; Kankutake, 554; Kánlí-kund, 116; Kanner, 979; Kannoni, 888.

Kanoff, 630.

Kanrai, 1051; Káns, 930; Kánsa, 401; Kánsi (Saccharum spontaneum), 930; ... (White Brass), 402; Kánt, 249; Kánta-dáu, 496; Kanta bans, 99; Kantaka, kantal, kantal, 94; kantala, 31; Kantali bakuri, 439; Kantali-kala, 787; Kanta-ve, 48; Kantemath, 65; Kanthan, 480; Kántári, 276; Kántosirayó, 15; Kánvi, 583-4; Kányin (Spurgewort), 47; ... (Dipterocarpus), 499, 501; Kánying, 500.

Kanyin Oil Tree, 501.

Kanyong, 501; Kanyung, 834; Kanyu, 116.

Kaolin, 330.

Kam, karriga, Karriga, 3; Karpáda, 989; Karpardaka-dhāma, 710; Karpas, 629; Kaphkhi, 164; Kaphle, kaphli, 1084, 1087; Kapti, 364; Kapieriet, 144; Kapil, 755.

Kapok, 521, 571.

Kapí, 100; Kapí, 804; Kápur, 244; Kapúrkachri, 776; Kar, karu, Karu, 836-8; Kar, karrar (Sat
flower), 276; Kar, 640; Karafs, 72; Karál, 102; Karaim, 902; Karaka, 1075; Káram (Carbonate of Potaah), 48; Karam (Myrrh), 400; Karampu, 527; Karan, 785; Karanjal, 527; Karangali, 9; Karangi, 1066; Karang kunthikam, 248; Karanj-cake, 948; Karankus, 462; Karapu konglaim, 248; Kar
rari, 141; Karamudá, 270, 1005; Karauy, 190; Karayya, 284; Karb, 732; Karbús, 437; Karphi, 640; Karé, kardal, 276, 278; Kare, 498; Karelinha, 1073; Kare kubb, 937; Karekál, 270; Karil, 264; Karetó, 991; Kari, 333; Karigo, 317; Karihírig, 811; Karikata, 139; Kari manjal, 447; Kari-mara, 499; Karim-polam, 1080; Karingu, 1132; Karinthagara, 908; Karit, 440; Karivana, 646.

Kárh, 102; Karka, 777; Karkach, 963; KarkandHAVU, 1143; Karkaya, 1073; Karkóm, 446; Karmabres, 532; Karmah, 592; Karmái, 120; Karkaranga, 97; Karna nebu, 325; Karniá, 950; Karotón, 490; Károga, 284; Karpol ró, 1117; Karpási, 522, 570; Karpéra, 244; Karó, 480; Karruva, 313.

Karsh zahn, karu, 911; Káirs, 716; Katál, 1031; Kárttú-kižhang, 489; Kári, karrutém, 3; Karru, karruva, 310, 315; Karruri-tari, 755; Karrumbá, 930; Karrin, kim, 999; Karrun-kázhán, 65; Karrun-pandám, 98; Karrunkil, karunthál, 498; Karrun-shirajam, 811; Karru, 116.
INDEX

umate, 488; Karoi, 1117; Kavira, 264; Karuval, 71; Karwa-tel, 183; Karwa-tu, 16.
K. (Karanj), 249; Ká (Sacccharum spontaneum), 930; Kásá, 930, 1122; Kasaí, kasi, ka-si, 392-3; Kasaile, 83; Kasa-jonar, 869; Kásamardá, 288; Kasar, kasur, 278; Kásaraka, 1051; Kasei, 393; Kaseru, 466; Kasia, 174; Kashkash, 846; Kasut, 402; Kaswáal, 130; Kámisrojanma, 429; Kásnádi, kásündá, 288; Kasp, 532; Kasaai-bij, 398; Kasser, 882; Kassumam, 980; Kastura, 785; Kasturi-bhendi, 629; Kásunbó, 270; Kasuria, 466.
Kat, 365; Kata, 1001; Katambi, 553; Katin (Cotton), 571; Katam (White Silk-Cotton), 521; Katanga, 99; Katappa, 1073; Katakaná, 843; Katá, 936; Katariá, 831; Katáridaboo mah, 880; Katsá, 99, 577; Katévala, 31; Kath, 10, 11; Katha, 8; Kathál, 94; Kathia, kath, 1086, 1093; Kathó, 29; Kathiya bhanga, 254; Kathol, 919; Kathôn, 833; Kath-sinh, 248; Kathu, 532; Kat (Cutch), 9; (Indigofera Gerardiana), 115; kárá, 278; Katila, katira, 1051; Katili belati, 578; Kat illupéi, 627; Katira, 95, 168, 1051; Katjáng (Dolichos Lablab), 508; (Groundnut), 74; Kat-karan, 190; Katkú-mugá, 1009; Katki, 405; Katkura, 1003; Katman, 121; Katmávar, 521; Katul-hu-chuña, 710; Katun, 720; Katubhanga, 978; Katti mandu, 627; Kattrá, 120; Kattu, 1072; kadar, 132, 140; Kátulá, 1049; Kaditup-pépulád, 1081; Kátwu-yelek-kay, katu, 65; Katu-bhanga, 252; Katukarohini, 640; Katvel, 440; Káyád, 124.
Kaudh, 1049; Kauka, 102; Kaukhnyin, 1039; Kaukky, 838; Kauknyin, 101; Kaukynin, 838; Kaula, 441; Kaulanjí, 1110; Kaulia babul, 3; Kauval, 1081; Kauva, 760; Kaur, 264; Kauri (Cluster Bean), 49; (Shell), 989; Kauru-ro, 114; Kau, 364; Kavádú, 980; Kaval, 269; Kavanada, 1081; Kaviang, 1053; Kavika, 526; Kavikatti, 498; Kauva, 364; Kawa, 102; Kauri, 22; Káyám, 534; Kayet, yjet, 651; Kajík, 473; Kajína, 103; Kayu, 72; Kayur, 518; Kaju, 161; Kea, 777; Keeru, 429; Kebru, 508; Kebrubanga, 488; Kedari chua, 63; Kéeré, kheravi, kheria, kheriva, kheriví, 10, 11; Kénor, 902; Kétri, 888; Kejúr, 885; Kejhi, 610; Kekeone Oil, 47; Kéla, 787; Kelep

Ant, 560, 610; Kelkel, 288; Kelon, ...ka-tel, 291.
Kel, 50.
Kelu, 291; Kelevaragú, 518; Kema, 534; Kemú, 558; Kemp, 249; Kempu (Cutch Tree), 9; (Eleusine coracana), 520; (Red Sorrel), 629; Kenda, 188; Kendu, 499; Kenev, kempin, kentyr, 249; Kengu, 101; Keonla, 320; Keori (Cedar), 291; Keratin, 645; Keri, 161; Kermerick, 98; Kerms, 1054; Keror, 140; Kernani, 625.
Kerosene, 454, 457, 812, 872-9, 1000.
Kerow-simbí, 880; Keru, 1051.
Kertophorus leseri, 628.
Kersain, 302; Kerze, 708; Késar, 429; Késari, 838; Késari dal, 902; Keseru, 1012; Kesu, 915; Kesur, 466; Ket, 188; Kethe, 1008; Ketki, 31; Ketua, keva, kewi, 99; Ketúki, 777; Keun, 720; Keura, keora, keori, 188, 777, 821, 1133; Kevar, 518; Kevir, 520; Keyan, khabu, 930; Keyini, kyeingini, 201; Khabium, 912; Khad, khatar, 707; Khughal, 688; Khug, 123; Khut-pok, 707; Khair (Cutch), 8; (Cymbopogon Jwarancausa), 462; Khajalaya rog, 1117; Khajúr, 115, 882; Khajuria, 937; Khajur ko bokla, khajur munj, 884; Khajwsa, 564; Khaka, 1068; Khákas, 846; Khábra, 189; Khali-matan, 1127; Khalis, 1143; Kham, kham-ilu, 492, 496; Khamá, 885; Khamazorá, 1120; Kham-lákh, 1053; Kham, 913; Khamarak, 97; Khand, 962; Khand, 930; Khandharhidhing, 555; Khandarús, 1132; Khandú (Garden Pea), 903; Khându (Kingfisher), 139; Khang, 102; Khangam khár, 113; Khánjak, 902; Khánpari, 584; Khánr, 952; Khaplí, 1084, 1087; Khár, 113-4; Khára, 906; Khúrak, 885; Khurbija, khurmij, 437; Khurbúsá, 269; Kharchu, 774; Kharda rog, 1117; Khárëk, 504; Kháree, 911; Kháreza, 276; Khari, kharinun (Slabber’s Salt), 56; (Medicinal Clay), 330; (Sugar-cane), 937; Khári (Sodium Sulphate), 51; ...saní, 114; Khárrulti, 710; Kharrya (Wild Date), 885; Kharrya, 1044; Khark, 205; Kharra, 330; Kháltuna, 316; Khár úsara, 54; Khárya-mitti, 710.
Khása, 981; Khas-khas, 116, 462; 680, 778, 778, 1086; Khasegáb, 835; Khastíla, 846; Khatta, 228; Khättu, 715; Khay, 707; Khavi, 491; Khayan, 1026; Khejí, 1053; Khenda, 498; Kheñhí, 115; Kher, 988; Kheri, 1086; Kheria, 882; Kheskhar, 507, 703, 829; Kheses, 618; Khesla, 624; Kheu, 779; Khevaná,
INDEX

Laocca, lacca Sumetri, lachetta, laka, see Lac.

Lach (a quality of Saffron), 430.

LACHNOSTRAN (Cockchafer), 387.

Laequer-work (Burmese), 779–80; Lac-work (Indian), 1063–4.

Lada, 891, 896: Lódu, 323.

Lady’s Fingers, 631.

LAGENARIA, 440, 700–1.

LAGERSTROMIA, 701, 1005.

Lagh, 688: Laghu, lahu, 72: Laghunne, 486; Labar, 196; Lahi, 1037; Lahru, 869; Lai-hak, 183; Lajward, 561.

Lákh, see Lac: ... (Lathyrus sativus), 601, 703–6, 1037; Lakwar (Rhus), 914; Lakhsiga (Borax), 172; Lakhrí (Lathyrus), 704; Lakksos chromatinos (of the Peripius), 1054; Lákhú, lakshá–taru, see Lak; Lakuchia, 94; Lal (Ruby), 568; Lal ganna (Sugar-cane), 936; Lalai, 45; Lallkee, 144; Láll ambári (Roselle), 629; Lalluva (Musk-deer), 785; Lal-bercál, 991; Lal-bethi, 293; Lál–berenda, 700; Lal-bhopali, 441; Lalchum, 204; Lal-devdar, 294; Lalíndráyan, 1081; Lálío (Cotton), 584; Lálka, 518; Lál-khair, 9; Lal-marcha, 265; Lalag, 62; Lalshakar (Country Sugar), 952; Lámá, 121; Lamá, 124; Lamagjá, 492; Lameb, 98; Lamyak, 462.

