ERRATA.

p. 148, l. 2, 3 from below—exchange the words former and latter.
p. 156, l. 23—for plants read planets.
p. 157, l. 25—for 72–89 read 80–90.
p. 163, table, 3rd column (Ptolemy), l. 1—for 36 read 6.
p. 173, l. 34—for Ward read Warren.
p. 176, l. 20—for 84–88 read 31.
p. 183, l. 41—for 5059.566 read 5059.64.
p. 191, l. 22—for day-sine read earth-sine.
p. 264, l. 4—for sines read signs.
p. 267, l. 20—for longitude of read of longitude.
p. 334, l. 12—for as-Sarfa read as-Sarfa.
p. 335, l. 15—for fourteenth read thirteenth.
p. 427, l. 2 from below—for 1962nd read 1917th.
p. 507, l. 11—for चालन read मालन.

p. 513, l. 31—for 32,34 Varidhará read 32 Varidhard.

References made in the notes on the earlier chapters of the Sūrya-Siddhānta to the latter portion of chapter xii are in several instances wrong by one verse, owing to an error of the manuscript consulted.
3. HONORARY MEMBERS.

RÀJA APûRA KVAKSHÀ BAHàDUR,
JAMES BIRD,
Prof. OTTO BÖHTLINGK,
Sir JOHN BOWRING,
Prof. FRANZ BOPP,
RICHARD CLARKE,
Prof. HEINRICH VON Ewald,
M. CHAMPOLLION FIGEAC,
Prof. GEORG WILHELM FREITAG,
His Excellency Fuad Effendi,
JULIUS FÜRST,
Prof. JACOB GRIMM,
BRIAN HOUGHTON HODGSON,
Prof. STANISLAS JULIEN,
Rev. JOHN DUNMORE LANG,
Prof. CHRISTIAN LAarrison,
Prof. RICHARD LEPSIUS,
DUC DE LUTNES,
Prof. JULIUS MOHL,
Prof. JULIUS HEINRICH PETERMANN,
Prof. AUGUST FRIEDRICH POTT,
RÀJA RADHÀKÀNTA DEVA BHARàDUR,
Prof. REINAUD,
Prof. EMILIOUS RÖDGER,
Prof. FRIEDRICH RÜCKERT,
His Excellency SAIFET EFFENDI,
Prof. GARCÍN DE TASSY,
Prof. C. J. TORNBERG,
Sir J. GARDINER WILKINSON,

Calcutta.
London.
St. Petersburg.
Hongkong.
Berlin.
London.
Göttingen.
Paris.
Bonn.
Constantinople.
Leipzig.
Berlin.
Dursley, England.
Paris.
Sidney, N. S. Wales.
Bonn.
Berlin.
Paris.
Paris.
Berlin.
Halle.
Calcutta.
Paris.
Halle.
Coburg.
Constantinople.
Paris.
Lund.
London.

Deceased since October, 1856.

Baron JOSEPH VON HAMMER-PUGSTALL,
Baron ALEXANDER VON HUMBOLDT,
Prof. KARL RITTER,
Prof. HORACE HAYMAN WILSON,

Vienna.
Berlin.
Berlin.
London.
Dr. Edward McGowan,
Rev. Dwight W. Marsh,
Rev. William A. P. Martin,
Rev. Francis Mason,
Dr. D. B. McCanter,
Thomas T. Meadows,
Rev. Benjamin C. Meigs,
Dr. A. D. Mordtmann,
Rev. Homer B. Morgan,
John Muir,
Prof. Max Müller,
Bishop John Payne,
Rev. Justin Perkins,
James W. Redhouse,
Adolph Regnier,
Ernest Renan,
Rev. Samuel A. Rhea,
Rev. Elias Riggs,
Dr. G. Rosen,
Prof. Rudolph Roth,
Rev. William G. Schauffler,
Rev. Henry M. Scudder,
Rev. William W. Scudder,
Rev. William H. Steele,
Henry Stevens,
Rev. William Tracy,
Rev. William M. Thomson,
Rev. Henry J. Van Lennep,
Rev. Daniel Vrooman,
Rev. William Walker,
Rev. Edward Webb,
Prof. Albrecht Weber,
Prof. Gustav Weil,
Dr. Samuel W. Williams,
Rev. W. Frederic Williams,
Rev. Miron Winslow,
William Winthrop,
Rev. Austin H. Wright, M.D.,
Jerusalem.
Missionary at Mosul.
Missionary at Ningpo, China.
Missionary at Toungoo, Further India.
Missionary at Ningpo, China.
Ningpo, China.
Missionary to Ceylon.
Constantinople.
Missionary at Antioch, Syria.
Edinburgh.
Oxford.
Missionary at Cape Palmas, W. Afr.
Missionary at Orumiah, Persia.
Constantinople.
Paris.
Paris.
Missionary in Kurdistan.
Missionary at Constantinople.
Jerusalem.
Tübingen.
Missionary at Constantinople.
Missionary in Southern India.
Missionary in Southern India.
Newark, N. J.
London.
Missionary at Pasumalle, S. India.
Missionary in Syria.
Missionary at Tocat, Turkey in Asia.
Missionary at Canton.
Missionary at Baraka, W. Afr.
Missionary at Dindigul, S. India.
Berlin.
Heidelberg.
Canton.
Missionary at Mosul.
Missionary at Madras, India.
Malta.
Missionary at Orumiah, Persia.

Deceased since October, 1856.

Rev. William Aitchison,
Dr. Henry A. De Forrest,
Rev. Henry R. Hoisington,
Rev. Eli Smith,
Rev. David T. Stoddard,
Missionary at Shanghai, China.
Stockbridge, Mass.
Centre Brook, Conn.
Missionary at Beirut, Syria.
Missionary at Orumiah, Persia.
List of Members.

2. CORRESPONDING MEMBERS.

Rev. John C. Adamson,
Rev. Henry Ballantine,
James R. Ballantyne,
Rev. Ephraim Bennett,
Rev. William A. Benton,
Otto Blau,
William H. L. Bleek,
Rev. Henry Blodgett,
Bishop William J. Boone,
Charles W. Bradley,
Rev. Elijah C. Bridgman,
Prof. Hermann Brockhaus,
John P. Brown,
Rev. Nathan Brown,
Heinrich Bruogsch,
Rev. Albert Burnell,
Rev. Simon H. Calhoun,
J. Cor,
Rev. E. B. Cross,
Rev. Charles H. A. Dall,
Prof. August Dillmann,
Rev. Jacob L. Döhne,
Rev. Harrison G. O. Dwight,
Rev. James H. Dwight,
Rev. William B. Dwight,
Rev. Cornelius V. A. Van Dyck, M.D.,
Prof. Romeo Elton,
Prof. Gustav Flügel,
Rev. J. Edwards Ford,
Dr. S. Fränkel,
Rev. Jogachunder Gangooly,
Rev. William Goodell,
Rev. Lewis Groult,
Max Grünbaum,
Rev. Cyrus Hamlin,
Rev. C. C. Hoffmann,
Prof. C. A. Holmboe,
Dr. Samuel R. House,
James J. Jarves,
Rev. Henry H. Jessup,
Rev. J. W. Johnson,
Rev. George Jones, U.S.N.
Prof. Mirza Kasem Beg,
Chev. Nicholas Kramskoff,
Rev. Jonas King,
Peter I. von Koeppen,
Léon de Rosny,
P. E. LeVailhant de Florival,
Dr. D. J. Macgowan,

New York.
Missionary at Ahmednuggur, India.
Benares, India.
Missionary at Maulmain, Farther India.
Missionary at Bhamdun, Syria.
Trebizond.
Port Natal, S. Afr.
Missionary at Shanghai, China.
Missionary at Shanghai, China.
Ningpo, China.
Missionary at Shanghai, China.
Leipzig.
Constantinople.

Berlin.
Missionary at Abelih, Syria.
Constantinople.
Missionary at Tavoy, Farther India.
Missionary at Calcutta.
Kiel.
Missionary at Table Mountain, S. Afr.
Missionary at Constantinople.
Constantinople.
Constantinople.
Missionary at Beirut, Syria.
Dresden.
Missionary at Beirut, Syria.
Jerusalem.
Calcutta.
Missionary at Constantinople.
Missionary at Umsunduzi, S. Afr.
New York.
Missionary at Constantinople.
Missionary at Cape Palmas, W. Afr.
Christiania, Norway.
Missionary at Bangkok, Siam.
Florence, Italy.
Missionary at Tripoli, Syria.
Missionary at Hongkong, China.

St. Petersburg.
St. Petersburg.
Missionary at Athens.
St. Petersburg.
Paris.
Paris.
Missionary at Ningpo, China.
CHARLES STODDARD,
Rev. CHARLES A. STODDARD,
Rev. COLLINS STONE,
†WILLIAM W. STONE,
Prof. CALVIN E. STOWE,
JOHN TAPPAN,
BAYARD TAYLOR,
Rev. JAMES B. TAYLOR,
Dr. SAMUEL H. TAYLOR,
Prof. THOMAS A. THACHER,
Rev. JOSEPH P. THOMPSON,
CHARLES TRACY,
Rev. SELAH B. TREAT,
Prof. SAMUEL H. TURNER,
Prof. WILLIAM S. TYLER,
Rev. STEPHEN H. TYNG,
WILLIAM J. VAUGHN,
Rev. THOMAS E. VERMILYHE,
Rev. FERDINAND DE W. WARD,
Rev. JOSEPH WARNEN,
Rev. GEORGE T. WASHBURN,
RICHARD P. WATERS,
Rev. JOHN WHEELER,
Prof. ANDREW T. WHITE,
Dr. MOSES C. WHITE,
Prof. JOSIAH D. WHITNEY,
Prof. WILLIAM D. WHITNEY,
Dr. JOSEPH WILSON, U.S.N.,
Rev. JOHN L. WILSON,
Prof. SAMUEL J. WILSON,
Rev. GEORGE W. WOOD,
PRES. THEODORE D. WOOLSEY,
Dr. JOSEPH E. WORCESTER,

Boston,
Boston.
Columbus, O.
New York.
Andover, Mass.
Boston.
New York.
Richmond, Va.
Andover, Mass.
New Haven.
New York.
New York.
Boston.
New York.
Amherst, Mass.
New York.
Tuscaloosa, Ala.
New York.
Geneva, N. Y.
Quincy, Ill.
South India.
Salem, Mass.
Burlington, Vt.
Ann Arbor, Mich.
New Haven.
Northampton, Mass.
New Haven.
Philadelphia.
New York.
Allegheny City, Pa.
New York.
New Haven.
Cambridge, Mass.

Omitted from the List last published, Oct. 1856.

*Dr. HENRY W. WALES,

Decreed since October, 1866.

Prof. ETHAN A. ANDREWS,
GEORGE R. GLIDDON,
Rev. A. L. HOLLADAY,
CHARLES KRATZTIR,
Rev. WILLIAM A. MACY,
Rev. THEODORE PARKER,
Prof. WILLIAM W. TURNER,
HON. SIDNEY WELLS,

New Britain, Conn.
Mobile, Ala.
Charlottesville, Va.
Boston.
Shanghai.
Boston.
Washington.
Cambridge.
List of Members.

Prof. Ebenezer A. Johnson, New York.
Prof. Asa Hel C. Kendrick, Rochester, N. Y.
William L. Kingsley, New Haven.
Rev. Edward N. Kirk, Boston.
Prof. George M. Lane, Cambridge, Mass.
J. Peter Lesley, Philadelphia.
Prof. Tayler Lewis, Schenectady, N. Y.
Prof. Alexander MacWhorter, Troy, N. Y.
Richard C. McCormick, New York.
Rev. J. H. McIlvaine, Rochester, N. Y.
†Rev. James L. Merrick, So. Amherst, Mass.
Prof. James C. Moffat, Princeton, N. J.
George H. Moore, New York.
Rev. T. V. Moore, Richmond, Va.
Rev. Mark Murphy, New Brighton, N. Y.
Prof. John J. Owen, New York.
Dr. Peter Parker, Washington.
Rev. Solomon Peck, Boston.
†Gregory A. Perdicaris, Trenton, N. J.
Dr. Charles Pickering, Boston.
Rev. Swan L. Pomroy, Boston.
Henry W. Poole, Boston.
George W. Pratt, Boston.
Prof. John Proudfit, New York.
Prof. John N. Putnam, New Brunswick, N. J.
William A. Reynolds, Hanover, N. H.
†Prof. Edward Robinson, Philadelphia.
D. Waldo Salisbury, New York.
Prof. Edward E. Salisbury, New York.
Frank B. Sanborn, Jamaica Plain, Mass.
Prof. Philip Schaff, Boston.
Prof. M. Schlele Dr Vere, University of Virginia.
David C. Scudder, Boston.
Prof. Julius H. Seelye, Amherst, Mass.
Oswald Seidenstücker, Philadelphia.
Charles Short, Philadelphia.
Prof. M. J. Smead, Philadelphia.
Rev. Cornelius B. Smith, Richmond, Va.
Prof. Henry B. Smith, New York.
J. Hosford Smith, New York.
Reinhold Solger, New York.
Prof. Evangelinus A. Sophocles, New York.
Prof. Jesse A. Spencer,

VOL. VI. 78
Prof. Henry Drisler, New York.
Samuel F. Dunlap, New York.
Prof. Theodore W. Dwight, New York.
Prof. Charles Elliott, New York.
Ralph W. Emerson, New York.
Edward Everett, New York.
Richard S. Fellowes, New York.
Chas. Isaac Ferris, New York.
Prof. George P. Fisher, New York.
Charles Folsom, New York.
George Folsom, New York.
†John M. Forbes, New York.
Dwight Foster, New York.
Prof. William C. Fowler, New York.
Prof. Converse Francis, New York.
Prof. Josiah W. Gibbs, New York.
Prof. Basil L. Gildersleeve, New York.
Daniel C. Gilman, New York.
Prof. William W. Goodwin, New York.
John A. C. Gray, New York.
Rev. David Green, New York.
Prof. W. Henry Green, New York.
Prof. George W. Greene, New York.
Prof. Arnold Guyot, New York.
Prof. Henry H. Hadley, New York.
Prof. James Hadley, New York.
Prof. S. Steiman Halderman, New York.
Fitz-Edward Hall, New York.
Alpheus Hardy, New York.
Prof. Gessner Harrison, New York.
Samuel F. Haven, New York.
Prof. Frederick D. Hedge, New York.
Prof. Roswell D. Hitchcock, New York.
William B. Hodgeson, New York.
Rev. Frederick W. Holland, New York.
Henry A. Homes, New York.
Nathaniel L. Hooper, New York.
Fisher Howe, New York.
Joseph Howland, New York.
Prof. William Irvin, New York.
Prof. Melanchthon W. Jacobus, New York.
Charles W. Jenks, New York.
†Prof. Joseph W. Jenks, New York.
†Rev. William Jenks, New York.
Prof. Charles C. Jewett, New York.

Cambridge, Mass.
New Haven.
Brooklyn, N. Y.
Boston.
Durham Centre, Conn.
Cambridge, Mass.
New Haven.
University of Virginia.
New Haven.
Cambridge, Mass.
New York.
Windsor, Vt.
Princeton, N. J.
New York.
Princeton, N. J.
New York.
New Haven.
Columbia, Pa.
Boston.
India.
Boston.
Albemarle Co., Va.
Cambridge, Mass.
New York.
Savannah, Ga.
East Cambridge, Mass.
Albany, N. Y.
Boston.
Brooklyn, N. Y.
Fishkill, N. Y.
New Brunswick, N. J.
Allegheny City, Pa.
Boston.
Boston.
Boston.
Boston.
III: LIST OF MEMBERS.
MAY, 1860.

1. CORPORATE MEMBERS.

Names marked with * are those of Life Members.

Ezra Abbot, Jr.,
Prof. Charles A. Aiken,
Rev. William R. Alger,
Rev. David O. Allen,
Pres. Martin B. Anderson,
Rev. Rufus Anderson,
Rev. C. W. Andrews,
George B. Bacon,
Prof. Henry M. Baird,
Prof. Eliza Ballantine,
Prof. Eliza P. Barrows,
John R. Bartlett,
Prof. Charles Beck,
Rev. Hiram Bingham,
Rev. George W. Blagden,
Prof. James J. Blaisdell,
Prof. James R. Boise,
Charles L. Brace,
Frank P. Brewer,
Rev. Charles H. Brigham,
Prof. Samuel G. Brown,
Rev. Samuel R. Brown,
William C. Bryant,
Rev. Ebenezer Burgess,
Prof. Henry C. Cameron,
Prof. William H. Campbell,
Dr. Elbert H. Chapin,
Pres. Aaron L. Chapin,
Pliny E. Chase,
Josiah Clark,
Rev. James F. Clarke,
*Joseph G. Cogswell,
Rev. Henry M. Colton,
Alexander L. Cothelal,
Prof. Alpheus Crosby,
Prof. Howard Crosby,
Ptes. E. A. Dalrymple,
Prof. James D. Dana,
Prof. George E. Day,
John W. DeForest,
Charles R. Degen,
Rev. James T. Dickinson,
Epes S. Dixwell,
Cambridge, Mass.
Hanover, N. H.
Boston.
Lowell, Mass.
Rochester, N. Y.
Boston.
Shepherdstown, Va.
New Haven.
New York.
Bloomington, Ind.
Andover, Mass.
Providence, R. I.
Cambridge, Mass.
New Haven.
Boston.
Beloit, Wis.
Ann Arbor, Mich.
New York.
New Haven.
Taunton, Mass.
Hanover, N. H.
Auburn, N. Y.
New York.
Boston.
Princeton, N. J.
New Brunswick, N. J.
New York.
Beloit, Wis.
Philadelphia.
Easthampton, Mass.
Jamaica Plain, Mass.
New York.
Middletown, Conn.
New York.
Salem, Mass.
New Brunswick, N. J.
Baltimore.
New Haven.
Walnut Hill, O.
New Haven.
New York.
Middlefield, Conn.
Cambridge, Mass.

Abhandlung über das Schul- und Lehrwesen der Muhammedaner im Mittelalter

Von Dr. Daniel Haneberg, etc. München: 1850. 4to. pp. 40.

Kármána-Hyádry, or, Memoirs of the Brave and Noble Hyder Shah, surnamed Hyder Ally Khán Bahádur. To which is annexed, a Sketch of the History of his Illustrious Son, Tippoo Sultan. Compiled from the different works written by English, French, and Oriental Authors. [By Prince Ghulám Mohammed, son of Tippoo Sultan] Calcutta: 1848. 4to. Persian.

De Ierusalitarum per Mare Rubrum Transitu. Scriptis L. F. C. Tischendorf, etc. Cum Tabula. Lipsiae: 1847. 8vo. pp. 32.

Grammar of the Bornu or Kanuri Language; with Dialogues, Translations, and Vocabulary. London: 1853. 8vo.

Epilegomena zu Dr. Th. Benfey’s Griechischem Wurzlexikon von W. Sonne, etc. Wismar: 1847. 8vo. pp. iv. 64.

A collection of Arabic poetry and prose. s. l. and s. a. 8vo.

Liturgiae Ecclesiae Anglicanae Partes Preceptum: in linguum Arabicam traducte operâ Edvardi Pocockei, etc. Londini: 1826. 12mo.

The Anglo Arabic Primer and Vocabulary. Malta: 1832. 18mo.

Dialogues in English and Malay, the latter in both the Roman and the Arabic character. s. l. and s. a. 8vo. incomplete at end.

A Dissertation on the Nature and Character of the Chinese System of Writing, By Peter S. Duponceau, LL.D., etc. To which are subjoined, a Vocabulary of the Cochinchinese Language, by Father Joseph Morrone, etc., with notes by M. de la Falun, etc.; and a Cochinchinese and Latin Dictionary. Philadelphia: 1838. 8vo.

Andreas Theophili Hoffmanni, etc., Grammatica Syriaca Libri III. Halae: 1827. 4to.

Macrizi Historia Regum Islamitcorum in Abyssinias. Interpretatus est et una cum Abulfeda Descriptione Regionum Nigratarum e codd. Bibl. Leidensis arabice edidit Fredericus Theodorus Rinck, etc. Lugduni Batavorum: 1790. 4to.

Vocabulaire Océanien-Français et Français-Océanien des Dialectes parlés aux îles Marquises, Sandwich, Gambier, etc. par l'Abbé Boniface Mosbech, etc. Paris: 1843. 12mo.

Outlines of a Grammar, Vocabulary, and Phraseology, of the Aboriginal Language of South Australia, spoken by the Natives in and for some distance around Adelaide. By C. G. Teichelmann and C. W. Schürmann, etc. Adelaide: 1840. 8vo.

Principes d'Ezymologie Naturelle bases sur les Origines des Langues Sémítico-Sana- scrites, par H. J. F. Parrat, etc. Paris: 1851. 4to, pp. 64.

Abulghasii Bahadur Chani Historia Mongolorum et Tartarorum nunc primum tatarice edita auctoritate et munificentia illustissimi Comitis Nicolai de Romanoff, etc. Cassani: 1825. fol.

Wiwoho or Mントgora, a Javanese Poem, from the Kawi or Hempeo Kanno, edited by J. F. C. Geracie. [From the Verhandelingen van het Bataw. Genootsch. van Kunsten en Wetenschappen, Deel xx] Batavia: 1845. 8vo, large paper.

Manik Maja, a Javanese Poem, edited by Dr. J. J. de Hollander. Batavia: 1852. 8vo.

Beschrijving van een Gedeelte der Residentie Rioou, door E. Netscher. 8vo.

Mataparikshā An Examination of Religions; Part the First; containing a consideration of the Hindu Sastras, with an English Version and Preface. M zapore: 1852. 12mo.

A Reading Book of the Turkish Language, with a Grammar and Vocabulary; ... By William Barckhardt Taylor, etc. London: 1854. 8vo.

Selections from Papers on Indigo Cultivation in Bengal, with an Introduction and a few Notes, by a Ryle. Calcutta: 1858. 8vo.

From Prof. H. H. Wilson, of London.

Rig-Veda Sanhitā Translated from the Original Sanskrit. By H. H. Wilson, etc., etc. [Vol. i] London: 1859. 8vo.

From Dr. Joseph Wilson, U. S. N.

A Japanese Fan, inscribed with a traveller’s Guide. Accompanied with a manuscript notice, transcription, and partial translation, by Dr. J. Wilson.

A Tahitian and English Dictionary, with introductory remarks on the Polynesian Language, and a short Grammar of the Tahitian Dialect; with an Appendix Tahiti: 1851. 8vo.

Isaiah to Malachi, in the Tonga Language. Vavaú. 8vo.

From Exchange of Duplicates.

Lettres à M. le Duc de Blacas d’Albus, etc., relatives au Musée Royal Egyptien de Turin; par M. Champollion le Jeune. Première Lettre.—Monuments Historiques. [Avec une Notice Chronologique de la xviie Dyanstie Egyptienne de Manéthon; par M. Champollion Figéac].—Seconde Lettre.—Suite des Monuments Historiques; suite de la Notice Chronologique, etc. Paris: 1824-38. 8vo.

From the Superintendent of the Coast Survey.

From L. W. Tapton, Esq., of Boston.
A Javanese manuscript, on four strips of palm-leaf.

From Nicholas Triibner, Esq., of London.

From the Imperial-Royal Geographical Society of Vienna.

From Rev. Edward Webb, of Dindigul.

From Prof. Albrecht Weber, of Berlin.

From Dr. S. W. Williams, of Canton.

From Meares. Williams and Norgate, of London.
Early Christianity in Arabia; a Historical Essay. By Thomas Wright, etc. London: 1855. 8vo.
Williams and Norgate’s Foreign Catalogues. London. 8vo.
American Oriental Society:

From Professors Roth and Whitney.

From the Royal Asiatic Society of Great Britain and Ireland.

From the Royal Society of Northern Antiquaries.

Various papers concerning the Royal Society of Northern Antiquaries.

From Prof. E. E. Salisbury, of New Haven.

From Prof. B. Silliman, Jr., of New Haven.

An Arithmetic, in Zulu. Etekwini: 1856. 18mo.
The Psalms, in Zulu. Port Natal: 1850. 8vo.
The Epistle to the Romans, in Zulu. Port Natal: 1854. 16mo. pp. 64.

From the Smithsonian Institution.

Smithsonian Contributions to Knowledge. Vols. viii-x. Washington: 1856-58. 4to.
Reports of the Smithsonian Institution, for 1855; for 1856; for 1857. Washington: 1856-58. 8vo.

From Prof. J. A. Spencer, D.D., of New York.

"Green Pastures for the Lord's Flock;" translated from the English into the Modern Syriac. sm. 4to.
A Full Arithmetic, in Modern Syriac. sm. 4to.
A Compendium of Church History; translated from the English into the Modern Syriac. sm. 4to.
"Scripture Facts," translated into Modern Syriac. 12mo.
Baxter's Saints' Rest, translated into Modern Syriac. 12mo.
"Threefold Cord," translated from English into Modern Syriac. 16mo.

From the Imperial Academy of Sciences of St. Petersburg.

From the Philological Society of London.
Transactions of the Philological Society. 1854, 1855, 1856. London. 8vo.

From Dr. Charles Pickering, of Boston.

From Prof. A. F. Pott, of Halle.

From Rādhākānta Deva Bāktād, of Calcutta.

From Rājendralāl Mitra, of Calcutta.
Bibliotheca Indica. No. 78. Čhāndogya-Upanishad... translated... by Rājendralāl Mitra. Fasciculus 1st. Calcutta: 1854. 8vo.
do. Nos. 126, 126. The Taittiriya Brāhmaṇa of the Black Yajur Veda, with the Commentary of Sāyamāchārya, edited by Rājendralāl Mitra, etc. Fasciculi 1, 2. Calcutta: 1855. 8vo.

From M. Reinaud, of Paris.

From M. Ernest Renan, of Paris.

Outline of a Grammar of the Turkish Language, as written in the Armenian Character. By Elias Riggs, etc. Constantinople: 1856. 16mo. pp. iv, 56.

From Prof. E. Rödiger, of Halle.
Guilelmi Gesenii Thesaurus... Veteris Testamenti. Tomi Tertii Fasciculus Novissimus... edidit Emnllius Roediger, etc. Lipsim: 1858. 4to.

From Dr. F. L. O. Roehrig, of Philadelphia.

VOL. VI.
The Ninth Annual Report of the Chinese Hospital at Shanghai, from Jan. 1st to

From Rev. W. A. Macy, of Shanghai.
The Gospel of Matthew, in Manchu and Chinese. Shanghai: 1858. roy. 8vo. size.
xylographed.

From Messrs. Maisonneuve & Cie, of Paris.
Recherches sur l'Écriture des différents Peuples anciens et modernes; ouvrage ren-
fermant une grande collection d'alphabets et de nombreux fac-simile d'écritures
reproduits en or et en couleur, par L. Léon de Rosny. Livraisons 1-4. Paris:
1857. 4to.

From Hon. G. P. Marsh, of Burlington, Vt.
On the Rosheania Sect, and its Founder, Bâyezîd Ansârî. By J. Leyden, M.D.
4to. pp. 66.

From Rev. J. A. Merrick, of Paris, Ky.
Three Tracts, in the Assiniboin Chippewa Language, to wit:—
The Young Cottager. Montreal: 1848. 12mo. pp. 34.
pp. 12.
pp. 5.
Four coins, two silver and two copper, not yet identified: one copper cah.

From J. Muir, Esq., of Edinburgh.
Original Sanskrit Texts on the Origin and Progress of the Religion and Institutions
of India; collected, translated into English, and illustrated by Notes By
J. Muir, etc. Part First. The Mythical and Legendary Accounts of Caste. Lon-
don: 1858. 8vo.

From Prof. K. F. Neumann, of Munich.
Geschichte des Englischen Reichs in Asien. Von Karl Friedrich Neumann. Leip-
zig: 1857. 2 vols. 8vo.
Das Reich Japan und seine Stellung in der Westöstlichen Weltbewegung. Von

From the North-China Branch of the Royal Asiatic Society.
Shanghai: 1858–59. 8vo.

From the Oriental Society of France.

The Gospel of Matthew, in Shanghai Colloquial, Chinese character. Shanghai,
8vo size. xylographed.
The same, romanized. Shanghai. 8vo size. xylographed.
A Geography, in Shanghai Colloquial, romanized; with maps. Shanghai. 8vo
size. xylographed.

From Mr. A. H. Palmer.
Documents and Facts illustrating the Origin of the Mission to Japan, authorized by
the Government of the United States, May 10th, 1851 By Aaron Haight

The Old Testament in Modern Syriac, with References. 4to. pp. 1004.
Additions to the Library and Cabinet.

From Mrs. H. R. Hoisington, of Centre Brook, Conn.

Manuscripts and Diagrams by the late Rev. H. R. Hoisington, to wit:—
Meteorological Journal and Astrological Meteorology. 1840, Aug. 8—1841, Feb. 2.
Translation, from the Tamil, of part of the Skanda-Purâṇa, being an account of
the universe; with maps.
Diagrams representing the Puranic view of the earth and of the universe; from
a temple in South-India.
Figure of Kâmadhenu, the cow of plenty, with explanations.
Figure of the so-called impression of Buddha's foot, Adam's Peak, Ceylon; with
a plan of the temple.

From Prof. C. A. Holmboe, of Christiania.

Traces de Budhisme en Norvège avant l'Introduction du Christianisme, par M. C.

From J. J. Jamies, Esq., of Florence.

Art-Hints. Architecture, Sculpture, and Painting. By James Jackson Jarves, etc.
London: 1855. 12mo.
A Japanese book and map.

From the Chev. N. Khaniokoff.

Extrait d'une Lettre de Mons. N. Khanykof à M. Dorn, datée de Nihmetabad
29 Sept. 9 Oct., 1855.
do. do. datée de Tébriz, le 27 Dec. 1855.
do. do. datée de Nihmetabad, le 13 Sept. 1856.
do. do. datée de Tébriz, le 23 Avril, 1857.
[all extracts from the Mélangees Asiatiques of the Imperial Academy of St. Pe-
tersburg.]
On a certain Arabic Inscription at Derbend [in Russian]. 8vo. pp. 10, and 2
plates. [2 copies.]

From Rev. E. N. Kirk, D.D., of Boston.

Moise de Khorene Histoire d'Arménie. Texte Arménien et Traduction Fran-

From Dr. Adalbert Kuhn, of Berlin.

Zeitschrift für Vergleichende Sprachforschung, auf dem Gebiete des Deutschen,
Griechischen, und Lateinischen, herausgegeben von Dr. Adalbert Kuhn, etc.
viii. 1—6; ix. 1—4. Berlin: 1858—59. 8vo.
Beiträge zur Vergleichenden Sprachforschung auf dem Gebiete der Arischen, Celti-
ischen, und Slavischen Sprachen, herausgegeben von A. Kuhn und A. Schleicher.
i. 1—4; ii. 1, 2. Berlin: 1856—59. 8vo.

From Prof. Christian Lassen, of Bonn.

Various pamphlets and Journals, concerning education and agriculture in Canada.

From the Lodiana Mission of the Presbyterian Board.

A Dictionary of the Panjâbi Language, prepared by a Committee of the Lodiana
Mission. Lodiana: 1854. 4to.

From Dr. D. J. Macgowan, of Shanghai.

Shanghai Almanac and Miscellany, for the years 1852—55. Shanghai: 1851—54.
8vo.
American Oriental Society:

A Grammar of the Zulu Language; accompanied with a Historical Introduction, also with an Appendix. By Rev. Lewis Grout, etc. Natal: 1859. 8vo.

From Prof. S. S. Haldeman, of Columbia, Pa.

Elements of Latin Pronunciation, for the Use of Students in Language By S. S. Haldeman, etc. Philadelphia: 1851. 12mo. pp. 76.

From Rev. F. E. Hale, of Boston.

From F. E. Hall, Esq., of India.

Mukhitasr al-Ma'in, a rhetorical work, by Mas'ud Ben Umar, called Sa'ad al-Taftazani. Calcutta: A. H. 1298 [A. D. 1813], 4to.

Collectio Davidis, i. e. Catalogus celeberrimae illius bibliothecae Hebraeae, quam . . . collegit R. Davides Oppenheimers . . . libros Hebraeos ex omní sere literarum generis tam editos quam manu exaratos continens. Hamburgi: 1826. 12mo. pp. xvi, 744.

Three stones, bearing Sanskrit inscriptions, from Central India (see above, pp. 499-537).

From the Family of the late Baron Hammer-Purgstall, of Vienna.

On the Aborigines of India. Essay the First; on the Kocch, Bódó, and Dhimál Tribes, in Three Parts By B. H. Hodgson, Esq., etc. Calcutta: 1847. 8vo.

Collection of lesser essays on the aboriginal tribes of India, by B. H. Hodgson, Esq., extracted from various volumes of the Journal of the Royal Asiatic Society of Bengal.

From W. B. Hodgson, Esq., of Savannah.

From Rev. C. C. Hoffman, of West Africa.

The Litany, or General Supplication, with the Confirmation Service [in Grebo]. Cavalla, W. Afr.: 1858. 12mo. pp. 15.

The Cavalla Messenger [Grebo and English], iii. 10; ix. 1. Cavalla: 1855-59. 4to.

Les Auteurs Hindoustani et leurs Ouvrages, par M. Garcin de Tassy, etc. Paris: 1855. 8vo. pp. 47.

From the German Oriental Society.
No. 3. Die fünf Gathás, oder Sammlungen von Liedern und Sprüchen Zarathuštra, seines Jüngers und Nachfolger. Herausgegeben, übersetzt, und erklärt von Dr. Martin Haug, etc. Erste Abtheilung. Die erste Sammlung (Gathā huvnavaiti) enthaltend. 1858.

From Capt. James Glyn, U. S. N., of New Haven.
The Urh-Ya, a Chinese Dictionary, profusely illustrated with cuts. In four Parts, large roy. 8vo size.

From Rev. William Goodell, of Constantinople.

From the Ducal Library at Gotha.

From Rev. Lewis Grout, of Umsanduli, S. Africa.
An English-Kafir Dictionary of the Zulu-Kafir Language, as spoken by the Tribes of the Colony of Natal. By James Perrin, etc. Pietermaritzburg: 1855. 16mo.
American Oriental Society:

From the Royal University of Norway, at Christiania.

From the Commissioner of Indian Affairs.

From the Commissioner of Patents.

From Rev. C. H. A. Dall, of Calcutta.

Essai de Grammaire de la Langue des Iles Marquises, par un prêtre de la Société de Piepus, missionaire aux Iles Marquises [René Dordillon, bishop of Cambisopalire]. Valparaiso: 1857. 8vo.

From Dr. T. T. Devan.

From the Hon. East India Company.

Rig-Veda-Sāhīta, the Sacred Hymns of the Brahmins; together with the Commentary of Sayanāchārya. Edited by Max Müller, M. A., etc. Vol. III. London: 1856. 4to.
Rig-Veda-Sāhīta. Translated from the Original Sanskrit, by H. W. Wilson, etc., etc. Vols. II. and III. London: 1854, 1857. 8vo.
A Glossary of Judicial and Revenue Terms, and of Useful Words, occurring in official documents relating to the administration of the government of British India, from the Arabic, Persian, Hindustāni, Sanskrit.... and other languages.... By Horace Hayman Wilson, etc., etc. London: 1855. 4to. pp. xxiv, 792.

From Mr. R. W. Emerson, of Concord, Mass.

The Sraddhas, the Keystone of the Brahminical, Buddhistic, and Arian Religions, as illustrative of the dogma and duty of ascension among the Princes and People of India. By D. Urquhart. London: 1857. 8vo. pp. 44.

From M. P. E. Foucaux, of Paris.

Grammaire de la Langue Tibétaine. Par Ph. Ed. Foucaux, etc. Paris: 1858. 8vo.

From M. Garcia de Tasse, of Paris.

Mantic Uttañ or le Langage des Oiseaux, poème de philosophie religieuse par Farid-uddin Attar, publié en persan par M. Garcia de Tasse, etc. Paris: 1857. roy. 8vo.
The same. Tamil only.
The Pilgrim's Progress from this World to that which is to come. By John Bunyan. . . . Fifth Edition. Madras: 1848. 12mo. Tamil.
A Poetical Cyclopedia of the Bible, in the form of a dialogue between a Gooroo and a Disciple concerning God, the soul, and sin. Jaffna: 1852. 16mo. Tamil.
Abridgment of Tamil Grammar. . . . Jaffna: 1848. 18mo. Tamil.
The Classical Reader, or Selections from Standard Tamil Authors. Jaffna: 1847. 8vo.
Tamil Calendar: for the years 1835-1844, bound in one volume: for the years 1845, 1847, 1850-1855, separate. Jaffna: 1834-53. 8vo.
Physical Science: in the form of a Dialogue. For the use of Schools. . . . Jaffna: 1843. 16mo. Tamil.
Three Chronological Charts, in Tamil and English.
Four small Tamil books, without title, place, or date.
First Lessons in English and Tamil. Designed to assist Tamil youth in the study of the English language. . . . Parts I and II. Jaffna: 1847. 18mo.
Ten English school-books, published for the use of Tamil scholars.
The Sidath Sangarawara, a Grammar of the Singalese Language, translated into English, with Introduction, Notes, and Appendices, by James De Alwis, etc. Colombo: 1852. 8vo.
American Oriental Society:

Vocabulary of the Yoruba Language. Part I.—English and Yoruba. Part II.—Yoruba and English. To which are prefixed, the Grammatical Elements of the Yoruba Language. By Samuel Crowther, Native Teacher, etc. London: 1842. 12mo.

By the Ceylon Mission of the A. B. C. F. M.

The Holy Bible... translated... under the auspices of the Brit. and For. Bible Society. Madras: 1850. roy. 8vo. Tamil.

The same, printed on paper of quarto size.

Deuteronomy... Maneyp: 1839. 18mo. Tamil.

The Book of Joshua... Maneyp: 1839. 18mo. 3 copies. Tamil.

The Book of Judges... Jaffna: 1840. 18mo. 3 copies. Tamil.

The First [and Second] Book of Samuel... Jaffna: 1840. 18mo. Tamil.

The First [and Second] Book of Kings... Jaffna: 1840. 18mo. Tamil.

The Psalms... Maneyp: 1839. 18mo. 3 copies. Tamil.

The Book of Psalms... Maneyp: 1850. 12mo. Tamil.

The Proverbs of Solomon... Jaffna: 1850. 12mo. Tamil.

The Book of Isaiah... Jaffna: 1841. 18mo. 3 copies. Tamil.

The same. Jaffna: 1843. 8vo.

The Gospel according to Matthew... Jaffna: 1854. 18mo. Tamil.

Barnes’ Notes on St. Matthew’s Gospel... Madras: 1848. 12mo. Tamil.

The Gospel of Mark... Jaffna: 1851. 18mo. Tamil.

The Gospel according to St. Luke... Jaffna: 1849. 12mo. 3 copies. English and Tamil.

John’s Gospel... Jaffna: 1847. 12mo. Tamil.

Paul’s Epistles to Timothy.—The General Epistle of James.—The Three Epistles of John... Jaffna: 1837. 32mo. 3 copies. Tamil.

A Compendium of Scripture History... Maneyp: 1839. 18mo. Tamil.

A Compendium of Doctrinal History... Jaffna: 1840. 18mo. Tamil.

An Essay on Faith. Designed for Catechists and Students of Theology... Jaffna: 1842. 18mo. Tamil.

Tamil Tracts.

New Children’s Series. Nos. 1-23; bound together in one volume. 8vo and a. a.

A Brief History of the Church of Christ, from the German of the Rev. C. G. Barth, etc. Translated from the English. Madras: 1845. 12mo. Tamil.

Tamil Hymns. Selected and Original, adapted for Public, Private, and Social Worship... Jaffna: 1846. 8vo.

The same, in 34mo.
A Manuscript Copy of the Kur'an, written at Palembang, in Java, in 1854, in pursuance of a vow, by Mayerbinah, a returned Pilgrim to Mecca. 355 pages, folio size, the first two and last two pages brilliantly illuminated; the rest with colored borders, and occasional ornamented headings; Arabic binding. Very handsome, and in perfect order; enclosed in calico bag.

Dictionnaire Français-Arabe, (Idiome parlé en Algérie) contenant: 1° tous les mots usités pour parler en Algérie ... 2° leur prononciation ... 3° leur pluriel; 4° leur genre; par Ad. Paulinier, etc., etc. Ouvrage composé à Alger, et vérifié par plusieurs savants indigènes. Paris: 1850. 12mo, pp. xx, 911.

Maltese Grammar for the use of the English, by Francis Vella. Leghorn: 1831. 12mo.

Über die Ursprache, oder über eine Behauptung Mooses, dass alle Sprachen der Welt von einer einzigen, der noachischen, abstammen; mit einigen Anhängen. Von D. Gottlieb Philipp Christian Käzier, etc. Erlangen: 1840. 8vo.

Thirty-six copper coins, all from the mint of Alexandria; viz. 15 of Claudius Gothicus; 8 of Gallienus; 5 of Commodus; 5 of Gordianus; 2 of Severus Alexander; 1 of Philippus II; 1 of Valerianus; 1 of Trebonianus Gallus.

From Rev. E. C. Bridgman, D. D., of Shanghai.

Slides from the North-China Herald, describing the visit of the American Embassy to Pekin.

Catholic Prayer-Book, in Chinese. 1795. 12mo.

From the British and Foreign Bible Society.

From Prof. Hermann Brockhaus, of Leipzig.

Die Lieder des Hafiz ..., herausgegeben von Hermann Brockhaus. i. 4; ii. 1-4.

From J. P. Brown, Esq., of Constantinople.

From Rev. Ebenezer Burgess, of Boston.

The Bengalee Translation of the Vedant, or Resolution of all the Veda. Together with a Preface by the Translator. Calcutta: 1815. 8vo.

A Vocabulary, English and Goorwaratte, to which is added a Selection of Fables, &c. By the Rev. William Fyvie. Surat: 1828. 8vo.

An Introduction to the Khasia Language; comprising a Grammar, Selections for Reading, and a Vocabulary. By the Rev. W. Pryse. Calcutta: 1855. 16mo.
A Malabar and English Dictionary, wherein the Words and Phrases of the Tamulian Language, commonly called by Europeans the Malabar Language, are explained in English. By the English Missionaries at Madras. Wepery, near Madras: 1779. 4to. [incomplete, interleaved, with MS. notes; much wormeaten.]
Catalogue of Publications in Various Languages, on sale by the Calcutta School-Book Society. 1858. [Calcutta: 1858.] 12mo. pp. 10. (2 copies)
A Dictionary of Words used in the East Indies, with Full Explanations; To which is added Mohammedan Law and Bengal Revenue Terms. With an Appendix, containing Forms of Firmains, etc., etc 2nd edition. London: 1891. 12mo.
Sketch of the Column at Coraryum, with a Plan of the Village, some Letters, private and public, the General Orders, and the Dispatch from the Honorable Court of Directors, relating to the action on the 1st January, 1818. Madras: 1859. 8vo. pp. 32.
Articles of War for the Native Troops of the Army of India. Published by order of the Right Honorable the Governor General of India in Council. [Madras:] 1845. 12mo. pp. ix. 64.
Also, bound with the above:
An Armenian Book, Historical and Geographical. 12mo.
Specimen Nos. of 7 newspapers, published at Constantinople. Italian, Greek, Russian, Turkish and Armenian.
A Grammar of the Hebrew Tongue, being an Essay to bring the Hebrew Grammar into English, to facilitate the Instruction of all those who are desirous of acquiring a clear idea of this Primitive Tongue by their own Studies, and published more especially for the use of the students of Harvard College, at Cambridge, in New England. Composed and accurately corrected by Judah Monis, M. A. Boston, N. E.: 1735. 4to. pp. 96.
A Vocabulary of the English and Malay Languages. Enlarged and improved. [Containing, 1st, lists of English words with Malay equivalents, arranged according to subjects; 2nd, English and Malay sentences; 3rd, English and Malay Dialogues: the Malay romanized.] Singapore: 1846. 12mo.

Handleiding bij de Beoefening der Javaansche Taal en Letterkunde, voor de Kadetten van alle Wapenen, bestemd voor de Dienst in Nederlands Indië; door Dr. J. J. De Hollander, etc. Breda: 1848. 12mo.

Verlag van den Handel, de Scheepvaart, en de inkomende en uitgaande Regten op Java en Madura, over den Jare 1847 1848 1849. Batavia: 1848, 1849, 1850. 3 vols. 4to.

The Sanscrit Reader; or Easy Introduction to the Reading of the Sanscrit Language. In five Parts, etc. [In Bengálí characters.] Calcutta: 1821. 8vo. pp. 64.

An Elementary Grammar of the Sanscrit Language, partly in the Roman Character, arranged according to a New Theory, in reference especially to the Classical Languages: with short extracts in easy prose. By Monier Williams, M. A., etc. London: 1846. 8vo.

A Dictionary, English and Sanscrit, by Monier Williams, M. A., etc. Published under the patronage of the Honorable East India Company. London: 1851. 4to. pp. xii, 860.

A Grammar of the English Language; for the use of the Natives of Bengal. By Rev. J. D. Pearson. . . . [English and Bengálí.] Calcutta: 1840. 8vo.

Bengálí and English Dictionary, for the use of Schools. . . . Calcutta: 1856. 16mo.

The English and Hindústání Student's Assistant; or Idiomatical Exercises in those Languages. Designed to assist students of either language in acquiring an easy and correct method of expression. In four Parts. [romanized.] Calcutta: 1845. 12mo.

The Handbook to Hindustanee Conversation, with Familiar Phrases, and an Easy Vocabulary, English and Hindustanee. [romanized.] Serampore: 1851. 18mo. pp. 59.

Vákyáválti. The Student's Assistant; or Idiomatical Exercises in English and Hindú. Calcutta: 1838. 12mo.
American Oriental Society:

From Hon. C. W. Bradley, of Ningpo.

A set of twelve pictures, in water colors, by a Chinese artist, illustrating scenes of Chinese life: twelve by fifteen inches, on silk-bordered paper, and bound together in scarlet silk.

A set of three pictures, in water colors, by a Chinese artist, illustrating scenes which occurred in 1858, on the Pei-Ho river, in connection with the warlike operations of the English and French, and the conclusion of the treaty with America. Pictures about twelve and a half by twenty-five inches, on thin paper.

Cards of the two Chinese Commissioners, Kwelling and Hwaham, sent to treat with the Allied Powers, in the Pei-Ho, 1858.

Chinese Repository. xv. 11, 12; xvi. 2; xvii. 12; xviii. 4-10, 12, 6; xix. 1, 3, 4, 8-12, 11; xx. 2, 3, 5-7, 7, 8-12.

Also, bound with the above:

A Dissertation on White Elephants. By the same. [From the same.] London: 1831. 4to. pp. 7.

With the above are bound up a MS. sermon, on Ezekiel xxxiii. 11, and a half-sheet of the Morning Chronicle, London, Apr. 5, 1837.

Brief Grammatical Notices of the Siamese Language; with an Appendix. By J. Taylor Jones. Bangkok: 1842. 8vo. pp. 90. With the above are bound up:

A Catalogue of Scripture Proper Names, as transferred from the Greek and Hebrew Languages into the Siamese Language. Bangkok: 1842. 8vo. pp. 71. And

A Plan for Romanizing the Siamese Language; together with a list of Siamese Proper Names, in conformity therewith, as agreed upon by the American Missionaries in Siam. Bangkok: 1842. 8vo. pp. 24. 2 copies.

Proclamation of the Kings of Siam respecting the Treaty with the United States of America; in English. Dated Bangkok, June 15th, 1857. Copy, made and attested by Hon. C. W. Bradley.

Autograph Letter of the First King of Siam, to Samuel Mattoon, Esq., Consul, in English; dated Bangkok, June 9th, 1857.

Dictionary of the Malay Tongue, as spoken in the Peninsula of Malaccia, the Islands of Sumatra, Java, Borneo, Pulo Pinang, &c., &c. In two parts, English and Malay, and Malay and English. To which is prefixed a Grammar of that Language. Embellished with a Map. By James Harrison, M. D., etc. [The Malay in both Arabic and Roman characters.] London: 1801. 4to.

Grammaire de la Langue Malaise, par Mr. W. Marsden: publiée à Londres en 1812, et traduite de l'Anglais par C. P. J. Elout. [Double version, French and Dutch on opposite pages.] Harlem: 1824. 4to.

Dictionnaire Malais, Hollandeis, et Français, par C. P. J. Elout; traduit du Dictionnaire Malai et Anglais de Mr. W. Marsden. [Double version, French and Dutch; the Malay in the Arabic character and romanized; the Dutch version of each word or phrase first given, and followed by the French; the Dutch-Malay and French-Malay parts given separately.] Harlem: 1828. 4to. pp. xxiii, 604, and 432.
Additions to the Library and Cabinet.

From the Asiatic Society of Bengal.

Bibliotheca Indica, No. 78. The Chândogya-Upanishad of the Sâma-Veda, with Extracts from the Commentary of S'âkara A'chârya. Translated from the Original Sanskrit by Râjendralâl Mittra. Fasciculus I. Calcutta: 1854. 8vo. No. 79. The Sûrya-Siddhânta, with its Commentary, the Gûdhârtha-Prakâs'âka. Edited by Fitz-Edward Hall, A.M., with the assistance of Pandit Bâpid Deva S'âstri. Fasciculus I. Calcutta: 1854. 8vo.

From the Asiatic Society of Paris.

From the Editors of the Atlantis.

The Atlantis; a Register of Literature and Science, conducted by Members of the Catholic University of Ireland. Nos. ii, iii, iv. London: 1858-59. 8vo.

From M. l'Abbé Bargès, of Paris.

From the Batavian Society of Arts and Sciences.

Tijdschrift voor Indische Taal-, Land-, en Volkenkunde... Deel iii-vi [or Deel iii, and Nieuwe Serie, Deel i-iii.]. Batavia: 1854-57. 8vo.

From Dr. W. H. J. Bleek.

The Languages of Mozambique. Vocabularies of the Dialects of Lourenço Marques, Inhambane, etc. Drawn up from the Manuscripts of Dr. William Peters, and from other materials, by Dr. William H. J. Bleek, etc. London: 1856. obl. 8vo.

From the Board of Foreign Missions of the Presbyterian Church.

Annual Reports of the Board of Foreign Missions of the Presbyterian Church, for the years 1850-57. New York. 8vo.

From the Board of Missions of the Protestant Episcopal Church.

Proceedings of the Board of Missions of the Protestant Episcopal Church in the United States of America, for the years 1850, 1856, and 1857. New York. 8vo.

Sango Iam... [Matthew, in Benga]. New York: 1858. 12mo.

Come to Jesus. [Tract in the Creek Language.]

From Prof. Otto Boechtingk, of St. Petersberg.

From Professor Boechtingk and Roth.

From the Bombay Mission of the A. B. C. F. M.

The Old Testament in the Marathi Language... Bombay: 1853. 4to. pp. 942.

The Dnyanodnya [a semi-monthly Journal, in Marathi]. Published by the American Missionaries at Bombay and Ahmednuggur. Vol. xii. Bombay: 1858. roy. 8vo.
II. ADDITIONS TO THE LIBRARY AND CABINET.

OCTOBER, 1856—MAY, 1860.

From Rev. J. C. Adamson, D. D.
A Compendium of Kafir Laws and Customs, including genealogical tables of Kafir chiefs and various tribal census returns... Mount Coké: 1858. 8vo.

From Rev. W. R. Alger, of Boston.

From the American Academy of Arts and Sciences.
Memoirs of the American Academy of Arts and Sciences. v. 2; vi, 1, 2; vii. Cambridge and Boston: 1855-60. 4to.

From the American Antiquarian Society.

From the American Baptist Missionary Union.
Annual Reports of the American Baptist Missionary Union, for the years 1850-57. Boston. 8vo.

From the American Board of Commissioners for Foreign Missions.
Reports and Letters, connected with... [the Deputation to India of the A. B. C. F. M.]. Bombay, Madras, Calcutta, and Boston: 1855-56. 8vo.
Proceedings of a General Conference of Bengal Protestant Missionaries, held at Calcutta, September 4-7, 1855. Calcutta: 1855. 8vo.
Standard Alphabet. by Dr. Lepalius... London: 1855. 8vo.

From the American Geographical and Statistical Society.

From Mahádája Apúrea Káraka Bahádúr, of Calcutta.
Deewan Kuwar. [Hindustán.] 4to.
7. On the Twenty-eighth-fold Division of the Zodiac made by the Arabs, Chinese, Hindús, and Persians, by Prof. Whitney.

8. Three Sanskrit Inscriptions, relating to Grants of Land; the Original Texts, Translations, and Notes, by Fitz-Edward Hall, M. A., one of her Majesty's Inspectors of Schools for India; presented by Prof. Whitney.

9. On the Arya-Siddhánta, by the same; presented by the same.

10. Memoir on the the Language of the Gypsies and its Relation to the Sanskrit, together with Remarks upon the Present Condition, the History, and the Origin of this Race, and a Grammar of the Language, as now used in the Turkish Empire; by A. G. Paspatic, A. M., M. D., of Constantinople; presented by Mr. D. C. Gilman, of New Haven.

11. A Latin Inscription, found on the supposed site of Lystra, in Phrygia, by Mr. F. P. Brewer, of New Haven.

12. On the lately discovered Orations of Hyperides, especially that against Demosthenes, in the matter of Harpalus, by Pres. C. C. Felton, of Cambridge.

13. On the Philosophy of Language, as illustrated by the Instruction of the Blind Mute, Laura Bridgman, by the same.

The next meeting of the Society is to be held in New Haven, on Wednesday, Oct. 17th, 1860.
The following gentlemen were elected officers of the Society for the ensuing year:

Vice-Presidents:

Corresponding Secretary—Prof. W. D. Whitney, New Haven.

Secr. of Classical Section—Prof. James Hadley, New Haven.

Recording Secretary—Mr. Ezra Abbott, Jr., Cambridge.

Treasurer—Mr. D. C. Gilman, New Haven.

Librarian—Prof. W. D. Whitney, New Haven.
- Mr. J. G. Cogswell, LL. D., New York.
- Pres. C. C. Felton, LL. D., Cambridge.

Directors:
- Prof. W. H. Green, D. D., Princeton.
- Dr. Charles Pickering, Boston.
- Prof. E. E. Salisbury, New Haven.

The Correspondence of the past six months was laid before the Society, and parts of it were read.

The following resolutions were proposed by Prof. E. E. Salisbury of New Haven:

Resolved, That in the death of Prof. William W. Turner, late of Washington City, this Society recognizes the loss of an earnest, diligent, accurate, and most successful scholar in the field of Oriental learning, whose varied attainments and fine qualities of mind rendered him an ornament to this association, and promised, with the increase of leisure for literary pursuits, to make his name more and more distinguished throughout the learned world.

Resolved, That a copy of these resolutions be transmitted to the family of our deceased associate by the Recording Secretary.

These resolutions were seconded by Prof. Beck: the President, Dr. Robinson, gave the Society a sketch of the life of Prof. Turner, and an estimate of his personal and literary character, and, after remarks from other members present, the resolutions were unanimously passed.

The Society then proceeded to listen to communications.

2. On the Negrilloes, or Oriental Negroes, by Rev. J. T. Dickinson, of Middlefield, Conn.

3. Comparative Sketch of the Languages of Ponape and Ebon, two Islands of the Micronesian Archipelago, by Rev. E. T. Doane, Missionary in Micronesia; presented by Prof. Whitney.

4. Notes on Polynesia, its People and Languages, by Dr. Joseph Wilson, U. S. N.; presented by Prof. Salisbury.

5. On the Turkish Language and Literature, by Prof. Converse Francis, of Cambridge.

12. On the Physical Geography of Asia, as connected with its Ethnology, by Prof. Arnold Guyot, of Princeton, N. J.
15. Strictures upon the Views of M. Ernest Renan respecting the Origin and Early History of Languages, by Prof. Whitney.

The regular Annual Meeting for the year 1860 was held in Boston and Cambridge, on Wednesday and Thursday, May 16th and 17th, 1860, the President being in the chair.

The Treasurer’s statement showed the receipts and expenditures of the past year to have been as follows:

RECEIPTS.

Balance in the Treasury, May 18th, 1859, $745.04
Members’ fees: 101 anni. assessment for 1859-60, 565.00
 20 do. do. for previous years, 100.00
Sale of Journal, .. 26.23

Total receipts of the year, .. 831.23

EXPENDITURES.

Paper, printing, and engraving, for Journal, Vol. VI (in part), $690.91
Other printing, .. 30.75
Binding books, .. 70.46
Copying of a Modern Syriac Vocabulary, 20.00
Expenses of correspondence and Library, 43.57

Total expenditures of the year, 855.69
Balance in the Treasury, May 16th, 1860, 520.58

$1370.27

The Librarian reported the accessions to the Society’s collections during the year. The whole number of titles composing the catalogue was now 1726. Donations from the Imperial Academy of St. Petersburg, Dr. Wilson of Philadelphia, B. H. Hodgson, Esq., of England, Râjendralâla Mitra of Calcutta, and others, were especially noticed. The most valuable accessions to the Cabinet had been the three Sanskrit inscription-stones, from India, presented by F. E. Hall, Esq.; such monuments being exceedingly rare out of India itself. For the first time in its history, the Society had been able to expend something in binding, to the great improvement of the Library, in appearance and usefulness.
During the continuance of the meeting, announcement was made to the Society of the death of one of its Honorary Members, Alexander von Humboldt, of which event tidings had just been received by telegraph. Before adjournment, the following resolutions were proposed by Prof. C. C. Felton, seconded by Dr. Beck, and, after remarks by these gentlemen and others present, unanimously passed:

Resolved, That this Society has learned with the deepest regret of the death of the illustrious and venerable Baron Alexander von Humboldt, one of the most conspicuous ornaments of the age, and of human nature.

Resolved, That they recognize in the character and worth of this great man, a splendid example of genius devoted with unsurpassed energy, perseverance, and enthusiasm to the entire circle of human knowledge, from early youth to the last hours of a life extended to the extraordinary length of fourscore and ten years; and that the example he set of a noble consecration to high pursuits in the midst of the allurements of rank, wealth, and society, presents an additional claim to the admiration and reverence of present and future generations.

The Semi-annual Meeting of the Society for 1859 was held in New York, on Wednesday and Thursday, Oct. 26th and 27th, at the Council-room of the University of the City of New York. The President was present and occupied the chair.

After the transaction of the usual business, and the reading of extracts from correspondence, the Society listened to and discussed the following communications:

1. On the Influence of the Semitic upon the Romanic Languages, by Dr. Max Grünbaum, of New York.

2. On Two Sanskrit Inscriptions, found near Jubulpoor, in Central India, by Fitz-Edward Hall, one of her Britannic Majesty’s Inspectors of Schools for India.

4. Comparison of the Elements of the Lunar Eclipse of Feb. 6th, 1860, as calculated according to the data and methods of the Śūrya-Siddhānta, and as determined by Modern Science, by Prof. W. D. Whitney, of New Haven.

6. Contributions, from Original Sources, to our Knowledge of the Science of Muslim Tradition, by Prof. E. E. Salisbury, of New Haven.

particular attention of the Society to the liberal gifts of books made to
the Library during the past two or three years, by Messrs. Williams and
Norgate, oriental and general booksellers in London; and also to a very
large, costly, and valuable donation of books, manuscripts, and other ob-
jects of interest, by Hon. Charles W. Bradley, Commissioner under the
late treaty with China, who has been for a long time one of the most gen-
erous contributors to the Society’s collections. A special vote of thanks
to Mr. Bradley was moved and unanimously passed.

An amendment to the Constitution, increasing the number of Directors
from five to seven, and the number required to form a quorum of the
Directors from three to five, was proposed and adopted.

The Society then proceeded to the election of officers for the ensuing
year, and the following ticket, proposed by a Nominating Committee of
three, was elected:

Vice-Presidents—Prof. Charles Beck, Ph. D., Cambridge.

Corresponding Secretary—Prof. W. D. Whitney, New Haven.

Secr. of Classical Section—Prof. James Hadley, New Haven.

Recording Secretary—Mr. Ezra Abbot, Jr., Cambridge.

Treasurer—Mr. D. C. Gilman, New Haven.

Librarian—Prof. W. D. Whitney, New Haven.

Prof. Howard Crosby,

Prof. C. C. Felton, LL.D., New York.

Prof. W. H. Green, D.D., Cambridge.

Rev. Theodore Parker, Princeton.

Dr. Charles Pickering, Boston.

Prof. E. E. Salisbury, New Haven.

Directors

After the transaction of other business, and the reading of corre-
pondence, communications were called for. The following were presented
and read:

1. On Dr. S. W. Williams’s New Chinese Dictionary, by Rev. W. A.
Macy, Missionary in China; presented by Prof. James Hadley, of New
Haven.

2. On the English Words tortoise and turtle, by Mr. Charles Folsom,
of Cambridge.

3. On the Kings and Kingdom of Siam, by Hon. C. W. Bradley, of
Ningpo; presented by Prof. W. D. Whitney, of New Haven.

4. On the Greek Inscription from Daphne, by Prof. Hadley.

5. On the Ethnological Relations of the Ancient Scythians, by Dr.
Reinhold Solger, of Roxbury, Mass.

6. Remarks upon the Interpretation of Genesis ii. 25, by Rev. E. C.
Jones, of Philadelphia; presented by Mr. Ezra Abbot, Jr., of Cam-
bridge.

Whitney.

8. On the Relation between the Greek and Hindu Astronomies, by
Rev. Ebenezer Burgess, of Centreville, Mass.

3. On Greek Metre, by Prof. Howard Crosby, of New York.

6. On an Ancient Greek Inscription, found at the site of Daphne, near Antioch, and copied by Rev. Homer B. Morgan, Missionary at Antioch; by Pres't T. D. Woolsey and Prof. J. W. Gibbs, of New Haven.

7. On the Relations of the Hebrew to the Indo-European Tongues, by Prof. W. H. Green, of Princeton.

The regular Annual Meeting for 1859 was held in Boston and Cambridge, on Wednesday, May 18th. The President was in the chair.

The Treasurer's yearly statement was as follows:

RECEIPTS.

Balance in the Treasury, May 19th, 1858, $419.17

Members' fees: two life-memberships, $150.00

eighty-nine annual assessments for 1858-9, 445.00

fifteen do. do. for previous years, 75.00

three do. do. for 1859-60, 15.00

Sale of Journal, 685.00

Interest on deposit in Savings Bank, 77.56

Interest on deposit in Savings Bank, 15.07

Total receipts of the year, 778.63

$1197.80

EXPENDITURES.

Printing of Proceedings and blanks, 30.75

Expenses of correspondence and library, 32.81

Total expenditures of the year, 392.76

Balance in the Treasury, May 18th, 1859, 745.04

$1197.80

The Librarian reported the accessions to the Library during the year, and its present condition.

The number of new works added to the Library during the year was stated to be one hundred and twenty-eight, besides about thirty continuations and duplicates, and twelve manuscripts. The Librarian called the
The Board of Directors communicated the following rule: The Committee of Publication shall consist of five members, of whom three shall be resident at the place where the Journal is published: they shall be appointed by the Directors, and shall report to the Society at every meeting respecting the matters committed to their charge.

After the transaction of other business and the reading of correspondence, communications were brought before the meeting.

1. Mr. Charles Folsom, of Cambridge, exhibited to the Society a fragment of an American inscription, of colony times, for the purpose of obtaining the opinion of the members present with respect to a restoration proposed by him of the missing portion.

2. A paper entitled "Petra in 1851," by Hon. George P. Marsh, of Burlington, Vt., was read by the Corresponding Secretary.

3. On the Greek Genitive as an Ablative Case, by Prof. James Hadley, of New Haven; read, in the absence of the author, by Mr. Abbot, of Cambridge.

4. On the Egyptian Monuments of El-Amarna, by Dr. Charles Pickering, of Boston.

A Semi-annual Meeting was held in New York, at the rooms of the American Board of Commissioners for Foreign Missions, and of the University of the City of New York, on Wednesday and Thursday, Nov. 3rd and 4th, 1858. The President was in the chair.

The Directors congratulated the Society on the gratifying success of the measures initiated at a previous meeting for increasing its numbers, strength, and efficiency.

The Librarian made a brief verbal report respecting the accessions to the Library and Cabinet. He also announced that he was authorized to give notice to members of the Society that, upon making application through him, they would be allowed copies of the Collection des Ouvrages Orientaux, published by the Asiatic Society of Paris, at the reduced price at which it is furnished to members of the latter society, namely at five francs per volume. Of that collection there have now been published four volumes, each of about five hundred octavo pages, containing the Travels of Ibn Batûta complete, in the Arabic text and with a French translation.

The correspondence of the past half-year was laid before the meeting, and extracts from it were read. The Society then proceeded to listen to communications.

1. On a Recent Work by Prof. Ross, of Halle, entitled "Italians and Greeks. Did the Romans talk Sanskrit or Greek?", by Prof. James Hadley, of New Haven.
The Annual Meeting of the Society took place in Boston, on Wednesday, May 19th, 1858. Dr. Charles Pickering, in the absence of the President, occupied the chair.

The Treasurer's account was presented, audited, and accepted. The receipts and expenditures of the year were stated to be as follows:

RECEIPTS.

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balance in hands of Treasurer, May 20th, 1857,</td>
<td>$75.00</td>
</tr>
<tr>
<td>Members' fees: one life-membership,</td>
<td></td>
</tr>
<tr>
<td>sixty-one ann. assessments for 1857-8,</td>
<td>305.00</td>
</tr>
<tr>
<td>eight do. do. for previous years,</td>
<td>40.00</td>
</tr>
<tr>
<td>five do. do. for 1858-9,</td>
<td>25.00</td>
</tr>
<tr>
<td>three initiation fees,</td>
<td>15.00</td>
</tr>
<tr>
<td>Total</td>
<td>$54.46</td>
</tr>
<tr>
<td>Sale of Journal: to new members, at half-price,</td>
<td>33.75</td>
</tr>
<tr>
<td>by agents</td>
<td>46.54</td>
</tr>
<tr>
<td>Donation</td>
<td>5.00</td>
</tr>
<tr>
<td>Total receipts of the year</td>
<td>$545.29</td>
</tr>
</tbody>
</table>

EXPENDITURES.

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Journal, Vol. V, No. 2 (balance remaining unpaid),</td>
<td>$105.00</td>
</tr>
<tr>
<td>Printing of Statement and Appeal, and blanks,</td>
<td>32.85</td>
</tr>
<tr>
<td>Postage and freight (in part since 1858),</td>
<td>42.03</td>
</tr>
<tr>
<td>Loss on uncurrent money</td>
<td>.70</td>
</tr>
<tr>
<td>Total expenditures of the year</td>
<td>$180.58</td>
</tr>
<tr>
<td>Balance in the Treasury, May 19th, 1858,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$599.75</td>
</tr>
</tbody>
</table>

The Librarian reported that there had been added to the Library, since the last report, one hundred and sixty-five new titles, besides about fifty continuations and duplicates. The whole number of titles was now 1544, and of volumes not far from 2000. All the contents of the Library had been numbered and labelled, and provided with a complete card-catalogue.

The election of officers for the ensuing year resulted in the choice of the following ticket:

President—Prof. Edward Robinson, D. D., L.L. D., of New York.
Vice-Presidents
- Prof. Charles Beck, Ph.D., Cambridge.
Corresponding Secretary—Prof. W. D. Whitney, New Haven.
Sec. of Classical Section—Prof. James Hadley, New Haven.
Recording Secretary—Mr. Ezra Abbot, Jr., Cambridge.
Treasurer—Mr. Daniel C. Gilman, New Haven.
Librarian—Prof. W. D. Whitney, New Haven.
Directors
- Prof. C. C. Felton, L. L. D., Cambridge.
- Rev. Theodore Parker, Boston.
- Dr. Charles Pickering, New Haven.
- Prof. E. E. Salisbury.
been sustained by the cause of Oriental learning in the decease of that eminent scholar.

The Committee on the mode of increasing the efficiency of the Society made an elaborate report through the Corresponding Secretary. They discussed the ends at which such an association ought to aim, and the way in which those ends could be most directly and successfully attained. They pointed out the reasons, general and special, why the sphere of the Society's highest and most useful activity must be the regular and liberal publication of valuable memoirs in its Journal. They exhibited the present resources of the Society, rehearsed its operations and modes of action, and showed wherein these were deficient and needed to be improved and extended. They made a comparative statement of the resources and activity of other Societies of kindred objects, especially in Europe, and claimed that, to maintain a satisfactory position with reference to them, the Society ought to enjoy an income of $1000 or more, and to publish an annual volume of four to five hundred pages: that this was due both to the contributing members and to the cause of science. They proposed a plan of action to this end, based especially upon a large increase of corporate membership, and recommended the appointment of a Committee charged with its execution.

The report was accepted, its suggestions formally adopted, and the proposed Committee appointed. It was farther voted:

That the initiation-fee of five dollars be no longer required of members newly elected, and that such members have the privilege of taking a copy of the previously published volumes of the Journal, if they desire them, at one half the original price.

That the Directors may, at their discretion, and in view of the circumstances of each case, transfer to the list of Corresponding Members persons elected as Corporate Members, but who may have since permanently left this country, and to the list of Corporate Members persons chosen as Corresponding Members, but who may have since transferred their residence to this country.

After the transaction of other business, the following communications were offered:

2. On the Pratīcākhyas, or Vedic phonetic and grammatical treatises, by Prof. W. D. Whitney, of New Haven.
4. Analysis of the Chinese Terms and Characters Tien and Shin, by Dr. M. C. White, of New Haven.
5. On the Historical Geography, and the Geographical Position and Relations, of India, by Prof. W. D. Whitney, of New Haven.
6. Analysis and Extracts of an Arabic Work on the Water-Balance, of the Twelfth Century, by the Chevalier N. Khanikoff, Russian Consul-General at Tabriz, Persia; presented by Prof. E. E. Salisbury, of New Haven.
Prof. C. C. Felton, LL. D., " Cambridge.
Mr. W. W. Greenough, " Boston.
Rev. Theodore Parker, " Boston.
Dr. Charles Pickering, " Boston.

The Nominating Committee, being instructed to prepare an expression of the acknowledgments of the Society to Prof. Salisbury for his long and valued services as Corresponding Secretary, presented the following resolutions, which were unanimously passed:

Resolved, That the Society has received with deep regret a communication from Professor Edward E. Salisbury, of Yale College, announcing the necessity, by reason of his continued absence from the country, of his declining a re-election to the office of Corresponding Secretary: and that we should be doing violence to our feelings, if we suffered this occasion to pass without expressing to Professor Salisbury our great obligations to him for his able, faithful, and zealous performance of the duties of this office during so many years; and, in general, for the most liberal and valuable contributions of time, labor, learning, literary ardor, and pecuniary aid, which he has made to the interests of the Society from its very inception.

Resolved, That the Recording Secretary be requested to communicate the foregoing resolve to Prof. Salisbury, with the wish that his correspondence with the Society may be as full and frequent, during his absence, as his engagements will allow.

On motion, a Committee of five was appointed, to take into consideration the means of increasing the efficiency of the Society, with instructions to report at the next meeting.

The following papers were presented and read:

A Semi-annual Meeting of the Society was held in New Haven, on Wednesday, Oct. 28th, 1857. The President, Dr. Robinson of New York, occupied the chair.

Brief verbal reports were made by the Treasurer and Librarian respectively upon the state of the finances and of the Library. Some of the latest accessions to the latter were laid before the meeting, among them the seventh volume of the late Baron von Hammer-Purgstall's History of Arabic Literature, the last work of its distinguished and venerable author. In connection with the latter, was unanimously passed the following resolution:

Resolved, That the Corresponding Secretary be directed to express to the family of the late Baron von Hammer-Purgstall the sympathy of the Society in their bereavement, and its painful sense of the loss which has
AMERICAN ORIENTAL SOCIETY.

I. SELECT MINUTES OF MEETINGS OF THE SOCIETY.

The regular Annual Meeting was held in Boston, at the rooms of the American Academy of Arts and Sciences, in the Boston Athenæum, on Wednesday, May 20th, 1857, Rev. Rufus Anderson, D. D., of Boston, in the chair.

The Treasurer presented his account to be audited, accompanying it with the following summary statement of the receipts and expenditures of the year:

RECEIPTS.
Balance in hands of Treasurer, May 14th, 1856, $103.83
Members' fees: forty annual assessments for 1856-7, $200.00
six do. do. for previous years, 30.00
Total receipts of the year, 230.00

$333.83

EXPENDITURES.
Journal, Vol. V, No. 2 (in part), $270.00
Other printing, 3.00
Expenses of library and correspondence, 6.37
Total expenditures of the year, $279.37
Balance in the Treasury, May 20th, 1857, 54.46

$333.83

The Librarian being absent, no report on the Library was offered.

The Society next proceeded to the choice of officers for the ensuing year. A communication from Prof. Edward E. Salisbury of New Haven was read, declining a re-election as Corresponding Secretary. The following ticket, proposed by a Nominating Committee, was elected without dissent:

President—Prof. EDWARD ROBINSON, D. D., LL. D., of New York.
{ Prof. CHARLES BECK, Ph. D., " Cambridge.
Vice-Presidents } REV. WILLIAM JENKS, D. D., " Boston.
Corresponding Secretary—Prof. W. D. WHITNEY, " New Haven.
Secr. of Classical Section—Prof. JAMES HADLEY, " New Haven.
Recording Secretary—Mr. EZRA ABBOTT, Jr., " Cambridge.
Treasurer—Mr. EZRA ABBOTT, Jr., " Cambridge.
Librarian—Prof. W. D. WHITNEY, " New Haven.

VOL. VI. 74
the lunar and planetary mansions, and other astronomical divisions, represented on the astronomical wheel preserved in Mr. Bullock's museum amongst the relics of the antiquities of Mexico; the descriptions of Mexican armlets, anklets, earrings, noserings, and other ornaments, resembling those worn by Hindu women; the Sanskritisms in the names of American places and persons noticed by Moore in his Oriental Fragments—all indicate a mysterious relation between the ancient Hindus and the early colonization of America, and invite the attention of the Society to the solution of the question whether or not Aryavarta, which sent forth the Celts and Teutons to people Europe, also poured colonists into the New World long before its existence was heard of in Europe.

I have the most sanguine expectations that the rays of knowledge derived from researches into the antiquities of your own country from an extensive acquaintance with Vaidic and Puranic legends, and from the Saga literature of Northern Europe, the Skaldic songs of Iceland, and the ancient annals of Greenland, which are being published under the auspices of the Société Royale des Antiquaires du Nord—when combined into one focus, will illumine the dark vistas of the primeval history of America.

To the strict Benthamite, who would regard these advantages of the study of Sanskrit to be purely intellectual, and seek some practical utility to be derived from it, the Society can point out the present flourishing state of commerce between the United States of America and India, to carry on which it is indispensably necessary that your countrymen should be familiar with the language, manners, and customs of the people with whom they come into daily contact. But how are these to be mastered without some knowledge of Sanskrit, which is the source of almost all the dialects of India, and which is the repository of the laws and religions of the Hindus? . . .

Wishing every success to the laudable undertakings of the Society,

I have the honor to remain, Sir,

Your obedient servant,

RADHAKANT
Raja Bahadoor.

4. From a Letter of John Muir, Esq., D.C.L., of Edinburg (to F. E. Hall, Esq.).

Edinburg, Nov. 24th, 1859.

. . . . It was mentioned to me, some time ago, that perhaps MSS. of the Atharva-Veda might be still forthcoming in Kashmir. On this I wrote at once to Mr. D. F. McLeod, to get him to make inquiries. I heard nothing in reply till the other day, when he was here, and told me that he had written to Goolab Singh, who directed inquiry to be made, but could hear nothing of the Atharva-Veda. . . .
3. From a letter of Rāja Rādhākānta Deva Bahādur, of Calcutta.

Calcutta, August 21st, 1858.

... I avail myself of this opportunity to express my high sense of the importance of the objects of the Society, and my admiration for the zealous and indefatigable exertions of your learned men, in surmounting the difficulties incident to a young nation, which lie in the way of many interesting researches into the antiquities of the East.

The Society, in conducting its investigations in the various and extensive subjects of its study, has justly made Egypt and India the choicest fields of its inquiry: the love of knowledge for its own sake is alone sufficient to excite a rational curiosity to examine the ancient monuments of Hindu learning, which have now formed an absorbing subject of study amongst the savants of Europe.

The comprehensive language of ancient India, which has been demonstrated to be the primeval stock of more than two-thirds of the tongues of the civilized world, and the study of which has formed a new era in philology; her inexhaustible literature, which supplies a rich fund of intellectual entertainment; her profound and diversified philosophy, which displays at once the source and the fullest developments of the Dialectics of Aristotle, the Atomic theory of Democritus, the Stoical doctrine of Zeno, the Metempsychosis of Pythagoras, and the bold flights of Plato's fancy; her science, which contains all the wisdom of the ancients, and the germs of many modern discoveries; her arts, fair speciments of which attract the traveller in the temples of Ellora and Adjunta; her varied forms of religion; her extensive legislation, and her commerce with remote nations of antiquity—all form engrossing topics for the Society's research, and although much light has been thrown on them by the enthusiastic and persevering efforts of European scholars, yet much remains to be learned and examined: the surface of the mine has only been skimmed over, the profound depths yet lie unexplored: the youthful vigor and energies of your nation have been directed to these regions, and the labors of your scholars will ere long be rewarded with the richest treasures. Foremost amongst the results anticipated from such researches is the development of the science of Ethnography, which is now in its cradle.

Independent of this general incitement for the study of the ancient learning of India, there is a stronger and special reason which renders it the duty and interest of every American to devote his attention to this subject, inasmuch as there is a strong probability of its supplying some of the lost links of the ancient history of the Western world.

The ante-Columbian annals of America, to which the learned Charles Rahn and the venerable sage Alexander von Humboldt have directed the attention of the antiquarians, point to the colonization of the American coasts by the Scandinavians, who have been very cleverly identified by Todd with the ancient Kshatriyas; the Surya and Chandravansi Incas of Peru, their festival of Ramasita, and other Peruvian customs partaking of a Hindu character, noticed by the Bishop of Llandaff, in a charge delivered by him to the Clergy and Archdeaconry at Ely; the Mexican temples of the sun and moon, with altars having triple fire-vases;
From looking at the subject in the light thus briefly indicated, and it is not necessary to detain the Society with more, I am impressed with the conviction that Ancient Oriental history has yet to be written. The very conception of its unity—or of the fact that it has such intrinsic and proper unity—has not appeared in any work that I have seen.

———

IV. EXTRACTS FROM CORRESPONDENCE.

Oroomiah, July 9th, 1857.

. . . . M. Jabá, the Russian Consul at Erzroom, showed our friend a manuscript Dictionary in French, Turkish, and Koordish, which he had prepared by the direction of his Government, and which is soon to be published at St. Petersburg. Also, a Grammar, Chrestomathy, and Dialogues, in the same languages. The Koordish is that spoken in the region of Van and Bayazeed. You are aware that the dialects of Koordish are very numerous. The Rev. Samuel A. Rhea, our esteemed missionary in Koordistan, is paying some attention to the Hakkary Koordish, spoken in the region of his residence. . . .

We have sometimes speculated on the etymology of the name of our province, Oroomiah. It may be, I think, composed of ְּּיִּאָל "land," and ְּּיִּאָל "Rome," i.e., "land of the Romans," or belonging to Rome under the Byzantine rule—the same in fact as Erzroom, except that the latter takes the Arabic prefix, instead of the Syriac. The Nestorians say that it means "land of water," i.e., "well-watered district," from ְּּיִּאָל and ְּּיִּאָל: this accords well with the actual state of the country. . . .

———

2. From a letter of Prof. C. J. Tornberg, of the University of Lund.

Lund, Sweden, July 19th, 1857.

. . . . You will perhaps be interested to learn that I am now preparing three new volumes (viii-x) of Ibn el-Athir, so that almost the half, and the more interesting half, of the great chronicle (the years 295–628 of the Hejira) will be in the hands of the learned world. A stay at Paris during the past year has placed me in possession of materials, not only for this new portion, but also for the revision of the text already published. A Latin version will accompany the whole. I hope that a volume may be ready to appear during the course of next year. If life and health are granted me, it is my design to take up the first sections also of this important work. I regard this labor as one of the problems of my life. . . .
was under their control. It received a new impulse and loftier purpose from the great increase and energy of the sons of Shem, and from the religious reformation effected by their means; and it was both finally united, and brought to its close, by the first great empire of the Japhetic race. The Hamitic nations, Egypt, Ethiopia, and Sidon, were the leaders of the epoch, who gave shape and general bearing to its character from beginning to end. In the latter part of their history they found reformers, rivals, and correctives, but not masters, in the Hebrews, Arabians, and Assyrians; and the semi-barbarous Persians, in overrunning and subduing, contracted only the external gloss of the refinement, which died in their grasp. Though the Japhetic race first rose to dominion within that region, it was elsewhere that they were destined to unfold a civilization proper to themselves.

In the history of that epoch are to be found all the varieties of civilization which have their birth in the material habitation of man. All that refinement which is consistent with migratory life is illustrated in the story of the Hebrew patriarchs; Egypt carried to the very last results the genuine order of agricultural society; and Sidon, with her colonies, gave the earliest example of the more liberal culture which springs from commerce; while every inferior degree of these styles was to be found scattered among the table lands, the valleys, and the seacoasts of that most diversified yet harmonious country.

Moreover, when we consider its linguistic and ethnological relations—the fact that nations outside of its borders refer their origin to it—that physiologically they hold relations to those parts of it nearest to them—that its languages refer themselves to a common centre, and stand as the types of the linguistic systems beyond its bounds—that the language, for example, of its central highlands, has thrown out descendants to both east and west, which to this day recognize their affinity; while that of its southwestern plain has as clearly perpetuated itself into Africa, as that of its northeastern plain opens out to the geographical conditions of the Turanian or sporadic groups of the north of Asia and Europe—it seems to me that the history of that region and epoch assumes not only a roundness and unity, but also a magnitude of importance, hardly equalled in any subsequent time. Its historical unity stands out the more prominently that its prosperity, though the first to flourish and the first to fade, has never yet been restored.

To this epoch of civilization the Persians stood as the Romans to that of Hellenic growth. They gave one master to its whole domain. And as the decay of the Roman empire was to the Hellenic epoch, so was the decay of the Persian to the Oriental.

But the final blow was given by the campaigns of Alexander. Though the head of a great civilized power, and destined to diffuse the civilization of which he was the champion, he came upon the last days of ancient Orientalism as the Goth upon declining Rome. Though Hellenism did much good in the east, and was widely diffused, it never took root there. The dark ages of the Oriental world, so far as pertains to the original seat of its refinement, have seen no dawn; the learning of its antiquity no revival.
The region in which it flourished has well defined natural boundaries: on the west, the great African desert, the Mediterranean, Ægean, Hellespont, Propontis, and Bosphorus; on the north, the Black Sea, the range of the Caucasus, the Caspian Sea, and the deserts of Tartary; on the east, the Ala Tagh mountains, the Hindu Kush and Himalaya range, as far as the Sutlej, and thence, the sandy desert on the east of that river and of the Indus, to the sea; and on the south, the Arabian Sea, the gulf of Aden, and the southern borders of Abyssinia. It is also symmetrical within itself, all its parts holding such relations as the parts of one body hold to that body and to one another. Its central element is a broad belt of highlands, running from north-west to south-east, beginning on the shores of the Ægean Sea, occupying in its breadth the whole peninsula of Asia Minor, and then of Armenia and Mesopotamia, and successively extending over Assyria, Persia, Cabul, and Gedrosia, until it terminates near the western bank of the Indus. On either side of this great belt of hill country lies a vast plain, bounded externally by the valley of a large and navigable river, and partly intersected by two inland seas. On the south-eastern side, the plain is that which comprehends the deserts of Arabia and the Nile valley, and the two seas which intersect it are the Red Sea and the Persian Gulf. The north-eastern plain is that which contains the deserts of Turkomania, and the seas which intersect it are the Caspian and Aral.

Into each of these plains runs a great and fertilizing system of rivers, connecting it with the central highlands. On the south-west, that system consists of the Euphrates and Tigris, with their tributaries, running down from the highest group of mountains in the western highlands; on the north-east it is that of the Oxus and Jaxartes, with their tributaries, which gather their waters from the highest summits of the eastern highlands. The features of the north-eastern plain face southward, and those of the south-western, in view of the same particulars, in the main, face northward.

The whole region is thus at once symmetrical and varied, bound together by great natural bands: it is one.

Both on the east and on the west, its southern side rests upon the valley of a great river, which feeds a rich belt of arable land through a desert to the sea. On the east, the Indus—on the west, the Nile, present a remarkable similarity in the nature of their course, their magnitude, the countries through which they flow, and the antiquity of human history connected with them.

Thus limited by natural boundaries on every side, and symmetrical within itself, this happy region was also possessed of great diversity of parts. It comprehends every variety of climate belonging to the temperate zone, and, with the exception of some mountain tops, and of Ethiopia and southern Arabia, is spared all the extremities which lie beyond that zone.

It is this region which was the oldest historical abode of all three historical branches of mankind: so far as history knows, it was their primitive home. Within its bounds they cultivated and ripened their first epoch of civilization, and saw its decline. That epoch began with the supremacy of the sons of Ham, and for more than fifteen hundred years
It rests, therefore, with those who feel called in the Providence of God to literary pursuits, to press into the wide and unexplored fields which this venerable language, with its immense literature, presents to an earnest explorer. France has long gloried in men whose knowledge of Chinese has been both extensive and thorough, and now, year by year, her scholars are making valuable contributions to the general fund of human knowledge.

The citizens of our Republic abroad are happy to see the commencement of a higher standard of literary attainment in our country. We are proud to mention the names of many of our countrymen who are known wherever there are scholars: we are proud to hear from men of other lands the respectful mention of not a few eminent for science and literature. We trust that this number may be continually swelled. The pursuit of wealth has drawn down to the merely material too many a soul capable of better things. Many an illustrious example has shown that even deep poverty is no bar to the pursuit of learning. It will be a happy day, when even worldly wisdom shall have charms enough to attract men away from all the pleasures of wealth or political honors.

The new relations of China to the nations of the West seem to demand that something more should be undertaken, by those who are so extensively engaged both in missionary and mercantile operations with that land, to cultivate an acquaintance with the language and literature of China. The language must be attractive to the philologist and the grammarian, while the literature, though meager and feeble in comparison with that of Europe, ancient and modern, is yet vast, and not devoid of many elements of attraction to one who loves to trace the workings of the human mind under differing conditions of development and progress.

Shanghai, Aug. 28th, 1858.

III. ON THE NATURAL LIMITS OF ANCIENT ORIENTAL HISTORY.

BY PROF. JAMES MOFFAT, D.D.

Presented to the Society Oct. 27, 1859.

The field of Ancient Oriental History has hitherto, so far as I know, been treated as if possessed of no natural boundaries in either time or place. Conventional limits have been assigned to it, merely because, for the convenience of both writer and reader, the Orient must be assumed to stop somewhere, and the ancient to stop somewhen.

Contrary to this prevailing notion, I find an epoch of history most properly styled Ancient Oriental, which is by nature singularly circumscribed, both chronologically and ethnologically, as well as by the relations and boundaries of its geography.

That epoch of civilization which flourished between the Deluge and the fifth century before Christ was both unique and harmonious in its style, and rounded and complete in its duration, passing through a natural maturity and decline.
It must not be inferred from what is said above that Dr. Williams's work is to be regarded as having reached a point in Chinese lexicography which virtually precludes future efforts. The original design was not to construct a lexicicon on scientific principles, and to exhaust the whole field thus laid open. Such a plan would have defeated any hopes of an immediate supply for the existing wants. Accuracy, copiousness, clearness, definiteness were the ends sought after, and in a very high degree secured. But the dictionary which shall embrace all the literature of 3000 years, in all its well defined divisions—which shall lay hold of the original thought contained in every word, and trace it through its changes during centuries, and under all the exigencies of a changing civilization—which shall do justice to the philosophies of different sects, in their original character and in their modified aspects after mutual friction and collision—which shall give due weight to historical elements which modify and revolutionize language—which shall arrange and explain the technology of a crude and often ridiculous science—who cannot see that this is not yet a possible thing! Local dictionaries, special lexicons, monographs, essays, translations, and especially new and more thorough investigations, must precede even the first inception of such an undertaking. If Hebrew, Greek, and Latin are only now just beginning to be illustrated in scientific dictionaries, how much more time must be given to a language in which only the rudiments have yet been mastered! In China there is a select number of works which may be compared with Assyrian inscriptions, for the deep obscurity which enshrouds them; there are the later classics, on which the Chinese have multiplied commentaries beyond number; there are countless works in poetry, in metaphysics, in science, in politics, in history, in religion; there is a style of loftiest conciseness, the acme of literary attainment; there is a conventional style of fine writing, the standard of the examinations; there is a style of public documents, a style of simple composition adapted to the comprehension of persons of limited education; a style of ordinary life, conversational, colloquial: each of these presents words under some new phase. Each of these styles must be separately studied, and from the comparison of all the true idea of every word be at last deduced. The lifetime of no man will enable him to compass all this labor, and as yet the materials are not prepared for any one by collation and comparison even to draw the outline.