Lamp Oil, 358, 625, 860, 876, 916, 986.

Lamahing, 888; Láná, 113–4; Lana batu, 456; Lanan, 114; Lánang, 1116; Landbé, 200.

LANDOLPHIA (Rubber), 657, 649.

Lánq, 598, 704; Langa, 527; Lání, 113–4; Láníng, 1112; Lanka, 441; ... sij, 531.

Lanquas (Javan Galangal), 60.

Lap'het, see Letpet.

Lapisi Lázuli, 561, 663, 716.

Lapón pidong, 1053.

LAPORTEA, 162, 924.

Lapri, 1137; Lapta, 952; Lár, 439; Laronga, 320.

Largy, 914; Lár-kána, 903.

Larks, 132–3, 135.

Lasan, 58; Lasanía, 562; Laser, 533.

Lasergóyitum (Asafetida), 553.

LASIOCOCCA SYMPHYLLA, 190.

LASIOPHON ERIOCHELUS, 546.

Lasinyán, 562; Lasí, 475; Lat, 201.

Lata kasturikát, 629; Látang, 101.

Laterite, 61.

Lathyrism, 705; LATHYRUS SATIVUS, 300, 507, 598, 601, 703–6, 902, 1037.

Lati-am, 660; Latiion, 60; Latkan, 142; Latni, 177; Latri, 703; Lautik, 700.

LAURANIA, 1091.

Lauang, 527.

Laurel (Machilus odoratissima), 1009.

Lavana, 963; Lavanan, 963; Lavanchi, 1106; Lavandan, 60; Lavanga, lavinga, laveang, laveanga (Clove), 527; Lavanga (Cinnamon), 313; ... patte, 311.

LAWSONIA, 821.

Layo-gundil, 842.

Lead, 403.

Leaf, Indian, 313.

Leather, 632; ... Sambar, 639.

Lebed, see Lablab, 508.

LECANUM (Coccideum), 229, 386.

Leek, 58.

Leha, 195; Leik-kyar, 1079; ... pyewon, 1079; Lein, 720; Lelin, 125.

Lemon, 325; ... Oil of, 327.

Lemon Grass, 457–9; ... Edible, 459–60; ... Oil, 457, 821.

Lentil, 708, 726.

Lehda, 889.

Leopard, 632.

Lép (Plaster), 95; Lép (Rice), 829–30.

Lepidolite, Lepidolene (Mica), 781.

Leppett, see Letpet.

LEPTOPTILUS DUBUS (Adjutant), 140.

Lesu (Ficus elastica), 651; Letekki, 783; Letkop, 1050; Letzian, 168; Letpet, Lepett, Lap'het (Tea), 233–6; Lettouk, 640; Lettouk them, 1132.

LEUCAS CEPHALOTES, 483.

Lev, 856; Lí (Pear), 910; Liasada, 755; Libù (Sour Lime), 326.

LICUALA PRITZKA, 500.

Lignum-vítis, 484.

LIGUSTICUM (Mathosan ferment), 759.

LIGUSTRUM ROXBURGHII, 1047.

Lik, 140; Likh-ar-u, 906.

Lilac, Persian, 780.

Lim (Blue Pine), 888; ... (Moulmein Cedar), 290.

Lim or Duffin Bean, 880.

LIMANZA, 888; Limba, 780; Limbarro, 781; Limbú, 325; Limch, 114.

Lime, Carbonate of, Limestone, 709–10, 712, 771.

Lime, Sour, Limetta, Sweet, 326.

Limonene, 284.

Limonum (Lemon), 325.

Limpaka, 326.

Linen, 721–3, 868.

Lingga petta, 1081.

Limet, Indian, 133.

Lino, 720.

Linoleum, 282, 814.

Lion, 571, 720–1.

Linseed and Oil, 719–21, 725–31, 741, 770, 812, 817, 924, 1097.

Lins, Linum, LINUM USITATISSIMUM see Linseed.

Lipiah, lipic (Villebrunea), 164.

LIQUIDAMBAR ORIENTALIS, 61.

Liquorice, Indian Substitute, 1.

Litchi, lichi (Fruit), 793.
INDEX

Litharge, 707.
Lithospermum (Coix), 392.
Littim, 48.
Litchia, 544, 1009–11.
Litua, 822; Lobak, 912; Lobelia, Lobia, lobia, lobos, lobha (Dolichos Lablab), 508; (Vigna Catjang), 879, 1107.
Locust, 686.
Lode (Lodh) Tree, 195, 756, 783, 1053.
Lohari, 499; Loheru, 1068; Loja-sara, 59.
Lolium, 257.
Lôn, 963; Lomepole, 188; Long, 527; Long ka morich, 267; Lont (Monal Pheasant).
Lophophorus refugens, 135, 141.
Loquat (Fruit), 521.
Loré (Ficus religiosa), 539.
Lorikeet, 109, 133.
Lotá (Hindu vessel), 402; ... (Melo-calamus compactiflorus), 103.
Loton (Tumbler Pigeon), 136.
Lovage (Indian), 285.
Love-ly-bleeding, 63.
Love, 94; Loven, 538; Luban (Benzoin), 1052; ... (Indian Olibanium), 174.
Luc, see Lakh.
Lucerne, 778.
Lucheh, luyquán (Fan-tail Pigeon), 135; Luckmuna, 95; Lüd, 290; Ludduga, see Lodh.
Luffa aegyptiaca, 49.
Luit-marr, 890; Luch (Typha), 777.
Lúderi, lůkotluna (Villebrunea), 164; Luli, 542; Lulinyaw, 311; Lu-mam, humili, 1003; Lúna, 71.
Lunak (Stoea fruticosa), 114.
Lunduk (White-goose-foot), 293.
Lungi (Pheasant), 142; ... (Tur- ban), 618; Luni, 906; Lunkaša, 1081; Lupung, 1072; Lutki (Indian Hemp and Alcohol), 258; Lutuni, 178.
Lycium (Berberis), 130.
Lycium europaeum, 967.
Lyceat, 123.

M
Ma, chu ma (China-grass), 144; ma, chu-ma and si-ma (Cannabis), 251; Ma (Safflower), 276; Mad (Mango), 764; Maar (Cocoonut), 350; Maa ichi, (Chinese Waterchestnut), 465.
Macassar Hair-oil, 281, 981.
Mace, 791; ... Reed, 777.
Mach, 882; Machakai, 911.
Machilus odoratissima, 1009.
Machilus ka-dant (Ivory), 699; Macho, 113; Machranga, 139.
Mackerel, 567; 459.
Maculura aurantia, 999.
Mad, 1043; Mad (Mangrove), 293; Mada (White Mangrove), 98; Mašak (Indian Hemp Drug), 8; ...

(Opium Smoking-mixture), 857; Madala, málalai, 909; Madang, 101; Madan-mart, 65; Madapolama, 623; Madué (Calotropis gigantea), 205–6, 436, 627, 899; Mador (Indian Madder), 926; Madatia, 25; Madaw, 555; Madeyuka, 103.
Madder, European, 927; ... Indian (Rubia), 926; ... Indian (Oldenlandia), 821.
Maddhika, 1044, 1112; Maddi (Mo-rinda), 783; ... manti (Terminalia tomentosa), 1078; ... chekhe, 784; ... ruba solu, 518; Madh, madhu, 128; Madhujam, 125; Madhuka (Bassia), 117; Madhukarkata, 326; Madhuli, 1082; Madhulkha, 1043; Madhuriam (Psidium), 907; Madhuriké, 552; Madheval, 495–6; Madhvi, 119, 1046; Madhi, 103; Madir (Rice Spirit), 760, 1043; Madki, 879; Madna, 141; Mador, 205; Madove, 552; Madrasi (Silkworm), 995–6, 1018; Madula, 294; Madya, madorá, 1043; Mag, múng (Phaseolus radiátis), 871, 882; Maga-leranda, 699; Mahr bâra, 99; Maghi, 178; Maghona, 197; Mágna (Paper Pulp), 865; Magrabu, 625; Maguey, 31; Maguni-gaddle, 912; Magyi (Tamarind), 1066; Mâh, 834; Mahál, 123; Mah-bimbo (Melia Azedarach), 780; Mada-núb (Citrus decumana), 324; Mahánu, 537; Maha Pangiri (Cymbopogon Nardus), 456; Mahasér (the fish Barbus tor), 542, 547; Mahera, 705; Mahim, 937; Mahi, 100; Mahlaing, 864; Mahku, 100.
Mahogany, Indian (Cedrela Toona), 290.
Mahoka (Chebulic Myrobalan), 1073; Mahothi hingoli, 1026; Mahoua, 117; Mahri, 141; Mahva, mahwa (Bassia), 116–20, 188, 479, 521, 705, 760, 777; 812, 811, 929, 1005, 1043, 1046, 1109; Mahuk, 123; Mai (Chinese for Wheats), 1082; Maída, 1088; Mai-gyer, 1051; Mai (stem from Saltpetre), 974; Maida pani, 681; Mainm, 125; Mains, 732; Mainu, 774; Majakshásh, 400.
Maize (Indian Corn), 66, 446, 497, 834, 868, 929, 949, 1097, 1132–9; Maizena, 1138.
Majhí, 920; Májún, majum, majun, májum (Cannabis), 249, 258, 520; Mak makal (Bamboo), 100; Makai, Makkai, see Maize; Makal (Coleochns), 316; Makkál (Trichosanthas palmetta), 1081; Makaram, 836; Makatend, 625; Makhat-khim, 248; Makhán, 475; Mähki, 887; Makka and Makkós, ham, see Maize; Makki (Indian
INDEX

Gamboge), 554; Maklai, 16; Makol (Gypsumum), 716; Makor, see Mak; Makora, 451; Makra, 518; Makur-kendi, 498; Makyaukkai, 47; Mal (Indigo), 681.

Malabar Grass, 457; Malabar Nut (Cocconut), 352.

MALABATHRUM (Cinnamomum), 310-1.

Malacca-Sambu, 526; Malacoh, 249.

MALACHRA, 753, 924.

Malai, 780; Malasing, 186; Malaiteni, 123; Malakâ beng, 907; Malaka janrul, 526; Mala-konga, 140.

Maldive Nut (Cocconut), 352.

Male (Panicum), 842; Malghân, 121; Malî (Pogostemon), 904; Malings, 99; Mal-kangmi, mal-kunji, 292, 1005; Malalâi, 498; Mallang-haigia, 140; Malling vemru, 781; Mallelagi (Sandal-wood Oil), 978; Malligiri (Nepal Sassafras), 310.

MALLOTUS, 143, 755-7.

Mallow, 21; Mus, 629.

Masu Fibre, 121; Maluk (Diospyros Lotus), 499; (Taper), 919.

Malum cydonium (Egle), 26.

 Médicium (Citron), 318.

MALVA VERTICILLATA, 148.

Male, malevi, 739.

Malwa Opium, 856.

Mâmâdi, 764; Mambas, 931; Mambu, 932; Mamirâ, mâmirân, mâmîrâs, 130, 405; Mâmre, 1112; Mamri, 12; Manak, 558; Manakkâ, 1112.

Man-chetti, 926; Manchîlî, 124; Manda dhip, 248; Mandakaikh, 25; Mandal (Eleusine), 518; Mandal, mandar, madar (Coral Tree), 84, 523; Manda, 73; Mandala (Apricot), 905-6; Mandhas, 116; Mandia, 1107; Mandi kakuri, 439.

Mandiocca, 766.

Mandira, 843.

Mandrace, American, 904.

Mandrel (Mate), 776; (Sedge), 407; Mandû, mandal, mandia (Eleusine), 518; Mandukaparni, 646; Manduca, 518, 1135; Mang (Buffalo), 732.

Manganate (Manganese), 762-3.

Mangas, 764; Mangnis, 553; Manghate, 706; Mangi, 1072; Mang-kuda, 784.

Mango (Mangifera), 66, 87, 764-6; phul (Mangifera), 765.

Climbing (Willoughbeia), 660; Fish (Polynemus indicus), 540-1, 547; Ginger (Curcuma), 443.

Mangold-wurzel, 928.

Mangosteens and Oil, 553-4.

Mangrove (Ceriops Candolleana), 293, 638; (Rhizophora mucronata), 638, 913; White (Avicennia officinalis), 98, 693.

Mangústan, see Mangosteen; Manhola, 555; Manhoh, 844.

Manihot, 293, 444, 496, 657-8, 760-7.

Manikor, 134; Manikakk, 823.

Manila Hemp, 436, 790, 924.

Manila-kotai, Manila-nut (Arachis), 74.

Manioc, see Manihot.

Manir, manja, 141; Manjal, 445, 447; Manjal-mullangi, 489; Manjista, manjî, 926; Manka, 561; Mankand, 963.

Manna, 100, 102, 110-1, 888, 929.

Mannal, 445; Manra, 910; Mansa, 530; Manri, 92.

Mansonia Gagar, 976.

Mani-taityam, 873; Mânthal, 546; Manthalli, 552; Manu, 914; Manua, 576.

Manures, 543, 767-73.

Manu-vuppu, 48; Manyenney, 873; Manyuth, 927.

Manoutia Puya, 163, 924.

Maple, Sugar, 928.

Mapúi-bei, 201; Mâr (Panicum), 844.

Maryabout or Commercilly Feathers, 141.

Marachini, 766; Maralingam, 429.

Maranta arundinacea, 444, 773-4.

Maratia mughâ, 489; Maratí-mogyu, 108; Maravali, 766; Maru-vuppu, 48.

Marble, 710-1, 715, 718.

Marblewood, 498.

Margosa (Nim Tree), 780; Marka, 844; (Banyan), 537; (Betel-nut), 83; (Indian Sago Palm), 285.

MARISCUS BULBOUS, 465.

Marithondi, 706; Marks, 764; Märkhor (Snake-eater or Water-goat), 644, 743.

Marking-nut Tree, 981.

Marmalade, Bael, 27.

Marmor, 710.

Marmelle Oil, see Bael.

Marmolos de Bengal, see Bael.

Marrow, Cow's (Gaudem), 527;

Vegetable, 441.

Márea, 63.

MARSDENIA, 663, 924.

Marten (Skins), 632.

Mars, 896; Mârû (Grey Oak), 911; (Terminalia tomentosa), 1073.

Marud (Eleusine coracana), 517-21, 1107; (Spirit), 757-8, 1046, 1107.

Marudar singhe, 707; Marûl, marura, 975; Mâryâna, 1053.

Mas, 565; Mashâl (Pine-wood Torch), 888; Mâsh-kulâ, 881; Mashru (Textile), 1125; Mâsi, 792;

kodei, 837; Masima, mosima, moshina (Linum), 720-1; Massur, masûr (Lens), 298, 708-9, 903.

Mastic Tree, 992.

1170
INDEX

Mastiki, 902; Mastu, 470, 475, 483.
Mast-wood (Calophyllum), 204.
Masula Boats, 765; Masúr, see Masur; Maswai, 66; Mat (Male Bambu), 102; Matalan, 909; Mati-kissi, 130; Matela, 100; Mât (Molasses), 952; Math, Moh (Phaseolus), 871, 879, 1107; Mâth, 475; Mathan, 102; Mathas, 1024; Mathi, 577; Mathio, 581; Mathosan, 759; Mati, 327; Maitaree, 974; Matímah, 505; Matka (Rajshai Sík), 1015; Matkansha, 250; Matkom, 116; Matna, 935, 937.
Mate and Matting, 775-8.
Mate, Calcutta and Madras (Mudur), 467-8; ... Cane, 202-3; ... Darná, 775, 777; ... Elephant-grass, 777; ... Munj, 775, 929-30; ... Sitalpati, 775.
Mattanga, 441; Matta-pal-tiga, 686; Mattar (Peas), 706, 902; Mattari, 869; Mätti, 89; ... Black, 1073; ... White, 1072; ... kalee, 879; Mátalunga, 325.
Mavalu, 495-6; Maulan, 121; Maua, 821; Maua, 922; Maua, 521; ... sikh, 22; Mauri, 552; Mauawung, 325; Mavina, 764; Maua, mói, (Desiccated Milk), 473-4; Mavar, 925; Mavarti, 73; Mavashi, 764; Maua, 119.
Maws, Fish, 541-3, 549.
Maya (Adhatoda Vasica), 25; Máyá (Gall Oak), 911.
May Apple (Podophyllum), 904.
Mayil-tutam, 403; Mayin, 838; Mayuen, 393; Mazri, 776-7; Mau, 911; Mealumma, 162.
Mecchino (Ginger), 1140.
Mechum (Extract of Poppy), 845.
Medanggori (Mezankura Siik), 1011.
Medlar, Japan, 521.
Medolga, 484; Meethya, 400.
Megasa (sugar refuse, puta), 952-3, 955.
Megdhi, 706; Meho, 317; Mehtab, 560; Meheeh, 117; Meena, 133; Mekhak, 526; Mekhn, 248; Mekrap, 785.
Melanorrhea, 293, 779-80.
Melagrina maragittifera (Pearl Oyster), 557.
Melia (Nim Tree), 780-1, 914, 1046.
Melica (milca), 1032.
Melilotus, 605, 1091.
Melipona (Bammar Bees), 127.
Melocalamus (Bamboos), 103-4, 115.
Melocanica bamberoides, 103-4, 776.
Melochia, 410
Melon, Castor-oil (Carica), 269; ... Kakri (Cucumis utilisimus), 439; ... Musk and Pumpkin (Ficus microurbarita), 441; ... Sweet (Cucumis), 437, 605, 949; ... Water (Citrullus), 316; ... White Gourd (Benincasa), 130.
Mena, 125; Menau, 896; Mendukolai, 200; Mengkop, 553; Menthýá, meculau, 1081; Ménýa, 868; Merâl, 886; Meralu, 511; Merméth, 936; Menyá, 518; Mesakkhi (Ville-brunnea), 164; Mescul (Spirit), 35, 1046; Mésa-kár, 838; Mésí, 994; Mesta, mesta pót, 629-30, 430; Metia-limbu, 325; Méthi, 1081, 1141.
Methyl eugenol, 457.
Mét, 31.
Metroxyaron ság, 92.
Metunga, 103; Mêxeureu, 64; Mêva, 937.
Meznkuri Siik, 1011; Meze, 117.
Mezerenon, 486.
Mezhuka, 125; Mhaishhabla, 400; Mhár-márdí, 285; Mheem, 99; Mhova, 116; Mí, 117; Mian kálaí, 276; Mibe, 74.
Michella champaca, 821, 1010-1.
Microtorma cymosa, 904.
Midu-ye, 333; Mighri, 845; Miki, 197; Mikh, 99; Milama, 896.
Milorite, 710.
Milium, 393.
Milk, 470-4; ... Fish, 547; ... hedge, 531.
Millet, Bulrush or Spiked, 869-72; ... Common, 843; ... Indian, 1031; ... Italian, 988; ... Little, 845; ... Poor Man’s, 843; ... Turkish, 1031.
Milletta piscida, 546, 759.
Minbu, 553.
Mimosà pudica, 30.
Mimulus moschatus, 786.
Mimusops kauki, 627, 821.
Min, 125; Mina, 869; Minak tanah, 873; Minang, 846; Minbac, 285; Ming te’ai, 211; Mingut, 530.
Minivets, 132.
Min-mulu, 881; Miraj, 466; Mircha, 451; Mirchaa, 686; Mirchagand, 451; Mirgá, 897; Míri, 896; Mírgenga, 100; Mýdyla tige, 896; Mí, 401; Mísh, 746; Mishmua, 905; Mísep, 732; Míreyá, 879; Míri (Dammar Bee), 125; ... Crystaline Sugar), 952, 956; Míru-e, 333; Misur-pappu, missipurpur, 708; Míta-alá, 687; Mína-zerá, 283; Mítha (Aconite Root), 23; ... (Common Salt), 963; ... Paspalum scrobicularum, 869; ... Raisin, 1112; ... bar, 1117; ... bush, 21; ... dudya, 22; ... kadddá, 441; ... nimbu, 322, 326; ... tel, 981; ... tila, 23; ... zaker, 23; Mítham (Gayal), 733; Míti, 56; Mítumata, 487; Míti-ká-tél, 873; Mí-ziphiyu, 887.
Mobbie, 1030; Mocha, 788; Mochai, 508; Móna-ras, 168; Mochi, 396; ... Wood, 523; Moh, 732;
INDEX

Moho, mohu, 116; Mohgadhumna, 1082; Mohona, 742; Mohoti, 120; Mohr, 708; Mohra, 22; Mohre, 400; Mohri (Aconite), 23; ... (Hill Bee), 124; Mohul, 116; Mohury, 124; Mokka jonna, 1132.

Molasses, 952.

Mole battu, 837; Molevppa, 110; Molochia, 406; Molochina, 410; Mom, 125; Mom-child, 979; Momiri, 405; Mondi (Pheasant), 135, 141; Mongla, 430.

Monkey-nut, 74.

Monk’s-chood, 18.

Moog, see Muga.

Moon of the Faithful, 905.

Mor (Balsam), 400; ... (Peafowl), 134, 141; Mora, 562; Moraha, 490; Morana, 114; Morehals, 141; Morhas, 777; Morhun, 674, 680.

Morinda, 447, 782-4, 1053, 1121.

Moringa Pterygosperma, 95, 812, 895.

Moringi, 162; Morkov, 490; Mor-mijh, 489-90.

Mortar, 713-5.

Mor-tuttu, 403; Moru, 911.

Morus, 784-5, 994, 998, 1046.

Moskhabar, 59; Mosina, 721.

Mosquirito Blight of Tea, 228.

Moss, China, 695.

Moté-velddë, 65; Moth, see Math.