But it is farther true that, while China has been an isolated land in a very peculiar sense, it has also been brought into contact with wild Tartar tribes by conquest, and with Indian monks through the introduction of Buddhism, in such way as to influence the language. The knowledge of Mongol, Manchu, and Sanskrit is a necessary one to the successful lexicographer.

The greater part of what has been done in the way of aiding beginners in the study of Chinese has been done by missionaries. The very employments of these men lead them to undertake certain investigations which may contribute to a final result, but their time is too much occupied with weighty duties to permit them to be so absorbed in their literary employments as to produce perfect works, either in grammar or lexicography.
the aid of forty years' study of the Chinese, both in Europe and in China, the contributions of many practical scholars embodied in a variety of works. The very necessities of the case would have compelled an advance and an improvement. But besides this, he brought his own acquaintance of twenty years with the language, and his wide range of general knowledge. Thus, in addition to the combined treasures of his predecessors, we have new stores of definition and illustration, and in particular an unrivalled accuracy in the case of terms of geography, history, and natural science. Where previous writers had to content themselves with saying, a river, a tree, a fish, or an insect, Dr. Williams has labored to fix upon the exact place, locality, and individual, or on the true technical name in every case. A cursory comparison of his work with others will show at least what he has attempted.

The size of his work will probably not prepare those who have been used to the dignified portliness of De Guignes and Morrison for the statement that no other dictionary is so full in its definitions, and this not only in the abundance of synonymous expressions, but also in the shades and changes of meaning. In this particular it is much in advance of any other. In the selection of phrases, the most important portion of a Chinese lexicon, it is also far in advance of any other similar work, drawing its examples from the classics, from ordinary styles of composition, from proverbial expressions, and from colloquial usage. It is to be regretted that the want of a suitable font of type should have prevented the insertion of all the Chinese characters, the fixing of which is often very difficult. But notwithstanding this drawback, these illustrations are of the highest value to the student, and in the Canton dialect the want is scarcely felt.

The Dictionary contains about 7800 characters, a number which, if it does not include all that will be met with in ordinary reading, yet omits only a few of unusual occurrence, the meaning of which can in Chinese works generally be found in a commentary. Parts of the Dictionary having been issued from time to time as printed, and placed in the hands of those who daily consulted it, many omitted words were supplied, which are inserted in the Appendix.

The list of proper names, which does not embrace those that have become extinct, is useful in China, and may be interesting elsewhere.

The Index according to radicals has been very carefully prepared, and is believed to be very reliable in respect to the radical and number of strokes as there given, and as an index to the Dictionary.

The various information given in the Introduction is also both interesting and accurate.

To any one, therefore, who feels attracted to the study of a language which, in spite of its traditional difficulties, has not been without attractions to a large number of European scholars, it may with confidence be said, that by the use of this little volume many rough places will be smoothed, and many an abyss bridged over, and many fields of thought and investigation made accessible. To such a one it may be a kindness also to mention that in the Chinese Repository, xviii. 402 etc., 657 etc., may be found a very full list of works relating to China and its language.
best stated by saying that with his help have been trained all the scholars who in this land have as yet extended the bounds of our knowledge in this tongue. His dictionary has been the common fountain to which all have as yet resorted to obtain the knowledge they desired. Still his work was not perfect, and when the impression became nearly exhausted, there was a double call for some farther efforts in this path which he so successfully travelled.

3. Dr. Medhurst published at Batavia a translation of Kanghi's Dictionary, in two volumes. This work was reasonable in price and not inconvenient in form, and on the whole has been a great assistance to many students, though not free from serious errors.

4. M. Callery, a French missionary, published a compendious vocabulary, arranged on a new principle, the definitions in Latin, and the whole designed rather as an introduction to the large Encyclopedia which he undertook to publish, a translation of the Thesaurus mentioned above. This work is scarce and has been but little used.

5. Gonsalves, a Portuguese priest and professor in the College of St. Joseph, at Macao, published a dictionary in Chinese-Portuguese, and one in Chinese-Latin, with the corresponding parts in Port.-Ch. and Lat.-Ch. These works are valuable and erudite. But the language of the former is so little known as to interfere much with its use; and he created a new difficulty by rearranging the radicals of Kanghi on a plan of his own. But little use is made of any of his labors.

Besides these, there is a Dictionary of the Fuh-kien dialect, by Dr. Medhurst, of little value, and a small vocabulary of the Tie-chiu dialect, by the Rev. Mr. Goddard, which contains only very brief definitions, without any phrases or examples.

This was the state of things when, in 1849, Mr. Williams began a translation of a small manual of the Canton dialect, of which he gives an account in his introduction. The design was at first only to produce a vocabulary, of perhaps 200 or 300 pages. But after proceeding as far as the syllable Fā, the materials on hand, and the evident desirability of a more complete work led him to enlarge his plans in such a way as to produce a book of 900 pages, the first 40 pages having been rewritten so as to make 72 pages as published. The work was extended through more than seven years, partly on account of the author's absence in the American expedition to Japan under Com. Perry, partly because it was only a secondary occupation for a part of the time.

It was originally undertaken as a direct help to those speaking the Canton dialect, and the sounds of the characters are therefore conformed to that local pronunciation. The gain to the students of that dialect is so great as to outweigh all objections from the limited use of those sounds, especially as in the case of every dialect the difficulty from the use of the sounds of even the general language is just as great.

This dictionary was by no means deprived of any advantage which P. Gonsalves threw away, when he refused even to look at the work of another. It professes to have gathered all that is really valuable in all the five works above mentioned, and from whatever has been written on points of lexicography that was within the author's reach. As compared with the works of De Guignes and Morrison, Dr. Williams had
The book is the production of one of the missionaries of the American Board, who at the time of its publication had been twenty-three years in China, and who is well known as not only a sinologue, but a Japanese scholar, and a naturalist. His introduction to the public, through his contributions to the "Chinese Chrestomathy" published by Dr. E. C. Bridgman, through the "Easy Lessons in Chinese," the "English and Chinese Vocabulary," and the "Middle Kingdom," gave assurance that a work such as this now under notice would be marked by accuracy, research, and availability. This assurance has been fully realized, and in the small, portable manual, whose appearance so contrasts with the bulky volumes which are constantly associated with the study of Chinese, we have not only the most convenient, but the most valuable aid yet furnished for the attainment of the Chinese language.

The student of Chinese is now quite liberally furnished with helps, in the form of grammars, translations, chrestomathies, and dictionaries. It is with these last only that we shall now have to deal, in order to appreciate the value of the work of Dr. Williams.

The Chinese themselves have given much attention to lexicography, and have investigated the composition, meaning, and use of the words of their language in a very complete manner. In the Chinese Repository, xvii. 433-459, may be found a list of 218 separate works collected in the Imperial Library at Pekin. Of these, however, but few are ever consulted by the foreign student, and for general purposes probably not over four or five are worthy of mention. And among these, two have a decided preeminence; these are K'ang hi ts'ien, or the Dictionary compiled by Order of Kanghi, generally bound in 32 or 40 volumes, and P'ei wan yuen fu, or the Thesaurus of the Chinese Language, with the same arrangement as the preceding, but with copious illustrations from all Chinese classical literature: a notice of this work, as well as of a proposed translation, may be found in the Chinese Repository, xii. 300 etc.

It is needless to say that the benefit of any native dictionaries is confined to the advanced scholar, and cannot be felt by the beginner.

Of dictionaries by foreigners, besides several small vocabularies, very limited in their range, and generally very hard to obtain, there have been published six in the general language, and two in local dialects.

1. The large folio known as the Dictionary of De Guignes, with a supplement by M. Klaproth. This very bulky work was published in France, under the patronage of Napoleon I, and contains definitions in both French and Latin. It is not without value, though it was soon superseded by the more complete work of

2. Dr. Morrison. This monument of his industry, patience, and learning is contained in six quarto volumes. Three are devoted to the arrangement under the radicals, according to the system of Kanghi. The first of these is exceedingly full, containing, besides the matter appropriate to a dictionary, many translations and essays illustrative and explanatory. The fourth contains a selection of characters arranged alphabetically. This is the most useful portion of the work. The rest is taken up with indexes and an imperfect English-Chinese part. Dr. Morrison's claims to the grateful acknowledgments of posterity may be
3. The noun or pronoun expressing the object of an action precedes the verb by which it is governed: e.g., 'They him rejected;' 'God the earth created.'

4. In like manner, the noun or adjective which forms the predicate of a simple proposition is placed between the subject and the verb: e.g., 'He kind was;' 'I a man am.'

5. Most remarkable of all is that the circumstances of time, place, order, and frequently also of manner, means, and instrument, are placed at the beginning of a sentence. Thus, instead of saying, as in English, "A Greek, in consequence of a quarrel originating in the use of wine, killed an Egyptian yesterday with a pistol in one of the streets of this city," an Armenian would say, "Yesterday—of this city—of the streets—one—in—of wine—the use—in—originating—of a quarrel—in consequence—with a pistol—a Greek—an Egyptian—killed;" or, "a Greek, with a pistol, an Egyptian killed."

To sum up the above particulars—a complex sentence in Modern Armenian generally gathers up first all the circumstances of an action, as time, place, and order, frequently also of manner, means, and instrument (although these admit of more latitude in their collocation); then follows the subject, with its attributes; then the object with its attributes; and last of all the verb. The last verse of the Book of Leviticus in English reads thus: "These are the commandments which the Lord commanded Moses for the children of Israel in Mount Sinai." In Modern Armenian, the first word of this sentence is 'Sinai,' the second 'mount,' the third 'in,' the fourth 'of Israel,' the fifth 'the children,' and the sixth 'for,' being exactly the reverse of the order in English. The rest reads 'of the Lord—to Moses—the commanded commandments—these are.' In the Ancient Armenian version, the order of the words of this sentence is precisely the same as in English.

This remarkable change in the structure of sentences in Armenian is unquestionably to be attributed to the influence of the prevailing language of the country—the Turkish, in which the inverted order seems to be idiomatic and natural. The dialect spoken by the Armenians in Persia and India approaches much more nearly to the style and idiom of their ancient tongue.

II. ON DR. S. W. WILLIAMS'S CHINESE DICTIONARY.

BY REV. WILLIAM A. MACY.

Presented to the Society May 18, 1859.

A number of copies of the Tonic Dictionary of the Chinese Language in the Canton Dialect, by Dr. S. Wells Williams, are for sale at the rooms of the American Board of Commissioners for Foreign Missions, at 33 Pemberton Square, Boston; and as the work will be unknown to most of the scholars and literary institutions of the United States, a brief account of its character and merits may not be out of place among your literary notices.
MISCELLANIES.

I. Inverted Construction of Modern Armenian.

By REV. ELIAS RIGGS, D.D.

Presented to the Society May 20, 1857.

One of the most note-worthy phenomena of language which have come under my observation is the inverted construction of sentences in the Modern Armenian language. Essentially the same prevails in Turkish. What is specially worthy of notice in Armenian is, that the construction of the ancient language is almost the reverse of that of the modern; and that, notwithstanding the fact that the ancient dialect has been, up to the present century, the exclusive language of books, and continues still to be preferred by many Armenian scholars as the language of scientific works and of epistolary correspondence.

A striking illustration of the feature to which I allude is furnished by many passages in the Old Testament, where the order of words in the Ancient Armenian version is precisely the same with that of the Hebrew original, while the translation into the present spoken Armenian can be written directly under the Hebrew sentence, commencing at the left under its last word, following word for word the inverted order of the original, and ending at the right under the first word of the Hebrew sentence.

This inversion is not, like that of classical Greek and Latin, a matter of emphasis or euphony, but enters into the structure of the language, and is an essential feature of its syntax. I will endeavor to illustrate it in a few particulars.

1. All the words which correspond with our prepositions (excepting one or two, occasionally borrowed from Ancient Armenian) are postpositions. Thus, instead of 'concerning it,' the Modern Armenian says 'it concerning;' instead of 'in the house,' 'the house in;' and that, not merely in the case of syllables suffixed to form the oblique cases of nouns, but also in the case of separate words.

2. The particle which corresponds to our definite article is a suffixed letter. In this the Armenian agrees with some other dialects, both ancient and modern, as the Danish and Albanian in Europe, and the Chaldee and Syriac in Asia. Thus doon is 'house,' doonu 'the house;' genitive dan, emphatic form dänū; dänū vrayov, 'concerning the house.'
same author which Colebrooke (Hind. Alg., p. v; Essays, ii. 422) com-
plains that he had diligently sought after in vain. From the manner
in which Whish speaks of it, we should be inclined to draw the lat-
ter conclusion, although nevertheless not regarding the other as inad-
missible. In either case, the discovery of this curious invention of
Âryabhata's in the work now under consideration is an additional proof
of no slight force and value that it really represents the teachings of its
alleged author.

We regard it, then, as established beyond all reasonable doubt that
Bentley's Laghu-Arya-Siddhânta is the same with the work called the
Dâcagîtikâ, attributed to Âryabhatta, and containing, of the doctrines
ascribed to its reputed author by later Hindu authorities, as far back as
Brahmagupta, the larger and the more characteristic and interesting
portion. The other Arya-Siddhânta, judging it from the account given
of it by Bentley, appears to be, in comparison with this, a quite ordi-
nary astronomical treatise, representing the general Hindu system with
unimportant modifications. Of special resemblances or connections
between the two, such as should lead independently to the suspicion
that both might come from the same hand, we have been able to dis-
cover none. Yet it seems clear that Brahmagupta and others have
treated them as works of the same author, and have founded, upon their
discordances, a charge of inconsistency against Âryabhatta. That the
application, by so late an authority as Ganeça and by the scribes of
manuscripts, of the equivocal title Mahâ to the Arya-Siddhânta and its
author, implies any distinct recognition on their part of the existence of
more than one astronomer of the name, does not appear to us alto-
gether certain. Yet we cannot refrain from joining with Mr. Hall in
the belief that the Arya-Siddhânta, even if rightly ascribed to Arya-
bhatta, is the work of another and a more modern hand than that
which wrote the other treatise. If both treatises were so much older
than Brahmagupta that in his time the memory of their distinct origin
could have become dimmed or obliterated, this is an important testi-
mony to their common antiquity. It must be a matter of much inter-
est to deduce the true relation subsisting between the two; and then,
farther, to determine whether the Laghu-Arya-Siddhânta was composed
before the final settling down of the general Hindu astronomical system
into the form it has ever since worn, or whether its author had the
boldness and independence to deviate from that system after its estab-
lishment. Nor do we think the study of any other treatise gives fairer
prospect of throwing valuable light upon the early history of the Hindu
astronomy, than that of Bentley's "spurious Ârya-Siddhânta," or the
Dâcagîtikâ of Âryabhatta.

W. D. W.
the Vārāhī-Sanhitā ascribes to Āryabhata (Colebrooke, As. Res., xii. 244; Essays, ii. 410) the determination of Jupiter's revolutions in a Great Age (mahāyuga) as $364,224$; this is the number given in our treatise, and in Bentley's Laghu-Ārya-Siddhānta; that found in his Ārya-Siddhānta is $364,219,682$.

The agreement of the value of the sidereal solar year derivable from the work in our hands with that adopted in a part of Southern India as upon the authority of the Ārya-Siddhānta has already been noticed above. The value assigned to the same period by Bentley's Ārya-Siddhānta is slightly different (see above, p. 168).

Finally, we learn from an essay published by Whish, in the Transactions of the Literary Society of Madras for 1827 (and reproduced, in the main, by Jacquet, in the Journal Asiatique for August, 1835: we cite it from the latter, not having access to the original article), that Āryabhata had devised a certain peculiar method of representing numbers by means of the letters of the Sanskrit alphabet, a method which the essayist goes on fully to expose and illustrate. He states it to be derived by him from a mathematical work, named, after its author, the Āryabhaṭṭīya, and containing 123 stanzas, divided into 4 chapters. This method of notation appears in the treatise which we are considering. The five verses referred to above as interposed between its third and fourth chapters give an exposition of the system, and, in the following chapter, the numerical data, such as the numbers of revolutions of the planets, are given first in this form of notation, and then in the usual method. Moreover, after the signature of the work, the numbers of revolutions of the planets, including the moon's apsis and node, are once more given in Āryabhata's peculiar notation; yet, as might be expected, notwithstanding this repetition, it would be impossible to restore, from the manuscript alone, the true forms of these brief algebraic expressions. Thus, for instance, for 4,320,000, the number of the sun's revolutions in a Great Age, the manuscript offers the first time क्रृ, and the second क्रृ; and others are yet worse corrupted. The question suggests itself, whether Whish's Āryabhaṭṭīya is the same work with the Daśāgītikā or Laghu-Ārya-Siddhānta, or whether it is one of the general mathematical works of the

* M. Reinaud (Mémoire sur l'Inde, p. 299 etc.) derives from this fact the altogether mistaken inference that, at the time of Āryabhata, the Hindus had not yet invented their system of signs employed in decimal notation. He farther notes the fact that the works of Brahmagupta and other later authors do not imply the use of such figures; although we do not understand him as holding that, at their period also, these were not known and used in India. He can have had, however, but a very imperfect apprehension, if any, of the exceeding pertinacity and circumspection with which, in certain departments, the fiction of an entirely memorized and orally transmitted literature is kept up in India, all allusion to written texts, characters, or figures being rigorously excluded. We doubt whether it might not fairly be inferred from the whole early astronomical literature, but for external evidence and the argumentum ex impossibili, that the Hindus of its period could neither write nor cypher. An eminent Indianist (Prof. Max Müller, in his History of Ancient Sanskrit Literature, p. 500 etc.) has, from similar evidence, drawn a like conclusion with respect to the later Vedic period; but, as we cannot but believe, with equal fallacy.
circumference of the circle—the diameters of the earth, sun, and moon (those of the other planets we have not yet succeeded in tracing out), and the "orbit of the wind"—are all here, as Bentley gives them. The passage cited by Bentley as referring to the Brahma-Siddhânta and to Brahmagupta is not, of course, to be found: on internal grounds, moreover, we should regard at present as very questionable its authenticity, as part of the treatise in question.

We will now proceed to inquire how far the doctrines of our treatise correspond with what has elsewhere been handed down as taught by Áryabhaṭṭa. The peculiar division of the Great Age (mahâyuga) and constitution of the Āeon (kalpa), described by Brahmagupta (see Colebrooke, as above) as Áryabhaṭṭa's, are here given. The treatise begins the Āeon with sunrise at Lankâ, a tenet which distinguished the school of Áryabhaṭṭa from that of Puliṣa (see Colebrooke, as above: also Essays, ii. 427, et al.). It affirms the revolution of the earth on its axis, and the non-reality of the apparent daily motion of the stars, comparing this to the effect of riding in a chariot, when fixed objects seem to be moving in a direction contrary to that in which the chariot is proceeding (see the reference to this point in Mr. Hall's paper). It declares the moon, planets, and stars to be naturally dark, and only illuminated upon the side which is turned toward the sun (see Colebrooke, Hind. Alg., Note G; Essays, ii. 467). The variability of dimensions of the epicycles of the planets is recognized, although the agreement between this treatise and the Sûrya-Siddhânta herein is not so close as Colebrooke (As. Res., xii. 236; Essays, ii. 401) seems to have understood it to be: perhaps Colebrooke's reference here belongs rather to the other Árya-Siddhânta. The passage repeated by Colebrooke (Hind. Alg., Note I; Essays, ii. 473) from Bhaṭṭa-upta on Varāha-mihira is almost precisely represented by the first verse of our third pāda: its evidence, however, is of little account, as it relates to a matter so general that it might occur in nearly equivalent terms in almost any treatise; Colebrooke is mistaken in attributing to it any necessary connection with the doctrine of the precession: the position of the equinoxes would be described by a Hindu astronomer as in the first of Aries and of Libra, whatever his theory respecting the important fact of their movement along the ecliptic. The doctrine respecting the precession attributed to Áryabhaṭṭa by Muṇiçvara and others (see Colebrooke, As. Res., xii. 213; Essays, ii. 378, et al.)—namely, that the equinoctial points librate 578,159 times in an Āeon (kalpa) through an arc of 48°—appears from Bentley (Hind. Astr., p. 140 etc.) to belong to the more extended treatise, and not to the Laghu-Árya-Siddhânta. In connection with the latter, Bentley makes no mention of the precession, nor have we as yet succeeded in discovering anything about it in our treatise, although we would not venture to say with entire confidence that it is not there. It seems, then, altogether probable that Colebrooke's suggestion (as above) is well-founded, to the effect that the libration of the equinoxes may be taught in the Áryaśaṭṭa-cata, and not in the Daçagitikā, although we cannot regard as of force the particular reason he assigns for it, since the equinoxes are by no means likely to have been treated as nodes by the early astronomers. A scholiast upon
The treatise is a brief one, containing only about 150 stanzas. It is divided into four chapters, called pādas, of which the third is, in its signature, called the “fourth,” so that we may perhaps have only a fragment before us. It is certainly imperfect at its commencement, as the first leaf, and a little more, of the present MS. contains the calculation of an ahargana, or “sum of days,” which has nothing whatever to do with the work itself: the first verse given of the latter is numbered 6. There are, however, five verses interposed between pādas three and four, and numbered independently, which may possibly be those which are missing at the beginning, and the name given to the divisions of the work is at least strongly indicative of only a fourfold division of it: nor does it appear, from the general scheme of contents, that any indispensable part of a summary astronomical treatise is wanting. Unfortunately, the text is very badly corrupted and incorrect, so that, after the rather hasty study which we have as yet been able to give it, much remains obscure to us in its contents. It most unequivocally lays claim to being a commentary on the Daçagātikā of Aryabhaṭṭa; the latter, and no other authority, is repeatedly spoken of in its verses, and its concluding stanza is as follows (with some emendations):

भाटेनेन पुर्ण द्रामितिसुनातीत गृहानामृयुमातृत्य यत्।
गृहानीनदिविनाथ बिद्धातुरु मृत्युविध्या: सम्प्रदायित्वम्॥

“Bhūta-Vishnu (?) hath thus comprehensively explained—having learned it by the favor of his teacher—the Daçagātī text-book, of very obscure meaning, formerly promulgated by Bhatta.”

There can be no manner of doubt, now, in the first place, that the text of which this work is a metrical paraphrase is that described by Bentley as the Laghu-Ārya-Siddhānta. In nearly every particular referred to by Bentley, it agrees with his authority. The numbers of revolutions of the planets—the order in which the latter are constantly named—the commencing of the present Āeon (kalpa) with Thursday, and so that of the last Great Age (mahāyuga) with Wednesday, and the current Iron Age (kali yuga) with Friday—the number of years reckoned as elapsed since the beginning of the Āeon, with that of the days contained in them—the statement of the positions of the apsides and nodes of the planets directly*—the ratio of the diameter to the

* The positions assigned by the treatise to the apsides and nodes are as follows:

<table>
<thead>
<tr>
<th>Planet</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sun</td>
<td>2° 15°</td>
</tr>
<tr>
<td>Mercury</td>
<td>7°</td>
</tr>
<tr>
<td>Venus</td>
<td>2° 20°</td>
</tr>
<tr>
<td>Mars</td>
<td>3° 28°</td>
</tr>
<tr>
<td>Jupiter</td>
<td>5° 20°</td>
</tr>
<tr>
<td>Saturn</td>
<td>7° 26°</td>
</tr>
</tbody>
</table>

Bentley (p. 182) says that the positions of the aphelia are computed from the numbers given in the genuine Ārya-Siddhānta. The latter we have given above (under I. 41-44 of the Śūrya-Siddhānta): it will be seen, on comparing the two statements, that Bentley’s assertion is by no means strictly true; and moreover, that the data of the Laghu-Ārya-Siddhānta confirm the suspicion there expressed by us, that, in the case of Venus and Saturn, Bentley’s manuscript, or his report of it, is in error. The positions of the nodes, on the other hand, are precisely accordant, to degrees, in the two treatises.

VOL. VI. 72
ADDITIONAL NOTE ON ĀRYABHĀṬA AND HIS WRITINGS,
BY THE COMMITTEE OF PUBLICATION.

Mr. Hall has conclusively shown, in the foregoing article, that the work described by Bentley, under the title of Ārya-Siddhānta, is not, as suggested by Colebrooke, a modern imposture; but that, on the contrary, it had been quoted by Colebrooke himself, at second hand, as by Āryabhaṭa, and is, by citations and references in the works of later Hindu astronomical writers, sufficiently attested as being, in their opinion, truly ascribable to that ancient and famous authority. He has farther made it at least a probable supposition that the treatise in question is, in conformity with Colebrooke’s earlier conjecture, to be identified with that so often credited to Āryabhaṭa by the name of Āryaśaṅkara. Now on comparing the data furnished us from it by Bentley with the sketch of Āryabhaṭa’s system given by Colebrooke (As. Res., xii. 248; Essays, ii. 414), upon the authority of Brahmagupta and his commentator, it will be seen that the two are quite discordant with one another; so much so as to render it unlikely that both should be productions of the same teacher. But the reader of Bentley will also notice that the latter speaks of another Ārya-Siddhānta, which he denounces as “spurious,” proving it in detail, very much to his own satisfaction, to be a mere modern manufacture, although it lays claim to the title of Laghu-Ārya-Siddhānta. The futility of the arguments with which he assails its authenticity is, however, in part palpable at first sight, in part evident upon a slight examination, nor is his opinion upon the matter of a straw’s weight as authority. On the contrary, the peculiarities which, according to his statements, distinguish the work, are such as attract to it at once a high degree of interest, as one which, in some important particulars, is unlike all the other Hindu astronomical treatises of which we have thus far any account. This interest is increased, as we note that its doctrines agree, so far as we can compare them, with those attributed to Āryabhaṭa by Brahmagupta. Again, the number of civil days stated by it to compose a Great Age (mahāyuga), of 4,320,000,000, and so its valuation of the sidereal solar year, agree with those which Warren (Kāla Sāṅkalaṭa, pp. 7, 70) states to be adopted through a great part of Southern India, “upon the authority of the Ārya-Siddhānta.” It seemed to us, then, not undesirable to add, if possible, to Mr. Hall’s paper upon Āryabhaṭa and his works, some more particular information respecting this other Ārya-Siddhānta, and especially in view of the suggestion, finally thrown out by Mr. Hall, that there may have been more than one astronomical author of the name. And having observed, in Weber’s Catalogue of the Berlin Sanskrit Manuscripts (No. 834, p. 292), that the Berlin Library contained a treatise which purported to be a commentary on Āryabhaṭa’s Daśagitikā, we took the liberty of begging from the distinguished author of the Catalogue some notices from this manuscript. In reply to our application, he has, with the most obliging kindness, copied for us the whole work, so that we are able to present here a full sketch of its character, and to settle many of the questions which had presented themselves to our minds in connection with the subject in hand.
Again, Colebrooke—Miscellaneous Essays, ii. 378, foot-note—quotes, through Munis'wara, from A'rya Bhaṭṭa's A'ryṣṭaṣṭaśata. I do not find the quotation in the A'rya-siddhānta. That this treatise bore the second title of A'ryṣṭaṣṭaśata is, as Colebrooke suggests, not impossible. My less defective copy of the A'rya-siddhānta, which contains five hundred and sixty-two stanzas, has omissions indicated at several points. Of their extent I can, of course, say nothing.

The passage referred to, by Mr. Bentley, at p. 126 of his "Historical View," as being in the fifteenth section of the A'rya-siddhānta, really occurs there. Further, I have traced to their places in the A'rya-siddhānta parts or wholes of three couplets* adduced in Munis'wara's Marichi, a commentary on the Siddhānta-s'iromoni, as from the Laghu-ārya-bhaṭṭa-siddhānta; and two couplets† as given in the same writer's gloss on the Liṅkāvatī, and there credited to A'rya by name. I have not had the same success as touching a couplet‡ vouched by Bhaṭṭa Utpala, in his annotations on the Vārāhī-sanhitā, chapter xvii, and attributed, by him, to A'chārya A'rya Bhaṭṭa.

Mr. Bentley's MS. of the A'rya-siddhānta, as by him described, corresponds punctually, in the way of hiatuses, with one of my own copies.

The mathematician Gaṇes'a, as before observed, in making an extract from the A'rya-siddhānta, qualifies its author's name by the prefix of Mahā. This may, or it may not, have been designed as equivalent to Vṛiddha. On the first hypothesis, it was, perhaps, an oversight; unless A'rya Bhaṭṭa reproduced, in some more mature treatise, still to emerge, the very words which he had employed in an earlier performance: but there is no necessity for surmising that he may have done so. For, as reference is made in the A'rya-siddhānta to Vṛiddha A'rya Bhaṭṭa, there should seem to have been two writers called A'rya Bhaṭṭa. Senescence not preceding youth, the term Vṛiddha, when used of an author, must be susceptible of the same extension of import to which it is subject when applied to homonymous kings. Not to repeat myself on the verbal nicety here adverted to, I remit the reader to my preface to the Vāsavadattā of Subandhu, pp. 49, 50, in the Bibliotheca Indica of the Asiatic Society of Bengal. Our A'rya-siddhānta had, for its writer, A'rya Bhaṭṭa Junior.

Troy, N. Y., U. S. A., March 1, 1860.

* Beginning, severally, कल्पः सूचिनां, ज्ञातापकर्प्पूर्वः, and यज्ञाधिधातो.
† Which commence with सर्वस्वस्व षड्षाः and सर्वस्वायमः, respectively.
‡ Its first words are देशः प्रायः.
analysis (biṣa), and the rest of the science treating of seen objects." Algehra, etc., p. 112, foot-note.

The following passage of A'rya Bhaṭṭa is cited by Gaṇeśa in his commentary on the Lilāvati: 'The product of the breadth [or length] and thickness, in fingers, being multiplied by the intended sections, and divided by five hundred and seventy-six, the quotient is the (phala) superficial measure of the cutting, provided the timber be Khadira (Mimosa catechu). If the wood be Śriparni (), Sākaka (Tectona grandis), &c., the divisor should be put three hundred and fifty; if the wood be Jambu (Eugenia Jamboo), Biṣa (Citrus medica), Kadamba (Nau-clea orientalis and Cadamb), or Amli (Tamarindus Indica), it should be twenty less than four hundred. The divisor should be two hundred and fifty, if the timber be Sāla, Amra, and Sarala (Shorea robusta, Mangifera Indica, and Pinus longifolia). If it be Sāmali (Bombax heptaphyllum), &c., the divisor is two hundred. Money is to be paid according to the divisor.' Algebra, etc., p. 315, second foot-note: and see ibid., p. 102, foot-note.

Only one of my manuscripts has any portion of these last verses; the first line and a half. There is here a break in my copies.

Colebrooke—Miscellaneous Essays, ii. 392—translates, in these words, from A'rya Bhaṭṭa as cited by Prithūdaka Śvāmin: "The sphere of the stars is stationary; and the earth, making a revolution, produces the daily rising and setting of stars and planets." Subjoined is the original, according to Prithūdaka; but I have not sought out the passage in my MSS. of the A'rya-siddhānta. The A'rya-siddhānta being metrical, this extract might go to prove that A'rya, besides his works in verse, wrote others in prose; did we not know that there was a second writer so named. Moreover, our A'rya Bhaṭṭa argues the fixedness of the terrestrial orb. The words are these:

* "Seen, or physical; as opposed to astrology, which is considered to be conversant with matters of an unseen and spiritual nature, the invisible influence which connects effects with causes."
forthcoming: he did not understand Sanskrit, and therefore he was very liable to imposition: his notions, not to say prejudices, were well known to the natives who attended him: and he was as likely as his friend Col. Wilford, to have fabrications imposed upon him.* According to the quotations of authors, *A'rya-shtaka* and *Das'aśītikā* were the titles of *A'rya Bhaṭṭa*’s works, and not *A'rya-siddhānta*. It is, in all likelihood, pseudonymous.

Mr. Colebrooke had previously said: "*A'rya Bhaṭṭa* was author of the *A'ryāshtas'ata* (800 couplets) and *Das'aśītikā* (ten stanzas), known by the numerous quotations of Brahmagupta, Bhaṭṭa Utpala, and others, who cite both under these respective titles. The *Laghu-a'rya-siddhānta*, as a work of the same author, and, perhaps, one of those above mentioned, is several times quoted by Bhāskara’s commentator, Munis'wara.” Algebra, etc., Note G; or Miscellaneous Essays, ii. 467.

Two copies of the *A'rya-siddhānta,†* both imperfect and very incorrect, have come into my possession. This treatise is in eighteen chapters; and I more than suspect it to be the same composition which Mr. Bentely also had seen in a mutilated form. I shall proceed to verify it by a few extracts, professionally from *A'rya Bhaṭṭa*, which occur in the writings of various mathematic-ical commentators. And first among these extracts I place those that were known to Colebrooke, though he was uninformed as to the particular work whence they were derived.

Pravarga धनुषिणिलतेऽवाकलुङ्कातः पदेः *चापमः ।

A'rya-siddhānta, *kshetra-ṛavahāra* chapter.

“*The following rule for finding the arc is cited, by Gānesh'a, from A'rya Bhaṭṭa*: ‘Six times the square of the arrow being added to the square of the chord, the square-root of the sum is the arc.’” Algebra, etc., p. 90, second foot-note.

*विद्याधरार्याज्ञापितकृतः कक्षेत्रार्थका त्व रात्रिगोमः ।

A'rya-siddhānta, opening verse.

“... a passage of *A'rya Bhaṭṭa*: the multifarious doctrine of the planets, arithmetic, the pulverizer (kuṭṭaku) and

* Mr. Bentley had written: "I think Mr. Colebrooke, like my old friend the late Col. Wilford, and perhaps many others, was imposed on by his crafty dependants, who studied his inclinations and his wishes, and, from knowing the bias of his sentiments, were thereby enabled to practice, with security and advantage to themselves, their imposture of forged and interpolated books, which they produced for him, or put in his way to obtain, as might appear best to answer their purpose." A Historical View of the Hindu Astronomy (Calcutta edition), p. 139, foot-note.

† In the colophon to one of my copies, the work is called *Mahāra'ya-siddhānta*; elsewhere, *Mahā-siddhānta*. In my other copy I find *A'rya-bhātta-siddhānta* six or seven times, and *Mahā-siddhānta* of *A'rya Bhaṭṭa* three. The augmentative epithet *Mahā* precedes the name of *A'rya*, where he is cited by Gānesh’a. But see near the end of this article.
ARTICLE VII.

ON THE ÁRYA-SIDDHÁNTA.

BY FITZ-EDWARD HALL, ESQ., M.A.

Presented to the Society May 17, 1860.

As all Indianists must be apprised, the illustrious Colebrooke and the spleenetic Mr. John Bentley were diametrically at variance in their views of Hindu astronomy. To reopen this subject is not the purpose of the present cursory paper. If Colebrooke was celebrated for circumspection and accuracy, his opponent was equally remarkable for taking up theories on insufficient warrant, for rejecting them with arbitrary caprice, and for unrelenting animosity to all that dissented, though but implicitly, from his indecisive conclusions.* Difference of opinion, however unobtrusive, was, indeed, a thing which Mr. Bentley was unable to abide. It is well known how many of his vagaries dissolved, one after another, before the scholarly research of his unintentional rival; and, in measure as they dissolved, his wrath only grew the more vehement. In a volume which was written shortly before his death, he finally attempted to make good against Colebrooke a foolish fable that he had been the victim of a gross deception. A spurious Brahma-siddhánta had been passed upon his willing credulity. Small pains was required to disprove this silly fiction; but, in reprisal, the generally imperturbable Colebrooke was moved to prefer a countercharge. Its grounds I propose here briefly to examine.

"I might retort on Mr. Bentley," says Colebrooke, "that the Á'rya-siddhánta, described, by him, in the third section of the second part of his posthumous work, is not improbably a fabrication. No one but himself has yet seen it: the manuscript of it is not

* Since writing the above, I perceive that I have in a manner iterated the very sentiments and language of Colebrooke, who says: "Mr. Bentley was, as his writings evince, a good hater. He bore animosity to me, and to every one who did not implicitly adopt his opinions concerning Hindu astronomy, nor concede to the authority of his conclusions respecting it."
Greek Inscription from Daphne. 555

We subjoin the following rough translation.

"[A. B.] having, with strenuous effort, made very clear demonstrations, many and great, of his [fidelity and devotion] to us and to the public service, and having spared neither his life nor his property for our interests, but having managed also as was proper the things put into his hands, and, for the rest, conducting himself in a manner worthy of the services before rendered by him to the public interests—him we desired, indeed, still longer to keep employed, co-operating with us in many things. But upon his bringing forward [as ground of excuse] his feebleness of body, the result of his continued hardships [in the public service], and requesting that we would permit him to be at rest, that for the remaining time of his life he may be, without interruption, in good health of body—we complied [with the request], desiring in this also to make manifest the preference which we have for him. So, then, that for the future also he may enjoy all things which pertain to honor and reputation, shall be our care. Since now—as the high-priesthood of Apollo and Artemis, over the [holy] carvers and the other sacred offices of which the consecrated grounds are at Daphne, requires a man of friendly feeling, but one who will be able to preside in a manner worthy of the zeal for the place which our ancestors had and we [now have], and [worthy] of the veneration on our part for the divinity—since now we have appointed him high-priest, with charge over these things, being persuaded that through him, above all others, the management belonging to the sacred offices would be conducted as it ought to be—[therefore] take order to inscribe him in the records as high-priest over the sacred offices set forth above, and to honor the man in a way worthy of our judgment, and, if he call to any duties, of such as appertain to these things, that those who are engaged in the sacred rites should co-operate with him, and should bring together on the spot the rest who ought to render service, charging them to obey in whatsoever he may write or order—and, farther, to have the copy of this letter inscribed on pillars, and to set it up in the most conspicuous places."

The contents of this inscription require little commentary. We will only remark that a class of persons, named διαρκεῖαι, are mentioned in an interesting passage of Porphyry (De Abstinentia, ii. 30), as having part in the annual sacrifices of the Athenian Diipoleia. See K. F. Hermann, Lehrbuch der gottesdienstlichen Alterthümer der Griechen, § 61. 20, and W. Smith, Dictionary of Greek and Roman Antiquities, under Diipoleia.

While the above is going through the press, we learn from Mr. Morgan that he has obtained possession of the stone bearing the inscription, and presents it to the Society, to be deposited in its Cabinet.—Comm. of Publ.
Greek Inscription from Daphne.

In the copy of Oct. 19th, the first two lines are given as follows:

A ΑΙ ΙΕΝ ΗΠΙΝ
ΤΗΣΕΙΣΗΜΑΣΚΑΙΤΑ ΡΑΓ Α ΙΑΦΕΣ Ξ ΣΙΟ

Daphne, the place of this inscription, was celebrated in antiquity for its magnificent worship of Apollo and Artemis, which was established here by the first Seleucus of Syria, and continued for more than six centuries, until the temple was destroyed by fire in the reign of Julian the Apostate. An elaborate and glowing description of the place and its worship may be found in Gibbon's Decline and Fall, chapter xxiii. A more recent account has been given by the distinguished K. O. Müller, in his dissertations De Antiquitatibus Antiochenis (Gottingae, 1829), p. 41 etc. The inscription before us relates, as we might have expected, to the worship of these divinities. It is a document which recites the appointment of a certain person as high-priest of Apollo and Artemis. The letters at the foot appear to give its date, as the 14th day of Dios (the first month of the Macedonian year, which seems to have commenced in October), in the year 124 of some era—most probably, that of the Seleucidae. If so, the document belongs to the autumn of 189 B.C., when the Syrian king, Antiochus the Great, had come to the thirty-fifth year of his reign, one year after his decisive overthrow by the Romans at Magnesia, and two years before his violent death. The authority, individual or corporate, by which it was issued, the officer to whom it was addressed, and the person whose appointment to the high-priesthood it sets forth, must have been named at the beginning of the inscription. The illegible first line seems quite insufficient for all these designations: we can hardly help believing that one line at least, and perhaps two or three, have been lost altogether. Possibly they may have been engraved upon another stone, surmounting the one which contained the lines here copied. Notwithstanding the difficulties of which Mr. Morgan speaks, the first line of his copy is the only one which cannot be read with tolerable certainty. In the following restoration, we have been aided by suggestions from President Woolsey and Professor Gibbs.
the other Nov. 23rd, 1859. The latter of these copies is represented in the following lines, though in some instances we have supplied its imperfections by letters (which we enclose in brackets) taken from the copy of Oct. 19th:

\[\begin{align*}
\text{TΣΕΙΩΗΜΑΣΚΑΙ—Α} & \text{ ΙΣ Α} \\
\text{ΑΑΣΚΑΙΜΕΓΑΛΑΣΑΠΟΔΕ} \text{ Ε[Γ]} & \text{Σ} \text{ ΕΠΟ} \text{ ΜΕΝΟΝ} \\
\text{ΕΚΤΕΝΙΩΚΑ[Α]} & \text{ΟΥΤΕΘΥ} \text{ΚΗΜΟ} \text{[ΕΤΑΝ]} \text{ΥΠΑΕ} \\
\text{ΧΟΝΤΑΝΗΕΙΣΜΕΝΟ} & \text{ΕΙΣΤΑΗΜΙΝΣΥΜΦΕΡΟΝΤΑ} \\
\text{ΑΙΕΞΑΓΗΘΟΧΟΤΑΔΕΚΑ} & \text{Ε[Γ]} \text{ΧΕΙΡΙΘΕΝΤΑΛΥΤΟ} \\
\text{ΟΣΗΝΠΡΟΣΗΚΟΝΚΑΙΚΑΙΤΑΤ[Α]} & \text{ΛΟΠΙΛΑΛΓΩΜΕΝΟΝ} \\
\text{ΣΙΓΣΟΝ[Π]} & \text{ΡΟΥΠΗΡΓΜΕΝΑΝΕ ΑΤΤΟΥΕΙΣΤΑΠ} \\
\text{ΓΜΑΤΑΗΘΟΥΛΑΟΜΕΘΑΜ[ΕΝ]} & \text{Ε[Γ]} \text{ΣΥΝΕΧΕΙΝΣΥ} \text{Μ[Ν]} \\
\text{ΠΡΑΣΩΝΤΑΗΜΙΝΠΟΛΑΑ [ΙΑ]} & \text{ΑΤΤΟΥΠΡΟΦΕΡΟ} \\
\text{ΜΕΝΟΥΤΗΝΠΕΡΙΤΟΣΩΜ[Α]} & \text{Σ} \text{ Γ[ΕΝΗΜΗΝΗΝΑΣΘΕ} \\
\text{ΝΕΙΑΝΑΙΑΤΑΣΣΥΝΕΧΕΙΣΚΑΚΟΤΑΘΛΑΣΑΞΙΟΥ} & \text{ΤΟΣΘΗΜΑΣΕΑΣΙΑΛΥΤΟΝ[ΦΗΣ ΧΙΑΣΖΕΝΕ} \\
\text{ΟΑΙΟΓΛΟΣΤΟΝΕΠΙΑΙΩΝΧΡΟΝΟΝΤΟΥΒΟΥΛΑΓ} & \text{ΣΠΑΣΤΩΣΕΝΕΥΣΤΑΘΕΙΑ ΤΟΥΣΜΑΤΟΣΙ[Ε]} \\
\text{ΗΣΑΙΣΜΕΝΗΝ[ΕΧ]} & \text{ΘΗΜΕΝΟΓΑ[Ν]ΤΕΣΚΑΙΕ} \\
\text{ΟΥΤΟΙΣΦΑΝΕΡΑΝΟΙΟΕΙΝΗΝΕΝΜΕΝΟΜΠΡΟ} & \text{ΤΟΝΑΡΕΣ ΝΗΜΕΝΟΥΝΚΑΙΕΙΣΤΟΑΟ} \\
\text{ΟΝΤΥΓΧΑΝΗΠΙΑΝΤΑΝΟΝΕΙΣΤΙΜΗΝΚ} & \text{ΟΡΝΑΠΙΜΗΚΟΣΩΜΑΣΗΝΗΝΑΡΟΦΙΑΟΥ} \\
\text{ΟΞΑΝΑΝΗΚΟΝΤΑΝΗΜΙΝΣΤΑΕΠΙΜΕΛ} & \text{ΗΝΙΑΗΘΣΑΡΧΙΕΡΟΣΥΝΗΣΤΟΥΠΟΛΑΛΝΟ} \\
\text{ΑΙΤΗΣΑΡΤΕΜΙΑΣΤΑΝΑΙΤΑΝΚΑΙΤΩ} & \text{ΑΛΛΑΝΙΕΡΝΟΝΤΑΝΕΜΕΝΗΣΤΙΝΕΠ} \\
\text{ΑΛΑΝΗΣΠΡΟΣΔΕΟΜΕΝΗΣΑΝΑΡΟΦΙΑΟΥ} & \text{ΝΗΣΟΜΕΝΟΥΔΕΠΡΟΣΤΗΝΑ ΑΖ ΟΣΤΗΣ} \\
\text{ΝΕΡΤΟΥΤΟΠΟΥΣΠΟΤΑΚΗ[Ν]} & \text{ΕΞΟΧΟΝΟΤ} \\
\text{ΓΟΝΟΙΚΑΙΠΗΕΙΣΚΑΙΤΗ Ε ΗΜΑΝΠΡΟΣΤΟΘΕΙΟΝ} & \text{ΟΡΜΕΝΗΣΠΡΟΣΑΠΟΔΕ Ε[Γ]ΚΑΜ ΝΑΥΤΟΝΑΡΧ} \\
\text{ΕΡΕΙΑΤΟΥΤΑΝΠΕ Σ ΝΟΙΘΗΝΠΕΡΙΤΑΙΕΡ} & \text{ΕΞΑΓΩΝΗΜΑΣΤΑΝΙΑΤΟΥΤΟΥΣΥΝ} \\
\text{ΤΕΛΕΘΘΕΣΘΑΙΔΕΟΝΤΑΣΣΥΝΤΑΣΩΝ} & \text{ΕΝΤΕΣΘΩΧΗΜΑΤΙΣΜΟΙΚΑΤΑΧΩΡΙΕΝ} \\
\text{ΑΤΤΟΝΑΡΧΙΕΡΕΙΑΝΑΕΘΗΜΑΝΝΗΠΑΝ} & \text{ΚΑΙΠΡΟΤΙΜΑΝΤΟΝΑΝΑΛΑΣΙΩΣΤΗΣΗΜΕ} \\
\text{ΤΕΡΑΣΚΡΙΣΕΣΚΑΙΕΙΑΝΕΙΣΤΙΝΑΠΑΡΑΚΑΛ} & \text{ΤΩΝΑΝΗΡΟΝΤΑΝΕΙΣΤΑΤΑΣΥΝΕΠΙΛΑΜ} \\
\text{ΒΑΝΕΣΟΝ[Γ]ΤΟΥΣΤΕΠΡΟΣΤΟΙΣΙΕΡΟΙΣΤΙΝΟΜ} & \text{ΝΟΥΣΚΑΙΤΟΥΣΑΛΛΑΟΥΣΟΥΣΚΑΘΕΙΝΝ} \end{align*} \]
a young man with me to assist in cleaning the stone. Many of
the letters were exceedingly indistinct, and some of them I could
not make out at all. Indeed, I should not have been able
to copy nearly so much as I did, if I had not adopted a plan
suggested by the young man with me. He first blackened the
whole surface with ink, and then, after it had well dried, sponged
the surface, which left the letters considerably plainer than
before. * * * Should the inscription prove to be of value,
and there be any necessity for it, I would take the time to ex-
amine the stone with more care. I send also a fac-simile of
the first part of the 23d and 25th lines, to show you the size and
style of the letters.

I have said that the stone was dug up in a garden at Daphne.
The immediate vicinity gives every evidence of having been the
site of important buildings in ancient times. The whole surface
of the ground is covered with fragments of pottery, and bits of
wrought marble. There are two other stones near by with frag-
mentary inscriptions, one of which begins with HBOYAH in
large, handsome letters. It consists of a half dozen lines of ten
or twelve letters each, which evidently ran off upon another
stone placed by the side of this, which stone is not above the
surface of the ground, if it still exists. There are also several
fragments of granite pillars. One of these, two years ago, was
lying by the side of the road, and upon the edge of a bit of
rather handsome tesselated pavement. The part that was then
visible has now been destroyed, probably by some treasure-hunt-
ing Fellah. There are also in this same garden a large number
of blocks of stone, which evidently once formed a water-course.
They are about two feet in diameter, and twenty inches or two
feet in length, with a perforation about six inches in diameter.
Each block is made with a circular projection corresponding to
an indentation in its next neighbor, after the fashion of water-
pipes. They have evidently been cemented to each other, though
I can see no calcareous deposit showing that they were used any
length of time, which would certainly be found if the Daphne-
water had flowed through them. The external surface of all
was finished with evident care. Some of them are fluted longi-
tudinally, as if they had served for columns. So much about
antiquities for the present. There is a great field here for minute
investigation; but I have little time to give to such employments."

The gentleman addressed in this letter sent it with the enclosed
copy of inscription to Professor Gibbs, who at once recognized
the interesting nature of the Greek text, and wrote to Mr. Mor-
gan, begging him to give the stone a new and more complete
examination. In return he received two copies further, evi-
dently made with great care, one of them dated Oct. 19th, 1859,
ARTICLE VI.

A GREEK INSCRIPTION FROM DAPHNE, NEAR ANTIOCH, IN SYRIA.

BY JAMES HADLEY,
PROFESSOR OF GREEK IN YALE COLLEGE.

Presented to the Society May 10, 1859.

For our copies of this remarkable inscription, we are indebted to the Rev. Homer B. Morgan, a missionary of the American Board in Syria. The following extracts from a letter addressed by that gentleman to a friend in this country contain an account of the stone which bears the inscription, and of the circumstances under which he made his first copy. He writes from "Bitias (Antioch), July 23rd, 1858."

"Enclosed I send you a copy of an inscription which I have found in a garden on the ancient site of Daphne. I have reason to believe that it has not been copied before. It is only a few years since it was dug up, and although I have been at the spot many times, I have never heard from the Fellahs, that any Europeans but myself, and those whom I have taken there, have seen it. Indeed, the whole inscription cannot have been copied; for one half of the stone was covered with a calcareous incrustation which I was obliged to chip off. The stone is a very compact limestone. The portion of it which is covered by the inscription is 17 × 30 inches, and there are about six inches of plain surface below the last line of letters. The end below is rough and narrowed, as if to fit into a mortice, to hold it in an upright position. Neither the edges nor the back of the stone are polished. It is eight or ten inches thick. I have been for nearly a year trying to get it into my possession, so as to remove it to Antioch; but the owner of the garden at last got such high notions of its value, that I made up my mind to obtain the best copy I could on the spot. I went out two successive days, taking
these villages adjoining Kalakahāḍi, * have fraudulently, by bribery, obtained from the hand of Deū, a slave of the sovereign of Gādhinagara; † foundation of credit in it is not in any wise ‡ to be admitted; as they have not even so much ground as could be pierced with the point of a needle. §

In Samvat 1225, || on Wednesday, the third day of the dark semi-lunation of Jyesthā, the feet || of the great chieftain, ** the fortunate Pratāpa Dhavala Deva, governor of Jāpila, †† announce the truth, as follows, to his sons, grandsons, and others, born of his stock: With respect to this vile copper grant of the villages of Kalakahāḍi and Babāpile, †† surreptitiously procured, on giving a bribe, by sundry folk of goodly staves and ploughs, from Deū, a slave of the lord of Kānyakubja, the fortunate king Vījayachandra; §§ dependence is not to be placed on it. These Brāhmans are altogether repugnates. They have not even soil which the point of a needle could penetrate.

Mindful of this proclamation, you will collect and levy || the proprietor’s †† share of produce and the like. ***

The son of the great king. †††

Saugor, February, 1868.

* As remarked by Colebrooke, the short vowel at the end of this name is exchanged for a long one, where the word is repeated further on.
† Gādhinagara is called, below, Kānyakubja; or Kanoj.
‡ In the Sanskrit, parito; which Colebrooke strangely translates “by the people around.”
§ Thus far the inscription is in verse; the metre, vasanatilakī. An intelligible English translation of these two stanzas renders it impossible to mark the beginning of the second, without taking in much of the first. The prose which follows is a paraphrase of what has preceded.
|| Colebrooke has 1229. The Samvat year 1225 corresponds to A. D. 1168.
¶ This singular expression only shows the dignity of the person concerned. A Hindu disciple refers, in the same phraseology, to the enunciations of his preceptor or of his ancestors.
** In the Sanskrit, nēyaka.
†† Colebrooke has Jāpila, which, he says, is a portion of the district of “Rāmaghar” — recte, Rāmagadhā or Rāmagārh. This district lies in South Bihār.
‡‡ “Badayitā,” according to Colebrooke.
§§ Vījayachandra was the penultimate king of Kanoj. See the Journal of the Asiatic Society of Bengal for 1868, p. 218.
|| “You will take . . . ; or destroy,” says Colebrooke. But viṭapryatha scarcely imports destruction; and the āhā seems to be cumulative rather than alternative.
¶¶ Colebrooke does not translate ambī.
*** In the Sanskrit, bhoga. “Share of produce” is Colebrooke’s. Its correctness may admit of question.
††† Instead of this, Colebrooke has: “Signature of the great Rajaputra (king’s son) the fortunate Satrukgāna.” My copy of the original must, consequently, be defective by several words.
संवत् १५५५ ज्येष्ठवर्षि ३ वधे आपिलाधिपितमहा-नायककृत्रिमात्यवचनोंसुरात्मवर्षोऽवाना पुत्र-पौत्रादीनां स्वतंत्रं कथयति। यदृच्छ सुदृढ़कलियिनोकी: कान्यकुलाधिपितिष्ठीविना चन्द्रभृूः तरारूरुकों चक्रा कलस्पूं अर्द्धाधारामोऽः कुताध्रमानीं हृदना तत्र प्रतिनिधि कार्यं। सर्वथा लम्यता श्रमी छिन्ना: सूचयमे भूमिभोगादिन्क ग्रहीयम प्रितास्य चेति।

नाग्रां प्रतिनिधिविषयः परिती विषयः

TRANSLATION.

Well be it!* Pratápa Dhavala Deva, everywhere† possessor of eminent and extensive renown, addresses his kindred in these words: As for that paltry copper‡ grant which certain Brāhmans—sprung from men of goodly staves and ploughs§—living in

* Hindu inscriptions very commonly have an auspicious vocable, as siddhi, siddhi, or swasti, prefixed to them. In the present instance, the word is swasti, and is part of a verse. Still I conceive that it must be taken as an interjection. Colebrooke connects it with the contiguous udgata; rendering the combination by "happily risen:" a form of expression of which I have never seen a precedent or parallel; unless it qualifies the s'ri which is often written after it.

† Colebrooke represents samantad by "wholly," a meaning of which it is susceptible; but he joins it, unnaturally, with the next word, deva. This term denotes kingly rank. It is never employed in the construction which Colebrooke here assumes.

‡ My copy has kutāmra twice, where Colebrooke's had kutāmbrā. I fear that Major Kittoe's pandit has here been officious.

§ In my copy, sudvadhala; in place of which the prose has sudvadhaliya. Colebrooke gives suvallahala and suvallhantiya, respectively. In my transcript I here again suspect adulteration at the hands of Major Kittoe's pandit. The original should seem to have been wrested, so as to yield a sense in keeping with the rest of the document; as if Pratápa Dhavala taunted the Brāhmans in question, by hinting that they were mere rustics and husbandmen, and lacked the appropriate literature of their tribe.
Three Sanskrit Inscriptions.

Thāḷ, of the stock of Gautama, one share. And the appropriation of this village you are to respect and maintain.

You must have heard the sentences, delivered by Vyāsa and others, encomiastic of the presenting of land; as for instance:

1. By many kings, such as Sagara and others, the earth has been enjoyed. His, ever, whose is the soil, is its produce.

2. The result, generally, of all gifts whatever affects but a single life; but the recompense of bestowing gold, land, cows, and slaves, attaches to seven courses of existence.

3. Let one confer land that has been tilled by the plough, or sown, or that bears a crop: while the worlds, upheld by the serpent, subsist, does such a one receive honor in elysium.

4. He that receives land, and he that bestows land, both, as performing acts of merit, assuredly go to the regions of bliss.

5. A hundred thousand years does the donor of land abide in paradise; and for even as many is the diseseizor, or the furtherer of disseizin, consigned to a place of torment.

6. Not by a thousand sacrifices, nor by a hundred hippoecasts, nor by the gift of a hundred thousand kine, does the usurper of land make effectual expiation.

7. Whatever offspring of a stranger may be monarch, when my race shall have become extinct, I clasp his feet; suing that he will regard my donation.

This grant of the village was engrossed by the pandit Salakshana, son of the Thakur Arjuna. As for there being in it a letter too few, or a letter too many, it is, still, complete authority. The autograph of the auspicious Virasinha, great king and chief ruler, the victorious, is subscribed.*

INSCRIPTION NO. III.

स्वस्त्युइष्टप्रथितकौर्तिनिधः समस्ताः
देवः प्रतापशब्दो वद्विति स्वर्षबनभो।
ग्रामिष्ठमीयु कलस्तुट्टिदास्मीयोगोऽथ
विद्रेषु मुद्युसृवश्रीरिँह हर्षना यन्त्र हः॥१॥
उत्कोच्च गाृंगरणग्राहिष्ठसदेवदेव-
रुस्तान्तु कुतायतमिन्त्रं प्रगृहीतपिन्तिः।

* An arrow, pointing to the left, is traced at the end of the writing, on the tablet.
auspicious Lakshmī Devī; son and successor of the fortunate S'aradasinha Deva, very potent,† supreme sovereign, great king, chief ruler, and lord paramount, son and successor of the fortunate Gaganasinha Deva, great king, chief ruler, and lord paramount; victorious; with due esteem acquaints and enjoins, as follows, Brāhmans most excellent, and persons of influence, royals, heads of ascetic communities;‡ and all his most respectable subjects, dwelling in the within-mentioned village.

Be it known to you, that the village herein specified, notorious under the name of Babāda—as far as all its zone-like limits; with its forests, lines of trees, and habitations; with its groves of mangoes and madhuṣas; with all its grass, wood, and wilds; including whatever is produced from the heavens to the regions beneath the earth; free from rigorous penalties, wrong-doing, and the ten offenses; a place where the ingress of robbers is prohibited; provided with the eighteen classes; exempt from the payment of share of produce, tax, money-rent, and the like excations; its four boundaries being ascertained; from pure motives; on a lucky day; we standing in water mentally meditated as symbolizing the Ganges and other great rivers; after the touching of gold, sacrificial grass, and water; for augmentation of the merit and celebrity,§ in this world and in the next, of our parents and of ourself—has, by us, been allotted, in prescribed form, to Govinda, a householder, of the stock of Kas'yapa, two shares;∥ to his brother, Padmanāha, one share; to Kes'ava, one share; to Chaturvedi Rāma, of the stock of Upananyu, one share; to Kes'ava, one share; to Nārasinha, one share; to Lakshmana, one share; to Sath,¶ of the stock of Bharadwaja, one share; to Dāmodara, of the stock of Kas'yapa, half a share; to Kes'ava, half a share; to Panchthila, of the stock of Krishnātreya, one share; to the pandit Gopati, of the stock of Kas'yapa, one share; to Mahasona, of the stock of Atri, one share; to S'īl, of the stock of Bhrigu, one share; to Nānū, of the stock of Krishnātreya, one share; to Mālī, of the stock of Bharadwaja, one share; to Chāmara, of the stock of Kapishṭhala, one share; and to

* Here I give the old form for the modern of the original, Lakhamā, as is the pronunciation.

† The scholar will observe other like substitutions a little further down.

‡ I have struck out a superfluous visarga postfixed to the Sanskrit of this expression.

§ ग्राम has been corrected from ग्राम.

∥ The word posa is employed, throughout this instrument, in an acceptation somewhat unusual.

¶ This name, and several others to come, not being Sanskrit, have rather perplexed the inscriptionist, as subjects of inflectional manipulation.
TRANSLATION.

Om! Glory to Nāriyana!

In the year 1177, on this current day, Sunday, at the moon's conjunction* in the dark fortnight of Karttika, here, in the great fortress of fortunate Nalapura, the auspicious Virasinha Deva; an earnest worshipper of Vishnu; a zealous votary of Brāhmans; compasionate to the indigent, the helpless, and the miserable; whose figure is graced with an assemblage of numerous merits; diligent in deferential attachment to the lotos-feet of his father and mother; veracious as Yudhishtira; for heroism, the most surprising, equal to Bhimasena; like Arjuna, eminent among archers; a parallel to Karna, in having acquired fame by his munificence;† like Duryodhana, very superb; like the lord of beasts, unrivalled in prowess; who has illustrated the entire orb of the earth by the radiance of his renown, in resisting the encounter of legions of elephant-like enemies, hard to be repulsed when they have taken the field of battle; a sun to the lilies in the lake of the happy Kachchhapa-ghātā lineage; supreme sovereign, great king, chief ruler, and lord paramount; whose person is a ruby derived from that mine of gems, the womb of the noble queen, the

* The original has, erroneously, श्रास्वत्सः.
† On the plate is ग्रामस्त्रियास्तित्र. A repetition, detected when inchoate, was left unerased.
पद १ उपायार्थ अग्रवर्धाति पद १ केशावय पद १ नारसिंहाय पद १ लप्पणाय पद १ भारद्वाजगोळाय से पद १ काशियात दामोदरय पद ०॥ केशावय पद ०॥ कृपाक्रियागोळाय शंकिलाय पद १ काशियात पद ०॥ गोपं पद १ गत्रिगोळाय मनसीण्य पद १ भारविगोळाय शिलेपद १ कृपाक्रियागोळाय नानू पद १ भारद्वाजगोळाय माले पद १ कपिलगोळाय चामर पद १ गोतमगोळाय द्राक्षय पद १ प्रदुः॥ स च भविदिनुमत्वय चन्द्रपालनीयं।

वानि च भूमान्तश्रावाकवानि व्यातादिभि प्रणति भविनं भुविनयं यथा।

वद्विवेद्विधा भुत्ता राजभि सगरादिभि।

यव यव यदा भूमिस्तव तस्य तदा फलम ॥१॥
सर्वार्थावृत्त दुनानिमक्कनानुगं फलम्।
कृष्णक्षत्रियाकाः सस्ततानानुगं फलम् ॥२॥
कुलकृष्ण अति दुःखातु सविभा शास्त्रशालिनीम।
याष्टाद सर्वभूतानि लोकानु तावतु स्वर्ग महीयते॥३॥
भूमि वि प्रतिमृगाणि यस्तु भूमि प्रयत्नित।
भवी ती पुपाकर्माणि निर्मादित स्वर्गाणिनिम॥४॥
समा: शास्त्राक्षणा स्वर्गं निष्ठितं भूमिद।
त्रै महामानी मृगेन्द्र द्वाध्रुतिप्रतिमाग्राहमः समरसुमधुवतीर्थवर्षादरारसुद्धिविधुतोपपातितिन्-शासुधावतिलालिमदुखमण्डूपललः स्रीमकक्षथातान्तायस्वरकमलमाता: महाराजाधिराजपरमेश्वरस्वागन-नसिरहृदेव्यानुधानप्रववलपरमहेष्ट्वकमहाराजाधिराज-परमेश्वरस्वारसिरहृदेव्यानुधानपीयानपरः परमात्राश्री-लपमादिविगमर्नाकरूपक्षमाणिकमूलिः परमहेश्वर-हराजाधिराजपरमेश्वरस्वारसिरहृदेवी: विजयी उपरि-\nसूचितग्रामी ब्राह्मणोत्तरानु बलिराजसुम्बक्षङ्कसमसम्-\nजनयदन्त्र व्यास्तु प्रतिमान्य सबोध्यति समाज्यापयति च।\n\nविदितमस्तु भवता व्यास्तु: प्रतिद्व बचारो: ग्राम: समस्तनिरीक्षलाल्याध्यायत: सवनवृत्तमाल्याकुलः साम्राम्युक्ताराम: समस्ततृणकावाकाविलिक्ष श्राकाशपातालीयोक्तिनितिुमतिः महादेवद्रौक्तत्वाध्यायपरिविविन्ति: प्रतिभिलूलिभूपस्वरीशुशोधनमलोकनिति: यथा-भागभोगकार्विषिष्ट्रेयादिप्रवेशश: चतुरावाकाविलुदः: श्रद्धया पुष्ये भूमि मनोनुधानगज्यादिनकहानदोऽतिरिष्टे दिलिभुद्वी-\nकयपृशुत्विनक्तो विभिन्नकार्तिरसात्मलातीकमुणिकायु-\nप्रवेधकोभिन्नो भस्माभि: प्रतिति: काशायगोगौग्राहावस-\nविकोविन्द्वय पदे २ भ्रातृप्रवनामाय पदे १ केशवाय।
and of the Kauthuma-chhandoga;* Vilása Swámin, of the stock of Sândila; and of the Kauthuma-chhandoga; Bhíma Swámin, of the stock of Vásishtha; and of the Kauthuma-chhandoga; and Radra Swámin, of the stock of Gautama; and of the Kauthuma-chhandoga.

Thus aware, you successive residents, dwelling in the vicinity of the town of Chitra, under authority from our regal house, humbly giving attention to our mandate, are; moreover, fitly to pay to these very Bráhmans, in such proportion as is equitable, all share of produce, tribute, money-rent, and similar impositions. Done in the year sixty-one,† on the second day of the moon’s increase in Chaitra; the deputy‡ in this transaction being Kalhana; and these articles being drawn up by Adityadatta, scribe.§

1. He that wrongfully resumes land, given by himself, or given by another, turned to a worm in ordure, with his forefathers, thus receives retribution.

2. By many kings, Sagara and others, the earth has been enjoyed. His, ever, whose is the soil, is its produce.

3. Sixty thousand years does the giver of land rejoice in heaven: and even as many does he that confiscates land, or abets its confiscation, abide in a place of torment.||

Prosperity!

Inscription No. II.

 sáchम् । नमो नागायाय। संवत् १६७० कार्तिकवदि
ग्रामावास्यायः रविदिनि ज्ञेश्वर श्रीमतनलपुरस्तावः परम-
वैज्ञानिकः परमस्त्राणायो दिनानाथकृष्णाजनवत्सली ज्ञेयक-
गुणगणालकृ तशारीरः। पितुमायादम्युजुभुदार्यारी
युधिष्ठिरवत्स सत्यवादि भैरवेन द्वाष्टधुतवीयः वर्ण
र्व अनुर्ध्वग्रीवः कर्ण र्व त्यागार्थितकीर्थि: डूंड़न

* The Chhandoga is the Sáma-Veda; and the Katham is one of its divisions.
† Sambat, as was long ago established, is frequently otherwise employed than to express the era of Vikramaditya. See Colebrooke’s Miscell. Essays, ii. 281; and Prinsep’s Useful Tables, Part the Second, p. 87.
‡ Envoy, commissioner: dátaka. See the Journal of the Asiatic Society of Bengal for 1857, p. 459, last line; and for 1839, p. 299, l. 9.
§ Sánkhi-vrānāka, in the original.
|| The metre of the three stanzas with which this grant terminates is the pathyad-
vakra.
picious Pându Varma Deva: who obtained the five great titles and great realms from the soles of the feet* of the great Arhat;† the adorable; whose two blessed feet ‡ are irradiated by the lustre from the gems in the diadems on the heads of benevolent and malignant genii; the wonderful; chief of the multitudes; bestower of numerous boons; lord of the gods; and master.

To the present and future royal families, with their hundreds of troops, in the village of Bhujangiká, § near the river Véśa; and to the inhabitants of that village, most eminent Bráhmans; he duly pays respect and gives notice, as follows:

Be it known to you, that this village aforesaid, at the prayer of the head of his guild, Dharmaka, and of the leading traders collectively; for enhancement of our mother's, our father's, and our own merit; has been decreed, by us, as an endowment, for such time as the moon, the sun, and the earth shall endure; to be dispensed from religious taxes and from unpaid labor; exempt from the ingress of fortune-tellers|| and soldiers; †† and protected from the exactions of any other king; to these associate students in theology: Bhoga Swámín, of the stock** of Gautama, and of the Mádhyandína; ††† Nara Swámín, of the stock of Upamanyu,

be there rejected, as having been vulgarized by frequency of use, five titles still remain; those of Samral, Bhola, Swaral, Viral, and Paramelahthin. The mahá-simanta 'great dominions,' named, in the text, after the 'great titles,' and which should seem to be as many in number, may be sámrájya, bhavájya, sádhrájya, vairájya, and pármasáthya.

Or are the 'five titles' those of parama-bhaktára, mahá-rája, adhi-rája, paramé-xéara, and parama-máhe-xéara? See the Journal of the Asiatic Society of Bengal for 1868, p. 226, foot-note.

These designations, after all, may be as idle as the sonorous nomenclature of the Byzantine princes of the blood: Despot, Sebastocreator, Cesar, Panhypersebastos, and Protosebastos. See Gibbon, chap. iii.

It should excite no surprise to find the Jainas borrowing almost anything from the Hindus.

* Pádamála. Prof. Wilson, professedly taking Hemachandra for his guide, renders this word by 'heel.' Hemachandra simply gives gohi, a synonyme; and this he derives from guhyate, 'is concealed.' Several words for 'foot' precede, in this author, pádamála and gohi; and others for 'heel' follow them. But Rantiveda, as quoted in Vedánti Mahádeva's Budha-manohara, interprets pádamála by pársháni, 'heel.' The translation in the text may, accordingly, be liable to correction.

† This name may denote either a Buddha or a Jina. The latter is here meant.

‡ Literally, 'lotos-feet.'

§ This place has not been recognized; nor has the river Véśa; nor Chitra, further on.

|| Chátà; which Colebrooke translates as above, in his Digest of Hindu Law, etc., i. 311 (Svo edition).

|| The billeting of troops appears, from this phrase, to have been known among the Hindus, in former ages.

I think I can, at this place, detect several words of my original, and in the same order, in another inscription. See As. Res., xv. 510, fifth foot-note; and the first transcript at the end of the volume, twelfth and thirteenth lines ab infra.

** In the Sanskrit, here and several times below, gotra.

†† This is a branch of the White Yajur-veda.
Śaivaț 61. Cātraṇudī 21. Aśutakāṇṭha Kālāpya। लिपिन्तं
Sāyamithavāśāstāñ्वितयद्दतेन।

śvadāṇa parādāna vā vī kūreṇ vasantānam।
śa viśāya kṛmaṁ ca pitaṁś ca pachyati।
vaḥ saṁyogatā Bhūta Rāgam। Sagarādāmibhi।
vaśa vaśa vraja Bhūmaśaya tasya tada falam।
pati vikaśadisthāṇaḥ śvaya mojāntī Bhūmī।
śrābhūtā chaṁnoṁlataḥ ca tānāvīv nārakaṁ bhīṣita।

Itaṁ Bhûmaṁ।

TRANSLATION.

Well be it!

Fortunate is the auspicious Bala Varma Deva; sovereign; wholly devoted to the Brahmans;* thoroughly possessed of the five great titles† and great realms; son and successor of the aus-

* Parāma-brahmāṇya.—Hemachandra, in his explanation of his own vocabulary, i. 42, defines the brahman and others, in the hagiology of his communion, to be 'ministers of the Arhata and of Rishabha, etc.: śrīrāmāmūrtaḥmanoṁṣya:।

† Colebrooke (Miscell. Essays, ii. 303) remarks on a passage where this expression occurs, that he is "not entirely confident of the meaning" of it. He was then writing in England; and yet at but little disadvantage, so far as the assistance of learned Brahman was concerned.

My own pandits have furnished me with their guesses, which I repeat. Some of these men suppose that the common fivefold repetition of the word sṛi, a sort of heathenish pentagon, is here intended. This exposition has the concurrence of Prof. Wilson. See As. Res., xv. 508, sixth foot-note. Others think that allusion must be had to the five kalpāna-vābha, 'utterances of good men,' enumerated in Bāhūdhyāna's Kalpa-nātra, for instance. These are pugyāha, tānti, tāddhi, sṛi, and kalpāna. Others, again, fix their conjecture on the five epithets mahā-yas'āmin, mahā pradīpā, mahā-dāśīna, mahā-dvājāḥ, and mahā prabhā; or 'most renowned, most glorious, most liberal, most clement, and most powerful.' But no authority has been brought forward in support of any of these elucidations.

Pending the production of something positive, I am disposed to believe that the riddle may be solved by reference to an extract which I made, on a former occasion, in the Journal of the Asiatic Society of Bengal for 1858, p. 227, foot-note. If Rājā
मिनं पादमूलाद्वैतवचमकाशद्वमकामत्रीशीवा एदु- वर्मदेवयादानुभातं परमाक्रिष्ठरं परमक्रिष्ठवं सम- वातपञ्चमश्रयद्रम्पासामत्रीच्येविलवर्मदेवं कुशली वेशनदोपकारे भुज्जिकाप्रयोगे सत्यशतानि वर्तमान- भविष्यद्राकुलान्येतद्रामिनिभासितं व्रात्त्वकोपरान् ॥ ५ ॥

वो भस्तु विदितमयमुपरिलिपित्यांगं सत्मांनि: श्रेष्ठ- धर्मक्रिष्ठवणिगमामन्धार्तविष्टा: सत्मीयमानापितिता: स्वरूप च पुण्याभिव्रृह्य श्रमिययो गोतमसमग्रोत्यादिमायदीनमोग- स्वाम्योपयम्ययसमग्रोत्यकृ युमहं दोगन्धुस्वामिशारि सम्य-

गोत्रकृ युमहं दोगविलासस्वामिगिर्यसंगोत्रकृ युमहं दोगभिमस्वामिगीत्यसंगोत्रकृ युमहं दोगुर्दस्वामिभ्यः सन्तत्वारिभ्यः भुतानश्चर्विदित्वापाठभ्रेप्यो ज्ञान्यितीन्द्रयासः श्राध्वन्द्यार्कः चित्तितसकाळाश्चित्याः

अश्वार्ध्वेदव प्रतिपादितं ॥ १५ ॥

नति: नं भविष्यद्राकुलान्येत्यप्रसिद्धी राजकुलानुभावेऽत्वतः

अस्मिनिवासिंहितं निन्द्राप्रवणाविवेदीयीभूतं समुचितिम्य-

दोगभागकर्णिर्यादायः प्रत्यवेद्य: सर्वं व्याधार्मिकी-

पामियायं वधाभाग रति।
ARTICLE V.

THREE SANSKRIT INSCRIPTIONS,
RELATING TO GRANTS OF LAND:
THE ORIGINAL TEXTS, TRANSLATIONS, AND NOTES.
BY FITZ-EDWARD HALL, Esq., M.A.

Presented to the Society May 17, 1860.

The copper plate which contains the original of the first among the ensuing inscriptions exists, I believe, at Benares. My transcript was made several years ago; and any indications which I may have noted down at that time are not at present forthcoming. On the age of the grant I am, therefore, unprepared to pronounce with assurance.

A negative fac-simile of the second inscription has been lithographed in the Journal of the Archaeological Society of Delhi, for January, 1853. A coarse essay towards an English version of it will also be seen there, together with some speculations which I decline to criticize.

With reference to the remaining inscription, my translation of it is not the first that has been published. For my copy of the Sanskrit, which has not before been in print, I am indebted to the late Major Kittoe. This transcript may have been sophisticated by pandits. A like suspicion, however, attaches to that used by Colebrooke.*

INSCRIPTION NO. I.

深夜
世界
光

* See his Miscellaneous Essays, ii. 295, 296. My copy has, in the first measure of the second stanza, and again in the prose, the word dēś, which is not pure Sana-
For my former decipherment of the third stanza I substitute, with confidence:

केसा: कःलिकारामामा कारिणिमानि।
विनिमोगतको राज; प्रति साम्पुतवानि स।

'May Brahmá, Vishnu, and Śiva—in color resembling, severally, the water-lily, the black bee, and kása grass; having, respectively, for weapons, menacing utterances, a discus, and the punáka; moving, in order as enumerated, with birds, a bird, and a bull; and whose abode is on the jambu-bearing mountain—bestow upon you prosperity.'

After incising बोन्दुतामु—which makes sense, but militates against the metre—the engraver half deleted the first यत्र. It could scarcely have been part of his original.

Limbáryá, * not Liswayá, is the name of the lady spoken of in the prose.

* Or Liswáryá, as it also admits of being read; the characters of this inscription are cut in such fashion that, where no aid is to be derived from the sense, some readings must remain uncertain.—Comm. of Publ.
The stone on which the second inscription is cut is of like character with the other, but has a more amygdaloidal structure, being full of little cavities, which hold carbonate of lime. It is 12 inches broad and 7\(\frac{1}{2}\) inches high, and contains eight lines. The characters are coarsely, irregularly, and inelegantly cut. It exhibits several orthographical errors, which are corrected in the text as printed: thus the proper name Keçava is both times written with the dental instead of the palatal sibilant, and a like substitution is made in 2 b and 3 d, in the name of Ḥyvara and its adjective; at the end of 2 b we have \textit{के}, although the sign of interpunction is not omitted after it; and in 2 c the reading of the stone is \textit{समूर्द्र} (with the virāma; not conjoined with the following \textit{न}). A long passage in the fourth line (from थो to म्या) has been erased and recut, and parts of it are obscure. Above the syllable मा of नामा (3 a) is a vowel-stroke, and under the म is either a \textit{न०}, or the remains of one, not quite erased; so that either the former or the present reading is meant to be नामी. The syllable next following, though clearly and deeply cut, is of a somewhat nondescript character, but we do not see how it can be meant for anything but the म by which it has been rendered. The last line, following the date, is apparently an afterthought, and appended to the inscription as at first engraved. It is crowded in at the lower edge of the stone, and, from थ ध inclusive, runs up its right margin, in the manner which, in printing it, we have imitated.

The third monument, referred to above, is a stone measuring 13\(\frac{1}{2}\) inches in height by 13 inches in breadth, besides a raised and rounded margin. It is thick and heavy, and shaped upon the back into some form of which the intent is not now recognizable. Its material is greenstone, like that of the others, but much harder and tougher in quality. The text of its inscription, with a translation and notes, was published by Mr. Hall in the Journal of the Asiatic Society of Bengal, Vol. xxviii, for 1859. As appendix to that article, he desires to insert here the following additional note upon the inscription.

Among the three lapidary monuments given by me to the American Oriental Society, there is one of which I have already published the inscription, with an interpretation. My translation was made from a fac-simile tracing; the original never having, at that time, been before me. Now that I have seen the stone itself, it turns out, not unexpectedly, that my first conclusions admit of being rectified. The particulars are as follows:

In the first stanza I find, not what I took to be intended for प्रावति स्विम् ‘is supplicated persistently,’ but, distinctly enough, सपति दन्त्राम् ‘is landed continually.’

The कुर्मि of the second stanza is a misprint for कुर्मरि.
Two Sanskrit Inscriptions.

turned into a conjunct nasal; and a consonant, or the first consonant of a group, is doubled under a — the only exceptions to this latter rule being न, न, न, न, in all cases of their occurrence; and also, in a single instance, न. As regards the diphthongs e, ai, o, au, the inscription follows, with total indifference, the ordinary devanāgarī method of writing them, or that which is usual in the Bengālī. The sign of omission (ू) is not employed on the stone, nor are the verses of its text numbered; but the marks of interpunction—िध after a first half-verse, ॥ after a verse—are introduced with entire regularity. At the end of a half-verse stands always न, and not anusvāra: in two cases, however, (10 d, 28 b) the virāma is omitted. Of other omissions, we have, verse 2 a, कः for कः:—this is at a place where a few syllables (viz., घनरारंगा) have been erased and recut. Another like case of correction occurs just before in the same line (viz., घनरारंगा), and a third near the end of the 9th line of the inscription, or at the end of 12 a, affecting the syllables which read, as printed, शर्यस्. The correctness of this reading, however, is not entirely certain. The न, indeed, admits of no question; the न is less clear, but yet is altogether probable; for the next syllable the stone gives only the double न (ू), omitting the superposed न (ू) which causes the reduplication; and the following character is entirely illegible, but cannot possibly, we think, be र: its lower part, which alone remains unobliterated, is clearly (ू), and not (ू): above it might stand almost any single letter, but not a double one; for that there is no room, nor could a न have been cut without leaving distinct traces on the unbroken part of the stone. We know not what to conjecture, if not य: यह is sometimes found used in the sense of possession, by a passion: the clause might then mean 'Murala ceased to be possessed with arrogance.' In the following पदा the stone reads distinctly स्वयम for स्वयम: this is probably Mahidhara's error; but, if the metre did not forbid, we might regard it as a mis-reading for स्वयम, 'trembled'; perhaps this word was in the cutter's mind. Of the first syllable in the same line and पदा only the upper and part of the righthand lines are left: the consonant must be क; but it might be combined with न, and with any vowel excepting त—these are the possibilities of the case; we presume the reading proposed by Mr. Hall to be the correct one. At the beginning of verse 6, Mr. Hall's fac-similes failed to give him under the र a , which, though not deeply cut, is still unmistakably traceable: the true reading, then, is 'with manifold forms.' In verse 10, the last syllable of the first half-verse, which comes at the end of a line, is much broken: what is left seems to us to point out distinctly, as the original reading, त instead of त: this would change the meaning of the word from active to passive. In verse 17 b, finally, the stone has तनिष्ठ (तनिष्ठ) for तनिष्ठ.
five leagues south-west of Gwalior: thence, in the same direction 900 li, to Mo-hi-chi-fa-lo-pu-lo, which M. de St. Martin identifies with Macheri, perhaps Matsyavara, in support of which conjecture it is to be remembered that this part of India is known, in Sanskrit geography, as the Matsyadesa. Little is said of these two principalities, as they were both ruled by Brahman princes, and did not follow the faith of Buddha." Journal of the Royal Asiatic Society, xvii. 133.

To note 13, p. 527. Hsiouen Thsang, now that we have a translation of the Si-yu-ki, tells us but little of value, touching Kong-yu-t'o, over and above what was reproduced by his biographers. Kong-yu-t'o lay near a bay; and it also lay near the sea. Its position is as far from being fixed as ever. Voyages des Pèlerins Bouddhistes, iii. 91.

To note 42, p. 532. There are two works, treating of the Viśe-shika philosophy, by writers bearing the name of Maunin. One is the Siddhānta-tattva-sarvaswa, by Gopinātha Maunin; a commentary on the Padārtha-viveka or Siddhānta-tattva. It was prepared by command of Rājā Jayasinha of Bāberi. This Gopinātha also composed scholia on the Kusumānjali, entitled Kusumānjali-vikāsa. The other work is the Subārtha-tarkāmṛita, whose author is Krishna Maunin. See my 'Contribution towards an Index to the Bibliography of the Indian Philosophical Systems,' Calcutta, 1859; pp. 77 and 79.

Troy, N. Y., U. S. A., February 27th, 1860.

ADDITIONAL NOTE BY THE COMMITTEE OF PUBLICATION.

The two monuments illustrated in the foregoing paper—together with a third of like character, already made public by the same author—have been presented by Mr. Hall to the American Oriental Society, and are deposited in its Cabinet, now at New Haven. We have accordingly taken occasion, while this article was going through the press, to make anew a careful examination of the inscriptions, and a verification of the text as published; and would offer here the following additional remarks and explanations.

The larger stone is 38½ inches broad, by 22½ inches high. It is a plain block of greenstone (sphænite, containing a little carbonate of lime), of a soft-texture, and easily cut. The inscription upon it is of 29 lines—the last one of them indented about 4 inches—which cover its whole surface, excepting a narrow and unornamented margin. It is engraved with great care, and with no little skill and nicety of execution, and is in almost perfect preservation, so that its characters are, for the most part, as regular, elegant, and legible as the best manuscript. As remarked above by Mr. Hall (note w), no combination of consonants is so difficult or intricate as to compel a resort to any device for abbreviating it; thus the viraṇa never appears, save at the end of a half-verse; the anusvāra, whether in the middle or at the end of a word, is more often
ADDITIONS.

This paper, after being sent to the Asiatic Society of Bengal, and partially printed for its Journal, was withdrawn. I had hoped to obtain, in England, a solution of the chronologica! difficulty spoken of in the introductory remarks: but the hope was disappointed. Since reaching America, chiefly by reason of access to books as yet unpublished at the beginning of 1858, I have been enabled to add the few notes following.

When passing through the station of Jubulpore, in February of last year, I found, in the Museum at that place, a somewhat weather-worn inscription, hitherto inedited, of the same class with those which precede. Unhappily, I had neither leisure nor health to take a copy of it. The date that it bears is 926: समस्त परिश्रमयति न्युज्यसवाद्यः। Its poet was S'asidhara, son of Dharanidhara; and it makes mention of Nāmadeva, son of Mahidhara, as a su'rādhāra. Three of these names we have met with in the record of 907. At the foot of the stone, the ensuing benediction, in the Aryan measure, is legible without difficulty:

याचनेन तृद्धितदेवो धारणाय नमस्तुले तपतः।
तावत्र कल्याणेन चिन्हित करुः सिद्धो भृकुटाः।

'As long as the sun and the moon, going and returning, shall shine in the firmament, so long may this eulogy endure, conducing to the renown of the doer of the transaction herein memorialized.'

To note 5, p. 517. Hema A'chārya expressly qualifies Karna as Rājā of Chedi, and speaks of him as being of Dāhala. This, as we know from the Haima-kos'as, is a synonyme of Tripuri. Karna is also mentioned as having been contemporary with Bhoja; and Bhu'ma Deva marched against him. This Bhima reigned from A.D. 1022 to A.D. 1072. Rāśmalā, i. 83, 90.

To note r, p. 520. I now find, on the faith of M. Stanislas Julien's translation, that Hiouen Thsang, agreeably to the Si-yu-ti, travelled about a thousand līs N.E., in going from Ujjayini to Tchi-ki-t'o, and thence about nine hundred līs N., to Mahes'varapura. M. L. Vivien de Saint-Martin, in his "Mémoire Analytique," puts N.E. for N., in designating the direction of Mo-hi-chi-fa-lo-pou-lo from Tchi-ki-t'o. M. Julien now silently surrenders his identification of Mahes'varapura with Mysore, to the suggestion of his collaborator, that the locality intended is "Matchéri, ou, selon la forme sanskrite, Matchivâra." But it is scarcely probable that Mahes'varapura was transformed into "Matchivâra," and there is no ground for holding that both names were ever applied to the same city. See Voyages des Pèlerins Bouddhistes, iii. 168, 169, 336, 408, 457, 458.

Professor Wilson writes: "A sudden return to the south-east brings Hiouen Thsang, after a journey of 2800 lī (560 miles) to U-che-yen-ns, which is clearly Ujjayini or Ougein, the king of which was a Brahman, and consequently Buddhism was at a low ebb. He then goes to Chikito, north-east 1000 lī, considered to be the modern Khajuri, twenty-
39. Neither has this place, nor have Uṇḍi and Jāuli, yet been verified.
40. S'aiva, or 'of S'iva,' who is called Pas'upati; a word variously accounted for.
41. The country of Lāta, or Lāṭīka, Hellenised into Aauxi, was later called Gūrjara, or Gūrjara; Gujerat. Ptolemy regarded it as part of Indo-Scythia.
42. The प्रति of these प्रति was that of Yāska. See the note on the seventh stanza.
Maunin is still a well-known family name.
43. Before himself, the author of these verses commemolettes his copyist, as happening to be his elder brother. A want of fraternal piety can rarely be urged against the Hindus.
44. Professor Wilson defines मुख्यान by "carpenter." See the Haimaka's, section of homonymes, iv. 284; to which the Professor vaguely refers. The word is there explained to mean "a kind of workman." It may have the restricted sense of architect, or even of mason. In the next couplet we again meet with it.
45. The general mechanician of the gods; a Vulcan, and much besides.
46. This comparison is not at all more felicitous in the Sanskrit than it is in the English. Prithu, who was a king, subdued the earth, which had assumed the figure of a cow. See the translation of the Vishnu-purāṇa, p. 103.