Moth, Lymaniatriid, 269.

Motha, 465-6; Motha-kolanjan, 60; Moti, 557; Motia, 452; Moti-al, see Morinda.

Moti khajati, 161; Motiya (Jasminum), 821; ... (Rusa Grass), 452; Moumiyaram, 144; Mouwla, 189; Mouzha, 114; Mouzha, 521; Moya, 694; Moyi, 538; Moyo byah, 128; Moyum, 927; Moshukin, 125; Mrivetki, 1112; Muchi, 499.

Mucuna pruriens, 400.

Muda mugu, 1007; Mudad-kati, 467; Muda, 258.

Mud-skate, 543, 547.

Mudupuchi, 78; Muga (Silk), 1009-11; Mezankuri, 1011; Mullunil, 188; Mullalik, 777.

Mucili (Fish), 546-7.

Mugrela, 811; Muewekrhi, 439; Muhlak, 546; Muhori-ka-arak, 552; Muhril, 887; Mükali-parah, 547; Mukial, 100; Mukki, 555; Mukna, 697; Mukta kehi, 1027; Mukta-pata, 775; Mukul, 400; Mula, 490; Mulagun, 891; Mulaka, 490; Mulampandu, 437; Mula sinki, 912.

Mullberry, Indian, 783-5; ... Paper, 196, 862-4, 868; ... White, 784, 998, 1046.

Mules, 751.

Mulii (Bamboo), 103; ... (Radish), 912; Mullangi, 912.

Mullet (Fish), 546-7; ... Corsula, 546.

Mulle, 623; Mullumati matti, 330; Multuga, 189; Müläghürä, 784; Munaycha phña, 784; Mundia, 1086; Mundiri, 65; Mundia-bürggä-chettä, 168.

Mundulea superba, 546.

Müng (Phaseolus radiatus), 881-2, 871, 879, 1107; Mungo (Coral), 939; Munja (Sugar-cane), 937; ... -ippu, 110; ... arab, 784; Mangari, 1132; Mangil, 99; Mango, 937; Mang-phäi, 74; Mangra, 912; Muni, 523; Munigha, 784; Münila, 491; Munj, 115, 775, 777, 865, 868, 929, 1110; Munja, 929; Munj, 824, 831, 834; Muntin, 533; Mupaung, 942.

Mura, 257; Murada, 1073; Murali, 831; Murdari, 633; Murdasaung, 707; Murdi, 278; Murga (Bow-string Hemp), 975; ... (Indian Kino Tree), 908; Mrugali, 975; Mrägal mara, 553; Mruga, 943; Mrichung, 896; Murilla, 278; Murina-huli, 553; Murjän, 899; Mräki-tumma, 14; Mrükäla, 774, 774; Muro, 912; Murrah, 734; Murral, 542.

Murryanexifica, 190.

Murta, 775; Murungai, 784; Murukku, 899; Murup, 189; Murva, 975.

Musa, 49, 436, 786-91, 868, 924.

Musa (Plantain), 788; ... (Soy Bean), 564; Musali, 963.

Muscat-garlic, 58.

Muscardine, 1001.

Muscovado (Sugar), 951-2, 954.

Muscovite, 781.

Muslin, 720; Müsük, 785; Musik-dändi, 629; Mushti, 1051; Mustimbi, 498; Müssing, 784.

Musk, Musk Deer, 785-6, 814, 821; ... Mallow, 629; ... Melon, 441; ... Plant, Pods, Rat, Substitutes, 786.

Mussuck-nóbá, 785; Mustá, 465; Mustah, 553.

Mustard, 176, 726, 771, 812, 816-8; ... Black, 176; ... Cabbage-leaved, 182; ... Essential Oil, 183; ... Indian, 180-2; ... Sarpehta, 181; ... White, 176; ... Oil, 183-5, 812, 815-6; ... Oil-cake, 183-4, 726, 771.

Mustela, 632.

Mustuka, 465; Musumbra, 59; Musura-teniga, 128; Mútar, matta, 706, 902; Mucsheh, 508; Mutschli, 913; Mutha, 465-6; Muthel, avel (Cocoaanut Oil); ... Oil, 357, 361.

Müthera, 504; Muthu, 557; Muki, 449; Múttí, 557.

Mutton and Beef, 754.
INDEX

Narich, 409; Narikel (nári-kela) 350; Nárìgêl-khanda, 361; Naringi, 320; Náriyál, 350; Narocpka, 248; Narí, 99.
Nartheccasjeditsa (Ferula Narthex), 536.
Narras, 1031; Nas, 640; Nasari, 128; Nasha, 244, 259; Náshpâti (Pear), 910; Nashkar, 889; Nasr-jeen, 128; Nasuk, 1143; Nat, 190; Natar, 201; Nâth, 837; ...shambu, 526;
Nâtt-ká-dammul-akhvain, 908; Nâtt-ká-deodâr, 525; Natsoba, 823-4; Nattu-manjait-chinkh-akshang (Rhubarb), 912; Nat-va-dom, 1073;
Naudhâ, 665; Nauka-thau-hau, 843; Nau-nau, 427; Nausadâr, 48; Néval, 526; Navanita, 470.
Navet, Sweet, 176.
Nayé, 531.
Nectarine, 906.
Nectria, 229, 900.
Neddi, 1066; Neela-hgmethka, 559; Neem, nim, see Margosa; Nêhere, 542; Nêla-bevinagoda, 60; Nelabuvu, 1053; Nêla-wisirkâ, 887; Nêla-venu, 60; Nêli, 1140; Nêkkar, 485.
Nelken (Clavo), 526.
Nella-nuca-konga, 140; Nella-shama, 845; Nêle, 886; Nêli, 824.
Nelumbium speciosum, 402.
Neosia, neoza (Edible Pine), 888.
Nepál (Croton), 437.
Nepheline-ayenite, 428.
Nephrite (Jade), 560.
Nepht, 264; Nêrleva, 526; Nêrêbi, 247; Nerinda, 915.
Nêriums odorum, 49, 603.
Nerolí, 327.
Nerválam, 437; Nervati, 746.
Nests, Edible Swallows', 138.
Nettle, Fever or Devil, 162; ...Nigirl, 151, 161.
Néeli, 53; Néwala, 1112; Newr, 888; Néwet (Indigo), 665; Néy, 478; Nyachauk, 544; Npap, 124; Nsgp, ngapi (Dried Fish), 544, 547, 550; Nya-phyn-thaleb, 547; Nga-pri, 542; Ngathalauk, 544; Nga-zheng, 546; Niai nimmli, 140; Niam, 496; Niar, 746; Niatо balm baringin, 628; Niatо balm tendbag, 627; Nibus (nebu), 326.
Nicker-tree, 190.
Nicobar Nut, 352.
Nigella sativa, 283, 442, 811, 820, 1110.
Niger, 479, 505, 625, 741, 812, 815, 820.
Nigg, 486; Nihaukâ, 1082; Nijimi, 762; Nîl (Indigo), 664; (Pheasant), 141; Nîlâ, 663; Nîlama, 559; Nîlaman, 663; Nîla-thîkha, 403; Nîla vêm, 1053; Nîla-veppa (Andrographis paniculata), 69; ...veppa (Swertia Chirata), 1033; Nilavirei, 288; Nînagâ, 644; Nilgao,
INDEX

663 ; Nilgur, 141; Nili-cha (lili-cha), 459; Nil-kalmi, 6"6; Nilkan, 132, 140.

Nill or Nil (Indigo), 665; Nilopa, nilofar (Blue Water-lily), 663; Nilou, 741, 1039; Nimb (Margosa), 780, 1046; Nimak (Salt), 963.

Nimar Oil (Rusia Oil), 451.

Nimari, 578; Nimbar, 15; Nimbou, 325-6; Nimbuka, 326; Nimili, 141; Nimnna-gaddi, 459; Nina, 783; Nina-gol, 99.

Nipa fruticans, 170, 776.

Nirisi (Aconite), 19-20; Delphinium denudatum, 491; Nirgal, 99; Nirmal, 1051; Nirajani, 429; Nirali, 887; Nirala, 429; Nirvari, 824; Nirviha, 20; Nisath, 822; Nistotar, 822; Nistri, nistari (Silk), 996, 998, 1018.

Nitre, 972-5.

Nitta-tumma, 498; Niu, 350; Nival, 531; Nicouarg, 530; Nival, 430; Nosei, 401.

Nopal (Opuntia), 348-9, 822.

Noe or Nesty (Indigo), 665; Noyel, 141.

Nucoline, 359.

Nugge, 895; Nukhodi dal, 295; Nulloti, 489; Nun, 963; Nuna, 783-4; Nuni, 785; Nuni-gatch, 192; Nuno, 249; Nuspor, 311; Nur, 350; Nuruki, 578; Nure-Kelung, 494; Nurkar, 710; Nurma, nurmah (Cotton), 576, 595; Nushki, 535; Nuskul, 188.

Nut, Achem, 352; Betel, 83; Brahmin, Canara, 352; Candle, 47; Cashew, 65, 1046; Ceylon, Cormandel, 352; Indian, 351; Malabar, Malvide, 352; Manila, 74; Marking, 981; Monkey, 74; Nicobar, 352; Pea, 74; Physic, 699; Pistachio, 902; Singpho, 1080; Soap, 14, 979; Rush, 465.

Nuthatches, 132.

Nutia, 408.

Nutmeg, 79.

Nyasal, 981.

Nyx-vomica, 758, 1051.

Nya-mut-gin, 466.

Nwedo, 651; Nyaek, 987; Nyahg-nyi, 783; Nyan, nyand, 746; Nyapaw, 995-6; Nyawngbawi, 583; Nyawng-gin, 583; Nyawng kyet paung, 651.

NYCTANTHES, 430.

Oak, Ceylon, 980; Silver, 383; True (Quercus), 741, 911.

Oats, Oatmeal, 96.

Obat, 935.

OCHLANDRA TRAVANCORICA, 103-4.

Ochro, okra, 631.

OCIMUM BASILICUM, 905.

ODINA WOODIER, 111.

Odajas, 572; Odila, 1051; Odro, 742; Oepeko, 98; Opal, 532; Ohez (Cinnamomum), 313.

OIDIUM TUCKERI, 1115, 1117.

Oils, 811-21.

Oil of Almonds, 905; American Chester, 879; Aniseed, 887; Ben, 784, 812; Camphor, 247; Cardole (Cashew), 66; Castor, 920-3; Chaulmugro, 204, 1067-8; Chinese Wood-, 46, 503; Citronella, 455-7; Clove, 539; Cochlin, see Coconut; Cod-oil, 357-61; Cod-liver, 361, 542, 544; Cotton-seed, 613-4; Croton, 699; Dik, see Cardole; Doló, see Mahua; Domba and PINNAY, 204; Fish, see Cod-liver; Gargan, 499, 501-2; Gingergrass, 451, 461; Ground-nut, 81-3, 986; Hemp-seed, 257; Keukun, 47; Kerosene and Petroleum, 872-9; Lamp, 916, 986; Lemmon, 327; Lemon-grass, 457; Linseed, 721, 725, 732-91; Macassar Hair-, 281, 981; Mahua Oil and Butter, 120; Mangosteen, 553; Marmelle, 27; Mustard, 183-6, 812, 815-6; Muthul and Avel, see Coconut; Niger, 625; Nimar, see Rusia; Olive, 82, 115, 190, 813; Pinay, see Domia; Plum, 906; Polii (wild Safflower), 282; Poppy, 856, 860-1; Rape, see Mustard; Rock Oil, 873; Rusia, 451-5; Safflower, 281-3; Sandal-wood, 977-9; Sonar, see Mustard; Sesame, 986-7; Tung, see Chinese Wood-oil; Turkey-red, 922; Vetiver, 1106; Wood-, Malabar, 499.

Oil-cake, 818, 922; Cloth, 813-4; Seeds, 811.

Oinos krithinos, 321.

Oka, Okra, 577; Ol, 65; Ola, 429, 861; Olaak-tambol, 1; Ololi, 906.

OLI, 115, 190, 813.

Olen-kitaia, 69.

Oleum Nigrum, 292.

Olibanum Tree, Indian, 174.

Olij-cha, 459.

Olives, Indian, 813.

Omok, 1051; Ond☤m, 285; Omo, 142; Omu, omum-water, 285; Onam, 544; Oni, 350.

Onion, 58, 945, 1048, 1141.

Oxym, 562.

Oxymora (Asmatogi), 581, 585.

Opal, 562.

OPERCULINA TURPETHUM, 687, 822.

Opion (Opium), 845-6.

Opio tebaico (thebaicum), 846-7.
INDEX

Opium, 258, 845–61; ... Akbarn, 857; ... Antidote, 28; ... Bengal, 851–3, 856; ... Excise, Malwa, 854, 856; ... Provision, 852.

Opos, see Opión.

Opuntia, 347, 868.

Ora, 102.

Orange, 8, 7, 320, 1110; ... American Osage, 999.

Orangenbaum, orange, 320; ... Orchil, 448.

Orchis, 962–3.

Oer, 915.

Orioles, 132, 142.

Ormul, 538.

Orobanche, 803.

Ororba, 295.

Oruba, 196.

Orpiment, see Arsenic, 92.

Ortolan, 134–5.

Orzya (Rice), 116, 293, 776, 823–42, 1046, 1082.

Osage Orange, 999.

Oshadi, 252.

Ostrich, 35, 139.

Oth (Cotton), 572; ... Oud-bati, 466; ... Ouok thapha-y, 559; ... Ouplate, 980.

Overlook, 248.

Ovis, 644, 746.

Ose, 96; ... Ose, 285; ... Ouw, 586.

Oxen, 644, 732–3.

Oxidase, 806.

Oxide, 92, 762.

Oxytenenthera, 103–4.

Oysters, 541.

P

Pádn (Rhus), 914; ... Pabba, 294; ... Pachak, 980; ... Pachénypát, pachhóli, pachpanadi (Pogostemon), 904; ... Pachim, 743; ... Pachunda, 264; ... Pachvar (Beer), 757, 760, 826, 840, 1043, 1046.

Pachydiuss (Beetles), 4.

Pacilre, Pulque Wine (Agave), 31.

Padagó, 60; ... Padam-chal, 912; ... Padar, 930; ... Padda-jallagadi, 1031; ... Padam, 907; ... Paddi, 752.

Paddy Bird, 139.

Padhac, 411; ... Padma-kasta, padouk, 907–8; ... Padval, 1081; ... Padsahr, 131; ... Pagan, 989; ... Pago-shue-hmat, 824; ... Pagri, 618; ... Pagun, 165; ... Pagu-tulla, 103; ... Páhuri-in-drayan, 439; ... Pahari nimbu, 325; ... -rai, 182; ... Pái, 903; ... Paia, 103; ... Paída patti, 589; ... Paiman, 526; ... Painipishin, 1105; ... Páipoon, 449; ... Páira (Buchanania latifolia), 188; ... (Cotton), 550; ... Paishti, 1046.

Paka, 980; ... Pakar, 538; ... Pakodi, 868; ... Pákri, 533; ... Paksulu, 104; ... Pakra Kórpa, 244; ... Pala (Cardamom), 511; ... (Conessi Bark), 640; ... (Dita Bark), 60; ... (Pigone Pea), 197; ... (Wrightia tinctoria), 663, 1131; ... -garuda, 60; ... -titupei, 627.

Palaëornis (Paroquet), 133, 141.

Pak, 928; ... Palan, 121; ... Palándu, 58; ... Palang, 928.

Palaëquium (Rubber), 627.

Palás (Butea), ... -ki-gond (Gum), 189; ... -píprá, 190; ... Palepunzen, 1044; ... Pálátá-mandar, 523; ... Pal kurwan, 1132; ... Palledar, 1127.

Palm Canes, see Calamus; ... Cocosnut, see Cocosnut; ... Date, see Phenix; ... Palmyra, see Palmyra; ... Sago, see Arenga and Caryota; ... Talipot, see Palmyra; ... Palm Christi, 915–23, 1012.

Palmajuncus, see Plectoconia.

Palmarossa, 360, 451.

Palmatisine, 19.

Palmin, 359.

Palmyra Palm (Borassus), 167–71, 428, 760, 928, 1046, 1109.

Palosa, 15; ... Pálú, 910, 925; ... Paludar, 291; ... Pálú pita, 132, 140; ... Palwa kanda, 929; ... Palwoy, 1053; ... Panma, 144; ... Panban, 1054; ... Panbhash, 912; ... Pan-budinga, 440; ... Panmídi patti, 589; ... Panpe, 792; ... Pan (China Grass), 144; ... Pán (Piper Betle) 83–4, 891, 988; ... Pan, pan supari (preparation of Betle leaf, nut, lime and spices), 10, 83, 104, 285, 712; ... Paná (Buffalo), 732; ... Paná (Palmyra Palm), 169; ... Panasa, 94; ... Panch, 1044; ... Panchavalkala, 538; ... Panchi, 71; ... Panch-pattr, 402.

Pancratium triflorum, 1049.

Pándar, 945; ... Pándána, 1063.

Pándanus, 31, 66, 188, 776, 821, 1133.

Pandit handi, 752; ... Pandol, 1081; ... Pándruk, 1051; ... Pan dubbi, 141; ... Panel, 904; ... Panexir, panvar, 288; ... Panga (Black Myrobalan), 1073; ... (Hemp narcotic), 258; ... (Salt), 963; ... Pángara, 116–7; ... Pangiri Maana Grass, 456; ... Pángri, 525, 894; ... Paní, 94; ... Paní, 521; ... Paníchika, 498.

Panicum, 79, 506, 603, 869, 988.

Pani-kukha, 28; ... Paninír, 925; ... Paníshal, 1080; ... Panír, 1120; ... Paní, 1044; ... Panjoli, 887; ... Panlat, 511; ... Pan-muhori, 552; ... Panní (Rusa Oil), 451; ... (Vetiver), 1106; ... Panoca, 556; ... Pansabi, 937; ... Pan-sáhi kála gandh, 936; ... Pánusza, 963; ... Pantagá, 204.

Panther, 632.

Panuca, 535; ... Páo, pooshi-ding-ying, 100; ... Pápad, 881; ... Pápad (Horace Gram), 504; ... or papri (Salt), 55; ... Papanos, 324.
INDEX