47. The Vedānta philosophy is here recognized.
48. This, and the Is'wara of the third couplet, are here, no doubt, epithets of S'iva.
49. A synonymous title of the Destroyer, चर्वार्घवु, 'parent of things movable and fixed,' is mistaken, by Colebrooke, for चर्वार्घु, "holy, beneficent." Miscellaneous Essays, ii. 304, 308, 309.
50. See, for this and several cognate terms, my note in the Journal of the Asiatic Society of Bengal for 1858, p. 227.
51. Thus far this inscription is metrical. The measure of the first and third stanzas is the Vaktra; that of the second, the Priyā.
52. In the original, gotra.
53. Kes'avā's functions not being particularly described, it is uncertain whether nāyaka, a word of a dozen meanings, or of more, has any reference to revenue.
54. Or Mālava; the pleonastic ka being adjected.

Fort-Sangor, January 10th, 1858.
25. The original word, निधि, before rendered ‘repository,’ is here to be resumed, but in an altered acceptance.

26. पु, ‘abodes’; put, metonymically, for their inmates. The word is here used for घनत्वु, ‘the female apartment.’

27. मगुल, the term employed, was formerly taken in a sense of wider latitude, and in one of narrower. In the middle ages, राज्य and विन्य designated, respectively, realms of greater and of inferior power, when they were spoken of with reference to their relative importance.

28. The original is चिन्तामणि, ‘the gem of reflection,’ by the aid of which all wishes were attainable. We have already had ‘the tree of abundance.’ The खामनु, or ‘all-bestowing milch cow,’ is fabulously endowed with the like marvellous quality.

29. In the Sanskrit, by studied ambiguity, the expression rendered as above also implies ‘tall bambu.’

30. Professor Wilson inadvertently writes the original word with a cerebral in the final syllable.

31. Mená is Pársvati, the daughter of Himálaya.

32. This prolific dame—for she is celebrated as having been the mother of five thousand sons and sixty daughters—is also called Vairini. See the Hurievan’a, st. 121, 142. Her father was Virana.

33. Sívá is a name of Pársvati. Her husband was Síva, or S’ambhu.

34. Possibly the inscriptionist, who is rather addicted to paltry figures of rhetoric, intended that his ‘pinnacle-ball’ should, retrospectively, likewise surmount the ‘manion of erotic sentiment.’

35. A moment’s pause is due to the elaborate amphibology with which the latter half of this quatrains is conceived. The vanquisher, on another construction than that of the text, is Saumítriti, ‘who hosts, embracing the many-willed Meghanáda and the great Atikáyá.’ In the third line there is an inaccuracy, however, in the postposition of ब्रजमाग to its substantive: for it scarcely agrees with शतिकाय.

Saumítriti is Lakshmaná, the half brother of Ráma. Megbanáda and Atikáyá were sons, elder and younger, of Rávana.

It is only by a strain that पहस्स can be taken to signify ‘strong-armed.’ It is not usual as an adjective; its ordinary acceptation being that of ‘the palm of the hand with the fingers extended.’ There is little doubt that its introduction here was induced by the fact that Práhasta was Rávana’s chief counsellor. Yet thus to suggest him in a panegyric on Jayasinha looks anything but complimentary.

36. ‘He who has the moon on his head:’ S’íva. See the note on the first stanza.

37. ‘The lord of physicians:’ Síva, again.

38. Perhaps ‘barony:’ पवल; a vocable not yet entered in our dictionaries.
24. A vaunt even more hyperbolical than this occurs in an inscription published in one of the early volumes of the Journal of the Asiatic Society of Bengal; that for 1838, p. 37. I repeat the first stanza of it; for it is verse, the measure being svagdharā.

‘The month of Jyeshtha having arrived, in the one hundred and forty-first year; the empire of Skanda Gupta—the floor of whose hall of audience was swept by breezes from the bowing of the heads of hundreds of kings; sprang from the line of the Guptas; of wide-extended fame; opulent beyond all others; comparable with S’akra; lord of hundreds of monarchs—being quiescent,’ etc.

The reading in modern characters, given by Mr. Prinsep, of the hemistich which contains the date, is neither in his facsimile of the original, nor is it grammatical. To bring out his “thirty-three,” he must have thought that he found स्मृत्तरूप, which is inadmissible Sanskrit. Nor is there, in the Sanskrit, ग्राम, the fifth case of a substantive; but ग्राम, the seventh case of a past participle.

There is, then, nothing here recorded concerning the death of Skanda Gupta, as Mr. Prinsep supposes. Being neither the first ruler of the Gupta dynasty, nor the last, nor of special note, it would be extraordinary indeed if time had been computed from his decease. Moreover, if he and his kingdom had so long passed away, it seems preposterous that they should be mentioned, and in so eulogistic a strain; especially as there is not, on this hypothesis, even a subordinate allusion to the reigning monarch. Indubitably, Skanda was on the throne when this memorial was written. The term ग्राम, which is applied to his government, has, with other meanings, those of ‘serene,’ ‘tranquil,’ ‘unperturbed,’ ‘flourishing.’ In bearing these significations, in addition to that of ‘discontinued’ or ‘extinguished,’ it may be compared with निराग. Whatever be the era here followed, it appears to have been too well understood, at the time, to call for explicit specification.

The numerical correction above noted was made several years ago, and was communicated to my friend Mr. Edward Thomas. But it had not then occurred to me to attach to ग्राम the import which I would now accord it. See the Journal of the Asiatic Society of Bengal for 1885, p. 385, foot-note. Major Cunningham, while tacitly amending one of Mr. Prinsep’s oversights, uncritically accepts another. See his Bhilsa Topes, pp. 141 and 144.

The inscription under comment, if the lithographed copy of it be correct, reads ग्रामवित, in the third line, for ग्रामवित. Mr. Prinsep gives the latter, and rightly; as the former is irreconcilable with the context.
S'akas and the Hárahúnas are mentioned together in the *Mahábhárata*, *Sabhá-parvan*, s.l. 1843, 1844. In the *Haresha-charita*, Prabhákara-vardhana is made to send his son Rájayavardhana to the north, against the Húrahúnas. Which is right, Hárahúna, or Húrahúna?

Professor Wilson says: "if we might trust to verbal resemblances, we might suspect that the Hayas and Haihayas of the Hindus had some connection with the Hia, Hoiei-ke, Hoiei-hu, and similarly denominated Hun or Turk tribes, who make a figure in Chinese history." Translation of the *Vishnu-puráña*, p. 419, foot-note.

14. The play on उर्मि, 'current' or 'wave,' and 'lustre,' has been imitated.

In the *S'áragadharà-paddhati* is the following stanza, by an anonymous author, descriptive of the confusion of toilet wrought by our Karna, or some other:

```
मुख्य हार्षविभिन्नयथुलः क्रुद्धमारो

निमलख फलाली चालिलकामलः परिवियुललम्।

धरंधरं श्रीकारस्त ददरियुक्ततीमः विनिधितुतः।

घुप्पो अर्थ मूर्तियुस्थितः तात: किमेना॥
```

'By force of destiny, auspicious Karna, the pearl-necklaces of the youthful wives—hiding in the wilds—of thy foes are over their faces; their bracelets press against their twin eyes; their hips are tattooed; and frontal marks are on their two hands. How does an unprecedented style of embellishment now prevail?'

15. Vernacularly corrupted, this word would assume the form of Champárán. But the only Champárán generally known is much too far distant from Chedi for even a foray. The subdivision of the Mundla District which now goes by the name of Lánjí was formerly called Champávati, as I learn from a MS. Hindi chronicle in my possession.

16. Literally, 'the frontlet-gem.'

17. More exactly, if necessary, 'the jewels.'

18. I have given the sentence this turn, in order to bring out the force of प्रस्त्र distinctly.

19. This allusion to a physical phenomenon is worthy of note.

20. In place of this batic comparison I would much have preferred 'outtying the milky-way,' but for the consequent incongruity: for the prince's person is unequivocally the object proposed for description. By the way, Professor Wilson need have entertained no doubt as to युज्ञसाल being defined by 'galaxy' in the *Medini-kosa*.

21. So rendered, to vary the phrase, instead of 'tree of plenty.' See the ninth stanza.

That this quatrain exhibits eight rhymes is deserving of indication.

22. Here is the word गंग्र again, in the original.

23. So I translate सामन्त, which apparently imports a feudatory.
Professor Wilson remarks that the usual classification connects the Vangas and the Kalingas with the Angas. Translation of the *Vishnu-purāṇa*, p. 188, foot-note. But it may be suspected that, out of compliance with the usual classification, Kanga, where found in company with Vanga and Kalinga, has sometimes been changed, through ignorance, to Anga. At the beginning of a line, as in the original of the passage on which Professor Wilson annotates, the substitution could be effected without prejudice to the metre.

Vanga is eastern Bengal, by universal acknowledgement. At a later date than that of this inscription, Bengal was known as Vankalā. See the *Rāja-tarangini*, Book III, s'tl. 480 (in M. Troyer’s edition, i. 114).

It would, possibly, have been more accurate to write Kalinga than Kalingas. But there really seem to have been several peninsular principalities of this name, or rather, perhaps, subdivisions of an extensive country styled Kalinga. It comprised "the sea-coast west of the mouths of the Ganges, with the upper part of the Coromandel coast." See, further, Professor Wilson’s Sanskrit Dictionary, under the word in question.

Kira, agreeably to Professor Wilson’s citation of a native vocabulary, is Cashmere. Elsewhere it is mentioned in association with Cashmere, but as being distinct from it, unless we presume a redundancy. Asiatic Researches, viii. 340. Col. Wilford, to whom I here refer, eventually came to the conclusion, as appears from a posthumous essay of his, that the Kira of the *Purāṇas* was "the country to the west of the Indus, as far west as Persia, and, to the north, as far as Candahar." His speculations on the subject are ingenious. Journal of the Asiatic Society of Bengal for 1851, p. 262.

I copy the following from M. Troyer, but without endorsing his inference: "Kira signifie ‘perroquet’ et ‘habitant de Kachmir,’ apparemment à cause de la grande aptitude de parole que possèdent les Kachmiriens." *Rāja-tarangini*, iii. 614.

It has repeatedly been averred that the Hūnas were “the white Huns, or Indo-Scythians.” See Colonel Wilford, in the Asiatic Researches, passim; and the translation of the *Vishnu-purāṇa*, p. 177, foot-note. Mr. Wathen is disposed to think that the Hūnas inhabited Tuluvā, where there is a place called Hunawar or Anore. See the Journal of the Royal Asiatic Society, ii. 382; and iii. 103. But Mr. Wathen’s Sanskrit is immetrical and nonsensical. The line where the Hūnas are named should undoubtedly begin गुणात्सिको यात्रार्थ?. I am not prepared to deny, positively, that the Indians gave the name of Hūna to the Huns, if they knew them; but the term certainly denoted some tribe of Hindus. In the *Raghuvans’ā*, iv. 68, the Hūnas are spoken of as if they may have been a people of fair complexion; and the region assigned to them is in the north. The commentator Mallinātha, annotating this couplet, says that the Hūnas were Kshatryias. The wife of our Karna, a Kshatryia, was a Hūna, as has been seen in the preface to this paper: and how could he have wedded a barbarian? As for the Sācē, the Sanskrit S’akas, we know that they were Scythians of the Persian frontier. It would be very satisfactory to find that the northern Hūnas were esteemed to be in any wise related to them. The
'Arjuna, the son of Kritavrīya, was a being who had a thousand arms. By simply calling him to memory, that which was lost or mislaid is found again.'

Translation of the *Vishnu-purāṇa*, p. 417. The conceit expressed in the stanza transcribed above may have arisen from this saying. The commentary on the words from the *Vishnu-purāṇa* runs thus: 'In his reign nothing was lost or injured.'

Here the *Kurma-purāṇa* is cited to the same effect with the stanza from the *Brahmanda-purāṇa*.

12. There is a pun here, in the original.

13. In this stanza, denominations of peoples—tallying, for the most part, with names of countries—are, by a noticeable idiom, put for their rulers.

The Pāṇḍya kingdom is considered to have embraced the present District of Tinevelly, with something of Madura.

Murala is another name for Kerala, now Malabar. At least, the commentary on the *Haima-kosa*, iv. 27, asserts their synonymy. M. Troyer, without adding the slightest warrant for what he says, calls the Keralas "people du Pendjah." *Rāja-tarangini*, ii. 605. Professor Wilson, having occasion to mention the Muralas and Mekalas, pronounces them to be "tribes along the Narmadā." Select Specimens of the Theatre of the Hindus, ii. 361. This is an inference, it may be supposed, from the fact that the Nerbudda is called Murala and Mekalā or Mekhalā. Hemachandra says that the Nerbudda has its source in mount Mekala. The Muralā, mentioned in the *Raghuvars'a*, iv. 55, was, alleges Mallinātha, a stream in the region of Kerala.

Waiving the chance of a misprint, Kanga was the same as Chera, now known as Salem. Chola lay to the east of it; Pāṇḍya, to the south; and Kerala, to the west. Mackenzie Collection, Vol. i, Introduction, p. xciii. In the same work—i. 63, 198—Chera is called Konga. Can it be that this is a modern corruption of Kanga? Also see the Journal of the Asiatic Society of Bengal for 1838, pp. 105, 106, 129, 379, etc.; and Journal of the Royal Asiatic Society, viii. 1 etc.

Apparently, Kanga is the country intended by the Chinese phonographs Kong-yun-to, for which M. Stanislas Julien proposes Konyodha. *Voyages des Pèlerins Bouddhistes*, i. 184, 411, 469. The Kangata of the couplet cited in the second note on this inscription may be a lengthened form of Kanga. Venka and Venkata, for instance, are one; and we have not here to do with pure Sanskrit.

In the *Bṛhat-sanhitā* of Varāha Mihira, as cited by Dr. Albrecht Weber, a country called Kanka is mentioned. Die Handschriftenverzeichnisse der Königlichen Bibliothek, u. s. w.; Berlin, 1853; p. 240.
says that the heti is a weapon of offense; as is, indeed, declared by its assigned etymology.

6. This is Ganes’a; who, however monstrous in what should be his divinest part, is figured with the body of a man.

7. Ganes’a, no less than Sńıva, wears a digit of the moon on his forehead. How our poet, adhering to what he has said of the latter divinity’s ornament, would make good its place in the sky, it is hard to say.

The following piece of mythology is taken from the prior section of the Ganes’opapuråṇa, sixty-second chapter. Ganes’a, with intent to deter Brahma from the work of creation, assumed a transformation devised to inspire terror: but the moon was so rash as to deride the hideous disguise. The divinity, incensed at this discourtesy, pronounced a malediction on the heedless luminary: in future its aspect was to be of evil omen. Commiserating the lunar distress, the minor gods went about to make interest, on behalf of the forlorn orb, with Ganes’a. By degrees he suffered his wrath to be somewhat mollified. Dissatisfied, however, with this partial result, the planet procured from Indra the monosyllabic prayer to his oppressor, and silently repeated it, for two and twenty years, on the south bank of the Ganges. Thus perseveringly impertuned, Ganes’a appeared, cancelled his imprecation entirely, and associated the worship of himself with that of his suppliant, on the fourth day of every dark fortnight. Demanding one of its digits, he fixed it on his brow, and was thenceforward surnamed Bhñlachandra. His grateful votary finally erected a steeple in his honor, the site of which is celebrated as Siddhikshethra.

8. For स्न्यामस्त (=-מ), ‘universal gloom,’ Professor Wilson, in his Sanskrit Dictionary, erroneously gives रग्मस्त (=-מ); wrongly citing the Amara-kośa as his authority, and also infringing Pánini, v. 4. 79. The Manorāma and the Tattva-bodhini do not even hint at any variety of opinion touching the form of this word.

9. Thus I translate ज्ञ, a substantive of very rare occurrence, I am told.*

Saraswati is the patroness of letters and of eloquence. The inscriptionist is celebrating the seductiveness of artful rhetoric.

10. On the word मञ्ज्र, which is used here, and elsewhere in the record before us, I have remarked at length, as also on प्रञ्ज, in a foot-note to p. 232 of the Journal of the Asiatic Society of Bengal, for 1858.

11. Allusion is here made to a superstition still very prevalent in India. The ensuing couplet, which is in the mouth of every learned Hindu, I found, after some search, in a colloquy between Agasti and Nárada, in an extract from the Brahmānda-purāṇa, of which I am unable to name the book and chapter:

कान्संगि रयुन्नी नाम राधा भ्राह्मदश्वरान्।

तत्त्व स्नारण माच्छ्रा मात्र नर्त च लघुन।।

* See our additional note, at the end of this article. COMM. OF PUBL.
M. Chézy, as he says in his edition of the S'akuntala, p. 131, found the distich about to be quoted on one of the outer leaves of a MS.:

ततल सूर्या मही ब्रह्माद्रिश्चाग्रणमेव च
दीर्घति राशिपाण: सीम डुब्ली तनाव: स्मृता: है

Professor Wilson, where referred to above, alleges that this is from the Vishnu-purāṇa; in which, however, I read, on the concurrent authority of nine MSS.:

सूर्या तलं मही ब्रह्माद्रिश्चाग्रणमेव च
दीर्घति राशिपाण: सीम डुब्ली तनाव: क्रमाल: है

In hundreds of places, the discrepancies, for many consecutive verses, between passages in different Purāṇas, when one and the same subject is under treatment, are no grosser than these. The lines adduced by M. Chézy are still to be verified. Professor Boehlingk has accepted Professor Wilson's statement, and, it should seem, without thinking to test its accuracy. See his S'akuntala, p. 142.

Of the five elements, as the Hindus reckon them, the ether alone is propounded to be universally diffused. It is, further, maintained that the development, in earth, of color, taste, smell, and tangibility, is due to the influence of caloric. Stench and fragrance can be predicated of earth only; the characteristic of water is coldness: and the atmosphere can be touched, and has no hue.

Of the eight constituents of Kṛishṇa, only the five so-called elements are included in the catalogue above detailed; three, or mind, intellect, and consciousness, being the substitutes for the three objects omitted. See the Bhagavad-gītā, vii. 4.

Professor Wilson, in the second edition of his Sanskrit Dictionary, similarly sets forth the constitution of the श्रृंगृङ्खः; except that he puts "crude matter," or prakṛti, in lieu of 'consciousness.' The exchange is certainly a mistake.

In the fourteenth chapter of the Narmadā-mahātmya, the octoform S'iva is thus represented:

शान्त: स्त्रायिना मन्नयत्र र्यसे द्रष्ट च पराक्षाः।
बुद्धिमन्त्रयवात्त्रुष्टे स्त्रायिनामन्मज्ञानूः ते है।

Here, instead of the five elemental substances, we strangely enough find the five qualities of which the senses take cognizance; or sound, tactility, odor, sapor, and color. The complement is made up as in the Bhagavad-gītā.

4. Or 'he of the dark throat,' that is to say, S'iva. The fable accounting for this designation will be familiar to every one that reaches this note. See the Mahābhārata, A'di-parvan, s.l. 1154.

5. The author of the Budha-manohara alleges that Kshira Swāmin defines ते by परम्. If it be so, my copy of the Amarakos'odgḥātanā is defective. Hemachandra, annotating iii. 437 of his own vocabulary,
2. In turning this quatrains into English, perspicuity was consulted by an entire departure from the structural sequence of the original.

Even after knowing that the stands in Śiva's hair are stands, one can form but a slightly less indefinite idea of them than was entertained by the supernals in their state of ocular indecision. It is, therefore, difficult to divine the precise drift of some of these saintly conjectures. Virtue, agreeably to the chromatics of Indian morality, is white; and so, it may be inferred, would be the buddings of meritorious acts. Possibly, in place of 'eruptions of ashes,' we should substitute 'sources of majesty,' which also is accounted colorless. Yet the interpretation in the text is strictly in keeping with Śiva's notoriously untidy habits.

Terrestrial stalls, analogous to those here mentioned, or, at least, such as are seen in hundreds, every hot season, in Central India, are, generally, fragile structures of coarse grass, or of wattle and dab, open on one side, and just large enough to hold two or three persons in a crouching posture, and as many jars of water.

To all appearance, whether rightly or wrongly, the word प्रया is sometimes used in the sense of a small affluent or feeder. See the Journal of the Bombay Branch of the Royal Asiatic Society, for April, 1843, p. 222, foot-note.

There is a stanza, by the poetess Padmārāti, closely resembling, in style and construction, to that which this note is appended. Venidatta quotes it, in his Padya-venī. It depicts a lady's folded arms:

किश्युक्तास्पुद्तकालस्यक्रिया मूपालालिलिते
किवशोधमन्धवचन्द्रस्यकितिमारापालिलितम्।
किलालालतुमुरालिहलिलितेनप्राचुसेष्ठीति
भाष: कपुरुङ्गप्रारीवलिलिते याहूः कळे समाहे।

Further down I shall have occasion to recur to these verses.

3. These manifestations, as here intended, and in the order in which they are implied or described, are the ether, the sun, the moon, fire, earth, the chief priest in sacrifice, water, and air. See Colebrooke's Miscell. Essays, ii. 248, foot-note; Wilson's translation of the Vīshnu-purāṇa, pp. 58 and 69, foot-note; the opening of the S'akuntala drama; the Kumāra-sambhava, vii. 76; and Hemachandra's scholia on his own vocabulary, ii. 110.

Yādava the lexicographer, as cited by Mallinātha on the Rāghuvans'a, ii. 35, enumerates these forms in the following couplet:

पृथिवी सल्लिल तेतो वायुर्काराघेव च।
पूर्वतंत्रमें गोमयवती हेवाद्र मूर्त्ति।

Mohanadāsa Mis'ra, in his Hamumān-nātaka-dipikā, adds the ensuing lines, of the same import, as from some āgama, or sacred authority:

भूजलं विहरकाशो वायुर्वा वाष्ठी वंजलः।
रत्नां तरावं: सम्बोध्याप्रलं आन्य न।
is retained. But, on the other hand, the sibilants are nowhere confounded. श and श have different symbols; and they are employed, generally, with just discrimination. The deviations, in this article, from accuracy, like several of the peculiarities above noticed, may have been the fault of the engraver. Thus, वृट्ति is once substituted for वृट्ति, कमु for व्रमु, वमु for वरमु, वाल for वाल, and वाप्य for वाप्य.

From the eleventh stanza we learn that the jihwāmūliya and its श were once written श; and, from the twelfth stanza, that the shape of the upadhmaṇiya and its श (श) was श।

I take this opportunity of expressing the opinion that nearly all the inscriptions in the earlier volumes of the Journal of the Asiatic Society of Bengal, which have not been republished, should be deciphered and translated anew. At least, a restatement of their facts of history and geography—based on a fresh examination, with all our present aids, of the originals—would be an enterprise neither unworthy nor infructuous. A reservation would, however, fall to be made in favor of those among them which were entrusted to Dr. Mill, Mr. Sutherland, and Captain Marshall.

Relics of the description here referred to deserve, indeed, all the care that scholarship can bestow upon them; and, occasionally, for a reason quite independent of their value as chronicles. The princes, at whose instance they were written, employed for them, it is reasonable to suppose, the best ability they could command. The teachings of the past must have admonished them that in these memorials, if at all, their names and deeds would survive to coming ages. The style of an inscription, especially if the inscription be in verse, may, accordingly, be taken as no unfair index of what was reputed to be literary excellence at the time of its composition.

NOTES ON THE TRANSLATIONS.

1. The divinity here invoked, under two epithets, is Mahādeva. The ‘attendants’ referred to are the well known gunas. There are fifteen groups of them; named Gomukha, Harīna, Stirna, Tālajangha, Vrikodara, etc.—Rudrā-mahātmaya, 29th chapter.

Śavī-śekhara I have rendered by ‘moon-bedecked.’ As for the śekhara of Śiva, since he wears it on his forehead, it would be incongruous to speak of it as a crest; though it is usually so denominated. The ordinary śekhara was a sort of mural crown. In the eighteenth stanza we have a śekhara encharged with precious stones.

According to Hindu notions, the moon has sixteen digits; and the first of them never appears in the heavens. The new moon, the day of which they call the second of the light fortnight, is held to be a combination of the first two. But the writer of this inscription evidently conceits that the first digit is not seen, as having being transferred to Śiva.

By poetical license, द्वितीय is omitted after द्वितीय, in the third verse of this stanza.
Si-yu-ki, that, about a thousand līś to the N. E. of Ujjayini, he found the kingdom of Thī-kī-t'o. M. Stanislas Julien thinks Mahēśvarapura to be Mysore. Proposing, with doubt, Chikkha as the Sanskrit for Thī-kī-t'o, he adds: "aujourd'hui, Tchitor." Voyages des Pèlerins Bouddhistes, i. 207, 424, 465. Mysore is, however, a long stretch from Chitor, instead of a hundred līś; neither of these places is N. E. from Ujjayini; and the second is not known to be of any great antiquity. On this last point small faith is to be put in Col. Tod. That Thī-kī-t'o stands for Chedi may not be altogether a random suggestion; especially as we are ignorant how far Chedi extended northerly. Again, taking certain mistakes in supposition, would Choli Mahēśvarā satisfy the problem of the two places which Hionen Thsang next visited after Ujjayini?

s. See note e, above.

1. It is singular that her progeny, not more than a quarter of a century after her death, should have consented to speak of her without mention of her distinguished extraction. Yet so it was. See the Journal of the Asiatic Society of Bengal for 1839, p. 490.

u. Ibid., p. 492. The editors of the Journal referred to were, as we now know, wrong in taking this year to be of the common Samvat, and corresponding to A. D. 875.

Though I do not see what use can be made of the following remark of Colonel Wilford on his patent of Karna Deva, yet I transcribe it: "The grant is dated the second year of his new era, and also of his reign; answering to the Christian year 192." Asiatic Researches, ix. 108. The proposal to throw Karna Deva into the second century is characteristic. Of that chieftain's setting on foot an epoch of his own we have here the only intimation.

v. It may not be superfluous to note that the eleventh day of the light fortnight of Mārgha, 907, and the sixth day of the light fortnight of Šrāvana, 928, were not Sundays, in the era of Vikramāditya. Gāsala Devi's inscription, as printed, does not name the month, the semilunation, its day, or the day of the week. But I should like to examine the copperplate itself.

w. I may add that it seems to have been aimed, in the manuscripts of this memorial, to make it as formidable in aspect as practicable. To this end, few occasions are left unimproved of doubling consonants where the grammar permits their duplication, and of yoking the final letters of words to the initials of those that succeed. For example, we have त्रिकुट, कौशिक, and even निष्क्रिय and तम्र; as also क्रिया, which is an error. Equally unauthorized is सिंह, which is everywhere put for शिंह. The dental न is, in two instances, combined laterally with र; and likewise, in several places, with the dental and palatal sibilants; for the sake of conjunction, the anumeśāra is changed to न, before a sibilant, in stanzas six and thirty-five. In the last verse of the twenty-ninth stanza, the न of सार्य is repeated, although the visarga of the preceeding word
This abbreviation indicates "the original compilation, when the word contained appeared to be correct, and could not be found in any other authority." The fact seems to be, that the apposition of Chandail to Chedi was the mere guess of some pandit, and a guess prompted by their remote similarity in sound. Yet it is written, in the Professor's translation of the Vishnu-purana, p. 186: "Chedi is usually considered as Chandail, on the west of the Jungle Mehals, towards Nagpur. It is known, in times subsequent to the Puranas, as Ranastambha." This annotation is annexed to the impossible word "Chedyas." The Sanskrit has Chedi; the people of which are Chaidyas or Chedayas, according to Hemachandra. The Jungle Mehals are to the east of Chhotá Nagpur, and conterminous with it; and the equivalence of Chandail to the doubtful Ranastambha is altogether hypothetical. See the Quarterly Oriental Magazine for December, 1824, p. 192, foot-note. There is no such country as Ranastambha named where Professor Wilson thought he had found one. See the Journal of the Royal Asiatic Society, iii. 262. Among the descendants of Jyamagha, says the Professor, "we have the Chaidyas, or princes of Baghelkhand, and Chandail, and Das'arha—more correctly, perhaps, Das'arna—Chattisgher" (sic). Translation of the Vishnu-purana. In passing, at p. 186 of the same work, Chhattisgarh only "seems to be in the site of Das'arna," Das'arna was to the east of Chandeyree.

M. Troyer confidently asserts of the "Tchédas," that "ils habitent le Behar méridional;" and he speaks of Chedi as being "probablement le Tchandail actuel." Raja-tarangini, i. 567, note; ii. 629.

It may be concluded that Rewa and Mundia, in part, if not in all, at least as to the second, were anciently embraced in the land of Chedi. At that time, as in times when the old geographical nomenclature of Central India had fallen into disuse, it also took in something of the District of Jubulpore. When Dhrishtaketu was lord of the Chaidyas, his residence was at S'uktimati; and at one period, if not then as well, a stream of the same name flowed past the capital of Chedi. Hard by was Mount Kolâhala. Mahabharata, Vana-parvan, s.1. 898 and 2591; and Adi-parvan, s.1. 2342-2368. We might expect to find that the S'uktimati river took its rise in the S'uktimat mountains; but, on the contrary, its source is referred to the Riksha range, from which various Puranas derive the Nerbudda, the Taptee, and the Tonsee. The site of the city of S'uktimati is, therefore, not yet to be settled by the aid of its river. Colonel Wilford, with his usual eccentricity, relegates the S'uktimati, "full of oysters," to parts widely astray from its sober latitude and longitude. See the Journal of the Asiatic Society of Bengal for 1831, p. 254.

The town of Tewar, a few miles from the station of Jubulpore, was, in distant ages, included in Chedi; as has been made out in a previous note (note b); and the first of the inscriptions in this paper shows that the jurisdiction of Narasinha was not bounded, in a southerly direction, by the Nerbudda.

Hionen Thsang, the Buddhist traveller, according to his biographers, on leaving Ujjayini, proceeded nine hundred liis N.E., to the kingdom of Mo-hi-chi-fa-lo-pou-lo, or Maheswarapura. But it seems, from the...
them to bow their foreheads to his footstool.” On this he observes:
“There is, however, something wrong in the verse; and it seems likely
that we should have the proper name, in it, of another prince. Ksho-
nis/wara may be a proper name, instead of an epithet: but it is not
ordinarily so used.” As. Res., xvi. 295. It is difficult to form even a
guess as to what the Professor had before him. At all events, his text
was miserably corrupt.

p. Mangala, a Chálukya chieftain, is said to have repelled Buddha-
rája, son of a S'ankaragâna. See the Journal of the Bombay Branch
of the Royal Asiatic Society, iii. 203 etc.

q. The matter of this paragraph I have collected from these sources:
Journal of the Royal Asiatic Society, iii. 94 etc.; and Journal of the
Bombay Branch of the Royal Asiatic Society, i. 217 etc., iv. 111 etc.
The last reference has Kokkala for Kokkalla.

I have adopted, on examination, an obvious suggestion of the late
Bálagangadhára Sásstrin, as regards the topical acceptance of the term
importing the relationship between Akálavârša and Indra. It may be
added that Major G. L. Jacob has altogether misunderstood his original,
in espousing Mahâdevi to Akálavârša.

r. Professor Lassen, in 1827, wrote as follows, touching Chedi and
its synonyme: “hisce nominibus nil de situ gentis definitur; nam omn-
nia prorsus sunt ignota. Chedas a Wilsone (s. v.) ad eam regionem
referuntur, quae hodie dicitur Chandail: verum hoc contra auctoritatem
Hamiltonis est, qui (Descrip. of Hind., II., p. 13) asserit, Chandail Sans-
crite dictum fuisse Chandâla. Totam rem, ut incertam, in medio reli-
quam.” Commentatio etc. de Pentapotamía Indica, p. 89. And the
question, it is believed, has awaited adjudication down to the publica-
tion of the present paper.

Mr. Wathen confounds Chedi with Ganjam. See the Journal of the
Royal Asiatic Society, ii. 380. Afterwards he makes it to be “Chandail,
in Berar.” Ibid., v. 345, 346. From Captain Blunt we know where
Chandail begins, in one direction: but its extent has never been defined.
Asiatic Researches, vii. 59 etc. Sir Henry M. Elliot, speaking of the
Chandels, says that there is “a large clan of them south of Burdee,
giving name to a province called Chandelkhand.” Supplemental Glos-
sary, i. 180, 181. But the word Chandelkhand, though analogical in
formation, is, I find, nothing but a coinage: like the late Colonel Dix-
on's Merwârâ—as it is written accurately—for what the natives call
Magrá.

But, if Mr. Wathen's views are more or less wide of the mark, neither
can we rely on the dictum of Professor Wilson, who says that “the
situation of the ancient kingdom of Sishupála is always considered to
be that of the modern Chandail; and in original Sanskrit writers
Ranastambha * * is well known to be Chandail and Bogheit, and
lying south of the country termed Vindhya-pára'swa, the skirts of the
Again he speaks, vaguely, of “Chedi, or Chandail, in central Hindus-
tan.” Ibid., iii. 208. His earliest decision of this point is in the first
edition of his Sanskrit Dictionary, where we read, in definition of
Chedi: “The name of a country; perhaps the modern Chandail. Or. D.”
For the original of these passages, and of those shortly to be adduced, which has never before been published, I am indebted to the kindness of my noble friend the late Sir Henry Lawrence. Professor Wilson's copy of the Sanskrit was manifestly a careless one. See the As. Res., xvi. 292–298.

Concerning the Gahlots, as the Gobhis are vernacularly entitled, Sir Henry M. Elliot writes: "Their neighbors, who for some unexplained reason are fond of imputing cowardice to them, say their name of Gahlot is derived from gahla, a slave-girl; but the real origin is the following, which is universally believed in Mewar. When the ancestors of the Rana of Mewar were expelled from Guzerat, one of the queens, by name Pushparati, found refuge among the Brâhmans of the Mallia Mountains. She was shortly afterwards delivered of a son, whom she called, from the cave—guhâ—in which she was born, by the name of Gahlot; and from him are descended the present Ranas of Udeypur. Their claim to be descended from Noeshrîwân and a Grecian Princess, which has frequently been discussed, invests this clan with a peculiar interest." Supplemental Glossary, i. 322, 323. Sir Henry should have seen that this etymology has far too much of the ordinary complexion of native romance to deserve the ready credence he has accorded it.

Had the name in discussion been derived from guhâ, and so etymologically significant, it would scarcely have been changed into Gobhib. Very likely it was originally Guhib, and was subsequently Sanskritized into Gobhib, for the sake of seeming canonization.

- The present mention of Hansapâla is, as I have already intimated, the first that we have of him. He was also called Vairâta, unless Vairata was his brother, or some other near relative. I again cite the inscription from Mount Aboo:

Vairâta, a lord of earth, who destroyed the abode of his antagonists with his two staff-like arms, caused, by his might, the heads of those inimical to him to toss long on their pillows.

That king, who had destroyed all his adversaries, having demised, in the next place Vairisinha [i.e., the lion of his foes] justified his designation the earth over.

Of broad chest and slender waist, making the dwellers of the earth to tremble at his battle-cry, Vijayasinha [i.e., the lion of conquest] then slew his enemies, as they had been elephants.

Instead of the first of these three paragraphs, Professor Wilson has: "the king of the world, having slain the associates of his foes, compelled
a famous place of worship, to this day, on the Narmadá; and built by one of his ancestors.” Col. Wilford in the As. Res., ix. 103.

“The ancestors of S'ríkárña Deva, mentioned in the grant, were, first, his father Gángeya Deva, with the title of Vijayakantaka: he died in a loathsome dungeon. He was the son of Kokalla Deva, whose father was Lakshmanarāja Deva.” Id., ibid., ix. 108.

It is easy enough to imagine how Colonel Wilford would have speculated on a Kokalla's having a son S'adruka, had he been aware of the circumstance.

h. See the Journal of the Asiatic Society of Bengal for 1839, p. 490: also note 13, further down this paper.

i. Yas'ahkarma Deva is the form in which, doubtless by mistake, his name is elsewhere written. Ibid., p. 490.

j. Gavákarna, the more grammatical form, is found in my second inscription, and in the grant issued by Gásala Devi.

k. Her name has also appeared as Arhanya Devi. See the Journal of the Asiatic Society of Bengal for 1839, p. 490.

l. This prince, it should seem, left no offspring, male or female.

m. Ajayasinha is placed in the year 932 of an unspecified era. See the Journal of the Asiatic Society of Bengal for 1839, p. 492. His consent to the grant of a village, made, at that time, by his mother, was considered to be necessary. As further evidence that he was only heir expectant to the government, and not actually in possession, we have the argument that he is styled Mahámuḍa.

n. This appellation is the same as that of one or more ancient sages who have written on Vaidika matters. The immediate successor of the founder of the Udeypoor dynasty is called Guhila, in the only other inscription yet found, one from Mount Aboo, where he is commemorated:

नन्दोपन्नाचुकित: मुदातः
गुप्तोविस्म: पञ्चमविस्मिकः
कालास्पदो मूर्तिः भूतागामिः
सम्मुदायो गुहिलसि बंश: "111"

'Preëminent is the generous race of Guhila; abounding with branches and offsets; of good progeny; of laudable attributes; whose vehicles adorn the directions; resting on the heads of monarchs.'

In translating, I have neglected the puns.

सब्जप्राच्छि सम्प्रति नामिता
सम्मुद्भुत गुप्तोप्पामुहिलाज्ञ:
सम्म नाम कलिनार्द्विन्द्रासि
भूमिते द्वावनि तंकुलाज्ञ: "12"

'The son of Vappaka was King Guhila, so called; a master of policy; and whose name the rulers sprang from his family invoke, for the purpose of obviating the collective defilements of the Iron Age.'
mantipurā," as according to the translation. That the original runs चोयङ्गिपुरिः, is not an unreasonable conjecture.

It is, thus, tolerably clear that Chedi, at one time, extended down the Nerbudda almost to the western extremity of the District of Jubulpoor, as now defined. I shall return to the consideration of Chedi a few pages forward.

Professor Lassen's deductions from the legend of the slaughter of Tripura are scarcely such as to command unqualified assent. See his Indische Alterthumskunde, i. 71, 72, foot-note.

c. Under the reign of Lakshmīdhara—son of Udayāditya, and grandson of Bhoja—a grant of a village was issued by his younger brother, Naravarman. Its date is A. D. 1104. Naravarman lived till 1133. See the Journal of the Bombay Branch of the Royal Asiatic Society, i (1843), 277–281; and Colebrooke's Miscellaneous Essays, ii. 303. I will here simply mention that the speculations of the late Mr. Henry Torrens, which carry back the era of Udayāditya to the seventh century, are utterly without foundation. This I shall show at length, in a future communication. See the Journal of the Asiatic Society of Bengal for 1840, p. 545.

d. Their gentile denomination was, perhaps, Kulachuri. I am not prepared to say what relation, whether that of identity, or otherwise, may have subsisted between the Kulachuris, "Karachulis," Kalachuris, and "Kalabhuris." See the Journal of the Asiatic Society of Bengal for 1839, pp. 488 and 490; Select Specimens of the Theatre of the Hindus, ii. 359 (second edition); and Journal of the Royal Asiatic Society, iii. 259, and iv. 19.

e. Vonthá Devi, daughter of a Lakshmana who governed Chedi, became the wife of Vikramāditya—if the name be not Vijitāditya—a prince of the Chālukyas. See the Journal of the Royal Asiatic Society, iii. 261; iv. 7, 40; v. 345.

f. The term Yuvarāja is much more like a title, 'prince regent,' than like an appellation. For an apparent example of it as the name of a king, see the Journal of the Royal Asiatic Society, iii. 96.

That our Yuvarāja is an antonomasia for Lakshmana Deva, is a revelation for which we are to thank a writer who has never yet been taxed with excess of critical scepticism. In the present instance, however, there is no reason why his word should not be taken without reserve. The fact here brought forward was immaterial to any of his theories. I mean Colonel Wilford. See the Asiatic Researches, ix. 108.

g. He founded the city of Karnāvati. See the Journal of the Asiatic Society of Bengal for 1839, p. 489. Karnāvati may have been misread for Karnāvali. If so, perhaps we have it in Karanbel, now a heap of ruins, only a few miles from Bhera Ghat. But local tradition refers Karanbel to a chieftain of Gadhāmandala.

"The famous Srikarna Deva, in his grant, lately found at Benares, declares that he was of the Haihaya tribe, who lived originally on the banks of the Narmadā, in the district of the western Gauda, or Gaur, in the province of Mālava. Their residence was at Chauli Mahes'wara,
NOTES ON THE INTRODUCTION.

a. Near this spot I saw a temple, in the circumjacent close of which were mutilated images, of large size, of the sixty-four Yoginis.

b. When at this place, on enquiring its ancient name, I was told, by the village oracle, that it was the Tripura of the Purānas.

In the eighth chapter of the Revā-māhātmya it is said that Tripurakshetra, where Śiva flung down Tripura the Titan, lies to the north of the Narmadā.

The twenty-ninth chapter of the same work somewhat discordantly relates as follows. The demon Bāṇa, in reward of his austerities as a votary of Śiva, received from him the gift of a city. Brähma and Vishnu each adding another, he obtained the epithet of Tripura, or Yāmāśī. When slain by Śiva, as he was traversing the heavens, a part of his carcass fell near the well-known mountain Śris'aila, in Siddhakshetra; another fragment, not far from Amarakanta; and the remainder, in the vicinity of Gangasāgara. The weapon, Aghorāstra, with which he was demolished, reached the earth at a point of the Nerudda hard by Jaleswaratítulo, and sunk to Rasátala, the nethermost of the infernal stages. Where this tale is briefly rehearsed in the Ganesopapurāṇa—prior section, chapter seventy-one—Bāṇa carries off Pradyumna; whose father, Krishna, attacks the giant, and, after propitiating Ganes'a, overcomes the monster and takes possession of his city S'oritapura. The Vishnu-purāṇa tells a very different story. See Wilson's translation, p. 596. Some ten chapters of the first half of the Ganesopapurāṇa, beginning with the thirty-eighth, are taken up with Tripura or Bāṇa.

Parenthetically, M. Troyer is wrong in speaking of the “trois villes,” named from Tripura, as being “du moderne pays de Tipparah” (Rājarantarangini, iii. 610). It is stated, in the course of the legend above recounted from the Revā-māhātmya, that there is a Tripurapura in the neighborhood of Śris'aila. That the town vulgarly called Tipperah, which gives name to a district of Bengal, is more properly Tipura, by depravation of the Sanskrit Tripura, we have the high authority of Colebrooke. See his Remarks on the Husbandry and Internal Commerce of Bengal, London edition of 1806, pp. 28 and 30; and his Miscellaneous Essays, ii. 241. Some relevant but unverified assertions of Colonel Wilford will be found in the Asiatic Researches, xiv. 451. Of the situation of the third Tripura, or Tripuri, evidently the most noted of all, there can be little question. The Tripuri named in the Haimakos'a is explained by Professor Wilson, in his Sanskrit Dictionary, as being “the modern Tipperah.” But the Haimacos'a, in my manuscript copy of the text and commentary, gives, as another designation of Tripuri, बेदिनगारी; which, in the Calcutta impression, is corrupted to केरिनगारी. I have not access to the English or other new reprint of this vocabulary. Professor Wilson also inadvertently gives बृहु, the adjective of ब्रहु, as an equivalent substantive.

I suspect that the ablution, spoken of at p. 492 of the Journal of the Asiatic Society of Bengal for 1839, took place at Tripuri, not at “Sri-
A more explicit explanation, and one specifically adapted to the combinations before us, may be given in these words. Write U four times in a horizontal line. Under the first to the left place an I; and, to complete the second line and variation, bring down the other three, to accompany it. The same process is again and again to be repeated. The U which stands furthest on the right is always the letter which governs the leading conversion next to be effected; all the letters to the right of that directly under it being exchanged for U's. Thus continue to operate until a line is brought out made up of I's.

Suppose, again, that only the number of a variation is known, and it is required to ascertain how that variation is constituted:

Narayana Gopala Bhaskara Pandita's verses on this:

In other words, halve the figure, if the result will be an integer. If not divisible by two without a remainder, first add unity to it. When four numbers are thus obtained, subscribe U's to the odd, and I's to the even.

E.g. 1 1 1 1 5 3 2 1 12 6 3 2 16 8 4 2 1 1 1 1

UUUU UUIU UIUI IUII

Once more, the components of a variation are given, to find its number:

The couplets which follow, in the original, however curious, are of little practical value. Two of them show how to determine the number of variations containing one I and three U's, two I's and two U's, etc. Afterwards, the construction of the khaṇḍa-meru is described by implication.
rily described, is the same as the Smṛiti; some, on the other hand, holding it to be one with the Maniprabhā. The Viparītākhyānaśī, again, is equivalent to the Śivā; or, perhaps, on a different view, it corresponds with the S'ubhā. Very likely the comprehensive nomenclature about to be brought forward is of somewhat late origin. It does not, however, furnish appellations for mere factitious or new-fangled refinements; as will be seen— to go no further—by the annexed references to a few of the first fifty-nine stanzas of a single canto of the Raghuvansā.† The pure Upendravajrā and the pure Indravajrā constitute, respectively, the beginning and the end of the series.

<table>
<thead>
<tr>
<th>No.</th>
<th>Sanskrit name.</th>
<th>Prākrit name.</th>
<th>Composition.</th>
<th>Baghū. II.</th>
</tr>
</thead>
</table>

The metres of this table are disposed agreeably to a method which evidences some ingenuity. The ensuing couplet—which, like those that follow it, is from the Vṛtta-ratnākara—states the rule:

पार्ति सवर्गवामालू लघु दस्य गुरुराधः ।

वर्णपरित्य तथा प्रायः भुगु कुमारस्य विभिन्न ॥

not excepted. See Prof. Lassen’s Anthologia Sanscritica, p. 104; and his ‘Gutta-goeinda,’ Prolegomena, p. xxiv. Dr. Tullberg is of the same opinion, and, in like manner, wrongly holds that the Indravajrā may commence with a palimbacchus, or with an amphibrach, at pleasure. See his Mālavikā et Agnimitra, p. vii. It may be observed that the stanza which he there numbers as the fiftieth has twelve syllables to the verse, not eleven. It is, therefore, Vans’astha; a metre which may be elagorated from the Upendravajrā, by simply exchanging its final syllable for an lambas.

† The eleven stanzas, blended of Upendravajrās and Indravajrās, which occur in the S’ākuntala, exemplify no less than nine of these species.

‡ My authorities for the following particulars are the Cihando-mārtayasa, as cited in the Vṛttratāntiakarādvarā’ of Divakara Bhatta, son of Mahādeva Bhaṭṭa; and a treatise on Prākrit prosody, my copy of which is defective at the commencement and at the conclusion, and of which I know neither the title nor the author. If the Sanskrit names in the first column here given have Prākrit representatives, I have not met with them.
TRANSLATION.

1. We render homage to the supreme Brahma, who is intellect and felicity, adored by Brahmá and the other inferior deities; Mahádeva, god of gods; parent of the world.

2. The son of the fortunate King Gayákarna, the auspicious King Narasinha Deva, has conquered the earth. May the fortunate Jayasinha Deva, the equitable prince, his younger brother, long be triumphant!

3. Kesáva, son of the late Aladeva Astaka, the Bráhman so called, procured this temple of Is'wara to be constructed.

In the year 928; Sunday, the 6th day of the light fortnight of Srávana; the moon being in the asterism Hasta.

Family name of Kesáva, the collector—Kátyáyana; his residence—the village of Síkhá, in Málavaka.

PROSODIAL INDEX TO THE FORMER OF THE FOREGOING INSCRIPTIONS.

No. of stanza. Name of metre.
1, 5, 8, 15, 17, 18, 20, 26, 28, 30, 35, 36, 37. Vasantatilaká.
2, 3, 7, 9, 12, 13, 14, 22, 25, 32, 34. S'árdúlavikridita.
4, 10, 11, 23, 21, 24, 29, 31, 33. Vaktra.
6, 16, 19, 27, 21, 24, 29, 31. S'ubhá.
10, 32. Málíni.
33. Upendravajrā. Srí.

None of these metres call for special remark, except those of stanzas 6, 21, 24, 32, and 34. In these we have quatrains composed of the Indravajrā and Upendravajrā measures intermixed. The modes in which they are combined were long ago alluded to, but have not yet been detailed; and the A'khyanaká, which Colebrooke correctly limits, has erroneously been understood as embracing all these variations. The A'khyanaká, as ordina-

* Colebrooke's Miscell. Essays, ii. 100.
† Ibid., ii. 124, 164.
‡ Dr. Stenzler's Raghuvans'a, p. 174; and Dr. Boehltingk's S'dkuntala, p. 290. Other editors have gone still further astray, in supposing the term Indravajrā to denote a tetristich of any of the sixteen sorts named in the text, the Upendravajrā
31. Let the auspicious Rudrarás'i, a Pás'upataascetic, of the Láta race, and his heirs spiritual, fitly administer the duties of the charge of this establishment, till S'ambhu shall mete out the duration of the spheres.

32. In the family of Maunin—connected with three branches, those of Bhárgava, Vaitahavya, and Sávetasa was born, of Mahes'wara, so called, one Dharanídhará, by name; a person of worship, repute, and good presence:

33. By whom—adorned with seemly radiance as his frontlet, replete with exuberance of exalted tenderness, and whose gratifying condition long endured—the three worlds were, so to speak, irradiated.

34. His son, Prithwídhára—who has scanned the further shore of the profound main of all science, and whose concourse of disciples has conquered scholastically the round of the quarters—transcribed this encomium.

35. His—Prithwídhára's—younger brother, of singular skill among such as are conversant in logic, the learned S'as'idhára, as was his appellation, composed this memorial:

36. All this the artificer called Pithe, proficient in the ordinances of Vis'wakarman, has regulated; as Prithu disposed the earth.

37. Mahúdhára, son of the chief craftsman, Bálasinha, wrought this stone with characters; as the firmament is bestrown with stars. Sunday, the 11th day of the light fortnight of Márga, in the year 907.

Inscription No. II.
19. He, Vairisinha, moreover, consigned the kinsmen of his adversaries to the recesses of deep caverns; and, entering in person, caused that their women neglected their tresses altogether.

20. Of him was born King Vijayasinha; the good fortune of whose foes was overborne by the pressure of his comeliness and chivalry, deserving the congratulations of all the people; and the moon of whose glory was waxing in the world continually.

21. S'yámala Deví, the beauteous daughter of Udayáditya, supreme ruler of the realm of Málava, was his consort; a talisman of bountiful courses, and lauded for her elegance.

22. Of him, King Vijayasinha, equal to the custody of the world, was born, by her, Alhaṇa Deví; in presentment, the spotless fluttering pennon of her long-descended lineage, as the wife of S'ankara had her origin from the Master of Mountains, by Méná, and as the spouse of S'ubhrabhanú sprang from Daksáha, creator of the human family, by Víríná.

23. King Gayakarna, celebrating nuptial rites with her, bestowed on her the highest affection; even as S'ankara on S'ívá.

24. She, a mansion of erotic sentiment, the pinnacle-ball of accomplishments, a wreath of loveliness, the emporium of excellencies, brought forth, by King Gayakarna, a son, King Narasinha Deva.

25. Of him, the prosperous King Narasinha Deva, may the refulgent moon of glory as it were imbue the walls of the directions with grateful store of refreshing nectar. And may the earth, obtaining in him a fitting protector, thus enjoy content, as that of foregone mighty monarchs it shall take no slightest thought.

26. May his younger brother, Jayasinha Deva—in wondrous wise doing honor to his brother, the first-born; like as for Ráma regard was had by Saumítrí—be eminently victorious; who, strong-armed, defeated his enemies' hosts, strepitant as thundering clouds, teeming with strategy, and comprising warriors of most stalworth frames. Bravo!

27. That lady, the open-handed Alhaṇa Deví, mother of the happy Narasinha Deva, occasioned this sanctuary of Indumaulí to be erected, and this cloister, with its admirable pavement.

28. The same, by the agency of her commissioners, constructed this hall of learning and line of gardens, wanting for nothing, in two ranges, attached to the temple of S'amhbu.

29. To this divinity, entitled Vaidyanátha, the queen—to the end that her good deeds might be blazoned—set apart the village known by the name of Undí, in the canton of Jáullí, with all the dues exigible therefrom.

30. In like manner she appropriated another village, called Makarapátaka, situate at the base of the hills, on the south bank of the Narmádá.
acquired infinite distinction; and who, an all-bestowing tree to supplicants, as making Mount Meru unworthy of similitude, placed this earth, though lying below, above elysium, and rendered it a fit habitation for the gods:

10. The vine of whose renown—a vine sprinkled with the nectar of meritorious achievements, and promotive of pure excellence—expanded itself over the entire pavilion of the cosmic egg.

11. Of him—who replenished with gold the ocean of importunities of his crowd of petitioners; and of coveted celebrity—was born King Karna:

12. Which king, unprecedented in splendor, maintaining the full energy of heroism, the Pändya discontinued violence; the Murala renounced all inclination of arrogance; the Kanga negotiated an audience; the Vanga, with the Kalingas, was solicitous to do thereafter; the Kśra, like a parrot, staid in his house, as a cage; and the Húna dismissed his elation:

13. Princes at variance with him; whose consorts severally thus protested: 'This whole country, which he enjoys in consequence of the defeat of our lords, will we, as it were, diminish to view: for that, by the tears springing from our eyes, we have made great the seas; and we have, moreover, aggrandized them by the surpassing water of our jewels.'

14. From him the illustrious Yas'ahkarna derived his honorable origin: who lighted up the circuit of the quarters with the moon of the fame which accrued to him from devastating Cham-páraṇya, whose heart was free from crookedness; preëminent among rulers; who, holding all learned men whomsoever in esteem, enriched them by his munificence.

15. From him, a treasure of the perfection of all virtues, inscrutable, sprung King Gayakarna Deva; the very sun of whose grandeur availed to bring about the uprising of a sea of desolation to the wives of his foes.

16. A monarch was he, who, in brightness of complexion, out-rivalled orpiment; who was a cornucopia of probity, a garland of diffusive merits, the one destroyer of the hordes of his enemies, of unsullied splendour in battle, restraining the wicked by his beaming glory, and whose sword was of the keenest.

17. The race of the sons of Gobhila is of note among the nations. Therein was born King Hansapála; by whose thorning armaments, equipped with gallantry, and irresistible, the marshalled squadrons of all combined antagonists were humiliated.

18. The issue of his body was the fortunate King Vairisinha; whose feet were tinged by the reflection of the head-gems in the frontlets of all tributary chieftains; prostrate in act of fealty, a repository of faultless wisdom, but not, indeed, an asylum to imperious suitors.
Translation.

Om! Glory to Śiva!

1. May the lunar digit on the brow of the Moon-bedecked—which digit, though but one, and individual, yet, even in the absence of evening, constantly begets the conviction, as pertains to the opulent in attendants, that it is the second—augment your prosperity, and preserve it unimpaired.1

2. May the ranges of sacred watering-booths—chafed by the creeping and leaping waves of the celestial river which meanders on the head of Śiva—protect you. Is it lines of white lotoses that present themselves? Or divisions of the moon? Or germs of virtuous deeds? Or, else, the sloughs of serpents? Or, again, eruptions of ashes? Thus are they made the subject of speculation by the immortals.2

3. That which is a pure pervading element; that by whose revolutions the earth is illuminated; that which imparts happiness to the eyes of the world; that which is the cause of diversity among savors and the like, whose inhesion is in the terrene; that which is a receptacle surcharged with odor; that which is absolutely cold; and that which is tactile, but devoid of color: may Śiva, by virtue of these material forms,3 defend you.

4. May Nilakanṭha4—exciting, by the display of his javelin and battle-axe, affection in his votaries; the smeared with camphor; and exultant in his dance—confer on you all objects of desire.

5. May the Elephant-faced5—counterfeiting ivory whiter than the jessamin, in bearing a lunar fragment potent to dispel the darkness of multitudinous impediments, and free from the smallest stain—compassionately accord to you supreme felicity.

6. May Saraswati—practicing, with manifold elocution, all her devices; and by employing though but the minutest rudiment of whose blandishments, men inspire, in assemblies, the highest reverence—support you.

7. In the lunar line6 there was a sovereign, by name Arjuna: possessor of a thousand arms; a fire, by night and day, in subduing the hearts, one after another, of all dwellers in the three worlds; by his effulgence putting contempt on other monarchs; and, by the recollection of whom, things long ago lost, or taken by thieves, are, even to this day, recovered.7

8. Among his descendants arose Kokalla Deva: a famous lord of earth; whose story, though most wonderful, is yet not mythical; wearing a majestic aspect; and whose name, invoked, was the sole resort that produced joy to the triple universe.

9. From him sprung King Gāṅgēya Deva: who, by the discomfort of hostile princes sustaining huge mountains of pride,
श्रीदराशिविधिवद्व व्यथतताम्।
स्थानतः रूचिविधिमयः नावहूः
यावन् मिनीते भुवनानि शामुः॥३१॥
मैत्र्यांवें भार्तविविधस्य-सावेतसेतिविचारः॥
महामक्खर्यां धरणीधरों भूनूः
नान्ता गरिय्या यशसा श्रिया च॥३२॥
कोमल्कालितस्तलेनोचित्कलिताभिभवतीन।
दीर्घनींद्रशेष निर्मुनदीपित्यें वेन॥३३॥
पृथ्वीधरस्य सुतः समस्त-गमीरशाक्षार्यम्यार्यः।
प्रशस्तिमेतामलितवद गद्दिगृहः
दीक्षापाली शिष्यगणोविरितिये॥३४॥
रतस्याश्वास्तककिन्तुनिपातततनिपुणः।
प्रश्तिमिमकरोदितां सूर्यि: शाशिधरायिभधः॥३५॥
श्रास्त्रविधिं वर्षि सर्वि विध्रकर्मिवनविनितूः।
पीछेमाधिभं सूत्तधारं पृथ्वीं पृथ्वयः॥३६॥
महामक्खर्याश्चार्यविदोहतसीसिद्धसुमुर्महीः
शिलां तथा। करोदं वर्णमिस्तारकितं यथा॥३७॥
संवत् १०० मार्गसूद्रिः १९ रवि।।

* The first half of this line faultily ends with the middle of a word, the syllable ले; in contrariety to a metrical canon.
भूर्भंतरमवायु चैनुमूचितं प्रीतिं तथा प्रान्त्रयानु न वर्तं मनागवि महाशतोषषीभृता ध्यायति॥२५॥
एस्तानुनी विचित्रतां नवसिंहस्थदेवः
सौमित्रिवन् प्रथमो श्युनकस्पौवः
यो भेदनाद्वकुमारहन्ताकः
सैन्यं दिपामिभवनन्दुद्द्र प्रस्फृतः॥२६॥
स्त्रायानु मंदिरमिन्दुमले
र्द्देसं मंदनाद्वुतुभृमणे
सहामुन्या श्रीनरसिंहदेव
प्रस्फूरसावल्लभ्रणेद्युवदा॥२७॥
व्याचारशालामुदामालामविकलालमममु॥
श्रायानयत स्वयं शम्भुप्रासादलीद्यं निति॥२८॥
देवायामम वैश्वनाथाभिवाह
प्रायादु देवी जालिपत्तलायामु॥
ग्रामं नाग्रा नाम उपदेति तर्कां
देवं सार्थ चार्चिकाप्रसिद्धी॥२९॥
नमदातिवेणू कूले पर्वतोपत्यकायाये
तथाप्रस्वदाद्रु ग्रामं नाग्रा मकरपाठकमु॥३०॥
लाशानवयं पशुपततपस्वी

* Here is another prosodical defect, similar to that pointed out in the fourteenth stanza.
तस्मादज्ञात समस्तज्ञानभिन्नन्यः
श्रीन्द्रशीर्षद्वरभुस्मुत्तिरालितिश्रीः।
पृथ्वीयतित्विनिययमिन्द्र वर्धीं
मनः सदा कङ्गति यस्य यशोऽसुदांशुः॥२०॥
तस्माभवन् मालवमपदलाधिकारः
नायोद्यादिरसुताः सुत्रपा॥
श्रीरिपुरं श्यामलदेव्युधारः
चरित्रचित्तामणिपरिचितश्रीः॥२१॥
मनायामिव श्रीजन्मश्रीणिपिनः
तोपिभ्वतां नायकाद्
वीरिणामिव श्रुभानुवनिन्द्रावहातू प्रजानां सूरजः॥
तस्मादलस्तेदव्यजायत गगाधाचातमाः
भूपेतेषु
इत्यां नित्यरिवमस्वविशिष्टेऽवैश्यताकाकृतिः॥२२॥
व्याकृतविविधामाय गयकर्णनिःश्र्यः।
चक्रे प्रीतिः परमस्यां शिवायामिव शासुः॥२३॥
श्रुङ्गशालः कलशी कलानां
लालण्यालः गुणयेषुभूमिः॥
भृतं पुजं गयकर्णभूवादः
ग्रही कर्णां कृष्णसिद्धेऽवम॥२४॥
स्याः श्रीनरसिद्धेऽवगतां प्रोचनू क्षात्राद्वं
दिमित्रतिविद्यातु बन्धसुभा पास्माभापभो पवार॥
तस्माद्येष्यगुणाः सम्बन्धू गयकरणादेवः ।
वस्य प्रतापतपनी भयंकरसुन्दरीयाः
शोकार्णवोद्यमनिधानयं प्रवेदेः ॥ १५ ॥
गुतितितीति ॥ शीताकल्पशालाः
Pृष्ठतरुगुणामाला: शत्रुःगैर्कालाः ।
विमलितरुगुणामाला: कालकीची ईशालाः
शिताकरवाला: सो भवचु भूनिधाला: ॥ १६ ॥
श्रस्ति प्रतिद्वदिमिक गोविलपुट्रगोत्रं
तत्राज्ञानित्र नृपति: किल हंसपालाः ।
श्रीयवङ्गमज्ञातिनिर्गलवसेनसि- ॥ १७ ॥
नम्रीपीतानितिनियमितिनयसिद्धाः
तस्याभवत् तनुवच प्राणात्समस्त- ॥ १८ ॥
मालक्षरशिरोमणिर्भित्रितां श्रीविरिसिन्दुः- ॥ १९ ॥
शुद्धिरिसिन्दुःधिपतितिर्विशुद्ध-
बुद्धिनिधिन परमर्थिनन्य चोधि: ॥ १८ ॥
स वैरिसिन्दुः ज्यनवद्व रिपूर्णां
कुलानि गभीरगुणारूपाणि।
स्वयं च तेपानिधिशय चक्रे
पुराणिन द्वरावज्ञितालकानि ॥ १५ ॥
The रुम is rather dim in my fac-simile. The word in which it occurs ends a line on the stone, which is here somewhat worn. There is no doubt about the ह; रुम is the only form given in the dictionaries; but रुम is equally grammatical.

† I may as well remark, concerning this unusual name, that its appearance on the stone is such as to preclude all uncertainty. No person who is familiar with Indian inscriptions need be told that ब्रह्म: was here to be expected. Had this, however, been the intended reading, the method observed, without exception, in this inscription, would have converted the nasal point, at the end of the foregoing verse, into a म.

‡ In these words, at the termination of a line, the stone is slightly broken. The का is unmistakable: but the conjunct य has no authority but indisputable necessity. The verb त्रिकृत: is completed, in the next line, with perfect distinctness.

§ This division violates a law of prosody.

|| Some letters are here missing, on the stone, directly beneath the श्रव: spoken of in the last note but one. The भ is plainly legible; and the following line commences with शकार. My suggestion of निकी—will hardly be challenged.
प्रेरणेन्द्र्यवद्यास्रातमः
श्रातन्यती पातु सरस्वती वः
यतस्तलालित्यलवाद्यपि स्यात
संसत्रू पुंशां गरिमागरीयानूः॥६॥
गोचरे रात्रिकस्य भूपतिरमूहु विकल्प सचिवं करान्
प्रतिकर्मे निश्चलानानोविनयेन रात्रिन्द्रियं जागृतिः॥
तेनर्मिर्गितीगुहानि परिभवी नाद्राजुःः संस्त्रूः
यस्यास्यास्त्रकृष्णिण्यं वसु गतं नीतं च चारितेऽसम्॥७॥
तस्यांवसे समाभवत प्रक्षितः पुरविभ्या
नाथः कयाऱ्णुतमामपि वृया न वस्य।
कोकस्तेशु दृशि विक्रमः
नाम चतीक्षमुखसज्जनन्मित्वायाः॥८॥
नितिज्ञत्वार्जितवर्यमन्सवत्वाः प्रत्यर्थिपृथ्वीभवतः
प्रातानन्तव्यशा वम्भूव नृपतिर्मश्रिवेदवस्ततः॥
पृथ्वी वेन विधाय मेघान्तुलं कल्युमकंशायिना
स्वर्गद्विशदमक्षिणितापि विवुधादयग्नापदिता॥९॥
पुष्यामृतेन संसिद्धा भुदसाधिपविवर्धिकाः
वर्तकर्तित्रतति सर्वा व्याय ब्रह्मास्तमाक्यमः॥१०॥
तेनाण्याचै महोपालः कर्णः स्वर्णेन कुर्विना
पूर्णाभाण्वामादिर्मसात्मन्नित्तकरिताः॥११॥
श्रोमू। नमः शिवाय।
कल्याणितामविकलां भवतां ननोतु
भाले कलानिधिकला शशिशेषरस्व।
एकैव या प्रमथसार्थरतां दितीया
बुद्धि प्रदोषबिरीक्षिपि करोति नित्यम्।।१२॥
किं माला: कुमुदस्य किं शशिकला: किं धर्म्यकमीकुरा:।
किं वा कन्युक्तकुरुका: किमथवा भूत्युद्भवा भात्यमी।
रत्नं नाकिवितरंकिता: शिवशिरः सदारिनाकायगा:।
रज्जुल्मुद्युमस्वविक्षिततया: युष्मप्रया: पालु व:।।२॥
भूतं सदृ विभु यदृ विभाति भुवनं यदिभ्रमादू यत्रू जगन्।
नेत्रानन्दकरं धराययसार्गवन्यवसेतुशय यत्रू।
यदृ गन्धोदिराधाम यचू च यज्ञेश्वर्यां विद्यक्षातः।
स्पर्शं यदृस्वमिर्यवतादू युस्मानू शरीरिः: शिव:।।३॥
शक्तिरतिरप्रतिरतितेतुश्चन्द्रकर्मिचित:।
नायादार्ज्जुर: कुर्मानू नीलकाठ: विप्राणि व:।।४॥
विश्रीवसलमससंकर्णाय शक्ति।
भुकं कल्लेकलया शकलं सुधाःशोः।
कुन्दरोदितनरुद्दरिनिपादू द्यान:।
श्रेयं परं दिशतु वं सद्यं दियाश्य:।।५॥
Yadava raja-ship. Indra's wife was Dwijambá, granddaughter of his grandparents' brother Arjuna.

Far from insignificant were the later dukes of Chedi, as is patent from their matrimonial alliances: and yet—such is the caprice of fortune—the extent of their occupancy can now be estimated only by the opinion of their power; and the determination of its locality has not been effected without some little research. In the most recent of their inscriptions is the last word of them that oblivion has not usurped. Their neighbors, the kings of Gadhámandala, may have wrought their extinction; for, as it appears, their territory passed in part to those chieftains, while the eastern shire of it was ultimately possessed by the Baghelas of Rewa.

The later Bhoja of Central India has been assigned, on tolerably cogent grounds, to the middle of the eleventh century. Of his grandsons, one, Lakshmidhara, was living in A.D. 1104; and another, Naravarman, died in 1135. Udayáditya, who connects the two generations, may, then, have flourished about 1075. Alhana Devi, who is named, in the order of my two inscriptions, as if she were still surviving at the time of its execution, was a granddaughter, as we have seen, of Udayáditya. She may thus have been born about 1100. According to the sequel of this paper, and other evidence, one of her sons, Narasinha, was reigning in a year 907; another, Jayasinha, in 928; and her greatgrandson, Ajayasinha, was a minor in 932. Her birth may, therefore, have taken place as early as 850, which carries back Udayáditya perhaps to 790. These lesser numbers plainly do not denote either the era of Sáliyáhana or that of Vikramáditya. Nor can they be computed from that of Vabhá, as ordinarily assumed to count from A.D. 319: a position which, in passing, I believe to be contestable. The specifications attached to the dates 907 and 928 are, however, so full, that any one who chooses to undertake a somewhat tedious calculation is provided with data from which the first year of this, or of some other unacustomed epoch, may be definitely determined.

Of the two inscriptions now edited, the second, a rude specimen of engraving, I copied with its stone before me. As for the first, I have made use of a couple of fac-simile tracings from it: but they were prepared by a native, a Muhammadan, who was unable to read a letter of the original, and who, consequently, is not to be suspected of conscious attempts at amendment. The style and conformation of its characters resemble, as nearly as possible, those observed on the copperplate of Gásala Devi. At the end of the sixth, sixteenth, and thirty-first stanzas are elaborate flourishes. Once they were, it may be, of some significance, now forgotten: here they simply mark the conclusions of paragraphs.
as they have been ascertained, shall here be exhibited. The first genealogical table shows the family that reigned in Central India:

Lakshmana Deva or Yuvaraja Deva.
Kokalla Deva.
Gangeya Deva.
Karna Deva. He married A'valia Devi, a Huna.
Yas'ahkarna Deva.
Gayakarna Deva. He married Alhana Devi.
Narasinha Deva.
Jayasinha Deva, brother of the last.
Vijayasinha. He married Gadasala Devi.
Ajayasinha Deva, heir apparent.

Alhana Devi’s ancestry, as deduced from my larger inscription, was as follows:

Hansapala, a Gobhila.
Vairisinha.
Vijayasinha. He married Syamala Devi, daughter of Udayaditya of Malava; and these were the parents of Alhana Devi.

The second person mentioned in my larger inscription has a very unusual name. That his kingdom was that of Chedi is beyond doubt. I am not prepared to pronounce him identical with the Kokalla who is expressly said to have been lord of that country, and who was likewise a Hailaya; but as, on further enquiry, the two may turn out to be one, I shall enumerate such of the descendants of the latter as are known from inscriptions that have been found in the west:

or Ranavigraha. His son was
Mahalakshmi
or Lakshmi, and Aggana (?!) Deva,
Govindaamba, were who had a daugh-
his daughters. ter Dwijamba.

This Kokalla thus had, at least, three sons and one daughter. Sadraka, after a single glimpse, is seen no more. Sankaragana is termed lord of Chedi: but it is questionable whether the title was ever more than a compliment of hopeful expectation. Mahadevi married a royale named Krishna. Who he was we are still to learn. Their son, Jagdrudra or Jagattunga, as to whose nationality equally little has transpired, married his two cousins, Lakshmi and Govindaamba. This spirited polygamist had, however, already wedded a daughter of Akalavarsha; but he had by her, it should seem, no issue. Indra, his son by Lakshmi, was nevertheless allowed—so elastic is Hindu courtesy—to be a grandson of Akalavarsha, and was his heir to the
ARTICLE IV.

TWO SANSKRIT INSCRIPTIONS

ENGRAVED ON STONE:

THE ORIGINAL TEXTS,

WITH TRANSLATIONS AND COMMENTS.

BY FITZ-EDWARD HALL, ESQ., M.A.

Presented to the Society October 26, 1859.

The stones containing the inscriptions now published were procured, the first at Bhera Ghat on the Nerbudda, and the other at the village of Tewar. Both these places I visited, in 1857, while on the first march from Jubbulpore to Nursinghpooor. The larger stone had been brought, as serviceable building-material, to the side of a temple which was in course of erection. When rescued, it was on the point of being buried, face downward, in one of the walls. Had its threatened fate been realized, quite possibly it would not have been spoken of in print for several centuries.

More than one historical fact deserving of record has been discovered from these monuments. The queen of Gayakarna Deva, Alhana Devi, was daughter of a Rana of Udyepoor, and granddaughter, through her mother, of Udayaditya, king of Malwa. The paternal greatgrandfather of this lady, Hansapala, is, further, a representative of the royal house of Mewar, now first brought to light. A near approximation to the dates of three of her progenitors being practicable, a basis is afforded by which a portion of the current chronology, for the mediæval period, of preëminently the foremost family of Rajpoots may be readjusted to advantage.

The names of the modern rulers of Chedi, beginning with the earliest, and the names of their consorts and kinsmen, so far
Vishṇu-candra, author of Vasishtha-Sid-
dhānta, add. n. 1.
Vishṇudharmottara-Purāṇa, add. n. 1.
Vishṇu-Purāṇa, citations from and refer-
cences to, i. 9 n., 12 n., 17 n., 19 n., 21 n.,
23 n., iii. 8 n., xii. 28 n. 44 n.
Vibhuti, 8th etc. karaṇa, ii. 69 n.
Vortices, or propelling currents, of the
planets, ii. 3, xii. 73.
Vṛddhi, 11th yoga, ii. 65 n.
Vṛyāghata, 15th yoga, ii. 65 n.
Vṛṣiṣa-Siddhānta, add. n. 1.
Vyatipata—17th yoga, ii. 65 n., xi. 20:
name of a hostile aspect of sun and
moon, xi. 2, 4.
Vṛyaya, 54th year of Jupiter's cycle, i.
55 n.

Warren's Kāla Sankalita, references to
and citations from, introd. n., i. 13 n.,
34 n., 45 n., 55 n., 62 n., 218, xiv. 3 n., 17 n.,
add. n. 12, 19.
Weber, references to and extracts from
his works and essays, i. 3 n., 6 n., ii. 8 n.,
vi. 28 n., 249, xiv. 6 n., add. n. 1, 2, 26,
28.
Week—not an original or ancient Hindu
institution, i. 52 n., xii. 79 n.; whence
brought to India, i. 52 n.; names of its
days, i. 52 n.; how determined, i. 52 n.;
when they begin, i. 66.
Wilson—his catalogue of Mackenzie Col-
lection referred to, add. n. 1, 2; his
Vishṇu-Purāṇa, see Vishṇu-Purāṇa.

Y, 10th sīra, 334.
Yama, divinity of 2nd asterism, 328.
Yamakoti, City, xii. 58.

Yavanas, Greeks or westerners, referred
to in Hindu astronomical traditions, i.
6 n. 474.
Year—civil, lunar, sidereal, and solar, i.
18 n.; year of the gods, i. 14; years in
practical use in India, i. 15 n.; sketch of
solar and luni-solar calendar, for year
1859-60, i. 51 n.; length of sidereal solar
year, acc. to different authorities, 168
years of eras of Čaliṃvāhana and Vikra-
māditya, character and names of, add.
n. 12; years of Jupiter's cycle, names of,
i. 55 n.; years of lustrum, names of,
xiv. 17 n.
Yellaya, commentator on Sūrya-Siddhānta,
add. n. 2.
Yoga, period of time—name whence de-
erved, add. n. 19; two systems, names
and character of, ii. 65 n., add. n. 19.
Yojana, measure of length, its subdivision
and value, i. 60 n., add. n. 13.
Yuva, 43rd year of Jupiter's cycle, i.
55 n.

Zenith, name of, v. 1 n.
Zenith-distance—on the meridian, iii. 14-
15; elsewhere, iii. 33; sun's zenith-di-
stance on circles of intermediate direc-
tion, how found, iii. 28-54; to find the
same elsewhere, iii. 54-56; how found
from shadow, iii. 14-15, 37; instrument
for obtaining sun's zenith-distance by
observation, xiii. 21 n.
Zodiac—name, iii. 12 n.; signs of, see
Signs.
Zones of the earth, xii. 59-69.
az-Zubīnān, 16th mansūl, 336.
az-Zubrah, 11th mansūl, 334.
24-25: his part in the creation, xii. 15-21: divinity of 13th asterism, 334.
Surd, 259.
Sūrya-Siddhānta—professedly revealed by the Sun to Maya, i. 2-9; ascribed by al-Bīrūnī to Lāta, i. 3 n; referred by Bentley to 11th century, 165; refutation of this conclusion, i. 3 n, 167, 470; position in astronomical literature of India, introd. n., add. n. 1, 470; its system compared with those of other treatises, add. n. 6; present extent, xiv. 27 n; division into two portions, xi. 28 n; commentaries on, add. n. 2; published edition, introd. n., add. n. 1.
Śvāttī, 15th asterism—identification etc., 335.
Synodical revolutions of the planets, 212.

Tables for finding true places of planets, where given, 218.
Tālitīla, 5th etc. karāṇa, li. 69 n.
Taṭṭṭīriya-Sanhita and Taṭṭṭīriya-Brahmaṇa, names and divinities of the asterisms according to, 326 etc.
Tammaya, commentator on Sūrya-Siddhānta, add. n. 2.
Tāraṇa, 52nd year of Jupiter's cycle, i. 55 n.
At-Tarf, 9th mansālī, 332.
Tattva-Viveka, add. n. 1.
Ath-Thurayiya, 3rd mansālī, 329.
Tī, 14th sīru, 336.
Time—real and unreal, i. 10; different modes of measuring and reckoning, xiv.; civil time and its uses, xiv. 15-19; lunar time, i. 18 n, xiv. 12-14; sidereal time, xiv. 15; solar time, xiv. 3, 19; time of gods, Prajāpati, and Brahma, xiv. 20-21: mode of reckoning time practically employed, i. 18 n: instruments for measuring time, xiii. 14-24: to determine the time by observation of shadow of gnomon, ill. 37-39—see Day, Month, Year, etc.
Times of rising, see Ascensional equivalents.
Tosan, 4th sīru, 330.
Tees, 3rd sīru, 330.
Tasing, 5th sīru, 331.
Tvāsthār, divinity of 14th asterism, 334.
Tycho Brahe's determination of apparent diameter of planets, vii. 14 n.
Udravatara, 5th year of lustrum, xiv. 17 n.
Ueli, 17th sīru, 338.
Ujjayini, city determining position of prime meridian, i. 62 n.
Upanishad, xiii. 3 n.
Uptāta, name of a yoga, add. n. 19.
Uttara-Asādāhā, 21st asterism—identification etc., 338.
Uttara-Bhādrapadā, 27th asterism—identification etc., 342.
Uttara-Phalguni, 12th asterism—identification etc., 333.
Vāciākha, 1st or 2nd month, i. 51 n, xiv. 3 n, 16 n.
Vāidhrīta, or Vāidhrīti, name of a hostile aspect of sun and moon, xi. 2, 4.
Vāidhrīti, 27th yoga, li. 65 n.
Vajra—15th yoga, li. 65 n; name of a yoga, add. n. 19.
Vārāha, name of current Ākon, li. 23 n.
Vārāh-mihira, astronomical and astrological authority, i. 3 n, vii. 28 n, 352, viii. 13 n, xiv. 6 n, add. n. 1.
Vārāha-Siddhānta, add. n. 1.
Vayriya, 18th yoga, li. 65 n.
Varna, rainy season, xiv. 10 n, 16 n.
Varuna, divinity of 25th asterism, 341.
Vasanta, spring, xiv. 10 n, 16 n.
Nāsiṣṭha or Nāśiṣṭha Siddhānta, add. n. 1, 6.
Vāsudeva, xii. 12.
Vasus, divinities of 24th asterism, 340.
Vatsara, 5th year of lustrum, xiv. 17 n.
Vedas, xii. 17.
Vedāṅgas, i. 8 n.
Venus—names, revolutions, etc., etc., see Planets—in conjunction with other planets, vii. 23.
Versed sine—name, 201; how found, li., 22; series of, for the quadrant, li. 23-27.
Vertical circle, 287.
Vertical parallax, resolution of, 287.
Vibhava, 36th year of Jupiter's cycle, i. 55 n.
Vigākha, 16th asterism—identification etc., 335.
Virūtā, name of stars in sting of Scorpio, 327.
Vicyāvasu, 18th year of Jupiter's cycle, i. 55 n.
Vījaya, 1st year of Jupiter's cycle, i. 55 n.
Vikārīh, 7th year of Jupiter's cycle, i. 55 n.
Vikrama, 48th year of Jupiter's cycle, i. 55 n.
Vikramaditya, era of, add. n. 12.
Vikṛtya, 68th year of Jupiter's cycle, i. 55 n.
Vilamba, 6th year of Jupiter's cycle, i. 55 n.
Vinādi, measure of time, i. 11.
Virodhakṛtī, 19th year of Jupiter's cycle, i. 55 n.
Virodhin, 57th year of Jupiter's cycle, i. 55 n.
Vishkhambha, 1st yoga, li. 65 n.
Vishnu—divinity of 23rd asterism, 340; original character, xiv. 10 n.
Sa’d as-Su’ud, 24th mansil, 341.
Sa’d Bula’, 23rd mansil, 340.
Sadhāraṇa, 18th year of Jupiter’s cycle, l. 55 n.
Sādhyā, 22nd yoga, ll. 65 n.
Samvatśara—1st year of lustrum, xiv. 17 n.;
year of era of Vikramāditya, add. n. 12.
Sanskrit words, transcription and pronunciation of, introd. n.
as-Sarhād, 12th mansil, 334.
Sarvadhārī, 56th year of Jupiter’s cycle, l. 55 n.
Sarvajit, 55th year of Jupiter’s cycle, l. 55 n.
Sarva, names, revolutions, etc., etc.—see Planets.
Sārubhāya, 4th yoga, l. 65 n.
Sāsumya—17th year of Jupiter’s cycle, l. 55 n.; name of a yoga, add. n. 19.
Scale of projection of an eclipse, iv. 26.
Seasons—number and names, xiv. 10 n.;
months and asterisms belonging to them, xiv. 16 n.; reason of varying temperature, xii. 46, 72 n.
Second of arc, l. 28.
Serpents, divinities of 9th asterism, 332.
Seven Sages, stars in Ursa Major, xiii. 9;
their independent revolution, vili. 21 n.
Shādacitimukha, solar period, xiv. 3–6.
Shadow of earth—diameter on moon’s orbit, iv. 4–5; no account taken of penumbra, iv. 5 n.
Shadow of gnōmon—names, ili. 5 n.; base,
or north and south projection of, ili. 23–25; path of its extremity, ili. 41–42;
equinoctial shadow, ili. 7, 12–13; noon shadow, how calculated, ili. 20–22; other shadows, ili. 28–34, 34–36; shadow cast by any planet or star, how determined and laid down, 312, 316.
ash-Sharātun, 1st mansil, 327.
ash-Shauḥālā, 19th mansil, 338.
Siddha, 21st yoga, l. 65 n.
Siddhānta-Cīromag—date, authorship, and derivation, add. n. 1; account of Vedāṅgas, i. 3 n.; planetary system, add. n. 6;
division of the day, i. 12 n.; length of year, and mean sidereal revolutions of planets, 168; positions of apsidal nodes, i. 44 n.; diameter and circumference of earth, i. 60 n.; prime meridian, i. 65 n.; precession, 248; statement respecting precession as taught by Sārya-Siddhānta, 245; sines of zenith-distance and altitude of ecliptic, v. 7 n.; definition of position of asterisms, 326–344; of fixed stars, xili. 12 n.; geography of southern hemisphere, xili. 44 n.; orbit of asterisms, xili. 90 n.; armillary sphere, xili. 3 n.; descriptions of instruments, xili. 21 n., 22 n.; solar day, xiv. 3 n.; epicycles, add. n. 18.
Siddhānta-Sārvabhāma, add. n. 1; method of observing positions of asterisms, vili. 12 n.; epicycles, add. n. 18.
Siddhānta-Sundara, add. n. 1; cited by Siddhānta-Sārvabhāma, vili. 12 n.
Siddhārthiṇa, 27th year of Jupiter’s cycle, l. 55 n.
Siddhi—16th yoga, l. 65 n.; name of a yoga, add. n. 19.
Sidereal time, day, year—see Time, Day, Year.
Śieu, 28-fold division of heavens by Chinese, 325; comparison with Hindu asterisms and Arab lunar mansions, 327–344; map illustrating position and relations, add. n. 27; origin of system, acc. to Biot, 345.
Sign, twelfth part of ecliptic, i. 28; reckoned from any given starting-point, i. 28 n.; 58 n.; table of names and symbols, l. 58 n.
as-Sīmāk, 14th mansil, 335.
Sin, 16th sīu, 337.
Sine—name, 201, add. n. 16; series of sines, in minutes, ii. 17–22; comparative table of, 197; table of sines for every degree, with differences, 429; rule for developing the series, ii. 15–16; how derived, 198–9, add. n. 15; its falsity, add. n. 15; Hindu use of sines earlier than Arab, 200; Arab sines from Greek chords, 200; whether Hindu sines likewise? add. n. 15; Hindu series how obtained, 198, add. n. 15.
part of an arc determining the sine, ii. 29–30; to find the sine of a given arc, or arc of a given sine, ii. 31–33.
Sing, 8th sīu, 338.
Solar time, day, month, year, etc.—see Time, Day, Month, Year.
Solstice, name of, 249, xili. 72 n.
Soma-Siddhānta, add. n. 1, 6.
Somavāra, Monday, l. 62 n.
Sphere, 287.
Square, iii. 5 n.
Sthirā, name of a yoga, add. n. 19.
Subhānu, 51st year of Jupiter’s cycle, l. 55 n.
Sukarman, 7th yoga, l. 65 n.
Sum of days—names, l. 51 n.; how found, i. 45–51.
Sun—names, revolutions, etc., etc., see Planets—dimensions, iv. 1; mean apparent diameter, horizontal parallax, and distance, iv. 1 n.; to find true apparent diameter, iv. 2–3; briefer method, 456; solar eclipses, iv. v; calculation of a solar eclipse, add. n. 25; error of sun’s motion and position by Hindu system, 166; adaptation of those of other planets to it, 164–167; sun’s revelation of present treatise, i. 2–9, xiv.
Polar longitude and latitude, terms how employed in this work, viii. 1 n.

Pole—of earth, xii. 34–35; of ecliptic, 287; of prime vertical, 283.

Polestars, xii. 43.

Portion of an asterism, ii. 64, 323, 351-54.

Possessors of Knowledge, supernatural beings, xii. 31.

Prabhava, 35th year of Jupiter's cycle, i. 55 n.

Prájápati—69th year of Jupiter's cycle, i. 55 n: divinity of 4th asterism, 329, viii. 13 n: the patriarchate a day of, xiv. 21: name of a star (α Aurigae), viii. 20: name of a yoga, add. n. 19.

Pramádín, 21st year of Jupiter's cycle, i. 55 n.

Pramáthin, 47th year of Jupiter's cycle, i. 55 n.

Pramódha, 38th year of Jupiter's cycle, i. 55 n.

Pravardha, name of a yoga, add. n. 19.

Precession of the equinoxes, iii. 9-12: name, 249; statement of, iii. 9; form of theory, a libration, iii. 12 n: possible reason, 247; Bentley's view refuted, 248; theory of Siddhánta-Ciromani, not a libration, 248; whether precession taken account of in construction of Hindu system, 247, add. n. 20: position and history in this treatise, 246 et seq., add. n. 20: rule for calculating, iii. 9-10: for determining by observation, iii. 11-12: Greek view of precession, 249.

Prime meridian, i. 62.

Prime vertical, iii. 6: its pole, 283: to find hypoth. of shadow, when sun is on the, iii. 25-27.

Priti, 2nd yoga, i. 65 n.

Progresses of the sun, from solstice to solstice, xiv. 9.

Projection of an eclipse, vi: name, vi. 1, 8: scale of, iv. 26: figure illustrating projection of lunar eclipse, 201.

Ptolemy—possible traces of his name in Hindu astronomy, i. 6 n: his times of sidereal revolution of the planets, 168, add. n. 10: inclination of planetary orbits, i. 70 n: of ecliptic, ii. 28 n: use of chords, 200: relation of his chords to Hindu sines, add. n. 15: mode of calculating equation of centre of sun and moon, 210: of other planets, together with annual equation, 217: his improvements of Greek astronomy, not found in Hindu system, 219, 474: relative dimensions and eccentricities of planetary orbits, 220: retrogradation of planets, 226: precession, 249: distances, parallax, and dimensions of sun and moon, 271: direction of ecliptic in eclipses, 234: astrology, vii. 23 n: heliacal set-
Observations—how far contemplated in Hindu system, vii. 18 n., viii. 12 n. 472; accuracy of Hindu observations, 356, 364.

Oei, 28th sieu, 528.

Orbit—name, iv. 3, xii. 76: orbits of the planets, i. 26, xii. 73–77; their absolute dimensions, xii. 80–90; how determined, I. 27 n., iv. 1 n., xii. 90 n.; their relative dimensions deduced from epicycles, and compared, 220.