Percun gayam, 534.
Peruvian Bark, see Cinchona, 302.
Pessa, 882; Pesu, 720; Petka (Pumpkin), 441; Pitho, (White Gourd Melon), 130; Petum, petun, 789, 791; Peyerand, 1143.
Pewter, 402.
Peya, 742; Peyera, 907; Pís, 776; Phag, 1031; Phagwari, 537; Phain, 974; Phala, 94; Phalapura, 325; Phael, 116; Phalsa, 624, Phan, 115; Pha-pat, 161; Phapour, 1849; Phaphra, 532; Pharat-singhali, 911; Pharsa, 624.
Phaseolus, 225, 295, 767, 770, 870-1, 879-82, 1107.
Phatak, 561; Phatika, 760, 1043; Phatkia, 22; Phatkar, 61; Phayoni, 125.
Pheasanta, 132, 134-5, 141.
Pheko, 201; Phenila, 979.
Phenina-mama, 822; Pheong, 99; Phetayees, 162; Phikai, 843-4; Phikin, 776; Phikri, 742; Phiktri, 61, 1110; Phinti-bér, 1144; Phiodi, 400.
Phophur, 937; Phootie, 905.
Phosphate, 772.
Peragmites, 115, 777.
Phal, 402; Phula, phuldi, 15; Phulango, 255; Phul bhang, 250; Phuli, 56; Phul-kobi, 182; Phulsatti, 1121; Phul-sola, 29; Phul-sunn, 430; Phulva, phulvord, 116; Phungali, 531; Phupsat, 131; Phut, 438; Phutka, fatka, 23; Phyeum, 99.
Phyllanthus, 887, 1047, 1109.
Phylloclados Rambusoides, 105.
Phylloxera, 1115.
Physeter macrocephalus, 64.
Physic Nut, 699.
Phytopythor (Plant Disease), 87.
Phytophthora (Plant Disease), 87.
Phytositus gossypii (a mite), 610.
Pial, 188; Piasil (Indian Kino), 908; Píasil (Terminalia tomentosa), 1073.
Piassaba, piassava, 170, 286.
Piazi, 1089; Pichie, 100; Pickett, pyecil, 794-5.
Picrohiza Kurroa, 405, 640.
Piec, 570; Pienka, 249; Pien-tou, 508.
Pigeons, 134-5.
Pigs, Pig-skion, 702, 752.
Pikun, 755; Pila-berlida, 991.
Pilkhon, 538; Pilkann, 887.
Pimmellina, 283, 820, 887-8.
Pina, pang, 69; Pinari, 1050; Pinas, 66; Pincho, 160; Pind, Pinda-kharjura, 882, 885; Pindali, 494, 496.
Pindar, 74.
Pindweli, 133; Pind chirdi, 882; Pind, 791.
Pine (Pinus), 888-90; ... Amboyna or White, 30; ... Koolum, Sylhet, 67; ... Screws, 188, 776.
Pineapple, 31, 66, 929, 1046, 1109.
Piney marom, 1105; Piringa-konga, 140; Pini, 791; Pinna, 117; Pinnay, Pinnay Oil, 204.
Pintail, 134.
Piorina, 195; Pipal (Figs), 538, 1000; Pipal (Long Pepper), 891.
Piper betle, 83-4, 891-6, 988.
Pipits, 132.
Pipal-yang, 979; Pipulmul, 891; Pir-e-dang, 140; Pir, 484; Piring, 1081; Pirklas buta, 486; Pischka, 720; Pishanam, 836; Pishor, 115; Piska, 496; Pissi, 1086; Pissi-babul, 14; Pista, 902.
Pistache de terre, 74.
Pistachio Nut (Pistacia), 901-2, 914.
Pitsum, 298, 902-3.
Pita, 31, 35.
Pitachandana, 976; Pita-karoseana, 405; Pita-kanda, 489; Pital, 401; Pitaba, 991; Pitchapullum, 317; Pitchinow, 742.
Pithecolobium saman, 383.
Pitta, 1121; Pitt, 777; Piuin, 23; Piusa, 1086; Piyan, 188; Piya-ye, 128; Pijaz, 58.
Plague, 88.
Plakasa, 538.
Plantain, 87, 479, 787, 1111.
Plaster of Paris, 716-8.
Plectocormia Himalayana, 202.
Plectranthus Euglossus, 124.
Plleuro-pneumonia, 742.
Plotsus Melangaster, 141.
Plovers, 134, 138.
Plum, 906; ... Black, Jaman, 526; ... Oil, 906.
Plumbago, 624.
Plumbago Zeylanica, 49.
Pochard, 134.
Podka, 103.
Podophyllin, 904.
Fogostemon, 821, 904-5.
Pogalo, 104; Poo, 163.
Poies cichos, 205; ... d'Angole, 196; ... pecho, 295.
Poisons, Cattle, 1, 633, 743; ... Fish, 45, 499, 546.
Poka-vaks, 83; Poka nilam, 904; Pol, 350; Polle, 128.
Polenta, 1138.
Pol, poliyam, 276; Polli Oil, 282; Polo-lo-mi, 94; Polo, 738.
Polygonum tinctorum, 664, 1089.
Poma, 232, 290.
Pomegranate, 87, 909.
Pomele, 324.
Pomfret, 541, 546-7.
Pomum Adami Commune, 324.
<table>
<thead>
<tr>
<th>Page</th>
<th>Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>726</td>
<td>Rāi (Mangrove), 913; Raida, 828; Rai-jāman, 526.</td>
</tr>
<tr>
<td>728</td>
<td>Rall, 132, 134.</td>
</tr>
<tr>
<td>888</td>
<td>Raisala.</td>
</tr>
<tr>
<td>1109</td>
<td>Raisins, 1109–10, 1112, 1118.</td>
</tr>
<tr>
<td>256</td>
<td>Rajani, 285; Rajas, 259; Rajavaral, 561; Rajgir, 532; Rajika, 518.</td>
</tr>
<tr>
<td>1116</td>
<td>Rak, 1116; Rakat rohan, 1043.</td>
</tr>
<tr>
<td>1043</td>
<td>Rakī, 1043; Rak-top, 915; Rakura, 937; Rakshā, 1053; Rakta-chandran, 25; Raktsachandana, 976; Rakta-kambal, 25; kānchan, 121.</td>
</tr>
<tr>
<td>1032</td>
<td>...khurā, 1032; Raktdalā, 496.</td>
</tr>
<tr>
<td>1105</td>
<td>Rālā, 988; Raṅdhūrāp, 248; Raṅī, 844; Raṅī, 891.</td>
</tr>
<tr>
<td>777</td>
<td>Ram, 504; Rāmabāna, 777; Ramaciam, 1106; Ramāṭī, 834; Ramāṇjìrā, 538; Ramān sorrā, 543; Rambars keora, 34; Ramdana, 63; Ramie, 521; Ramie, 521; Ramū, 143–59, 863; Rām-jamāṇī, 834; Ram-kanta, 3; Ram Kapas, 576, 586; Ram-keto, 787; Rampat, 1051; Ramphal, 71; Ramra, 881; Ramras, 298; Ramrasam, 258; Ramrashālī, 936; Ramser, 929; Ramshing, 911; Ramsita, 71; Ramtezpat, 311; Rāṃtīl, 625; Rāṃtūrā, 631.</td>
</tr>
<tr>
<td>1081</td>
<td>Rānā-chapaḍabāli, 1081; Rand bario, 748; Rān-bor, 1144; Rand, 915; Randhīni, 285.</td>
</tr>
<tr>
<td>546</td>
<td>Randēna dumetorum, 546.</td>
</tr>
<tr>
<td>687</td>
<td>Rangī, 402; Ranga-alu, 687; Rangaḥal, 142; Rangari, 833; Rān-halā, 443; Raniwalī, 914; Ranja, 343; Ranjanā (Adenanthera), 25; ... (Red Sanders Tree—Pterocarpus), 909; Ranket, 537; Ranub, 202; Rān parul, 1081; Rān-ṃerā, 987; Rāntrutā, 755; Ranzuru, 889; Ras, 785; Rapa, 176.</td>
</tr>
<tr>
<td>80</td>
<td>Rape, Indian, 178–80, 183, 360, 770, 812, 816–8, 1089; ... Gujarat, 179; ... Oil, 183.</td>
</tr>
<tr>
<td>955</td>
<td>Rāra, 930; Ras (Cane-juice), 952, 955, 1110; ... (Palm, palm-juice), 170, 929; ... (Sheep), 746; Rasā, 1001; Rasamala, 61; Rasalā, rasali, 936; Rasi (Carbonate of Soda), 55; ... (Gingelly), 981; Rāsun, 58; Rāst-bāval, 14; Rata-del, 94; ...ensal, 512; ...ekukna, 247; Rāt-alu, 493, 496; Ratambī, 533; Ratāntī, 909; Ratī, 1; Rato nigdā, 99; Rattanjoṭ, 699.</td>
</tr>
<tr>
<td>775</td>
<td>Rattanas, 201, 775; Raung, 527; Rauna, 451; Rava kada, 114; Rawān, 1107.</td>
</tr>
<tr>
<td>543</td>
<td>Rayfish, 543–4, 547.</td>
</tr>
<tr>
<td>92</td>
<td>Realgar, 92.</td>
</tr>
<tr>
<td>1081</td>
<td>Rebhi, 1081.</td>
</tr>
<tr>
<td>265</td>
<td>Recche, reccheado, 265.</td>
</tr>
<tr>
<td>305</td>
<td>Red Bārk, 305.</td>
</tr>
<tr>
<td>576</td>
<td>Red Nāswari, 576.</td>
</tr>
<tr>
<td>134</td>
<td>Redshanks, 134.</td>
</tr>
<tr>
<td>132</td>
<td>Redstarts, 132.</td>
</tr>
<tr>
<td>777</td>
<td>Red-wood (Adenanthera pavonina), 25; ... Indian (Soymida febrifuga), 1043; ... Andaman (Pterocarpus indicus), 907.</td>
</tr>
<tr>
<td>164</td>
<td>Rīc, 164.</td>
</tr>
<tr>
<td>777</td>
<td>Reed, 98, 114, 775, 777, 864.</td>
</tr>
<tr>
<td>777</td>
<td>Reed Mace (Typha), 777.</td>
</tr>
<tr>
<td>1144</td>
<td>Reechā, 1144; Rēgu, 1143; Rēh, 4, 51, 113, 189, 711; Rēhā, Rēhār Soils, 51; Reju Fibre, 44; Rejk, 906; Reḷḷu-guddā, 930; Reḷну, 1144; Remō, 437; Rempuṇḍanda-cheke, 909; Rendū, 915.</td>
</tr>
<tr>
<td>1120</td>
<td>Rennet, Indian, 1120; ... Vegetable, 483.</td>
</tr>
<tr>
<td>994</td>
<td>Rērū, 15; Resham, 994; Revachin-nisīrā, 554.</td>
</tr>
<tr>
<td>709</td>
<td>Revalenta, 709.</td>
</tr>
<tr>
<td>451</td>
<td>Rezkuḥ, 743; Rhauṣa, 451.</td>
</tr>
<tr>
<td>759</td>
<td>Rhazya stricta (Vegetable Rennet), 483.</td>
</tr>
<tr>
<td>781</td>
<td>Rhea (Bohemiera), 143–59, 250, 295, 430, 721.</td>
</tr>
<tr>
<td>888</td>
<td>Rhi, 888.</td>
</tr>
<tr>
<td>644</td>
<td>Rhinoceros (Rhinoceros unicornis), 644.</td>
</tr>
<tr>
<td>848</td>
<td>Rhubarb: Chinese, Himalayan.</td>
</tr>
<tr>
<td>912</td>
<td>Turkey, 912.</td>
</tr>
<tr>
<td>914</td>
<td>Rhhus cotinus, 115, 191, 914.</td>
</tr>
<tr>
<td>659</td>
<td>Rhynchosida (Rubber), 659.</td>
</tr>
<tr>
<td>759</td>
<td>Rhynchosoria (Ferment), 759.</td>
</tr>
<tr>
<td>1107</td>
<td>Rīamba, 250; Rīman, 1107; Rībojo, 785.</td>
</tr>
<tr>
<td>776</td>
<td>Rice (Oryza), 258, 479, 776, 823–41, 1035, 1043, 1046; Rice: Autumn (Aus or Bhadoi), Summer (Boro), Winter (Aman), 828.</td>
</tr>
<tr>
<td>739</td>
<td>Ricin de Palma Christi, Ricinus communis (Castor), 812, 915–23, 1005, 1012.</td>
</tr>
<tr>
<td>152</td>
<td>Rigana, 1026; Rīha, 144, 152; Rīkhu, 930; Rīr, 911; Rīnda, 739.</td>
</tr>
<tr>
<td>742</td>
<td>Rindepend, 742.</td>
</tr>
<tr>
<td>79</td>
<td>Ringa, 1143; Ringöl, 99.</td>
</tr>
<tr>
<td>387</td>
<td>Ringer, 387.</td>
</tr>
<tr>
<td>1040</td>
<td>Ringni, 1038, 1040; Rīnj, 15; Rīsa Fibre (Villebrunnea integrifolia), 164; Rīsa (China-grass), 144; Rīso, 825; Rīta, rīthā (Acaia concinna), 14; ... rithi (Sapindus mukorossi), 979; Rīteji, 265; Rītza, 164; Rīt, 538; Rīyong, 774; Rīz, 825; Rōntanga, 980.</td>
</tr>
<tr>
<td>132</td>
<td>Robins, 132.</td>
</tr>
<tr>
<td>448</td>
<td>Roccella tinctoria, 448.</td>
</tr>
<tr>
<td>546</td>
<td>Rock-eod, Red, 546.</td>
</tr>
<tr>
<td>561</td>
<td>Rock Crystal, 561.</td>
</tr>
<tr>
<td>873</td>
<td>Rock Oil, 873.</td>
</tr>
<tr>
<td>180</td>
<td>Rocket, 180.</td>
</tr>
<tr>
<td>927</td>
<td>Rodan, 927.</td>
</tr>
<tr>
<td>546</td>
<td>Roe, Fish, 546.</td>
</tr>
</tbody>
</table>
| 712 | Roghan, 282, 479, 712; Rohini, 640; Rohish, 451; Rohisha, 451; Rohu (Camphor-wood), 310; ... rui
INDEX

Salix, 115.
Salla, 888; Salma, 885; Sálem, 168, 570; Salopa (Fibre), 286.
Salsolá, 112–4.
Salsola Soda, 50.
Salt, Common, 56, 963–71, 973; Black, 56; Glauber’s, 56–7; Rock, 964; Sea, 50, 965; Volcanic, 48.
Saltbush, Australian, see Saltworts.
Saltペット, 55, 771, 972–5.
Sattu, 600.
Salvadora, 479.
Sam (Artocarpus Chaplasha), 94; (Indian Blue Pine), 888; Samada, 428; Samar, 822; Sámbar (Antlers), 644–5; Same, shama (Panicum), 506, 843; Sa-merit, 552; Sammananthi, 525; Samon-ne, 811; Sampfen Wood, 194; Sampit, 99; Samsara, 597; Samvita, 963; Samudránti, 570; Sa-mung-sa-ba, 887; Samvita, 879; San-, sana-, sann-, sann-hemp (Crotalaria juncea), 45, 251–2, 254, 256, 408, 409, 430–7, 603, 675, 804–5, 868, 924, 948, 988, 1035; Sana (Cannabis sativa), 249–63; Sanai, 430; Sanalinga, 313; Sanatoti, 504; Sanatta, 1005; Sanbu, 430; Sanchez, 892.
Sandal, Bastard (Erythroxylum monogynum), 525; wood (Santalum album), 190, 821, 926, 976; wood, Red (Adenanthera pavonina), 25, 1106; wood, Red (Pterocarpus Santalum), 909.
Sandak, 909; Sandari, 100; Sandava, 972.
Sanders Tree, Red, 909.
Sandhur, 707; Sandoleka-nar, 885; Sandi-huga, 1132.
Sandpiper, 134.
Sandra, 9; Sandras, 1105; Sangangür, 95; Sang-i-bashi, 330; Sangi-dalam, 327; Sangi-lerhad, 716; Sangi-marján, 989; Sang-i-paluma, 1049; Sang-i-yakada, 710; Sang-i-yashab, 560; Sangji-kanai, 538; Sankha, 989; Sanka bhasma, 710; Sankhu, 292; Sankru, 392; Sankush, 543, 547, Sán-madat, 1072; Sanna-batta, 838; Sanna-bile-kabbu, 937; Sanna-gal, sanagalu, 295; Sanna hajazit, sanan-kokki, sanan-mukki, 288-9; Sano, 445; Sano, 161; San-pon-yj, 1111; Sanpyaug, 1039; Sandré, 160.
Sansevieria zeylanica, 868.
San-tóg, 430; Santagú, 976.
Santalum album, see Sandal-wood.
Santantikó, 470; Santara (Citrus aurantium), 320–4; nibu (Sweet Lime), 326–7; Sante kayji, 439; Sánth, 402; Santha (Woodfordia), 1121; Santhi (Rice), 834; Santi, 1072.
Santonica, santonin, 93.
Santra (Cyperus rotundus), 466.
Sanubar-el-hindi, 292; Sanu-kapashi, 1; Sanwe, 430; Sanwa, 843; Saóni, 887; Saora, 894; Saphari khumra, 441; Sapin, 889.
Sapindus, 14, 979.
Sapium, 546, 659, 979–80.
Sapodilla, 627.
Sapota, 627.
Sapppan-wood, 61, 194.
Sappanga, 194.
Sapiphere, 428, 559, 663, 716.
Sapro, 1051; Sar, sarra (Manure), 767; Sar sarra (Saccharum arundinaceum), 929; Sara (Boiled Milk), 475; Sarago, 784; Sarah, 743; Sarana, 542; Sarang, 123; Saráy, 1043.
Sarcochlamys fulcherriana, 163, 924.
Sarda, 437.
Sardine, 541, 545, 547, 549.
Sari, 618; Sarieha (Sarson), 177; Sarri, 628; Sarjika, 48; Sarjum, 990; Sarkanda, sarkará, 362, 929–31; Sarkaréi walli, 686; Sarkarpán, 930; Sári, serri, 296.
Sarsaparilla, Indian, 35, 628.
Sarson, 176.
Sarús, 134; Sáš, 439; Sáti, 72; Sasim, 496.
Sassafras, Nepal, 310.
Sat, 988; Satapushpa, 879; Saté, sateri, sathe, satpuria, satpada, 124; Sáthi, 824, 831; Sat, 444; Satiōna, 60.
Satin-wood, 294.
Satpatiya, 754; Satpura, 486; Sat-sa, 163; Satiṣyār, 484; Sathapnu, 777; Satthwa, 500; Satá (Barley), (Maize and Barley Flour), 505, 640, 1138; Satur, 784.
Satyrium, 962.
Sau, 46, 879; Sauj, 911; Sauna-togari, 197; Samuf, 552; Sáur, 108; Saurab, 429; Saujī, 887.
Sauromatum guttatum, 65.
Sáva, 844–5; Saúra, 168; Savaya, 1051; Sawahri, 542; Sawan-chwtu, 843; Sawami, 799; Sawān, 842.
Sawfish, 543, 546–7.
Saucuk, 195.
Saya, 821; Saya manjal, sayag pasupu, 447; Sá yo mar, 966.
Scale Insects, 354, 356.
Scharlach-worm, 347.
Schchedenopf, 249; Schenam, 249, 251.
Schleichera trifuga, 1057.
Scenus, 461.
Schorigenain, 161; Schorí, 563.
Scilla indica, 1048.
Scirpus Kysoor, 466.
Sclerophyllum, 823.
Scorpius Fish, 546.
INDEX

Shumaj, 190; Shunda-pana, 285; Shunnambu, 709; Shurl, 428; Shavacu, 565; Sheen, 180; Shwep-yon-on, 441; Sia-pu, 144; Sinu, 150; Siyawgaa, 707.

Sibus or Whiteeyes (Birds), 132.

Sida (Fibre), 924, 991.

Sida (Lagerstroemia parvisflora), 701; Sida atav, 487; Siddha, 249, 258; Sidhu, 1044; Sigwan, 1008; Silhar, 121; Silharu, 160; Sihund, 531; Sijong, 102; Sikakai, 14; Sikhaa, 125; Sila, 911; Siluras, 61; Silbaria, 100; Silim, 713; Silingia, 749.

Siliquastrum, 264.

Silk and Silkworm, 992–1028; Mulberry worm, 992–1002; Eri, 916, 1011–3, 1144; Muga, 1003, 1009–11; tasar, 526, 701, 1002–9, 1073, 1144; Trade, 1013–26; -worn rearing on Arhar, 200; Chinese, 912, 1005; Landibë of Madagascar, 200; Vegetable, 35.

Silk-Cotton Plants (Bombax malabaricum), 168; (Calotropis), 207; White (Eriodendron), 521; (Coelospernum), 812.

Silkkari, 1049.

Sillago sihama (Whiting), 547.

Sillea, 101; Sill-kurta, 628; Sillooh, 104; Siloi, 732; Silphion, 533.

Silurus (Indian Isinglass Fish), 543.

Sim, 508; Si-ma, 240, 251; Sima bogyu, simai-karri, 333; Simbal, 168; Simbi, 504; Simka-alu, 766; Simasim-el-hindi, 915; Simplicica, 525; Simul, 168, 232; Sina, 997; Sinal (Singä), 745.

Sinapis, see Brassica, 176, 178, 180, 182.

Sibhan-kara, 890; Sinderwani, 443; Sindhi, 1139; Sinduri, 755; Singen, 1053; Sighan, 99.

Singhara Nut, 1080.

Singhu, 283; Singia jur, 21; khar, 21; Singli, 1144; Singmonal, 141; Singtok, 785; Singya, 121; Singya-bis, singyi, 23; Sinhasan, 402; Sini, 249, 256; Sinkami, 311; Sinaspâ, 483; Sindh, 125; Sipari, 891; Sipka-chuna, 710; Sir (Garlic), 58; ... (Silk), 994; Sirâ, 783; Sire, sire, 456; Singhurait, 462; Sirina (Hemp), 249; Siria, sirisha, sirin (Albizia), 45; Sirka (Vinegar), 1108; Sirki (Munj), 929; Sir kupa, 177; Sirnili, 29; Sir-nal, 162; Sirom, 1106; Sirru kirâ, 63; Sisa, 402, 707; Sisal, 31, 39–42, 924; Sisi, 1051; Sisik-kuraku, 1079; -panu, 1079; Sisak-riceo (Dalbergia), 485–611; Stalpâiti (Mate-Clinozygme), 775–9; Stâ-palâm, 71; Sitaphal (Custard Apple), 71; (Musk-Melon), 441; Sitâ-punda, 71; Sit-ruti, 776; Sisal, 484; Sîta (Saltpetre), 974; (Tamarind), 1006; Sîvæn burrûr, 842; Sîyâh, 283.

Skates, 643–4, 547.

Skins, 743.

Skins, Animal, 632; Bird, 138.

Skjøt, 743.

Smilax, 628.

Smut, 456, 941, 1031, 1134.

Snake-bird, 141; Gourd, 1081; -stone, 131; -wood, 1051.

Snipe, 134, 138.

Snippet, 134.

Snuf, 743.

Soap, 547, 812–4, 819; -nut, 979; -pods, 14; -stone, 1049.

Soda, Salsole, 50.

Sodium and its Compounds, 50–7; Bi-borate (Borax), 56, 171–3; Carbonate, 50–6; Caustic, 56; Chloride (Table Salt), 51, 56, 963–7; Sulphate (Glauber’s Salt), 56–7.

Sohaga, 171; Sohan, 1043; Sohkire, 552; Soh-i, 546; Sohun, 140.

Soie (Silk), 994.

Sole, 28–30, 447.

Solar, see Soła.

Solara, 462; Sola topis, see Soła.

Soles, 541, 546–7.

Som, 694; Soma, 251, 759; Somal, 92; Somblenzi, 882; Sombi, 887.

Sonamacco femminello (Rhus Coriaria), 914.

Son (Gold), 565; Sonafal, 163; Sonali, 287; Sonalla, 430; Songdhi, 937; Somi, 290.

Sonneratia acida, 30.

Sonpur, 552; Sonth, 1139; Soohn, 500; Soonamooky, 996; Sophia, 452; Sorâka, 972.

Sorgo, sorg, see Sorghum.

Sorghum, Sugar, 929, 1041.

Sorrel, Red, 629.

Soso, 981; Sota guwâr, 449; Sowjî, 452; Souta, 1107; Sowâ, 879.

Spanish-gourd, 441.

Sparrows, 132; Java, 133.

Spartium junceum, 431.

Spatia, 778.

Sperm-whale, 64.

Sphatikari, 61.

Spica indica (Cymbopogon Nardus), 456, 463.

Spider, Red, 228.

Spiga Norda, see Spica indica.