Orient ecliptic-point, iii. 46–48.

Orient-sine, or sine of amplitude of orient ecliptic-point, v. 3.

Pâda, quarter of a clôka, introd. n.

Padma, name of a yogo, add. n. 19.

Pâdma, name of last Æon, i. 28 n.

Paśca-Siddhântika, i. 3 n., add. n. 1.

Parâbhava, 14th year of Jupiter’s cycle, i. 55 n.

Parâchara, add. n. 1.

Parâchara or Pârâchara Siddhânta, add. n. 1; its system, add. n. 6; length of year, 168; positions of apsides and nodes, i. 44 n.

Parallax—general exposition of Hindu view of, v. 1 n.; horizontal parallax of moon and sun, iv. 1 n.; the same acc. to Ptolemy, iv. 1 n.; vertical parallax and its resolution, v. 1 n.; parallax in longitude, name of, 288; mode of calculating, in time, v. 3–8; parallax in latitude, name of, 288; mode of calculating, v. 10–12: method of applying parallax in determining phases of eclipse, v. 9, 13–17, 463; general criticism of methods of calculation, 299: parallax of other planets neglected, vii. 23 n.

Paridhâvin, 20th year of Jupiter’s cycle, i. 55 n.

Parigha, 19th yoga, ii. 65 n.

Parivârsa, 2nd year of lustrum, xiv. 17 n.

Pârsi asterisms, or 23-fold division of ecliptic, 324, 349.

Pârthiva, 53rd year of Jupiter’s cycle, i. 55 n.

Path of extremity of shadow, how drawn on the dial, iii. 41–42.

Path of eclipsing body, how drawn in projection of eclipses, vi. 14–16.

Patriarchate, great chronological period—how composed, i. 18: reckoned as day of Prajâpati, xiv. 21.

Pâvälastra or Pulâstra Siddhânta, add. n. 1.

Pâvulica or Pulîca Siddhânta, i. 6 n., add. n. 1, 6: its length of year, 168.

Pâvsha, 9th or 10th month, i. 51 n., xiv. 3 n., 16 n.

Perfed, the, a race of supernatural beings, xii. 28, 31, 40.

Perigeel, perihelion, no name for, 207.

Perpendicular of a right-angled triangle, ii. 30 n., add. n. 16.

Perpendicular-sine = cosine, ii. 30 n., add. n. 16.

Phâlguna, 11th or 12th month, i. 51 n., xiv. 3 n., 16 n.

Phâlgunâ, 11th and 12th asterisms—identification etc., 333, add. n. 26.

Phases of an eclipse, contact, immersion, emergence, separation, greatest obscuration, etc.—names, iv. 15 n., 17 n.

Pî, 2nd sieu, 529; 25th sieu, 343.

Pingala, 25th year of Jupiter’s cycle, i. 55 n.

Planet, name, iv. 6 n., add. n. 22.

Planets—names, add. n. 3; creation, xii. 22–24: general explanation of motions, i. 25–27, xii. 73–77; point of commencement of motion, i. 27, 162; time of commencement, i. 24, 161, 162, i. 44 n.; sidereal revolutions in an Age, i. 29–32; tables of periods of sidereal revolution, 161, 164, 168, add. n. 5, 7; mean daily motions, i. 26, xii. 83; tables of do., i. 34 n., add. n. 5, 7; mean positions, end of last Golden Age, i. 57; do. beginning of Iron Age, i. 58 n., add. n. 6; actual mean positions, beg. of Iron Age, 162: to find mean longitude for any given time, i. 53–67; mean longitude as found for Jan. 1, 1860, and errors, i. 67 n.; causes of irregular motion, ii. 1–11; kinds of motion, ii. 12–13; how to calculate true longitudes, ii. 29–45; dimensions of epicycles, ii. 34–38; equation of centre, ii. 39; annual equation, ii. 40–42; calculation of true rates of motion, ii. 47–51; of declination, ii. 28; data for finding latitude, i. 68–70; mode of calculation, ii. 56–57; combination of latitude and declination, ii. 58: comparative table of true longitudes, daily motions, and declinations, for Jan. 1, 1860, 251; apparent diameters, iv. 1 n., vii. 13–14: orbits, how determined, iv. 1 n., xii. 90 n.; absolute dimensions, xii. 80–90; relative dimensions, deduced from epicycles, 220; distances from earth, xii. 84; order in respect to distance, xii. 31; order in which referred to in this work, i. 52 n.; synodical revolutions, ii. 42 n.; conjunctions of planets with each other, vii.; with asterisms, vii. 14–15; heliacaal settings and risings, ix. 1–11: regency over days, months, etc., i. 51–52, xii. 78–79: day of a planet, ii. 59.

Plava, 9th year of Jupiter’s cycle, i. 55 n.

Plavanga, 15th year of Jupiter’s cycle, i. 55 n.
Māgha, 10th or 11th month, i. 51 n, xiv. 3 n, 16 n.
Māitra, name of a yoga, add. n. 19.
Mallikārkūṇa, commentator on Sūrya-Siddhānta, add. n. 2.
Mamabhatta, commentator on Sūrya-Siddhānta, add. n. 2.
Mānasa, name of a yoga, add. n. 19.
Manzil al-kamar—see Arab lunar mansions.
Mangalavāra, Tuesday, i. 53 n.
Manmatha, 3rd year of Jupiter’s cycle, i. 55 n.
Manu, citations and references, i. 12 n, 17 n, 19 n, 23 n, xii. 28 n, xiv. 14 n.
Mao, 1st saw, 329.
Mārgaçīrśa, 8th or 9th month, i. 51 n, xiv. 3 n, 16 n.
Mars, names, revolutions, etc., etc.—see Planets.
Mātanga, name of a yoga, add. n. 19.
Maya, recipient of revelation of Sūrya-Siddhānta, i. 2, 4, 6 n, 7, xii. 1, 10, xiv. 24-27; conjectured identity of his name with that of Ptolemy, i. 6 n.
Mean motions of planets—see Daily motions etc.
Mean places of planets—see Longitude.
Measure of amplitude, iii. 7.
Mercury, names, revolutions, etc., etc.—see Planets.
Meridian—no distinct name for in text, xiii. 15 n; name in commentary, 283, xiii. 15 n.
Meridian elliptic point, iii. 49, v. 4-5, 9 n.
Meridian, prime—situation of, i. 62; why chosen, i. 62 n.
Meridian-sine, v. 5.
Meru—poles of the earth, xii. 34-35; in Puranic geography, xii. 44 n.
Minute of arc, i. 28.
Mitra, divinity of 17th asterism, 336.
Month—civil, i. 12; lunar, i. 13; number in an Age, i. 35; names of those composing the year, i. 51 n, xiv. 16 n; how derived, xiv. 16 n; divisions of lunar month, i. 51 n; intercalary months, i. 38; number in a given period how calculated, i. 49: lunar month a day of the Fathers, xii. 74, xiv. 14: sidereal month, i. 12: solar month, i. 13; number in an Age, i. 39; names, i. 51 n, xiv. 16 n; precise length of the several solar months, xiv. 3 n; division into seasons, xiv. 16 n.
Moon—names, revolutions, etc., etc.—see Planets—Moon’s apsides and nodes, revolutions in an Age, i. 33; mean daily motions of, 161, 164, add. n. 5, 7: in sidereal day, 435; positions at beginning of Iron Age, 162, add. n. 6; orbits, xii. 87-88: moon’s dimensions, iv. 1; mean apparent diameter, distance, and horizontal parallax, iv. 1 n; orbit, iv. 1 n, xii. 85: apparent diameter how calculated, iv. 2-3: conciser method, 456: moon’s heliacal setting and rising, x. 1; time of rising and setting, how calculated, x. 2-5; elevation of cusps, x. 6-8: to determine illuminated part of disk, x. 9: to delineate illuminated part, and elevation of cusps, x. 10-15: moon the divinity of 5th asterism, 329: relation to system of asterisms, 351, add. n. 28: equality of declination with sun unpropitious, xi. 1 etc.; station of the Fathers, xii. 74.
Motions of planets—see Daily motions, Inequalities.
Mrgraydva, 5th asterism—identification etc., 329, add. n. 26.
Mrgraydva, name of star (Sirius), viii. 10-11, add. n. 26.
Mrtyu, name of a yoga, add. n. 19.
Mudgara, name of a yoga, add. n. 19.
Muhūrtā-Cintāmanī, cited respecting asterisms, 325 etc.
Muhūrtā-Mālā, cited respecting Abbijit, 354.
Mūla, 19th asterism—identification etc, 337.
Muniśvara, author of Siddhānta-Sāra-śāhāma, add. n. 1, 2.
Musala, name of a yoga, add. n. 19.
an-Naśīm, 20th mansīl, 339.
Naṭi, sixthih part of sidereal day, i. 11.
Nāga, 59th karaṇa, ii. 67, 69 n.
an-Najun, 3rd mansīl, 329.
Nandana, 60th year of Jupiter’s cycle, i. 55 n.
Nārada, Nārada-Siddhānta, add. n. 1.
Nāradī-Sanhitā, add. n. 1.
an-Nathra, 8th mansīl, 331.
New moon, day of, ii. 66 n.
Nien, 20th saw, 340.
an-Niyat, stars in Scorpio, 337.
Node of a planetary orbit—name, i. 34 n, xi. 5 n; only ascending node spoken of, i. 34 n; names of ascending and descending nodes, ii. 8 n, 300; mode of action on the planet, ii. 6-9; revolutions, i. 42-44; how devised, i. 44 n; positions, acc. to different authorities, i. 44 n; compared with Ptolemy’s, add. n. 11; corrections applied to places of, in calculating latitude, ii. 56.
For moon’s node, see Moon.
Nṛṣiṇa, commentator on Sūrya-Siddhānta, add. n. 2.
Nū, 21st saw, 340.
Numbers, how expressed in the text, introd. n.
Oblique ascension, equivalents in, of signs of ecliptic, iii. 44-46; table of equivalents as calculated for Washington, 265; for Williams’ College, 457: degrees of oblique ascension, ix. 5 n.
Inclination—of planetary orbits to ecliptic, i. 68-70; comparative table of, i. 70 n. of ecliptic to equator, ii. 28.

Indra—26th yoga, ii. 65 n.; divinity of 19th asterism, 387; of others, 341; with Agni, of 16th, 355.

Inequalities of planetary motions—how produced, ii. 1-8; why of different degrees, ii. 9-11.

Instruments—armillary sphere, xiii. 1-20, viii. 12 n.; other instruments for measuring time, xiii. 20-24; for taking altitude, xiii. 21 n.; for taking zenith-distance at meridian transit, viii. 12 n.

Iron Age, i. 17 n.; its commencement, 161; how determined, 162.

aj-Jabbar, 10th mansil, 333.

Jambodhipa, central continent in Puranic geography, xii. 44 n.

Jaya, 2nd year of Jupiter's cycle, i. 55 n.

Jervis, his Weights, Measures, and Coins of India, introd. n.

Jāma-Blāskara, reference to, i. 6 n.

Jāma-rāja, author of Siddhānta-Sundara, add. n. 1.

Jones, Sir W., references to and citations from his works, 324, 325, xiv. 16 n., add. n. 1.

Jupiter—names, revolutions, etc., etc., see Planets—Jupiter's cycle of sixty years, i. 55; of twelve years, xiv. 17; their relation, xiv. 17 n.

Jyālsītha, 2nd or 3rd month, i. 51 n., xiv. 3 n., 16 n.

Jyesthā, 18th asterism—identification etc., 333; its last quarter unlucky, xi. 21.

Jyotisha, astronomical treatise, i. 3 n.

Kāladaṇḍa, name of a yoga, add. n. 19.

Kālmaṇka, 26th year of Jupiter's cycle, i. 55 n.

al-Kalb, 18th mansil, 337.

Kamalakkara, author of Tattva-Viveka, add. n. 1.

Kāya, name of a yoga, add. n. 19.

Kang, 13th sīra, 335.

Karaṇa, half a lunar day, ii. 67-69.

Kārttiaka, 7th or 8th month, i. 51 n., xiv. 3 n., 16 n.

Kulava, 4th etc. karaṇa, ii. 69 n.

Ketu, moon's descending node, ii. 8 n.

Ketumāla, a clime, xii. 39.

Khadpa-Kataka, treatise, or chapter of one, by Brahmagupta—cited by al-Birūnī respecting asterisms, 325 etc., 352, 353.

Khara, 59th year of Jupiter's cycle, i. 55 n.

Ki, 18th sīra, 339.

Kilaka, 16th year of Jupiter's cycle, i. 55 n.

Kinstghaṇa, 1st karaṇa, ii. 69 n.

Kio, 12th sīra, 335.

Koei, 26th sīra, 343.

Krodhana, 33rd year of Jupiter's cycle, i. 55 n.

Krodhin, 12th year of Jupiter's cycle, i. 55 n.

Kṛttika, 5rd asterism—identification etc., 328; formerly first of the series, i. 27 n., 350.

Kṣāya, 34th year of Jupiter's cycle, i. 55 n.

Kuei, 6th sīra, 331.

Kuru, a clime, xii. 40.

Kurukshetra, region in India, i. 62 n.

Lādhā, astronomical authority, i. 3 n.

Lagadha or Lagata, author of Jyotisha, i. 3 n.

Laghu-Arya-Siddhānta, add. n. 1; citations and references, 168, add. n. 6.

Lambaka, name of a yoga, add. n. 19.

Lanka, i. 62 n., xii. 39.

Lāta, called by al-Birūnī author of Sūrya-Siddhānta, i. 3 n.

Latitude, celestial—name, i. 70 n., iv. 21 n.; how measured, i. 70 n., viii. 1 n.; mean greatest latitude of planets, i. 65-70; latitude of planets how calculated, ii. 56-57; how combined with declination, ii. 58.

Latitude, terrestrial—name, i. 60 n.; how ascertained by observation of shadow, iii. 13-14, 14-16; circumf. of earth on a parallel of latitude, how found, i. 60.

Leu, 27th sīra, 328.

Li, Chinese measure of distance, i. 60 n., add. n. 13.

Lieu, 7th sīra, 332.

Lokhloka, boundary of the earth, xii. 44 n., xiii. 16 n.

Longitude, apparent—term how employed, vii. 12 n.; how found, vii. 7-11.

Longitude, celestial, of a planet—no name for, i. 53 n.; mean longitude how found, i. 53, 54, 60-61, 67; true longitude how found, ii. 39-45; sun's true and mean longitude how determined from observation, iii. 17-20, 40-41.

Longitude, polar—term how employed in this work, viii. 1 n.; polar longitudes of asterisms, viii. 4-6; of certain fixed stars, viii. 10-11, 20-21.

Longitude, terrestrial—name, i. 61 n.; whence measured, i. 62; how determined, i. 63-65; measured in yojanas, i. 65 n.

Lunar time, day, month—see Time, Day, Month.

Lustrum, cycle of five years, i. 58 n.; names of its years, xiv. 17 n.

Mackenzie collection—see Wilson.

Maghā, 10th asterism—identification etc., 332, add. n. 26.
Ecliptic—name, xii. 13 n.; pole, 237; divisions, i. 28; their equatorial equivalents, iii. 42-45; inclination, ii. 28; orient and meridian points, iii. 46-49; central point, v. 1 n.; deflection from east and west direction at a given point, iv. 24-25.

Elements, five, xii. 28.

Entrance of the sun into a sign, astrological character, xiv. 3, 11.

Epicycle—name, ii. 38 n.; dimensions, for all the planets, ii. 34-37; change of dimensions, ii. 38 n., 219, add. n. 18; epicycle of apsis equivalent to eccentric orbit, 208; relative dimensions of orbits deduced from epicycles of conjunction, 220; comparison of Greek and Hindu systems, 218; Greek origin of the method, 473.

Equation of the centre—how calculated, ii. 39; Ptolemy's method, for sun and moon, 211; for other planets, 217; how applied, with annual equation, in finding true places of lesser planets, ii. 43-45; comparative table of value when greatest, 220.

Equation of the orb, or annual equation—how found, ii. 40-42; Ptolemy's method, 217; how applied, with equation of centre, ii. 43-45.

Equation of time, correction for, ii. 46; its insufficiency, ii. 46 n., 437.

Equation of motion of a planet, ii. 47-51.

Equator, celestial, iii. 6.

Equator, terrestrial, 392.

Equinoctial shadow, iii. 7, 12-13; how found from latitude, iii. 17.

Equinox, iii. 6 n.; precession of—see Precession.

Eras in practical use among Hindus, add. n. 12.

Ether, fifth element, xii. 23; orbit of, xii. 30, 81, 90.

Evection, not noticed by Hindus, 211.

Fang, 15th sieu, 336.

al-Fargh al-Mukdim, 26th manzil, 343.

al-Fargh al-Mukhir, 27th manzil, 343.

Fathers, or Manes—divinities of 10th asterism, 332; their station and day, xii. 74, xiv. 14.

Fixed stars—names and defined positions of certain, viii. 10-12, 20-21; their identification, viii. 12 n., 21 n.

Full moon, day of, ii. 66 n.

Gada, name of a yoga, add. n. 19.

Gandha, 10th yoga, ii. 65 n.

Ganeça, author of Graha-Lâghava, add. n. 1.

Gara, 6th etc. karna, ii. 69 n.

Garga, Garga-Siddhânta, add. n. 1.

Geography, xii. 34-42; of Purânas, xii. 44 n.

al-Ghafr, 15th manzil, 335.

Gnomon, iii. 1, 5 n.

Goei, 23rd sieu, 341.

Graha-Lâghava, add. n. 1; its definition of position of the asterisms, 326-342; of fixed stars, viii. 12 n., 21 n.

Greek astronomy, relation of, to Hindu, 471 etc.—see Ptolemy.

Greek words in Hindu technical language, i. 28 n., 52 n., ii. 50 n., iii. 34 n., 474.

Grishma, summer, xiv. 10 n., 16 n.

Gûdhârthapracâśaka, name of Rangâdhasa's commentary on the Sûrya-Siddhânta, introd. n.

Guruârâ, Thursday, i. 52 n.

al-Hak'ah, 5th manzil, 330.

Hall, F. E.—his edition of Sûrya-Siddhânta, introd. n., add. n. 1.

al-Hanâ'ah, 6th manzil, 330.

Harshaâna, 14th yoga, ii. 65 n.

Hasta, 13th asterism—identification etc., 334.

Hemalamba, 5th year of Jupiter's cycle, i. 55 n.

Hemanta, winter, xiv. 10 n., 16 n.

Hemisphere—name, v. 17 n.; eastern and western, of heavens, i. 17 n.; northern and southern, of earth, xii. 45, 46.

Helical settings and risings—of planets, ix. 1-11; distance from sun of occurrence, ix. 6-9; calculation of time, ix. 13-17, 16; of asterisms, ix. 12-17; asterisms which never set helically, ix. 18; of moon, x. 1.

Hindu astronomy, discussion of its origin, age, and relation to the Greek, add. n. 30.

Hûlê, 22nd sieu, 341.

Horizon, iii. 49 n.

Hour—name, i. 52 n.; succession of regents of, xii. 79.

Hour-angle, distance in time from meridian, iii. 34-36; corrected hour-angle, 284; sun's hour angle how determined from observation, iii. 37-39.

Hypothenuse—name, iv. 21 n.; hypotenuse of shadow of gnomon, iii. 8; constant relation to measure of amplitude, iii. 7 n.

Ícvara, 45th year of Jupiter's cycle, i. 55 n.

Idâvatsara, 3rd year of lustrum, xiv. 17 n.

Ideler—identifications of Arab manzil, 326 etc.

Idvatsara, 4th or 5th year of lustrum, xiv. 17 n.

al-Ikîl, 17th manzil, 336.
Degree of a circle, i. 28.
Delambre, references to and citations from his works, introd. n., 199, 200, 249, vii. 14 n., add. n. 15, 17, 18.
Dhâtar, 44th year of Jupiter’s cycle, i. 55 n.
ad-Dhirâ', 7th mansil, 331.
Dhâtiti, 8th yoga, ii. 65 n.
Dhrva, 12th yoga, ii. 65 n.
Dhûmra, name of a yoga, add. n. 19.
Dhvaja, name of a yoga, add. n. 19.
Dhvânsaka, name of a yoga, add. n. 19.
Das, construction of, iii. 1-7.
Diameter, relation of to circumference, i. 60 n., 201.
Digit, iii. 5 n.; measure of the gnomon in, iii. 5 n.; equivalent in minutes, in projecting an eclipse, iv. 26; measure of the moon’s disk in, iv. 11 n., x. 9 n.
Directions on the sphere, how reckoned, 251, vii. 6 n.; cardinal directions, vi. 12 n.
Diurnal circle, radius of, how calculated, ii. 60.
Dundubbi, 30th year of Jupiter’s cycle, i. 55 n.
Duration of an eclipse, name of, iv. 15 n.; how determined, iv. 12-15, v. 13-17.
Durmati, 29th year of Jupiter’s cycle, i. 55 n.
Durmukha, 4th year of Jupiter’s cycle, i. 55 n.
Earth—form, position, and support, xii. 22; apparent form, xii. 54; its revolution taught by Aryabhata, i. 27 n.; dimensions, i. 59; centre and surface, terms for, 286; poles, xii. 34-38; geographical divisions, xii. 36-40; zones, xii. 59-69; cavities within it, xii. 33; measurement by circles and arcs not applied to, i. 65 n.
Earth’s shadow, diameter how calculated, iv. 4-5.
Earth-sine, ii. 61.
East and west direction on the sphere, 281.
East and west hour-circle, iii. 8, xiii. 15 n.
East-point, 282, add. n. 29.
Eccentric circle, equivalent to Hindu epi-
cycle of apsis, 208.
Eccentricities of planetary orbits, comparative
table of, 220.
Eclipses—name, iv. 6 n.; rules, applying to solar and lunar, iv.; rules for paral-
lax, applying to solar, v.; projections of eclipses, vi.: primitive theory of cause of eclipse, iv. 6 n., 11 n.; true theory, iv. 9; occurrence of annular eclipse not contemplated, v. 13 n.; calculation of a lunar eclipse, add. n. 24; of a solar eclipse, add. n. 25; projection of a lunar eclipse, 301.
references to and citations from his works, i. 44 n. i. 67 n. 359, add. n. 10, 17. 18. 27. 28. 29.
Brahma—day of, i. 20; length of his life, i. 21; time of, xiv. 21; divinity of 22nd asterism, 332; name of star (δ Auriga), viii. 21 n. 25th yoga, ii. 65 n.
Brahmagupta, i. 8 n. add. n. 1—see Brahmasphuta-Siddhānta and Khanda Kāataka.
Brahmānāyana, name of star (Capella), viii. 11–12.
Brahma-Siddhānta, add. n. 1, 6.
Brahmasphuta-Siddhānta, add. n. 1; its system, how different from Sārya-Siddhānta, add. n. 6; references to its doctrines, i. 2 n. 40 n. 50 n. 246, 326 etc., viii. 12 n. add. n. 18.
Bṛhaspati, divinity of 8th asterism, 331.
Bṛhaspati-Siddhānta, add. n. 1.
Buddhāvāra, Wednesday, i. 52 n.
al-Bula', 23rd manṣīl, 346.
al-Buṭain, 2nd manṣīl, 328.
Çabdakalpadruma—its list of Siddhāntas, add. n. 1.
Cāitra, 12th or 1st month, i. 51 n, xiv. 3 n. 16 n.
Çakalaya-Sanhitā, add. n. 1: references to, 325, 326 etc., 357, 361, 362, add. n. 6, etc.
Çakuni, 58th karaṇa, i. 69 n.
Calendar, sketch of a Hindu, for the year 1859-60, i. 51 n.
Çālivāhana, era of, add. n. 12.
Çunīvāra, Saturday, i. 52 n.
Çara, name of a yoga, add. n. 19.
Çarad, autumn, xiv. 10 n. 16 n.
Cardinal direction, names of, vi. 12 n.
Çartvari, 8th year of Jupiter’s cycle, i. 55 n.
Çatadbhibhaj, 25th asterism—identification etc., 341.
Catusbpada, 60th karaṇa, ii. 69 n.
Central ecliptic-point, v. 1 n; sines of its altitude and zenith-distance, v. 5–6.
Chang, 9th sīra, 334.
Chāttāra, name of a yoga, add. n. 19.
Che, 24th sīra, 343.
Chin, 11th sīra, 334.
Chinese astronomy and division of the heavens—see Sien.
Chord of an arc, 201, xiii. 13 n, add. n. 16.
Chronological cycles, i. 15–21; eras, add. n. 12.
Çicāra, cool season, xiv. 10 n. 16 n.
Circle—name, ii. 83 n; divisions of, i. 28; ratio of diam. to circumf., i. 60 n. 291.
Citrā, 14th asterism—identification etc., 334.
Citrañṇhā, 50th year of Jupiter’s cycle, i. 55 n.
Civa, 20th yoga, ii. 65 n.
Civil time, day—see Time, Day.
Ascensional difference, how calculated, ii. 61-62.
Ascensional equivalents—see Right ascension and Oblique ascension.
As Clientes, 20th and 21st asteroids—identification etc., 338.
Aśādha, 3rd or 4th month, i. 51 n, xiv. 3 n, 16 n.
Aspects, unfavorable, of sun and moon, when of like declination, xi.
Asterisks—Hindu name for, 351; how to be translated, 351, add. n. 28: their portions, or divisions of the ecliptic belonging to them, ii. 64, 323, 351: their junction-stars, 325: time and motive of selection, 351: names, add. n. 19: situation in each group, viii. 16-19: mode of definition of position, viii. 1 n: defined positions, viii. 2-9: illustrative figure, 322: discordance of authorities, 326: errors of position examined, and time of definition deduced, 355: mode of observation of positions, viii. 12 n: detailed identification of the groups and their junction-stars, with statement of names, symbols, divinities, defined positions, etc., comparison with Arab manzilik al kamar and Chinese sien, 327-344: additional synonyms of names, add. n. 26: inability of later Hindus to point them out, 325: al-Biruni’s information respecting them, 325 etc., 352, 353: conceptus of correspondences of the three systems, 344: stellar map illustrating their relations, add. n. 27: Biot’s views of their origin and connection, 345 etc.: age of the system in India, 347: discussion of its character, connections, and origin, 347 etc.: transfer of first rank from Kritya to Avvini, 350: relation to the moon, 352, add. n. 28: variation in number, and omission of Abhijit, 352: conjunction of planets with asteroids, viii. 14, 15: systems of yogas founded upon, 356, add. n. 19: heliacal settings, ix. 12-15, 17-18: orbit and revolution, xii. 73, 80, 90 n.
Astronomy—see Greek astronomy, Hindu astronomy.
Astronomical literature of Hindus, summary view of, add. n. 1.
Atiganda, 6th yoga, ii. 65 n.
Al-Awârī, 13th manzil, 334.
Avanti, name of Ujjainī, i. 62.
Ayin-Akbari—orbits of the planets, as given by, 399, note: description of instrument for measuring time, xiii. 28 n.
Ayushmant, 3rd yoga, ii. 65 n.
Bahuṇhaya, 46th year of Jupiter’s cycle, i. 55 n.
Bailly—his views of Hindu astronomy, introd. n. 472: mean positions of the planets at beg. of Iron Age, 162: other references to his works, 218, 433.
Bâlava, 3rd etc. karaṇa, ii. 69 n.
Al-Balbûd, 21st manzil, 339.
Banjî, 7th etc. karaṇa, ii. 69 n.
Base of a right-angled triangle, ii. 30 n, add. n. 16.
Base sines—sine, ii. 30 n, add. n. 16.
Base of the gnomon-shadow, iii. 5 n, 23-25.
Batn al-Hût, 28th manzil, 343.
Bava, 2nd etc. karaṇa, ii. 69 n.
Bentley, introd. note: his views of Hindu astronomical literature, i. 3 n, 168: method of determining the age of a Siddhânta, 164: applied to Sûrya-Siddhânta, and conclusion drawn, 165: criticism of his method and results, 166 etc.: general estimate of his labors, 168, add. n. 8: his view of Hindu precession, 248: of asteroids, 338: other citations from and references to his works, 162, 163, 172, 218, 247, add. n. 1, 4, 6, 8, 470.
Bhadrâcya, name of a clime, xii. 38.
Bhadrapâda, 26th and 27th asteroids—identification etc., 341, add. n. 26.
Bhadrapâda, 5th or 6th month, i. 51 n, xiv. 3 n, 16 n.
Bhaga, divinity of 11th or 12th asterism, 334.
Bharapi, 2nd asterism—identification etc., 328.
Bhârata, name of a clime, containing India, xii. 39.
Bhâskara, add. n. 1—see Siddhânta-Cijomaṇi.
Bhâva, 42nd year of Jupiter’s cycle, i. 55 n.
Bhota-Siddhânta, add. n. 1.
Bhûrya (Vrûrya) 49th year of Jupiter’s cycle, i. 55 n.
Bhûdiâra, commentator on Sûrya-Siddhânta, add. n. 2.
Bija, correction of mean motions of planets, 163 etc. i. 9 n: table of mean motions as so corrected, 164, add. n. 7.
Biot—his views of origin and history of Chinese sien, 325, 345 etc.; of Hindu asteroids, 350 etc.; of omission of Abhijit, 352; of Hindu sines, add. n. 15; other
GENERAL INDEX.

The references are as in the preceding Index.

Abhijit, 22nd asterism—identification etc., 339; omission from the series, 332-4.
Abu-Raihan, see al-Biruni.
Achleshä, 9th asterism—identification etc., 332; its last quarter unlucky, xi. 21.
Achin, 6th or 7th month—i. 51 n, xiv. 3 n, 16 n.
Achin, 1st asterism—identification etc., 327.
Achin, divinities of 1st asterism, 327.
Achini, divinity of 7th asterism, 331.
Aditya, 331 etc., xii. 28 n.
Aequa, i. 19; day of Brahma, i. 20; names of past and current, i. 23 n.
Agastya, name of star (Canopus), viii. 10.
Age—Great Age, or Quadruple Age, how composed, i. 15-17; Golden, Silver, Bronze, and Iron Ages, i. 17 n; quarter-Age, proper period of this treatise, 160.
Agni, divinity of 3d asterism, 325; with Indra, divinity of 16th asterism, 335; name of star (J Tauri), viii. 11.
Albategnius, Arab inventor of sines, 200.
al-Biruni—visit to India, and notices of Hindu astronomy, i. 3 n, 6 n; identification and description of the asterisms, 325 etc., 342.
[For other Arabic names commencing with the article, see the initial letter of the word following the article.]
Altitude, sine of—name, 258, add. n. 21; how calculated, iii. 23-34, 34-36, 37-38; instrument for taking altitude, xiii. 22 n.
Altitude in time, iii. 39, iv. 26.
Amplitude, sun’s at horizon—sine of, iii. 27; measure of, on the dial, iii. 7; its constant ratio to hypot. of shadow, iii. 7 n; how calculated, iii. 22-23, 27-28.
Andra, name of a yoga, add. n. 19.
Anala, 24th year of Jupiter’s cycle, i. 55 n.
Ananda—22nd year of Jupiter’s cycle, i. 55 n; name of a yoga, add. n. 19.
Angiras, 40th year of Jupiter’s cycle, i. 55 n.
Angle, a quantity not employed in Hindu astronomy, 259.
Anomalistic revolutions of planets, 207.
Anomaly, mean—name, ii. 29; how reckoned, ii. 29 n.
Anquetii du Perron, notice of the Pärsi asterisms etc., 324.
Antipodes, Hindu view of, xii. 51-53.
Anuradha, 17th asterism—identification etc., 336.
Anuvatsara, 4th year of lustrum, xiv. 17 n.
Apmavatsa, name of star (3 Virgins), viii. 21.
Apas, name of star (3 Virgins), viii. 21.
Apheilon, 159; see Apsis.
Apopge, 159; see Apsis.
Apparent longitude, vii. 12 n; term how used by Colebrooke, vii. 1 n.
Apsis—term how employed in this work, 159; apsides of the planets, mode of action, i. 1-5; revolutions, i. 41-42; how devised, i. 44 n; positions, acc. to different authorities, i. 44 n; compared with Ptolemy’s, add. n. 11.
For moon’s apsis, see Moon.
Arab astrology, connection with Hindu, vii. 23 n.
Arab use of sines, later than Hindu, 200.
Arab lunar mansions, 324; identified and compared with Hindu and Chinese, 327-344; character and origin of system, 347 etc.; stellar chart illustrating, add. n. 27.
Arc—names of, and of its functions, add. n. 16; part of arc determining sine, ii. 30; to find arc of a given sine, ii. 32.
Armillary sphere—construction, equipment, and revolution of, xiii. 1-20; its use, and comparison with those of other nations, xiii. 3 n; its adaptation to observing polar longitude and latitude, viii. 12 n.
Aryabhata—his period and writings, add. n. 1; references to his doctrines, i. 27 n, i. 60 n, add. n. 18; see Arya-Sidhânta, Laghu Arya-Sidhânta, Aryâshaṭaṭa, Daçagîtikâ.
Aryabhata, commentator on the Sûrya-Sidhânta, add. n. 2.
Aryaman, divinity of 11th or 12th asterism, 334.
Aryâshaṭaṭa, treatise by Aryabhata, add. n. 1.
Arya-Sidhânta, add. n. 1; citations of its teachings, 168, i. 44 n, add. n. 6.
Ascension—see Right ascension and Oblique ascension.
grāsa, iv. 11 n., 15 n., 20.
grahaka, iv. 9 n.
grāhya, iv. 9 n.

ghaṭi, xii. 23 n.
ghaṭikā, i. 12 n., xiii. 23 n.

cakra, ii. 12 n., xiii. 21 n.
caturśra, iii. 5 n.
caturyuga, i. 15, 17 n.
caturṣṭhapāda, ii. 69 n.
candra, add. n. 3.
candragrahaṇidhikāra, iv. 26 n.
candradiṣṭa, x. 15 n.
cara, ii. 63 n., 68, xiv. 6 n.
carakaḷaś, 454.
carakhanda, iii. 44 n.
carajjyā, iii. 36 n.
caradala, ii. 63 n.
cala, ii. 40.
cala karṇa, ii. 42 n.
cāpa, add. n. 16.
citṛd, 334.

chandā, xii. 15.
chādaka, iv. 9 n.
chādyā, iv. 9 n.
chādyā, iii. 5 n.
cheda, iii. 33, v. 7.
chedyaka, vi. 1 n.

jambudīpā, xii. 44 n.
jayīṁ, vii. 21.
jita, vii. 20.
jiva, add. n. 3.
jīva, ii. 27 n.
jīva, add. n. 3.
jīvā, ii. 27 n., add. n. 16.
jīvāpinda, ii. 27 n.
jīvāpindaka, ii. 31.
jīvārāja, ii. 27 n.
jīvārājanipada, ii. 16.
jīvārṣabha, 336.
jīvottihavanadadhivṛddha, xiii. 3 n.
jīsvita, i. 3 n.

tat, xii. 12.
tatpara, i. 12 n.
tams, vi. 11.
tallagnāravas, ix. 11.
tajika, vii. 23.
tārakā, tārā, vii. 1 n., viii. 16, 19, xii. 43.
tārāgraha, vii. 1 n.
tīmāṇya, add. n. 3.
tīthi, l. 13, ii. 66 n.
tīthikahaya, l. 40 n.
tīthya, vi. 13 n.
tīmi, iii. 5 n.
tīryakṣātra, x. 15 n.
tīryagyā, xii. 13 n.
tīṣṭha, 331.
tīṣṭhāṇya, add. n. 3.

tulā, i. 58 n.
torana, 335.
trīṇaṭakṛtya, iii. 12 n.
trīṇaṭakṛteṣa, iii. 12 n.
trīkōṇa, iii. 34 n.
trīcatukāraka, vii. 14 n.
triṣṭeṣa, i. 60 n.
triṣṭī, i. 60 n.
trīprāṇadūḍhikāra, ii. 69 n.
trībhajī, -jyā, -mūrvikā, ii. 60 n.
trībhonalagna, v. 1 n.
truti, i. 12 n.
treta yuga, i. 17 n.

dakṣiṇa, vi. 12 n.
dakṣiṇāyana, ii. 12 n.
danda, i. 12 n., 60 n.
dasa, vii. 9 n.
dinakahara, add. n. 3.
dinarāja, i. 28, 51 n.
dīnavyayadala, ii. 60 n.
dīvakara, add. n. 3.
dīr, ii. 69 n., v. 2.
drkkarman, vii. 12 n.
drkākṣāpa, v. 6 n.
drktulātā, vi. 18 n.
drktauliya etc., xi. 8 n.
dṛgati, v. 6 n.
dṛgatijīved, v. 7.
dṛaja, v. 6 n.
dṛglambana, v. 1 n.
dṛgṛitta, v. 1 n.
dṛ, ii. 14, iii. 34 n., v. 6 n.
dṛgāṇḍās, ix. 5 n.
dṛṣa, ii. 69 n., v. 2.
dṛcintara, i. 61 n.
dṛcintarapala, lii. 39 n., 434.
dṛcintara, lii. 10 n.
dṛṣyā, i. 48 n.
dṛṣ, ii. 30 n., add. n. 16.
dṛṣyā, i. 51 n.
dṛṣyā, ii. 60 n.
dṛṣyapara yuga, i. 17 n.
dṛṣvabhava, xiv. 4.
dṛṣpa, xii. 44 n.

dhana, ii. 5 n.
dhanin, 340.
dhanishtā, 340.
dhanas, i. 58 n., 60 n., xiii. 21 n., add. n. 16.
dhāshya, ii. 1 n., xi. 21 n.
dhrva, ii. 67, viii. 1 n.
dhrvaka, vii. 1 n.
dhrvatārd, xii. 43.

nakṣatra, 351.
nakṣatragrahaṇayadānikā, vii. 1 n.
nata, iii. 15, 17 n.
natajyā, iv. 25 n.
natābhāgās, iii. 17.
natānycās, iii. 21.
natā, v. 1 n.
SANSKRIT INDEX.

The following Index contains all the Sanskrit words, excepting proper names, which have been cited in the text and notes, in connection with their translation or more detailed explanation. It includes many terms of trivial importance, but we prefer to err upon the side of fullness, if upon either. All the cases of occurrence of each word are not given, but it is referred to a characteristic passage, or to the note where it is explained. The references by Roman and Arabic figures are to chapter and verse, and an added n denotes the note next following the verse given: Arabic figures when used alone refer to pages.

anca, i. 28 n.
ançuvimardha, viii. 19.
aksha, i. 60 n.
akshadarkarman, vii. 12 n, ix. 5 n.
akshabda, iii. 13 n.
akshonnati, i. 60 n.
agrojyàd, i. 7 n.
agromandurekà, iii. 27.
agrod, iii. 7 n.
aghds, add. n. 26.
angéraka, add. n. 5.
angula, iii. 5 n, x. 9.
anga, i. 58 n.
angkatòd, 343.
ayu, vii. 19.
atovegita, ii. 11 n.
atiçigha, ii. 13.
aditi, xii. 28 n.
adikàra, i. 70 n, xi. 23 n.
adhimàsâ, adhimàstaka, i. 40 n.
adhyañma, xii. 11.
adhyàya, xi. 23 n, xii. 10.
amûrâdh, 336.
amûvâ, ii. 12.
amûshaçya, add. n. 3.
antàra, xi. 18 n.
antranâgâdayasas, iii. 50 n.
natyà, iii. 7 n.
andhâka, add. n. 26.
apakrama, i. 70 n.
apakramamayâyala, xii. 13 n.
apaharapà, 328.
apamayâlaya, xii. 13 n.
apasvà, vii. 19.
apasvâyama, xii. 72 n.
apamayâlaya, vii. 21 n.
abhijit, 339.
amucraya, add. n. 3.
amudâvaya, ii. 66 n, iv. 7.
amûra, i. 10.
amûtsahva, xiii. 19 n.
ayana, iii. 10, 249, xii. 72 n.

ayanakañda, vii. 12 n.
ayanagraha, vii. 12 n.
ayanadykkarman, vii. 12 n.
ayanâna, 249.
ayanânta, xii. 72 n.
arke, add. n. 5.
arâja, add. n. 3.
arâgrâ, iii. 23.
arjunî, add. n. 26.
aloka, xiii. 16 n.
avanâti, v. 1 n.
âcâvattha, add. n. 26.
âcâyàyana, 327.
âcâyini, âcâyini, âcâyându, 327.
ârâdh, 338.
arvas, iii. 45 n.
ârita, x. 15 n.
âsu, i. 12 n, and see asava.
âsura, i. 2, xii. 33.
âsta, ix. 1 n.
âstamâchant, xiii. 13.
âstamana, âstamaya, ix. 1 n.
âstâlaya, xiii. 15 n.
âstârda, ix. 5 n.
asphata, v. 7.
ahanka, xii. 20.
aharâga, i. 51 n.
ahi budhâya, 343, ix. 18.
ahâtra, iii. 51 n.
âksa, xii. 90 n.
âksha drâkkarman, vii. 12 n.
âksha valâna, iv. 25 n.
dâneya, vii. 18.
dâ, xii. 15.
dâditya, vii. 19, xii. 28 n.
dâ, âpas, 338, viii. 21 n.
dâya, vii. 4.
dâya graha, vii. 12 n.
dâya drâkkarman, vii. 12 n.
dâya valâna, iv. 25 n.
ârâki, add. n. 3.
all the facts into account, the supposition that this people were the
inventors is altogether untenable.

I close this note—already longer than I intended—with a quotation
from that distinguished orientalist, H. T. Colebrooke. In a very valu-
able essay entitled "On the Notions of the Hindu Astronomers concern-
ing the Precession of the Equinoxes and Motions of the Planets," having
stated with some detail some of the more striking peculiarities of the
Hindu systems, and likewise coincidences existing between them and that
of the Greeks, with the evidence of communication from one people to
the other, he says: "If these circumstances, joined to a resemblance
hardly to be supposed casual, which the Hindu astronomy, with its ap-
paratus of eccentricity and epicycles, bears in many respects to that of
the Greeks, be thought to authorize a belief, that the Hindus received
from the Greeks that knowledge which enabled them to correct and im-
prove their own imperfect astronomy, I shall not be inclined to dissent
from the opinion" (As. Res., xii. 245-6; Essays, ii. 411).

This is all that so learned and cautious a writer could say in favor of
the opinion that the Hindus derived astronomical knowledge from the
Greeks. More than this I certainly could not say. After the solar
division of the zodiac, with the names of its parts, it is evident, I think,
that only hints could have passed from one people to the other, and that
at an early period; for on the supposition that the Hindus borrowed
from the Greeks at a later period, we find it difficult to see precisely
what it was that they borrowed; since in no case do numerical data and
results in the systems of the two peoples exactly correspond. And in
regard to the more important of such data and results—as for instance,
the amount of the annual precession of the equinoxes, the relative size
of the sun and moon as compared with the earth, the greatest equation
of the centre for the sun—the Hindus are more nearly correct than the
Greeks, and in regard to the times of the revolutions of the planets
they are very nearly as correct: it appearing from a comparative view
of the sidereal revolutions of the planets (p. 168), that the Hindus are
most nearly correct in four items, and Ptolemy in six. There has evi-
dently been very little astronomical borrowing between the Hindus and
the Greeks. And in relation to points that prove a communication from
one people to the other, with my present knowledge on the subject, I
am inclined to think that the course of derivation was the opposite to
that supposed by Colebrooke—from east to west rather than from west
to east; and I would express my opinion in relation to astronomy, in
the language which this eminent scholar uses in relation to some coinci-
dences in speculative philosophy and religious dogmas, especially the
doctrine of metempsychosis, found in the Greek and Hindu systems,
which indicate a communication from one people to the other: "I
should be disposed to conclude that the Indians were in this instance
This opinion is expressed in the last essay on oriental philosophy that
came from the pen of Colebrooke.

E. B.

Boston, May, 1860.
As to the application of the names of the planets to the days of the week, it is impossible to determine definitely where it originated. Respecting this matter, Prof. H. H. Wilson expresses his opinion—in which I concur—in the following language: "The origin of this arrangement is not very precisely ascertained, as it was unknown to the Greeks, and not adopted by the Romans until a late period. It is commonly ascribed to the Egyptians and Babylonians, but upon no very sufficient authority, and the Hindus appear to have at least as good a title to the invention as any other people" (Jour. Roy. As Soc., ix. 84).

One word on the claims of the Arabians to the honor of original invention in astronomical science. And first, they themselves claim no such honor. They confess to having received their astronomy from India and Greece. They had at an early period some two or three of the first Hindu treatises of astronomy, "In the reign of the second Abbasside Khalif Almansur... (A.D. 773), as is related in the preface to the astronomical tables of Ben-Al-Adami, published... A.D. 920, an Indian astronomer, well versed in the science which he professed, visited the court of the Khalif, bringing with him tables of the equations of planets according to the mean motions, with observations relative to both solar and lunar eclipses, and the ascension of the signs; taken, as he affirmed, from tables computed by an Indian prince, whose name, as the Arabian author writes it, was Phighab" (Colebrooke's Hindu Algebra, p. lxiv). That the Arabians were thoroughly imbued with a knowledge of the Hindu astronomy before they became acquainted with that of the Greeks, is evident from their translation of Ptolemy's Syntaxis. It is known that this great work of the Greek astronomer first became known in Europe through the Arabic version. In the Latin translation of this version, the ascending node (Greek ἀρα-βιβλίων σείδεσμος) is called nodus capitis, "node of the head," and the descending node (Greek καταβιβλίων σείδεσμος), nodus cauda, "node of the tail"—which are pure Hindu appellations (see Latin Translation of Almagest, B. iv, ch. 4; B. vi, ch. 7, et al.). This fact, with other evidence, clearly shows the influence of Hindu astronomy on that of the Arabians. In fact, this latter people seem to have done little more in this science than work over the materials derived from their eastern and western neighbors.

Another fact showing the belief of the Arabians themselves respecting their indebtedness, in matters of science, to the Hindus, should be mentioned here. They ascribe the invention of the numerals, the nine digits (the credit of whose invention is quite generally awarded to the Arabians), to the Hindus. "All the Arabic and Persian books of arithmetic ascribe the invention to the Indians" (Strachey, on the Early History of Algebra, As. Res., xii. 184; see likewise Colebrooke's Hindu Algebra, pp. lli-liii, where the same is shown from a different authority. Strachey's article was published subsequently to the work of Colebrooke).

The above facts and considerations, showing the indebtedness of the Arabians to the Hindus in regard to mathematical and astronomical science, clearly have an important bearing on the question of priority of invention in regard to the lunar division of the zodiac into twenty-eight asterisms, at least so far as the Arabians are concerned. Taking
unfilled, should have added to their own the Chaldean constellations from which the twelve divisions were named.” Whether Ideker meant by “Orientals” the Chaldeans, or some other eastern people, the application of the term in this connection to the Hindus exactly suits the supposition of the Indian origin of the division in question, since in Indian astronomy the names of the signs are merely names of the twelfth parts of the ecliptic, and are never applied to constellations. Humboldt’s opinion is, that the solar divisions of the ecliptic, with the names of the signs, came to the Greeks from Chaldea. I think the evidence preponderates in favor of a more eastern, if not a Hindu, origin.

3. The theory of epicycles. The difference in the development of this theory in the Greek and Hindu systems of astronomy precludes the idea that one of these people derived more than a hint respecting it from the other. And so far as this point alone is concerned, we have as much reason to suppose the Greeks to have been the borrowers as the contrary; but other considerations seem to favor the supposition that the Hindus were the original inventors of this theory.

4. As regards astrology, there is not much honor, in any estimation, connected with its invention and culture. The coincidences that exist between the Hindu and Greek systems are too remarkable to admit of the supposition of an independent origin for them. But the honor of original invention, such as it is, lies, I think, between the Hindus and the Chaldeans. The evidence of priority of invention and culture seems, on the whole, to be in favor of the former; the existence of three or four Arabic and Greek terms in the Hindu system being accounted for on the supposition that they were introduced at a comparatively recent period. In reference, however, to the word ḫorā, Greek ἕφα (see notes to i. 52; xii. 78–79), it may not be inappropriate to introduce the testimony of Herodotus (B. II, ch. 109): “The sun-dial and the gnomon, with the division of the day into twelve parts, were received by the Greeks from the Babylonians.” There is abundant testimony to the fact that the division of the day into twenty-four hours existed in the East, if not actually in India, before it did in Greece. In reference, farther, to the so-called Greek words found in Hindu astronomical treatises, I would remark that we may with entire propriety refer them to that numerous class of words common to the Greek and Sanskrit languages, which either came to both from a common source, or passed from the Sanskrit to the Greek at a period of high antiquity; for no one maintains, so far as I am aware, that the Greek is the parent of the Sanskrit, to the extent indicated by this numerous class of words, and by the similarity of grammatical inflections in the two languages.

5. As to the names of the planets, I remark that the identity of all of them in the Hindu and Greek systems is not to my mind clearly made out. However this may be, I think the present names of the planets in Greek astronomy originated at least as far east as Chaldea. Herodotus says (B. II, ch. 52) . . . “the names of the gods came into Greece from Egypt.” The names of the planets are names of gods. Herodotus’s opinion indicates the belief of the Greeks in reference to the origin of these names. Other considerations show for them, almost beyond a question, an origin as far east, to say the least, as Chaldea.
2. The solar division of the zodiac into twelve signs, with the names of the latter. These names are, in their import, precisely the same in the Hindu and Greek systems. The coincidence is such that the theory of the division and the names of the parts having proceeded from one original source is unquestionably the correct one.

3. The theory of epicycles in accounting for the motions of the planets, and in calculating their true places. This is common to the Hindu and Greek astronomies. At least, there is such a coincidence in the two systems in reference to the epicycles as almost to preclude the idea of independent origin or invention.

4. Coincidences, and even a sameness in some parts, between the systems of astrology received among the Hindus, Greeks, and Arabians, strongly indicate for those systems, in their primitive and essential elements, a common origin.

5. The names of the five planets known to the ancients, and the application of these names to the days of the week (see notes, i. 52).

In regard to these specifications I remark in general:

First, in reference to no one of them do the claims of any people to the honor of having been the original inventors or discoverers appear to be better founded than those of the Hindus.

Secondly, in reference to most of them, the evidence of originality I regard as clearly in favor of the Hindus; and in regard to some, and those the more important, this evidence appears to me nearly or quite conclusive.

I have not space for detail, nor is it the design of this note to enter into the details of argument on any point whatever. A brief remark, however, for the sake of clearness, seems called for in reference to each of the above five specifications of facts and principles common to some or all of the ancient systems of astronomy and astrology.

1. As to the lunar division of the zodiac into twenty-seven or twenty-eight asterisms. The undisputed antiquity of this division, even in its elaborated form, among the Hindus, in connection with the absence or paucity of such evidence among any other people, incline me decidedly to the opinion that the division is of a purely Hindu origin. This is still my opinion, notwithstanding the views advanced by M. Biot and others in favor of another origin.

2. As to the solar division of the zodiac into twelve parts, and the names of those parts. The use of this division, and the present names of the signs, can be proved to have existed in India at as early a period as in any other country; and there is evidence less clear and satisfactory, it is true, yet of such a character as to create a high degree of probability, that this division was known to the Hindus centuries before any traces can be found in existence among any other people.

As corroborative of this position in part, or at least as strongly favoring the idea of an eastern origin of the division of the ecliptic in question, I may be allowed to adduce the opinions of Ideler and Lepsius, as quoted by Humboldt (Cosmos, Harper’s ed., iii. 120, note): "Ideler is inclined to believe that the Orientals had names, but not constellations, for the Dodecatomeria, and Lepsius regards it as a natural assumption 'that the Greeks, at the period when their sphere was for the most part
Concluding Note by the Translator.

It may not be improper for me to state, in a closing note, that I had prepared a somewhat extended and elaborate essay on the history of astronomy among the Hindus, to be published in connection with the preceding translation. But the length of this essay is such—the subject matter of it not being material to the illustration of the Siddhānta, and the translation and notes having already occupied so much space—that it was not thought advisable to insert it here.

Yet as my investigations have led me to adopt opinions on some points differing from those advanced by Prof. Whitney in his very valuable additions to the notes upon the translation, truth and consistency seem to require me to present at least a brief summary of the results at which I arrived in that essay in reference to the points in question. By so doing, I free myself from any embarrassment under which I should labor, if hereafter—as I now intend—I shall wish to express the grounds for my opinions on these points, in this Journal or elsewhere.

The points to which I allude bear upon the claims of the Hindus to the honor of original invention and discovery in astronomical science—especially, their claims to such an honor in comparison with the Greeks.

Prof. Whitney seems to hold the opinion, that the Hindus derived their astronomy and astrology almost bodily from the Greeks—and that what they did not borrow from the Greeks, they derived from other people, as the Arabians, Chaldeans and Chinese (see pp. 178, 348, 350, et al.). I think he does not give the Hindus the credit due to them, and awards to the Greeks more credit than they are justly entitled to. In advancing this opinion, however, I admit that the Greeks, at a later period, were the more successful cultivators of astronomical science.

There is nothing among the Hindu treatises that can compare with the great Syntaxis of Ptolemy. And yet, from the light I now have, I must think the Hindus original in regard to most of the elementary facts and principles of astronomy as found in their systems, and for the most part also in their cultivation of the science; and that the Greeks borrowed from them, or from an intermediate secondary source, to which these facts and principles had come from India. I might perhaps so far modify this statement as to admit the supposition that neither Greeks nor Hindus borrowed the one from the other, but both from a common source. But with my present knowledge, I cannot concur in the opinion that the Hindus are, to any great extent, indebted to the Greeks for their astronomy, or that the latter have any well grounded claims to the honor of originality in regard to those elementary facts and principles of astronomical science which are common to their own and other ancient systems, and which are of such a nature as indicates for them a single origin, and a transmission from one system to another. For the sake of clearness, it is well that I should state more specifically a few of the more important facts and principles that come under the class above referred to. They are as follows:

1. The lunar division of the zodiac into twenty-seven or twenty-eight asterisms (see transl., ch. viii). This division is common, with slight modifications, to the Hindu, Arabian, and Chinese systems.
do from those of the Syntaxis, if the latter had been already in existence, and acknowledged as the principal and most authoritative exponent of Greek astronomy. Whether the information was transmitted through the medium of Hindus who visited the Mediterranean, or of learned Greeks who made the voyage to India, or by the translation of Greek treatises, or by what other methods, we would not at present even offer a conjecture; and the point is one of only subordinate consequence.

Whatever may have been the date of the first communication of the elements out of which the Hindu system was elaborated, there is good reason to suppose that its final reduction to its present form did not take place until some time during the fifth and sixth centuries. That period is distinctly pointed out by the choice of the equinox of A. D. 570 as the initial and principal point of the fixed sphere (note to i. 27), by the definition of position of the junction-stars of the asterisms (p. 355), and by the Hindu traditions which refer to that time the names of greatest prominence and authority in the early history of the science. It is evident that the elaboration of the system must have been a work of time, probably of many generations: what were the forms which it wore in the interval we do not know; here, as in many other departments of the Hindu literature, all record of the steps of development appears to be lost, only the final and fully formed product being preserved and transmitted to us; yet more light upon this point may still be hoped for, from the careful examination of all documents now accessible, or of such as may hereafter be discovered. The process of assimilation and adaptation to Hindu conceptions and Hindu methods was thoroughly and completely performed. Among the changes of method introduced, the most useful and important was the substitution of sines for chords (p. 200); the general substitution of an arithmetical for a geometrical form also deserves particular notice. That no great amount of geometrical science is implied in any part of the system, is very evident: it is distinguished by the constant and dexterous application of a few simple principles: the equality of the square of the hypothenuse to the sum of the squares of the base and perpendicular—the comparison of similar right-angled triangles—the formation and combination of proportions, the rule of three—are the characteristic features of the early Hindu mathematical knowledge, as displayed in the Sûrya-Siddhânta. Of other treatises, of an earlier or later period, as those of Brahmagupta and Bhâskara, which (see Colebrooke's Hindu Algebra) give evidence of knowledge more profound in arithmetic and algebra, we cannot at present speak; but we hope at some future time to be able to revert to the subject of the Hindu astronomy, in connection with these or other of the text-books by which it is represented.

Rev. Mr. Burgess, having placed his translation and notes in the hands of the Committee of Publication for farther elaboration, has very liberally allowed them entire freedom in their work, even where their deductions, and the views they expressed, did not accord with his own opinions. The most important point at issue between us is that discussed in the next preceding pages, or the originality of the Hindu astronomy; upon this, then, he is desirous of expressing independently his dissenting views, as in the following note.
minute, is no Sanskrit word, but taken directly from the Greek, being \textit{liptà}, which is \textit{kentòv}. Again, the planets are ordinarily named in the Siddhántas in the order in which they succeed one another as regents of the days of the week; and not only has it been shown above that the week is no original Hindu institution, but it has even appeared that, on tracing it to its very foundation, we find there another Greek word, \emph{βορώ}, represented by \textit{hordà}. Once more, in the cardinal operation of finding by means of the system of epicycles the true place of a planet, we see that one of the most important data, the mean anomaly, is called by another name of Greek origin, namely \textit{kendra}, which is \textit{κέντρον}. These three words, occurring where they do, not upon the outskirts of the Hindu science, but in its very centre and citadel, amount of themselves almost to full proof of its Greek origin: taken in connection with the other concurrent evidences, they form an argument which can neither be set aside nor refuted. Of those other evidences, we will only mention farther here that Hindu treatises and commentaries of an early date often refer to the \textit{yavanaś}, "Greeks" or "westerners," and to \textit{yavanaścāryaś}, "the Greek (or western) teachers," as authorities on astronomical subjects—that astronomical treatises are found bearing names which come more or less distinctly from the West (note to i. 4–6)—and that floating traditions are met with, to the effect that some of the Siddhántas were revealed to their human promulgators in Rome—city, that is to say, at Rome. Farther witness to the same truth, deducible from other coincidences of the two systems, we pass unnoticed here, since it is not our object to discuss the question exhaustively, but only to bring forward the main grounds of our opinions.

The question next arises, when, and in what manner the knowledge of astronomy was communicated from Greece to India. In reply to this, only probabilities offer themselves, yet in some points the indications are pretty distinct. It is, in our own view, altogether likely that the science came in connection with the lively commerce which, during the first centuries of our era, was carried on by sea between Alexandria, as the port and mart of Rome, and the western coast of India. Two considerations especially favor this supposition: first, that the chief site of the Hindu science is found to be the city which lay nearest to the route of that commerce (note to i. 62): secondly, that Rome is the only western city or country which is distinctly mentioned in the astronomical geography (xii. 39), and the one with which, as above noticed, the astronomical traditions connect themselves. Had the Hindus derived their knowledge overland, through the Syrian, Persian, and Bactrian kingdoms which stood under Greek government, or in which Greek influence was predominant, and Greek culture known and prized, the name of Rome would have been vastly less likely to stand forth with such prominence, and the capitals of Hindustan proper would more probably have been the cradles of the new science. The absence from the Hindu system of any of the improvements introduced by Ptolemy into that of the Greeks (note to ii. 43–45) tends strongly to prove that the transmission of the principal groundwork of the former took place before his time: nor can we think it likely that the numerical elements adopted by the Hindus would vary so much as in many cases they are found to
say that the system, in its form as laid before us, must come from another people or another generation than that which laid its scientific foundation; that it must be the work of a race which either had never known, or had had time to forget, the observing habits and the inductive methods of those who gave it origin. But the hypothesis that an earlier generation in India itself performed the labors of which the later system-makers reaped the fruit, is well-nigh excluded by the absence, already referred to, of all evidence in the more ancient literature of deep astronomical investigation: the other alternative, of derivation from a foreign source, remains, if not the only possible, at least the only probable one. We come, then, next to consider the direct evidences of a Greek origin.

First in importance among these is the system of epicycles for representing the movement, and calculating the positions, of the planets. This, the cardinal feature in both systems, is (ii. 34-45) essentially alike and the same in both. Now, notwithstanding the fact that such secondary circles do in fact represent, to a certain degree, true quantities in nature, there is yet too much that is strange and arbitrary in them to leave any probability to the supposition that two nations could have devised them independently. But there are sufficient grounds for believing the Greeks to have actually created their own system, bringing it by successive steps of elaboration to the form in which Ptolemy finally presents it. In the history of the science among the Greeks, everything is clear and open; they tell us what they owed to the Egyptians, what to the Chaldeans: we trace the conceptions which were the germs of their scheme of epicycles, the observations on which it was based, the inductive and deductive methods by which it was worked out and established. In the Hindu astronomy, on the other hand, all is groundless assumption and absurd pretense: we find, as basis for the system, neither the conceptions—for these are directly or impliedly denied or ignored—nor the observations—for not a mention of an actual observation is anywhere to be discovered—nor the methods: the whole is gravely put forth as a complete and perfect fabric, of divine origin and immemorial antiquity. On the agreement of the two sciences in point of numerical data we will not lay any stress, since it might well enough be supposed that two nations, if once set upon the same track toward the discovery of truth, would arrive independently at so near an accordance with nature and with one another. We will look for other evidences, of a less ambiguous character, to sustain our main argument. The division of the circle, into signs, degrees, minutes, and seconds, is the same in both systems, and, being the foundation on which all numerical measurements and calculations are made, is an essential and integral part of both. Now the names of the first subdivisions, the signs, are the same in Greece and in India (see note to i. 58): but with the Greeks they belong to certain fixed arcs of the ecliptic, being derived from the constellations occupying those arcs; with the Hindus they are applied to successive arcs of 30°, counted from any point that may be chosen: this is an unambiguous indication that the latter have borrowed them, and forgotten or neglected their original significance. But farther, the ordinary Hindu name of that division of the circle which is in most frequent use, the
tive investigations. The old belief under the influence of which Bailly could form his strange theories—the belief in the immense antiquity of the Indian people, and its immemorial possession of a highly developed civilization—the belief that India was the cradle of language, mythology, arts, sciences, and religions—has long since been proved an error. It is now well known that Hindu culture cannot pretend to a remoter origin than 2000 B.C., and that, though marked by striking and eminent traits of intellect and character, the Hindus have ever been weak in positive science; metaphysics and grammar—with, perhaps, algebra and arithmetic, to them the mechanical part of mathematical science—being the only branches of knowledge in which they have independently won honorable distinction. That astronomy would come to constitute an exception to the general rule in this respect, there is no antecedent ground for supposing. The infrequency of references to the stars in the early Sanskrit literature, the late date of the earliest mention of the planets, prove that there was no special impulse leading the nation to devote itself to studying the movements of the heavenly bodies. All evidence goes to show that the Hindus, even after they had derived from abroad (p. 348) a systematic division of the ecliptic, limited their attention to the two chief luminaries, the sun and moon, and contented themselves with establishing a method of maintaining the concordance of the solar year with the order of the lunar months. If, then, at a later period, we find them in possession of a full astronomy of the solar system, our first impulse is to inquire, whence did they obtain it? A closer inspection does not tend to inspire us with confidence in it as of Hindu origin. We find it, to be sure, thoroughly Hindu in its external form, wearing many strange and fantastic features which are to be at once recognized as of native Indian growth; but we find it also to contain much true science, which could only be derived from a profound and long-continued study of nature. The whole system, in short, may be divided into two portions, whereof the one contains truth so successfully deduced that only the Greeks, among all other ancient nations, can show anything worthy to be compared with it; the other, the framework in which that truth is set, composed of arbitrary assumptions and absurd imaginings, which betray a close connection with the fictitious cosmogonies and geographies of the philosophical and Puranic literature of India. The question presses itself, then, strongly upon us, whether these two portions can possibly have the same origin: whether the scientific habit of mind which could lead to the discovery of the one is compatible with those traits which would permit its admixture with the other. But most especially, could a system founded—as this, if original, must have been—upon sagacious, accurate, and protracted observation of the heavenly bodies, so entirely ignore the groundwork upon which it rested, and refuse and deny all possibility of future improvement by like means, as does this Hindu system, in whose text-books appears no record of an observation, and no confessed deduction from observations; in which the astronomer is remanded to his text-book as the sole and sufficient source of knowledge, nor ever taught or counselled to study the heavens except for the purpose of determining his longitude, his latitude, and the local time? Surely, we have a right to
prominence and popularity than are enjoyed by the other works of its
class, or from what period its preëminence dates, is unknown. There
are treatises, like the Cakalya-Sanhita (add. note 1), which agree with
it in all essential features; there are yet others, like the Soma and Va-
sishtha Siddhanta, which are said (add. note 6) to vary little from it:
whether any one among them all is original—and if any, which—
whether in each case the relation is one of co-ordination or of subordi-
nation—we must be content for the time to be ignorant.

One thing, however, is certain: underneath whatever variety may
characterize the separate treatises, there exists a fundamental unity;
their differences are of secondary importance as compared with their
resemblances; they all represent essentially a single system. And this
by no means in the same sense in which all modern astronomical works
may be said to represent a single system. For the Hindu system is not
one of nature; it is not even a peculiar method of viewing and inter-
preting nature, from which, after it had once been devised by some
controlling intellect, others had not the force and originality to deviate:
it is a thoroughly artificial structure, full of arbitrary assumptions, of
absurdities even, which have no foundation in nature, and could be in-
vented by one as well as another. We need only to refer, as instances,
to the frame-work of monstrous chronological periods (i. 14–23)—to
the common epoch of the commencement of the Iron Age (note to i.
29–34), with its exact or nearly exact (add. note 6) conjunction of all
the planets—to the form of statement of the mean motions, yielding
recurring conjunctions, at longer or shorter intervals—to the assump-
tion of a starting-point for the planets from at or near ¥Piscium (note
to i. 27)—to the revolutions of the apsides and nodes of the planets
(i. 41–44)—to the double system of epicycles (ii. 34–38)—to the deter-
mination of the planetary orbits (xii. 80–90), etc., etc. These are plain
indications that the Hindu science emanated from one centre; that it
was the elaboration of a period and of a school, if not of a single mas-
ter, who had power enough to impose his idiosyncracy upon the science
of a whole nation. The question, then, of the comparative antiquity
of single treatises is lost in the higher interest of the inquiry—when,
where, and under what influence originated the system which they all
agree in representing?

What our opinions are upon these points will not be a matter of
doubt with any one who may have carefully looked through the preced-
ing pages, although they have nowhere been explicitly stated. We re-
gard the Hindu science as an offshoot from the Greek, planted not far
from the commencement of the Christian era, and attaining its fully de-
veloped form in the course of the fifth and sixth centuries. The grounds
of this opinion we will proceed briefly to state.

In considering such a question, it is fair to take first into account the
general probabilities of the case. And there can be no question that,
from what we know in other respects of the character and tendencies
of the Hindu mind, we should not at all look to find the Hindus in pos-
session of an astronomical science containing so much of truth. They
have been from the beginning distinguished by a remarkable inaptitude
and disinclination to observe, to collect facts, to record, to make induc-
sible, and that it was also in some respects preferable, as being one that could be halved and quartered.

30. p. 417. In bringing this work to a close, we deem it advisable to present, in a summary manner, but more distinctly and connectedly than could properly be done in the notes upon the text, our conclusions as to certain points in the history of the Sûrya-Siddhânta, and of the astronomical science which it represents.

In the first place, Bentley's determination of the age of the treatise we conceive to be altogether set aside by the considerations which we have adduced against it (note to i. 29–34); there is no reasonable ground for questioning that the Sûrya-Siddhânta is, as the Hindus have long believed it to be, one of the most ancient and original of the works which present their modern astronomical science. How far the text of which the translation has been given above is identical in substance and extent with that of the original Sûrya-Siddhânta, is another question, and one not easy to solve. That it is not precisely the same is evident enough. Even the modern manuscripts differ from one another in single readings, in details of arrangement, in added or omitted verses. A comparison of the texts adopted and established by the different commentators would be highly interesting, as carrying the history of the treatise a step farther back; but to us only one commentary is accessible, nor do we find anywhere any notices respecting the versions given by the others: in the absence of such, we may conclude that all present substantially the same text, and so are alike posterior to the modelling of the work into its present form and with its present contents. But the indications of addition and interpolation, which we have had in so many cases to point out in our notes, are sometimes too telling to be misinterpreted. Farther than this we may not at present go: any detailed discussion of the subject must remain unsatisfactory, until a fuller acquaintance with other of the ancient treatises, and a more careful comparison of them with one another, shall throw upon it new light. A point of special interest connected with it is, whether the elements of mean motions of the planets do actually date from about the time pointed out by Bentley's calculations. With regard to this we are far from being confident; but we do not regard it as impossible, or even as very improbable, that those elements, as presented by our text, have been the same from the beginning, never having undergone correction until the application of the bija, about A. D. 1500 (p. 163 etc.). And the date of that correction is calculated at least to suggest the suspicion that Muslim science may have had something to do with it. That observation, and the improvement of their system by deductions from observation, were ever matters of such serious earnest with the Hindus that they should have been led to make such amendments independently, is yet to be proved. The most important alteration of which anything like direct proof is furnished is that which concerns the precession of the equinoxes (note to iii. 9–12); and even here we would not undertake to say confidently what is the conclusion to be drawn. All such inquiries must remain conjectural, mere gropings in the twilight, until the position of the Sûrya-Siddhânta in the Siddhânta literature shall be better understood. What has given it so much greater
28. p. 351. We have perhaps expressed ourselves in a manner liable to misconstruction as to the want of reason or authority for giving to the asterisms the name of "lunar mansions," "houses of the moon," and the like. We would by no means be understood as denying that in the Hindu science, especially its older forms, and in the Hindu mythology, they are brought into particular and conspicuous relations with the moon. Indeed, whether they were originally selected and established with reference to the moon’s daily progress along the ecliptic, as has been, until lately, the universal opinion, or whether we are to believe with M. Biot that they had in the first instance nothing to do with the moon, and only came by chance to coincide in number with the days of her sidereal revolution—it is at any rate altogether probable that to the Hindu apprehension this coincidence formed the basis of the system. We may even conclude, from the fact that the asterisms are so frequently spoken of in the early literature of the Brāhmaṇa period, while nevertheless there is no distinct mention of the planets until later (Weber, Ind. Lit., p. 222), that for a long time the Hindus must have confined their attention and observations to the sun and moon, paying no heed to the lesser planets; and yet we cannot regard it as in any degree probable—hardly as possible, even—that any nation or people could establish a system of zodiacal asterisms without discovering and taking note of the planets; or that such a system could have been communicated to, and applied by, the Hindus, without a recognition on their part of those conspicuous and ever-moving stars. It may fairly be claimed, then, that the asterisms, as a Hindu institution, are an originally lunar division of the zodiac; but we object none the less to their being styled “lunar mansions,” or called by any equivalent name; because, in the first place, the Hindus themselves have given them no name denoting a special relation to the moon, and no name signifying “house, mansion, station,” or anything of the kind; and because, in the second place, as soon as the Hindu astronomy extended itself beyond its limitation to observations of the moon, just so far and so soon did it employ the system of asterisms as a general method of division of the ecliptic; so that finally, as pointed out by us above, the asterisms have come to be divested, in the properly astronomical literature of India, of all special connection with the moon. With almost the same propriety might we call the Hindu signs “luni-solar mansions”—since they are, by origin, the parts of the ecliptic occupied by the sun during each successive synodical revolution of the moon—as denominate the nakshatras of the Siddhāntas “lunar mansions.”

29. p. 353. We should have mentioned farther, that an additional inducement—and one, probably, of no small weight—to the reduction of the number of asterisms from twenty-eight to twenty-seven, is to be recognized in the fact that the time of the moon’s sidereal revolution in days, though intermediate between the two numbers, is yet decidedly nearer to twenty-seven, exceeding it by less than a third. M. Biot might even claim with some reason that the choice of the number twenty-eight tended to prove the whole system not a lunar one by origin: yet it might be replied that, the time of revolution being distinctly more than twenty-seven days, the larger number was fully admis-
Arab muzil.
1. ash-Sharatán.
2. al-Butain.
3. ath-Thuraiyá.
4. ad-Dabarán.
5. al-Haṣ'aḥ.
6. al-Han'ah.
7. adh-Dhirā'.
8. an-Nathrah.
9. at-Tarf.
10. aj-Jababah.
11. az-Zubrah.
12. as-Sarfah.
13. al-Awá'.
14. as-Simák.
15. al-Ghafr.
16. az-Zubánán.
17. al-Ikīl.
18. al-Kalb.
19. ash-Shanlah.
20. an-Na'ālim.
21. al-Baldah.
22. Sa'd adh-Dhābih.
23. Sa'd Bula'.
24. Sa'd as-Su'ud.
27. al-Fargh al-Mukhir.

Chinese sinus.
27. Lüt.
28. Oei.
1. Mao.
2. Pi.
3. Tse.
4. Tsün.
5. Tsing.
7. Liet.
8. Sing.
10. Y.
11. Chin.
14. Ti.
15. Fang.
16. Sin.
17. Uei.
18. Ki.

E. Burgess, etc., [viii. 9.

1. Ācūnī.
2. Bharaní.
4. Rohini.
5. Mṛgačiras.
6. Ādrā.
7. Punarvasu.
8. Pushya.
9. Āčāla.
10. Maghā.
11. Pūrva-Phalguni.
12. Uttara-Phalguni.
15. Svātī.
17. Anurādhā.
18. Jyeshtā.
19. Mūla.
20. Pūrva-Āshādha.
22. Abhijit.
23. Gravana.
24. Čravishthā.
25. Čatabhishaj.
27. Uttara-Bhādrapadā.

β and γ Arietis.
35, 39, and 41 Arietis.
ν Tauri, etc. (Pleides).
a, 3, γ, δ, ε Tauri.
λ, α, γ Orions.
2, 3, 4, 5 Orionis.
a, 3, γ, δ, ε Tauri.
λ, η, γ, δ Geminorum.
β, γ, η Geminorum.
ψ, ε, δ Canecri, and Pæasepe.
a, γ, η, δ, ε Leonis.
5, 6 Leonis.
Γ, η Leonis.
5, 6, 7, 8 Virginis.
6, 7 Virginis.
β Leonis.
δ, 6 Virginis.
δ Virginis.
β Librae.
δ, 6, 7 Scorpiounis.
α Scorpiounis.
γ, 5, 6 Scorpiounis.
β Librae.
β, 6, 7 Scorpiounis.
α Scorpiounis.
γ, 5, 6 Scorpiounis.
δ, 6 Sagittarii.
ε Sagittarii.
ε Aquarill.
β Aquarill.
α Aquarill.
α Aquarill.
γ Pegasi.
γ Pegasi.
γ Pegasi.
γ Pegasi.
β Andromæs, etc.
β Andromæs, etc.
β Arietis.
35 Arietis.
ε Tauri.
ε Tauri.
λ Orionis.
δ Orionis.
λ Geminorum.
λ Geminorum.
ε Geminorum.
ε Geminorum.
λ, γ Canecri.
γ, δ Hydrea.
γ, δ Hydrea.
γ, δ, ε Hydrea.
γ, δ, ε Hydrea.
γ, δ, ε Librae.
γ Scorpiounis.
α Scorpiounis.
α Scorpiounis.
β Capricorni.
β Capricorni.
Phalguni, or the Phalgunis, forming the eleventh and twelfth groups, are styled also arjuni, "bright, shining."

Cravana, the twenty-third asterism, receives the name acavattha, which is properly that of a tree, the Ficus religiosa; the reason of the appellation is altogether obscure.

Bhadrapada, the last double asterism, is called pratishthana, "stand, support," in evident allusion to the disposition of the four bright stars which compose it, like the four feet of a stand, table, bedstead, or the like.

27. p. 344. We offer herewith the stellar chart to which reference was made in the note on p. 349, and which is intended to illustrate the positions and mutual relations of the Hindu nakshatras, the Arab manazil al-kamar, and the Chinese sieu. We add a brief explanation of the manner in which it has been constructed, and the form in which it is presented.

The form of the map is that of a plane projection, having the ecliptic as its central line. It would have better illustrated the Hindu method of defining the positions of the junction-stars, and the errors of the positions as defined by them, if the equator of A.D. 560, instead of the ecliptic, had been made the central line of the projection. This, however, would have involved the necessity of calculating the right ascension and declination of every star laid down, a labor which we were not willing to undertake. Moreover, the ecliptic is, in fact, the proper central line along which the groups of the Hindu and Arab systems, at least, are arranged, and the form given to the chart also facilitates the laying down of the equator of B.C. 2350, which we desired to add, for the purpose of enabling our readers to judge in a more enlightened manner of the plausibility of M. Biot's views respecting the origin of the Chinese system: it is drawn with a broken line, while the equator of A.D. 560 is also represented, by an entire line. As the zone of the heavens represented is, in the main, that bordering the ecliptic, the distances and the configuration of the stars are altered and distorted by the plane projection to only a very slight degree, not enough to be of any account in a merely illustrative chart, such as this is. As a general rule, we have laid down all the stars of the first four magnitudes which are situated near the ecliptic, or in that part of the heavens through which the line of the asterisms passes; stars of the fourth to fifth magnitude are also in many cases added; smaller ones are noted only when they enter into the groups of the several systems, or when there were other special reasons for introducing them. The positions are in all cases taken from Flamsteed's Catalogue, and the magnitudes are also for the most part from the same authority: in many individual cases, however, we have followed other authorities. We have endeavored so to mark the members of the three different series that these may readily be traced across the map; but, to assure and facilitate the comparison, we also place upon the page opposite it a conspectus of the nomenclature, constitution, and correspondence of the three systems, referring to pages 327-344 for a fuller discussion of these matters, and an exposition of what is certain, and what more or less hypothetical, or exposed to doubt, with regard to them.
the subject of the deflection has been sufficiently illustrated already, in
the notes upon the text and in the calculation of the lunar eclipse, we
regard it as unnecessary to go through with the labor required for making
the computations in question. Finally, we annex, as in the case of the
lunar eclipse formerly calculated, a summary comparison of the prin-
cipal results of the Hindu processes with the elements of the eclipse in
question as determined by Prof. Coffin, in his work referred to above.
It must be borne in mind, however, that, owing to the faulty manner in
which many of the computations of the native astronomer have been
made, the comparison is not entirely trustworthy; a more careful adhe-
rence to the methods of the Siddhânta would have given somewhat
different results: in the case of the daily motions of the sun and moon,
the true calculations, as performed by us (see p. 452), give more correct
values; in other instances, the contrary might perhaps have been the
case.

<table>
<thead>
<tr>
<th>Time of true conjunction in longitude,</th>
<th>Sûrya-Siddhânta</th>
<th>Prof. Coffin.</th>
<th>Hindu error.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sun's and moon's longitude,</td>
<td>2h 30m</td>
<td>3h 56m</td>
<td>-1h 26m</td>
</tr>
<tr>
<td>Moon's distance from node,</td>
<td>63° 50' 37"</td>
<td>65° 12' 37"</td>
<td>-1° 22"</td>
</tr>
<tr>
<td>Sun's daily motion in longitude,</td>
<td>43' 6"</td>
<td>4° 12' 22"</td>
<td>-3° 29' 16"</td>
</tr>
<tr>
<td>Moon's do. do.</td>
<td>56' 53"</td>
<td>57' 45"</td>
<td>-53"</td>
</tr>
<tr>
<td>Sun's apparent diameter,</td>
<td>12° 0' 59"</td>
<td>12° 7' 12"</td>
<td>-6' 13"</td>
</tr>
<tr>
<td>Moon's do. do.</td>
<td>31' 10"</td>
<td>31' 3' 7"</td>
<td>-27"</td>
</tr>
<tr>
<td>Time of apparent conjunction,</td>
<td>29' 2'</td>
<td>29' 45"</td>
<td>-43"</td>
</tr>
<tr>
<td>Parallax in longitude, in time,</td>
<td>3h 40m</td>
<td>5h 32m</td>
<td>-1h 52m</td>
</tr>
<tr>
<td>Amount of greatest obscuration,</td>
<td>1h 10m</td>
<td>1h 36m</td>
<td>-26m</td>
</tr>
<tr>
<td>Time of first contact,</td>
<td>19'</td>
<td>30' 5g'</td>
<td>-11' 5g'</td>
</tr>
<tr>
<td>Time of separation,</td>
<td>4h 50m</td>
<td>6h 38m</td>
<td>-1h 48m</td>
</tr>
<tr>
<td>Duration of eclipse,</td>
<td>2h 30m</td>
<td>2h 23m</td>
<td>+ 7m</td>
</tr>
</tbody>
</table>

26. pp. 327–344. Prof. Weber, of Berlin, has favored us in a pri-
ivate communication with a number of additional synonyms of the names
of the asterisms, derived from the literature of the Brâhmaṇa period.

Mrgaçâras, the fifth of the series, is also styled andhakâ, “the blind,”
apparently from its dimness; âryikâ, “honorable, worthy;” invâkâ, of
doubtful meaning: this latter epithet is also found in some manuscripts
of the Amarakaṇa, as various reading for itâlâ, which is there ex-
pressly declared (I. i. 2. 25) to designate the stars in the head of the
antelope.

Arâd, the sixth asterism, is called bâhu, “arm.” Taking this name
in connection with that of the preceding group, it seems probable that
the Hindus figured to themselves the conspicuous constellation Orion
as a running antelope, of which α, β, and mark the feet: α, then, is
the left fore-foot, or arm. Perhaps the name Mrgavyâdha, “antelope-
hunter,” given to the neighboring Sirius (viii. 10), is connected with the
same fancy.

The Maghâs are called in a hymn of the last book of the Rig-Veda
(x. 85. 13) aghâs: the word means literally “evil, base, sinful,” and its
application to one of the asterisms is so strange that, if not found else-
where, we should be inclined to conjecture a corrupted reading.
The calculation of the elements of the eclipse is thus completed. For the purpose, however, of illustrating the rules of the text (iv. 18–21) for determining, in the case of a solar eclipse, the amount of obscuration at any given moment during the continuance of the eclipse, we add also the following process:

XVI. To find the amount of obscuration of the sun, 2° 38' after first contact.

We make choice of this time, which is equivalent to 27° 13' after sunrise, because the data for finding the parallax in longitude at the moment have already been calculated (see above, XI). By iv. 18, from the

True former half-duration (sphuta sparṣasthityardha), \[3^\text{n} 32^\text{v}\]
deduct the given interval, \[2^\text{n} 38^\text{v}\]

Interval to apparent conjunction (madhyagrahaṇa), \[44^\text{v}\]

To reduce this interval in time to distance in longitude of the centres, we say (iv. 18)

\[60^\text{a} : 664^\text{r} 7^\text{"} :: 44^\text{v} : 8^\text{r} 7^\text{"}\]

This, then, would be the interval in longitude between the two centres at the given moment, if there were no change of the moon’s parallax in longitude during the eclipse, or if the moon actually gained in 2° 29', instead of in 3° 22', the distance intervening between her centre and the sun’s at the moment of first contact. That, however, being not the case, we must reduce the result thus found in the ratio of 3° 22' to 2° 29', or of the true to the mean half-duration. That is to say (iv. 19),

\[3^\text{n} 22^\text{v} : 2^\text{n} 29^\text{v} :: 8^\text{r} 7^\text{"} : 5^\text{r} 59^\text{"}\]

and this result, 5° 59', is the true distance of the two centres in longitude, 27° 13' after sunrise.

A briefer and more obvious method of obtaining the quantity in question would have been to make a proportion as follows: if, at the time of the eclipse, the moon gains upon the sun 27° 29' in 3° 22', what will she gain during 44' ? or

\[3^\text{n} 22^\text{v} : 2^\text{n} 29^\text{v} :: 44^\text{v} : 5^\text{r} 59^\text{"}\]

Upon computation, we find the

Moon’s parallax in latitude, 27° 13' after sunrise,
Moon’s true latitude,
Moon’s apparent latitude,
Its square,
Square of distance in longitude (5° 59’),
Their sum (iv. 20),
Actual distance of centres, deduct from sum of semi-diameters,
Amount of obscuration at given time,

If it were desired to project the eclipse, we should now have to calculate (by iv. 24–25) the deflection (vulana) for the moments of contact, conjunction, and separation, and likewise (by iv. 26) the scale of projection. As we do not, however, intend to present here a projection, and as
at what moment of time they will, allowing for the parallax in longitude, be at that distance from one another. Now as formerly, to find the time of apparent conjunction, we started from that of true conjunction, and arrived at the desired result by a series of approximative calculations of the parallax in longitude, so now, starting from points removed from true conjunction by the given intervals, we shall ascertain, by a similar series of approximations, the times when the distances represented by those intervals will be apparent, or the moments to which contact and separation of the disks will be deferred by parallax in longitude. The results of the calculations, as made by us, are as follows:

<table>
<thead>
<tr>
<th>Time of true conjunction,</th>
<th>25° 27'</th>
<th>25° 27'</th>
</tr>
</thead>
<tbody>
<tr>
<td>subtract and add,</td>
<td>20° 50'</td>
<td>20° 50'</td>
</tr>
<tr>
<td>Times of true contact and separation,</td>
<td>22° 33'</td>
<td>27° 34'</td>
</tr>
<tr>
<td>Sun's longitude, with precession,</td>
<td>2θ 3° 48' 16''</td>
<td>2θ 3° 53' 1''</td>
</tr>
<tr>
<td>Orient ecliptic-point,</td>
<td>5θ 27° 9'</td>
<td>6θ 20° 27'</td>
</tr>
<tr>
<td>Orient-sine,</td>
<td>95'</td>
<td>664'</td>
</tr>
<tr>
<td>Meridian ecliptic-point,</td>
<td>2θ 25° 53'</td>
<td>3θ 23° 56'</td>
</tr>
<tr>
<td>Meridian-sine,</td>
<td>1107'</td>
<td>1320'</td>
</tr>
<tr>
<td>Sine of ecliptic zenith-distance,</td>
<td>1106'</td>
<td>1303'</td>
</tr>
<tr>
<td>Sine of ecliptic-altitude,</td>
<td>3355'</td>
<td>3319'</td>
</tr>
<tr>
<td>Divisor,</td>
<td>908</td>
<td>918°</td>
</tr>
<tr>
<td>Moon's longitude,</td>
<td>2θ 3° 21'</td>
<td>2θ 4° 21'</td>
</tr>
<tr>
<td>Distance from meridian ecliptic-point,</td>
<td>2θ 3° 31'</td>
<td>1θ 19° 35'</td>
</tr>
<tr>
<td>Sine,</td>
<td>1316'</td>
<td>2617'</td>
</tr>
<tr>
<td>Parallax in longitude,</td>
<td>1° 27'</td>
<td>2° 51'</td>
</tr>
</tbody>
</table>

Again, we go on to correct these results by repeated calculations of the parallax, in the mode which has already been sufficiently illustrated. Annexed are the results only:

<table>
<thead>
<tr>
<th>Times of contact and separation,</th>
<th>22° 33'</th>
<th>27° 34'</th>
</tr>
</thead>
<tbody>
<tr>
<td>add correction for parallax,</td>
<td>1° 27'</td>
<td>2° 51'</td>
</tr>
<tr>
<td>Times of contact and separation, once equated,</td>
<td>24° 0v</td>
<td>30° 25v</td>
</tr>
<tr>
<td>Corresponding parallax,</td>
<td>1° 54'</td>
<td>3° 20'</td>
</tr>
<tr>
<td>add to times first obtained,</td>
<td>22° 33'</td>
<td>27° 34'</td>
</tr>
<tr>
<td>Times of contact and separation, twice equated,</td>
<td>24° 27'</td>
<td>30° 54v</td>
</tr>
<tr>
<td>Corresponding parallax,</td>
<td>2° 2v</td>
<td>3° 24v</td>
</tr>
</tbody>
</table>

Without taking the trouble to carry the calculations any farther, we may accept these as the finally determined values of the parallax in longitude at the times of apparent contact and separation. Then, by v. 16,

Parallax in longitude at contact and separation, at apparent conjunction,	2° 2v	3° 24v
Difference of parallaxes,	2θ 55v	2θ 55v
add to former and latter mean half-duration,	53v	29v
True former and latter half-duration,	2θ 29'	2θ 32'
subtract and add from and to time of app. conj.,	2θ 22'	3θ 1v
Times of apparent contact and separation,	2θ 35'	3θ 58v
Orient ecliptic-point, 6° 10' 28' 7° 3° 59'
Sine, 625' 1921'
Orient-sine, 345' 1663'
Sun's hour-angle, 2455p 4279p
Meridian ecliptic-point, 3° 11' 54' 4° 11' 7'
Sine of do., 3363' 3590'
Zenith-distance of do., 19° 16' 24° 53'
Meridian-sine, 1134' 1445'
Sine of ecliptic zenith-distance, 1128' 1374'
Parallax in latitude, 16° 0' S. 19° 29' S.
 deduct true latitude, 3° 46' N. 8° 34' N.
Moon's apparent lat. at beg. and end of eclipse, 12° 14' S. 10° 55' S.