Spice (a disease of Santalum), 976–7.
INDEX

Toxa Bark, 305.
Tragacanth, Indian, 95.
Tragopan (Pheasant), 141.
Trebol, 401; Trao rajah, 532; Tra-
pusha, 439; Trasara (Sanscrit for Shut-
tle), 1002; Trash, 846, 856; Trimamn, 492.
Treeacl, 952.
Tree, 1055.
Tree-pie, Indian (a Bird), 133.
Trema orientalis, 383.
Trevesia palmata, 30.
Trichospheria sacchari, 936.
Trigona (Bees), 127.
Trigonella, 605, 820, 1081–2.
Trimbal, 538.
Tripan, 122.
Triticum vulgare (Wheat), 116, 293, 1082–1105.
Triquiri, 822.
Trogons, 132; Troja, 925; Trong, 1026; Trumba, 532.
Trumpet Gourd, 700.
Truncia dala, 316.
Trygon, 543, 547.
Tsaa, 994; Tsambelai, 701; Tsarat-
pang, 764; Tsatya, 163; Tsau, 994; Tscha, 210; Tschawbilder, 265; Tsoma, 130; Tsor, 885; Tei, 994; Teja-pangam, 194; Te'iu'iu'hu ku, 294; Teja, 210; Tejada-bangi, 249; Tejaka, 92; Tejakela, 538; Tejancke, 528.
Tejapangam, 194; Tejeru-cansjava, 249; Tejolom, 1032; Teisi, 531; Tsu-
ma, 249, 251; Tsunt, 910; Tu, 210.
Tribopara musica, 989.
Tubal, 124; Tuirir-jen, 124; Tugdar, 140; Tuggur, taggar Wood, 74; Tuh, 316; Tusa-tota, 141; Tukak, 161; Tukati, 991; Tuki, 498; Tukra, 1000; Tuli, 784; Tula, 570; Tu-
laingno, 660; Tula kór, 838; Tulda, 100; Tulk-pyre, 879; Tuli, 610.
Tuma, 3; Tumba, 700; Tumbeki, 795; Tumbika, 498; Tumi, 499; Tumil, 498; Tumir, 700; Tum, 290; Tundi, 570; Tund, 290; Tung, 755; Tünno, 914.
Tung Oil, 46.
Turkia, 350; Turkuaria, 991; Tur, 196, 601, 871, 1035; Turanji, 325; Turanj, 45; Turbid, 822.
Turbinella rapa, 989.
Turich, 103; Turichu, 403.
Turkey, 136; ... Red, 49; ... Red
Oil, 922.
Turmeric, 443, 497–8, 1139–41.
Turnip, True, and Swedish, 176.
Turpentine, 454, 888–90; ... Chian, 902.
Turpeth Root, 822.
Turquoise and Turtle, 559, 716, 1079.
Turtur (Turtle-dove), 133.

Turuk-togari, 197; Tush-ra, 743; Túsi, 744; Tussah, tussche, tussur, tussore, see Tasar; Túl, 784–5; Túl, 438; Tüv, tuvar (Pigoon or Nö-ye
Pea), 496–200, 509, 598–9, 835, 869, 871; Tósh, 313; Tyagada mara, 1068; Tyth, 533.
Tyloses, 88.
Tythia, 98, 116, 293, 777.
Tytre, 469, 474; Tzezde, 843; Tzu-dza, 564.

U
Úd (Lignum Aloes), 72; Udadyaweli, 880; Udah-dhatárd, 488; Udal, 1051; Udála, 121; Udan, 546; Utid, 881, 871, 1108; Udiah, 115; Udlu, 117; Ud-rak, 979; Udum-
bara, 538; Ugal, ugla (Buckwheat), 532; ... (Lignum Aloes), ugar, 72; Ugha, 700; Ugaru, 531; Uk, ukh, 930, 934–5, 937, 944; U-kadac namland, 99; Ukoko, 586; Uko,
tang, 102; Ulatkamde, 1; Uleva, 504; Ulevi, 543, 546; Ulé, 650; Ulé, 764; Ulesi, 625; Ulo, 161; Ulù-grass, 892; Uluva, 1081.
Umá, 721; Umakata, 259; Umari (Arthocereus indicum), 113; ... (Indian Jujube), 1143; Umari-
krayi, 114; Umá ziggar, 720; Umbar, 538; Umbae-letus, 202; Umbh, 283.
Umarvatti, 5; Una, 101; Undala, 546; Undaribi, 700; Undarau, 16; Undi, 25; Undum, 909.
Unio (Shell), 712.
Unji, 45; Unmatta, 488; Unná, 1144; Upagí mara, 552; Upak-
kunchika, 511; Upareda, 628; Upas Tree, 71.
Uppam, 584, 603; Uppu, 963; ... nute, 784.
Upupa epops (Hoopoe), 142.
Upu-poma, 913; Ural, 746.
Urad, urd, urud, 879, 881, 1107, 1135.
Urecella elastica (Rubber), 659.
Urena lobata, 905.
Urginea indica (Indian Squill), 1048.
Uri (Rice), 824; ... (Gram), 508; Uriar, 746; Uriata, 979; Uru, 994; Urni, 428; Urohi (Cow Pea), 1107; ... (Dolichos Lablab), 508; Ur-
sheme, 104.
Usbus, 632.
Urtica, 144, 163, 924.
Uru, 512; Uruca, 142; Úrük, 905; Úrük-el-kéfsir, 444; Uruzu, 825; Uš, 930; Usad hana, 70; Usan, 180; Usár Soils, 51, 711; Userekii, 886; Usjúr, 276; Ushak lani, 114; Usjar, 205; Ushasata, 963; Ushgai, 901; Usir, 886; Usira, 1106; Usirbéd, uskia, 429; Us-spár, 99; Ussey, 102; Ussu, 427.
Ustilago, 456, 941, 1134.
Warblers, 132.
Waruna, 429; Washut, 103.
Water-lily, 663; ... Melon, 316.
Wa'iri, 101, 103; Wattri, 580; Watrai, 103.
Wattle: Australian Black, Australian White or Silver, and Common, 2.
Wax-Bees", 125-8, 812-4; ... Japan, 914; ... Paraffin, 876; ... cloth, Afridi, 93, 282-3, 712, 782, 813; ... insect, White, 71.
Wa-yah, 102.
Weal-mora, 490.
Weizen (Wheat), 1082.
Wetla, 467.
Whalebone, 645.
Wheat, 643, 726, 728, 834-5, 917, 1037, 1043, 1082-1105, 1134; ... English, ... Macaroni, ... Miracle, 1085; ... Polish, 1084; ... Rivet, 1085; ... Spelt, 1084; ... Steale, 1083.
Whisk-fibre, 188.
Whisky, 956, 1043.
White-bait, 547.
White-eyes, 132, 134.
White-footed, 293.
White-gourd, 441.
Whiting, 547.
Wilayati babi, 14.
WILLIUGHBREIA (Rubber), 658, 660.
Willows, 115.
Wines, 1043, 1115.
Winri, 428.
WITHANIA COAGULANS, 474, 483.
Wis, 825.
Woad, 663.
Wond, 1043; Wontenulgi, 104; Wora, 537.
Wood-ash, 48.
Wood-soul, Chinese, 46, 503; ... Malay, 499.
Woodpeckers, 132.
Wootz, 692.
Wormseed: Barbary, Levant, 93.
Wormwood, Indian, 93.
Wora, 101.
WRIGHTIA TINCTORIA, 190, 640, 663, 1131-2.
Wurku, 430; Wulawali, 504; Wundu, 842; War, 537; Wushuli, 882.
X
Xagara, 362, 931.
Xinhqelilit pitsalac (Indigofera truxillensis), 661.
XYLON (Gossypium), 511, 576.
Y
Yahu-yahu, 136.
Yak (Grunting Ox), 644, 733.
Yake nar, 1051; Ya khing, 787.
Yakut remini, 558; Yalachi, 1143; Ydalaki, 511; Yalva, 59; Yama, 201; ...dramu, 168; Yamata kyeir, 201; Yamni, 561.
Yams (Dioscorea), 446, 479, 492, 1141.
Yánzín, /72; Ya-pien, 846; Yagáit, 560; Yári, 888; Yashm, 560; Yash-mi, yaxquis, 39; Yava, 640.
Yavak-shára, 48; Yeanadá, 1032.
Yavu-parkhira, 1032; Y-dei, 395.
Yeant, 1047.
Yebraj, 95; Yehala, 1072; Ye-khaoang, 538; Yekin, 531; Yekka, 205.
Yel, 116; Yele-gulla, 531; Yello, 1072; ... kiray, 114; Yellande, 1143; Yelliáll, 530; Ye-ná, 873; Yendiik, yindaik, 484; Yengara, 1031; Yenléi, 163; Yen nemeram, 502; Yeppa, 116-7; Yereum, 203.
Yerkhi, 467; Yerra, 580; Yeruguida, 484; Ye-tha-paan, 538; Yet kyi, 1121.
Yette, 485; Yetti, 1051.
Yeux de bourique, 190.
Yharbhuli, 489; Yinh-su, 486; Yimma, 294; Yín-pya, 124; Yippah, 891.
Yiyó, 782; Yok bawuld, 651.
Yongzalai, 553; Youn-padi-si, 631.
Ytembo, 696; Yuca, 496; Yung, 124; Yurk, 640; Yurushe, 778.
Z
Zabíb, 1112; Zafizon, 429; Zaq, 974.
Zagur, 485; Zaghlu, 720; Zaghún, 437; Zahab, 505; Zok, 61; Zatli, 492; Zamb-chule, 906; Zamburi, 322; Zamin-kand (Elephant's Foot), 65; ... (Yam), 493; Zangár, 403; Zan-ghos, 888; Zangzabíl, 1139.
ZANTHOXYLUM ALATUM, 1012.
Zansabí, 1139; Zard, 907; Zardák, 489; Zardalú, 905; Zárir, 492.
Zarnab, 911; Zauung bale, 701.
ZEA MAYS, 929, 1132-9.
Zabrawood (Diospyros Kurzii), 498.
Zebri, 526.
Zebu (Bumped Ox), 732.
Zeodary, 443; Zenedebuij, 534; Zenelu, 836; Zengi har, 1074; Zerúmbádó, 443.
ZEUZERA COFFEE, 386.
Zhírêh, 442; Zhorhatheyo, 822; Zi, 1143; Zibi, 767; Zíghir, 720.
Zinc, 402.
ZINDIBER, 446, 1139-43.
Zinqa, 12; Zir, 565; Zira (Black Caraway), 284; Zirâ (Cumin), 442; Zirah, 284; Zirá shâk, 283; Zireh, 442; Ziri, 834; Zírisk (Barberry), 130; ... (Raisin), 1112.
Ziser, ziserin (Cicer arietinum), 295.
Zíya (Cumin), 442.
ZIZEPHYLUS JUJUBA, 1003, 1005, 1012, 1057, 1143.
Zóbo, 733; Zoga, 974; Zud, 1082; Züm (Bird Cherry), 906; Zúra, zurna (Sorghum), 1032; Zurubódó, 444; Zyozzena (Hammer-headed Shark), 543, 547.