Finally, from the

Square of sum of semi-diameters, 906' 1'' 906' 1''
 deduct squares of app. latitude, 150' 39'' 119' 11''
 remain 755' 22'' 786' 50''
Distance of centres in longitude, 27' 39'' 28' 3''
Corresponding interval, 28' 29'' 28' 29''
Corrected times of beginning and end of eclipse, 25a 28v 30a 29v

It is evidently unnecessary to carry any farther this part of the process; at the time of the eclipse, the increase of the moon's latitude northward, and the increase of her parallax southward, so nearly balance one another, that the additional correction yielded by a new computation would be quite inappreciable—as, indeed, has been, in one of the two cases, that already obtained. In making this corrective calculation we have not followed with exactness the directions given in the commentary under v. 14-17. It is there taught that, after making the first rough determination of the half-duration, based upon the moon's apparent latitude at apparent conjunction, we must turn back to the true conjunction, find the positions of the planets and node at intervals of the half-duration from that point, and make these positions the data of our farther approximative processes. The text itself, as already remarked by us in the notes, shows an utter and provoking want of explicitness with regard to the whole matter, and may be regarded as favoring equally the method of the commentary, our own, or any other that might be devised. We have taken our own course, then, because we were unable to see any sufficient reason for reverting from apparent to true conjunction, as directed by the commentator.

With regard to the next steps, the language of the text is less ambiguous: it distinctly orders us to deduct from and add to the time of true conjunction (tithyanta) the intervals found as the former and latter half-duration, and from the moments thus determined to compute anew, by a repeated process, the parallax in longitude. This is a very laborious operation, and not altogether accurate, although perhaps as much so as any which the Hindu methods admit. As we are supposed to have already ascertained how far apart the two centres must be at the moments of contact and separation, the problem is, evidently, to determine
Square of sum of semi-diameters (30' 6''),
 deduct square of moon's latitude (11' 6''),

remains

Square root of remainder,

This result represents the distance, as rudely determined, of the two centres at the moments of contact and separation. To ascertain the corresponding interval of time, we say (iv. 13)

$$66\frac{4}{7}': 60\frac{4}{7} = 27' 59'''$$

Now, then, from and to the

Time of apparent conjunction,
 subtract and add the half duration,
 Beginning of eclipse,
 End of eclipse,

This is as far as the operation was carried by the native calculator, and with data and results somewhat different from those here given, owing to his neglect to repeat the process of determination of the parallax in longitude in finding the time of apparent conjunction. Unfortunately, however, the text (iv. 14–15; v. 13–17) prescribes a long and tedious series of modifications and corrections of the results so far obtained, of which we shall proceed to perform at least enough to illustrate the method of the process, and the comparative importance of the corrections which it furnishes.

We have first to find the longitude of the sun, moon, and node, at the moments thus determined as those of contact and separation; they are as follows:

Sun's long. at true conj. (25° 20'),
 add for his motion

Sun's long. at beg. and end of eclipse,
 add the precession,

Sun's distance from the vernal equinox,

Moon's long. at app. conj.
 subtract and add motion in 2° 32''

Moon's long. at beg. and end of eclipse,

Node's long. at app. conj.,
 add and subtract

Node's long. at beg. and end of eclipse,

To find, then, the moon's true latitude at contact and separation, we have

Moon's distance from node,
 Sine,
 Moon's latitude,

Next are calculated the moon's parallax in latitude, and her apparent latitude, at the beginning and end of the eclipse, by a process of which the main results are the following:
Now, then, to the

Moon's longitude at true conjunction, \(10^{\circ} 13' 31''\)
add the correction, \(35' 3''\)
Moon's longitude at apparent conjunction, \(10^{\circ} 14' 6''\)

Farther, from the

Node's longitude at true conjunction, \(10^{\circ} 12' 47' 55''\)
deduct the correction, \(9''\)
Node's longitude at apparent conjunction, \(10^{\circ} 12' 47' 46''\)
deduct from moon's longitude, \(10^{\circ} 14' 6''\)
Moon's distance from node, \(10^{\circ} 18' 18''\)
Sine, \(78''\)

Hence the proportion (ii. 57)

\[3438': 270': : 78': 6' 8''\]
gives us the

Moon's true latitude, \(6' 8''\) N.
deduct from parallax in latitude (v. 12), \(17' 14''\) S.
Moon's apparent latitude, \(11' 6''\) S.

XIV. To find the amount of obscuration (grāsa) at the moment of apparent conjunction.

By iv. 10, we add to the

Diameter of the eclipsing body, the moon, \(29' 2''\)
Diameter of the eclipsed body, the sun, \(31' 10''\)
Sum of diameters, \(60' 22''\)
Half-sum of diameters, \(30' 6''\)
deduct moon's apparent latitude, \(11' 6''\)

Amount of greatest obscuration, \(19' 0''\)

This remainder being less than the sun's diameter, the eclipse (iv. 11) is partial only.

XV. To determine the times of the beginning and end of the eclipse respectively.

As the eclipse is a partial one only, we have not to calculate the times of the beginning and end of total obscuration; and indeed, we may well suppose that the Hindus would never venture to calculate those times in a solar eclipse: it is even questionable whether the accuracy of their methods would justify them in ever predicting with confidence that an eclipse would be total.

In the first place, we assume that the moon's apparent latitude, as calculated for the moment of conjunction, remains unchanged during the whole duration of the eclipse, and calculate, by iv. 12–13, what would be, upon that assumption, the interval between the middle of the eclipse and either contact or separation of the disks. That is to say (iv. 12), from the
Meridian ecliptic-point (madhyalagna), 3a 21° 59'
Its sine, 3188'
Its declination, 22° 9' N.
Its zenith-distance, 20° 34' S.
Meridian-sine (madhyajyā), 1207'
Sine of ecliptic zenith-distance (drkkṣhepa), 1188'
Sine of ecliptic-altitude (drggati), 3226'
Divisor (cheda), 916'
Sine of sun's dist. in long. from meridian, 2558'
Parallax in longitude (tambana), 28° 48'
add to time of true conjunction, 25a 2v
Time of conjunction twice equated, 27a 50v

Once more, we repeat the same calculation; its principal results are as follows:

Orient ecliptic-point, 6a 21° 41'
Orient-sine, 702'
Meridian ecliptic-point, 3a 25° 26'
Meridian-sine, 1241'
Sine of ecliptic zenith-distance, 1215'
Sine of ecliptic-altitude, 3216'
Divisor, 919'
Parallax in longitude, 28° 55'
add to time of true conjunction, 25a 2v
Time of apparent conjunction, 27a 57v

A farther repetition of the process would still yield an appreciable correction, but as so many errors have been involved in the preceding parts of the calculation as to render any exactness of result unattainable, and as enough has been done to illustrate the method of correction by successive approximation and the comparative value of the results it yields, we stop here, and rest content with the last time obtained, as that of the apparent conjunction of the sun and moon, or of the middle of the eclipse, at Williams' College.

XII. To calculate the parallax in latitude (nati) for the middle of the eclipse.

This is given us by the proportion (v. 10)

\[3438' : 731' 27'' : \cdot 15 : : 1215' : 17' 14'' S. \]

in which 1215' is the sine of ecliptic zenith-distance, as found in the last process.

XIII. To calculate the moon's latitude, and her apparent latitude, for the middle of the eclipse.

We require first to find the longitude of the moon, and that of her node, for the moment of apparent conjunction, by adding to their longitudes, as already found (above, IX) for the time of true conjunction, their motion during 28° 55v. The amount of motion is found by the proportions

\[60a : 28 55v : : \left\{ \begin{array}{l}
720' 59'' : 35' 3'' \\
3' 14'' : 0' 9''
\end{array} \right. \]
Now, then, by v. 6,
Square of last result, \[\begin{array}{c} \text{9,564'} \\ \text{1,247,689'} \end{array} \]

deduct from square of mer-sine,
remains \[\begin{array}{c} \text{1,238,135'} \\ \text{1113'} \end{array} \]

Square-root,
This, then, is the sine of ecliptic zenith-distance. The sine of ecliptic-altitude is found by subtracting its square from that of radius, and taking the square-root of the remainder; it is found to be 3253'.

6. To find the divisor (cheda), and the sun's parallax in longitude (lambana).

The sine of one sign, or 30°, is 1719'.

\[\begin{array}{c} \text{Square of sin 30°,} \\ \text{divide by} \end{array} \]

\[\begin{array}{c} \text{2,954,961} \\ \text{3,253} \end{array} \]

Divisor (cheda),
\[\text{908} \]

Next, to find the interval on the ecliptic between the sun's place and the meridian:

\[\begin{array}{c} \text{Longitude of meridian ecliptic-point,} \\ \text{do. of sun,} \\ \text{Interval in longitude,} \end{array} \]

\[\begin{array}{c} \text{3° 9' 3' 57''} \\ \text{2° 3° 50' 3' 77''} \\ \text{1° 5' 13' 20''} \end{array} \]

Of this the sine is 1950', and, upon dividing it by 908, the divisor (cheda) above found, the value of the parallax in longitude (lambana) is ascertained to be 2° 21'.

Here is some of the worst blundering which we have yet met with. The sine of 35° 13' is actually 1982', not 1950'; and upon dividing it by 908, we find the quotient to be only 2° 11'.

The calculator assumes the time of apparent conjunction to be determined by this single correction. As the text, however (v. 9), directs that the process be repeated, to insure a higher degree of accuracy, we shall finally quit at this point the guidance of his computations, and go on to apply in full the rules of the Sūrya-Siddhānta.

The sun being west of the meridian, or his longitude being less than that of the meridian ecliptic-point (v. 9), the correction for parallax is additive to the time of true conjunction. Hence, to the

\[\begin{array}{c} \text{Time of true conjunction,} \\ \text{add the correction,} \end{array} \]

\[\begin{array}{c} \text{25a} \\ \text{2° 11'} \end{array} \]

\[\begin{array}{c} \text{Time of conjunction once equated,} \end{array} \]

\[\text{27a 13'} \]

For the time thus found, we now proceed to calculate again the value of the parallax. The results of the calculation are briefly presented below:

\[\begin{array}{c} \text{Sun's longitude at corrected time of conjunction,} \\ \text{Orient ecliptic-point (lagna),} \\ \text{Its sine,} \\ \text{Orient-sine (udayajya),} \\ \text{Sun's hour-angle,} \end{array} \]

\[\begin{array}{c} \text{2° 3° 52' 41''} \\ \text{6° 18° 50'} \\ \text{1110'} \\ \text{614'} \\ \text{3103°} \end{array} \]
In order to this, we must first know the sun’s hour-angle (*nata*), or
distance in time from the meridian; it is determined as follows:

A quarter of the complete day, 15° 0′
add the sun’s ascensional difference, 3° 33′

The sun’s half-day,
deduct from time of conjunction, 18° 33′
25° 0′

Sun’s hour-angle, west,
6° 32′

The sun’s distance from the beginning of the fourth sign was found
above to be 26° 0′ 23″. Its equivalent in right ascension (*lankodayā-
savas*) is found by the following proportion (iii. 49):

\[
30° : 323′ : : 26° 0′ 23′′ : 285′
\]

Now, from the

Sun’s hour-angle, 6° 32′, or

\[
38° 0′
\]

\[
285′
\]

\[
104′
\]

and this remainder, being less than the equivalent of a sign, is reduced
to its value as longitude by the proportion (iii. 48)

\[
323′ : 30° : : 104′ : 9° 3′ 57″
\]

The longitude of the meridian ecliptic-point is accordingly 3° 9′ 3′ 57″:
its sine is 330′.

In criticism of the process as thus conducted, we would only remark
that the quarter of the sun’s day should have been called 15° 2′ 4″ (see
above, VIII. 4), and that to take 323′ as the equivalent in right ascen-
sion of the third and fourth signs is inaccurate, the value given it by
our treatise being 1935′, or 322° 4′.

4. To find the meridian-sine (*madhyajyā*—v. 4–5).

First, the declination of the meridian ecliptic-point is determined by
the proportion (ii. 28)

\[
3438′ : 1397′ : : 3393′ : 1278′ = \sin 23° 3′ 37″
\]

Its value being north, it is deducted from the latitude of the place for
which the calculation is made, since this, though by us reckoned as
north, is to the Hindu apprehension (iii. 14) always south, being meas-
ured south from the zenith to the equator. That is to say,

\[
\text{From the given latitude, } 42° 42′ 51″
\]

\[
deduct decl. of merid. ecliptic-point,
23° 39′ 37″
\]

\[
\text{Meridian zenith-distance (*naddas*)}, 19° 3′ 14″
\]

The sine of this arc, which is 111°7′, is the meridian-sine.

Here is another blunder of the calculator: the sine of 19° 3′ 14″ is
actually 112°7′.

5. To find the sine of ecliptic zenith-distance (*drkkṣahepa*), and the
sine of ecliptic-altitude (*drppati*).

First, by v. 5,

\[
3438′ : 301′ : : 1117′ : 97′ 48″
\]
of Williams' College, 42° 42' 51" N. We present annexed their values as employed by the calculator of the eclipse, and also as calculated by ourselves according to the method taught in our text (iii. 42-45). It will be noticed that the differences are not inconsiderable, and evince much carelessness on the part of the native astronomer; who, moreover, employs vinādīs only in his processes, rejecting the odd respirations, which is an inaccuracy not countenanced by the Sūrya-Siddhānta.

<table>
<thead>
<tr>
<th>Equivalent in oblique ascension:</th>
<th>acc. to calculator</th>
<th>acc. to us.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st sign</td>
<td>008p</td>
<td>108p</td>
</tr>
<tr>
<td>2nd "</td>
<td>1238p</td>
<td>118p</td>
</tr>
<tr>
<td>3rd "</td>
<td>287v or 1732p</td>
<td>1699p</td>
</tr>
<tr>
<td>4th "</td>
<td>359v or 2154p</td>
<td>217p</td>
</tr>
<tr>
<td>5th "</td>
<td>387v or 2333p</td>
<td>2352p</td>
</tr>
<tr>
<td>6th "</td>
<td>383v or 2328p</td>
<td>2332p</td>
</tr>
</tbody>
</table>

The equivalents assigned by the Hindu calculator to the 3rd and 4th signs are moreover, it may be remarked, inconsistent with one another, since the one ought to fall short of 1935p by as much as the other exceeds that quantity.

Now, then, to the

Sun's longitude at conjunction, 1° 13' 31" 17'
add the precession, 20' 10' 36"
Sun's distance from the equinox, 2° 3° 50' 37"

It appears, accordingly, that the sun is in the 3rd sign, and 26° 9' 23" from the beginning of the fourth. Hence the proportion (iii. 46)

\[
30° : 287v :: 26° 9' 23" : 250v
\]

give us 250v as the ascensional equivalent of the part of a sign to be traversed (bhogyāsava). The time of the day, or the sun's distance in time from the eastern horizon, is 25° 2v, or 1502v. Then, from the

Time of conjunction, 1502v
 deduct asc. equiv. of part of 3rd sign, 250v
 remains 1252v
 deduct asc. equiv. of 4th, 5th, and 6th signs, 1134v
 remains 118v

This remainder of time, or of ascension, is reduced to its value in arc of the ecliptic by the proportion (iii. 49)

\[
388v : 30° :: 118v : 9° 7' 25"
\]

Add this result to the whole signs preceding, and the longitude of the orient ecliptic-point (lagna) is found to be 6° 9' 7' 25": its sine is 544' (more correctly, 545').

2. To find the orient-sine (udayājyā—v. 3).
 This is found by the proportion
 \[
 2525' : 1397' :: 544' : 301'
 \]
2525' being the cosine of the latitude, and 1397' the sine of the inclination of the ecliptic (ii. 29).

3. To find the meridian ecliptic-point (madhyālagna—iii. 49).
considerably from both. Our own method, though varying in some respects from that contemplated by the text, is a not less legitimate application of its general methods than either of the others, and it possesses this important advantage over both, that we were able to verify it, and to show, by calculating the mean and true places for the given instant, that the latter was actually the one at which the system made the opposition of the sun and moon to take place: while, on the contrary, in the process now in hand, so many errors have been involved, that, were the same test to be applied, we should find the centres of the sun and moon many minutes apart at the moment fixed upon as that of conjunction, and the place of conjunction as far removed from the point of longitude above determined for it.

X. To find the apparent diameters of the sun and moon.

These quantities are determined by means of the following proportion: as the mean daily motion in yojanas is to the mean diameter in yojanas, so is the true motion in minutes to the true diameter in minutes. That is to say, for the sun and moon respectively,

\[
\frac{11,858\frac{2}{3}}{6500} : 56' \quad 52'' : 34' \quad 10''
\]

\[
\frac{11,858\frac{2}{3}}{4800} : 720' \quad 59'' : 29' \quad 30''
\]

This method is in appearance quite different from that which is prescribed by our text (iv. 2–3), but it is in fact only a simplification, or reduction, of the rules there given. Thus, for the moon, the text gives

m. mot. in minutes : true mot. in min. : m. diam. in yoj. : true diam. in min. \(\times 15\)

Transposing, now, the middle terms, transferring the factor 15 from the fourth term to the first, and noting that the mean motion in minutes, when multiplied by 15, gives the value of the same in yojanas, we have the former proportion, namely,

m. mot. in yoj. : m. diam. in yoj. : true mot. in min. : true diam. in min.

Again, in the case of the sun, the rules of the text give

m. mot. in min. : true mot. in min. : m. diam. in yoj. : true diam. in yoj.

and

true diam. in yoj. = true diam. in min. \(\times 15\) \(\times (\text{sun's orbit} \div \text{moon's orbit})\)

Now transposing the second and third terms of the proportion, substituting for the fourth its equivalent as here stated, and transferring to the first term the last two factors of that equivalent, we have

\[
m. \text{mot. in min.} \times 15^2 \times \frac{\text{sun's orbit}}{\text{moon's orbit}} : \text{m. d. in yoj.} : \text{true mot. in min.} : \text{true diam. in min.}
\]

But the first term, as thus constructed, is, by the method of determination of the planetary orbits (see xii. 81–83), equal to the sun's mean daily motion upon his orbit reckoned in yojanas: hence the proportion becomes for the sun, as for the moon,

m. mot. in yoj. : m. diam. in yoj. : true mot. in min. : true diam. in min.

XI. To calculate the parallax in longitude (lambana), and the time of apparent conjunction (v. 3–9).

1. To find the orient ecliptic-point (lagna) at the moment of true conjunction (iii. 46–48).

In order to this, we require to have first the equivalents in oblique ascension (udayāṣavaś) of the several signs of the zodiac for the latitude
the interval of many of the elements of the calculation, as the sun's and moon's rates of motion, the sun's declination and ascensional difference, etc. In making the transfer, moreover, the longitude of the moon's node has been taken as found for mean equatorial sunrise, without any correction for the equation of time, or for the sun's ascensional difference.

IX. To find the time of true conjunction, and the longitudes of the sun, moon, and moon's node at that time. By ii. 66, from the

Moon's true longitude,

| 1° 8° 30' 13"
| 1° 13° 7' 18"

remain

| 11° 25° 32' 55"
| 720'

the quotient is

| 39° and 44" 55"
| 720'

remain

| 277' 5"

This process shows us that the moon has still 277' 5" to gain upon the sun, in order to arrive at the end of the thirtieth or last day of the lunar month, or at conjunction with the sun.

Next, from the

Moon's true daily motion,

| 720' 59"
| 56' 52"

Moon's daily gain in longitude,

| 664' 7"

Hence the proportion

664' 7" : 660' : 277' 5" : 25° 2'

gives us the time of conjunction, reckoned from sunrise, as 25° 2'.

Now, by iv. 8, we proceed to find the longitudes for that time. The amounts of motion during 25° 2' are found by the following proportions:

\[
\begin{align*}
660' & : 25° 2' :: 720' 59" & : 300' 48" \\
56' 52" & : 23' 43" & 3' 11" & : 1' 19"
\end{align*}
\]

Then, to the

Sun's longitude at sunrise,

| 1° 13° 7' 18"
| 23' 43"

add the correction

Moon's longitude at sunrise,

| 1° 8° 30' 13"
| 5° 0' 48"

add the correction

Moon's longitude at conjunction,

| 1° 13° 31' 1"

Node's longitude at sunrise,

| 1° 12° 49' 14"
| 1' 19"

deduct the correction

Node's longitude at conjunction,

| 1° 12° 47' 55"

The mode of proceeding adopted by us above, in the lunar eclipse, for finding the time of the middle of the eclipse, and the longitudes of the sun and moon at that time, is, as will not fail to be observed, quite different from that of the native calculator of this eclipse. That followed by Davis, or his native assistants (As. Res., ii. 273 etc.), varies
The sun's declination being north, sunrise on the given parallel precedes sunrise on the equator, and hence this result—which is called the carakālās, "minutes (kalā) of longitude corresponding to the ascensional difference (cara)—is to be subtracted from the sun's longitude as formerly found. That is to say,

Sun's longitude at equatorial sunrise, 1° 14° 7' 30''

deduct the correction (carakālas), 3' 29''

Sun's longitude at sunrise, lat. 42° 42' 51'' N.,
long. 149° 2' 30'' W. from Lanka, 1° 14° 4' 10''

In finding the corresponding value of the moon's longitude we apply first a correction for the sun's equation of place; it is, in fact, the equation of time, calculated after the entirely insufficient method which we have already fully exposed, in connection with part V of the preceding process. The proportion is (ii. 46) as follows:

21,600' : 790° 35'' :: 1° 14° 11'' : 2' 43''

Here, again, bad is made worse by taking as the second term of the proportion the moon's mean, instead of her true, rate of motion. It is to be noticed that a like correction should have been applied also to the sun's longitude, but was omitted by the calculator. We have, then,

Moon's longitude, mean equatorial sunrise, 1° 21° 16' 20''

add the correction for the equation of time, 2' 43''

Moon's longitude, true equatorial sunrise, 1° 21° 19' 3''

Now we apply farther the correction for the sun's ascensional difference (carasanskāra); it is calculated in the same manner with that of the sun, and its amount is found to be 47' 51''.

Moon's longitude, true equatorial sunrise, 1° 21° 19' 3''

deduct the correction for the sun's asc. diff., 47' 51''

Moon's longitude at sunrise, lat. 42° 42' 51'' N.,
long. 149° 2' 30'' W. from Lanka, 1° 20° 31' 12''

On comparing the longitudes of the sun and moon, as thus determined, it is seen that the time of conjunction is already past. Hence the calculation is carried a day backward, by subtracting from the longitude of each body its motion during a day. That is to say,

<table>
<thead>
<tr>
<th>Longitude,</th>
<th>Sun's node</th>
</tr>
</thead>
<tbody>
<tr>
<td>sunrise following eclipse.</td>
<td>1° 12° 46' 3''</td>
</tr>
<tr>
<td>day's motion.</td>
<td>+ 3' 11''</td>
</tr>
<tr>
<td>Longitude,</td>
<td>Sun</td>
</tr>
<tr>
<td>sunrise preceding eclipse.</td>
<td>1° 14° 7' 30''</td>
</tr>
<tr>
<td>56° 52''</td>
<td>= 1° 13° 7' 18''</td>
</tr>
<tr>
<td>Moon,</td>
<td>1° 20° 31' 12''</td>
</tr>
<tr>
<td>12° 6' 59''</td>
<td>= 1° 8° 30' 13''</td>
</tr>
<tr>
<td>Moon's node,</td>
<td>1° 12° 46' 3''</td>
</tr>
</tbody>
</table>

This is an entirely uncalled-for, and a highly inaccurate proceeding. By the rule given in our text (ii. 66), it is just as easy and regular a process to find from any given time the interval to the beginning of the current lunar day by reckoning backward, as that to the end of the day by reckoning forward. And to assume that the whole calculation may be transferred from one sunrise back to the preceding by simply deducting the amount of motion in a day as determined for the former time is to take a most unwarrantable liberty, and to ignore the change during
1. To calculate the precession of the equinoxes (iii. 9–12).

The proportion

1,577,917,828d : 600cvx : : 714,404,106,527 : 271,650cvx 8s 7° 45′ 22″

gives us the amount of the motion of the equinox in its own circle of libratory revolution, since the beginning of things. Rejecting complete revolutions, and deducting 9° from the fraction of a revolution, we have the distance of the equinox from the origin of the sidereal sphere, in terms of its own revolution, as 67° 45′ 22″: three tenths of this, or 20° 19′ 36″, is the amount of the precession.

2. To calculate the sun’s declination.

Sun’s longitude, 18 14° 7′ 39″
Precession, 20° 19′ 36″
Sun’s distance from vernal equinox, 28 4° 27′ 15″
Sine, 3101′

Then, by ii. 28,

3438′ : 1397′ : : 3101′ : 1260′ = sin 21° 31′ 3″

the sun’s declination is therefore 21° 31′ 3″.

3. To calculate the sun’s ascensional difference.

The radius of the sun’s diurnal circle (dyujya—ii. 60) is 3199″.

The equinoctial shadow in the given latitude is 114.07, being found by the proportion (iii. 17)

\(\cos \text{lat.} : \sin \text{lat.} : : \text{gnom.} : \text{eq. shad.} \)

or

2525′ : 2330′ : : 124 : 114.07

Again, to find the earth-sine (kuja—ii. 61),

124 : 114.07 : : 1260′ : 1162′

And, to find the sine of ascensional difference,

3199′ : 3438′ : : 1162′ : 1249′

The corresponding arc is 21° 19′, or 1279′; and since a minute of arc is equivalent to a respiration of time, the sun’s ascensional difference in time is 1279s, or 213s, or 3s 33s, rejecting the odd respiration.

4. To calculate the length of the sun’s day.

The sun being in the third sign, of which the equivalent in right ascension (iii. 42–45) is 1935°, the excess of his day over 60 nāḍis is found by the proportion

1800′ : 1935′ : : 59′ 8″ : : 63p

whence the length of his day is 21,663p.

In this calculation of the length of the sun’s day, the operator has taken the mean, instead of the true, motion of the sun, which is obviously less accurate, and which is contrary to the meaning of the rule of the text (ii. 59), as explained by the commentator.

Now, in order to find the difference between the sun’s longitude at sunrise on the equator and sunrise on the given parallel of north latitude, we make a proportion, as follows: if in his whole day the sun moves an amount equal to his daily motion, how much will he move during an interval corresponding to his ascensional difference? or

21,663p : 59′ 8″ : : 1279p : 3′ 29″

VOL. VI.

58
This calculation exhibits a rather serious error: the sine of 34° 24', the anomaly, is 1942', not 1927'. The final result, however, is not perceptibly modified by it: the equation ought to be 1° 14' 30'', and the true longitude 1° 14° 7' 58''.

VI. To find the moon's true longitude.

\[
\begin{align*}
\text{Moon's mean anomaly,} & \quad 18^\circ 30' 14'' \\
\text{Sine,} & \quad 1858' \\
\text{Diminution of epicycle,} & \quad 11' 2'' \\
\text{Dimensions of epicycle,} & \quad 31^\circ 48' 58'' \\
\text{Equation of the centre,} & \quad + 2^\circ 47' \\
\end{align*}
\]

Hence, to the

\[
\begin{align*}
\text{Moon's mean longitude,} & \quad 18^\circ 18' 20'' \\
\text{add the equation,} & \quad 2^\circ 47' \\
\text{Moon's true longitude,} & \quad 21^\circ 16' 20'' \\
\end{align*}
\]

VII. To calculate the true daily motions of the sun and moon.

The equations of motion for the sun and moon have been found by the calculator of the eclipse by the following proportion: as the whole orbit of either planet is to its epicycle, so is its mean daily motion to the required equation. That is to say, for the sun,

\[
360^\circ : 13^\circ 48' 48'' :: 59' 8'' : 2' 16''
\]

which, by ii. 49, is subtractive. Hence the sun’s true motion is 59' 8'' - 2' 16'', or 56' 52''.

Again, for the moon,

\[
360^\circ : 31^\circ 48' 58'' :: 790' 35'' : 69' 36''
\]

And the moon’s true motion is 790' 35'' - 69' 36'', or 720' 59''.

These calculations are exceedingly incomplete and erroneous, as may readily be seen by referring to the corresponding process in the other eclipse, or to that given as an illustration in the note to ii. 47-49. The actual value of the sun's equation of motion, as fully calculated by the method of our treatise, is only 1° 51''; that of the moon is only 58' 49''; whence the true motions are 57' 17'' and 731' 46'' respectively. These are elements of so much importance, and they enter so variously into the after operations, that we have hesitated as to whether it would not be better to cancel the whole work of the Hindu calculator from this point onward, and to perform it anew in a more exact manner; but we have finally concluded to present the whole as it is, as a specimen—although, we hope, not a favorable one—of native work; pointing out, at the same time, its deficiencies, and cautioning against its results being accepted as the best that the system is capable of affording.

We have thus far found the true longitudes of the sun and moon for the moment of mean sunrise at the equator, upon the meridian of the given place. We desire now farther to find the same data for the moment of sunrise upon the same meridian in latitude 42° 42' 51'' N.

VIII. To find the longitudes of the sun and moon at sunrise in long.

\[
149^\circ 2' 30'', \text{ lat.} 42^\circ 42' 51'' N.
\]
To ascertain the values of the same quantities at mean sunrise upon the equator, on the meridian of the given place.

Adopting 75° 50' as the longitude of the Hindu meridian east from Greenwich, we have, as the interval in longitude of Williams' College from it, 140° 2' 30'', which is equal to 24° 80' 2P. The latitude is 49° 42' 51''. We have, then, first, to determine the distance of the place in question, upon its own parallel of latitude, from the Hindu meridian.

The equatorial circumference of the earth has been found above (note to i. 59–60) to be 5059.64 yojanas. Its circumference upon the parallel of latitude of Williams' College is found (i. 60) by the following proportion:

\[3.438' = (R): 2555' = (\cos 42° 42' 51'') : 5059.64 : 37157.97 \]

The *deñántara*, or difference of longitude in yojanas, is then determined thus:

\[609 : 249 : 50' 2P : 37157.97 : 15381.41 \]

And the *deñántaraphala*, or correction for difference of longitude, is calculated from the daily motion of each body, by such a proportion as the one subjoined, which gives the sun's correction:

\[37157.97 : 15381.41 : 509' 8'' : 24' 27'' \]

We omit the other proportions, and merely present their results in the following table:

<table>
<thead>
<tr>
<th></th>
<th>Sunrise at Lankā</th>
<th>Correction</th>
<th>Sunrise on giv. merid.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sun</td>
<td>18° 12° 29' 1''</td>
<td>24° 27''</td>
<td>18° 12° 53' 28''</td>
</tr>
<tr>
<td>Moon</td>
<td>18° 13° 2' 8''</td>
<td>5 27 12</td>
<td>18° 18° 39' 20''</td>
</tr>
<tr>
<td>Sun's apogee</td>
<td>28° 17° 17' 23''</td>
<td>0</td>
<td>28° 17° 17' 23''</td>
</tr>
<tr>
<td>Moon's apogee</td>
<td>28° 21° 57' 49''</td>
<td>2° 45''</td>
<td>28° 22° 0' 34''</td>
</tr>
<tr>
<td>Moon's node</td>
<td>18° 12° 47' 22''</td>
<td>1° 19''</td>
<td>18° 12° 46' 3''</td>
</tr>
</tbody>
</table>

We have already (note to i. 63–65) called attention to the excessively awkward and cumbersome character of this process for making the correction for difference of meridian.

To find the sun's true longitude.

From the longitude of the sun's apsis, deduct sun's mean longitude (ii. 29),

\[28° 17° 17' 23'' \]

\[18° 12° 53' 28'' \]

Sun's mean anomaly, 18° 4° 33' 55''

Sine, 1937''

The diminution of the sun's epicycle is now found by the following proportion (ii. 38):

\[3.438' : 20' : 1927' : 11' 12'' \]

The dimensions of the epicycle are, then (ii. 34), 14° — 11' 12'', or 18° 48' 48''. Next, the proportion (ii. 39)

\[360° : 13° 48' 48'' : 1927' : 74' 11'' \]

gives us the sun's equation of the centre, which, by ii. 45, is additive. Hence to the

Sun's mean longitude,

\[18° 12° 53' 28'' \]

add the equation,

\[1° 14' 11'' \]

Sun's true longitude,

\[18° 14° 7' 39'' \]
same with those illustrated by us in the notes to i. 21–23, 24, 48, 48–51, above. It will be noticed that the Hindu astronomer, at least when working out an illustrative process, like the one in hand, scorns to make use of any of the means for reducing the labor of computation which the text directly or impliedly permits, and of which, in our own calculations, we have been glad to avail ourselves.

II. To ascertain the mean longitudes of the sun, the moon, the sun’s apsis, the moon’s apsis, and the moon’s node, for mean midnight on the Hindu meridian, at the given interval from the creation.

The amount of motion, since the creation, of the bodies named, in their order, is found by the following series of proportions:

\[
\begin{align*}
1,577,917,828:714,404,106,527 & : 4,320,000 : 1,955,884,955\text{rev} \quad 1^\circ 12^\circ 14^\prime 14^\prime\prime \\
1,577,917,828:714,404,106,527 & : 57,753,336 : 26,147,889,118\text{rev} \quad 1^\circ 9^\circ 44^\prime 29^\prime\prime \\
1,577,917,828,000:714,404,106,527 & : 387 : 175\text{rev} \quad 2^\circ 17^\circ 17^\prime 23^\prime\prime \\
1,577,917,828:714,404,106,527 & : 488,203 : 22,134,469\text{rev} \quad 2^\circ 21^\circ 56^\prime 9^\prime\prime \\
1,577,917,828:714,404,106,527 & : 332,238 : 105,146,020\text{rev} \quad 10^\circ 17^\circ 11^\prime 50^\prime\prime \\
\end{align*}
\]

Rejecting whole revolutions, and, in the case of the moon’s node, subtracting the fraction from a whole revolution, we have, as the mean longitudes required:

Sun, \(1^\circ 12^\circ 14^\prime 14^\prime\prime\)

Moon, \(1^\circ 9^\circ 44^\prime 29^\prime\prime\)

Sun’s apogee, \(2^\circ 17^\circ 17^\prime 23^\prime\prime\)

Moon’s apogee, \(2^\circ 21^\circ 56^\prime 9^\prime\prime\)

Moon’s node, \(1^\circ 12^\circ 48^\prime 10^\prime\prime\)

The Hindu calculator has taken, in the case of the moon’s apsis and node, the numbers of revolutions given by the text, omitting the correction of the \(b\text{\textcy}a\). We have not, in order to test the accuracy of his arithmetical operations, worked over again the proportions, excepting in two instances, the first and last: our results differ but slightly from those above given (we find the seconds of the sun’s place to be 40”, and the minutes and seconds of the node’s motion to be 12’ 43”)—not enough to render any modification necessary.

III. To ascertain the values of the same quantities at mean sunrise on the equator, or 6 o’clock.

In order to this, we must add to each planet’s longitude one fourth the amount of its mean motion in a day. We require, then, the mean daily motions. They are found as follows, taking the sun as an example:

\[
1,577,917,828:4,320,000\text{rev} : 1^\circ 59^\prime 8^\prime 10^\prime\prime 10^\prime\prime\prime 4
\]

We omit the other proportions and their results, as the latter have been fully stated in the table of mean motions of the planets (note to i. 29–34). Adding a quarter of the daily motion, we have as follows:

<table>
<thead>
<tr>
<th></th>
<th>Long. at midnight</th>
<th>Correction</th>
<th>Long. at sunrise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sun</td>
<td>(1^\circ 12^\circ 14^\prime 14^\prime)</td>
<td>(14^\prime 47^\prime)</td>
<td>(1^\circ 12^\circ 26^\prime 1^\prime)</td>
</tr>
<tr>
<td>Moon</td>
<td>(1^\circ 9^\prime 44^\prime 29^\prime)</td>
<td>(3^\prime 17^\prime 39^\prime)</td>
<td>(1^\circ 13^\prime 3^\prime 8^\prime)</td>
</tr>
<tr>
<td>Sun’s apogee</td>
<td>(2^\circ 17^\prime 17^\prime 23^\prime)</td>
<td>(0^\prime)</td>
<td>(2^\circ 17^\prime 17^\prime 33^\prime)</td>
</tr>
<tr>
<td>Moon’s apogee</td>
<td>(2^\circ 21^\prime 56^\prime 9^\prime)</td>
<td>(1^\prime 40^\prime)</td>
<td>(2^\circ 21^\prime 57^\prime 46^\prime)</td>
</tr>
<tr>
<td>Moon’s node</td>
<td>(1^\circ 12^\prime 48^\prime 10^\prime)</td>
<td>(-)</td>
<td>(1^\circ 12^\prime 47^\prime 22^\prime)</td>
</tr>
</tbody>
</table>
I. To find the sum of days (ahargama) from the commencement of the planetary motions to the time of calculation. The eclipse in question occurs at the close of the month Vāciṣṭaka, the second month of the luni-solar year, in the 1777th year of the era of Čālivāhana (see add. note 12). To compute, then, the number of whole years, and to reduce them, with the remaining part of a year, to mean solar days, we proceed as follows:

\begin{align*}
\text{Sandhi at the beginning of the kalpa,} & \quad 1,728,000 \\
\text{Six maṇevaṅgradas,} & \quad 1,850,688,000 \\
\text{Twenty-seven maṇḍyugas of the seventh Manu,} & \quad 116,640,000 \\
\text{deduct the time spent in creation,} & \quad 1,669,056,000 \\
\text{From creation to beginning of 28th maṇḍyuga,} & \quad 1,951,992,000 \\
Kṛta yuga of 28th or current maṇḍyuga, & \quad 1,728,000 \\
Tretā yuga of & \quad 1,296,000 \\
Devāpara yuga of & \quad 864,000 \\
Kali yuga, to era of Čālivāhana, & \quad 3,179 \\
\text{Complete years elapsed of the era,} & \quad 1,776 \\
\text{From the creation to end of March, 1854, complete years,} & \quad 1,955,884,955 \\
to reduce to solar months, multiply by & \quad 12 \\
\text{Solar months,} & \quad 23,470,619,460 \\
\text{add month of current year elapsed,} & \quad 1 \\
\text{Whole number of solar months,} & \quad 23,470,619,461 \\
\end{align*}

Now, to find the intercalary months, we make the proportion

\[
51,840,000 : 1,593,336 :: 23,470,619,461 : 721,384,701
\]

Then, to

\begin{align*}
\text{Solar months elapsed,} & \quad 23,470,619,461 \\
\text{add intercalary months,} & \quad 721,384,701 \\
\text{Lunar months elapsed,} & \quad 24,192,004,162 \\
to reduce to lunar days, multiply by & \quad 30 \\
\text{Lunar days,} & \quad 725,760,124,860 \\
\text{add for current month,} & \quad 29 \\
\text{Whole number of lunar days,} & \quad 725,760,124,889 \\
\end{align*}

Farther, to find the number of tithikṣhayas, or omitted lunar days, in this period, we say

\[
1,603,000,080 : 25,082,352 :: 725,760,124,889 : 11,356,018,362
\]

Next, from

\begin{align*}
\text{Lunar days elapsed,} & \quad 725,760,124,889 \\
\text{deduct omitted lunar days,} & \quad 11,356,018,362 \\
\text{Mean solar days elapsed,} & \quad 714,404,106,527 \\
\end{align*}

This, then, is the required ahargama, or sum of days from the commencement of the planetary motions to about the time of new moon, May, 1854. The processes by which it is found are in all respects the
At the elevation, then, which the moon has when in opposition, 3' 7 make a digit, and by this amount the values of the disk of the moon, the shadow, and the latitudes, are to be divided, in order to reduce them to a scale upon which they may be plotted. It is evident that, in strictness, the same calculation requires to be made also for the time of contact and the time of separation, or the time of any other phase of which the projection is to serve as an illustration; but it is evident also that this is wellnigh impracticable, since one projection could then be used to illustrate only a single phase, unless several different scales should be employed in the same figure.

It now only remains for us to present a comparison of the elements of the eclipse, as thus calculated, with their true values as determined by modern astronomical science. This is done in the annexed table. The true elements we take from the American Nautical Almanac for 1860. In comparing the time of the middle of the eclipse, we take, as already mentioned, the value of it given by the Hindu process as calculated from mean midnight.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Time of opposition in long., 5 h 57 m 35 s W. M.</td>
<td>5 h 27 m 10 s W. M.</td>
<td>+ 30 m 24 s</td>
</tr>
<tr>
<td>Moon's long. at opposition, 136° 21'</td>
<td>137° 35' 53' 7"</td>
<td>- 1° 15'</td>
</tr>
<tr>
<td>" lat. at "</td>
<td>16° 25' 1" S.</td>
<td>35° 42' 1" 1 S.</td>
</tr>
<tr>
<td>" hourly motion in long."</td>
<td>35° 3' 7"</td>
<td>38° 0' 6"</td>
</tr>
<tr>
<td>Semi-diameter of sun, 16° 42'</td>
<td>16° 15' 2"</td>
<td>16° 42' 1" 6"</td>
</tr>
<tr>
<td>do. of moon, 17° 20'</td>
<td>16° 42' 1" 6"</td>
<td>16° 42' 1" 6"</td>
</tr>
<tr>
<td>do. of shadow, 45° 15'</td>
<td>45° 16' 1"</td>
<td>45° 16' 1"</td>
</tr>
<tr>
<td>Amount of obscuration, 1.33</td>
<td>0.812</td>
<td>+</td>
</tr>
<tr>
<td>Whole duration of eclipse, 3 h 37 m 44 s</td>
<td>2 h 52 m 24 s</td>
<td>+</td>
</tr>
</tbody>
</table>

25. p. 209. Our next note is a

Calculation, according to Hindu Data and Methods, of the Solar Eclipse of May 26th, 1854.

For the Latitude and Longitude of Williams' College, Williamstown, Mass.

As has been already mentioned in the closing note to the fifth chapter, the following calculation of a solar eclipse was mainly made for the translator, while in India, by his native assistant. Some additional calculations have been appended here by us, in order to render the whole process a more complete illustration of the rules as given in the text of our treatise; and we have also had to reject and replace certain parts of the work actually done, on account of their inaccuracy. For the most part, we present the work as it was made, although involving some repetitions which might be regarded as superfluous, after the explanations and illustrations already given in the notes and in the preceding calculation of a lunar eclipse. The eclipse selected is the one calculated and delineated in Prof. James H. Coffin's useful work, entitled "Solar and Lunar Eclipses familiarly illustrated and explained, with the method of calculating them, according to the theory of Astronomy as taught in New-England Colleges" (New York, 1845).
Next, the proportion

\[3.438' : 1397' : 2441' : 992' = \sin 16^\circ 47' \]

shows us that the ecliptic-deflection is \(16^\circ 47'\); it is, as in the former case, south.

d. To find the deflection, in digits.

From the deflection for latitude, \(28^\circ 34'\) N.

deduct the ecliptic-deflection, \(16^\circ 47'\) S.

remains the net deflection, in arc, \(11^\circ 47'\) N.

its sine is \(702'\)

divide by \(70\)

Deflection, in digits,\(104.03\) N.

3. For the end of the eclipse.

Of this process, which is throughout closely analogous to the last, we shall present only a brief statement of the results.

Hour-angle of the centre of the shadow, \(322^\circ\) E.

Distance of the centre of the moon in right ascension, \(59^\circ\) E.

Moon's hour angle, \(381^\circ\) E.

do. corrected, \(50^\circ 20'\)

Sine, \(320'\)

Deflection for latitude, \(3^\circ 21'\) N.

Moon's distance from vernal equinox \(+3^\circ\), \(7^\circ 17^\circ 24'\)

Arc determining sine, \(47^\circ 24'\)

Sine, \(2530'\)

Ecliptic-deflection, \(17^\circ 24'\) S.

Net deflection, in arc, \(14^\circ 3'\) S.

do. in digits, \(114.93\) S.

The mode of application of these quantities in making a projection of an eclipse is sufficiently explained in the notes to the sixth chapter, and illustrated by the figure there given, which is adapted to the conditions of the eclipse here calculated. All the quantities entering into the projection, however, of which the value has been stated in minutes, require also to be reduced to digits, according to a scale determined by the following process.

X. To determine the scale of projection of the disks and latitudes (iv. 26).

This process we will perform only for the moment of opposition, or for the middle of the eclipse. At this time, as has been seen above, we have

Moon's half-day, \(6416^p\)

do. hour-angle (nata), \(19219\)

do. altitude in time (unana), \(44959\)

add \(6416^p \times 3\)

\(19245^p\)

the sum is \(23743^p\)

divide by \(6416^p\)

the quotient is \(3.7\)
in our projection, given in connection with the sixth chapter, we were obliged to exaggerate it somewhat, in order to make it perceptible.

2. For the beginning of the eclipse.

As, owing to the moon’s motion in latitude and longitude, her declination, and so also her ascensional difference, are not precisely the same at the beginning and end of the eclipse as at the moment of opposition, we ought in strictness to repeat the first part of the preceding calculation, determining anew the length of the moon’s half-day, as it would be if she made her whole revolution about the earth with those declinations respectively. This we take the liberty of omitting to do, as the modification thus introduced into the process would be of very small importance.

a. To find the moon’s corrected hour-angle.

And first, for the sun’s hour-angle:

- Time of first contact, reckoned from sunrise, 32h 51½p, or 11,830p
- deduct the whole day, 9,192p
- remain 2,638p
- deduct from the half-night, 6,335p
- Sun’s distance in time from inferior meridian, 3,597p

This, then, is the hour-angle of the centre of the shadow at the time of contact. The distance of the centre of the moon in longitude from that of the shadow was found above (under VIII) to be 61° 35″. This is reduced to its value in right ascension by the proportion

180° : 179° 3p : 61° 35″ : 61p.4

Now, then,

- from the hour-angle of the shadow, 3,597p
- deduct the difference of the moon’s right ascension, 61p
- Moon’s hour-angle at beginning of eclipse, 3,536p

This is virtually an application of the process taught in iii. 50.

The moon’s hour-angle is now corrected, as before, by the proportion

6416p : 90° : : 3536p : 49° 36′

The sine of 49° 36′ is 2617′.

b. To find the deflection for latitude.

The proportion

3438′ : 2158′ : : 2617′ : 1643′ = sin 28° 34′

gives us the deflection for latitude as 28° 34′, which is north, as before.

c. To find the ecliptic-deflection.

Moon’s distance from vernal equinox at opposition, 4° 16° 21′
- deduct motion during 4° 39½ 2p, 1° 6′
- do. at time of contact, 4° 15° 15′
- add a quadrant, 3p
- sum, 7° 15° 15′
- arc determining sine, 45° 15′
- sine, 2441†
b. To find the hour-angle, and the corrected hour-angle.
At the moment of opposition, the moon’s hour-angle is evidently the same with that of the sun. Hence it may be found as follows:

Time of opposition reckoned from sunrise, \(37^{\text{a}} 31^{\text{v}}\), or \(13,569^{\text{p}}\)
Deduct the whole day, \(9,192^{\text{p}}\)
Remains \(4,377^{\text{p}}\)
Deduct from the half-night, \(6,235^{\text{p}}\)
Sun’s distance in time from inferior meridian, \(1,921^{\text{p}}\)

The moon’s distance eastward from the upper meridian is accordingly \(1921^{\text{p}}\). This is corrected, or reduced to its proportional value as a part of the moon’s arc of revolution from the horizon to the meridian, by the following proportion:

\[6416^{\text{p}} : 90^{\circ} :: 1921^{\text{p}} : 36^{\circ} 57^{\prime}\]

The moon’s corrected hour-angle, then, is \(26^{\circ} 57^{\prime}\) : its sine is \(1557^{\prime}\).

\(c\). To determine the amount of deflection for latitude (\(\text{valanānāḍa}, \text{or āksha valana}\) — iv. 24).

The sine of the latitude of Washington, \(38^{\circ} 54^{\prime}\), is \(2158^{\prime}\). Hence the proportion

\[3438^{\prime} : 1557^{\prime} :: 2158^{\prime} : 777^{\prime} = \sin 16^{\circ} 31^{\prime}\]

gives us \(16^{\circ} 31^{\prime}\) as the value of the quantity sought. The moon being in the eastern hemisphere, it is to be reckoned as north in direction.

\(d\). To determine the amount of deflection for ecliptic-deviation (\(\text{āyana valana}\) — iv. 25).

Moon’s distance from vernal equinox,
Add a quadrant, \(4^{\circ} 16^{\circ} 21^{\prime}\)
Their sum, \(3^{\circ}\)
Arc determining sine, \(7^{\circ} 16^{\circ} 21^{\prime}\)
Sine, \(46^{\circ} 21^{\prime}\)

\(2486^{\prime}\)

Hence, by ii. 28, the proportion

\[3438^{\prime} : 1397^{\prime} :: 2486^{\prime} : 1010^{\prime} = \sin 17^{\circ} 6^{\prime}\]

gives us \(17^{\circ} 6^{\prime}\) as the amount of declination of the point of the ecliptic which is a quadrant in advance of the moon, and this is the deflection required. Its direction is south. We are now ready for the final process.

\(e\). To ascertain the net amount of deflection (\(\text{valana}\)), in digits.

From the ecliptic-deflection, \(17^{\circ} 6^{\prime} \text{ S.}\)
Deduct the deflection for latitude, \(16^{\circ} 31^{\prime} \text{ N.}\)
Remains the net deflection, in arc, \(35^{\prime} \text{ S.}\)
Divide (iv. 25) by \(70\)

Deflection in digits, \(04.50 \text{ S.}\)

It thus appears that, at the moment of opposition, the part of the ecliptic in which the moon is situated very nearly coincides in direction with an east and west circle. The amount of deflection is so small that
The proper calculation of the eclipse is now completed. If, however, we desire to project it, we have still to determine the valana, or deflection of the ecliptic from an east and west line, for its different phases, as also the scale of projection. We will therefore proceed to calculate them, deferring to the end of the whole process any comparison of the results we have obtained with those given by modern astronomical science.

IX. To calculate the deflection of the ecliptic from an east and west line (valana) for the middle, beginning, and end of the eclipse.

1. For the middle of the eclipse.
 a. To find the length of the moon's day and night respectively at the given time.

 - Moon's longitude at opposition, 3° 25° 56'
 - Precession, 20° 25'
 - Moon's distance from vernal equinox, 4° 16° 31'
 - Arc determining sine, 43° 39'
 - Sine, 2372'

 The moon's declination is then found by the following proportion (ii. 28):

 \[3438' : 1397' : : 2372' : 964' = \sin 16° 17' \]

 Now, from

 - Moon's declination 16° 17' N.
 - deduct her latitude (ii. 58), 16° S.
 - Moon's true declination, 16° 1' N.
 - Sine of do., 948'
 - Versed sine of do., 135'
 - deduct from radius (ii. 60), 3438'
 - Moon's day-radius, 3303'

 Again, to find the earth-sine, we say (ii. 61),

 \[124° : 94.68 : : 948' : 765' = \text{earth-sine.} \]
 and to find the ascensional difference (ii. 61–62),

 \[3303' : 3438' : : 765' : 765' = \sin 13° 24' \text{ or } 804'. \]

 The excess of the moon's complete revolution over a sidereal day is found by the proportion (ii. 59)

 \[1800' : 1795° : : 8.49' 33'' : 8.489' \]

 Adding this to a sidereal day, or 21,600°, we find that the moon's day is of 22,448°, of which one quarter is 5612°. Increase and diminish this by the moon's ascensional difference (ii. 62), and the half-day and half-night are found to be 6416° and 4808° respectively.

 All this laborious process of ascertaining the length of the moon's half-day, or the time which, with the given declination, she would occupy in rising from the horizon to the meridian, is rendered necessary by the correction which the commentary applies to the rule of the text in which the moon's hour-angle is involved, as pointed out in the note to iv. 24–25 (p. 284, above). We now proceed
Farther,

To and from moon’s long. at opposition, 3° 25' 56’ 3° 25' 56’
add and subtract motion during half-duration, 1° 5’ 1° 5’
Moon’s long. at end and beginning of eclipse, 3° 27’ 1’ 3° 24’ 51’
From and to long. of node at opposition, 9° 22’ 27’ 21” 9° 22’ 27’ 21”
subtract and add motion during half-duration, 14” 14”
Long. of node at end and beginning of eclipse, 9° 22’ 27’ 21” 9° 22’ 28’
Moon’s distance from node, 6° 4° 34’ 6° 2° 23’
Are determining sine, 4° 34’ 2° 23’
Sine, 274’ 143’
Moon’s latitude at end and beginning of eclipse, 21’ 31” S. 11’ 14” S.

From these valuations of the latitude we now proceed to calculate anew, in the same manner as before, the half-durations, as follows:

Square of half-sum of diameters,	3919’	3919’
deduct squares of latitude,	463’	126’
remain,	3456’	3793’
Square roots of remainders,	58’ 47”	61’ 35’

And the proportions

79° 48” : 60° :: 58° 47” : 4° 26’ 3p
61° 35” : 4° 39’ 2p

give us the corrected values of the intervals between opposition and contact and separation respectively, or the former and latter half-durations, as 4° 39’ 2p and 4° 26’ 3p.

The text contemplates the repetition of this corrective process, if still greater accuracy be required in the results attained: we have not thought it worth while to carry the calculation any farther, as a second correction would be of altogether insignificant amount.

By a like process, the former and latter half-times of total obscuration, and the moon’s latitude at immersion and emergence, are found to be as follows:

Moon’s latitude at immersion and emergence, 14’ 36” 18’ 13’
Half-times of total obscuration, 10 42’ 3p 10 29’ 4p

By adding the two halves we obtain

Duration of the eclipse (sthiti), 9a 5’ 5p
do. of total obscuration (vimārdha), 3a 12’ 1p

And by subtracting and adding the half-times of duration and of total obscuration from and to the time of opposition (iv. 16–17), we obtain the following scheme for the successive phases of the eclipse:

<table>
<thead>
<tr>
<th>Phase</th>
<th>Time of occurrence: after mean midnight</th>
<th>after sunrise</th>
</tr>
</thead>
<tbody>
<tr>
<td>First contact,</td>
<td>5° 23’ 4p</td>
<td>3° 21’ 4p</td>
</tr>
<tr>
<td>Immersion,</td>
<td>53° 20’ 3p</td>
<td>35° 48’ 3p</td>
</tr>
<tr>
<td>Middle of eclipse,</td>
<td>55° 3’ 0p</td>
<td>37° 31’ 0p</td>
</tr>
<tr>
<td>Emergence,</td>
<td>56° 32’ 4p</td>
<td>39° 0’ 4p</td>
</tr>
<tr>
<td>Last contact,</td>
<td>59° 25’ 3p</td>
<td>41° 5’ 3p</td>
</tr>
</tbody>
</table>
This is a most unfortunate result for the Hindu calculation to yield; for, in point of fact, the eclipse in question is only a partial one, obscuring about four-fifths of the diameter of the moon’s disk. The source of the error lies mainly in the misplacement, relatively to the sun and moon, of the moon’s node, and the consequent false value found for the moon’s latitude. The latter quantity actually amounts, at the time of opposition, to 35° 42′, or more than twice the value given it by the Hindu processes. And it will be seen, on referring to the table on p. 188, that the relative error in the place of the moon’s node, having been accumulating for seven centuries, is now about 31°, and so reduces, by more than half, the true distance of the moon from her node. We have tried whether the admission of the correction of the bija would better the result, but that is not the case: the error of position is still (see the table) nearly 2°, and the moon’s latitude is increased only to 24° 11′, so that the eclipse still appears to be total. It is evidently high time that a new correction of bija be applied by the Hindu astronomers to their elements, at least to such as enter into the calculation of eclipses.

VIII. To find the duration of the eclipse, and of total obscuration, and the times of contact, immersion, emergence, and separation.

<table>
<thead>
<tr>
<th>Diameter of the eclipsing body, the shadow,</th>
<th>90° 30′′</th>
<th>90° 30′′</th>
</tr>
</thead>
<tbody>
<tr>
<td>do, eclipsed body, the moon,</td>
<td>34° 41′′</td>
<td>34° 41′′</td>
</tr>
<tr>
<td>Sum and difference,</td>
<td>125° 11′′</td>
<td>55° 49′′</td>
</tr>
<tr>
<td>Half-sum and half-difference (CM and CN, Fig. 21, p. 277),</td>
<td>62° 35′′</td>
<td>27° 55′′</td>
</tr>
<tr>
<td>Squares of do,</td>
<td>3919′</td>
<td>724′</td>
</tr>
<tr>
<td>deduct square of latitude,</td>
<td>269′</td>
<td>269′</td>
</tr>
<tr>
<td>remain,</td>
<td>3650′</td>
<td>455′</td>
</tr>
<tr>
<td>Square roots of remainders (CA and CB),</td>
<td>60° 25′</td>
<td>21° 19′</td>
</tr>
</tbody>
</table>

In order to reduce these quantities to time, we need first to ascertain the difference of the true daily motions of the sun and moon at the given moment:

- Moon’s true daily motion, 85.4° 36′
- Sun’s do, 60° 48′
- Moon’s gain in a day, 79° 48′

Hence the proportions (iv. 13)

\[79° 48′ : 60′ : \{ 60° 25′ : 4° 34′ \}
\[21° 19′ : 1° 36′ 4′ \]

give us the half-duration of the eclipse as 4° 34′, and the half-time of total obscuration as 1° 36′ 4′, supposing the moon’s latitude to remain constant through the whole continuance of the eclipse. We now proceed to correct these results for the moon’s motion in latitude. And first, as regards the half-duration. We calculate the amount of motion of the moon and of her node during the mean half-duration by the following proportions (iv. 14):

\[60′ : 85′ 36′′ : 4° 34′ : 1° 5′ 2′′ \]
\[60′ : 3′ 10′ : 4° 34′ : 14′′ \]
Again, from the
Sun's corrected diameter, deduct the earth's diameter (iv. 4), remains
and this remainder, when reduced by the following proportion (iv. 5),

\[
\frac{65002 \cdot 4803 \cdot 51027.81}{3769.8} = 6703y.81
\]

\[
\frac{1600}{51027.81} = 51027.81
\]

This gives us the excess of the earth's corrected diameter (śūct) over the diameter of the shadow on the moon's mean orbit. Hence, from the

<table>
<thead>
<tr>
<th>Earth's corrected diameter, deduct last result,</th>
</tr>
</thead>
<tbody>
<tr>
<td>17347.3</td>
</tr>
<tr>
<td>3769.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diameter of shadow, divide by 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>13577.5</td>
</tr>
<tr>
<td>15</td>
</tr>
</tbody>
</table>

| Diameter of shadow in arc, 90' 30'' |

VII. To determine the moon's latitude at the middle of the eclipse, and the amount of greatest obscuration.
The proportion (i. 53)

\[
\frac{1577,917,838 : 232,338 : 1,811,981 : 266,658,81}{7^o 28' 25''} = 7^o 28' 25''
\]

This gives us the amount of retrograde motion of the moon's node since the commencement of the Iron Age. Deducting from this 6°, for the position of the node at that time (note to i. 56–58), and taking the complement to a whole circle, we have

<table>
<thead>
<tr>
<th>Longitude of moon's node, mean midnight, at Ujj., deduct for difference of meridian,</th>
</tr>
</thead>
<tbody>
<tr>
<td>9° 22° 31' 35''</td>
</tr>
<tr>
<td>1° 21''</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Longitude of moon's node, mean midnight, at Wash'n, deduct motion during 55° 37',</th>
</tr>
</thead>
<tbody>
<tr>
<td>9° 22° 30' 14''</td>
</tr>
<tr>
<td>2° 55''</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Longitude of moon's node at moment of opposition, subtract from moon's longitude (ii. 57),</th>
</tr>
</thead>
<tbody>
<tr>
<td>9° 22° 27' 19''</td>
</tr>
<tr>
<td>3° 25° 56''</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Moon's distance from node,</th>
</tr>
</thead>
<tbody>
<tr>
<td>6° 3° 29'</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arc determining the sine (śūjā),</th>
</tr>
</thead>
<tbody>
<tr>
<td>3° 29'</td>
</tr>
</tbody>
</table>

| Sine, 209' |

Hence the proportion

\[
\frac{3438'}{270'} : 209' : 16' 25'' = 3438' : 270' : 209' : 16' 25''
\]

gives us, as the moon's latitude at the moment of opposition, 16' 25'' S.

Now, then, by iv. 10–11,

<table>
<thead>
<tr>
<th>Semi-diameter of eclipsed body (34' 41'' ÷ 2), do. of eclipsing body (90' 30'' ÷ 2), their sum, deduct moon's latitude,</th>
</tr>
</thead>
<tbody>
<tr>
<td>17' 22''</td>
</tr>
<tr>
<td>45' 15''</td>
</tr>
<tr>
<td>62' 37''</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Amount of greatest obscuration (grūtra),</th>
</tr>
</thead>
<tbody>
<tr>
<td>45' 13''</td>
</tr>
</tbody>
</table>

and since this amount is greater than the diameter of the eclipsed body, it is evident that the eclipse is a total one.
3. To find the time from midnight to sunrise.

The sun's declination being south, the ascensional difference is to be added (ii. 62-63) to the quarter of the sun's complete day, to give the length of the half-night. That is to say,

Quarter of sun's complete day (21°66′6″ ÷ 4),	5°41′5″p
Sun's ascensional difference,	8′10″p
Sun's half-night,	6°23′34″p

The interval between true midnight and true sunrise is therefore 6°23′34″p or 17°19′. That from sunrise till noon (a quantity required in later processes) is found in like manner by subtracting the ascensional difference from the quarter-day: it is 4°59′6″p.

Now then, finally,

Time of opposition, reckoned from mean midnight,	55°3′p
deduct equation of time,	1′3″
do. reckoned from true midnight,	54°50′p
deduct interval till sunrise,	17°19′
do. reckoned from sunrise,	37°31′

The time at which the opposition of the sun and moon in longitude takes place, or the middle of the eclipse, is accordingly, by civil reckoning at Washington, 37°31′.

VI. To determine the diameters of the sun, moon, and shadow.

1. To find the sun's apparent diameter.

The sun's mean motion in a sidereal day being 58′ 58″, his true motion at the time of the eclipse being 60′ 48″, and his mean diameter 6500 yojanas, we find, by the proportion (iv. 2)

58′ 58″ : 60′ 48″ : : 6500 : 6702.81

that the sun covers of his mean orbit, at the time of the eclipse, 6702.81 yojanas. This is reduced to its value upon the moon's mean orbit by the proportion (iv. 2)

57,753,336 : 4,320,000 : : 6702.81 : 5017.37

And upon dividing the result, 501.37 yojanas, by 15 (iv. 3), we find the sun's apparent diameter to be 33′ 25″.

2. To find the moon's apparent diameter.

In like manner as before, the proportion (iv. 2)

788′ 25″ : 854′ 36″ : : 4807 : 5207.3

shows us that the moon's corrected diameter is 520.3 yojanas. This also, divided by 15 (iv. 3), gives the value of the moon's apparent diameter in arc: it is 34′ 41″.

3. To find the diameter of the earth's shadow.

The following proportion (iv. 4),

78′ 25″ : 854′ 36″ : : 16007 : 1734.3

determines the value of the earth's corrected diameter (ṣūct) to be 1734.3 yojanas.
movable point. Of this, the part determining the sine is 68° 2' 14''.6. Then the farther proportion

\[
10 : 3 : : 68^\circ 2' 14'' : 20^\circ 24' 44''
\]
gives us 20° 24' 44'' as the amount of the precession. Now, then, to the

\[
\begin{align*}
\text{Sun's true longitude,} & \quad 9^\circ 25^\circ 56' \\
\text{add the precession,} & \quad 20^\circ 25' \\
\text{Sun's distance from vernal equinox,} & \quad 10^\circ 16^\circ 21''
\end{align*}
\]

This quantity is often called \textit{sāyana sūrya}; that is to say, "the sun’s longitude with the precession (ayana) added."

The sun is accordingly in the eleventh sign, of which the ascensional equivalent is 1795'. His daily motion has been found to be 60° 48''.

Hence the proportion (ii. 59)

\[
1800' : 1795' : : 60' 48'' : 60^\circ 56'
\]
gives us 61P, or 10° 1P, as the excess of the sun’s day over a true sidereal day of 60 nādīs; its length is accordingly 60° 10° 1P, or 21,661P.

Next we desire to know how much of this day passed between midnight and sunrise, and for this purpose we have

2. To find the sun’s ascensional difference (\textit{cara}).

a. To ascertain the sun’s declination, and its sine and versed sine.

The sun’s longitude, with precession added (\textit{sāyana sūrya}), 10° 16° 21''

\begin{align*}
\text{Are determining the sine (bhuj)}, & \quad 43° 39' \\
\text{Sine,} & \quad 2372'
\end{align*}

Now, then, the proportion (ii. 28)

\[
3438' : 1397' : : 3372' : 964'
\]
gives us 964' as the sine of declination (\textit{krāntijyā}); the corresponding arc (ii. 33) is 16° 17' S; its versed sine (ii. 31-32) is 139'.

b. To find the radius of the sun’s diurnal circle (ii. 60).

\begin{align*}
\text{Radius of diurnal circle (\textit{dināvyāsadala, dyuujyā),} & \quad 3299'
\end{align*}

c. To find the earth-sine (ii. 61).

The measure of the equinoctial shadow at Washington is (see note to ii. 61-63) 9d.68. The proportion, then,

\[
12^d : 9d.68 : : 964' : : 778'
\]
shows the value of the earth-sine (\textit{kṣhitiyā, kujujyā}) to be 778'.

d. To find the sun’s ascensional difference (ii. 61-62).

The proportion

\[
3299' : 3438' : : 778' : 811'
\]
gives the sine of ascensional difference (\textit{carajyā}), which is 811'. The corresponding arc, or the sun’s ascensional difference (\textit{cara, caradala}), is 13° 39', or 819p.
which gives us 13 vināḍis, or 5½ minutes, as the value of the equation. But this is assuming that the sun's motion takes place along the equator, instead of along the ecliptic, which is so grossly and palpably erroneous that we wonder how the Hindus could have tolerated a process which implied it. Their own methods furnish the means of making a vastly more correct determination of the equation in question. The mean longitude of the sun at the given midnight is—after adding to it the amount of the precession, as determined farther on—10° 14' 7": hence, if the sun were 10° 14' 7" distant upon the equator from the vernal equinox, or if he had that amount of right ascension, mean and true midnight would coincide. But he is actually at 10° 15' 25" of longitude. If, then, we ascertain what point on the equator will pass the meridian at the same time with that point of the ecliptic, its distance from the sun's mean place in right ascension will be the equation of time required. This may be accomplished as follows. The sun is in the eleventh sign, of which the equivalent in right ascension (iii. 42-45) is 1795p: his distance from its commencement is 15° 25', or 925'. Hence the proportion (ii. 46)

1800': 1795p: 925': 922p

gives us 922p as the ascensional equivalent of the part of the eleventh sign traversed by the sun (bhuktāsvasas). Now add together the

Ascensional equivalents of three quadrants,	16,200p
do. of the tenth sign,	1,935p
do. of the part of the eleventh sign traversed,	922p

their sum is 19,057p

which is equal to 10° 17' 37": this, then, is the sun's true right ascension. The difference between it and his mean right ascension, 10° 14' 7", is 3° 30', of which the equivalent in sidereal time is 210p or 35v, or 14 minutes. This, which is more than two and a half times as much as the value formerly found for the equation, is quite nearly correct; its actual amount for Feb. 6th being given by the Nautical Almanac as 14m 20s.

There is not, among all the processes taught in the Śūrya-Siddhānta, another one of so inexcusably bungling a character as this, while the means lay so ready at hand for making it tolerably exact.

In going on to calculate the local time of the eclipse, we shall adopt the valuation of the equation of time given by the Hindu method, or 13v, but we shall reserve the distance of the phases of the eclipse from midnight, free from this constant error of about 10m, for final comparison with the like data given by our modern tables.

To find the local time, we must first ascertain (ii. 59) the length of the sun's day, from midnight to midnight, and in order to this we need to know in what sign the sun is. Hence we require

1. To determine the amount of precession for the given date.

By iii. 9-12, the proportion

1,577,917,8384: 6000v: 1,811,9514: 90v 8° 2' 14".6

gives us 245° 2' 14".6 as the part of a revolution accomplished by the
Sun's mean longitude, 9° 24° 36'
Equation of place, + 1° 20'
Sun's true longitude, 9° 25° 56'
Moon's mean longitude, 3° 27° 22'
Longitude of aposis, 10° 13° 52'
Equation of moon's place, - 1° 26'
Moon's true longitude, 3° 25° 56'

By the same process as before, the true motions of the two planets at the moment of opposition are found to be:

Sun's true motion, 60° 48°
Moon's do. 854° 36°

It would have been better to adopt, as the starting-point of our calculations, the mean midnight following, instead of that preceding, the opposition of the sun and moon, because in that case, the interval to the moment of opposition being so much less, it might have been found by a single process, not requiring farther correction. The same change would have enabled us to follow strictly the rule given in ii. 66 for finding the end of the lunar day; which rule we were obliged above to apply in a somewhat modified form, because a little more than one whole lunar day was found to intervene between the given midnight and the moment of opposition.

V. To determine the instant of local time corresponding to the middle of the eclipse.

What we have thus far found is the interval between mean midnight and the moment of opposition. But since Hindu time is practically reckoned from true sunrise to true sunrise, we have now, in order to determine at what time the eclipse will take place, to ascertain the interval between mean midnight and true sunrise.

In order to this, we require first to know the equation of time, or the difference between mean midnight and true or apparent midnight, which is the moment when the sun actually crosses the inferior meridian. As concerns this correction, we have deviated somewhat from the method contemplated by the text. It is there prescribed (ii. 46) that, so soon as the sun's equation of the centre has been determined, there should at once be calculated from it, and applied to the longitude of the two planets, a correction representing, in terms of their motion, the equation of time; so that the distance of the moment of opposition from mean midnight does not directly enter into account at all. We have preferred to follow the course we have taken, in order to bring out and illustrate more fully the utter inadequacy of the prescribed method of making allowance for the equation of time, to which we have already briefly referred in the note to ii. 46. The method in question is virtually as follows: the sun being found at the given midnight to be 1° 18', or 78', in advance of his mean place, the equation of time may be ascertained by this proportion: as a whole circle is to a sidereal day, so is the sun's equation of place to the time by which his true transit will precede or follow his mean transit; or, in the present case,
3. To find the sun’s true rate of motion (ii. 48–49):

Sun’s mean motion in 60 nādis,
Sine of sun’s mean anomaly,
Difference of sines,
Daily increase of sine of anomaly,
Equation of motion,
add to sun’s mean motion,

Sun’s true motion,

4. To find the moon’s true rate of motion (ii. 47–49):

Moon’s mean motion in 60 nādis,
deduct motion of apsis (ii. 47),
Daily increase of moon’s mean anomaly,
Sine of moon’s mean anomaly,
Difference of sines,
Daily increase of sine of anomaly,
Equation of motion,
add to moon’s mean motion,

Moon’s true motion,

IV. To find the interval between the given instant of midnight and the end of the half-month, or the moment of opposition in longitude of the sun and moon, which is the middle of the eclipse.

At the instant of mean midnight preceding full moon, we have found the true longitudes of the sun and moon, and their distance in longitude, to be as follows:

Sun’s true longitude,
Moon’s do.,
Distance in longitude,

Hence we see that the moon has still 12° 6’ to gain upon the sun. We have also found their true rates of motion, and the difference of those rates, to be as follows:

Moon’s true motion,
Sun’s do.,
Moon’s daily gain,

Now we make the proportion: if the moon in 60 nādis gains upon the sun 788° 45’⁵, in how many nādis will she gain her present distance in longitude from the sun? or

788° 45’⁵ : 60° : : 726° : 55° 13° 3⁵

It thus appears that the time of opposition is 55° 13° 3⁵ after mean midnight of Feb. 5–6. This result, however, requires correction, for the moon’s motion has become sensibly accelerated during so long an interval, and we find, upon calculation, that she is then 2⁵ past the point of opposition. A repetition of the same process shows that it is necessary to deduct 10° 3⁵ from the time stated. Then, at 55° 3⁵ after mean midnight, we have as follows:
The place of the sun's apsis remains as already found for Jan. 1st (note to ii. 39):

Longitude of sun's apsis, 28° 17' 17" 24"'

In applying here the correction for difference of meridian, as well as in all other processes of the whole calculation into which the amounts of motion of the planets etc. during fractions of a day enter as elements, we have derived those amounts from the motions during a sidereal day, and not, as in the illustrative processes of our notes, during a mean solar day. The divisions of the day given in the text (i. 11—12) are distinctly stated to be those of sidereal time, and all the rules of the treatise are constructed accordingly (see, for instance, ii. 59). It is evident, then, that in making any proportion in which is involved the amount of motion during 60 nādis, that amount is to be regarded as the motion during a sidereal day only. In overlooking in our notes the difference between the two, we have followed the example of all the illustrations of Hindu methods of calculation known to us. The difference is, indeed, in a Hindu process, of very small account; but we have preferred, in making this calculation, to follow what we conceive to be the exacter method. The mean motions during a sidereal day of the bodies concerned in a lunar eclipse are as follows:

Sun, 58° 58' 28" 55"
Moon, 13° 8' 25" 21" 21"
Moon's apsis, 6° 39' 53" 1"
Moon's node, 3° 10' 13" 26"

III. To find the true longitudes and motions of the sun and moon:

1. To find the sun's true longitude (note to ii. 39):

Longitude of sun's apsis, 28° 17' 17" 24"
deduct sun's mean longitude (ii. 29), 5° 23° 42' 3"
Sun's mean anomaly (kendra), 4° 23° 35' 21"
Arc determining the sine (bhūja—ii. 30), 36° 25' 20° 40'
Sine of sun's mean anomaly (bhūjajyā), 13° 48' 1° 18'
Corrected epicycle (ii. 38), +
Equation (bhūjajyāvahata—ii. 39), 9° 23° 42'
Sun's true longitude, 5° 25° 0'
in his first valuable article in the Asiatic Researches (ii. 273 etc.), has also furnished a calculation of a lunar eclipse, as made by native astronomers, comparing their results, obtained by several different methods, with the actual elements of the eclipse, as given by the Nautical Almanac. As it seemed desirable to give a like practical illustration of the Hindu methods of calculation, in connection with this fuller exposition of their foundation and meaning, and by way of an additional test of the accuracy of the results which the system is in condition to furnish, we have selected for the purpose the partial eclipse of the moon which occurred on the evening of Feb. 6th, 1860. Our calculations are made according to the elements of our text alone, without adding, like Davis, the correction of the bija, since our object is to illustrate the text itself, and not the modern system as altered from it. The course of the successive steps of our processes may not everywhere strictly accord with that which would be pursued by a native astronomer, as we take the rules of the text and apply them according to our own conception of their connection.

We omit the preliminary tentative processes, and conceive ourselves to have ascertained that, at the time of full moon in the month Māgha, I. A. 4961 (see page 174), or samvat 1917 (see add. note 12), the moon will be eclipsed.

I. To find the sum of days (aharyāna, dinarāci) for mean midnight next preceding full moon.

The sixth day of February, 1860, being the day of full moon (purnimā), is the fifteenth day of the first, or light, half of the lunar month Māgha, the eleventh month of the year, as is shown by the table on page 174. The time, then, for which we are to find the sum of days, is 49607 10m 14d, reckoning (i. 56) only from the commencement of the Iron Age. For this period the sum of days, as found by the processes already sufficiently illustrated in the notes to i. 48–51, is 1,811,981 days.

II. To find the mean longitude of the sun and moon, and of the moon’s apsis.

The proportions (i. 53)

\[4,320,000 : 4960 \text{ rev} \quad 9^\circ 23^\circ 17' 1'' \]
\[1,577,917,838 : 1,811,981 \quad 57,753,836 : 66,320 \text{ rev} \quad 3^\circ 6^\circ 44' 19'' \]
\[488,203 : \quad 561 \text{ rev} \quad 1^\circ 13^\circ 43' 1'' \]

give us—rejecting whole revolutions, and deducting 3° from the motion of the moon’s apsis, for its position at the epoch (see note to i. 56–58)—the mean longitudes required. These are for the time of mean midnight at Ujjayini : to find them for mean midnight at Washington, which is distant from Ujjayini 1671', 28", upon a parallel of latitude 39°36'75" in circumference (note to i. 63–65), we add to the position of each 39°36'75" or 42458 of its mean motion during a sidereal day. This correction is styled the deçantaraphala. We have, then,

<table>
<thead>
<tr>
<th></th>
<th>Long. at Ujaiy.</th>
<th>Correction.</th>
<th>Long. at Wash’n.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sun</td>
<td>9° 23° 17' 1''</td>
<td>+ 25' 2''</td>
<td>9° 23° 42' 3''</td>
</tr>
<tr>
<td>Moon</td>
<td>3° 9° 44' 19''</td>
<td>+ 5° 34' 43''</td>
<td>3° 15° 19' 2''</td>
</tr>
<tr>
<td>Moon’s apsis</td>
<td>10° 13° 43' 1''</td>
<td>+ 2° 50''</td>
<td>10° 13° 45' 51''</td>
</tr>
</tbody>
</table>
when the declinations of the sun and moon are equal (xi. 6), the precession is distinctly ordered to be calculated, and in terms which contain an evident reference to those in which the fact of the precession is here stated. The exception, however, is one which goes to prove, rather than overthrow, the general rule: the process in which we are for once favored with explicit directions upon the point in question is the one of all others in the work the most trivial, and the chapter which contains it furnishes, as pointed out by us in the notes, good reason to suspect late alterations and interpolations. We do not, then, regard the statement made in our note as requiring to be either retracted or seriously modified. Nor do we, although fully appreciating the difficulty of assuming that the original elaborators of the general Hindu system can have been ignorant of, or ignored, the precession, regret the force and distinctness with which we have stated the circumstances which appear to favor that assumption. Whether it be true or false, there is much in connection with the subject which is strange, and demands explanation: and that can only be satisfactorily given when there shall have been attained a more thorough comprehension of the early history and the varying forms of the science in India.

21. p. 258. The commentary frequently styles the sine of altitude mahācānum, "great gnomon," to distinguish it from the ānum, "gnomon."

22. p. 275. Our statement that the Sūrya-Siddhānta employs only the term graha to designate the planets requires a slight modification. In one instance (ii. 69) they are called khaedrin, and in one other (ix. 9) khaecara, both words signifying "moving in the ether" (see xii. 23, 81).

23. p. 282. This use of the word práct, "east, east point," appears to be taken from the projections of eclipses, as directed to be drawn in the sixth chapter. Thus, in the figure there given (Fig. 27, p. 301), E M and v M represent the directions of the equator and ecliptic with reference to one another at the moment of first contact, and E and v are the east-points (práct) of those lines respectively: the arc E v, or the "interval of the two east-points," is the measure of the angle which the two lines make with one another at the given time.

24. p. 285. As promised above, we present here, by way of appendix to the fourth chapter of our translation and notes, a

CALCULATION, ACCORDING TO THE DATA AND METHODS OF THE SŪRYA-SIDDHĀNTA, OF THE LUNAR ECLIPSE OF FEBRUARY 6TH, 1860,
FOR THE LATITUDE AND LONGITUDE OF WASHINGTON.

Bailly, in his work on the Hindu astronomy (p. 355 etc.), presents several calculations of eclipses by Hindu methods, namely of the lunar eclipse of July 29th, 1730, of the lunar eclipse of June 17th, 1704, and of the solar eclipse of Nov. 29th, 1704. But, owing to his imperfect comprehension of the character and meaning of many of the processes, and owing to his incessant use of Hindu terms in the most barbarous transcriptions, without explanations, his intended illustrations are only with difficulty intelligible, and are exceedingly irksome to study. Davis,
19. p. 236. Our suggestion of a possible derivation of the term *yoga* from the "sum" of the longitudes of the sun and moon is unquestionably erroneous. That term is to be understood here in the sense of "junction, conjunction," and the conception upon which is founded its application to the periods in question is that of a conjunction (*yoga*) of the moon with the twenty-seven asterisms (*nakshatra*) in their order, or her successive continuance in their respective portions. Only the system is divorced from any actual connection with the asterisms; for while the latter are stellar groups, having fixed positions in the heavens, they are here treated as if the twenty-seven-fold division of the ecliptic founded upon them had no natural limits, but was to be reckoned from the actual position of the sun at any given moment.

According to Warren (Kāla Sankalita, p. 74), the names of the twenty-seven yogas, as given by us on page 236, are also applied by the Hindus to the junction-stars (*yogatāra*) of the asterisms (with the omission, of course, of Abhijit); for which see the notes to the eighth chapter. This fact we do not find noticed elsewhere; possibly the usage is a local one only.

Of the twenty-eight yogas of the other system, to which the Sūrya-Siddhānta makes no reference, the names are given by Colebrooke as follows:

1. Ānanda.
2. Kāladanda.
3. Dhūmra.
4. Prajāpati.
5. Sāumya.
6. Dhrāṅkha.
7. Dhvaja.
8. Črīvatsa.
10. Mādgaṇa.
11. Chatra.
12. Mātra.
13. Mānasa.
15. Lambaka.
16. Utpāta.
17. Mṛtyu.
18. Kāpā.
20. Ėbha.
22. Musala.
23. Gada.
24. Mātanga.
25. Rākshasa.
27. Śhira.
28. Pravardha.

Colebrooke says farther: "The foregoing list is extracted from the Ratnamallī of Črīpapi. He adds the rule by which the yogas are regulated. On a Sunday, the nakshatras answer to the yogas in their natural order; viz. Ācavini to Ānanda, Bharani to Kāladanda, etc. But, on a Monday, the first yoga (Ānanda) corresponds to Mṛgāciras, the second to Ārdrā, and so forth. On a Tuesday, the nakshatra which answers to the first yoga is Acleshā; on Wednesday, Hasta; on Thursday, Anurādhā; on Friday, Uttara-Ashādhā; and on Saturday, Čatubhishaj."

This is by no means a clear and sufficient explanation of the character and use of the system, yet we seem to see distinctly from it that this, no less than the other system, is cut off from any actual connection with the twenty-eight asterisms, since the succession of the yogas is made to depend upon the day of the week, while the week stands in no constant and definable relation to the motion of the moon.

20. p. 246. In stating that the Sūrya-Siddhānta furnished no hint of the precession excepting in this passage, we failed to notice that in one other place, namely in connection with the rules for finding the time
that it would have been tested throughout by actual trial; while, if it had been arrived at in the manner above explained, an application of it to the first few members only of the series might more easily have been accepted as a sufficient test of its correctness.

16. p. 203. We are not sure that the name bhuja may not originally and properly belong rather to the arc than to its chord or sine. It comes from a root bhuja, "bend," and signifies primarily "a bend, curve," being applied also to designate the arm on account of the latter's suppleness or flexibility. The word koti also most frequently means "the end or horn of a bow." We might, then, look upon the relations of the arc (dhanus, cāpa, kārmuka) and its parts and appertainances as follows. The whole arc taken into account is (Fig. 2, p. 203) QRS: of this, BRC is the bhuja, curve or bow proper, while BQ and CS are its two kotis or horns: BC is the chord or bow-string (jyā etc.), or, more distinctly, the bhuja-jyā; which name, by substitution for jyārdha, is also applied to either of its halves, BH or HC: BF or CL is in like manner the kotijyā; RH, finally, the versed sine, is the "arrow" (cara, ishu); by this name it is often known in other treatises, although not once so styled in this Siddhānta. If this view be correct, the terms bhuja and koti as applied to the base and perpendicular of a right-angled triangle, are given them on account of their relation to one another as sine and cosine, while the synonyms of bhuja, namely bahu and das, are employed on account only of their agreement with it in the signification "arm," and not in that which gives it its true application. For koti the treatise affords no synonyms.

17. p. 207. M. Delambre, in his History of Ancient Astronomy (i. 462 etc.), has subjected to a detailed examination the rules of the Sūrya-Siddhānta for the calculation of the equations of the centre for the sun and moon, has reduced them to a single formula, and has calculated for each degree of a quadrant the values of the equations, comparing them with those furnished by the Hindu tables, as reported by Davis (As. Res., ii. 255-256). M. Biot has more recently, in the Journal des Savants for 1859 (p. 384 etc.), taken up the same subject anew, especially pointing out, and illustrating by figures and calculations, the error of the Hindus in assuming the variation of the equation to be the same in all the four quadrants of mean revolution.

18. p. 220. Neither Delambre nor Biot (both as above cited), nor any other western savant who has treated of the Hindu astronomy, has found any means of accounting for the variation of dimensions of the planetary epicycles. In its present form and extent, indeed, it seems to defy explanation: we can only conjecture that it may be an unintelligent and reasonless extension to all the planets, and to both classes of epicycles, of a correction originally devised and applied only in one or two special cases. According to Colebrooke (As. Res., xii. 235 etc.; Essays, ii. 400 etc.), there is discordance among the different Hindu authorities upon this point. Aryabhāta agrees with the Sūrya-Siddhānta throughout; Brahmagupta and Bhāskara make the epicycles only of Venus and Mars variable; Muniçvara, in the Siddhānta-Sārvabhūma, regards all the epicycles as invariable.
In explaining how the Hindus may have arrived at their empirical rule, as laid down in verses 15 and 16, for the development of the series of sines, we have also, as mentioned in our note, followed the guidance of Delambre. Prof. Newton, however, is of opinion that the rule in question was probably obtained by direct geometrical demonstration, in some such method as the following, which is much more in accordance with the mathematical processes exhibited or implied in other parts of the Śrīva-Siddhānta.

In the quadrant AB (Fig. 34), let BF, BD, and BE be three arcs, of which each exceeds its predecessor by the equal increment DF or DE; and let FM, DL, and EK be their sines, increasing by the unequal differences DH and EG. Now as ED and DF are small arcs (they are shown in the figure of three times the proportional length of the arcs of difference of the Hindu table), $ED\, y$ and $DF\, \alpha$ may be regarded as plane triangles, and the angles made by CD at D as right angles: hence the angles $ED\, y$ and $CD\, l$ are equal, the triangles $ED\, y$ and $CD\, l$ are similar, and $ED\, : \, Eg \, :: \, CD \, : \, Cl$; or $Eg = ED\, CD \div CD$. In like manner, $Dh = ED\, Cl \div CD$. Therefore $DH - EG = ED\, l \div CD$; and EG, which is the amount by which EK exceeds DL, equals $DH - (ED\, l \div CD)$. But, by similarity of the triangles $CD\, l$ and $DF\, \alpha$, Fh, or lm, equals $ED\, Dl \div CD$; and hence $ED\, lm \div CD = (ED^2 \div CD^2)\, DL$, or $(ED \div CD)^2 \div DL$. Now when ED equals 225° and CD 3438°, $ED \div CD = \frac{\sqrt{2}}{3}$ nearly (or exactly $\frac{\sqrt{2}}{3}$), and $(ED \div CD)^2 \div DL$ nearly (more exactly, $\frac{\sqrt{2}}{3}$). Hence $EK = DL + DH - \frac{\sqrt{2}}{3} \times DL$, which is equivalent to the Hindu rule.

When we wrote the note to the passage of the text relating to the sines, we assumed that the rule as there stated would give the series of sines, having found upon trial that it held good for the first few terms of the series. But, it having been pointed out to us by Prof. Newton that the adoption of $\frac{\sqrt{2}}{3}$ as the value of $ED \div CD$ could not but lead to palpably erroneous results, we carried our calculations farther, and found that only five of the sines following the first one can be deduced from it by the processes prescribed; that with the seventh sine begins a discordance between the table and the result of calculation by the rule, which goes on increasing to the end, where it amounts to as much as 70° in the value obtained for radius.

This untoward circumstance, which may be regarded as a trait highly characteristic of a Hindu astronomical treatise, seems to us rather to favor the opinion that the rule is the result of construction and demonstration, and not empirically deduced from a consideration of the actual second differences. In the latter case we should more naturally suppose
Table of Hindu Sines, with Differences.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td></td>
<td>30</td>
<td>1719</td>
<td>0.849</td>
<td>60</td>
<td>2978</td>
<td>0.471</td>
</tr>
<tr>
<td>2</td>
<td>60</td>
<td>1.000</td>
<td>31</td>
<td>1769.93</td>
<td>1.698</td>
<td>61</td>
<td>3006.27</td>
<td>0.942</td>
</tr>
<tr>
<td>3</td>
<td>120</td>
<td></td>
<td>32</td>
<td>1820.87</td>
<td>2.547</td>
<td>62</td>
<td>3034.58</td>
<td>1.413</td>
</tr>
<tr>
<td>4</td>
<td>180</td>
<td></td>
<td>33</td>
<td>1871.80</td>
<td>3.396</td>
<td>63</td>
<td>3062.80</td>
<td>1.884</td>
</tr>
<tr>
<td>5</td>
<td>225</td>
<td></td>
<td>34</td>
<td>1910</td>
<td>4.244</td>
<td>64</td>
<td>3090.20</td>
<td>2.356</td>
</tr>
<tr>
<td>6</td>
<td>239.93</td>
<td>0.996</td>
<td>35</td>
<td>1922.30</td>
<td>0.813</td>
<td>65</td>
<td>3115</td>
<td>0.413</td>
</tr>
<tr>
<td>7</td>
<td>299.67</td>
<td>1.991</td>
<td>36</td>
<td>1971</td>
<td>1.627</td>
<td>66</td>
<td>3139.80</td>
<td>2.827</td>
</tr>
<tr>
<td>8</td>
<td>359.40</td>
<td>2.987</td>
<td>37</td>
<td>2019.80</td>
<td>2.440</td>
<td>67</td>
<td>3164.60</td>
<td>1.240</td>
</tr>
<tr>
<td>9</td>
<td>419.13</td>
<td>3.983</td>
<td>38</td>
<td>2068.60</td>
<td>3.253</td>
<td>68</td>
<td>3187.53</td>
<td>1.653</td>
</tr>
<tr>
<td>10</td>
<td>449</td>
<td></td>
<td>39</td>
<td>2093</td>
<td></td>
<td>69</td>
<td>3208.60</td>
<td>2.067</td>
</tr>
<tr>
<td>11</td>
<td>478.60</td>
<td>0.987</td>
<td>40</td>
<td>2126.30</td>
<td>0.773</td>
<td>70</td>
<td>3229.67</td>
<td>3.777</td>
</tr>
<tr>
<td>12</td>
<td>537.80</td>
<td>1.973</td>
<td>41</td>
<td>2162.60</td>
<td>1.547</td>
<td>71</td>
<td>3250.74</td>
<td>4.104</td>
</tr>
<tr>
<td>13</td>
<td>597</td>
<td>2.960</td>
<td>42</td>
<td>2209</td>
<td>2.330</td>
<td>72</td>
<td>3256</td>
<td>5.976</td>
</tr>
<tr>
<td>14</td>
<td>655.20</td>
<td>3.947</td>
<td>43</td>
<td>2255.40</td>
<td>3.093</td>
<td>73</td>
<td>3256</td>
<td>1.351</td>
</tr>
<tr>
<td>15</td>
<td>671</td>
<td></td>
<td>44</td>
<td>2267</td>
<td></td>
<td>74</td>
<td>3269</td>
<td>2.072</td>
</tr>
<tr>
<td>16</td>
<td>714.80</td>
<td>1.973</td>
<td>45</td>
<td>2329.80</td>
<td>0.779</td>
<td>75</td>
<td>3286.33</td>
<td>3.053</td>
</tr>
<tr>
<td>17</td>
<td>733.20</td>
<td>2.960</td>
<td>46</td>
<td>2372.07</td>
<td>1.547</td>
<td>76</td>
<td>3303.67</td>
<td>4.156</td>
</tr>
<tr>
<td>18</td>
<td>831.60</td>
<td>3.947</td>
<td>47</td>
<td>2413.14</td>
<td>2.330</td>
<td>77</td>
<td>3321</td>
<td>5.144</td>
</tr>
<tr>
<td>19</td>
<td>890</td>
<td></td>
<td>48</td>
<td>2464.21</td>
<td>3.093</td>
<td>78</td>
<td>3321</td>
<td>1.227</td>
</tr>
<tr>
<td>20</td>
<td>947.33</td>
<td>0.956</td>
<td>49</td>
<td>2515.40</td>
<td>0.779</td>
<td>79</td>
<td>3348.20</td>
<td>2.453</td>
</tr>
<tr>
<td>21</td>
<td>1004.67</td>
<td>2.867</td>
<td>50</td>
<td>2564.20</td>
<td>1.547</td>
<td>80</td>
<td>3361.80</td>
<td>3.680</td>
</tr>
<tr>
<td>22</td>
<td>1062</td>
<td></td>
<td>51</td>
<td>2620.80</td>
<td>2.330</td>
<td>81</td>
<td>3361.80</td>
<td>4.658</td>
</tr>
<tr>
<td>23</td>
<td>1105</td>
<td>4.776</td>
<td>52</td>
<td>2670.80</td>
<td>3.093</td>
<td>82</td>
<td>3404.07</td>
<td>5.822</td>
</tr>
<tr>
<td>24</td>
<td>1119</td>
<td>1.033</td>
<td>53</td>
<td>2720.40</td>
<td>1.547</td>
<td>83</td>
<td>3409</td>
<td>1.333</td>
</tr>
<tr>
<td>25</td>
<td>1175</td>
<td>1.867</td>
<td>54</td>
<td>2774.47</td>
<td>0.779</td>
<td>84</td>
<td>3411.93</td>
<td>2.098</td>
</tr>
<tr>
<td>26</td>
<td>1231</td>
<td>3.773</td>
<td>55</td>
<td>2820.40</td>
<td>1.547</td>
<td>85</td>
<td>3417.80</td>
<td>3.066</td>
</tr>
<tr>
<td>27</td>
<td>1287</td>
<td>5.667</td>
<td>56</td>
<td>2870.80</td>
<td>2.330</td>
<td>86</td>
<td>3423.67</td>
<td>3.931</td>
</tr>
<tr>
<td>28</td>
<td>1342.33</td>
<td>0.111</td>
<td>57</td>
<td>2920.40</td>
<td>3.093</td>
<td>87</td>
<td>3429.53</td>
<td>4.899</td>
</tr>
<tr>
<td>29</td>
<td>1397</td>
<td>2.822</td>
<td>58</td>
<td>2974.53</td>
<td>0.582</td>
<td>88</td>
<td>3432.40</td>
<td>1.031</td>
</tr>
<tr>
<td>30</td>
<td>1451.67</td>
<td>3.773</td>
<td>59</td>
<td>3024.53</td>
<td>1.547</td>
<td>89</td>
<td>3433.40</td>
<td>2.062</td>
</tr>
<tr>
<td>31</td>
<td>1506.33</td>
<td>5.584</td>
<td>60</td>
<td>3074.53</td>
<td>2.330</td>
<td>90</td>
<td>3434.37</td>
<td>3.093</td>
</tr>
<tr>
<td>32</td>
<td>1520</td>
<td></td>
<td>61</td>
<td>3124.53</td>
<td>3.093</td>
<td>91</td>
<td>3436.13</td>
<td>4.024</td>
</tr>
<tr>
<td>33</td>
<td>1559.80</td>
<td>0.884</td>
<td>62</td>
<td>3174.53</td>
<td>0.582</td>
<td>92</td>
<td>3438</td>
<td>5.156</td>
</tr>
<tr>
<td>34</td>
<td>1612.87</td>
<td>1.769</td>
<td>63</td>
<td>3224.53</td>
<td>1.547</td>
<td>93</td>
<td>3438</td>
<td>0.315</td>
</tr>
<tr>
<td>35</td>
<td>1665.94</td>
<td>2.653</td>
<td>64</td>
<td>3274.53</td>
<td>2.330</td>
<td>94</td>
<td>3441.37</td>
<td>1.066</td>
</tr>
<tr>
<td>36</td>
<td>1719</td>
<td>3.538</td>
<td>65</td>
<td>3324.53</td>
<td>3.093</td>
<td>95</td>
<td>3441.37</td>
<td>2.096</td>
</tr>
<tr>
<td>37</td>
<td>1777</td>
<td>4.423</td>
<td>66</td>
<td>3374.53</td>
<td>0.582</td>
<td>96</td>
<td>3441.37</td>
<td>3.093</td>
</tr>
<tr>
<td>38</td>
<td>1832</td>
<td>5.308</td>
<td>67</td>
<td>3424.53</td>
<td>1.547</td>
<td>97</td>
<td>3441.37</td>
<td>4.024</td>
</tr>
<tr>
<td>39</td>
<td>1888</td>
<td>6.193</td>
<td>68</td>
<td>3474.53</td>
<td>2.330</td>
<td>98</td>
<td>3441.37</td>
<td>5.156</td>
</tr>
<tr>
<td>40</td>
<td>1944</td>
<td>7.078</td>
<td>69</td>
<td>3524.53</td>
<td>3.093</td>
<td>99</td>
<td>3441.37</td>
<td>6.290</td>
</tr>
</tbody>
</table>

VOL. VI.

Sūrya-Siddhānta.
174) April 4th, 1659, and ended March 22nd, 1860. The years of this era are called and quoted as samvatara years, or, by abbreviation, simply samvat.

13. p. 183. M. Vivien de St. Martin (in Julien’s Mémoires de Hiouen-Thsang, ii. 258) supposes the value of the l_i in use in China during the seventh century to have been about 329 metres, or 1080 English feet. This would make the values of the three kinds of yojana mentioned by the Buddhist traveller to be $8\frac{1}{4}$, $6\frac{1}{4}$, and $3\frac{1}{4}$ English miles respectively.

14. p. 188. In the first table upon this page, we have, by an oversight, given the earth’s heliocentric longitude, instead of the sun’s geocentric longitude. To the sun’s place as stated, accordingly, should be added 180°.

15. p. 196. M. Biot (Journal des Savants, 1859, p. 409) suggests that the Hindus, like Albategnus, obtained their sines directly from the chords of Hipparchus or Ptolemy. This may not be an altogether impossible supposition, but it is at least an unnecessary one, for they certainly had geometry enough, at the time of the elaboration of their astronomical system, to construct their table independently. Our notes have presented Delambre’s view of the method of its construction and the reason of its limitation to arcs which are multiples of 3° 45’. We cannot but feel, however, upon mature consideration, that the correctness of that view is very questionable; that the Hindus could probably have made out a more complete table if they had chosen to do so; and that a sufficient reason is found for their selection of the arc of 3° 45’ in the fact that it is a natural subdivision of a recognized unit, the arc of 30°, while the series of twenty-four sines was sufficiently full and accurate for their uses. We have been at the pains to calculate the complete series of Hindu sines from Ptolemy’s table of chords, assuming the value of radius to be 3438’, in order to test the question whether there were any correspondence of errors between them which should prove the one to be derived from the other: our results are as follows. In five of the instances (the 14th, 15th, 19th, 22nd, and 23rd sines of the table) in which the value of the Hindu sine exceeds the truth, Ptolemy supports the error; in the other three cases (the 16th, 17th, and 18th sines), Ptolemy affords the correct value; to the 6th sine, also, which by the Hindus is made too small, Ptolemy’s table gives its true value, but the next following sine he makes too great (namely 1520.59, which would give 1521, instead of 1520); this is his only independent error. The evidence yielded by the comparison may be regarded as not altogether unequivocal.

For the benefit of any who may desire to make practical use of the Hindu sines, in calculations conducted according to the processes of the Sûrya-Siddhânta, we give, upon the opposite page, a more detailed table of them than has been presented hitherto, with such sets of differences annexed as will enable the calculator readily to find the sine of any given arc, or the reverse, without resorting to the laborious proportions by which the text contemplates that they should in each case be determined. Such a table we have ourselves found highly useful, and even almost indispensable, in connection with our own calculations.
calculating the latitude of the planets: not being, however, altogether confident of our correct understanding and interpretation of those rules.

Positions of the Apsides and Nodes of the Planets.

<table>
<thead>
<tr>
<th>Planet</th>
<th>Sūrya-Siddhānta</th>
<th>Ptolemy</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apsides</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sun</td>
<td>77 15</td>
<td>65 30</td>
<td>+11 45</td>
</tr>
<tr>
<td>Mercury</td>
<td>220 26</td>
<td>190 0</td>
<td>+30 26</td>
</tr>
<tr>
<td>Venus</td>
<td>79 49</td>
<td>55 0</td>
<td>+24 49</td>
</tr>
<tr>
<td>Mars</td>
<td>130 1</td>
<td>115 30</td>
<td>+14 31</td>
</tr>
<tr>
<td>Jupiter</td>
<td>171 16</td>
<td>161 0</td>
<td>+10 16</td>
</tr>
<tr>
<td>Saturn</td>
<td>236 38</td>
<td>233 0</td>
<td>+3 38</td>
</tr>
<tr>
<td>Nodes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercury</td>
<td>30 44</td>
<td>10 0</td>
<td>+10 44</td>
</tr>
<tr>
<td>Venus</td>
<td>59 45</td>
<td>55 0</td>
<td>+4 45</td>
</tr>
<tr>
<td>Mars</td>
<td>40 4</td>
<td>25 30</td>
<td>+14 34</td>
</tr>
<tr>
<td>Jupiter</td>
<td>79 41</td>
<td>51 0</td>
<td>+28 41</td>
</tr>
<tr>
<td>Saturn</td>
<td>100 25</td>
<td>183 0</td>
<td>-82 35</td>
</tr>
</tbody>
</table>

It will be perceived that the differences here are not so great as to exclude the supposition of a connected origin. We do not ourselves believe that the Hindus were ever sufficiently skilled in observation, or in the discussion of the results of observation, to be able to derive such data for themselves, or even intelligently to modify and improve them, when obtained from other sources. In order, however, fully to understand the relation of the Hindu to the Greek science in this part, we require to know, first, what were the positions assigned to the apsides and nodes by Greek astronomers prior to Ptolemy, and secondly, what were their actual positions at the periods in question. Upon the first point no information appears to have been handed down to our times; and as regards the other, we have not found any modern determination of the desired data, and are not ourselves at present in a situation to undertake so intricate and laborious a calculation.

12. p. 173. The era of the kāli yuga, or Iron Age, is not in practical use among the Hindus of the present day: two others, of a less remote date, are ordinarily employed by them in the giving of dates. These are styled the eras of Čālīvāhana and of Vikramāditya respectively, from two sovereigns so named: their origin and historical significance are matters of much doubt and controversy. The years of the era of Čālīvāhana are, according to Warren (Kāla Sankalita, p. 381 and elsewhere), solar years: their reckoning commences after the lapse of 3179 complete years of the Iron Age, or early in April, A.D. 78: the 1782nd year, accordingly, coinciding with the 4961st of the Iron Age, commenced, as is shown by the table on p. 174, April 13th, 1859, and ended April 11th, 1860. The years of this era are generally cited as ṣaka or ṣāka years. In the other era, the luni-solar reckoning is followed (Warren, as above, p. 391 and elsewhere); and its first year began with the 3045th of the Iron Age, or early in 58 B.C.: its 1962nd year, coinciding with the 4961st of the remoter era, commenced (see table on p.
that the correctness of the former number is avouched by its occurrence in other treatises. It is highly characteristic of Bentley, that he has thus arbitrarily amended one of the data upon which he rests the most important of his general conclusions, a conclusion which, but for such emendation, would be not a little weakened or modified. Any one can see for himself, upon referring to our table given on page 188, with how much plausibility Bentley is able to deduce, from the dates of its fourth column, the year A.D. 1091 as that of the composition of the Śūrya-Siddhānta. We have been solicitous to allow Bentley all the credit we possibly could for his labors upon the Hindu astronomy, but we cannot avoid expressing here our settled conviction that, as an authority upon the subject, he is hardly more to be trusted than Bailly himself, that his work must be used with the extreme caution, and that his determination of the successive epochs in the history of astronomical science in India is from beginning to end utterly worthless.

9. p. 167. We have not fulfilled our promise to recur in the eighth chapter to the subject of the sun's error of position, because we felt ourselves incompetent to cast at present any valuable light upon it. Nothing but a careful and thorough sifting and comparison of all the earliest treatises, together with the traditions preserved by the commentators, and the practical methods of construction of the calendar, is likely to settle the question as to the manner in which the elements of the planetary orbits were originally made up.

10. p. 168. In making out our comparative table of sidereal revolutions, we have calculated the column for Ptolemy as we conceive that he would himself have calculated it, had he been called upon to do so. M. Biot, having in view an object different from ours, has carefully revised Ptolemy's processes (see his Traité Élémentaire d'Astronomie Physique, 3me éd., v. 37–71), and has deduced from the latter's original data what he regards as the true times of sidereal revolution of the primary planets furnished by them; his periods are accordingly slightly different from those presented in our table.

Colebrooke (As. Res., xii. 246; Essays, ii. 412) has also given a comparative table of the daily motions of the planets, but has committed in it the gross error of setting side by side the sidereal rates of motion of the Hindu text-books and the tropical rates of Ptolemy and Lalande. Of course, his data being incommensurable, the conclusions he draws from their comparison are erroneous.

11. p. 171. We add, in the following table, a comparison of the positions of the apsides and nodes of the planets as stated in our treatise—being those which are adopted, with unimportant variations, by all the schools of Hindu astronomy—with those laid down by Ptolemy in his Syntaxis. The latter we give as stated by Ptolemy for his own period, without reducing them to their value in distances from the initial point of the Hindu sphere. The actual distance of that point, or of the vernal equinox of A.D. 560, from the vernal equinox of Ptolemy's time, is about 5½°. We should remark also that Ptolemy does not state expressly and distinctly the positions of the nodes: we derive them from the rules given by him, in the sixth chapter of his thirteenth Book, for
is in fact of astronomical origin, being arrived at by retrospective calculation of the planetary motions, we can hardly avoid the conclusion that the system which presents it in its true character is the more ancient and original. This conclusion is strengthened by the notice taken of the epoch by the Siddhānta-Ciromāni and its kindred treatises. We do not see how their treatment of it is to be explained, excepting upon the supposition that a general conjunction at that time was already so firmly established as a fundamental dogma of the Hindu astronomy, that they were compelled, even while rejecting the theory of brief cycles and recurring conjunctions, to pay it homage by so constructing their elements that these should exhibit at least a very near approach to a conjunction at the moment. We are clearly of opinion, therefore, that, apart from all consideration of the relative age of the separate treatises, the system represented by the Sūrya-Siddhānta is the more ancient.

Mean Places of the Planets, 6 o'clock A. M. at Ujjayint, Feb. 18th, B. C. 3102.

<table>
<thead>
<tr>
<th>Planet</th>
<th>Siddhānta-Ciromāni.</th>
<th>Ṭhirtya-Siddhānta.</th>
<th>Pāṇḍava-Siddhānta.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sun</td>
<td>0 0 0 0</td>
<td>0 0 0 0</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>Mercury</td>
<td>11 27 24 29</td>
<td>11 21 21 36</td>
<td>11 21 17 17</td>
</tr>
<tr>
<td>Venus</td>
<td>11 28 42 14</td>
<td>11 27 7 12</td>
<td>11 26 58 34</td>
</tr>
<tr>
<td>Mars</td>
<td>11 29 3 50</td>
<td>0 0 0 0</td>
<td>11 29 14 38</td>
</tr>
<tr>
<td>Jupiter</td>
<td>11 29 27 35</td>
<td>11 27 7 12</td>
<td>11 27 2 53</td>
</tr>
<tr>
<td>Saturn</td>
<td>11 28 46 34</td>
<td>0 0 0 0</td>
<td>11 28 57 22</td>
</tr>
<tr>
<td>Moon</td>
<td>0 0 0 0</td>
<td>0 0 0 0</td>
<td>0 0 10 48</td>
</tr>
<tr>
<td>" apsis</td>
<td>4 5 29 46</td>
<td>4 3 50 24</td>
<td>4 5 13 29</td>
</tr>
<tr>
<td>" node</td>
<td>5 3 12 58</td>
<td>5 2 38 24</td>
<td>5 2 49 12</td>
</tr>
</tbody>
</table>

7. p. 164. We present in the annexed table, in the same form as above (note 6), the elements of the mean motions of the planets as corrected by the bija.

Mean Motions of the Planets, as corrected by the bija.

<table>
<thead>
<tr>
<th>Planet</th>
<th>Time of sidereal revolution</th>
<th>Mean daily motion</th>
<th>Mean yearly motion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>87,96978075</td>
<td>14,732.33182</td>
<td>5,380,984.196</td>
</tr>
<tr>
<td>Venus</td>
<td>224,6285152</td>
<td>5,767,71717</td>
<td>2,106,658.695</td>
</tr>
<tr>
<td>Jupiter</td>
<td>4,333,41581777</td>
<td>299,34026</td>
<td>120,260.981</td>
</tr>
<tr>
<td>Saturn</td>
<td>10,764,89171783</td>
<td>120,39136</td>
<td>43,972.946</td>
</tr>
<tr>
<td>Moon's apsis, " node,</td>
<td>3,333,12015592</td>
<td>400,97519</td>
<td>146,456.189</td>
</tr>
<tr>
<td></td>
<td>6,794,28280845</td>
<td>190,74861</td>
<td>69,670.530</td>
</tr>
</tbody>
</table>

8. p. 166. At the time when we wrote our note, we had not observed that Bentley himself explains, in a footnote to page 117 of his work, this apparent error. In the case of Mercury, since the number of revolutions as stated by the text of our treatise did not yield him the result which he desired, he has quietly taken the liberty of altering it from 17,937,060 to 17,937,024, assuming, as his justification, an error of the copyists which has not the slightest plausibility, and ignoring the fact
the amount of mean motion, in seconds, during a day, and also during a Julian year, of 365½ mean solar days.

Mean Motions of the Planets.

<table>
<thead>
<tr>
<th>Planet</th>
<th>Time of sidereal revolution</th>
<th>Mean daily motion</th>
<th>Mean yearly motion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sun</td>
<td>365,25875648</td>
<td>3,548.16956</td>
<td>1,295,965,931</td>
</tr>
<tr>
<td>Mercury</td>
<td>87,69970228</td>
<td>14,732,34495</td>
<td>75,850,636,956</td>
</tr>
<tr>
<td>Venus</td>
<td>224,69656755</td>
<td>5,767,72702</td>
<td>2,106,662,395</td>
</tr>
<tr>
<td>Mars</td>
<td>686,99749394</td>
<td>1,886,46576</td>
<td>689,033,981</td>
</tr>
<tr>
<td>Jupiter</td>
<td>4,332,32065535</td>
<td>299,14083</td>
<td>109,463,381</td>
</tr>
<tr>
<td>Saturn</td>
<td>10,765,77307461</td>
<td>120.38151</td>
<td>43,969,346</td>
</tr>
<tr>
<td>Moon</td>
<td>sider. rev.</td>
<td>27,32167416</td>
<td>47,434,86773</td>
</tr>
<tr>
<td></td>
<td>synod. rev.</td>
<td>29,53058795</td>
<td>43,886,66871</td>
</tr>
<tr>
<td></td>
<td>apsis</td>
<td>3,323,09387451</td>
<td>400,97848</td>
</tr>
<tr>
<td></td>
<td>node</td>
<td>6,794,39933121</td>
<td>190.74532</td>
</tr>
</tbody>
</table>

6. p. 161. The system of the Sûrya-Siddhânta, so far as concerns the mean motions of the planets, the date of the last general conjunction, and the frequency of its recurrence, is also that of the Çâkalya-Sanhita. It is likewise presented, according to Bentley (Hind. Astr., p. 116), by the Soma and Vasishtha Siddhântas. So far as can be gathered from the elements of the Pâuliça and Laghu-Arya Siddhântas, as reported by Colebrooke and Bentley, these treatises, too, followed a similar system; the revolutions of the planets in an Age, as stated by them, where they differ from those of the Sûrya-Siddhânta, always differ by a number which is a multiple of four. Some of the astronomical textbooks, however, have constructed their systems in a somewhat different manner. Thus the Siddhânta-Ciromani, following the authority of Brahmagupta and of the earlier Brahma-Siddhânta, makes the planets commence their motions together at the star ζ Piscium at the very commencement of the Æon, and return to a general conjunction at the same point only after the lapse of the whole period of 4,390,000,000 years. The same is the case with the Arya and Pâraçara Siddhântas: they too, as reported by Bentley (Hind. Astr., pp. 148, 150), state the revolutions of the planets for the whole Æon only, and in numbers which have no common divisor, so that they assume no briefer cycle of conjunction. But they all, at the same time, take special notice of the commencement of the Iron Age, which they make to begin at the moment of mean sunrise at Lanka, and manage to effect very nearly a general conjunction at the time of its occurrence, as is shown by the table at the end of this note, in which are presented the positions of all the planets, and of the moon's apsis and node, as stated by them for that moment.

We insert these data here, because they seem to us to furnish ground for important conclusions respecting the comparative antiquity of the two systems. The commencement of the Iron Age, which to the one is of cardinal importance as an astronomical epoch, is to the other simply a chronological era, having no astronomical significance. Now if, as has been shown in our notes to be altogether probable, that epoch
divākara, “day-maker”; and tigmāṇcù and tikshñāncù, “having hot or piercing rays.”

The moon, besides her ordinary names indu, candra, vidhu, is styled niçākara, “night-maker”; niçāpati, “lord of night”; anushnagù, citga- gu, citāncù, citādihitī, himarañmi, himāncù, himadidhitī, “having cool rays”; and caçin and caçānka, “marked with a hare”: the Hindu fancy sees the figure of this animal in the spots on the moon’s disk. The name soma nowhere directly occurs, but it is implied in the title sāumya given to Mercury.

Mercury is styled jīva and budha, “wise, knowing”; also caçija and sāumya, “son of the moon.” The reason of neither appellation is obvious. It will be seen below that the moon, the sun, and the earth have each of them one of the lesser planets assigned to it as its son: why Mercury, Saturn, and Mars were selected, and on what grounds their respective parentage was given them, is hitherto entirely unknown.

Venus has one name, sūkra, “brilliant,” which is derived from her actual character: she is also known as bhṛgu, which is the name of one of the most noted of the ancient sages, or as bhṛguja or bhṛgovā, “son of Bhṛgu.”

Mars has likewise a single appellation, anārakā, “coal,” which is given him on account of his fiery burning light: all his other titles, namely kuja, bhūputra, bhūmiputra, bhūsuta, bhūma, mark him as “son of the earth.”

Jupiter is known as bhṛhaspati, which is, as already more than once noticed, the name of a divine personage, priest and teacher among the gods; the word means originally “lord of worship.” The planet also receives some of his titles, namely guru, “preceptor,” and amarṣija, “teacher of the immortals.” The only other name given to it, jīva, “living,” is of doubtful origin.

Saturn has two appellations, each represented by several forms; namely “son of the sun,” or arkoja, ārki, sūryatanaya; and “the slow-moving,” or manda, pani, panaçcaro.

All these names, it will be noticed, are of native Hindu origin, and have nothing to do with the appellations given by other nations to the planets. In the Hindu astrological writings, however, even those of a very early period (see Weber’s Ind. Stud., ii. 261), appear, along with these, other titles which are evidently derived from those of the Greeks.

4. p. 146. We have everywhere cited Bentley’s work on Hindu astronomy according to the London edition of it (Śvo., 1825), the only one to which we have had access.

In a few instances, where we have not specified the part of Bhāskara’s Siddhānta-Čiromani to which we refer, the Ganitādhyāya, or properly astronomical portion of it, is intended.

5. p. 161. For the convenience of any who may desire to make a more detailed examination of the elements of the mean motions of the planets adopted in this treatise, and to work out the results deducible from them, we present them in the following table in a more exact form. We give the mean time of sidereal revolution, in mean solar days, and
IV. Our fourth class is headed by the Siddhánta-Čiromāṇi, written in the twelfth century by Bhāskara Ācārya, and founded upon the Brahma-Siddhánta of Brahmagupta. Our numerous references to it and citations from it indicate the prominent and important position which it occupies in the modern astronomical literature of India. For a description of the numerous commentaries upon it, see Colebrooke’s Hindu Algebra, note A (Essays, ii. 450 etc.).

The longer of the lists given above mentions two or three other works of yet later date. Among them the Siddhánta-Sundara is the most ancient, having been composed by Jñāna-rāja at the beginning of the sixteenth century. The Graha-Lāghava is a treatise of the same class, and is highly considered and much used throughout India, although omitted from the Pūna list. It is of nearly the same date with the work last spoken of, being the composition of Ganeśa, and dated śaka 1442 (A.D. 1520). The Siddhánta Tattva-Viveka, more usually styled the Tattva-Viveka simply, is a century later: it was written by Kāmalākara, about A.D. 1620. The Siddhánta-Sārvabhauma dates from very nearly the same period, and is the work of Muniyara, who is also the author of a commentary on the Čiromāṇi, and the son of Ranganātha, the commentator on the Sūrya-Siddhánta.

This class of astronomical writings might be almost indefinitely extended, but the works which have been mentioned appear to be the most authoritative and important.

Of all the treatises whose names we have cited, we know of but three which have as yet been published—the Sūrya-Siddhánta, the Siddhánta-Čiromāṇi, and the Graha-Lāghava; the two latter under the auspices of the School-Book Society of Calcutta. Prof. Hall’s edition of the Sūrya-Siddhánta, to which reference is made in our Introductory Note, has been completed by the addition of a fourth Fasciculus since our own publication was commenced, so that we have been able to avail ourselves of its valuable assistance throughout.

2. p. 142. Ranganātha, in the verses with which he closes his commentary, states it to have been completed on the same day with the birth of his son Muniyara, in the śaka year 1525, or A.D. 1603. For his relationship to other well-known authors or commentators of astronomical treatises, see Colebrooke’s Essays, ii. 452 etc. Other commentators on the Sūrya-Siddhánta mentioned by Colebrooke are Nṛsinha, who wrote but a few years later than Ranganātha, and Bhūdhara and Dādā Bhāī, whose age is not stated. The Mackenzie collection (see Wilson’s Catalogue, p. 118 etc.) contained commentaries on the whole or parts of the same text by Mallikārjuna, Yellaya, an Āryabhaṭṭa, Mambabhaṭṭa, and Tammaya.

3. p. 143. As no especially suitable opportunity has hitherto offered itself for giving in our notes the synonymy of the names of the planets, we present here all the appellations by which they are known in the text of the Sūrya-Siddhánta.

The sun is called by the following names derived from roots signifying “to shine”: arka, bhānu, ravi, vivasvant, sūrya; also savitar, literally “enlivener, generator”; bhāskara, “light-maker”; dinakara and
Vishnu-candra, who is said also to have derived his material in part from Aryabhāṭa. A copy of a Vṛddha-Vaśishṭha-Siddhānta formed a part of the Mackenzie Collection (Wilson’s Catalogue, i. 121).

III. To the third class may be assigned the Siddhāntas of Áryabhāṭa, Varāha-mihira, and Brahmagupta, and the Romaka-Siddhānta, as well as the later version of the Vaśishṭha-Siddhānta, last spoken of. The first three names are those of greatest prominence and highest importance in the history of Hindu astronomical science, and there is every reason to believe that the sages who bore them lived about the time when the modern system may be supposed to have received its final and fully developed form, or during the fifth and sixth centuries of our era.

1. Árya-Siddhānta. The two principal works of Áryabhāṭa appear to have been originally entitled the Áryāśāṣṭacatā, “work of eight hundred verses,” and Daśagītikā, “work of ten cantos.” Colebrooke knew neither of them excepting by citations in other astronomical text-books and commentaries. Bentley had in his hands two treatises which he calls the Árya-Siddhānta and the Lāghu-Arya-Siddhānta, which are possibly identical with those above named.* The Berlin Library also contains (Weber, No. 834) a work which professes to be a commentary on the Daśagītikā.

2. Varāha-Siddhānta. The only distinctively astronomical work of Varāha-mihira appears to have been his Pañca-siddhāntikā, or Compendium of Five Astronomies, of which we have already spoken (note to i. 2–3), and which was founded upon the Brahma, Śūrya, Pāṇiṣṭha, Vaśishṭha, and Romaka Siddhāntas. It is supposed to be no longer in existence, although the astrological works of the same author have been carefully preserved, and are without difficulty accessible.

3. Brahma-Siddhānta. The proper title of the work composed by Brahmagupta, upon the foundation of an earlier treatise bearing this name, is Brahma-sphuṭa-Siddhānta, “corrected Brahma-Siddhānta,” but the word sphuṭa, “corrected,” is frequently omitted in citing it, as has been our own usage in the notes to the Śūrya-Siddhānta. Colebrooke possessed an imperfect copy of it, and it was also in Bentley’s possession. Upon it was professedly founded, in the main, the Siddhānta-Ciromani of Bhāshkara.

4. Romaka-Siddhānta. Of the name of this treatise, the only one we have thus far met with which is not derived from a real or supposed author, we have spoken in the note to i. 4–6. It is said by Colebrooke to be by Črīśeṇa, and to have been founded in part upon the original Vaśishṭha-Siddhānta; its early date is proved by its being one of those treated as authorities by Varāha-mihira. No copy of it seems to have been discovered in later times.

Our list also mentions a Bhōja-Siddhānta, probably referring to some astronomical work published during the reign, and under the patronage, of Rāja Bhōja Deva, of Dhārā, in the tenth or eleventh century of our era.

* See an article by Fitz-Edward Hall, Esq., On the Árya-Siddhānta, in a later part of this volume.
Nārada, among other divine or mythical personages, as an astronomical authority, are all the indications we find justifying the introduction of this name into the list of the Čabdakalpadruma.

II. In the second class we include the Gārga, Vyāsa, Pārāśara, Pāuliça, Pāulastya, and Vāsiṣṭha Siddhānta. Gārga, Pārāśara, Vyāsa, Pāulastya, and Vāsiṣṭha are prominent among the sages of the ancient period of Hindu history: the two latter are of the number of those who give name to the stars in Ursa Major (they are β and ζ respectively). They cannot possibly have been the veritable authors of Siddhānta, or works presenting the modern astronomical system of the Hindus: but—and this seems to be especially the case with regard to Gārga and Pārāśara—one and another of them may have distinguished themselves in connection with the older science, and so have furnished some ground for the part attributed to them by the later tradition, and for the fathering of astronomical works upon them.

1. Gārga-Siddhānta. Astronomical treatises and commentaries upon them occasionally offer citations from Gārga (see, for instance, Colebrooke’s Essays, ii. 356; Sir William Jones in As. Res., ii. 387), but of a Siddhānta, or text-book of astronomy, bearing his name, we find nowhere any mention excepting in these lists.

2. Vyāsa-Siddhānta. This name, too, is known to us only from the list above given.

3. Pārāśara-Siddhānta. According to Bentley, the second chapter of the Ārya-Siddhānta contains an extract from this work, in which are stated the elements of the mean motions of the planets adopted by it. The work itself appears to be lost; unless, indeed, it may have been contained in a manuscript of the Mackenzie Collection, which in Wilson’s Catalogue (i. 120) is called Vṛiddha-Parāsara, and said to be “a system of astrology, attributed to Parāsara, the father of Vyāsa.”

4. Pāuliça-Siddhānta. The planetary elements of this treatise also are preserved in later commentaries, and are stated by Bentley and Colebrooke. We have noticed above (note to i. 4–6) that al-Birūnī attributes it to Paulus the Greek; whence Weber (Ind. Lit., p. 226) conjectures that it was founded upon the Eἰσαγωγή of Paulus Alexandrinus. If this account of its origin be correct, the Pāuliça to whom the later Hindus attribute it is a fictitious personage, whose name is manufactured out of Pāuliça. The work, it will be seen, is not mentioned in either of the lists we have given, its place appearing to be taken by the Pāulastya-Siddhānta. According to the Hindu tradition, the school represented by the Pāuliça-Siddhānta was the rival of that of Āryabhaṭa.

5. Pāulastya-Siddhānta. Of this Siddhānta we find mention only in such native lists as omit the preceding. Hence we are led to conjecture that the two names may indicate the same work; an attempt, founded upon the similarity of the names, having been made by some to attribute the Pāuliça-Siddhānta to a known and acknowledged Hindu sage.

6. Vāsiṣṭha-Siddhānta. This work is spoken of as actually in existence by both Colebrooke and Bentley, and the latter states its system to correspond with that of the Sūrya-Siddhānta. More than one treatise bearing the name is referred to, the older one being of unknown authorship, and the other a later compilation founded upon this, by
which is the acknowledged composition of a merely human author, while the other contains treatises of very heterogeneous character and value: and neither list distinguishes works now actually in existence from those which have become lost, and those of which the existence at any period is questionable. A more satisfactory account of the Siddhánta literature may be drawn up from the notices contained in the writings of Western scholars, and especially from the various essays of Colebrooke. For what we shall here offer, he is our main authority.

In the present imperfect state of our knowledge of the subject, there is perhaps no better method of classifying the Hindu astronomical treatises than by dividing them into four classes, as follows: first, those which profess to be a revelation on the part of some superhuman being; second, those which are attributed to ancient and renowned sages, or to other supposititious or impersonal authors; third, those regarded as the works of actual authors, astronomers of an early and uncertain period; fourth, later texts, of known date and authorship, and mostly of a less independent and original character.

1. The first class comprises the Brahma, Sūrya, Soma, Brāhaspati, and Nārada Siddhántas.

1. Brahma-Siddhānta. The earliest treatise bearing this name is said to have formed a part of the Vishnu-dharmottara Purāṇa, a work which seems to be long since lost, and scarcely remembered except in connection with the Siddhānta. The latter, too, is only known by a few citations in astronomical writings, and by the treatise of Brahma-gupta (see below, third class) founded upon it. Another work laying claim to the same title is that which we have many times cited above as the Çākalya-Sanhita. Sanhitā, "text, comprehensive work," is a term employed to denote a complete course of astronomy, astrology, horoscopy, etc.: this treatise, according to the manuscript in our possession, forms the second division (prācna) of such a course. It professes to be revealed by Brahma to the semi-divine personage Nārada. Of its relation to the Sūrya-Siddhānta we have spoken above (note to viii. 10–12). It does not appear to be referred to as an independent work in either of the native lists we have given.

2. Sūrya-Siddhānta. This is the treatise of which the translation has been given above, and of which, accordingly, we do not need to speak here more particularly.

3. Soma-Siddhānta. Judging from its title, this work must profess to derive its origin from the moon (soma), as the preceding from the sun (sūrya). Bentley speaks of it as following in the main the system of the Sūrya-Siddhānta. There is a manuscript of it in the Berlin Library (Weber’s Catalogue, No. 840), and Colebrooke seems also to have had it in his hands.

4. Brāhaspati-Siddhānta. Brāhaspati is the name of a divine personage, priest and teacher of the gods, as also of the planet Jupiter. No work bearing this name is mentioned, so far as we can ascertain, by any European scholar, although Brāhaspati is not infrequently referred to in native writings as an authority in astronomical matters.

5. Nārada-Siddhānta. A Nārada-Sanhita, or course of astrology, in the Berlin Library (Weber, No. 862), and an occasional reference to
APPENDIX:

CONTAINING ADDITIONAL NOTES AND TABLES, CALCULATIONS OF ECLIPSES, A STELLAR MAP, ETC.

1. p. 142. The name *siddhānta*, by which the astronomical textbooks are generally called, has, by derivation and original meaning, nothing to do with astronomy, but signifies simply "established conclusion;" and it is variously applied to other uses in the Sanskrit literature.

It may not be uninteresting to present here a summary view of the existing astronomical literature of the Hindus, as derived from such sources of information upon the subject as are accessible to us, even though such a view must necessarily be imperfect and incomplete. We commence by giving a list of works furnished to the translator, at his request, by the native Professor of Mathematics in the Sanskrit College at Pūna, and which may be taken as representing the knowledge possessed, and the opinions held, by the learned of Western India at the present time. Along with it is offered the list of nine treatises given in the modern Sanskrit Encyclopaedia, the Çabdakalpadruma, as entitled to the name of Siddhānta. The longer list was intended to be arranged chronologically; the remarks appended to the names of treatises are those of its compiler.

1. Brahma-Siddhānta.
2. Sūrya-Siddhānta.
4. Vāśishṭha-Siddhānta.
5. Romaka-Siddhānta.
6. Pāulastya-Siddhānta.
11. Bheja-Siddhānta; earlier than the Čiromani.
12. Varaha-Siddhānta; earlier than the Čiromani.
13. Brhamagupta-Siddhānta; earlier than the Čiromani.
14. Siddhānta-Čiromani; *cave* 1072 [A.D. 1150].
15. Sundara-Siddhānta; about 400 years ago.
16. Tattva-Viveka-Siddhānta; in the time of the reign of Jaya Sinha, about 250
17. Sārvabhūma-Siddhānta; in the time of the reign of Jaya Sinha.
18. Laghu-Ārya-Siddhānta

It is obvious that these lists are uncritically constructed, and that neither of them is of a nature to yield valuable information without additional explanations. The one is most unreasonably curt, and seems founded on the principle of allowing the title of Siddhānta to no work
21. The space of a Patriarchate (*manvantara*) is styled time of Prajapati: in it is no distinction of day from night. An Æon (*kalpa*) is called time of Brahma.

It may well be said that the mode of reckoning by time of the gods has been already explained: the length of a day of the gods, with the method of its determination, has been stated and dwelt upon, in almost identical language, over and over again (see i. 13-14; xii. 45-50, 67, 74; and the interpolated verse after xiv. 3), almost as if it were so new and striking an idea as to demand and bear repeated inculcation. For the Patriarchate (*manvantara*), or period of 308,448,000 years, see above, i. 18: this is the only allusion to it as a unit of time which the treatise contains. For the Æon (*kalpa*), of 4,320,000,000 years, as constituting a day of Brahma, see above, i. 20.

The remaining verses are simply the conclusion of the treatise.

22. Thus hath been told thee that supreme mystery, lofty and wonderful, that sacred knowledge (*brahman*), most exalted, pure, all guilt destroying;

23. And the highest knowledge of the heaven, the stars, and the planets hath been exhibited: he who knoweth it thoroughly obtaineth in the worlds of the sun etc. an everlasting place.

24. With these words, taking leave of Maya, and being suitably worshipped by him, the part of the sun ascended to heaven, and entered his own disk.

25. So then Maya, having personally learned from the sun that divine knowledge, regarded himself as having attained his desire, and as purified from sin.

26. Then, too, the sages (*rahit*), learning that Maya had received from the sun this gift, drew near and surrounded him, and reverently asked the knowledge.

27. And he graciously bestowed upon them the grand system of the planets, of mysteries in the world the most wonderful, and equal to the Scripture (*brahman*).

The *Sūrya-Siddhānta*, in the form in which it is here presented, as accepted by Ranganātha and fixed by his commentary, contains exactly five hundred verses. This number, of course, cannot plausibly be looked upon as altogether accidental: no one will question that the treatise has been intentionally wrought into its present compass. We have often found occasion above to point out indications, more or less distinct and unequivocal, of alterations and interpolations: and although in some cases our suspicions may not prove well-founded, there can be no reasonable doubt that the text of the treatise has undergone since its origin not unimportant extension and modification. Any farther consideration of this point we reserve for the general historical summary to be presented at the end of the Appendix.
ference accumulates so rapidly that the thirteenth setting would take place about four degrees farther eastward than the first, so that, without some system of periodical omissions of a month, the correspondence between the names of the years, if applied in regular succession, and the asterisms in which the planet disappeared would, after a few revolutions, be altogether dislocated and broken up. If the cycle were of more practical consequence, or if it were contemplated as one of the proper subjects of this treatise, we might expect to find some method of obviating this difficulty prescribed. Warren, however, in his brief account of the cycle of twelve years (Kāla Sankalita, p. 212 etc.), states that he knows of no nation or tribe making any use of it, but only finds it mentioned in the books. According to both him and Davis (As. Res., iii. 217 etc.), the cycle of twelve years is subordinate to that of sixty, the latter being divided into five such cycles, to which special names are applied, and of each of which the successive years receive in order the titles of the solar months. The appellations of the cycles themselves are those which properly belong to the years of the lustrum (yuga), or cycle of five years, by which, as already noticed (note to i. 56–58), the Hindus appear first to have regulated time, and effected by intercalation the coincidence of the solar and lunar years: they are Samvatsara, Parivatsara, Idāvatsara, Idvatsara, (or Anuvatsara), and Vatsara (or Idvatsara, or Udravatsara). It would appear, then, either that the cycle of sixty years was derived from and founded upon the ancient lustrum, being an imitation of its construction in time of the planet Jupiter, of which a month equals a solar year, or else that the already existing cycle had been later fancifully compared with the lustrum, and subdivided after its model into sub-cycles for years, and years for months: of these two suppositions we are inclined to regard the latter as decidedly the more probable.

18. From rising to rising of the sun, that is called civil (sāvana) reckoning. By that are determined the civil days (sāvana), and by these is the regulation of the time of sacrifice;

19. Likewise the removal of uncleanness from child-bearing etc., and the regents of days, months, and years: the mean motion of the planets, too, is computed by civil time.

The term sāvana we have translated "civil," as being a convenient way of distinguishing this from the other kinds of time, and as being very properly applicable to the day as reckoned in practical use from sunrise to sunrise: in the more general sense, as denoting the mode of reckoning the mean motions of the planets, and the regency of successive periods, sāvana corresponds to what we call "mean solar" time. The word itself seems to be a derivative from sāvana, "libation," the three daily sāvanas, or the sunrise, noon, and sunset libations, being determined by this reckoning.

20. The mutually opposed day and night of the gods (sura) and demons (asura), which has been already explained, is time of the gods, being measured by the completion of the sun's revolution.
As regards Vāiçākha and Cāitra, indeed, the case is clear, and we may also regard the rank assigned to Kārttika as due to the ancient position of Kṛttikā, as first among the lunar mansions.

17. In Vāiçākha etc., a conjunction (yoga) in the dark half-month (krṣṇa), on the fifteenth lunar day (tihti), determines in like manner the years Kārttika etc. of Jupiter, from his heliacal setting (asta) and rising (udaya).

We have already, in an early part of the treatise (i. 55), made acquaintance with a cycle of the planet Jupiter, composed of sixty years; in this verse we have introduced to our notice a second one, containing twelve years, or corresponding to a single sidereal revolution of the planet. The principle upon which its nomenclature is based is very evident. Jupiter’s revolution is treated as if, like that of the sun, it determined a year, and the twelve parts, each quite nearly equalling a solar year (see note to i. 55), into which it is divided, are, by the same analogy, accounted as months, and accordingly receive the names of the solar months. The appellations thus applied to the years, in their order, we are directed to determine by the asterism (naksatra) in which the planet is found to be at the time of its disappearance in the sun’s rays, and its disengagement from them: for it would, of course, set and rise heliacally twelve times in each revolution, and each time about a month later than before. The name of the year, however, will not agree with that of the month in which the rising and setting occur, but will be the opposite of it, or six months farther forward or backward, since the month is named from the asterism with which the sun is in opposition, but the year of the cycle from that with which he is in conjunction. The terms in which the rule of the text is stated are not altogether unambiguous: there is no expressed grammatical connection between the two halves of the verse, and we are compelled to add in our translation the important word “determines,” which links them together. The meaning, however, we take to be as follows: if, in any given year, the heliacal setting of Jupiter takes place in the month Vāiçākha, then the asterism with which the moon is found to be in conjunction at the end of that month—which will be, of course, the asterism in which the sun is at the same time situated—will determine the name of the year, which will be Kārttika: and so on, from year to year. The expression “in like manner,” in the second half of the verse, is interpreted as implying that to the years of this cycle is made the same distribution of the asterisms as to the months in the preceding passage: the second and third columns of the last table, then, will apply to the cycle, if we alter their headings respectively, from “month” to “year of the cycle,” and from “asterisms in which full moon may occur” to “asterisms in which Jupiter’s heliacal setting and rising may occur.”

There is one untoward circumstance connected with this arrangement which is not taken into account by the text, and which appears to oppose a practical difficulty to the application of its rule. The amount of Jupiter’s motion during a solar year is not precisely one sign, but perceptibly more than that, so that the mean interval between two successive heliacal settings is a little more than a solar month; and this dif-
we do not know. They are—commencing with the first month of the season Vasanta, or with that one which in the other system is called Cāitra—as follows: Madhu, Mādhava, Čukra, Čuci, Nabhas, Nabhasya, Isha, Úrja, Sahas, Sahasya, Tapas, Tapasya.

For the sake of a clearer understanding of the relations of the asterisms, months, and seasons, we present their correspondences below in a tabular form:

<table>
<thead>
<tr>
<th>Season</th>
<th>Month</th>
<th>Asterisms in which full moon may occur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Čarad</td>
<td>Kāttika</td>
<td>Kṛttikā, Ribhipi</td>
</tr>
<tr>
<td></td>
<td>(Oct.-Nov.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mārgačīrsha</td>
<td>Mrgačīrsha, Ārdra</td>
</tr>
<tr>
<td></td>
<td>(Nov.-Dec.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pāusha</td>
<td>Punavarvasu, Pushya</td>
</tr>
<tr>
<td></td>
<td>(Dec.-Jan.)</td>
<td></td>
</tr>
<tr>
<td>Hemanta</td>
<td>Māgha</td>
<td>Ācleśhā, Maghā</td>
</tr>
<tr>
<td></td>
<td>(Jan.-Feb.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Phālguna</td>
<td>P.-Phalguni, U.-Phalguni, Hasta</td>
</tr>
<tr>
<td></td>
<td>(Feb.-Mar.)</td>
<td></td>
</tr>
<tr>
<td>Čiṣira</td>
<td>Cāitra</td>
<td>Cīrā, Svāti</td>
</tr>
<tr>
<td></td>
<td>(Mar.-Apr.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vāiśākha</td>
<td>Viśākha, Anurādhā</td>
</tr>
<tr>
<td></td>
<td>(Apr.-May)</td>
<td></td>
</tr>
<tr>
<td>Vasanta</td>
<td>Jyāśiṣṭha</td>
<td>Jyeṣṭhā, Mūla</td>
</tr>
<tr>
<td></td>
<td>(May-June)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Āśādha</td>
<td>P.-Āśādha, U.-Āśādha</td>
</tr>
<tr>
<td></td>
<td>(June-July)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Čravāna</td>
<td>Čravāna, Čravīṣṭhā</td>
</tr>
<tr>
<td></td>
<td>(July-Aug.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bhāḍrapada</td>
<td>Čatābhūṣṭhā, P.-Bhāḍrapadā, U.-Bhāḍrapadā</td>
</tr>
<tr>
<td></td>
<td>(Aug.-Sept.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Āśvina</td>
<td>Revati, Aśvini, Bharati</td>
</tr>
<tr>
<td></td>
<td>(Sept.-Oct.)</td>
<td></td>
</tr>
</tbody>
</table>

Davis (As. Res., iii. 218) notices that some of the ancient astronomers have divided the asterisms somewhat differently, giving to Čravāna the three beginning with Čravāna, to Bhāḍrapada the three beginning with Pūrva-Bhāḍrapadā, and to Āśvina only Āśvini and Bharani. It seems, indeed, that the selection of the three months to which three asterisms, instead of two, were assigned, must have been made somewhat arbitrarily.

It will be noticed that in this passage Kāttika is treated as the first of the series of months, while above (v. 10) Čiṣira was mentioned as the first season, and while in practice (see note to i. 48-51) Vāiśākha is treated as the first of the solar months, and Cāitra of the lunar. Another name for Mārgačīrsha, also, is Agraḥāyaṇa, which appears to mean "commencement of the year." How much significance these variations of usage may have, and what is their reason, is not known to us.
three months, namely the last, the next to the last, and the fifth, have triple asterisms.

The subject of sidereal time, although one of prominent importance in the present treatise, since the subdivision of the day is regulated entirely by it, is here very summarily dismissed with half a verse, while we find appended to it in the same passage matters with which it has nothing properly to do.

We have already (note to i. 48–51) had occasion to notice that the months are regarded as having received their names from the asterisms (nakṣatras) in which the moon became full during their continuance. According to Sir William Jones (As. Res., ii. 296), it is asserted by the Hindus "that, when their lunar year was arranged by former astronomers, the moon was at the full in each month on the very day when it entered the nakṣatra, from which that month is denominated." Whether this assertion is strictly true admits of much doubt. Our text does not imply any such claim: it only declares that the month is to be called by the name of that asterism with which the moon is in conjunction (yoga) at the end of the parvan: this latter word might mean either half of a lunar month, but is evidently to be understood here, as explained by the commentary, of the light half (cukla pakṣa) alone, so that the end of the parvan (parvānta) is equivalent to the end of the day of full moon (pāraṇimānta), or to the moment of opposition in longitude. Now it is evident that, owing to the incommensurability of the times of revolution of the sun and moon, as also to the revolution of the moon's line of apsides, full moon is liable to occur in succession in all the asterisms, and at all points of the zodiac; so that although, at the time when the system of names for the months originated and established itself, they were doubtless strictly applicable, they would not long continue to be so. Instead, however, of being compelled to alter continually the nomenclature of the year, we are allowed, by verse 16, to call a month Kārttiika in which the full of the moon takes place either in Kṛttikā or in Rohini, and so on; the twenty-seven asterisms being distributed among the twelve months as evenly as the nature of the case admits.

At what period these names were first introduced into use is unknown. It must have been, of course, posterior to the establishment of the system of asterisms, but it was probably not much later, as the names are found in some of the earlier texts which contain those of the nakṣatras themselves. We can hardly suppose that they were not originally applied independently to the lunar months; and certainly, no more suitable derivation could be found for the name of a lunar period than from the asterism in which the moon attained during its continuance her full beauty and perfection. In later times, as we have already seen (note to i. 48–51), the true lunar months are entirely dependent for their nomenclature upon the solar months, according to the determination of the latter, as regards their commencement and duration, by the data and methods of the modern astronomical science. There has been handed down another system of names for the months (see Colebrooke in As. Res., vii. 284; Essays, i. 201), which have nothing to do with the asterisms: whether they are to be regarded as more ancient than the others.
been employed from very early times to designate the various divisions of the year. They were anciently reckoned as three, five, six, or seven; but the prevailing division, and the only one in use in later times, is that into six seasons, named Čīcira, Vasanta, Grīshma, Varsha, Čarad, and Hemanta, which may be represented by cool season, spring, summer, rainy season, autumn, and winter. Čīcira begins with the month Māgha, or about the middle of January (see note to i. 48–51, and the table given below, under vv. 15–16), and each season in succession includes two solar months.

11. Multiply the number of minutes in the sun’s measure (māna) by sixty, and divide by his daily motion: a time equal to half the result, in nādis, is propitious before the sun’s entrance into a sign (sankrānti), and likewise after it.

The propitious influences referred to above, in verse 3, as attending upon the sun’s entrance into a sign, are regarded as enduring so long as any part of his disk is upon the point of separation between the two signs. This time is found by the following proportion: as the sun’s actual daily motion, in minutes, is to a day, or sixty nādis, so is the measure of his disk, in minutes, to the time which it will occupy in passing the point referred to.

12. As the moon, setting out from the sun, moves from day to day eastward, that is the lunar method of reckoning time (māna): a lunar day (tīthi) is to be regarded as corresponding to twelve degrees of motion.

13. The lunar day (tīthi), the karana, the general ceremonies, marriage, shaving, and the performance of vows, fastings, and pilgrimages, are determined by lunar time.

14. Of thirty lunar days is composed the lunar month, which is declared to be a day and a night of the Fathers: the end of the month and of the half-month (pāksha) are at their mid-day and midnight respectively.

For the tīthi, or lunar day, see above, ii. 66: for the karana, see ii. 67–69. For the month considered as the day of the pitaras, or manes of the departed, see note to xii. 73–77. Manu (i. 66) pronounces the day of the Fathers to be the dark half-month, or the fortnight from full moon to new moon, and their night to be the light half-month, or the fortnight from new moon to full moon. With this mode of division might be made to accord that stated in the latter part of verse 14, by rendering madhye “between,” instead of “at the middle point of”: we have translated according to the directions of the commentator.

15. The constant revolution of the circle of asterisms (bhacakra) is called a sidereal day. The months are to be known by the names of the asterisms (nakshatra), according to the conjunction (yoga) at the end of a lunar period (parvan).

16. To the months Kārttika etc. belong, as concerns the conjunction (samayoga), the asterisms Kṛttikā etc., two by two: but
We have not been able to find anywhere any explanation of this curious division of the sun's path into arcs of 86°, commencing from the autumnal equinox, and leaving an odd remnant of 16° at the end of Virgo. The commentary offers nothing whatever in elucidation of their character and significance. The epithet "of double character" (dviseva-bhāva) belongs to the four signs mentioned in verse 5; judging from the connection in which it is applied to them by Varāha-Mihira (Laghu-jñātaka, i. 8, in Weber's Indische Studien, ii. 278), it designates them as either variable (cara) or fixed (sthira), in some astrological sense. The term shadaçitimuñkha is composed of shadaçiti, "eighty-six," and muñkha, "mouth, face, beginning." We do not understand the meaning of the compound well enough to venture to translate it.

7. In the midst of the zodiac (bhacaakra) are the two equinoxes (vishuvat), situated upon the same diameter (samastṛaga), and likewise the two solstices (ayana); these four are well known.

8. Between these are, in each case, two entrances (sankrānti); from the immediateness of the entrance are to be known the two feet of Vishṇu.

9. From the sun's entrance (sankrānti) into Capricorn, six months are his northern progress (uttarāyana); so likewise, from the beginning of Cancer, six months are his southern progress (aśviniyāyana).

10. Thence also are reckoned the seasons (ṛtu), the cool season (citira) and the rest, each prevailing through two signs. These twelve, commencing with Aries, are the months; of them is made up the year.

The commentator explains samastṛaga, like samastṛastha above (xii. 52), to mean situated at opposite extremities of the same diameter of the earth, or antipodal to one another.

The technical term for the sun's entrance into a sign of the zodiac is, as noticed already, sankrānti (the commentary also presents the equivalent word sankramana); of these there take place two between each equinox and the preceding or following solstice. The latter half of verse 8 is quite obscure. The commentator appears to understand it as signifying that, in each quadrant, the entrance (sankrānti) immediately following the solstice or equinox is styled "Vishnus's feet." In the earliest Hindu mythology, Vishnu is the sun, especially considered as occupying successively the three stations of the orient horizon, the meridian, and the occident horizon; and the three steps by which he strides through the sky are his only distinctive characteristic. These three steps, then, appear under various forms in the later Vaishnava mythology, and there is plainly some reference to them in this designation of the sun's entrances into the signs. It would seem easiest and most natural to recognize in the three signs intervening between each equinox and solstice Vishnu's three steps, and to regard the two intermediate entrances as the marks of his feet; this may possibly be the figure intended to be conveyed by the language of the text.

The word ṛtu means originally and literally any determined period of time, a "season" in the most general sense of the term; but it has also
Duration of the several Solar Months.

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Duration</th>
<th>Sum of duration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>d n v</td>
<td>d n v</td>
</tr>
<tr>
<td>1</td>
<td>Vaiśākha</td>
<td>30 55 32 2 39</td>
<td>30 55 32 2 39</td>
</tr>
<tr>
<td>2</td>
<td>Jyāśīthha</td>
<td>31 24 12 2 41</td>
<td>62 19 44 5 20</td>
</tr>
<tr>
<td>3</td>
<td>Āśādha</td>
<td>31 36 38 2 44</td>
<td>93 56 22 8 4</td>
</tr>
<tr>
<td>4</td>
<td>Črīvāna</td>
<td>31 28 12 2 42</td>
<td>135 24 34 10 46</td>
</tr>
<tr>
<td>5</td>
<td>Bhādrapada</td>
<td>31 2 10 2 40</td>
<td>156 26 44 13 26</td>
</tr>
<tr>
<td>6</td>
<td>Āśvina</td>
<td>30 27 22 2 38</td>
<td>186 54 6 16 4</td>
</tr>
<tr>
<td>7</td>
<td>Kārttiika</td>
<td>29 54 7 2 35</td>
<td>216 48 13 18 39</td>
</tr>
<tr>
<td>8</td>
<td>Mārgaśīrha</td>
<td>29 30 24 2 33</td>
<td>246 18 37 21 12</td>
</tr>
<tr>
<td>9</td>
<td>Pāusha</td>
<td>29 30 53 3 31</td>
<td>275 39 30 23 43</td>
</tr>
<tr>
<td>10</td>
<td>Māgha</td>
<td>29 27 16 2 32</td>
<td>305 6 46 26 15</td>
</tr>
<tr>
<td>11</td>
<td>Phālguna</td>
<td>29 48 24 2 33</td>
<td>334 55 10 28 48</td>
</tr>
<tr>
<td>12</td>
<td>Cāitra</td>
<td>30 20 21 2 36</td>
<td>365 15 31 31 24</td>
</tr>
</tbody>
</table>

The former passage (i. 12–13) took no note of any solar day; in this chapter, however, such a division of time is distinctly contemplated: it is also recognized by the Siddhānta-Ciromāni (Ganitādhyā., ii. 8), and seems to be, for certain uses, generally accepted. The solar day is the time during which the sun traverses each successive degree of the ecliptic, with his true motion, and its length accordingly varies with the rapidity of his motion: three hundred and sixty such days compose the sidereal year. In order to determine the solar day corresponding to any given moment, it is, of course, only necessary to calculate, by the methods of the second chapter, the sun's true longitude for that moment. Hence it is a matter of very little practical account: all the periods regarded by it may be as well derived directly from the sun's longitude, without going through the form of calling its degrees days. It is thus with the equinoxes, solstices, and entrances of the sun into a sign (saṅkrānti, "entrance upon connection with"): for the latter, and for the continuance of the propitious influences which are believed to attend upon it, see below, verse 11. The *shādacitītimukhas* form the subject of the next following passage.

The manuscript without commentary inserts here the following verse: "the day and night of the gods and demons, which is determined by the sun's revolution through the circle of asterisms (bhācakra), and the number of the Golden (kṛta) and other Ages, as already stated, is to be known."

4. Beginning with Libra, the *shādacitītimukha* is at the end of the periods of eighty-six (*shādaciti*) days, in succession: there are four of them, occurring in the signs of double character (*dviśavābhāva*);

5. Namely, at the twenty-sixth degree of Sagittarius, at the twenty-second of Pisces, at the eighteenth degree of Gemini, and at the fourteenth of Virgo.

6. From the latter point, the sixteen days of Virgo which remain are suitable for sacrifices: anything given to the Fathers (*pitāras*) in them is inexhaustible.
CHAPTER XIV.

OF THE DIFFERENT MODES OF RECKONING TIME.

Contents.—1–2, enumeration of the modes of measuring time, and general explanation of their uses; 3, solar time; 4–6, of the periods of eighty-six days; 7–11, of points and divisions in the sun’s revolution; 12–13, lunar time; 14, time of the Fathers; 15, sidereal time; 15–16, of the months and their asterisms; 17, of the twelve-year cycle of Jupiter; 18–19, civil, or mean solar, time; 20–21, time of the gods, Prajapati, and Brahman; 22–26, conclusion of the work.

1. The modes of measuring time (mana) are nine, namely those of Brahman, of the gods, of the Fathers, of Prajapati, of Jupiter, and solar (saura), civil (savana), lunar, and sidereal time.

2. Of four modes, namely solar, lunar, sidereal, and civil time, practical use is made among men; by that of Jupiter is to be determined the year of the cycle of sixty years; of the rest, no use is ever made.

This chapter contains the reply of the sun’s incarnation to the last of the questions addressed to him by the original recipient of his revelation (see above, xii. 8). The word mana, which gives it its title of madhyadhyaya, and which we have translated “mode of measuring or reckoning time,” literally means simply “measure”; it is the same term which we have already (iv. 2–3) seen applied to designate the measured disks of the sun and moon.

3. By solar (saura) time are determined the measure of the day and night, the shadachitimukhas, the solstice (ayana), the equinox (vishvat), and the propitious period of the sun’s entrance into a sign (sankrant).

The adjective saura, which we translate “solar,” is a secondary derivative from sírya, “sun.” It is applied to those divisions of time which are dependent on and determined by the sun’s actual motion along the ecliptic. The “day and night” measured by it are probably those of the gods and demons respectively; see above, xii. 48–50. The solar year, as already noticed (note to i. 12–13), is sidereal, not tropical; it commences whenever the sun enters the first sign of the immovable sidereal zodiac, or when he is 10 minutes east in longitude from the star ζ Piscium. The solar month is the time during which he continues in each successive sign, or are of 30°, reckoning from that point. The length of the solar year and month is subject only to an infinitesimal variation, due to the slow motion, of 1° in 517 years, assumed for the sun’s line of apsides (see above, i. 41–44); but it is, as has been shown above (note to i. 29–34, near the end), somewhat differently estimated by different authorities. The precise length of the solar months, as reckoned according to the Súrya-Siddhánta, is thus stated by Warren (Kalak Sankalita, p. 69):
one or two other somewhat similar machines are also cited in the commentary from the Siddhânta-Çiromâni: the only new feature worthy of notice which they contain is the application of the siphon, or bent tube, in emptying a vessel of the water it contains.

It will have been noticed that, throughout the whole of this chapter, the different parts or passages end in the middle of a verse. In the twenty-first verse the coincidence between the end of a passage and the end of a verse is re-established, but it is at the cost of such an irregularity as is nowhere else committed in the treatise: the verse is made to consist of three half-clokas, instead of two, the whole chapter being thus allowed to contain an uneven number of lines. There are two or three very superfluous half-verses at the beginning of the chapter, the omission of any one of which would seem an easier and preferable method of restoring the regular and connected construction of the text.

23. A copper vessel, with a hole in the bottom, set in a basin of pure water, sinks sixty times in a day and night, and is an accurate hemispherical instrument.

This instrument appears to have been the one most generally and frequently in use among the Hindus for the measurement of time: it is the only one described in the Âyîn-Akbarî (ii. 302). One of the common names for the sixtieth part of the day, ghâți or ghâṭikâ, literally "vessel," is evidently derived from it: the other, nâdî or nâdikâ, "reed," probably designated in the first place, and more properly, a measure of length, and not of time. A verse cited in the commentary to this passage gives the form and dimensions of the vessel used: it is to be of ten palas' weight of copper, six digits (angula) high, and of twice that width at the mouth, and is to contain sixty palas of water: the hole in the bottom through which it is to fill itself is to be such as will just admit a gold pin four digits long, and weighing three and a third mâshas. The description of the Âyîn-Akbarî does not precisely agree with this; and it is, indeed, sufficiently evident that an instrument intended for such a purpose could not be accurately constructed by Hindu workmen from measurements alone, but would have to be tested by comparison with some recognized standard, or by actual use.

24. So also, the man-instrument (narayantra) is good in the day-time, and when the sun is clear. The best determination of time by means of determinations of the shadow has been explained.

We have already noticed above, under verse 21, that the nara was a simple gnomon. The explanations here referred to are, of course, those which are presented in the third chapter.

The concluding verse of the chapter is an encouragement held out to the astronomical student.

25. He who thoroughly knows the system of the planets and asterisms, and the sphere, attains the world of the planets in the succession of births, his own possessor.
moment upon the sphere. Measure, by a stick, the distance of that extremity from the point of sunrise or of sunset: this will be the chord of that part of the diurnal circle which is intercepted between the sun's actual position and the point at which he rose, or will set: the value of the corresponding arc in nādils may be ascertained by applying the stick to the lesser graduated circle. The result is the time since sunrise, or till sunset.

The "wheel" (cakra) is a very simple instrument for obtaining, by observation, the sun's altitude and zenith-distance. It is simply a wheel, suspended by a string, graduated to degrees, having its lowest point and the extremities of its horizontal diameter distinctly marked, and with a projecting peg at the centre. When used, its edge is turned toward the sun, so that the shadow of the peg falls upon the graduated periphery, and the distances of the point where it meets the latter from the horizontal and lowest points of the wheel respectively are the required altitude and zenith-distance of the sun. From these, by the methods of the third chapter (iii. 37-39), the time may be derived.

The "arc" (dhanus) is the lower half of the instrument just described—or, we may also suppose, a quadrant of it; since only a quadrant is required for making the observations for which the instrument is employed.

21. By water-instruments, the vessel (kapāla) etc., by the peacock, man, monkey, and by stringed sand-receptacles, one may determine time accurately.

22. Quicksilver-holes, water, and cords, ropes (cūlba), and oil and water, mercury, and sand are used in these: these applications, too, are difficult.

The instruments and methods hinted at in these verses are only partially and obscurely explained by the commentator. The kapāla, "cup" or "hemisphere," is doubtless the instrument which is particularly described below, in verse 23. The nara, "man," is also spoken of below, in verse 24, and is simply a gnomon; it is perhaps one of a particular construction and size, and so named from having about the height of a man. The peacock and monkey are obscure. The "sand-vessels" (renugnrbha), which are "provided with cords" (sasūtra), are probably suspended instruments, of the general character of our hour-glasses. The commentator connects them also with the "peacock," as if the latter were a figure of the bird having such a vessel in his interior, and letting the sand pour out of his mouth. In illustration of the "quicksilver-holes" (pāradārd) a passage is cited from the Siddhānta-Ciromāṇi (as above), giving the description of an instrument in which they are applied. It is a wheel, having on its outer edge a number of holes, of equal size, and at equal distances from one another, but upon a zig-zag line: these holes are filled half full of mercury, and stopped at the orifice: and it is claimed that the wheel will then, if supported upon an axis by a couple of props, revolve of itself. The application of this method may well enough be styled "difficult": if a machine so constructed would work, the Hindus would be entitled to the credit of having solved the problem of perpetual motion. The descriptions of
heavens about the earth, is something so calculated to strike the minds of the uninitiated with wonder, that the means by which it is to be accomplished must not be fully explained even in this treatise, lest they should become too generally known: they must be learned by each pupil directly from his teacher, as the latter has received them by successive tradition, from the original and superhuman source whence they came. It is perfectly evident that such a fabric could only be made to revolve in a rude and imperfect way; that it should have marked time, and continued for any period to correspond in position with the actual sphere, is impossible. The word which, upon the authority of the commentator, we have rendered "water," in verse 16, is amṛtasrava, literally "having an immortal flow": perhaps the phrase should be translated rather, "by managing a constant current of water."

19. . . So also, one should construct instruments (yantra) in order to the ascertainment of time.

20. When quite alone, one should apply quicksilver to the wonder-causing instrument. By the gnomon (canku), staff (yashṭi), arc (dhanus), wheel (cakra), instruments for taking the shadow, of various kinds, 21. According to the instruction of the preceptor (guru), is to be gained a knowledge of time by the diligent. . . .

The commentator interprets the first part of verse 20 in correspondence with the sense of the preceding passage: the application of mercury to a revolving machine, in order to give it the appearance of automatic motion, must be made privately, lest people, understanding the method too well, should cease to wonder at it. The instruments mentioned in the latter half of the same verse are explained in the commentary simply by citations from the yantrādhyāya, "chapter of instruments," of the Siddhānta-Ciromani (Golādhyā, pp. 111–136, published edition). We will state, as briefly as may be, their character:

The gnomon (canku) needs no explanation; its construction and the method of using it have been fully exhibited in the third chapter of our treatise. The "staff-instrument" (yashṭiyantra) is described as follows. A circle is described upon a level surface with a radius proportioned to that of the sphere, or to tabular radius. Its cardinal points are ascertained, and its east and west and north and south diameters are drawn. From the former, at either extremity, is laid off the sine of amplitude (agru) ascertained by calculation for the given day: the points thus determined upon the circumference of the circle represent the points on the horizon at which the sun rises and sets. Another circle, with a radius proportioned to that of the calculated diurnal circle of the day (āvuyā), is also described about the centre of the other, and is divided into sixty equal parts, representing the division of the sun's daily revolution into sixty nāḍās. Into a depression at the centre, the foot of a staff (yashṭi), equal in length to the radius of the larger circle, is loosely inserted. When it is desired to ascertain the time of the day, this staff is pointed directly toward the sun, or in such manner that it casts no shadow; its extremity then represents the place of the sun at the
text reads “equator” (vishuvat—E C in the figure) here for “east and west hour-circle” (unmandala—C P): the commentator restores the latter, and excuses the substitution by a false translation of the latter half of iii. 6, making it mean “the east and west hour-circle is likewise denominated the equinoctial circle.”

In verse 14, lankodayäs is substituted for the more usual term lankodayaśāvasas (see above, iii. 49, and note), in the sense of “equivalents of the signs in right ascension,” literally, “at Lankā.”

15. . . . Having turned upward one’s own place, the circle of the horizon is midway of the sphere.
16. As covered with a casing (vastra) and as left uncovered, it is the sphere surrounded by Lokāloka. . . .

The simple direction to turn upward one’s own situation upon the central wooden globe which represents the earth does not, it is evident, contemplate any very careful or exact adjustment of the instrument.

Verse 16 is very elliptical and obscure in its expressions, but their general meaning is plain, and is that which is attributed to them by the commentator. The proper elevation having been given to the pole of the sphere, a circle is by some means or other to be fixed about its midst, or equally distant from its zenith and nadir, to represent the horizon. Then the part below is to be encased in a cloth covering, the upper hemisphere alone being left open. As thus arranged, the sphere is, as it were, girt about by the Lokāloka mountains. Lokāloka is, as we have seen above (note to xii. 32-44), the name of the giant mountain-range which, in the Puranic geography, is made the boundary of the universe: it is apparently so called because it separates the world (loka) from the non-world (aloka); and as out of the Puranic Meru the new astronomical geography makes the axis and poles of the earth, so out of these mountains it makes the visible horizon.

The “wonder-working fabric of the terrestrial and stellar sphere” is now fully constructed, and only requires farther, in order to its completion as an edifying and instructive illustration of the relations of the heavens to the earth, to be set in motion about its fixed axis.

16. . . . By the application of water is made ascertainment of the revolution of time.
17. One may construct a sphere-instrument combined with quicksilver: this is a mystery; if plainly described, it would be generally intelligible in the world.
18. Therefore let the supreme sphere be constructed according to the instruction of the preceptor (guru). In each successive age (yuga), this construction, having become lost, is, by the Sun’s
19. Favor, again revealed to some one or other, at his pleasure. . . .

Here we have another silly mystification of a simple and comparatively insignificant matter, like that already noticed at the end of the sixth chapter. The revolution of the machine of which the construction has now been explained, in imitation of the actual motion of the
(madhya) and the horizon (kshitiya) is styled the day-measure (antya).

15. And the sine of the sun's ascensional difference (caradala) is to be recognized as the interval between the equator (vishuvat) and the horizon.

These verses contain an unnecessary and fragmentary, as also a confused and blundering, definition of the positions upon the sphere of a few among the points and lines which have been used in the calculations of the earlier parts of the treatise. We are unwilling to believe that the passage is anything but a late interpolation, made by an awkward hand. For the point of the ecliptic termed lagna, or that one which is at any given moment passing the eastern horizon, or rising, see iii. 46–48, and note upon that passage. The like point at the western horizon, which the commentator here calls antalagna, "lagna of setting," and which the text directs us to find "in a corresponding manner," has never been named or taken into account anywhere in the treatise; we have seen above (as for instance, in ix. 4–5) that all its processes into which distance in ascension enters as an element are transferred for calculation from the occident to the orient horizon. For madhyalagna, the point of the ecliptic situated upon the meridian, see above, iii. 49 and note. Although we have ordinarily translated the term by "meridian ecliptic-point," this being a convenient and exact definition of the point actually referred to, we do not regard the word madhya, occurring in it, as meaning "meridian" in the sense in which it is used in modern astronomy, namely the great circle passing through the observer's zenith and the north and south points of his horizon. For it deserves to be noted that the text has no distinctive name for the meridian, and nowhere makes any reference to it as a circle on the sphere: it will be seen just below that, while the position of the horizon is defined, the meridian is not contemplated as a circle of sufficient consequence to require to be represented upon the illustrative armillary sphere. The commentator not very infrequently has occasion to speak of the meridian, and styles it yâmyottaravrtta, "south and north circle," or urdhvavâmyottaravrtta, "uppermost south and north circle." In the latter half of verse 14, where we have translated madhya by "meridian," it would have been more exact to say "mid-heaven," or "the sun at the middle of his visible revolution," or "the sun when at the point called madhyalagna." For the "day-measure" (antya), see above, iii. 34–36. Its definition given here is as bad as it could well be: for, passing over the fact that the line in question is not properly a sine, and moreover that the text does not tell us in which of the numberless possible directions it is to be drawn from the meridian to the horizon, the line which it is attempted to describe is not the one which the treatise regards as the antya, but the correspondent of the latter in the small circle described by the sun. That is to say, the text here substitutes the line DA in Fig. 8, above (p. 232), for the line EG. A similar blunder is made in defining the sine of the sun's ascensional difference (carajjâ): the line AB in the same figure, which is the "earth-sine" (kujjâ, kshitiyyâ), is taken, instead of its equivalent in terms of a great circle, CG. Moreover, the
colure, or at the intersection of the colure with the third parallel of the
sun's declination, on either side of the equator.

We are next taught how to fix in its proper position the hoop which
is to represent the ecliptic.

10. . . . From the place of the equinox, with the exact num-
ber of degrees, as proportioned to the whole circle;
11. Fix, by oblique chords, the spaces (kshetra) of Aries and
the rest; and so likewise another hoop, running obliquely from
solstice (ayana) to solstice,
12. And called the circle of declination (kranti): upon that
the sun constantly revolves, giving light; the moon and the other
planets also, by their own nodes, which are situated in the eclipt-
ic (apamandala),
13. Being drawn away from it, are beheld at the limit of their
removal in latitude (vikshepa) from the corresponding point of
declination . . .

Instead of simply directing that a circle or hoop, of the same di-
ensions as those of the equator and colures, be constructed to represent the
ecliptic, and then attached to the others at the equinoaxes and solstices,
the text regards it as necessary to fix, upon the six diurnal circles of
the sun of which the construction and adjustment were taught above,
in verses 5–8, the points of division of all the twelve signs, before
the ecliptic hoop can be added to the instrument. In the compound
tiryagyaya, in verse 11, which we have rendered "oblique chords," we
conceive jyā to have its own more proper meaning of "chord," instead of
that of "size," which, by substitution for jyārdha (see note to ii.15–27,
near the end), it has hitherto uniformly borne. We are to ascertain by
calculation the measure of the chord of 30°, to reduce it to the scale of
dimensions adopted for the other great circles of the instrument, and
then, commencing from either equinox, to lay it off, in an oblique di-
rection, to the successive diurnal circles, northward and southward, thus
fixing the positions upon them of the initial and final points of the
twelve signs; and through all these points the ecliptic hoop is to be
made to pass.

It does not appear that separate hoops for the orbits of the other
planets, attached to the ecliptic at their respective nodes, are to be ad-
ded to the instrument.

In verse 12 we have a name for the ecliptic, apamandala, which does
not occur elsewhere in the treatise. The word might be literally trans-
lated "off-circle," and regarded as designating the circle which deviates
in direction from the neighboring equator; but it is more probably an
abbreviation for apakramamandala, which would mean, like the ordinary
terms krantiinamandala, krantiivrtta, "circle of declination."

13. . . . The orient ecliptic-point (lagna) is that at the orient
horizon; the occident point (astamgachat) is similarly determined.
14. The meridian ecliptic-point (madhyama) is as calculated by
the equivalents in right ascension (lankodayas), for mid-heaven
(khamadhya) above. The sine which is between the meridian
sun at the end of Aries and at the beginning of Virgo, one for the sun at the end of Taurus and at the beginning of Leo, and one for the sun at the end of Gemini and the beginning of Cancer, or at the solstice: also, in the southern hemisphere, three others corresponding to these. The dimensions of which they must be made are to be determined by their several radii (which are called day-radii—see above, ii. 60), as ascertained by calculation and reduced to the same scale upon which the colures and equator were constructed. They are then to be attached to the two general supporting hoops, or colures, each at its proper distance from the equator; this distance is ascertained by calculating the declination of the sun when at the points in question, and is determined upon the instrument by the graduation of the two supporting hoops. This graduation is in the text called that for declination (kránti) and latitude (vikshepa): it will be remembered that, according to Hindu usage, the latter means distance from the ecliptic as measured upon a circle of declination.

8. ... Those likewise of the asterisms (bha) situated in the southern and northern hemispheres, of Abhijit,

9. Of the Seven Sages (saptarshayas), of Agastya, of Brahma etc., are to be fixed

If the orders given in these verses are to be strictly followed, our instrument must now be burdened with forty-two additional circles of diurnal revolution, namely those of the twenty-seven junction-stars (yogatārā) of the asterisms and of that of Abhijit—which is here especially mentioned, as not being always ranked among the asterisms (see above, p. 352 etc.)—those of the seven other fixed stars of which the positions were stated in the eighth chapter (vv. 10-12 and 20-21), and also those of the Seven Sages, or the conspicuous stars in Ursa Major (see end of the last note to the eighth chapter). Such impracticable directions, however, cannot but inspire the suspicion that the instrument may never have been constructed except upon paper.

9. ... Just in the midst of all, the equinoctial (vaiśhuvatī) hoop is fixed.

10. Above the points of intersection of that and the supporting hoops are the two solstices (aṇyana) and the two equinoxes (vaiśhuvat)

We have already noticed (note to iii. 6) that the celestial equator derives its name from the equinoxes through which it passes. It seems a little strange that the adjustment of the hoop representing it to the two supporting hoops, which we should naturally regard as the first step in the construction of the instrument, is here assumed to be deferred until after all the other circles of declination are fixed in their places.

The word translated "above" (ūrdhva) in verse 10 requires to be understood in two very different senses, as is pointed out by the commentator, to make the definitions of position of the solstices and of the equinoxes both correct: the latter are situated precisely at the intersection of the equinoctial colure with the equator; the former at a distance of 24° above and below the intersection of the equator with the other
instruments of western nations: but, on the other hand, it may possibly admit also of being regarded as an independent Hindu device.

3. . . . Having fashioned an earth-globe of wood, of the desired size,

4. Fix a staff, passing through the midst of it and protruding at either side, for Meru; and likewise a couple of sustaining hoops (kakshā), and the equinoctial hoop;

5. These are to be made with graduated divisions (āngula) of degrees of the circle (bhagana). . . .

The fixing of a solid globe of wood, representing the earth, in the midst of this instrument, is of itself enough to render impracticable its application to purposes of astronomical observation. For Meru, the axis and poles of the earth, see verse 34 of the preceding chapter. We are not informed of what relative size the globe and the encompassing hoops are to be made; probably their relation is to be such that the globe will be a small one, contained within an ample sphere. The two "supporting hoops," to which are to be attached all the numerous parallels of declination hereafter described, are, of course, to be fastened to the axis at right angles to one another, and to represent the equinoctial and solstitial colures. The commentary directly prescribes this, and the text also assumes it in a later passage (v. 10).

Colebrooke, following the guidance of the commentators, treats the former half of verse 5 as belonging to the following passage, instead of the preceding. It can, however, admit of no reasonable question that the connection as established in our translation is the true one: it is demanded by the natural construction of the verses, and also yields a decidedly preferable sense.

5. . . . Farther—by means of the several day-radii, as adapted to the scale established for those other circles,

6. And by means of the degrees of declination and latitude (vikṣhepa) marked off upon the latter—at their own respective distances in declination, according to the declination of Aries etc., three

7. Hoops are to be prepared and fastened: these answer also inversely for Cancer etc. In the same manner, three for Libra etc., answering also inversely for Capricorn etc.,

8. And situated in the southern hemisphere, are to be made and fastened to the two hoop-supporters. . . .

The grammatical construction of this passage is excessively cumbersome and intricate, and we can hardly hope that the version which we have given of it will be clearly understood without further explanations. Its meaning, however, is free from ambiguity. We have thus far only three of the circles out of which our instrument is to be constructed, namely those intended to represent the two colures and the equator: we are next to add hoops for the diurnal circles described by the sun when at the points of connection between the different signs of the zodiac. Of these there will be, of course, three north of the equator, one for the
We have already remarked above (note to xii. 1-9) that the subject of this chapter is one respecting which no inquiries were addressed at the beginning of the preceding chapter by the recipient to the communicator of the revelation, and that the chapter accordingly wears in some measure the aspect of an interpolation. It comes in here as furnishing a means of illustrating to the pupil the mutual relations of the earth and the heavens as explained in the last chapter—and yet not precisely as there explained; for it gives a representation only of the earth and of the one starry concave upon which the apparent movements of all the heavenly bodies are to be traced, and not of the concentric spheres and orbits out of which the universe has been declared to be constructed. The chapter has a peculiar title, unlike that of any other in the treatise: it is styled *jyotishopanishadadhyaśya*, "lection of the astronomical Upanishad." Upanishad is the name ordinarily given to such brief treatises, of the later Vedic period, or of times yet more modern, as are regarded as inspired sources of philosophical and theological knowledge, and are looked upon with peculiar reverence; its application to this chapter is equivalent to an assumption for it of especial sanctity and authority. It may possibly also indicate that the chapter is originally an independent treatise, incorporated into the text of the Sūrya-Siddhānta.

The word *bhā*, in verse 1, may mean either the asterisms proper (*nakṣatras*), or the signs (*rācīs*), and is explained by the commentator as intended to include both. The *guhyakas*, "secret ones," are a class of demigods who attend upon Kūvera, the god of wealth, and are the keepers of his treasures: why they are mentioned here, as objects of especial reverence to the astronomical teacher, is not obvious. The commentator explains the word by "Yakshaš etc., lesser divinities." In our translation of verse 3 we have followed the reading of the published text, which Colebrooke also appears to have had before him; our own manuscripts read, instead of *bhūbhagotā, bhūmigotā* and *bhūmer gota*, "sphere of the earth" simply.

Colebrooke, in his essay "On the Indian and Arabian Divisions of the Zodiac (As. Res., ix. 323 etc.; Essays, ii. 321 etc.)" to which we have already so often had occasion to refer, gives a translation of part of this chapter, from the beginning of the third to the middle of the thirteenth verse, as also a brief sketch of the armillary sphere of which the construction is taught in the Siddhānta-Çiromani. He further furnishes a description, and a comparison with these, of the somewhat similar instruments employed by the Greeks, the Arabs, and the early European astronomers. It has not seemed to us worth while to extract these descriptions and comparisons, or to draw up others from independent and original sources: the object of the Hindu instrument is altogether different from that of the others, since it is intended merely as an illustration of the positions and motions of the heavenly bodies, while those are meant to subserve the purposes of astronomical observation; and its relation to them is determined by this circumstance: while it, of course, possesses some of the circles which enter into the construction of the others, it is, upon the whole, a very different and much more complicated and cumbersome structure. There is nothing in the way of supposing that the first hint of its construction may have been borrowed from the
corrections of the bija, it seems preferable to assume that the text has at this point become corrupt, or else that the author of the chapter made a blunder in one of his calculations.*

The value of a minute of arc upon the moon's orbit being fifteen yojanas (see note to iv. 2-3), the value, in minutes, of any planet's mean daily motion may be readily found from its orbit by the proportion of which the rule given in verse 83 is a statement, as follows: as the distance, or the orbit, of the planet in question is to that of the moon, so is the moon's mean motion in minutes, or \(11,858.717 \div 15 \), to that of the planet.

In verse 84 we are taught to calculate the distance of any planet from the earth's surface: in order to this, we are first to find the diameter of the planet's orbit, adopting, as the ratio of the diameter to the circumference, that of the diameter to the circumference of the earth—the former, of course, as calculated (i. 59) by the false ratio of \(1 : \sqrt{10} \). After being guilty of so gross an inaccuracy, it is quite superfluous, and a mere affectation of exactness, to take into account so trivial a quantity as the radius of the earth, in estimating the planet's distance from the earth.

In the doctrine of the orbits of the planets, as here laid down, we have once more a total negation of the reality of their epicyclical motions, and of their consequently varying distances from the earth in different parts of their revolutions.

CHAPTER XIII.

OF THE ARMILLARY SPHERE, AND OTHER INSTRUMENTS.

Contents:—1-13, construction and equipment of the armillary sphere; 13-15, position of certain points and sines upon it; 15-16, its adjustment and revolution; 17-23, other instruments, especially for the determination of time.

1. Then, having bathed in a secret and pure place, being pure, adorned, having worshipped with devotion the sun, the planets, the asterisms (bhā), and the elves (guhyaka),

2. Let the teacher, in order to the instruction of the pupil—he himself beholding everything clearly, in accordance with the knowledge handed down by successive communication, and learned from the mouth of the master (guru)—

3. Prepare the wonder-working fabric of the terrestrial and stellar sphere (bhūbhagola)

* The last six verses of the chapter, which contain the numerical data, may very possibly be a later addition to its original content: the Áyin-Akhari (as translated by Gladwin), in its account of the astronomy of the Hindus, which it professedly bases upon the Sūrya-Siddhānta, gives these orbits (5vo. edition, London, 1800, ii. 396), but with the fractional parts of yojanas, as if independently derived from the data and by the rules of the text: the orbit of Mercury it states correctly, as 1,043,207 36 yojanas.
others are manufactured out of this, upon the arbitrary and false assumption that the mean motion of all the planets, each upon its own orbit, is of equal absolute amount, and hence, that its apparent value in each case, as seen by us, is inversely as the planet's distance, or that the dimensions of the orbit are directly as the time employed in traversing it, or as the period of sidereal revolution. These dimensions, then, may be found by various methods: upon dividing the circumference of the moon's orbit by her time of sidereal revolution, we obtain as the amount of her daily motion in yojanas 11,858.717 nearly (more exactly 11,858.71693 +); and multiplying this by the time of sidereal revolution of any planet, we obtain that planet's orbit. This is equivalent to making the proportion

\[
\text{moon's sid. rev. : planet's sid. rev. : moon's orbit : planet's orbit}
\]

And since the times of sidereal revolution of the planets are inversely as the number of revolutions made by them in any given period, this proportion, again, is equivalent to

\[
\text{planet's no. of rev. in an Άeon : moon's do. : moon's orbit : planet's orbit}
\]

This is the form of the proportion from which is derived the rule as stated in the text, only the latter designates the product of the multiplication of the moon's orbit by her number of revolutions as the orbit of the ether (ākāśa), or the circumference of the Brahma-egg, within which the whole creation, as above taught, is enclosed. This is the same thing with attributing to the outermost shell of the universe one complete revolution in an Άeon (kalpa), of 4,320,000,000 years.

There is one feature of the system exposed in this passage which to us is hitherto quite inexplicable: it is the assignment to the asterisms of an orbit sixty times as great as that of the sun. This, according to all the analogies of the system, should imply a revolution of the asterisms eastward about the earth once in each period of sixty sidereal years. The same orbit is found allotted to them in the Siddhānta-Čiromanī (Ganitādhya, iv. 5), and it is to be looked upon, accordingly, as an essential part of the general Hindu astronomical system. We do not see how it is to be brought into connection with the other doctrines of the system, or what can be its origin and import—unless, indeed, it be merely an application to the asterisms, in an entirely arbitrary way, of the general law that everything must be made to revolve about the earth as a centre. We have noticed above (note to iii. 9–12) its inconsistency with the doctrine of the precession adopted in this treatise.

The dimensions of the several orbits stated in the text are for the most part correct, being such as are derived by the processes above explained from the numbers of sidereal revolutions given in a former passage (i. 29–34). There is, however, one exception: the orbit of Mercury, as so derived, is 1,043,207.8, and the number adopted by the text—which rejects fractions throughout, taking the nearest whole number—should be, accordingly, 208, and not 209. If we took as divisor the number of Mercury's revolutions in an Άeon as corrected by the bija (see note to i. 29–34), we should actually obtain for his orbit the value given it by the text; the exact quotient being 1,043,208.73. But as none of the other orbits given are such as would be found by admitting the several
84. Any orbit, multiplied by the earth’s diameter and divided by the earth’s circumference, gives the diameter of that orbit; and this, being diminished by the earth’s diameter and halved, gives the distance of the planet.

85. The orbit of the moon is three hundred and twenty-four thousand yojanas: that of Mercury’s conjunction (cīghra) is one million and forty-three thousand, two hundred and nine:

86. That of Venus’s conjunction (cīghra) is two million, six hundred and sixty-four thousand, six hundred and thirty-seven; next, that of the sun, Mercury, and Venus is four million, three hundred and thirty-one thousand, five hundred:

87. That of Mars, too, is eight million, one hundred and forty-six thousand, nine hundred and nine; that of the moon’s apsis (ucca) is thirty-eight million, three hundred and twenty-eight thousand, four hundred and eighty-four:

88. That of Jupiter, fifty-one million, three hundred and seventy-five thousand, seven hundred and sixty-four; of the moon’s node, eighty million, five hundred and seventy-two thousand, eight hundred and sixty-four:

89. Next, of Saturn, one hundred and twenty-seven million, six hundred and sixty-eight thousand, two hundred and fifty-five: of the asterisms, two hundred and fifty-nine million, eight hundred and ninety thousand, and twelve:

90. The entire circumference of the sphere of the Brahma-egg is eighteen quadrillion, seven hundred and twelve trillion, eighty billion, eight hundred and sixty-four million: within this is the pervasion of the sun’s rays.

We present below the numerical data given in these verses, in a form easier of reference and of comparison with the like data of other treatises:

<table>
<thead>
<tr>
<th>Planet etc.</th>
<th>Orbit, in yojanas.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moon</td>
<td>324,000</td>
</tr>
<tr>
<td>" apsis</td>
<td>38,328,484</td>
</tr>
<tr>
<td>" node</td>
<td>80,572,864</td>
</tr>
<tr>
<td>Mercury (conjunction)</td>
<td>1,043,309</td>
</tr>
<tr>
<td>Venus (conjunction),</td>
<td>2,664,637</td>
</tr>
<tr>
<td>Sun</td>
<td>4,331,500</td>
</tr>
<tr>
<td>Mars</td>
<td>8,146,909</td>
</tr>
<tr>
<td>Jupiter</td>
<td>51,375,764</td>
</tr>
<tr>
<td>Saturn</td>
<td>127,668,255</td>
</tr>
<tr>
<td>Asterisms</td>
<td>259,890,012</td>
</tr>
<tr>
<td>Universe</td>
<td>18,712,080,864,000</td>
</tr>
</tbody>
</table>

We have already more than once (see above, notes to i. 25–27, and iv. 1) had occasion to notice upon what principles the orbits of the planets, as here stated, were constructed by the Hindus. That of the moon (see note to iv. 1) was obtained by a true process of calculation, from genuine data, and is a tolerable approximation to the truth: all the
each portion of whose surface enjoys a recurrence of day and night once in each lunar month. The next following verses, 75 to 77, are a rather unnecessary amplification of the idea already expressed in i. 26–27; but they answer well enough here as special introduction to the detailed exhibition of the measurements of the planetary orbits which is to follow. Before that is brought in, however, we have the connection again broken, by the intrusion of the two following verses, respecting the regents of years, months, days, and hours.

78. Counting downward from Saturn, the fourth successively is regent of the day; and the third, in like manner, is declared to be the regent of the year;
79. Reckoning upward from the moon are found, in succession, the regents of the months; the regents of the hours (hora), also, occur in downward order from Saturn.

This passage appears to be introduced here as answer to the inquiry propounded in verse 6, above. Instead, however, of explaining why the different divisions of time are placed under the superintendence and protection of different planets, the text contents itself with reiterating, in a different form, what had already been said before (i. 51–52) respecting the order of succession of the regents of the successive periods; but adding also the important and significant specification respecting the hours, or twenty-fourths of the day. We have sufficiently illustrated the subject, in connection with the other passage; we will only repeat here that, the planets being regarded as standing in the order in which they are mentioned in verse 31, above, their successive regency over the hours is the one fundamental fact upon which all the rest depend, each planet being constituted lord also of the day whose first hour is placed under his charge, and so likewise of the month and of the year over whose first hour and day he is regent—neither the month nor the year, any more than the hour itself, being divisions of time which are known to the Hindus in any other uses, and the name of the hour, hora, which is the Greek ἡωρα, betraying the source whence the whole system was introduced into India.

80. The orbit (kākṣa) of the asterisms (bha) is the circuit (bhramana) of the sun multiplied by sixty: by so many yojanas does the circle of the asterisms revolve above all.
81. If the stated number of revolutions of the moon in an Æon (kalpa) be multiplied by the moon’s orbit, the result is to be known as the orbit of the ether: so far do the rays of the sun penetrate.
82. If this be divided by the number of revolutions of any planet in an Æon (kalpa), the result will be the orbit of that planet: divide this by the number of terrestrial days, and the result is the daily eastward motion of them all.
83. Multiply this number of yojanas of daily motion by the orbit of the moon, and divide by a planet’s own orbit; the result is, when divided by fifteen, its daily motion in minutes.
son or thing, especially in respectful salutation and in religious ceremonial.

The natural measure of the day and of the night is assumed in verse 54 etc. to be the half of a whole day, or thirty násis, and any deviation from that norm is regarded as an excess (dāna, vṛddhi) or a deficiency (rśa, śrāni, kṣaya). The former processes referred to at the end of verse 58 are those taught in ii. 60–62.

We have already above (note to i. 63–65) called attention to the fact that all the Hindu measurements of longitude and latitude upon the earth's surface are made in yojanas, and not in degrees.

The expression "perversely" (vipaṛṭta) in verse 62 is explained by the commentator to mean "in such manner that the rules as already given cannot be applied"; since the sine of the ascensional difference (caṇa—see i. 61) as found by them would be greater than radius.

The latter half of verse 64 is obscure: its meaning seems to be, as explained by the commentator, that over a corresponding portion of the earth's surface in the contrary hemisphere the sun is continuously visible during the same period, the shadow of the earth, which is the cause of night, not covering that portion.

73. The circle of asterisms, bound at the two poles, impelled by the provector (pravah) winds, revolves eternally: attached to that are the orbits of the planets, in their order.

74. The gods and demons behold the sun, after it is once risen, for half a year; the Fathers (pitaras), who have their station in the moon, for a half-month (paksha); and men upon the earth, during their own day.

75. The orbit (kākṣā) of one that is situated higher up is large; that of one situated lower down is small. Upon a great orbit the degrees are great; so also, upon a small one, they are small.

76. A planet situated upon a small circuit (bhāramaṇa) traverses the circle of constellations (bhāgaṇa) in a little time; one revolving on a large circle (māṇḍala), in a long time.

77. The moon, upon a very small orbit, makes many revolutions: Saturn, moving upon a great orbit, makes, as compared with her, a much less number of revolutions.

The connection and orderly succession of subjects is by no means strictly maintained in this part of the chapter. The seventy-fourth verse is palpably out of place, and is, moreover, in great part superfluous; for the statement contained in its first half has already twice been made, in verses 45 and 67, and in the latter passage in nearly the same terms as here: its last specification, too, is of a matter too obvious to call for notice. Nevertheless, the verse cannot well be spared from the chapter, since it contains the only answer which is vouchsafed to the question of verse 5, above, respecting the day and night of the Fathers. In the assignment of the different divisions of time, as single days, to different orders of beings, the month has been given to the pitaras, "Fathers," or manes of the departed, and they are accordingly located in the moon,
66. The sun, when situated in Sagittarius, Capricorn, Scorpio, and Aquarius, is not seen in the hemisphere of the gods; in that of the demons, on the other hand, when in the four signs commencing with Taurus.

67. At Meru, the gods behold the sun, after but a single rising, during the half of his revolution beginning with Aries; the demons, in like manner, during that beginning with Libra.

68. The sun, during his northern and southern progresses (ayana) revolves directly over a fifteenth part of the earth's circumference, on the side both of the gods and of the demons.

69. Between those limits, the shadow is cast both southward and northward; beyond them, it falls toward the Meru of either hemisphere respectively.

70. When passing overhead at Bhadrācya, the sun is rising in Bhārata; it is, moreover, at that time, midnight in Ketumāla, and sunset in Kuru.

71. In like manner also he produces, by his revolution, in Bhārata and the other climes, noon, sunrise, midnight, and sunset, reckoning from east to west.

72. To one going toward Meru, there take place an elevation of the pole (dhruva) and a depression of the circle of asterisms; to one going toward the place of no latitude, on the contrary, a depression of the former and an elevation of the latter.

This detailed exposition of the varying relations of day and night in different parts of the globe is quite creditable to the ingenuity, and the distinctness of apprehension, of those by whom it was drawn out. It is for the most part so clearly expressed as to need no additional explanations: we shall append to it only a few brief remarks.

How far, in verse 46, a true statement is given of the cause of the heat of summer and the cold of winter, may be made a matter of some question: the word which we have translated "nearness" (asamnata) has no right to mean "directness, perpendicularity," and yet, when taken in connection with the preceding verse, it may perhaps admit that signification. The second chapter shows that the Hindus knew very well that the sun is actually nearer to the whole earth in winter, or when near his perigee, than in summer.

The expression ayandanta, "at the end of an ayana," employed in verses 51 and 61, and which we have rendered by a paraphrase, might perhaps have been as well translated, briefly and simply, "at either solstice." Probably ayana, as used in the sense of "solstice" (see above, end of note to iii. 9–12), is an abbreviated form of ayandanta, like jyā for jyārdha (v. 15–27), and aksha for akshonnati (i. 60).

In verse 55, we have translated by "toward the right" and "toward the left" the adverbs savyam and apasavyam, which mean literally "left-wise" and "right-wise"; that is to say, in such a manner that the left side or the right side respectively of the thing making the revolution is turned toward that about which the revolution is made, this being the Hindu mode of describing the passing of one person about another per-
54. Owing to the littleness of their own bodies, men, looking in every direction from the position they occupy, behold this earth, although it is globular, as having the form of a wheel.

55. To the gods, this sphere of asterisms revolves toward the right; to the enemies of the gods, toward the left; in a situation of no latitude, directly overhead—always in a westerly direction.

56. Hence, in the latter situation, the day is of thirty nādis, and the night likewise: in the two hemispheres of the gods and demons there take place a deficiency and an excess, always opposed to one another.

57. During the half-revolution beginning with Aries, there is always an excess of the day to the north, in the hemisphere of the gods—greater according to distance north—and a corresponding deficiency of the night; in the hemisphere of the demons, the reverse.

58. In the half-revolution beginning with Libra, both the deficiency and excess of day and night in the two hemispheres are the opposite of this: the method of determining them, which is always dependent upon situation (deca) and declination, has been before explained.

59. Multiply the earth's circumference by the sun's declination in degrees, and divide by the number of degrees in a circle: the result, in yojanas, is the distance from the place of no latitude where the sun is passing overhead.

60. Subtract from a quarter of the earth's circumference the number of yojanas thus derived from the greatest declination: at the distance of the remaining number of yojanas.

61. There occurs once, at the end of the sun's half-revolution from solstice to solstice, a day of sixty nādis, and a night of the same length, mutually opposed to one another, in the two hemispheres of the gods and of the demons.

62. In the intermediate region, the deficiency and excess of day and night are within the limit of sixty nādis; beyond, this sphere of asterisms (bha) revolves perversely.

63. Subtract from a quarter of the earth's circumference the number of yojanas derived from the declination found by the sine of two signs: at that distance from the equator the sun is not seen, in the hemisphere of the gods, when in Sagittarius and Capricorn;

64. So also, in the hemisphere of the demons, when in Gemini and Cancer: in the quarter of the earth's circumference where her shadow is lost, the sun may be shown to be visible.

65. Subtract from the fourth part of the earth's periphery (kaksha) the number of yojanas derived from the declination found by the sine of one sign: at the distance from the place of no latitude of the remaining number of yojanas,
had the good sense to reject them, along with the insular continents, he
at least passes them by with the briefest possible notice. In the Purāṇas
they are declared to be each of them 10,000 yojanas in depth, and
their divisions, inhabitants, and productions are described with the same
ridiculous detail as those of the continents on the earth's surface.

It will be observed that the text, although exhibiting in verse 41 a
distinct apprehension of the fact that the pole is situated to the north-
ward of all points of the equator alike, yet, in describing the position
of the four great cities, speaks as if there were a north direction from
Meru, in the continuation of the line drawn to the latter from Lankā,
and an east and west direction at right angles with this.

For the terrestrial equator, considered as a line or circle upon the
earth's surface, there is no distinctive name; it is referred to simply as
the place "of no latitude" (mirakṣa, vyakṣa).

45. In the half-revolution beginning with Aries, the sun, be-
ing in the hemisphere of the gods, is visible to the gods: but
while in that beginning with Libra, he is visible to the demons,
moving in their hemisphere.

46. Hence, owing to his exceeding nearness, the rays of the
sun are hot in the hemisphere of the gods in summer, but in
that of the demons in winter: in the contrary season, they are
slackish.

47. At the equinox, both gods and demons see the sun in the
horizon; their day and night are mutually opposed to each other.

48. The sun, rising at the first of Aries, while moving on
northward for three signs, completes the former half-day of the
dwellers upon Meru;

49. In like manner, while moving through the three signs be-
ginning with Cancer, he completes the latter half of their day:
he accomplishes the same for the enemies of the gods while
moving through the three signs beginning with Libra and the
three beginning with Capricorn, respectively.

50. Hence are their night and day mutually opposed to one
another; and the measure of the day and night is by the com-
pletion of the sun's revolution.

51. Their mid-day and midnight, which are opposed to one
another, are at the end of each half-revolution from solstice to
solstice (ayana). The gods and demons each suppose themselves
to be uppermost.

52. Others, too, who are situated upon the same diameter
(samāsūtrasa), think one another underneath—as the dwellers
in Bhadrācyva and in Ketumāla, and the inhabitants of Lankā
and of the city of the Perfected, respectively.

53. And everywhere upon the globe of the earth, men think
their own place to be uppermost: but since it is a globe in the
ether, where should there be an upper, or where an under side
of it?
middle of it rises Mount Meru, itself of a size compared with which the earth, as measured by the astronomers, is as nothing: it is said to be 84,000 yojanas high, and buried at the base 16,000 yojanas; it has the shape of an inverted cone, being 32,000 yojanas in diameter at its upper extremity, and only 16,000 at the earth's surface. Out of this mountain the astronomical system makes the axis of the earth, protruding at either extremity, indeed, but of dimensions wholly undefined. As the Purāṇas declare the summit of Meru, and the mountains immediately supporting it, to be the site of the cities inhabited by the different divinities, so also we have here the gods placed upon the northern extremity of the earth's axis, while their feet, the spirits of darkness, have their seat at the southern. The central circular continent, more than 100,000 yojanas in diameter, in the midst of which Meru lies, is named Jambudvīpa, "the island of the rose-apple tree"; it is intersected by six parallel ranges of mountains, running east and west, and connected together by short cross-ranges: the countries lying between these ranges are styled varshas, "climes," and are all fully named and described in the Purāṇas, as are the mountain-ranges themselves. The half-moon-shaped strips lying at the bases of the mountains on the eastern, southern, western, and northern edges of the continent, are called by the same names that are given by our text to the four insular climes which it sets up. Bhārata is a real historical name, appearing variously in the early Hindu traditions; Kuru, or Uttara-Kuru, is a title applied in Hindu geography of a less fictitious character to the country or people situated beyond the range of the Himālaya; the other two names appear to be altogether imaginary. The Purāṇas say nothing of cities in these four climes. Lankā, as noticed above (i. 62), is properly an appellation of the island Ceylon; and Romaka undoubtedly comes from the name of the great city which was the mistress of the western world at the period of lively commercial intercourse between India and the Mediterranean: the other two cities are pure figments of the imagination. Our treatise, it will be observed, ignores the system of continents, or netpas, and simply surrounds the earth with an ocean in the midst, like a girdle: the Purāṇas encompass Jambudvīpa about with six other netpas, or insular ring-shaped continents, each twice as vast as that which it encloses, and each separated from the next by an ocean of the same extent with itself. Of these seven oceans, the first, which washes the shores of Jambudvīpa, is naturally enough acknowledged to be composed of salt water; but the second is of syrup, the third of wine, the fourth of clarified butter, the fifth of whey, the sixth of milk, and the last of sweet water. Outside the latter is an uninhabited land of gold, and on its border, as the utmost verge of creation, is the monstrous wall of the Lokāloka mountains, beyond which is only nothingness and darkness.

The author of the Siddhānta-Ciromaṇi, more submissive than the writer of our chapter to the authority of tradition, accepts (Golādhyāyī, chap. ii) the series of concentric continents and oceans, but gives them all a place in the unknown southern hemisphere, while he regards Jambudvīpa as occupying the whole of the northern.

The pātālas, or interterranean cavities, spoken of in verse 33, are also an important feature of the Puranic geography. If our author has not
33. Seven cavities within it, the abodes of serpents (nāga) and demons (asura), endowed with the savor of heavenly plants, delightful, are the interturreane (pāṭāla) earths.

34. A collection of manifold jewels, a mountain of gold, is Meru, passing through the middle of the earth-globe, and protruding on either side.

35. At its upper end are stationed, along with Indra, the gods, and the Great Sages (mahārṣi); at its lower end, in like manner, the demons (asura) have their place—each the enemy of the other.

36. Surrounding it on every side is fixed next this great ocean, like a girdle about the earth, dividing the two hemispheres of the gods and of the demons.

37. And on all sides of the midst of Meru, in equal divisions of the ocean, upon islands (dvīpa), in the different directions, are the eastern and other cities, fashioned by the gods.

38. At a quadrant of the earth's circumference eastward, in the clime (varśa) Bhadrāya, is the city famed as Yamakoṭi, having walls and gateways of gold.

39. To the southward, in the clime Bhārata, is in like manner the great city Lankā: to the west, in the clime called Ketumāla, is declared to be the city named Romaka.

40. Northward, in the clime Kuru, is declared to be the city called that of the Perfected (siddha); in it dwell the magnanimous Perfected, free from trouble.

41. These are situated also at a distance from one another of a quadrant of the earth's circumference; to the north of them, at the same distance, is Meru, the abode of the gods (sura).

42. Above them goes the sun when situated at the equinoxes; they have neither equinoctial shadow nor elevation of the pole (akshonnati).

43. In both directions from Meru are two pole-stars (dhruvatārd), fixed in the midst of the sky: to those who are situated in places of no latitude (niraksha), both these have their place in the horizon.

44. Hence there is in those cities no elevation of the pole, the two pole-stars being situated in their horizon; but their degrees of co-latitude (lambaka) are ninety: at Meru the degrees of latitude (aksha) are of the same number.

In these verses we have so much of geography as the author of the chapter has seen fit to connect with his astronomical explanations. For a Hindu account of the earth, it is wonderfully moderate, and free from falsehood. The absurd fictions which the Purāṇas put forth as geography are here for the most part ignored, only two or three of the features of their descriptions being retained, and those in an altered form. To the Purāṇas (see especially Wilson's Vishnu Purāṇa, Book II, chap. ii–vi), the earth is a plain, of immense dimensions. Precisely in the
“eternity”; and to derive sûrya, “sun,” from the root sû, “generate” (from which savitar actually comes), is beyond the usual measure of Hindu theologicophilosaphical etymology. The Hymns, Songs, and Liturgy are the three bodies of scripture commonly known as the Rig-Veda, Sâma-Veda, and Yajur-Veda. The “seven metres” (v. 19) are those which are most often employed in the construction of the Vedic hymns: in parts of the Veda itself they are personified, and marvellous qualities and powers are ascribed to them. The obscure statement contained in the first half of verse 20 comes from verses 3 and 4 of the purusha-hymn (Rig-Veda x. 90: the hymn is also found in others of the Vedic texts). The second half of verse 22 also nearly coincides with a passage (v. 13) in the same hymn. Of the five elements assumed by the Hindu philosophers, the first, ether, is said to be endowed only with the quality of audibility; the second, air, has that of tangibility also; the third, fire, has both, along with color; to these qualities the fourth element, water, adds that of savor; the last, earth, possesses audibility, tangibility, color, savor, and odor: this is according to the doctrines of the Sâṅkhya philosophy. In verses 24 and 25 we have specifications introduced out of consideration for the general character and object of this treatise: as also, in the part assigned to the sun in the history of development, we may perhaps recognize homage paid to its asserted author. For the beings called in verse 28 the “perfected” (siddha), see below, verses 31 and 40.

29. This Brahma-egg is hollow; within it is the universe, consisting of earth, sky, etc.; it has the form of a sphere, like a receptacle made of a pair of caldrons.

30. A circle within the Brahma-egg is styled the orbit of the ether (vyoman): within that is the revolution of the asterisms (bha); and likewise, in order, one below the other.

31. Revolve Saturn, Jupiter, Mars, the sun, Venus, Mercury, and the moon; below, in succession, the Perfected (siddha), the Possessors of Knowledge (vidyādharā), and the clouds.

The order of proximity to the earth in which the seven planets are here arranged is, as noticed above (i. 51–52), that upon which depends the succession of their regency over the days of the week, and so also the names of the latter. So far as the first three and the last are concerned, it is a naturally suggested arrangement, which could hardly fail to be hit upon by any nation having sufficient skill to form an order of succession at all: the order in which the sun, Mercury, and Venus are made to follow one another is, on the other hand, a matter of more arbitrary determination, and might have been with equal propriety, for aught we can see, reversed or otherwise varied. Of the supernatural beings called the “possessors of knowledge” (vidyādharā) we read only in this verse: the “perfected” we find again below, in verse 40, as inhabitants of a city on the earth’s surface.

32. Quite in the middle of the egg, the earth-globe (bhūgola) stands in the ether, bearing the supreme might of Brahma, which is of the nature of self-supporting force.
18. He, the blessed one, is composed of the trio of sacred scriptures, the soul of time, the producer of time, mighty, the soul of the universe, all-penetrating, subtle: in him is the universe established.

19. Having made for his chariot, which is composed of the universe, a wheel consisting of the year, and having yoked the seven metres as his steeds, he revolves continually.

20. Three quarters are immortal, secret; this one quarter hath become manifest. In order to the production of the animated creation, he, the mighty one, produced Brahma, the principle of consciousness (ahāṅkāra).

21. Bestowing upon him the Scriptures (veda) as gifts, and establishing him within the egg as grandfather of all worlds, he himself then revolves, causing existence.

22. Then Brahma, wearing the form of the principle of consciousness (ahāṅkāra), produced mind in the creation: from mind was born the moon; from the eyes, the sun, the repository of light;

23. From mind, the ether; thence, in succession, wind, fire, waters, earth—these five elements (mahādībhūta) were produced by the successive addition of one quality.

24. Agni and Soma, the sun and moon: then Mars etc. were produced, in succession, from light, earth, ether, water, wind.

25. Again, dividing himself twelve-fold, he, the mighty one, produced what is known as the signs; and yet farther, what has the form of the asterisms (nakṣatras), twenty-seven-fold.

26. Then he wrought out the whole animate and inanimate creation, from the gods downward, producing forms of matter (prakṛti) from the upper, middle, and lower currents (srotas).

27. Having produced them in succession, as stated, by a difference of quality and function, he fashioned the distinctive character of each, according to the showing of the Scripture (veda)—

28. That is, of the planets, asterisms, and stars, of the earth, and of the universe, he the mighty one; of gods, demons, and mortals, and of the Perfected (siddha), in their order.

We do not regard ourselves as called upon to enter into any detailed examination of this metaphysical scheme of development of the creation, or to compare it critically with the similar schemes presented in other Hindu works, as Manu (chap. i), the Purāṇas (see Wilson’s Vishnu Purāṇa, Book I), etc. We will merely explain a few of its expressions, and of the allusions it contains. Vāsudeva is an ordinary epithet of Vishnu, and its use in the signification here given it seems indicative of Vaishnava tendencies on the part of the author of the scheme. The twenty-five principles referred to in verse 12 are those established by the Sāṅkhya philosophy. The reference in verse 15, first half, is to Rig-Veda x. 121. In the second half of the same verse we have a couple of false etymologies: aditya comes, not from ādi, “first,” but from aditi,
7. The orbits of the planets and stars, uplifted from the earth one above another—what are their heights? what their intervals? what their dimensions? and what the order in which they are fixed?

8. Why are the rays of the sun hot in the summer, and not so in the winter? how far do his rays penetrate? How many modes of measuring time (māna) are there? and how are they employed?

9. Resolve these my difficulties, O blessed one, creator of creatures! for there is not found besides thee another resolver, who beholdeth all things.

The proper answers to these inquiries commence at about the twenty-seventh verse of the chapter, the preceding philosophical history of the development of the existing creation being apparently volunteered by the revelator. All the questions then find their answers in this chapter, excepting that as to the methods of measuring time, which is disposed of in the fourteenth and concluding chapter. The subject of the thirteenth chapter also seems not to be contemplated in the laying out, in this passage, of the scheme of subjects to be treated of in the remainder of the treatise.

10. Having heard the words thus uttered with devotion by Maya, he then again promulgated this mysterious and supreme Book (adhyaṭya):

11. Listen with concentrated attention: I will proclaim the secret doctrine called the transcendental (adhyaṭma): there is nothing which may not be bestowed on those who are exceedingly devoted to me.

12. Vāsudeva, the supreme principle of divinity (brahman), whose form is all that is (tāt), the supreme Person (purusha), unmanifested, free from qualities, superior to the twenty-five principles, imperishable,

13. Contained within matter (prakṛti), divine, pervading everything, without and within, the attractor—he, having in the first place created the waters, deposited in them energy.

14. That became a golden egg, on all sides enveloped in darkness: in it first became manifested the unrestrained, the everlasting one.

15. He in the scripture (chandas) is denominated the golden-wombed (hiranyagarbha), the blessed; as being the first (ādi) existence, he is called Āditya; as being generator, the sun.

16. This sun, likewise named Savitar, the supreme source of light (jyotis) upon the border of darkness—he revolves, bringing beings into being, the creator of creatures.

17. He is extolled as natural illuminator, destroyer of darkness, great. The Hymns (ṛcas) are his disk, the Songs (sāmāni) his beams, the Liturgy (vajāṇshi) his form.
In this verse re-appears the personality of the revealer of the treatise, the incarnation of a portion of the sun, which has been lost sight of since near the beginning of the work (i. 7). The questions addressed to him, in answer to this appeal, by Maya, the recipient of the revelation, introduce the next chapter, which, with the two that follow it, contains the additional explanations and instructions vouchedsafe in reply. The last three chapters confessedly constitute a separate portion of the work, which is here divided into a pārva khaṇḍa and an uttara khaṇḍa, or a "former Part" and a "latter Part." It is by no means impossible that the whole second Part is an appendix to the text of the Siddhānta as originally constituted.

The title of the next following chapter is bhūgolādhyāya, "chapter of the earth-globe": in the second part of the treatise the chapters are styled adhyāya, "lection," instead of, as hitherto, adhikāra, "heading."

CHAPTER XII.

COSMOGONY, GEOGRAPHY, DIMENSIONS OF THE CREATION.

Contents:—1-9, inquiries; 10-28, development of the creative agencies, of the elements, and of the existing creation; 29-31, form and disposition of the stellar and planetary systems; 32-44, situation, form, structure, and divisions of the earth; 45-72, varying phenomena of night and day in different latitudes and zones; 73-77, revolutions of the stars and planets; 78-79, regents of the different divisions of time; 80-90, dimensions of the planetary, stellar, and ethereal orbits.

1. Then the demon Maya, prostrating himself with hands suppliantly joined before him who derived his being from the part of the Sun, and revering him with exceeding devotion, inquired as follows:

2. 0 blessed one! of what measure is the earth? of what form? how supported? how divided? and how are there in it seven interterraneean (pātāla) earths?

3. And how does the sun cause the varying distinction of day and night? how does he revolve about the earth, enlightening all creatures?

4. For what reason are the day and night of the gods and of the demons opposed to one another? or how does that take place by means of the sun's completion of his revolution?

5. Why does the day of the Fathers consist of a month, but that of mortals of sixty nāḍis? for what reason is not this latter everywhere the case?

6. Whence is it that the regents of the days, years, months, and hours (hora) are not the same? How does the circle of asterisms (bhagana) revolve? what is the support of it with the planets?
forced interpretation, but partly also by such an alteration of its readings as disables it from yielding any other intelligible meaning.

19. When the equality of declinations of the sun and moon takes place in the neighborhood of the equator, the aspect may then again occur a second time: in the contrary case, it may fail to occur.

Near the equinox, where declination changes rapidly, the moon, as the swifter moving body, may come to have twice, in rapid succession, the same declination with the sun, and upon the opposite sides of the equator. Near the solstice, on the other hand, where the ecliptic and equator are nearly parallel, the moon—if she happens to be nearer the equator than the sun is, owing to her latitude—may pass the region in which the aspect would otherwise be liable to occur, without having had a declination equal in amount to that of the sun.

20. If the sum of the longitudes of the sun and moon, in minutes, on being divided by the portion (bhoga) of an asterism (bha), yields a quotient between sixteen and seventeen, there is another, a third, vyatipata.

This is simply a special application of the rule formerly given (ii. 65), for finding, for any given time, the current period named yoga. The seventeenth of the series, as is shown by the list there given, has the same name, vyatipata, with one of the aspects treated of in this chapter: judging from verse 22, below, it is also regarded as possessing a like portentous and malignant character.

21. Of the asterisms (dhishnya) Agleshâ (sarpa), Jyeshtâ (aindra), and Revati (paushnya), the last quarters are junctions of the asterisms (bhasandhi); the first quarter in the asterisms following these respectively is styled ganganta.

22. In all works, one must avoid the terrible trio of vyatipatas, as also the trio of gangantan, and this trio of junctions of asterisms.

The division of the ecliptic into twenty-sevenths, or asterisms, coincides with its division into twelfths, or signs, at the ends of the ninth, eighteenth, and twenty-seventh asterisms, which are also those of the fourth, eighth, and twelfth signs respectively. To this innocent circumstance it seems to be owing that those points, and the quarters of portions, or arcs of 200', on either side of them, are regarded and stigmatized as unlucky and ominous. Hence the title bhasandhi; sandhi is literally "putting together, joint," and bha is, as has been noticed elsewhere (note to iii. 9–12), a name both of the asterisms and of the signs. In which of its various senses the word ganda is used in the compound ganganta, we do not know.

23. Thus hath been related that supreme, pure, excellent, mysterious, and grand system of the heavenly bodies: what else dost thou desire to know?
clination with the remoter limb of the sun—the contrary being the case when her declination is decreasing. He acknowledges that the text does not seem to teach this, but puts in the plea which is usual with him when excusing a palpable inaccuracy in the statements or processes of the treatise; namely, that the blessed author of the work, moved by pity for mankind, permitted here the substitution of difference of longitude for difference of declination, in view of the greater ease of its calculation, and the insignificance of the error involved. That error, however, is quite the reverse of insignificant; it is, indeed, so very gross and palpable that we cannot possibly suppose it to have been committed intentionally by the text; we regard it as the easier assumption that the conditions of the continuance of the aspect are differently estimated in the text and in the commentary, being by the former taken to be as we have stated them above, in our explanation of the process. The view of the matter taken by the commentator, it is true, is decidedly the more natural and plausible one: there seems no good reason why an aspect which depends upon equality of declination should be determined as to continuance by motion in longitude, or why the aspect should only occur at all when the two centres are equally distant from the equator; why, in short, there should not be partial aspects, like partial eclipses of the sun. If the doctrine of the commentary is a later development, or an independent form, of that which the text appears to represent, it is a naturally suggested one, and such as might have been expected to arise.

17. While any parts of the disks of the sun and moon have the same declination, so long is there a continuance of this aspect, causing the destruction of all works.

18. So, from a knowledge of the time of its occurrence, very great advantage is obtained, by means of bathing, giving, prayer, ancestral offerings, vows, oblations, and other like acts.

We have translated verse 17 in strict accordance with the interpretation of it presented in the commentary, although we must acknowledge that we do not see how that interpretation is to be reconciled with the actual form of the text. The term ekāyanagata, which the commentator renders "having equal declination," is the same with that which in the first verse signified "situated in the same ayana"; mandala, although it is sometimes used with the meaning "disk," here attributed to it by him, is the word employed in that same verse for a "circle," or "360°"; and antara, which he explains by ekadeca, "any part," never, so far as we know, is properly used in that sense, while it is of frequent occurrence elsewhere in this treatise with the meaning "interval." The natural rendering of the line would seem to be "when there is between the sun and moon the interval of a circle, situated in the same ayana." This, however, yields no useful meaning, since such a description could only apply to an actual conjunction of the sun and moon. We do not see how the difficulty is to be solved, unless it be allowed us, in view of the discordance already pointed out as existing between the plain meaning of the previous passage and that attributed to it by the commentator, to assume that the text has been tampered with in this verse, and made to furnish a different sense from that it originally had, partly by a
12. The aspect (pāta) is at the time of equality of declinations; if, then, the moon’s longitude, as thus increased or diminished, be less than her longitude at midnight, the aspect is past; if greater, it is to come.

13. The minutes of interval between the moon’s longitude as finally established and that at midnight give, when multiplied by sixty and divided by the moon’s daily motion, the time of the aspect, in nādis.

We had thus far found only the longitudes of the sun and moon at the time of equality of declination, and not that time itself: the latter is now derived from the former by this proportion: as the moon’s daily motion is to a day, or sixty nādis, so is the difference between the moon’s longitude at midnight and at the time of the aspect to the interval between the latter time and midnight.

14. Multiply the half-sum of the dimensions (māna) of the sun and moon by sixty, and divide by the difference of their daily motions: the result is half the duration (sthita), in nādis etc.

15. The corrected (sphuta) time of the aspect (pāta) is the middle: if that be diminished by the half-duration, the result is the time of the commencement; if increased by the same, it is the time of the end.

16. The time intervening between the moments of the beginning and end is to be looked upon as exceedingly terrible, having the likeness of a consuming fire, forbidden for all works.

The continuance of the centres of the sun and moon at the point of equality of declination is, of course, only momentary; but the aspect and its malignant influences are to be regarded as lasting as long as there is virtual contact of the two disks at that point, or as long as a central eclipse of the sun would last if it took place there. Its half-duration, then, or the interval from its middle to its beginning or end respectively, is found by a proportion, as follows: if in a day, or sixty nādis, the two centres of the sun and moon become separated by a distance which is equal to the difference of their daily motions, in how many nādis will they become separated by a distance which is equal to the sum of their semi-diameters? or

\[
\text{diff. d. motions} : 60 :: \text{sum semi-diam.} : \text{half-duration}
\]

And if this amount be subtracted from and added to the time of equality of declination, the results will be the moments at which the aspect will begin and end respectively.

Such is the plain and obvious meaning of the text in this passage. The commentator, however, in accordance with his interpretation of the next-following verse (see below), declares that the aspect actually lasts as long as any portion of the moon’s disk has the same declination with any portion of that of the sun; and that, accordingly, it commences—the moon’s declination being supposed to be increasing—whenever her remoter limb comes to have the same declination with the nearer limb of the sun, and ends when her nearer limb comes to have the same de-
9. Multiply the sines of the two declinations by radius, and divide by the sine of greatest declination: the difference of the arcs corresponding to the results, or half that difference, is to be added to the moon’s longitude when the aspect (pāta) is to come;

10. And is to be subtracted from the moon’s longitude when the aspect is past. If the same quantity be multiplied by the sun’s motion and divided by the moon’s motion, the result is an equation, in minutes, which is to be applied to the sun’s place, in the same direction as the other to the moon’s.

11. So also is to be applied, in the contrary direction, a like equation to the place of the moon’s node. This operation is to be repeated, until the declinations of the two bodies come to be the same.

By this process are ascertained the longitudes of the sun and moon at the time when their declinations are equal. Its method may be briefly explained as follows. At the midnight assumed as the starting-point of the whole calculation there is found to be a certain difference in the two declinations: we desire to determine how far the paths of the two luminaries must be traced forward or backward, in order that that difference may be removed; and this must be effected by means of a series of approximations. We commence our calculation with the moon, as being the body of more rapid motion. By a proportion the inverse of that upon which the rule for deriving the declination from the longitude (ii. 28) is founded, we ascertain at what longitude the moon would have the sun’s actual declination, and at what longitude she would have her own actual declination, as corrected by her latitude: the difference between the two results is a measure of the amount of motion in longitude, forward or backward, by which she would gain or lose the difference of declination, if the sun remained stationary and her own latitude unchanged. Since, however, that is not the case, we are compelled to calculate the corresponding motion of the sun, and also the moon’s latitude in her new position; and in order to the latter, we must correct the place of the node also for its retrograde motion during the interval. The motions of the sun and node are found by the following proportion: as the moon’s daily motion is to that of the sun, or to that of the node, so is the correction applied to the moon’s place to that which must be applied to the place of the sun, or to that of the node. A new set of positions in longitude having thus been found, the declinations are again to be calculated, and the same approximative process repeated—and so on, until the desired degree of accuracy is attained.

The text permits us to apply, as the correction for the place of the moon, either the whole or the half of the difference of longitude found as the result of the first proportion: it is unessential, of course, in a process of this tentative character, what amount we assume as that of the first correction, provided those which we apply to the places of the sun and node be made to correspond with it: and there may be cases in which we should be conducted more directly to the final result of the process by taking only half of the difference.
planation contained in verse 20, below. The specification of the text, that the aspects take place when the sum of longitudes equals a circle or a half-circle respectively, or when the two luminaries are equally distant from either solstice, or either equinox, is not to be understood as exact: this would be the case if the moon had no motion in latitude; but owing to that motion, the equality of declinations, which is the main thing, occurs at a time somewhat removed from that of equality of distance from the equinoaxes: the latter is called in the commentary madhyapata, "the mean occurrence of the aspect." The terms translated by us "upon the same and upon the opposite sides of either solstice" are ekayanaagata and viparitdayanagata, literally "situated in the same and in contrary ayanas"; ayna being, as already pointed out (end of note to iii. 9-12), the name of the halves into which the ecliptic is divided by the solstices.

6. When the longitudes of the sun and moon, being increased by the degrees etc. found for the coincidence of the solstice with its observed place, are together nearly a circle or nearly a half-circle, calculate the corresponding declinations.

7. Then, if the declination of the moon, she being in an odd quadrant, is, when corrected by her latitude (viskhepa), greater than the declination of the sun, the aspect (pata) is already past;

8. If less, it is still to come: in an even quadrant, the contrary is the case. If the moon's declination is to be subtracted from her latitude, the rules as to the quadrant are to be reversed.

As in other processes of a similar character (see above, iv. 7-8; vii. 2-6), we are supposed to have found by trial, for the starting-point of the present calculation, the midnight next preceding or following the occurrence of the aspect in question, and to have determined for that moment the longitudes and rates of motion of both bodies, and the moon's latitude. In finding the longitudes, we are to apply the correction for precession; this is the meaning of the expression in verse 6, drktyasyadhitanceti, which may be literally translated "degrees etc. calculated with accordance with observed place": the reference is to the similar expression for the precession contained in iii. 11. Next the declinations are to be found, and that of the moon as corrected for her latitude. And since, in the odd quadrants—that is to say, the first and third, counting from the actual vernal equinox—declination is increasing, while in the others it is decreasing, if the declination in an odd quadrant of the moon, the swifter moving body, is already greater than that of the sun, the time of equality of declination is evidently already past, and the converse. But if, on the other hand, the moon's declination (using that term in its Hindu sense) is so small, and her latitude so great, being of opposite directions, that her actual distance from the equator is measured by the excess of the latter above the former, and so is of direction contrary to that of her declination, then, as declination increases, distance from the equator diminishes, or the contrary, and the conditions as formerly stated are reversed throughout.
1. When the sun and moon are upon the same side of either solstice, and when, the sum of their longitudes being a circle, they are of equal declination, it is styled vāidhṛta.

2. When the moon and sun are upon opposite sides of either solstice, and their minutes of declination are the same, it is vyātipāta, the sum of their longitudes being a half-circle.

3. Owing to the mingling of the nets of their equal rays, the fire arising from the wrathfulness of their gaze, being driven on by the provector (pravaha), is originated unto the calamity of mortals.

4. Since a fault (pāta) at this time often causes the destruction of mortals, it is known as vyātīpāta, or, by a difference of title, vāidhṛti.

5. Being black, of frightful shape, bloody-eyed, big-bellied, the source of misfortune to all, it is produced again and again.

Of all the chapters in the treatise, this is the one which has least interest and value. It is styled pāta dhikāra, “chapter of the pātas,” and concerns itself with giving a description of the malignant character of the times when the sun and moon have equal declination, upon the same or opposite sides of the equator, and with laying down rules by which the time of occurrence of those malignant aspects may be calculated. The latter part alone properly falls within the province of an astronomical treatise like the present: the other would better have been left to works of a professedly astrological character. The term pāta, applied to the aspects in question, means literally “fall,” and hence also either “fault, transgression,” or “calamity.” We have often met with it above, in the sense of “node of a planet’s orbit”; as so used, it was probably first applied to the moon’s nodes, because they were the points of danger in her revolution, near which the sun or herself was liable to fall into the jaws of Rāhu (see above, iv. 6); and it was then transferred also, though without the same reason, to the nodes of the other planets. As it is employed in this chapter, we translate it simply “aspect.” Why the time when the sun and moon are equally distant from the equator should be looked upon as so especially unfortunate is not easy to discover, notwithstanding the lucid explanation furnished in the third verse. For the “provector” (pravaha), the wind which carries the planets forward in their orbits, see above, ii. 3. When the equal declinations are of opposite direction, the aspect is denominated vāidhṛta, or vāidhṛti. This word is a secondary derivative from vāidhṛti, “holding apart, withholding,” or from vidhṛta: it has been noted above (under ii. 65) as the name of the last yuga; and its use here is not discordant with that, since the twenty-seventh yuga also occurs when the sum of the longitudes of the sun and moon is 360°. The title of the other aspect (pāta), which occurs when the sun and moon are equally removed from the equator upon the same side of it, is vyātīpāta, which may be rendered “very excessive sin or calamity.” This, too, is the name of one of the yogas, but not of that one which occurs when the sum of longitudes of the sun and moon is 180°: the discordance gives occasion for the ex-
the moon at a given moment, and pointing out which of her two horns has the greater altitude. No determination is made of the amount of angular deflection, upon which any consequences, meteorological, astrological, or of any other character, could be founded; nor is any hint given of the way in which the results of the process are to be turned to account. Moreover, while the object aimed at seems thus to be merely a projection, a time is selected at which the moon is not ordinarily visible, so that she can not be seen to exhibit an accordance with her delineated appearance! Once more, the whole process is an extremely faulty one: it is, in fact, only when the moon is herself at the horizon that her visible disk can be regarded as in the same plane with lines parallel with and perpendicular to the horizon, or that ω' and ω and s' and s (Fig. 33) represent actual directions upon her face: anywhere else, the relations of the moon's disk at M in the first figure (Fig. 32) and at M in the other figure (Fig. 33) are so different that the latter cannot fairly represent the former. It would seem, indeed, as if the moment of the moon's own setting or rising were the one for which such a calculation and projection as this would have most significance: at that time, the disappearance or appearance of one of her horns before the other would be such a phenomenon as might seem to a Hindu astronomer worth the trouble of delineating, as a decisive proof of the accuracy of his scientific knowledge. We have not found it possible, however, to make the rules of the text apply to such a case, and the commentary is explicit in its definition of the time of the calculation, as sunset or sunrise alone, to the exclusion of any other moment. But the discordance existing at more than one point in the chapter between the text and the commentary suggests the conjecture that the original design of the one and the traditional interpretation of it represented by the other may be at variance, and we are not without suspicions that the text may have been altered, so as not now fairly and accurately to represent any one consistent process. A better understanding of the general object of the calculation and the use made of its results, and an acquaintance with the solutions of the problem presented by other astronomical treatises, might throw additional light upon these points; but we are not able at present fully to avail ourselves of such assistance, nor is the importance of the subject such as to render incumbent upon us its fuller elucidation.

CHAPTER XI.

OF CERTAIN MALIGNANT ASPECTS OF THE SUN AND MOON.

Contents:—1-5, definition and description of the malignant aspects of the sun and moon, when of equal declination; 6-11, to find the longitude of the sun and moon when their declinations are equal; 12-13, to ascertain the corresponding time; 14-15, to determine the duration of the aspect, and the moment of its beginning and end; 16-18, its continuance and its influences; 19, when such an aspect may occur more than once, or not at all; 20, occurrence of the yoga of like name and character; 21, of unlucky points in the circle of asterisms; 22, caution as to these unlucky aspects and points; 23, introductory to the following chapters.
this explanation as a plausible one: to us the meaning seems rather to be that whereas, in the projection, the perpendicular (koti) L M is drawn on a horizontal surface, we are, in judging of the projection as an actual representation of the moon's position, to conceive of that line as erected, set up perpendicularly.

We have thus far only supposed a case in which the calculations are made for the moment of sunset, the situation of the moon being in the western hemisphere of the heavens. In the text, however, there is nothing whatever to limit or determine the time of calculation, and it is evident that the process of finding the base and perpendicular will be precisely the same, if S (Fig. 32) be taken upon the eastern horizon, and the triangle S L M in the eastern hemisphere. The last verse supposes these to be the conditions of the problem, and lays down rules for determining in such a case the amount of illumination, and for drawing the projection. As regards the measure of the illuminated part, we are to follow the same general method as before, only substituting for the moon's distance in longitude from the sun her distance from the point of opposition, and regarding the result obtained as the measure of that part of the diameter which is obscured (asita, "black"); since, during the waning half-month, darkness grows gradually over the moon's face in the same manner as illumination had done during the crescent half-month. But why the base (bhuja) is now to be laid off in the opposite to its calculated direction, we find it very hard to see. The commentator says it is because all the conditions of the problem are reversed by our having to calculate and lay off the obscured, instead of the illuminated, part of the moon's disk: but the force of this reason is not apparent. The establishment in the projection of a point representing the position of the sun is, in effect, the one condition which sufficiently determines all the rest: if we are to make a projection corresponding to that drawn in illustration of the other case, we ought, it should seem, to draw the base in its true direction, and, stationing the observer upon the western side of it, looking eastward, to lay off the perpendicular away from him, toward the east; and then to proceed as before, only measuring the obscured part of the diameter from its remoter extremity, instead of from that next the sun. This latter direction is regarded by the commentator as actually conveyed in the final clause of verse 15: he interprets "the circle (mandala) of the moon" to mean the dark part of the moon's disk, or that which is to be pointed out as increasing during the waning half-month, and "on the west" to mean on the western side of the complete disk, which is the side now turned away from the sun. It seems to us exceedingly questionable whether the passage fairly admits of this interpretation, but we have no other explanation of it to offer—unless, indeed, it is to be looked upon as a virtual repetition of the former direction to lay off the perpendicular, which determines the position of the moon's disk, towards the west.

We must confess that we feel less satisfied with our comprehension of the scope and methods of this chapter than of any that precedes it. We are disappointed at finding the result arrived at one of so indefinite a character, and of so little significance. The whole laborious calculation seems to be made simply for the sake of delineating the appearance of
up to the surface of projection: but the text directs us to lay it off westward from L, apparently in order that the observer, standing upon the eastern side of his base SL, and looking westward toward the setting sun, may have his figure duly before him. The western extremity of the perpendicular, M, represents the moon's place, and from that as a centre, and with a radius equal to the semi-diameter of the moon in digits, as ascertained by calculation for the given moment, a circle is described, representing the moon's disk. Next we are to prolong the hypotenuse, SM, to r, and to draw, by the usual means, the line ra at right angles to it: the directions upon the disk thus determined by the hypotenuse, as the text phrases it, are called by the commentary "moon-directions" (candraśītis). The sun being at S, the illuminated half of the moon's circumference will be s w n, the cusps will be at s and n, and w will be the extremity of the diameter of greatest illumination. From w, then, lay off upon the hypotenuse an amount, w x, equal to the measure in digits of the illuminated part of the diameter, and through s, x, and n describe an arc of a circle, in the manner already more than once explained (see above, vi. 14–16); the crescent s w n x will represent the amount and direction of the moon's illuminated part at the given time. Now we once more make a determination of directions upon the disk according to the perpendicular LM; that is to say, we prolong LM to e', and draw s' n' at right angles to it: the directions thus established are styled in the commentary "sun-directions" (suryadītis), although without obvious propriety: they might rather be called "apparent directions," or "directions on the sphere," since s' n' should represent a line parallel with the horizon, and w' e' one perpendicular to it. The line s' n' is called in the text the "cross-line" (tiryaśāstra), and whichever of the moon's cusps is found upon that line is, we are told, to be regarded as the elevated (unnata) cusp, the other being the depressed one (nata). Whenever there is any base (bhūya), as SL, or whenever the moon and sun are not upon the same vertical line ML, there will take place, of course, a tilting of the moon's disk, by which one of her cusps will be raised higher above the horizon than the other; the relative value of the base to the perpendicular will determine the amount of the tilting, and of the deflection of the points of direction nesw from n' e' s' w'; and the elevated cusp will always be that upon the same side of the perpendicular on which the base lies. What is meant by the latter half of verse 14 is not altogether clear. The commentator explains it in quite a different manner from that in which we have translated it: he understands kōti as meaning in this instance "cusp," which signification it is by derivation well adapted to bear, and does actually receive, although not in any other passage of this treatise: and he explains the verb kriyā, "having made," by drshīvā, "having seen": the phrase would then read "beholding the elevated cusp." We cannot accept
by another proportion: as twelve is to the true diameter in digits, so is the result already found to the true measure of the part of the diameter illuminated.

It is not to be wondered at that the Hindus did not recognize the ellipticity of the line forming the inner boundary of the moon's illuminated part: it is more strange that they ignored the obvious fact that, while the illuminated portion of the moon's spherical surface visible from the earth varies very nearly as her distance from the sun, the apparent breadth of the bright part of her disk, in which that surface is seen projected, must vary rather as the versed sine of her distance.

10. Fix a point, calling it the sun: from that lay off the base, in its own proper direction; then the perpendicular, toward the west; and also the hypothenuse, passing through the extremity of the perpendicular and the central point.

11. From the point of intersection of the perpendicular and the hypothenuse describe the moon's disk, according to its dimensions at the given time. Then, by means of the hypothenuse, first make a determination of directions;

12. And lay off upon the hypothenuse, from the point of its intersection with the disk, in an inward direction, the measure of the illuminated part: between the limit of the illuminated part and the north and south points draw two fish-figures (matsya);

13. From the point of intersection of the lines passing through their midst describe an arc touching the three points: as the disk already drawn appears, such is the moon upon that day.

14. After making a determination of directions by means of the perpendicular, point out the elevated (unnata) cusp at the extremity of the cross-line: having made the perpendicular (koti) to be erect (unnata), that is the appearance of the moon.

15. In the dark half-month subtract the longitude of the sun increased by six signs from that of the moon, and calculate, in the same manner as before, her dark part. In this case lay off the base in a reverse direction, and the circle of the moon on the west.

Having made the calculations prescribed in the preceding passages, we are now to project their results, and to exhibit a representation of the moon as she will appear at the given time. The annexed figure (Fig. 33) will illustrate the method of the projection.

We first fix upon a point, as S, which shall represent the position of the sun's centre upon the western horizon at the moment of sunset, and we determine, in the manner taught at the beginning of the third chapter, the lines of cardinal direction of which it is the centre. From this point we then lay off the base (bhujya) S L, according to its value in digits as ascertained by the previous process, and northward or southward, according to its true direction as determined by the same process. From L, its extremity, is laid off the perpendicular (koti), which has the fixed value of twelve digits. This, being a line perpendicular to the plane of the horizon, may be regarded as having no proper direction of its own
sines of declination, but the sine of the sum or difference of declinations, as the side bN of the triangle SNb. This seems to be a mere inaccuracy on the part of the text, the difference between the two quantities, which could never be of any great amount, being neglected: it is, however, very hard to see why the less accurate of the two valuations of the quantity in question should have been selected by the text; for it is, if anything, rather less easy of determination than the other. The other discordance is one of much more magnitude and importance: the text speaks of the "hypotenuse of the moon's mid-day shadow" (madhyadanteprabhadakarna), for which the commentary substitutes that of the shadow cast by the moon at the given moment of sunset. The commentator attempts to reconcile the discrepancy by saying that the text means here the moon's shadow as calculated after the method of a noon-shadow; or again, that the time of sunset is, in effect, the middle of the day, since the civil day is reckoned from sunrise to sunrise: but neither of these explanations can be regarded as satisfactory. The commentator farther urges in support of his understanding of the term, that we are expressly taught above (vii. 11) that the calculation of apparent longitude (drakarmana) is to be made in the process for finding the elevation of the moon's cusps; while, if the hypotenuse of the moon's meridian-shadow be the one found, there arises no occasion for making that calculation. It seems clear that, unless the commentator's understanding of the true scope and method of the whole process be erroneous, the substitution which he makes must necessarily be admitted. This is a point to which we shall recur later.

9. The number of minutes in the longitude of the moon diminished by that of the sun gives, when divided by nine hundred, her illuminated part (cukla): this, multiplied by the number of digits (angula) of the moon's disk, and divided by twelve, gives the same corrected (sphuta).

The rule laid down in this verse, for determining the measure of the illuminated part of the moon, applies only to the time between new moon and full moon, when the moon is less than 180° from the sun: when her excess of longitude is more than 180°, the rule is to be applied as stated below, in verse 15. As the whole diameter of the moon is illuminated when she is half a revolution from the sun, one half her diameter at a quarter of a revolution's distance, and no part of it at the time of conjunction, it is assumed that the illuminated portion of her diameter will vary as the part of 180° by which she is distant from the sun; and hence that, assuming the measure of the diameter of her disk to be twelve digits, the number of digits illuminated may be found by the following proportion: as half a revolution, or $10,800^\circ$, is to twelve digits, so is the moon's distance from the sun in minutes to the corresponding part of the diameter illuminated: the substitution, in the first ratio, of $900:1$ for $10,800:12$, gives the rule as stated in the text. Here, it will be noticed, we have for the first and only time the Greek method of measuring the moon's diameter, by equal twelfths, or digits: from this scale a farther reduction is made to the proper Hindu scale, as determined by the methods of the fourth chapter (see above, iv. 2-3; 26),
\[
\sin \delta \text{SN} : \delta \text{N} : : R : \text{SN}
\]
or
\[
\sin \text{co-lat} : \text{sum of sines of decl.} : : R : \text{SN}
\]
and
\[
\text{SN} = (R \times \text{sum of sines of decl.}) \div \sin \text{co-lat}.
\]

In like manner, since, in the triangle MNL, the angles at M and N are respectively equal to the observer's latitude and co-latitude,
\[
\sin \text{MNL} : \sin \text{LMN} : : \text{ML} : \text{NL}
\]
or
\[
\sin \text{co-lat} : \sin \text{lat} : : \text{sin alt} : \text{NL}
\]
and
\[
\text{NL} = (\sin \text{alt} \times \sin \text{lat}) \div \sin \text{co-lat}.
\]

We have thus found the values of ML and the two parts of SL in terms of the general sphere, or of a circle whose radius is tabular radius; it is desired farther to reduce them to terms of a circle in which ML shall equal the gnomon, or twelve digits. And since the gnomon is equal to the sine of altitude in a circle of which the hypotenuse of the corresponding shadow is radius (compare above, iii. 25-27 etc.), this reduction may be effected by multiplying the quantities in question by the hypotenuse of the shadow and dividing by radius. That is to say, representing the reduced values of SN and NL by s and n respectively,
\[
R : \text{hyp. shad.} : : \text{ML} : \text{gnom.}
\]
Substituting, now, in the second and third of these proportions the values of SN and NL found for them above, and substituting also in the third the value of the hypotenuse of the shadow derived from the first, we have
\[
R : \text{hyp. shad.} : : R \times \text{sum sin decl.} \div \sin \text{co-lat.} : : s, \text{ and } R : \text{gnom.} : : R \times \text{sin alt.} \times \text{sin lat.} \div \sin \text{co-lat.} : : n\]

which reduce to
\[
s = \frac{\text{hyp. shad.} \times \text{sum sin decl.}}{\sin \text{co-lat.}}, \text{ and } n = \frac{\text{sin lat.} \times \text{gnom.}}{\sin \text{co-lat.}}
\]

Hence, if the perpendicular ML be assumed of the constant value of the gnomon, or twelve digits, we have
\[
\text{SL} = \frac{(\text{hyp. shad.} \times \text{sum sin decl.}) + (\text{sin lat.} \times \text{gnom.})}{\sin \text{co-lat.}}
\]

In the case thus far considered the sun and moon have been supposed upon opposite sides of the equator. If they are upon the same side, the sun setting at S', or if their sines of declination, S'd and Nc, are of the same direction, the value of SN, the corresponding part of the base SL, will be found by treating in the same manner as before the difference of the sines, S'e, instead of their sum. In this case, too, the value of S'E being north, S'N will have to be subtracted from NL to give the base S'L. Other positions of the two luminaries with respect to one another are supposeable, but those which we have taken are sufficient to illustrate all the conditions of the problem, and the method of its solution.

It is evident that, in two points, the process as thus explained by the commentator is discordant with that which the text prescribes. The latter, in the first place, tells us to take, not the sum or difference of the
is the true daily motion of the planet to its actual motion during that interval.

6. Of the declinations of the sun and moon, if their direction be the same, take the difference; in the contrary case, take the sum: the corresponding sine is to be regarded as south or north, according to the direction of the moon from the sun.

7. Multiply this by the hypothenuse of the moon’s mid-day shadow, and, when it is north, subtract it from the sine of latitude (aksha) multiplied by twelve; when it is south, add it to the same.

8. The result, divided by the sine of co-latitude (lamba), gives the base (bhujya), in its own direction; the gnomon is the perpendicular (koti); the square root of the sum of their squares is the hypothenuse.

In explaining the method of this process, we shall follow the guidance of the commentator, pointing out afterwards wherein he varies from the strict letter of the text: for illustration we refer to the accompanying figure (Fig. 32).

The figure represents the south-western quarter of the visible sphere, seen as projected upon the plane of the meridian; Z being the zenith, Y the south point, W Y the intersection of the horizontal and meridian planes, and W the projection of the west point. Let Z Q equal the latitude of the place of observation, and let Q T and Q O be the declinations of the sun and moon respectively, at the given time; then W Q, S T, and N O will be the projections of the equator and of the diurnal circles of the sun and moon. Suppose, now, the sun to be upon the horizon, at S, and the moon to have a certain altitude, being at M: draw from M the perpendicular to the plane of the horizon M L, and join M S: it is required to know the relation to one another of the three sides of the triangle S L M, in order to the delineation of the moon’s appearance when at M, or at the moment of sunset.

Now M L is evidently the sine of the moon’s altitude at the given time, which may be found by methods already more than once described and illustrated. And S L is composed of the two parts S N and N L, of which the former depends upon the distance of the moon in declination from the sun, and the latter upon the moon’s altitude. But S N is one of the sides of a right-angled triangle, in which the angle N S b is equal to the observer’s co-latitude, and N b to the sum of the sine of declination of the sun, c b or W a, and that of the moon, N c. Hence
The process thus explained, however, is not precisely that which is prescribed in the text. We are there directed to calculate the amount of motion both of the sun and moon during the interval between the setting of the sun and that of the moon, and, having applied them to the longitudes of the two bodies, to take the ascensional equivalent of the distance between them in longitude, as thus doubly corrected, for the precise time of the setting of the moon after sunset. In one point of view this is false and absurd; for when the sun has once passed the horizon, the interval to the setting of the moon will be affected only by her motion, and not at all by his. In another light, the process does not lack reason; the allowance for the sun's motion is equivalent to a reduction of the interval from sidereal (nâkhâtra) time to civil, or true solar (ârya) time, or from respirations which are thirty-six hundredths of the earth's revolution on its axis to such as are like parts of the time from actual sunrise to actual sunrise. But such a mode of measuring time is unknown elsewhere in this treatise, which defines (i. 11-12) and employs sidereal time alone, adding (ii. 59) to the sixty nādis which constitute a sidereal day so much sidereal time as is needed to make out the length of a day that is reckoned by any other method. It seems necessary, then, either to suppose a notable blunder in this passage, or to recognize in it such a departure from the usual methods of the treatise as would show it to be an interpolation. Probably the latter is the alternative to be chosen: it is, at any rate, that which the commentator prefers: he pronounces the two verses beginning with the second half of verse 2, and ending at the middle of verse 4, to be spurious, and the true text of the Siddhânta to comprise only the first half of verse 2 and the second of verse 4; these would form together a verse closely analogous in its method and expression with verse 5, which teaches the like process for moon-rise, in the waning half-month. Fortified by the authority of the commentator, we are justified in assuming that the Sûrya-Siddhânta originally neglected, in its process for calculating the time of the moon's setting, her motion during the interval between that time and sunset, and that the omission was later supplied by another hand, from some other treatise, which reckoned by solar time instead of sidereal. This does not, however, explain and account for the second half of the second verse; which, if it has any meaning at all, different from that conveyed in the former part of the same verse, seems to signify that when the sun and moon are so near one another, as to be in the same sign, the discordance between distances on the ecliptic and their equivalents upon the equator may be neglected, and the difference of longitude in minutes taken for the interval of time in respirations.

If the time is between new and full moon, the object of the process is to obtain the interval from sunset to the setting of the moon; as both take place at the western horizon, the two planets are transferred to the eastern horizon, in order to the measurement of their distance in ascension: if, on the other hand, the moon has passed her full, the time of moonrise is sought; here the sun alone is transferred, by the addition of 180° to his longitude, to the eastern horizon, as taught in verse 5. The equation to be applied to the longitude of both planets is found by the familiar proportion—as sixty nādis are to the given interval in nādis, so
In determining the time of the moon's disappearance in the neighborhood of the sun, or of her emergence into visibility again beyond the sphere of his rays, no new rules are required; the same methods being employed as were made use of in ascertaining the time of heliacal setting and rising of the other planets: they were stated in the preceding chapter. The definition of the moon's limit of visibility would have been equally in order in the other chapter, but is deferred to this in order that the several processes in which the moon is concerned may be brought together. The title of the chapter, āragonmatyādhistikāra, "chapter of the elevation of the moon's cusps" (cṛnga, literally "horn"), properly applies only to that part of it which follows the fifth verse.

The degrees spoken of in this verse are, of course, "degrees of time" (kālāṅga), or in oblique ascension.

2. Add six signs to the longitudes of the sun and moon respectively, and find, as in former processes, the ascensional equivalent, in respirations, of their interval (lagnāntārābhavas): if the sun and moon be in the same sign, ascertain their interval in minutes.

3. Multiply the daily motions of the sun and moon by the result, in nādiś, and divide by sixty; add to the longitude of each the correction for its motion, thus found, and find anew their interval, in respirations;

4. And so on, until the interval, in respirations, of the sun and moon is fixed: by so many respirations does the moon, in the light half-month (cukta), go to her setting after the sun.

5. Add half a revolution to the sun's longitude, and calculate the corresponding interval, in respirations: by so many respirations does the moon, in the dark half-month (krishnapakṣa), come to her rising after sunset.

The question here sought to be solved is, how long after sunset upon any given day will take place the setting of the moon in the crescent half-month, or from new to full moon, and the rising of the moon in the waning half-month, or from full to new moon. The general process is the same with that taught in the last chapter, for obtaining a like result as regards the other planets or fixed stars: we ascertain, by the rules of the seventh chapter—applying the correction for the latitude according to its value at the horizon, as determined by the first part of vii. 8—the point of the ecliptic which sets with the moon; and then the distance in oblique ascension between this and the point at which the sun set will measure the required interval of time. An additional correction, however, needs to be applied to the result of this process in the case of the moon, owing to her rapid motion, and her consequent perceptible change of place between the time of sunset and that of her own setting or rising: this is done by calculating the amount of her motion during the interval as first determined, and adding its equivalent in oblique ascension to that interval; then calculating her motion anew for the increased interval and adding its ascensional equivalent—and so on, until the desired degree of accuracy is attained.
is to be made according to previous rules; the ascertainment of the time, in days etc., is always by the daily motion of the sun alone.

This verse should follow immediately after verse 15, to which it attaches itself in the closest manner. The dislocation of arrangement in the latter part of this chapter is quite striking, and is calculated to suggest a suspicion of interpolations.

The directions given in the verse require no explanation: they are just such an adaptation of the processes already prescribed to the case of the fixed stars as that made in verse 14 of the last chapter. The commentary points out again that the calculation of the correction for latitude (aksahdykkarman) is to be made only for the horizon, or as stated in the first half-verse of the rule.

18. Abhijit, Brahmahrdaya, Svati, Cravana (vaishnava), Cravishtha (vasava), and Uttarabhadrapada (ahirbudhnya), owing to their northern situation, are not extinguished by the sun's rays.

It may seem that it would have been a more orderly proceeding to omit the stars here mentioned from the specifications of verses 12-15 above; but there is, at least, no inconsistency or inaccuracy in the double statement of the text, since some of the stars may never attain that distance in oblique ascension from the sun which is there pointed out as their limit of visibility. We have not thought it worth the trouble to go through with the calculations, and ascertain whether, according to the data and methods of this treatise, these six stars, and these alone, of those which the treatise notices, would never become invisible at Ujjayini. It is evident, however, as has already been noticed above (viii. 20-21), that the star called Brahma or Prajapati (δ Aurigæ) is not here taken into account, since it is 8° north of Brahmahrdaya, and consequently can not become invisible where the latter does not.

CHAPTER X.

OF THE MOON'S RISING AND SETTING, AND OF THE ELEVATION OF HER CUSPS.

Contents:—1, of the heliacal rising and setting of the moon; 2-5, how to find the interval from sunset to the setting or rising of the moon; 6-8, method of determining the moon's relative altitude and distance from the sun at sunset; 9, to ascertain the measure of the illuminated part of her disk; 10-14, method of delineating the moon's appearance at sunset; 15, how to make the same calculation and delineation for sunrise.

1. The calculation of the heliacal rising (udaya) and setting (asta) of the moon, too, is to be made by the rules already given. At twelve degrees' distance from the sun she becomes visible in the west, or invisible in the east.
α Andromedae or γ Pegasi (Uttara-Bhādrapadā), is mentioned below (v. 18) among those which are never obscured by the too near approach of the sun. The stars forming the class which are not to be seen within 21° of the sun are all of the fourth magnitude, but they are no less distinctly visible than two of those in the preceding class; and indeed, Bharani is palpably more so, since it contains a star of the third magnitude, which is perhaps (see above) to be regarded as its junction-star. Since Agni, Brahma, Apānvatsa, and Āpas are not specially mentioned, it is to be assumed that they all belong in the class of those visible at 17°, and they are so treated by the commentator: the first of them (β Tauri) is a star of the second magnitude; for the rest, see the last note to the preceding chapter.

Some of the apparent anomalies of this classification are mitigated or removed by making due allowance for the various circumstances by which, apart from its absolute brilliancy, the visibility of a star in the sun’s neighborhood is favored or the contrary—such as its distance and direction from the equator and ecliptic, and the part of the ecliptic in which the sun is situated during its disappearance. Many of them, however, do not admit of such explanation, and we cannot avoid regarding the whole scheme of classification as one not founded on careful and long-continued observation, but hastily and roughly drawn up in the beginning, and perhaps corrupted later by unintelligent imitators and copyists.

16. The degrees of visibility (ārdayānādā), if multiplied by eighteen hundred and divided by the corresponding ascensional equivalent (udayāsavaśa), give, as a result, the corresponding degrees on the ecliptic (ksetrānādā); by means of them, likewise, the time of visibility and of invisibility may be ascertained.

This verse belongs, in the natural order of sequence, not after the passage next preceding, with which it has no special connection, but after verse 11. Instead of reducing, as taught in that verse, the motions upon the ecliptic to motions in oblique ascension, the “degrees of time” (kālānādā) may themselves be reduced to their equivalent upon the corresponding part of the ecliptic, and then the time of disappearance or of re-appearance calculated as before, using as a divisor the sum or difference of daily motions along the ecliptic. The proportion by which the reduction is made is the converse of that before given; namely, as the ascensional equivalent of the sign in which are the sun and the planet is to that sign itself, or 1800°, so are the “degrees of visibility” (ārdayānādā, or kālānādā) of the planet to the equivalent distance upon that part of the ecliptic in which it is then situated. The technical name given to the result of the proportion is kṣetrānādā: kṣetra is literally “field, territory,” and the meaning of the compound may be thus paraphrased: “the limit of visibility, in degrees, measured upon that part of the ecliptic which is, at the time, the territory occupied by the planets in question, or their proper sphere.”

17. Their rising takes place in the east, and their setting in the west; the calculation of their apparent longitude (ārdayārman)
dividing by the rate of approach or separation of the two bodies the difference between their actual distance and that of apparition and disparition: but the divisor must, of course, be the rate of approach in oblique ascension, and not in longitude. The former is derived from the latter by the following proportion: as a sign of the ecliptic, or 1800', is to its equivalent in oblique ascension, as found by iii. 42-45, so is the arc of the ecliptic traversed by each planet in a day to the equatorial equivalent of that arc. The daily rates of motion in oblique ascension thus ascertained are styled the "time-motions" (kādaṅgati), as being commensurate with the "time-degrees" (kālāṅcās).

12. Svātī, Agastya, Mrgavyādha, Citrā, Jyesṭhā, Punarvasu, Abhijit, and Brahmahṛdaya rise and set at thirteen degrees.
13. Hasta, Čravana, the Phalgunī, Čravishtā, Rohini, and Maghā become visible at fourteen degrees; also Viśākhā and Açvinī.
14. Kṛttikā, Anurādhā (mātra), and Mūla, and likewise Ācleshā and Ārdra (rāudrārakaśa), are seen at fifteen degrees; so, too, the pair of Ashadhās.
15. Bharani, Pushya, and Mṛgaśīrsha, owing to their faintness, are seen at twenty-one degrees; the rest of the asterisms become visible and invisible at seventeen degrees.

These are specifications of the distances from the sun in oblique ascension (kālāṅcās) at which the asterisms, and those other of the fixed stars whose positions were defined in the preceding chapter, make their heliacal risings and settings. The asterisms we are doubtless to regard as represented by their junction-stars (yogatārā). The classification here made of the stars in question, according to their comparative magnitude and brilliancy, is in many points a very strange and unaccountable one, and by no means calculated to give us a high idea of the intelligence and care of those by whom it was drawn up. The first class, comprising such as are visible at a distance of 13° from the sun, is, indeed, almost wholly composed of stars of the first magnitude; one only, Punarvasu (β Geminorum), being of the first to second, and having for its fellow one of the first (α Geminorum). But the second class, that of the stars visible at 14°, also contains four which are of the first magnitude, or the first to second; namely, Aldebaran (Rohini), Regulus (Maghā), Deneb or β Leonis (Uttara-Phalguni), and Atair or α Aquila (Čravana); and, along with these, one of the second to third magnitude, δ Leonis (Pūrva-Phalguni), three of the third, and one, α Librae (Viśākhā), of the fourth. In this last case, however, it might be possible to regard α Librae, of the second magnitude, as the star which is made to determine the visibility of the asterism. Among the stars of the third class, again, which are visible at 15°, is one, α Orionis (Ārdra), which, though a variable star, does not fall below the first to second magnitude; while with it are found ranked six stars of the third magnitude, or of the third to fourth. The class of those which are visible at 17°, and which are left unspecified, contains two stars of the fourth magnitude, but also two of the second, one of which,
Before going on to explain how, from the result thus obtained, the
time of the planet’s disappearance or re-appearance may be derived, the
text defines the distances from the sun, in oblique ascension or “degrees of
time,” at which each planet is visible.

6. The degrees of setting (astāncaś) are, for Jupiter, eleven;
for Saturn, fifteen; for Mars, moreover, they are seventeen:

7. Of Venus, the setting in the west and the rising in the east
take place, by reason of her greatness, at eight degrees; the
setting in the east and the rising in the west occur, owing to her
inferior size, at ten degrees:

8. So also Mercury makes his setting and rising at a distance
from the sun of twelve or fourteen degrees, according as he is
retrograding or rapidly advancing.

9. At distances, in degrees of time (kalabhāgās), greater than
these, the planets become visible to men; at less distances they
become invisible, their forms being swallowed up (grasta) by the
brightness of the sun.

The moon, it will be noticed, is omitted here; her heliacal rising and
setting are treated of at the beginning of the next following chapter.

In the case of Mercury and Venus, the limit of visibility is at a greater
or less distance from the sun according as the planet is approaching its
inferior or superior conjunction, the diminution of the illuminated portion
of the disk being more than compensated by the enlargement of the
disk itself when seen so much nearer to the earth.

Ptolemy treats, in the last three chapters (xiii. 7–9) of his work, of
the disappearance and reappearance of the planets in the neighborhood
of the sun, and defines the limits of visibility of each planet when in
the sign Cancer, or where the equator and ecliptic are nearly parallel.
His limits are considerably different from those defined in our text, being,
for Saturn, 14°; for Jupiter, 13° 45′; for Mars, 14° 30′; for Venus and
Mercury, in the west, 5° 40′ and 11° 30′ respectively.

10. The difference, in minutes, between the numbers thus stated
and the planet’s degrees of time (kalāncaś), when divided by
the difference of daily motions—or, if the planet be retrograding,
by the sum of daily motions—gives a result which is the time, in
days etc.

11. The daily motions, multiplied by the corresponding ascen-
dional equivalents (tallagnāsavas), and divided by eighteen hun-
dred, give the daily motions in time (kalāgata); by means of these
is found the distance, in days etc., of the time past or to come.

Of these two verses, the second prescribes so essential a modification
of the process taught in the first, that their arrangement might have
been more properly reversed. If we have ascertained, by the previous
rules, the distance of a planet in oblique ascension from the sun, and if
we know the distance in oblique ascension at which it will disappear or
re-appear, the interval between the given moment and that at which dis-
appearance or re-appearance will take place may be readily found by
upon the interval of time by which its setting follows, or its rising precedes, that of the sun, or upon its distance from the sun in oblique ascension; to the neglect of those other circumstances—as the declination of the two bodies, and the distance and direction of the planet from the ecliptic—which variously modify the limit of visibility as thus defined. The ascertainment of the distance in oblique ascension, then, is the object of the rules given in these verses. In explaining the method of the process, we will consider first the case of a calculation made for the eastern horizon. The time of sunrise having been determined, the true longitudes and rates of motion of the sun and the planet in question are found for that moment, as also the latitude of the planet. Owing to the latter's removal in latitude from the ecliptic, it will not pass the horizon at the same moment with the point of the ecliptic which determines its longitude, and the point with which it does actually rise must be found by a separate process. This is accomplished by calculating the apparent longitude of the planet, according to the method taught in the seventh chapter. There is nothing in the language of the text which indicates that the calculation is not to be made in full, as there prescribed, and for the given moment of sunrise: as so conducted, however, it would evidently yield an erroneous result; for, the planet being above the horizon, the point of the ecliptic to which it is then referred by a circle through the north and south points of the horizon is not the one to which it was referred by the horizon itself at the moment of its own rising. The commentary removes this difficulty, by specifying that the akṣhadykkarman, or that part of the process which gives the correction for latitude, is to be performed "only as taught in the first half-verse"—that is, according to the former part of vii. 8, which contains the rule for determining the amount of the correction at the horizon—omitting the after process, by which its value is made to correspond to the altitude of the planet at the given time. Having thus ascertained the points of the ecliptic which rise with the sun and with the planet respectively, the corresponding equatorial interval, or the distance of the planets in oblique ascension, is found by a rule already given (iii. 50). The result is expressed in respirations of sidereal time, which are equivalent to minutes of the equator (see above, i. 11–12); they are reduced to degrees by dividing by sixty: and the degrees thus found receive the technical name of "time-degrees" (kalānças, kalabhāgás); they are also called below "degrees of setting" (astānças), and "degrees of visibility" (dṛṣyānças).

If the planet for which the calculation is made has greater longitude than the sun, the process, being adapted to the time of sunset, and to the western horizon, requires a slight modification, owing to the fact that the equivalents of the signs in oblique ascension (iii. 42–45) are given only as measured at the eastern horizon. Since 180 degrees of the ecliptic are always above the horizon, any given point of the ecliptic will set at the same moment that another 180° distant from it rises; by adding, then, six signs to the calculated positions of the sun and the planet, and ascertaining, by iii. 50, the ascensional difference of the two points so found, the interval between the setting of the sun and that of the planet will be determined.
CHAPTER IX.

OF HELIACAL RISINGS AND SETTINGS.

Contents:—1. Subject of the chapter; 2-3, under what circumstances, and at which horizon, the planets rise and set heliacally; 4-5, method of calculating their distances in oblique ascension from the sun; 6-9, distances from the sun at which they disappear and re-appear; 10-11, how to find the time of heliacal setting or rising, past or to come; 12-15, distances from the sun at which the asterisms and fixed stars disappear and re-appear; 16-17, mode of determining their times of rising and setting; 18, what asterisms and stars never set heliacally.

1. Now is set forth the knowledge of the risings (udaya) and settings (astamaya) of the heavenly bodies of inferior brilliancy, whose orbs are overwhelmed by the rays of the sun.

The terms used for the heliacal settings and risings of the heavenly bodies, or their disappearance in the sun's neighborhood and their return to visibility, are precisely the same with those employed to denote their rising (udaya) and setting (asta, estamaya, estamana) above and below the horizon. The title of the chapter, udayastādhikāra, is literally translated in our heading.

2. Jupiter, Mars, and Saturn, when their longitude is greater than that of the sun, go to their setting in the west; when it is less, to their rising in the east: so likewise Venus and Mercury, when retrograding.

3. The moon, Mercury, and Venus, having a swifter motion, go to their setting in the east when of less longitude than the sun; when of greater, to their rising in the west.

These specifications are of obvious meaning and evident correctness. The planets which have a slower motion than the sun, and so are overtaken by him, make their last appearance in the west, after sunset, and emerge again into visibility in the east, before sunrise: of those which move more rapidly than the sun, the contrary is true: Venus and Mercury belong to either class, according as their apparent motion is retrograde or direct.

4. Calculate the longitudes of the sun and of the planet—in the west, for the time of sunset; in the east, for that of sunrise—and then make also the calculation of apparent longitude (ārākṣara-mana) of the planet.

5. Then the ascensional equivalent, in respirations, of the interval between the two (laghāntaraprāṇa) will give, when divided by sixty, the degrees of time (kālānca); or, in the west, the ascensional equivalent, in respirations, of the interval between the two when increased each by six signs.

Whether a planet will or will not be visible in the west after sunset, or in the east before sunrise, is in this treatise made to depend solely
situated directly between Spica and δ, and at such a distance from each as shows almost beyond question that it is the star intended:

Apāṃvatās 17° 48' 2° 45' N.
3 Virginis 19° 12' 1° 45' N.

It is not less difficult in this than in the former case to account for the selection of these stars, among the hundreds equaling or excelling them in brilliancy, as objects of special attention to the astronomical observers of ancient India. Perhaps we have here only the scattered and disconnected fragments of a more complete and shapely system of stellar astronomy, which flourished in India before the scientific reconstruction of the Hindu astronomy transferred the field of labor of the astronomer from the skies to his text-books and his tables of calculation.

The annexed table gives a comparative view of the positions of the seven stars spoken of in this and a preceding passage (vv. 10-12) as defined by our text and as determined by modern observers:

<table>
<thead>
<tr>
<th>Name</th>
<th>Hindu position:</th>
<th>True position:</th>
<th>Star compared</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pol. long.</td>
<td>pol. lat.</td>
<td>long.</td>
</tr>
<tr>
<td>Agastya,</td>
<td>90° 0' 80° 0' S.</td>
<td>76° 23' 52° 50' S.</td>
<td>85° 4° 75° 50' S.</td>
</tr>
<tr>
<td>Mrgavādha,</td>
<td>80° 40° 0' S.</td>
<td>54° 5° 44° N.</td>
<td>64° 7° 35° 22° N.</td>
</tr>
<tr>
<td>Agni,</td>
<td>53° 0° 8° N.</td>
<td>53° 5° 3° 53° N.</td>
<td>61° 5° 22° 5° N.</td>
</tr>
<tr>
<td>Brahmahṛdaya,</td>
<td>53° 0° 8° N.</td>
<td>60° 28° 53° N.</td>
<td>60° 5° 23° 5° N.</td>
</tr>
<tr>
<td>Prajaṭāpati,</td>
<td>57° 0° 38° N.</td>
<td>67° 11° 49° N.</td>
<td>69° 4° 40° 4° N.</td>
</tr>
<tr>
<td>Apāṃvatās,</td>
<td>180° 0° 3° N.</td>
<td>178° 43° 45° N.</td>
<td>178° 43° 45° N.</td>
</tr>
<tr>
<td>Āpaś,</td>
<td>180° 0° 9° N.</td>
<td>176° 53° 15° N.</td>
<td>171° 28° 38° N.</td>
</tr>
</tbody>
</table>

The gross errors in the determinations of position of these stars give us a yet lower idea of the character of Hindu observations than we derived from our examination of the junction-stars of the asterisms.

The essay of Colebrooke in the ninth volume of the Asiatic Researches, to which we have already so often referred, gives further information of much interest respecting such matters connected with the Hindu astronomy of the fixed stars as are passed without notice in our treatise. He states the rules laid down by different authorities for calculating the time of heliacal rising of Agastya, or Canopus, upon which depends the performance of certain religious ceremonies. He also presents a view of the Hindu doctrine of the Seven Sages, or rāgis, by which name are known the bright stars in Ursa Major forming the well-known constellation of the Wain, or Dipper. To these stars the ancient astronomers of India, and many of the modern upon their authority, have attributed an independent motion about the pole of the heavens, at the rate of 8° yearly, or of a complete revolution in 2700 years. The Sūrya-Siddhānta alludes in a later passage (xiii. 9) to the Seven Sages, but it evidently is to be understood as rejecting the theory of their proper motion, which is also ignored by the Siddhānta-Ciromani. That so absurd a dogma should have originated and gained a general currency in India, and that it should still maintain itself in many of the astronomical text-books, is, however, too striking and significant a circumstance to be left out of sight in estimating the character of the ancient and native Hindu astronomy.
(according to Colebrooke) the Brahma-Siddhânta; only the latter of them, Apas, is omitted by the Graha-Lâghava, being noticed in the Sûrya-Siddhânta alone. It may fairly be questioned, for the reason remarked above, whether the original text of our treatise itself contained the last two verses of this chapter: moreover, at the end of the next chapter (ix. 18), where those stars are spoken of which never set heliacally, on account of their high northern situation, Prajâpati is not mentioned among them, as it ought to be, if its position had been previously stated in the treatise. Still farther on (xiii. 9), in the description of the armillary sphere, it is referred to by the name of Brahma, which, according to the commentary on this passage, and to Colebrooke, it also customarily bears. Perhaps another evidence of the unauthenticity of the passage is to be seen in the fact that the two definitions of the polar longitude of Prajâpati do not, if taken in connection with verse 11, appear to agree with one another: a star which is 5° east from the position of Brahmaharâdaya, as there stated, is not “at the end of Taurus,” but at its twenty-seventh degree: this may, however, be merely an inaccurate expression, intended to mean that the star is in the latter part, or near the end, of Taurus. The Graha-Lâghava, which defines the positions of all these stars directly, by degrees of polar longitude and latitude, and not by reference either to the signs or to other stars, gives Prajâpati 61° of polar longitude, or 5° more than it assigned to Brahmaharâdaya: it also adds 1° to the polar latitude as stated in our text. The star referred to can hardly be any other than that in the head of the Wagoner, or δ Aurigae (4):

Prajâpati 67° 11’ 36° 49’ N.
δ Aurigae 69° 54’ 30° 49’ N.

The error of latitude is about the same with that which was committed with reference to Brahmaharâdaya, or Capella. Why so faint and inconspicuous a star should be found among the few of which the Hindu astronomers have taken particular notice is not easy to discover.

The position of the star named Apâmvatâs, “Waters’ Child,” is described in our text by reference to Cîtrâ, or Spica Virginis: it is said to be in the same longitude, 180°, and 5° farther north; and this, since Cîtrâ itself is in lat. 2° S., would make the latitude of Apâmvatâs 3° N. The Graha-Lâghava gives it this latitude directly, and also makes its longitude agree with that of Spica, which, as already noticed, it places at the distance of 183° from the origin of the sphere. Apas, “Waters” (the commentary, however, treats the word as a singular masculine, Apa), is put 6° north of Apâmvatâs, or in lat. 9° N. It is identified by Colebrooke with δ Virginis (3), and doubtless correctly:

Apas 176° 23’ 6° 15’ N.
δ Virginis 171° 28’ 8° 33’ N.

Colebrooke pronounces Apâmvatâs to comprise “the nebulous stars marked b 1, 2, 3” in Virgo. We can find, however, no such stars upon any map, or in any catalogue, accessible to us, and hence presume that Colebrooke must have been misled here by some error of the authority on which he relied. There is, on the other hand, a star, δ Virginis (4),
in which it is questionable which star is meant to be pointed out in a
group of which the constitution is not doubtful, owing to the very near
correspondence of more than one star with the position as defined. And
once more, where, in a single instance, a special effort has apparently
been made to fix the position of the junction-star beyond all doubt or
cavil, the result is a failure; for it still remains a matter of dispute how
the description is to be understood, and which member of the group is
intended. The case referred to is that of Hasta, which occupies nearly
all of verse 17. That Colebrooke was not satisfied as to the meaning of
the description is clear from the fact that he specifies, as the star referred
to, "γ or δ Corvi." His translation of the verse, "2nd W. of 1st N.W."
conveys to us no intelligible meaning whatever, as applied to the actual
group. He evidently understood pacsimottaratārāyā as a single word,
standing by euphony for tārāyas, ablative of tārā. Our own render-
ing supposes it divided into the two independent words pacsimotta-
ratārā yā, or the three pacsimā uttaratārā yā. This interpretation is, in
the first place, supported by the corresponding passage in the Cakalya-
Sanhitā, which reads, "of Hasta, the north-western (vāyavi): it is also
the second western." Again, it applies without difficulty to one of the
stars in the group, namely to γ, which we think most likely to be the
one pointed out—and mainly, because either of the others would admit
of being more simply and briefly designated, δ as the northern, β as the
eastern, α as the southern, and ε as the western star. We should, then,
regard the description as unambiguous, were it not for what is farther
added, "being the second situated westward:" for γ is the first or most
westerly of the five in longitude, and the third in right ascension, while
the second in longitude and in right ascension respectively are the two
faint stars ε and α. We confess that we do not see how the difficulty is
to be solved without some emendation of the text.

We conceive ourselves to be justified, then, in regarding this passage
as of doubtful authenticity and inferior authority: as already partaking,
in short, of that ignorance and carelessness which has rendered the
Hindu astronomers unable, at any time during the past thousand years,
to point out in the heavens the complete series of the groups of stars
composing their system of asterisms. None of the other authorities
accessible to us gives a description of the relative places of the junction-
stars, excepting the Cakalya-Sanhitā; and our manuscript of its text is
so defective and corrupt at this point that we are able to derive from it
with confidence the positions of only a third of the stars. So
far, it accords with the Sūrya-Siddhānta, save that it points out as the
junction-star of Pūrva-Ashādhā the brightest, instead of the northern-
most, member of the group; and here there is a difference in the mode of
designation only, and not a disagreement as regards the star designated.

20. Situated five degrees eastward from Brahmaghrdaya is Pra-
jāpati: it is at the end of Taurus, and thirty-eight degrees north.
21. Aparāstable is five degrees north from Citrā: somewhat
greater than it, as also six degrees to the north of it, is Āpas.

The three stars whose positions are defined in this passage are not
mentioned in the Cakalya-Sanhitā, nor in the Siddhānta-Ciromani and
to be used as divisor in determining the place and time of the conjunction—is duly noticed.

The inaccuracies in the Hindu process for determining apparent longitudes, which, as above noticed, are kept within bounds, where the planets alone are concerned, by the small amount of their latitudes, would be liable in the case of many of the asterisms to lead to grave errors of result.

16. Of the two Phalgunīs, the two Bhādrapadās, and likewise the two Ashādhās, of Viśākhā, Ācsvīnī, and Mrgaśirsha (śāmīvara), the junction-star (yogatārā) is stated to be the northern (uttara):

17. That which is the western northern star, being the second situated westward, that is the junction-star of Hasta; of Čravishṭā it is the western:

18. Of Jyesṭhā, Čravana, Anurādhā (maitra), and Pushya (bārhastapatiya), it is the middle star: of Bharani, Krittikā (agneya), and Māgnī (pitṛya), and likewise of Revati, it is the southern:

19. Of Rohiṇī, Punarvasu (āditya), and Mūla, it is the eastern, and so also of Ācleshā (sarpa): in the case of each of the others, the junction-star (yogatāraka) is the great (sthūla) one.

We have had occasion above, in treating of the identification of the asterisms, to question the accuracy of some of these designations of the relative position of the junction-stars in the groups containing them. We do not regard the passage as having the same authenticity and authority with that in which the determinations of the polar longitudes and latitudes are given; and indeed, we are inclined to suspect that all which follows the fifteenth verse in the chapter may be a later addition to its original content. It is difficult to see otherwise why the statements given in verses 20 and 21 of the positions of certain stars should be separated from those presented above, in verses 10–12. A designation of the relative position of the junction-star in each group ought also properly to be connected with a definition of the number of stars composing each, and a description of its configuration—such as are presented along with it by other treatises, as the Čākalya-Sanhitā. The first is even in some points ambiguous unless accompanied by the others, since there are cases in which the same star has a different position in its asterism according as the latter is to be regarded as including a less or a greater number of stars. In this respect also, then, the passage looks like a disconnected fragment. Nor is the method of designation so clear and systematic as to inspire us with confidence in its accuracy. Upon a consideration of the whole series of asterisms, it is obvious that the brightest member of each group is generally selected as its junction-star. Hence we should expect to find a general rule to that effect laid down, and then the exceptions to it specially noted, together with the cases in which such a designation would be equivocal. Instead of this, we have the junction-stars of only two asterisms containing more than one star, namely Abhijit and Čatabhishaj, described by their superior brilliancy, while that of the former is not less capable of being pointed out by its position than are any of the others in the series. Again, there are cases
the wain. The latitude of its stars, again, varies from 29° 36' (α) to 5° 47' (β) S.; hence, to come into collision with, or to enter, the wain, a planet must have more than two degrees of south latitude. The Siddhānta does not inform us what would be the consequences of such an occurrence; that belongs rather to the domain of astrology than of astronomy. We cite from the Pañcatantra (vv. 238–241) the following description of these consequences, derived from the astrological writings of Varāha-mihira:*

"When Saturn splits the wain of Rohini here in the world, then Mādhava rains not upon the earth for twelve years.

"When the wain of Prajāpati's asterism is split, the earth, having as it were committed a sin, performs, in a manner, her surface being strewn with ashes and bones, the kāpālikā penance.

"If Saturn, Mars, or the descending node splits the wain of Rohini, why need I say that, in a sea of misfortune, destruction befalls the world!

"When the moon is stationed in the midst of Rohini's wain, then men wander recklessly about, deprived of shelter, eating the cooked flesh of children, drinking water from vessels burnt by the sun."

Upon what conception this curious feature of the ancient Hindu astrology is founded, we are entirely ignorant.

14. Calculate, as in the case of the planets, the day and night of the asterisms, and perform the operation for apparent longitude (āṛkkarman), as before: the rest is by the rules for the conjunction (melaka) of planets, using the daily motion of the planet as a divisor: the same is the case as regards the time.

15. When the longitude of the planet is less than the polar longitude (dhruwakà) of the asterism, the conjunction (yoga) is to come; when greater, it is past: when the planet is retrograding (vakragati), the contrary is to be recognized as true of the conjunction (samāgama).

The rules given in the preceding chapter for calculating the conjunction of two planets with one another apply, of course, with certain modifications, to the calculation of the conjunctions of the planets with the asterisms. The text, however, omits to specify the most important of these modifications—that, namely, in determining the apparent longitude of an asterism, one part of the process prescribed in the case of a planet, the ayanadṛkkarman, or correction for ecliptic deviation, is to be omitted altogether; since the polar longitude of the asterism, which is given, corresponds in character with the ayaṇa graha, or longitude of the planet as affected by ecliptic deviation, which must be ascertained by the ayanadṛkkarman. The commentary notices the omission, but offers neither explanation nor excuse for it. The other essential modification—that, the asterism being fixed, the motion of the planet alone is

* Our translation represents the verses as amended in their readings by Benfey (Pantischatantra etc., 2r Theil, nn. 284–287). In the third of the verses, however, the reading of the published text, cāti, "moon," would seem decidedly preferable to gīthā, "descending node": since the node, being always necessarily in the ecliptic, can never come into collision with Rohini's wain.
with the actual positions of the stars in the heavens. And we would regard the other interpretation as forced upon the passage by the commentators, in order to avoid the difficulty pointed out by us above (near the end of the note on the last passage but one) and to free the Siddhânta from the imputation of having neglected the precessional variation of the circles of declination. M. Biot pronounces the method of observation explained by the commentators "almost impracticable," and it can, accordingly, hardly be that by which the positions of the asterisms were at first laid down, or by which they could be made to undergo the necessary corrections. Another method, more in accordance with the rules and processes of the third chapter, and which appears to us to be more authentic and of higher value, is described by Colebrooke (as above) from the Siddhânta-Sarvabhûma, being there cited from the Siddhânta-Sundara; it is as follows:

"A tube, adapted to the summit of the gnomon, is directed toward the star on the meridian; and the line of the tube, pointed to the star, is prolonged by a thread to the ground. The line from the summit of the gnomon to the base is the hypothenuse; the height of the gnomon is the perpendicular; and its distance from the extremity of the thread is the base of the triangle. Therefore, as the hypothenuse is to its base, so is the radius to a base, from which the sine of the angle, and consequently the angle itself, are known. If it exceed the latitude [of the place of observation], the declination is south; or, if the contrary, it is north. The right ascension of the star is calculated from the hour of night, and from the right ascension of the sun for that time. The declination of the corresponding point of the ecliptic being found, the sum or difference of the declinations, according as they are of the same or of different denominations, is the distance of the star from the ecliptic. The longitude of the same point is computed; and from these elements, with the actual precession of the equinox, may be calculated the true longitude of the star; as also its latitude on a circle passing through the poles of the ecliptic."

The Siddhânta-Sarvabhûma also gives the true longitudes and latitudes of the asterisms, professedly as thus obtained by observation and calculation, and they are reported by Colebrooke in his general table of data respecting the asterisms.

If we are not mistaken, the amount and character of the errors in the stated latitudes of the asterisms tend to prove that this, or some kindred process, was that by which their positions were actually determined.

13. In Taurus, the seventeenth degree, a planet of which the latitude is a little more than two degrees, south, will split the wain of Rohini.

The asterism Rohini, as has been seen above, is composed of the five principal stars in the head of Taurus, in the constellation of which is seen the figure of a wain. The divinity is Prajâpati. The distances of its stars in longitude from the initial point of the sphere vary from 45° 46' (γ) to 49° 45' (α); hence the seventeenth degree of the second sign—the reckoning commencing at the initial point of the sphere, taken as coinciding also with the vernal equinox—is very nearly the middle of
What is the true meaning and scope of this passage, is a question with regard to which there may be some difference of opinion. The commentator explains it as intended to satisfy the inquiry whether the polar longitudes and latitudes, as stated in the text, are constant, or whether they are subject to variation. Now although, he says, owing to the precession, the values of these quantities are not unalterably fixed, yet they are given by the text as they were at its period, and as if they were constant, while the astronomer is directed to determine them for his own time by actual observation. For this purpose he is to take such a sphere as is described below (chap. xiii)—of which the principal parts, and the only ones which would be brought into use in this process, are hoops or circles representing the colures, the equator, and the ecliptic—and is to suspend upon its poles an additional movable circle, graduated to degrees: this would be, of course, a revolving circle of declination. The sphere is next to be adjusted in such manner that its axis shall point to the pole, and that its horizon shall be water-level. Then, in the night, the junction-star of Revati (α Piscium) is to be looked at through a hole in the centre of the instrument, and the corresponding point of the ecliptic, which is 10° east of the end of the constellation Pisces, is to be brought over it; after that, it will be necessary only to bring the revolving circle of declination, as observed through the hole in the centre of the instrument, over any other star of which it is desired to determine the position, and its polar longitude and latitude may be read off directly upon the ecliptic and the movable circle respectively.

Colebrooke (As. Res. ix. 326; Essays, ii. 324) found this passage similarly explained in other commentaries upon the Sûrya-Siddhânta to which he had access, and also met with like directions in the commentaries on the Siddhânta-Ciromani.

There are, however, very serious objections to such an interpretation of the brief direction contained in the text. It is altogether inconsistent with the whole plan and method of a Hindu astronomical treatise to leave, and even to order, matters of this character to be determined by observation. Observation has no such important place assigned to it in the astronomical system; with the exception of terrestrial longitude and latitude, which, in the nature of things, are beyond the reach of a treatise, it is intended that the astronomer should find in his text-book everything which he needs for the determination of celestial phenomena, and should resort to instruments and observation only by way of illustration. The sphere of which the construction is prescribed in the thirteenth chapter is not an instrument for observation: it is expressly stated to be "for the instruction of the pupil," and it is encumbered with such a number and variety of different circles, including parallels of declination for all the asterisms and for the observed fixed stars, that it could not be used for any other purpose: it will be noticed, too, that the commentary is itself obliged to order here the addition of the only appliances—the revolving circle of declination and the hole through the centre—which make of it an instrument for observation. The simple and original meaning of the passage seems to be that, having constructed a sphere in the manner to be hereafter described, one may examine the places of the asterisms as marked upon it, and note their coincidence.
most brilliant in the southern heavens. Its remote southern position, only 37° from the pole, renders it invisible to an observer stationed much to the northward of the Tropic of Cancer. Its Hindu name is that of one of the old Vedic rasias, or inspired sages. The comparison of its true position with that assigned it by our text—which, in this instance, does not require to be reduced to true longitude and latitude—is as follows:

\[
\begin{array}{c}
\text{Agastya} & \ldots & 90° 0' & \ldots & 86° 0' \text{S.} \\
\text{Canopus} & \ldots & 85° 4' & \ldots & 75° 50' \text{S.}
\end{array}
\]

The error of position is here very considerable, and the variations of the other authorities from the data of our text are correspondingly great. The Siddhānta-Ciromani and (according to Colebrooke) the Brahma-Siddhānta give Agastya 87° of polar longitude, and 77° of latitude, which is a fair approximation to the truth: the Graha-Lāghava also places it correctly in lat. 76° S., but makes its longitude only 80°, which is as gross an error as that of the Sūrya-Siddhānta, but in the opposite direction. The Cākalya-Samhitā agrees precisely with our treatise as respects the positions of these four stars, as it does generally in the numerical data of its astronomical system.

Mrgavyādhā, "deer-hunter"—it is also called Lubdhaka, "hunter"—is α Canis Majoris, or Sirius, the brightest of the fixed stars:

\[
\begin{array}{c}
\text{Mrgavyādhā} & \ldots & 76° 23' & \ldots & 36° 52' \text{S.} \\
\text{Sirius} & \ldots & 86° 7' & \ldots & 39° 32' \text{S.}
\end{array}
\]

Here, while all authorities agree with the correct determination of the latitude of Sirius presented by our text, the Siddhānta-Ciromani etc. greatly reduce its error of longitude, by giving the star 86°, instead of 80°, of polar longitude: the Graha-Lāghava reads 81°.

The star named after the god of fire, Agni, and called in the text by one of his frequent epithets, hutabhuj, "devourer of the sacrifice," is the one which is situated at the extremity of the northern horn of the Bull, or β Tauri: it alone of the four is of the second magnitude only:

\[
\begin{array}{c}
\text{Agni} & \ldots & 54° 5' & \ldots & 7° 44' \text{N.} \\
\text{β Tauri} & \ldots & 65° 33' & \ldots & 5° 32' \text{N.}
\end{array}
\]

The very gross error in the determination of the longitude of this star is but slightly reduced by the Graha-Lāghava, which gives it 53°, instead of 52°, of polar longitude. The Siddhānta-Ciromani and Brahma-Siddhānta omit all notice of any of the fixed stars excepting Canopus and Sirius.

Brahmahrdaya, "Brahma’s heart," is α Auriga, or Capella:

\[
\begin{array}{c}
\text{Brahmahrdaya} & \ldots & 65° 29' & \ldots & 28° 3' \text{N.} \\
\text{Capella} & \ldots & 65° 50' & \ldots & 22° 52' \text{N.}
\end{array}
\]

The Graha-Lāghava, leaving this erroneous determination of latitude unamended, adds a greater error of longitude, in the opposite direction to that of our text, by giving the star 49° more of polar longitude.

We shall present these comparisons in a tabular form at the end of the chapter, in connection with the other passage of similar import.

12. Having constructed a sphere, one may examine the corrected (sphuta) latitude and polar longitude (dhruvaka).
employed by the Hindus for this purpose, such a determination of date cannot, indeed, be relied upon as exact or conclusive, yet it is the best and surest that we can attain. The general conclusion, at any rate, stands fast, that the positions of the junction-stars of the asterisms were fixed not far from the time when the vernal equinox coincided with the initial point of the Hindu sidereal sphere, or during the sixth century of our era.

Since, according to the Hindu theory, the initial point of the sidereal sphere is also, for all time, the mean place of the vernal equinox, which always reverts to it after a libration of 27° in either direction (see above, iii. 9–12), we are not surprised to find the positions of the asterisms primarily defined upon the supposition of their coincidence. But it is not a little strange that the effect of the precession in altering the direction of the circles of declination drawn through the junction-stars, and so the polar longitudes and latitudes of the latter, should be made no account of (see, however, the latter half of iv. 12, below, and the note upon it), and that directions for calculating the conjunctions of the planets with the asterisms according to their positions as thus stated should be given (vv. 14–15), unaccompanied by any hint that a modification of the data of the process would ever be found necessary. This carelessness is perhaps to be regarded as an additional evidence of the small importance attached, after the reconstruction of the Hindu astronomy, to calculations in which the asterisms were concerned; although it also tends strongly to prove what we have suggested above (note to iii. 9–12), that in the construction of the Hindu astronomical system the precession was ignored altogether. It is to be noticed that the two systems of yogas (see above, ii. 65, and additional note upon that passage), originally founded upon actual conjunctions with the asterisms, have been divorced from any real connection with them. A like consideration might restrain us from accepting the determinations of position here presented as the best results which Hindu observers and instruments were capable of attaining; yet, in the absence of other tests of their powers, we cannot well help drawing the conclusion that the accuracy of a Hindu observation is not to be relied upon within a degree or two.

10. Agastya is at the end of Gemini, and eighty degrees south; and Mṛgavyāḍha is situated in the twentieth degree of Gemini;

11. His latitude (viktshēpa), reckoned from his point of declination (apakrama), is forty degrees south: Agni (hutabhuj) and Brahmahārdaya are in Taurus, the twenty-second degree;

12. And they are removed in latitude (vikshipta), northward, eight and thirty degrees respectively.

In connection with the more proper subject of this chapter we also have laid before us, here and in a subsequent passage (vv. 20–21), the defined positions of a few fixed stars which are not included in the system of zodiacal asterisms. The definition is made in the same manner as before, by polar longitudes and latitudes. It is not at all difficult to identify the stars referred to in these verses; they were correctly pointed out by Colebrooke, in his article already cited (As. Res., vol. ix). Agastya is a Navi, or Canopus, a star of the first magnitude, and one of the
Positions, and Errors of Position, of the Junction-Stars of the Asterisms.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aśvinī</td>
<td>11 59</td>
<td>13 56</td>
<td>-1 57</td>
</tr>
<tr>
<td>2</td>
<td>Bharadvāj</td>
<td>24 33</td>
<td>0 56</td>
<td>-2 16</td>
</tr>
<tr>
<td>3</td>
<td>Kṛṣṭikā</td>
<td>39 8</td>
<td>39 58</td>
<td>-0 50</td>
</tr>
<tr>
<td>4</td>
<td>Rohini</td>
<td>48 9</td>
<td>49 45</td>
<td>-1 36</td>
</tr>
<tr>
<td>5</td>
<td>Mrjugāra</td>
<td>61 3</td>
<td>63 40</td>
<td>-2 37</td>
</tr>
<tr>
<td>6</td>
<td>Andrā</td>
<td>65 50</td>
<td>68 43</td>
<td>-3 53</td>
</tr>
<tr>
<td>7</td>
<td>Punarvasu</td>
<td>92 52</td>
<td>93 14</td>
<td>-0 22</td>
</tr>
<tr>
<td>8</td>
<td>Pushya</td>
<td>106 0</td>
<td>108 42</td>
<td>-2 42</td>
</tr>
<tr>
<td>9</td>
<td>Āditya</td>
<td>109 0</td>
<td>112 20</td>
<td>-2 21</td>
</tr>
<tr>
<td>10</td>
<td>Māgha</td>
<td>129 0</td>
<td>129 49</td>
<td>-0 49</td>
</tr>
<tr>
<td>11</td>
<td>P.-Phalguni</td>
<td>139 56</td>
<td>141 15</td>
<td>-1 17</td>
</tr>
<tr>
<td>12</td>
<td>U.-Phalguni</td>
<td>150 10</td>
<td>151 37</td>
<td>-1 27</td>
</tr>
<tr>
<td>13</td>
<td>Hasta</td>
<td>174 22</td>
<td>173 27</td>
<td>+0 55</td>
</tr>
<tr>
<td>14</td>
<td>Cītra</td>
<td>189 46</td>
<td>183 49</td>
<td>-3 1</td>
</tr>
<tr>
<td>15</td>
<td>Śvātī</td>
<td>183 2</td>
<td>184 12</td>
<td>-1 10</td>
</tr>
<tr>
<td>16</td>
<td>Vipākā</td>
<td>213 31</td>
<td>211 0</td>
<td>+3 31</td>
</tr>
<tr>
<td>17</td>
<td>Anurādhā</td>
<td>224 44</td>
<td>222 34</td>
<td>+2 10</td>
</tr>
<tr>
<td>18</td>
<td>Jyeshthā</td>
<td>230 5</td>
<td>229 44</td>
<td>+0 23</td>
</tr>
<tr>
<td>19</td>
<td>Mūla</td>
<td>254 12</td>
<td>254 32</td>
<td>+0 7</td>
</tr>
<tr>
<td>20</td>
<td>P.-Ashādha</td>
<td>265 30</td>
<td>254 34</td>
<td>+0 7</td>
</tr>
<tr>
<td>21</td>
<td>U.-Ashādha</td>
<td>280 23</td>
<td>262 21</td>
<td>-1 58</td>
</tr>
<tr>
<td>23</td>
<td>Ĉrāvaṇa</td>
<td>283 29</td>
<td>281 41</td>
<td>+0 42</td>
</tr>
<tr>
<td>24</td>
<td>Ĉrāvishthā</td>
<td>296 5</td>
<td>296 19</td>
<td>-0 14</td>
</tr>
<tr>
<td>25</td>
<td>Ĉatābhujā</td>
<td>319 49</td>
<td>317 33</td>
<td>-1 43</td>
</tr>
<tr>
<td>26</td>
<td>P.-Bhādrapadā</td>
<td>334 25</td>
<td>333 27</td>
<td>+0 58</td>
</tr>
<tr>
<td>27</td>
<td>U.-Bhādrapadā</td>
<td>347 16</td>
<td>349 8</td>
<td>-1 50</td>
</tr>
<tr>
<td>28</td>
<td>Revati</td>
<td>359 50</td>
<td>359 50</td>
<td>0 0</td>
</tr>
</tbody>
</table>

all in the same direction, giving the star a place too far to the north. The column of errors in longitude, on the other hand, shows a very marked preponderance of minus errors, their sum being 33° 54', while the sum of plus errors is only 7° 52'. Upon taking the difference of these sums, and dividing it by twenty-eight, we find the average error of longitude to be -56', the greatest deviation from it in either direction being -2° 4' and +3° 27'. So far as this goes, it would indicate that the Hindu measurements of position were made from a vernal equinox situated about 1° to the eastward of that of A.D. 560, and so at a time seventy years previous to the date we have assumed for them, or about A.D. 490. In our present ignorance of the methods of observation

* * *

In a comparison in which a high degree of exactness was desired, and was not, in the nature of the case, attainable, it would of course be necessary to take into account the proper motions of the stars compared. This we have not thought it worth while, in the present instance, to do. We may remark, however, that the junction-star of the 15th asterism, Arcturus, has a much greater proper motion than any other in the series; and that, if this were allowed for, according to its value as determined by Main (Mem. Roy. Astr. Soc., vol. xix, 4to, 1851), the Hindu error of longitude would be diminished about 22', but that of latitude increased about 85'.

* * *
Others allow it a share in the proper portions of the two neighboring asterisms: thus the Muhūrta-Mālā, a late work, of date unknown to us, says: "the last quarter of Uttara-Aśādā and the first fifteenth of Črāvana together constitute Abhijit: it is so to be accounted when twenty-eight asterisms are reckoned; not otherwise." Ordinarily, however, the division of the ecliptic into twenty-seven equal "portions" is made, and Abhijit is simply passed by in their distribution. After the introduction of the modern method of dividing the circle into degrees and minutes, this last way of settling the difficulty would obviously receive a powerful support, and an increased currency, from the fact that a division by twenty-seven gave each portion an even number of minutes, 800, while a division by twenty-eight yielded the awkward and unmanageable quotient 771\frac{1}{7}.

Much yet remains to be done, before the history and use of the system of asterisms, as a part of the ancient Hindu astronomy and astrology, shall be fully understood. There is in existence an abundant literature, ancient and modern, upon the subject, which will doubtless at some time provoke laborious investigation, and repay it with interesting results. To us hardly any of that literature is accessible, and only the final results of wide-extended and long-continued studies, upon which it could be in place here. We have already allotted to the nakshatras more space than to some may seem advisable; our excuse must be the interest of the history of the system, as part of the ancient history of the rise and spread of astronomical science; the importance attaching to the researches of M. Biot, the inadequate attention hitherto paid them, and the recent renewal of their discussion in the Journal des Savants; and finally and especially, the fact that in and with the asterisms is bound up the whole history of Hindu astronomy, prior to its transformation under the overpowering influence of western science. In the modern astronomy of India, the nakshatras are of subordinate consequence only, and appear as hardly more than reminiscences of a former order of things: from the Sūrya-Siddhānta might be struck out every line referring to them, without serious alteration of the character of the treatise.

Before bringing this note to a close, we present, in the annexed table, a comparison of the true longitudes and latitudes of the junction-stars of the twenty-eight asterisms, as derived by calculation from the positions stated in our text, with the actual longitudes and latitudes of the stars with which they are probably to be identified. In a single case, (the 27th asterism), we compare the longitude of one star and the latitude of another; the reason of this is explained above, in connection with the identification of the asterism. We add columns giving the errors of the Hindu determinations of position: in that for the latitude north direction is regarded as positive, and south direction as negative.

Upon examining the column of errors of latitude presented in this table, it will be seen that they are too considerable, and too irregular, both in amount and in direction, to be plausibly accounted for otherwise than as direct errors of observation and calculation. The gosést of them, as has already been pointed out, are committed in the measurement of southern latitudes, when of considerable amount, and they are
ing extinguished, the circle of declination of its junction-star being
brought by the precession to a coincidence with that of the junction-star
of the preceding asterism about A.D. 972. But it has been shown
above that M. Biot’s view of the nature of a nakṣatras—that it is,
namely, the arc of the ecliptic intercepted between the circles of declina-
tion of two successive junction-stars—is altogether erroneous: however
nearly those circles might approach one another, there would still be no
difficulty in assigning to each asterism its “portion” from the neighbor-
ing region of the ecliptic. Again, this explanation would not account
for the early date of the omission of Abhijit, which, as already noticed,
is found wanting in one of the most ancient lists, that of the Tāttvār-
Sanhitā. It is to be observed, moreover, that M. Biot, in calculating the
period of Abhijit’s disappearance, has adopted 7 Sagittarii: as the junc-
tion-star of Uttarā-Āshādha, while we have shown above that σ, and
not τ, is to be so regarded: and this substitution would defer until sev-
eral centuries later the date of coincidence of the two circles of declina-
tion. According to the Hindu measurements, indeed (see the table of
positions of the junction-stars, near the beginning of this note), Abhijit
is farther removed from the preceding asterism, both in polar longitude
and in right ascension, than are five of the other asterisms from their
respective predecessors; nor does the Hindu astronomical system ac-
knowledge or make allowance for the alteration in position of the circles
of declination under the influence of the precession: their places, as
data for the calculation of conjunctions, are ostensibly laid down for all
future time. For these various reasons, M. Biot’s explanation is to be
rejected as insufficient. A more satisfactory one, in our opinion, may
be found in the fact, illustrated above (see Fig. 31, beginning of this
note), that the asterisms are in general so distributed as to accord quite
well with a division of the ecliptic into twenty-seven equal portions,
but not with a division into twenty-eight equal portions; that the
region where they are too much crowded together is that from the 20th
to the 23rd asterism, and that, among those situated in this crowded
quarter, Abhijit is farthest removed from the ecliptic, and so is more
easily left out than any of the others, in dividing the ecliptic into por-
tions. We cannot consider it at all doubtful that Abhijit is as originally
and truly a part of the system of asterisms as any other constellation
in the series, which is properly composed of twenty-eight members, and
not of twenty-seven: the analogy of the other systems, and the fact
that treatises like this Siddhānta, which reckon only twenty-seven di-
visions of the ecliptic, are yet obliged, in treating of the asterisms as con-
stellations, to regard them as twenty-eight, are conclusive upon this
point. The whole difficulty and source of discordance seems to lie in
this—how shall there, in any systematic method of division of the eclip-
tic, be found a place and a portion for a twenty-eighth asterism? The
Khanda-Katāka, as cited by al-Birāni—in making out, by a method
which is altogether irrespective of the actual positions of the asterisms
with reference to the zodiac, the accordance already referred to between
their portions and the moon’s daily motions—allots to Abhijit so much
of the ecliptic as is equivalent to the mean motion of the moon during
the part of a day by which her revolution exceeds twenty-seven days.
we style her “queen of night”; for the same title is in other passages
given to the sun, and even also to the Milky Way. When the name
came to be especially applied to the system of zodiacal asterisms, we
have seen above that a single one of the series, the 8th, was placed un-
der the regency of the moon, as another, the 18th, under that of the
sun: this, too, by no means looks as if the whole design of the system
was to mark the moon’s daily motions. Naturally enough, since the
moon is the most conspicuous of the nightly luminaries, and her revolu-
tions more rapid and far more important than those of the others, the
asterisms would practically be brought into much more frequent use in
connection with her movements: their number, likewise, being nearly
according with the number of days of her sidereal revolution, could not
but tempt those who thus employed them to set up an artificial relation
between the two. Hence the Arabs distinctly call their divisions of the
zodiac, and the constellations which mark them, “houses of the moon,”
and, until the researches of M. Biot, no one, so far as we are aware, had
ever questioned that the number of the asterisms or mansions, wherever
found, was derived from, and dependent on, that of the days in the
moon’s revolution. It was most natural, then, that Western scholars,
having first made acquaintance with the Arab system, should, on finding
the same in India, call it by the same name: nor is it very strange, even,
that Ideler should have gone a step farther, and applied the familiar title
of “lunar stations” to the Chinese sius also; an error for which he is
sharply criticised by M. Biot (Journ. d. Sav., 1859, p. 480). The latter
cites from al-Biruni (Journ. d. Sav. 1845, p. 49; 1859, pp. 487–8) two
passages derived by him from Varaha-mihira and Brahmagupta respect-
ively, in which are recorded attempts to establish a systematic relation
between the asterisms and the moon’s true and mean daily motions.
One of these passages is exceedingly obscure, and both are irreconcilable
with one another, and with what we know of the system of aster-
isms from other sources; two conclusions, however, bearing upon the
present matter, are clearly derivable from them: first, that, as the “por-
tions” assigned to the asterisms had no natural and fixed limits, it was
possible for any Hindu system-maker so to define them as to bring them
into a connection with the moon’s daily motions; and secondly, that
such a connection was never deemed an essential feature of the system,
and hence no one form of it was generally recognized and accepted.
The considerations adduced by us above are, we think, fully sufficient to
account for any such isolated attempts at the establishment of a con-
nection as al-Biruni, who naturally sought to find in the Hindu naksha-
tras the correlates of his own mandazil al-kamar, was able to discover
among the works of Hindu astronomers: there is no good reason why
we should deprive the former of their true character, which is that of
zodiacal constellations, rudely marking out divisions of the ecliptic, and
employable for all the purposes for which such a division is demanded.
The reason of the variation in the number of the asterisms, which are
reckoned now as twenty-eight and now as twenty-seven, is a point of no
small difficulty in the history of the system. M. Biot makes the acute
suggestion that the omission of Abhijit from the series took place be-
cause the mansion belonging to that asterism was on the point of becom-
respects, of the character of the Hindu asterisms: in the first place, he constantly treats them as if they were, like the sieu, single stars, the intervals between whose circles of declination constituted the accepted divisions of the zodiac; and in the second place, he assumes them to have been established for the purpose of marking the moon's daily progress from point to point along the ecliptic. Now, as regards the first of these points, we have already shown above that the conversion of the Chinese determinative into constellations took place, in all probability, before their introduction to the knowledge of the Hindus: there is, indeed, an entire unanimity of evidence to the effect that the Hindu system is from its inception one of groups of stars: this is conclusively shown by the original dual and plural names of the asterisms, or by their otherwise significant titles—compare especially those of the 19th and 25th of the series. The selection of a "junction-star" to represent the asterism appears to be something comparatively modern; we regard it as posterior to the reconstruction of the Hindu astronomy upon a truly scientific basis, and the determination, by calculation, of the precise places of the planets: this would naturally awaken a desire for, and lead to, a similarly exact determination of the position of some star representing each asterism, which might be employed in the calculation of conjunctions, for astrological purposes; the astronomical uses of the system being no longer of much account after the division of the ecliptic into signs. And the choice of the junction-star has fallen, in the majority of cases, not upon the Chinese determinative itself, but upon some other and more conspicuous member of the group, originally formed about the latter. Again, there is an entire absence of evidence that the "portions" of the asterisms, or the arcs of the ecliptic named from them, were ever measured from junction-star to junction-star: whatever may be the discordance among the different authorities respecting their extent and limits, they are always freely, and often arbitrarily, taken from parts of the ecliptic adjacent to, or not far removed from, the successive constellations.

As regards the other point noticed, it is, indeed, not at all to be wondered at that M. Biot should treat the Hindu nakshatras as a system bearing special relations to the moon, since, by those who have treated of them, they have always been styled "houses of the moon," "moon-stations," "lunar asterisms," and the like. Nevertheless, these designations seem to be founded only in carelessness, or in misapprehension. In the Sûrya-Siddhânta, certainly, there is no hint to be discovered of any particular connection between them and the moon, and for this reason we have been careful never to translate the term nakshatra by any other word than simply "asterism." Nor does the case appear to have been otherwise from the beginning. No one of the general names for the asterisms (nakshatra, bho, dhishnya) means literally anything more than "star" or " constellation": their most ancient and usual appellation, nakshatra, is a word of doubtful etymology (it may be radically akin with nakta, nox, &c., "night"), but it is not infrequently met with in the Vedic writings, with the general signification of "star," or "group of stars": the moon is several times designated as "sovereign of the nakshatras," but evidently in no other sense than that in which
modifications introduced into it by the latter people all have in view a single purpose, that of establishing its stations in the immediate neighborhood of the ecliptic: to this purpose the whole Arab system is not less constantly faithful than is the Chinese to its own guiding principle. The Hindu sustains in this respect but an unfavorable comparison with the others: the arbitrary introduction, in the 15th, 22nd, 23rd, and 24th asterisms, of remote northern stars, greatly impairs its unity, and also furnishes an additional argument of no slight force against its originality; for, on the one hand, the derivation of the others from it becomes thereby vastly more difficult, and, on the other, we can hardly believe that a system of organic Indian growth could have become disfigured in India by such inconsistencies; they wear the aspect, rather, of arbitrary alterations made, at the time of its adoption, in an institution imported from abroad.

It might, at first sight, appear that the adoption by the Arabs of the mansil corresponding to Açvini as the first of their series indicated that they had derived it from India posterior to the transfer by the Hindus of the first rank from Kyttikà, the first of the sieu, to Açvini: but the circumstance seems readily to admit of another interpretation. The names of many of the Arab mansions show the influence of the Greek astronomy, being derived from the Greek constellations: the same influence would fully explain an arrangement which made the series begin with the group coinciding most nearly with the beginning of the Greek zodiac. The transfer on the part of the Hindus, likewise, was unquestionably made at the time of the general reconstruction of their astronomical system under the influence of western science. The two series are thus to be regarded as having been brought into accordance in this respect by the separate and independent working of the same cause.

M. Biot insists strongly, as a proof of the non-originality of the system of asterisms among the Hindus, upon its gross and palpable lack of adaptedness to the purpose for which they used it; he compares it to a gimlet out of which they have tried to make a saw. In this view we can by no means agree with him: we would rather liken it to a hatchet, which, with its edge dulled and broken, has been turned and made to do duty as a hammer, and which is not ill suited to its new and coarser office. Indeed, taking the Hindu system in its more perfect and consistent form, as applied by the Arabs, and comparing it with the Chinese sieu at any time within the past two thousand years, we are by no means sure that the advantage in respect to adaptation would not be generally pronounced to be upon the side of the former. The distance of many of the sieu during that period from the equator, the faintness of some among them, the great irregularity of their intervals, render them anything but a model system for measuring distances in right ascension. On the other hand, to adopt a series of conspicuous constellations along the zodiac, by their proximity to which the movements of the planets shall be marked, is no unmotivated proceeding: just such a division of the ecliptic among twelve constellations preceded and led the way to the Greek method of measuring by signs, having exact limits, and independent of the groups of stars which originally gave name to them. M. Biot's error lies in his misapprehension, in two important
as concerns these, we are willing to accept the solution which is furnished us by the researches of M. Biot, supported as we conceive it to be by the general probabilities of the case. Any one who will trace out, by the help of a celestial globe or map, the positions of the Chinese determinatives, cannot fail to perceive their general approach to a great circle of the sphere which is independent of the ecliptic, and which accords more nearly with the equator of B.C. 2350 than with any other later one. The full explanations and tables of positions given by Biot (Journ. d. Sav., 1840, pp. 243–254) also furnish evidence, of a kind appreciable by all, that the system may have had the origin which he attributes to it, and that, allowing for the limitations imposed upon it by its history, it is consistent with itself, and well enough adapted to the purposes for which it was designed. With the positions of its determinative stars seem to have agreed those of the constellations adopted by the common parent of the Hindu and Arab systems, excepting in five or six points: those points being where the Chinese make their one unaccountable leap from the head to the belt of Orion, and again, where the sieu are drawn off far to the southward, in the constellations Hydra and Crater: and this, in our view, looks much more as if the series of the sieu were the original, whose guidance had been closely followed excepting in a few cases, than as if the asterisms composing the other systems had been independently selected from the groups of stars situated along the zodiac, with the intention of forming a zodiacal series. It is easy to see, farther, how the single determinatives of the sieu should have become the nuclei for constellations such as are presented by the other systems; but if, on the contrary, the sieu had been selected by the Chinese, in each case, from groups previously constituted, there appears no reason why their brightest stars should not have been chosen, as they were chosen later by the Hindus, in the establishment of junction-stars for the asterisms.

We would suggest, then, as the theory best supported by all the evidence thus far elicited, that a knowledge of the Chinese astronomy, and with it the Chinese system of division of the heavens into twenty-eight mansions, was carried into Western Asia at a period not much later than B.C. 1100, and was there adopted by some western people, either Semitic or Iranian. That in their hands it received a new form, such as adapted it to a ruder and less scientific method of observation, the limiting stars of the mansions being converted into zodiacal groups or constellations, and in some instances altered in position, so as to be brought nearer to the general planetary path of the ecliptic. That in this changed form, having become a means of roughly determining and describing the places and movements of the planets, it passed into the keeping of the Hindus—very probably along with the first knowledge of the planets themselves—and entered upon an independent career of history in India. That it still maintained itself in its old seat, leaving its traces later in the Bundeshesh; and that it made its way so far westward as finally to become known to, and adopted by, the Arabs. The farther

* We propose to furnish at the close of this publication, in connection with the additional notes, such a map of the zodiacal zone of the heavens as will sufficiently illustrate the character and mutual relations of the three systems compared.
the 9th, 13th, and 21st asterisms; the Arab in the 15th, 22nd, 23rd, 24th, and 25th mansions. The same considerations show, inversely, that the Chinese system cannot be traced to either of the others as its source, since it agrees in several points with each of them where that one differs from the third. If it becomes necessary, then, to introduce an additional term into the comparison, to assume the existence of a fourth system, differing in some particulars from each of the others, in which all shall find their common point of union. Such an assumption is not to be looked upon as either gratuitous or arbitrary. Not only do the mutual relations of the three systems point distinctly toward it, but it is also supported by general considerations, and will, we think, be found to remove many of the difficulties which have embarrassed the history of the general system. It has been urged as a powerful objection to the Chinese origin of the twenty-eight-fold division of the heavens, that we find traces of its existence in so many of the countries of the West, geographically remote from China, and in which Chinese influence can hardly be supposed to have been directly felt. And it is undoubtedly true that neither India nor Arabia has stood in ancient times in such relations to China as should fit it to become the immediate recipient of Chinese learning, and the means of its communication to surrounding peoples. The great route of intercourse between China and the West led over the table-land of Central Asia, and into the northeastern territory of Iran, the seat of the Zoroastrian religion and culture: thence the roads diverged, the one leading westward, the other south-eastward into India, through the valley of the Cabul, the true gate of the Indian peninsula. Within or upon the limits of this central land of Iran we conceive the system of mansions to have received that form of which the Hindu nakshatras and the Arab manazil are somewhat altered representatives: precisely where, and whether in the hands of Semitic or of Aryan races, we would not at present attempt to say. There are, as has been noticed above, traces of an Iranian system to be found in the Bundehesh; but this is a work which, although probably not later than the times of Persia's independence under her Sassanian rulers, can pretend to no high antiquity, and no like traces have as yet been pointed out in the earliest Iranian memorial, the Zendavesta. Weber (Ind. Literaturgeschichte, p. 221), on the other hand, sees in the mazzaloth and mazoroth of the Scriptures (Job xxxviii. 32; II Kings xxiii. 5)—words radically akin with the Arabic manazil—indications of the early existence of the system in question among the western Semites, and suspects for it a Chaldaic origin; but the allusions appear to us too obscure and equivocal to be relied upon as proof of this, nor is it easy to believe that such a method of division of the heavens should have prevailed so far to the west, and from so ancient a time, without our hearing of it from the Greeks; and especially, if it formed a part of the Chaldaic astronomy. This point, however, may fairly be passed over, as one to be determined, perhaps, by future investigations, and not of essential importance to the present inquiry. The question of originality is at least definitely settled adversely to the claims of both the Hindu and the Arab systems, and can only lie between the Chinese and that fourth system from which the other two have together descended. And
Again, although it might seem beforehand highly improbable that a system of Chinese invention should have found its way into the West, and have been extensively accepted there, many centuries before the Christian era, there are no so insuperable difficulties in the way as should destroy the force of strong presumptive evidence of the truth of such a communication. It is well-known that in very ancient times the products of the soil and industry of China were sought as objects of luxury in the West, and mercantile intercourse opened and maintained across the deserts of Central Asia; it even appears that, as early as about B.C. 600 (Isaiah xlix. 12), some knowledge of the Sinim, as a far-off eastern nation, had penetrated to Babylon and Judea. On the other hand, we do not know how much, if at all, earlier than this it may be necessary to acknowledge the system of asterisms to have made its appearance in India. The literary memorials of the earliest period, the Vedic period proper, present no evidence of the existence of the system: indeed, it is remarkable how little notice is taken of the stars by the Vedic poets; even the recognition of some of them as planets does not appear to have taken place until considerably later. In the more recent portions of the Vedic texts—as in the nineteenth book of the Atharva-Veda, a modern appendage to that modern collection, and in parts of the Yajur-Veda, of which there is reason to believe that the canon was not closed until a comparatively late period—full lists of the asterisms are found. The most unequivocal evidence of the early date of the system in India is furnished by the character of the divinities under whose regency the several asterisms are placed: these are all from the Vedic pantheon; the popular divinities of later times are not to be found among them; but, on the other hand, more than one whose consequence is lost, and whose names almost are forgotten, even in the epic period of Hindu history, appear in the list. Neither this, however, nor any other evidence known to us, is sufficient to prove, or even to render strongly probable, the existence of the asterisms in India at so remote a period that the system might not be believed to have been introduced, in its fully developed form, from China.

If, now, we make the attempt to determine, upon internal evidence, which of the three systems is the primitive one, a detailed examination of their correspondences and differences will lead us first to the important negative conclusion that no one among them can be regarded as the immediate source from which either of the other two has been derived. It is evident that the Hindu asterisms and the Arab *mandzil* constitute, in many respects, one and the same system: both present to us constellations or groups of stars, in place of the single determinatives of the Chinese *sieu*; and not only are those groups composed in general of the same stars, but in several cases—as the 7th, 10th, 11th, and 12th members of the series—where they differ widely in situation from the Chinese determinatives, they exhibit an accordance with one another which is too close to be plausibly looked upon as accidental. But if it is thus made to appear that neither can have come independently of the other from a Chinese original, it is no less certain that neither can have come through the other from such an original; for each has its own points of agreement with the *sieu*, which the other does not share—the Hindu in
series, from its near approach to the vernal equinox of that remoter era, still maintained, as it has ever since maintained, its rank as the first. Since the time of Cheu-Kong the system has undergone no farther modification, but has been preserved unaltered and unimproved, with the obstinate persistency so characteristic of the Chinese, although many of the determinative stars have, under the influence of the precession, become far removed from the equator, one of them even having retrograded into the preceding mansion.

If the history of the Chinese sieu, as thus drawn out, is well-founded and true, the question of origin is already solved: the system of twenty-eight celestial mansions is proved to be of native Chinese institution—just as the system of representation of the planetary movements by epicycles is proved to be Greek by the fact that we can trace in the history of Greek science the successive steps of its gradual elaboration. That history rests, at present, upon the authority of M. Biot alone: we are not aware, at least, that any other investigator has gone independently over the same ground; and he has not himself laid before us, in their original form, the passages from Chinese texts which furnish the basis of his conclusions. But we regard them as entitled to be received, upon his authority, with no slight measure of confidence: his own distinguished eminence as a physicist and astronomer, his familiarity with researches into the history and archaeology of science, his access to the abundant material for the history of Chinese astronomy collected and worked up by the French missionaries at Pekin, and the zealous assistance of his son, M. Édouard Biot, the eminent Sinologist, whose premature death, in 1850, has been so deeply deplored as a severe loss to Chinese studies—all these advantages, rarely united in such fullness in the person of any one student of such a subject, give very great weight to views arrived at by him as the results of laborious and long-continued investigation. Nor do we see that any general considerations of importance can be brought forward in opposition to those views. It is, in the first place, by no means inconsistent with what we know in other respects of the age and character of the culture of the Chinese, that they should have devised such a system at so early a date. They have, from the beginning, been as much distinguished by a tendency to observe and record as the Hindus by the lack of such a tendency; they have always attached extreme importance to astronomical labors, and to the construction and rectification of the calendar; and the industry and accuracy of their observations is attested by the use made of them by modern astronomers—thus, to take a single instance, of the cometary orbits which have been calculated, the first twenty-five rest upon Chinese observations alone: and once more, it is altogether in accordance with the clever empiricism and practical shrewdness of the Chinese character that they should have originated at the very start a system of observation exceedingly well adapted to its purpose, stopping with that, working industriously on the same beaten track, and never developing anything deserving the name of a science, never devising a theory of the planetary motions, never even recognizing and defining the true character of the cardinal phenomenon of the precession.
Owing to the different constitution of the systems, their correspondences are somewhat diverse in character: we account the Hindu asterisms and the Arab mansions to agree, when the groups which mark the two are composed, in whole or in part, of the same stars: we account the Chinese system to agree with the others, when the determinative of a *sieu* is to be found among the stars composing their groups. We have prefixed to the whole the numbers and titles of the Hindu asterisms, for the sake of easy reference back to the preceding detailed identifications and comparisons.

After this exhibition of the concordances existing among the three systems, it can, we apprehend, enter into the mind of no one to doubt that all have a common origin, and are but different forms of one and the same system. The questions next arise—is either of the three the original from which the others have been derived! and if so, which of them is entitled to the honor of being so regarded! and are the other two independent and direct derivatives from it, or does either of them come from the other, or must both acknowledge an intermediate source? In endeavoring to answer these questions, we will first exhibit the views of M. Biot respecting the origin and character of the Chinese *sieu*, as stated in the volumes for 1840 and 1859 of the Journal des Savants.

According to Biot, the *sieu* form an organic and integral part of that system by which the Chinese, from an almost immemorial antiquity, have been accustomed to make their careful and industrious observations of celestial phenomena. Their instruments, and their methods of observation, have been closely analogous with those in use among modern astronomers in the West: they have employed a meridian-circle and a measure of time, the clepsydra, and have observed meridian-transits, obtaining right ascensions and declinations of the bodies observed. To reduce the errors of their imperfect time-keepers, they long ago selected certain stars near the equator, of which they determined with great care the intervals in time, and to these they referred the positions of stars or planets coming to the meridian between them. The stars thus chosen are the *sieu*. Twenty-four of them were fixed upon more than two thousand years before our era (M. Biot says, about B.C. 2357: but it is obviously impossible to fix the date, by internal evidence, within a century or two, nor is the external evidence of a more definite character); the considerations which governed their selection were three: proximity to the equator of that period, distinct visibility—conspicuous brilliancy not being demanded for them—and near agreement in respect to time of transit with the upper and lower meridian-passages of the bright stars near the pole, within the circle of perpetual apparition. M. Biot finds reason to believe that these circumpolar stars had been earlier observed with special care, and made standards of comparison, and that, when it was afterward seen to be desirable to have stations near the equator, such stars were adopted as most nearly agreed with them in right ascension. The other four, being the 8th, 14th, 21st, and 28th, the accession of which completed the system of twenty-eight, were added in the time of Chen-Kong, about B.C. 1100, because they marked very nearly the positions of the equinoxes and solstices at that epoch: the bright star of the Pleiades, however, which had originally been made the first of the
star β Andromedae (2), and to this star alone the name of the mansion is sometimes applied, although its situation, so far from the ecliptic (in lat. 25° 56' N.), renders it by no means suited to become the distinctive star of one of the series of lunar stations.

We present, in the annexed table, a general conspectus of the correspondences of the three systems; and, in order to bring out those correspondences in the fullest manner possible, we have made the comparison in three different ways: noting, in the first place, the cases in which the three agree with one another; then those in which each agrees with one of the others; and finally, those in which each agrees with either the one or the other of the remaining two.

Correspondences of the Hindu, Arab, and Chinese Systems of Asterisms.

<table>
<thead>
<tr>
<th>No</th>
<th>Hindu Name</th>
<th>Hindu with Arab and Chinese</th>
<th>Arab with Hindi or Chinese</th>
<th>Arab with Hindi or Chinese</th>
<th>Chinese with Hindi or Arab</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aṣvinī</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Bhaṛandā</td>
<td>2‡</td>
<td>3‡</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Kṛttikā</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Robīṇī</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>Mrgaṇḍirāha</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>Ārāṇī</td>
<td></td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>Pumarnāva</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>Pūṣyāna</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>Āgīślāṇā</td>
<td>9</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>Maṟghā</td>
<td>10</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>11</td>
<td>P.-Phalguṇī</td>
<td>12</td>
<td>13</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>12</td>
<td>U.-Phalguṇī</td>
<td>10</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>13</td>
<td>Hasta</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>14</td>
<td>Cītrā</td>
<td>9</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>15</td>
<td>Svaṭā</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>16</td>
<td>Viṭkāṭhā</td>
<td>12</td>
<td>13</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>17</td>
<td>Anūraḍhā</td>
<td>9</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>18</td>
<td>Jyeṣṭhāī</td>
<td>10</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>19</td>
<td>Mōla</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>20</td>
<td>P.-Asāḍhāī</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>21</td>
<td>U.-Asāḍhāī</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>22</td>
<td>Abhijāt</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>23</td>
<td>Črāvaṇā</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>24</td>
<td>Črāvishāṭhā</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>25</td>
<td>Čatabbhiṣṣaj</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>26</td>
<td>P.-Bhāḍrāḍa</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>27</td>
<td>U.-Bhāḍrāḍa</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>28</td>
<td>Revati</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
</tbody>
</table>

* This supposes the second mansāl to be composed of the stars in Maṣca, as defined by some authorities. † The sixth mansāl includes, according to many authorities, the fifth sien, but as there is, at any rate, a discordance in the order of succession, we have not reckoned this among the correspondences. ‡ We reckon these two as cases of general coincidence, because, although the Chinese sien is not contained in the Arab mansion, the Hindu asterism includes them both, and the virtual correspondence of the three systems is beyond dispute. § Here we assume the Chinese sien to be comprised among the stars forming the last mansāl, which is altogether probable, although nowhere distinctly stated.
this confusion: that originally α and γ Pegasi were designated and described as junction-stars of the two half-groups, of which they were respectively, the southern members; that afterward, for some reason—perhaps owing to the astrological theory (see above, vii. 21) of the superiority of a northern star—the rank of junction-star was sought to be transferred from the southern to the northern stars of both asterisms; that, in making the transfer, the original constitution of the former group was neglected, while in the latter the attempt was made to define the real position of the northern star, but by simply adding to the polar latitude already stated for γ Pegasi, without altering its polar longitude also. Al-Birünī, it should be remarked, was unable to obtain from his Hindu informants any satisfactory identification of either of these asterisms, and marks both in his catalogue as "unknown."

The view we have taken of the true character of the two Bhádrapadas is powerfully supported by their comparison with the corresponding members of the other two systems. The twenty-sixth and twenty-seventh manzils, al-Fargh al-Mukdim and al-Fargh al-Mukhir, "the fore and hind spouts of the water-jar," comprise respectively α and β Pegasi, and γ Pegasi and α Andromedæ; the determinatives of the twenty-fourth and twenty-fifth σiec, Che and Pi, are α and γ Pegasi.

The regents of these two asterisms are oja ekapāt and ahi budhnya, the "one-footed goat" and the "bottom-snake," two mythical figures, of obscure significance, from the Vedic pantheon.

28. Revait, "wealthy, abundant." Its presiding divinity is Pūshān, "the prosperer," one of the Adityas. It is said to contain thirty-two stars, which are figured, like those of Çrawishtha, by a drum or tabor; but it would be in vain to attempt to point out precisely the thirty-two which are intended, or to discover in their arrangement any resemblance to the figure chosen to represent it. The junction-star of the group is said (v. 18) to be its southernmost member: all authorities agree in placing it upon the ecliptic, and all excepting our treatise and the Çakalya make its position exactly mark the initial point of the fixed sidereal sphere. The star intended is, as we have already often had occasion to notice, the faint star ζ Piscium, of about the fifth magnitude, situated in the band which connects the two Fishes. It is indeed very near to the ecliptic, having only 13' of south latitude. It coincided in longitude with the vernal equinox in the year 572 of our era.

At the time of al-Birünī’s visit to India, the Hindus seem to have been already unable to point out distinctly and with confidence the situation in the heavens of that most important point from which they held that the motions of the planets commenced at the creation, and at which, at successive intervals, their universal conjunction would again take place; for he is obliged to mark the asterism as not certainly identifiable. He also assigns to it, as to Çataphbajσ, only a single star.

The twenty-sixth Chinese sieu, Koei, is marked by ζ Andromedæ (4), which is situated only 35' east in longitude from ζ Piscium, but which has 17° 36' of north latitude. The last manzil, Batu al-Hūt, "the fish’s belly," or ar-Rishā, "the band," seems intended to include the stars composing the northern Fish, and with them probably the Chinese determinative also: but it is extended so far northward as to take in the bright
one another as pûrva and uttara, "former" and "latter." All authorities agree in assigning two stars to each of the two groups; but there is not the same accordance as regards the figures by which they are represented: by some the one, by others the other, is called a couch or bed, the alternate one, in either case, being pronounced a bi-faced figure: the Muhûrta-Cintâmani calls the first a bed, and the second twins. It admits, we apprehend, of little or no question that the Bhâdrapadâs are properly the four bright stars ß, α, γ Pegasi, and α Andromedâ—all of them commonly reckoned as of the second magnitude—which form together a nearly perfect square, with sides measuring about 15°: the constellation, a very conspicuous one, is familiarly known as the "Square of Pegasus." The figure of a couch or bed, then, belongs, as in the case of the other two double asterisms, already explained, to the whole constellation, and not to either of the two separate asterisms into which it is divided, while, on the other hand, either of these latter is properly enough symbolized by a pair of twins, or by a figure with a double face. The appropriateness of the designation "feet," found as a part of both the names of the whole constellation, is also sufficiently evident, if we regard the group as thus composed. The junction-star of the former half-asterism, by its defined position, clearly shown to be α Pegasi:

Pûrva-Bhâdrapadâ . . . 334° 25' 22° 30' N.
α Pegasi 333° 27' 19° 25' N.

The Graha-Lâghava gives the junction-star 1° less of polar longitude, which would bring its position to a yet closer accordance, in respect to longitude, with α Pegasi: the error in latitude, which is common to all the authorities, is not greater than we have met with several times elsewhere. But we are told below (v. 16) that the principal star of each of these asterisms is the northern, and this would exclude ß Pegasi altogether, bringing in as the other member of the first pair some more southern star, perhaps γ Pegasi (3. 4). The confusion is not less marked, although of another character, in the case of the second asterism: in the definition of position of its junction-star we find a longitude given which is that of one member of the group, and a latitude which is that of the other, as is shown by the following comparison:

Uttara-Bhâdrapadâ . . . 347° 16' 24° 1' N.
γ Pegasi 346° 8' 12° 35' N.
α Andromedâ 354° 17' 25° 41' N.

If we accept either of these two stars as the one of which the position is meant to be defined, we shall be obliged to admit an error in the determination either of its longitude or of its latitude considerably greater than we have met with elsewhere. Nor is the matter mended by any of the other authorities: the only variation from the data of our text is presented by the Graha-Lâghava, which reads, as the polar latitude of Uttara-Bhâdrapada, 27° instead of 26°. There can be no doubt that the two stars recognized as composing the asterism are γ Pegasi and α Andromedâ, but there has evidently been a blundering confusion of the two in making out the definition of position of the junction-star. We would suggest the following as a possible explanation of
The only variation from the position assigned in our text to the junction-star of Cravishtâ is presented by the Graha-Lâghava, which gives it 286°, instead of 290°, of polar longitude. Perhaps its intention is to point out ζ (5) as the junction-star; this is doubtless the one added to the other four, on account of its close proximity to them, to make up the group of five; it lies only about half a degree westward from β.

The name of the twenty-fourth manzil, Sa'd as-Su'ud, "felicity of felicities"—i.e., "most felicitous"—exhibits an accordance with that of the Hindu asterism which possibly is not accidental. The two are, however, as already noticed, far removed in position from one another, the Arab mansion being composed of the two stars β (3) and ζ (5.4), in the left shoulder of Aquarius, to which some add also 46, or c¹, Capricorni (6). The corresponding sieu, Hüu, is the first of them, or β Aquarii.

25. Çatabhishaj, "having a hundred physicians": the form çatabhishâ, which seems to be merely a corruption of the other, also occurs in later writings. It is, as we should expect from the title, said to be composed of a hundred stars, of which the brightest (v. 19) is the junction-star. This, from its defined position, can only be λ Aquarii (4):

| Çatabhishaj | 319° 51' | 0° 39' S.
| λ Aquarii | 321° 33' | 0° 33' S.

The rest of the asterism is to be sought among the yet fainter stars in the knee of Aquarius, and the stream from his jar: of course, the number one hundred is not to be taken as an exact one, nor are we to suppose it possible to trace out with any distinctness the figure assigned to the group, which is a circle. The Khanda-Kataka, according to al-Birûnî, gives Çatabhishaj only a single star, but this is probably an error of the Arab traveller: he is unable to point out which of the stars in Aquarius is to be regarded as constituting the asterism.

The regent of the 25th asterism, according to nearly all the authorities, is Varuna, the chief of the Adityas, but later the god of the waters: the Taiktiriya-Sanhitâ alone gives to it and to the 14th asterism, as well as to the 18th, Indra as presiding divinity: this is perhaps mere blundering.

The Graha-Lâghava places the junction-star of Çatabhishaj precisely on the ecliptic: the Siddhânta-Ciromani etc. give it 20°, instead of 30°, of polar latitude south.

The corresponding lunar mansion of the Arabs, Sa'd al-Akhibiyah, "the felicity of tents," comprises the three stars in the right wrist and hand of the Water-bearer, or γ (3), ζ (4), η (4) Aquarii, together with a fourth, which Ideler supposes to be π (5). Since, however, the twenty-third Chinese determinative, Goci, is a Aquarii (3), a star so near as readily to be brought into the same group with the other three, we are inclined to regard it as altogether probable that the mansion was, at least originally, composed of a, γ, ζ, and η.

26, 27. Bhâdрапâda; as plural, bhâdрапâdas: also bhâdрапâda; from bhâdra, "beautiful, happy," and pada, "foot." Another frequent appellation is proshṭapâda: proshtha is said to mean "carp" and "ox"; the latter signification might perhaps apply here. We have here, once more, a double asterism, divided into two parts, which are distinguished from
with the two other fainter stars of the same constellation, ε and ξ, both of the fifth magnitude.

In this and the two following asterisms—as once before, in the fifteenth of the series—the Hindus have gone far from the zodiac, in order to bring into their system brilliant stars from the northern heavens, while the Chinese and the Arab systems agree in remaining in the immediate neighborhood of the ecliptic. The twentieth stευ is named Nieu, and is the star θ Capricorni (3), situated in the head of the Goat; the twenty-second manzil, Sa'd adh-Dhābih, “felicity of the sacrificer,” contains the same star, the group being α (composed of two stars, each of magnitude 3.4) and θ Capricorni.

23. Čravana, “hearing, ear”; from the root cru, “hear”; another name for the asterism, cronā, found occurring in the Tātinkiya lists, is perhaps from the same root, but the word means also “lame.” Čravana comprises three stars, of which the middle one (v. 18) is the junction-star: they are to be found in the back and neck of the Eagle, namely as γ, α, and θ Aquilae; α, the determinative, is a star of the first to second magnitude, while γ and θ are of the third and fourth respectively:

Čravana . . . 38° 29' . . . 30° 54' N.
α Aquilae . . . 28° 41' . . . 29° 11' N.

All the authorities agree as to the polar latitude of Čravana: the Siddhānta-Çiromani etc. give it 2° less of polar longitude than our treatise, and the Graha-Laghava even as much as 5° less.

The regent of the asterism is Viṣṇu, and its figure or symbol corresponds therewith, being three footsteps, representatives of the three steps by which Viṣṇu is said, in the early Hindu mythology, to have strode through heaven. The Čakalya, however, gives a trident as the figure belonging to Čravana. Possibly the name is to be regarded as indicating that it was originally figured as an ear.

The Chinese stευ corresponding in rank with Čravana is called Nū, and is the faint star ε Aquarii (4.3). The Arab manzil Sa'd Bula', “felicity of a devourer,” or al-Bula', “the devourer,” etc., includes the same star, being composed of ε, μ (4.5), ν (5) Aquarii, or, according to others, of ε and η (6) Aquarii, or of μ and ν.

24. Čravishtha; the word is a superlative formation from the same root from which came the name of the preceding asterism, and means, probably, “most famous.” Another and hardly less frequent appellation is dhaniṣṭha, an irregular superlative from dhoniṃ, “wealthy.” The class of deities known as the vatsas, “bright, good,” are the regents of the asterism. It comprises four stars, or, according to the Čakalya and Khaṇḍa-Kataka, five: the former, which is given by so early a list as that of the Tātinkiya-Brāhmaṇa, is doubtless the original number. The group is the conspicuous one in the head of the Dolphin, composed of β, γ, δ Delphini, all of them stars of the third, or third to fourth, magnitude, and closely disposed in diamond or lozenge-form: they are figured by the Hindus as a drum or tabor. The junction-star, which is the western (v. 17), is β:

Čravishtha . . . 26° 5' . . . 35° 33' S.
β Delphini . . . 26° 19' . . . 34° 57' S.
nation of its latitude, which led Colebrooke to regard τ (4.3) as the star intended: we subjoin the positions:

\[
\begin{align*}
\text{Uttara-Āśāddhā} & \quad \ldots \quad 26^\circ 33' \ldots \quad 4^\circ 59' \text{ S}.
\sigma \text{ Sagittarii} & \quad \ldots \quad 26^\circ 31' \ldots \quad 3^\circ 24' \text{ S}.
\tau \text{ Sagittarii} & \quad \ldots \quad 26^\circ 39' 25' \ldots \quad 5^\circ 44' \text{ S}.
\end{align*}
\]

The only variation from the position of the junction-star of this asterism as stated in our text is presented by the Graha-Lāghava, which makes its polar longitude 261° instead of 260°.

The Čākalya (according to Colebrooke: our MS. is defective at this point) and the Khanda-Katāka assign four stars to each of the Āśāddhās, and the former represents each as a bed. It would not be difficult to establish two four-sided figures in this region of the constellation Sagittarii, each including the stars above mentioned, with two others: the one would be composed of τ² (4.3), δ, ε, η (4—the star is also called β Telescopii), the other of σ (4.3), α, τ, and ζ: such is unquestionably the constitution of the two asterisms, considered as groups of four stars; they are thus identified also, it may be remarked, by al-Birānī. The junction-stars would still be δ and α, which are the northernmost in their respective constellations; nor is there any question as to which four among the eight are selected to make up the double asterism, since δ, ε, ζ, and α both form the most regular quadrangular figure, and are the brightest stars.

The determinatives of the eighteenth and nineteenth mansions of the Chinese, Kī and Teu, are τ² and σ Sagittarii, which are included in the two quadruple groups as stated above. The twentieth manṣit comprehends all the eight stars which we have mentioned, and is styled an- Naʿāīm, “the pasturing cattle”; some also understand each group of four as representing an ostrich, naʿāīm. The twenty-first manṣit, on the other hand, al-Baldah, “the town,” is described as a vacant space above the head of Sagittarius, bounded by faint stars, among which the most conspicuous is ἦ Sagittarii (4.5).

22. Abhijit, “conquering.” The regent of the asterism is Brahma. The position assigned to its junction-star, which is described as the brightest (v. 19) in a group of three, identifies it with α Lyrae, or Vega, a star which is exceeded in brilliancy by only one or two others in the heavens:

\[
\begin{align*}
\text{Abhijit} & \quad \ldots \quad 26^\circ 10' \ldots \quad 59^\circ 58' \text{ N}.
\text{Vega} & \quad \ldots \quad 26^\circ 15' \ldots \quad 61^\circ 46' \text{ N}.
\end{align*}
\]

The other authorities compared (excepting the Čākalya) define the position in latitude of Abhijit more accurately, adding 2° to the polar latitude given by the Sūrya-Siddhānta: the Graha-Lāghava also improves the position in longitude by adding 1° 20', while the Siddhānta-Ciromani etc. increase the error by deducting 1° 40'.

The Taṭṭṭiriya-Saṁhitā (iv. 4.10) omits Abhijit from its list of the asterisms: the probable reason of its omission in some authorities, or in certain connections, and its retention in others, we shall discuss further on.

Abhijit is figured as a triangle, or as the triangular nut of the grongāta, an aquatic plant; this very distinctly represents the grouping of α Lyrae
The Tāṭṭiriya-Sanhitā makes pitaras, the Fathers, the presiding divinities of this asterism, as well of the tenth.

Bentley states (Hind. Astr., p. 5) that Mūla was originally reckoned as the first of the asterisms, and was therefore so named, as being their root or origin; also that, at another time, or in a different system, the series was made to begin with Jyesṭhā, which thence received its title of "eldest." These statements are put forth with characteristic recklessness, and apparently, like a great many others in his pretended history of Hindu astronomy, upon the unsupported authority of his own conjecture. It is, in many cases, by no means easy to discover reasons for the particular appellations by which the asterisms are designated: but we would suggest that Mūla may perhaps have been so named from its being considerably the lowest, or farthest to the southward, of the whole series of asterisms, and hence capable of being looked upon as the root out of which they had grown up the heavens. It would even be possible to trace the same conception farther, and to regard Jyesṭhā as so styled because it was the first, or "oldest," outgrowth from this root, while the Vičākhe, "the two diverging branches" were the stars in which the series broke into two lines, the one proceeding northward, to Śvātī or Areturus, the other westward, to Citrā or Spica. We throw out the conjecture for what it may be worth, not being ourselves at all confident of its accordance with the truth.

The nineteenth Arab manzil is styled asha-Shanlah, "the sting"—i. e., of the Scorpion—and comprises, as already noticed, ν and δ Scorpions. The determinative of the nineteenth sieu, Uei, is included in the Hindu asterism, being μ² Scorpions.

20, 21. Ashādā; or, as plural, asḥādhās; this treatise presents the derivative form asḥādā, which is not infrequent elsewhere: the word means "insubdued." Here, again, we have a double group, divided into two asterisms, which are distinguished as pūrea and uttara, "former and latter." Their respective divinities are ṣāpas, "the waters," and viṣve devā, "the collective gods." Two stars are ordinarily allotted to each asterism, and in each case the northern is designated (v. 16) as the junction-star. By some authorities each group is figured as a bed or couch; by others, the one as a bed and the other as an elephant's tusk; and here, again, there is a difference of opinion as to which is the bed and which the tusk. The true solution of this confusion is, as we conceive, that the two asterisms taken together are figured as a bed, while either of them alone is represented by an elephant's tusk. The former group must comprise δ (3.4) and α (3.2) Sagittarii, the former being the junction-star; this is shown by the following comparison of positions:

<table>
<thead>
<tr>
<th>Pūrva-Ashādā</th>
<th>δ Sagittarii</th>
</tr>
</thead>
<tbody>
<tr>
<td>254° 39' S.</td>
<td>254° 32' S.</td>
</tr>
</tbody>
</table>

The Graha-Laghava gives Pūrva-Ashādā 1° more of polar longitude, and 30' less of polar latitude, than the Sūrya-Siddhānta: the Siddhānta-Çiromani etc. give it 10' less of the latter.

The latter of the two groups contains, as its southern star, γ Sagittarii (3.4), and its northern and junction-star can be no other than α (2.3) in the same constellation, notwithstanding the error in the Hindu determi-
as in the other case, the junction-star of Jyeshtha being also one of those which shine with a reddish light. The regent is Indra, the god of the clear sky. The group contains, according to all the authorities, three stars, and the central one (v. 18) is the junction-star. This is the brilliant star of the first magnitude α Scorpiionis, or Antares; its two companions are σ (3.4) and τ (3.4) in the same constellation:

- Jyeshtha $\ldots \ldots 230^\circ 57' \ldots \ldots 3^\circ 50' S.$
- Antares $\ldots \ldots 239^\circ 44' \ldots \ldots 4^\circ 31' S.$

The constellation is figured as a ring, or ear-ring; by this may be understood, perhaps, a pendent ear-jewel, as the three stars of Jyeshtha form nearly a straight line, with the brightest in the middle.

The Siddhânta-Ciromani and Graha-Lâghava add to the polar longitude of the junction-star of the asterism, as stated in our text, 5$'$ and 1$'$ respectively, and they deduct from its polar latitude 30$'$ and 1$'$ respectively, making the definition of its position in both respects less accurate.

Antares forms the eighteenth manzil, and is styled al-Kalb, "the heart"—i.e., of the Scorpion: σ and τ are called an-Niyât, "the pros-cordia." The Chinese sieu, Sin, is the westernmost of the three, or σ.

19. Mûla, "root." The presiding divinity of the asterism is niirhi, "calamity," who is also regent of the south-western quarter. It comprises, according to the Çakalya, nine stars; their configuration is represented by a lion's tail. The stars intended are those in the tail of the Scorpion, or x, y, ξ, ν, δ, ι, χ, ν, λ Scorpionis, all of them of the third, or third to fourth, magnitude. Other authorities count eleven stars in the group, probably reckoning μ and ξ as four stars; each being, in fact, a group of two closely approximate stars, named in our catalogues μ (3), μ^2 (4), ξ^1 (4.5), ξ^2 (3). The Khanda-Kaṭaka alone gives Mûla only two stars, which are identified by al-Birûnî with the Arab manzil ash-Shaulah, or λ and ν Scorpionis. The Taïtiriya-Sanhita, too, gives the name of the asterism as vîrtâu, "the two releasers": the Vïrtâu are several times spoken of in the Atharva-Veda as two stars of which the rising promotes relief from lingering disease (kshetriyo); it is accordingly probable that these are the two stars in the sting of the Scorpion, and that they alone have been regarded by some as composing the asterism: their healing virtue would doubtless be connected with the meteorological conditions of the time at which their heliacal rising takes place.

Our text (v. 19) designates the eastern member of the group as its junction-star: it is uncertain whether the direction is meant to apply to the group of two, or to that of nine stars; if, as seems probable, λ is the star pointed out by the definition of position, it is strictly true only of the pair λ and ν, since τ, x, and ξ are all farther eastward than λ:

- Mûla $\ldots \ldots 243^\circ 52' \ldots \ldots 8^\circ 48' S.$
- λ Scorpionis $\ldots \ldots 244^\circ 53' \ldots \ldots 13^\circ 44' S.$

The Graha-Lâghava gives a more accurate statement of the longitude, adding 1$'$ to the polar longitude as defined by all the other authorities: but it increases the error in latitude, by deducting 1$'$ from that presented by our text: the Siddhânta-Ciromani, in like manner, deducts 30$'$, while the Khanda-Kaṭaka adds the same amount.
is shown by the fact that al-Birûnî was obliged to mark it in his list as “unknown.” Very probably the Sûrya-Siddhânta, in calling the northern member of the group, intended to include with it only the star 20 Libra (3.4), situated about 6° to the south of it. Upon the whole, then, while we regard the identification of Viçakhâ as in some respects more doubtful than that of any other asterism in the series, we yet believe that it was originally composed of the two stars α and β Libra, and that later the group was extended to include also v and γ, and, as so extended, was figured as a gateway. The selection, contrary to general usage, of the faintest star in the group as its junction-star, may have been made in order to insure against the reversion of the asterism to its original dual form.

The variations of the other authorities from the position as stated in our text are of small importance: the Siddhânta-Ciromani etc. give Viçakhâ 55° less of polar longitude, and the Graha-Lâghava 1° less; of polar latitude, the Siddhânta-Ciromani gives it 10°, the Graha-Lâghava 30° less; the Khânda-Kataka agrees here, as also in the two following asterisms, with the Sûrya-Siddhânta.

The sixteenth Arab manzil, comprising, as already noticed, α and β Libra, is styled az-Zubânî, “the two claws”—i. e., of the Scorpion: the name of the corresponding Chinese mansion, having for its determinative α Libra, is Ti.

17. Anurâdhâ; or, as plural, anurâdhâs: the word means “success.” The divinity is Mitra, “friend,” one of the Adityas. According to the Chakalya, the asterism is composed of three stars, and with this our text plainly agrees, by designating (v. 18) the middle as the junction-star; all the other authorities give it four stars. As a group of three, it comprises β, δ, π Scorpiionis, δ (2.3) being the junction-star; as the fourth member we are doubtless to add γ Scorpionis (5.4). It is figured as a bat or wali; this Celebrooke translates “a row of oblations”; we do not find, however, that the word, although it means both “oblation, offering,” and “a row, fold, ridge,” is used to designate the two combined: perhaps it may better be taken as simply “a row,” the stars of the asterism, whether considered as three or four, being disposed in nearly a straight line. The comparison of positions is as follows:

| Anurâdhâ | 22° 44' 44' | 5° 52' S. |
| δ Scorpionis | 22° 3' 34' | 5° 57' S. |

The Siddhânta-Ciromani and Graha-Lâghava estimate the latitude of Anurâdhâ somewhat more accurately, deducting from the polar latitude, as given by our text, 1° 15' and 1° respectively: the Siddhânta-Ciromani etc. also add the insignificant amount of 5' to the polar longitude of the Sûrya-Siddhânta.

The corresponding Arab manzil, named al-Iklîl, “the crown,” contains also the three stars β, δ, π Scorpiionis, some authorities adding γ to the group. The Chinese sieu, Fang, is π (9), the southermost and the faintest of the three.

18. Jyeśhâhâ, “oldest.” The Taîttrîlya-Sanhita, in its list of asterisms, repeats here the name rohini, “reddy,” which we have had above as that of the 4th asterism: the appellation has the same ground in this
Spica is likewise the fourteenth *manzil* of the Arabs, styled by them as-Simāk, and the twelfth *sieu* of the Chinese, who call it Kio.

15. *Śvāṭi*, or *svāṭi*; the word is said to mean “sword.” The Taittiriya-Brahmans calls the asterism *nihṣtyā*, “outcast,” possibly from its remote northern situation. It is, like the last, an asterism comprising but a single brilliant star, which is figured as a coral bead, gem, or pearl. In the definition of its latitude all authorities agree; the Graha-Laghava makes its polar longitude 198° only, instead of 199°. The star intended is plainly α Bootis, or Arcturus:

- **Śvāṭi**: $183^\circ 2'$. $33^\circ 50' N$.
- **Arcturus**: $184^\circ 12'$. $30^\circ 57' N$.

In this instance, the Hindus have gone far beyond the limits of the zodiac, in order to bring into their series of asterisms a brilliant star from the northern heavens: the other two systems agree in remaining near the ecliptic. The fourteenth Chinese *sieu*, Kang, is α Virginis (4.5); the Arab *manzil*, al-Ghafr, “the covering,” includes the same star, together with ι, and either λ or ν Virginis.

16. *Viśākhā*, “having spreading branches” : in all the earlier lists the name appears as a dual, *viśākhā*. The asterism is also placed under the regency of a dual divinity, *indrāgni*, Indra and Agni. We should expect, then, to find it composed, like the other two dual asterisms, the 1st and 7th of two stars, nearly equal in brilliancy, and two is actually the number assigned to the group by the Cakālyana and the Khaṇḍa-Kataka. Now the only two stars in this region of the zodiac forming a conspicuous pair are α and β Libra, both of the second magnitude, and as these two compose the corresponding Arab mansion, while the former of them is the Chinese *sieu*, we have the strongest reasons for supposing them to constitute the Hindu asterism also. There are, however, difficulties in the way of this assumption. The later authorities give Viśākhā four stars, and the defined position of the junction-star identifies it, neither with α nor β, but with the faint star ι (4.3) in the same constellation. Colebrooke, overlooking this star, suggests α or ι Libra (5): the following comparison of positions will show that neither of them can be the one meant to be pointed out:

- **Viśākhā**: $213^\circ 31'$. $1^\circ 25' S$.
- **ι Libra**: $211^\circ 0'$. $1^\circ 48' S$.
- **α Libra**: $205^\circ 5'$. $6^\circ 23' N$.
- **ι Libra**: $217^\circ 45'$. $6^\circ 2' N$.

The group is figured as a *torana*: this word Jones and Colebrooke translate “festival,” but its more proper meaning is “an outer door or gate, a decorated gateway.” And if we change the designation of situation of the junction-star in its group, given below (v. 16), from “northern” to “southern,” we find without difficulty a quadrangle of stars, viz. κ, α, β, γ (4.5) Libra, which admits very well of being figured as a gateway. Nor is it, in our opinion, taking an unwarrantable liberty to make such an alteration. The whole scheme of designations we regard as of inferior authenticity, and as partaking of the confusion and uncertainty of the later knowledge of the Hindus respecting their system of asterisms. That they were long ago doubtful of the position of Viśākhā
This star, however, is not the northern, but the southern, of the two composing the asterism: its description as the southern we cannot but regard as simply an error, founded on a misapprehension of the composition of the double group. To al-Biruni, β Leonis and another star to the northward, in the Arab constellation Coma Berenices, were pointed out as forming the asterism Uttara-Phalguni. The Çakalya gives it five stars, probably adding to β Leonis the four small stars in the head of the Virgin, 81, v, a, and φ, of magnitudes four to five and five.

The regents of Púrva and Uttara-Phalguni are Bhaga and Aryaman, or Aryaman and Bhaga, two of the Ādityas.

The two corresponding Arab mansions are called az-Zubrah, “the mane”—i.e., of the Lion—and as-Sarrah, “the turn”: they agree as nearly as possible with the Hindu asterisms, the former being composed of δ and φ Leonis, the latter of β Leonis alone. The Chinese sieu, named respectively Chang and Y, are 51 Hydræ (5) and Crateris (4).

13. Hasta, “hand.” Savitar, the sun, is regent of the asterism, which, in accordance with its name, is figured as a hand, and contains five stars, corresponding to the five fingers. These are the five principal stars in the constellation Corvus, a well-marked group, which bears, however, no very conspicuous resemblance to a hand. The stars are named—counting from the thumb around to the little finger, according to our apprehension of the figure—β, α, ε, γ, and δ Corvi. The text gives below (v. 17) a very special description of the situation of the junction-star in the group, but one which is unfortunately quite hard to understand and apply: we regard it as most probable, however (see note to v. 17), that γ (3) is the star intended: the defined position, in which all the authorities agree, would point rather to δ (3):

\[
\begin{align*}
\text{Hasta} & : 174^\circ 22' & 10^\circ 0' & \text{S.} \\
\gamma \text{ Corvi} & : 170^\circ 44' & 14^\circ 29' & \text{S.} \\
\delta \text{ Corvi} & : 173^\circ 27' & 12^\circ 10' & \text{S.}
\end{align*}
\]

The Hindu and Chinese systems return, in this asterism, to an accordance with one another: the eleventh sieu, Chin, is the star γ Corvi. The Arab system holds its own independent course one point farther: its thirteenth mansion comprises the five bright stars β, γ, δ, ε Virginis, which form two sides; measuring about 15° each, of a great triangle: the mansion is named al-Auwa’, “the barking dog.”

14. Citrā, “brilliant.” This is the beautiful star of the first magnitude α Virginis, or Spica, constituting an asterism by itself, and figured as a pearl or as a lamp. Its divinity is Tvashtar, “the shaper, artificer.” Its longitude is very erroneously defined by the Sûrya-Siddhânta:

\[
\begin{align*}
\text{Citrā} & : 180^\circ 48' & 1^\circ 56' & \text{S.} \\
\text{Spica} & : 183^\circ 49' & 2^\circ 2' & \text{S.}
\end{align*}
\]

All the other authorities, however, saving the Çakalya, remove this error, by giving Citrā 183° of polar longitude, instead of 180°. The only variation from the definition of latitude made by our text is offered by the Siddhânta-Ciromanî, which, varying for once from the Brahma-Siddhânta, reads 1° 45' instead of 2°.

* It is, apparently, by an original error of the press, that M. Biot, in all his tables, calls this star α.
Magha 139° 0' 6° 0' N.
Regulus 139° 49' 6° 27' N.

The tenth mansil, aj-Jahhah, “the forehead”—i.e., of the Lion—is also composed of λ, γ, η, α Leonis.

The eighth, ninth, and tenth sieu of the Chinese system altogether disagree in position with the groups marking the Hindu and Arab mansions, being situated far to the southward of the ecliptic, in proximity, according to Biot, to the equator of the period when they were established. The eighth, Sing, is α Hydrae (2), having longitude (A. D. 580) 127° 16', latitude 22° 25' S.

11, 12. Phalguni; or, as plural, phalgunyas; the dual, phalgunyau, is also found: this treatise presents the derivative form phalguni, which is not infrequently employed elsewhere. The word is likewise used to designate a species of fig-tree: its derivation, and its meaning, as applied to the asterisms, is unknown to us. Here, as in two other instances, later (the 20th and 21st, and the 26th and 27th asterisms), we have two groups called by the same name, and distinguished from one another as pūrana and uttara, “former” and “latter”—that is to say, coming earlier and later to their meridian-transit. The true original character and composition of these three double asterisms has been, if we are not mistaken, not a little altered and obscured in the description of their furnished to us; owing, apparently, to the ignorance or carelessness of the describers, and especially to their not having clearly distinguished the characteristics of the combined constellation from those of its separate parts. In each case, a couch or bedstead (sūryā, mauna, paryanka) is given as the figure of one or both of the parts, and we recognize in them all the common characteristic of a constellation of four stars, forming together a regular oblong figure, which admits of being represented—not unsuitably, if rather prosaically—by a bed. This figure, in the case of the Phalguinis, is composed of δ, υ, β, and η Leonis, a very distinct and well-marked constellation, containing two stars, δ and β, of the second to third magnitude, one, υ, of the third, and one, η, of the fourth. The symbol of a bed, properly belonging to the whole constellation, is given by all the authorities to both the two parts into which it is divided. Each of these latter has two stars assigned to it, and the junction-stars are said (v. 18) to be the northern. The first group is, then, clearly identifiable as δ and η Leonis, the former and brighter being the distinctive star:

Pūrva-Phalguni 139° 58' 11° 19' N.
δ Leonis 141° 15' 14° 19' N.
η Leonis 143° 23' 9° 40' N.

The Siddhānta-Giromani etc., and the Graha-Laghava, give Pūrva-Phalguni respectively 3° and 4° more of polar longitude than the Sūrya-Siddhānta. These are more notable variations than are found in any other case, and they appear to us to indicate that these treatises intend to designate υ, the southern member of the group, as its junction-star: we have accordingly added its position also above.

In the latter group, the junction-star is evidently υ Leonis:

Uttara-Phalguni 150° 10' 12° 5' N.
υ Leonis 151° 27' 12° 17' N.
9. Ačlesha; or, as plural, Ačleshás; the word is also written Agheshá: its appellative meaning is “entwinder, embracer.” With the name accord the divinities to whom the regency of the asterism is assigned, which are sarpás, the serpents. The number of stars in the group is stated as five by all the authorities excepting the Khanda-Katáka, which reads six: their configuration is represented by a wheel. The star α Cancri (4) is pointed out by Colebrooke as the junction-star of Ačlesha, apparently from the near correspondence of its latitude with that assigned to the latter, for he says nothing in connection with it of his native helpers: but α Cancri is not the eastern (v. 19) member of any group of five stars; nor, indeed, is it a member of any distinct group at all. Now the name, figure, and divinity of Ačlesha are all distinctive, and point to a constellation of a bent or circular form: and if we go a little farther southward from the ecliptic, we find precisely such a constellation, and one containing, moreover, the corresponding Chinese determinative. The group is that in the head of Hydra, or η, σ, δ, ε, ς Hydrae, η and ς being of the fifth magnitude, and the rest of the fourth: their arrangement is conspicuously circular. There can be no doubt, therefore, that the situation of the asterism is in the head of Hydra, and ς Hydrae, its brightest star (being rated in the Greenw. Cat. as of magnitude 3.4, while δ is 4.5), is the junction-star:

Ačlesha	109° 59'	6° 56’ S.
ς Hydra	112° 20'	11° 8’ S.
α Cancri	113° 5’	5° 31’ S.

The error of the Hindu determination of the latitude is, indeed, very considerable, yet not greater than we are compelled to accept in one or two other cases. The Khanda-Katáka increases it 1°, giving the asterism 6° instead of 7° of polar latitude. The Siddhánta-Ciromani etc. deduct 1° from the polar longitude of the Sūrya-Siddhánta, and the Graha-Lághava deducts 2°; both variations would add to the error in longitude.

The Arab manzil is, in this instance, far removed from the Hindu asterism, being composed of β Cancri (5) and 2 Leonis (5.4), and called at-Tarf, “the look”—i.e., of the Lion. The seventh Chinese siu, Lieu, is, as already noticed, included in the Hindu group, being δ Hydrae.

10. Maghá; or, as plural, maghás; “mighty.” The pitaras, Fathers, or manes of the departed, are the regents of the asterism, which is figured as a house. It is, according to most authorities, composed of five stars, of which the southern (v. 18) is the junction-star. Four of these must be the bright stars in the neck and side of the Lion, or η, γ, η, and α Leonis, of magnitudes 4.5, 2, 3.4, and 1.2 respectively; but which should be the fifth is not easy to determine, for there is no other single star which seems to form naturally a member of the same group with these: υ (5), π (5), or ς (4) might be forced into a connection with them. This difficulty would be removed by adopting, with the Khanda-Katáka, six as the number of stars included in the asterism: it would then be composed of all the stars forming the conspicuous constellation familiarly known as “the Sickle.” The star α Leonis, or Regulus, the most brilliant of the group, is the junction-star, and its position is defined with unusual precision:
of the asterism is Aditi, the mother of the Ādityas. Its dual title indicates that it is composed of two stars, of nearly equal brilliancy, and two is the number allotted to it by the Čākalya and Khaṇḍa-Kaṭaka, the eastern being pointed out below (v. 19) as the junction-star. The pair are the two bright stars in the heads of the Twins, or α and β Geminorum, and the latter (1.2) is the junction-star. The comparison of positions is as follows:

Punarvasu 92° 53' 6° 0' N.
β Geminorum . . . 93° 14' 6° 39' N.

The Graha-Lāghava adds 1° to the polar longitude of Punarvasu, as stated by the other authorities.

Four stars are by some assigned to this asterism, and with that number corresponds the representation of its arrangement by the figure of a house; it is quite uncertain which of the neighboring stars of the same constellation are to be added to those above mentioned to form the group of four, but we think i (magn. 4) and u (5) those most likely to have been chosen: Colebrooke suggests ς (3.4) and τ (5.4).

The determinative of the fifth sieu, Tsing, is μ Geminorum (3), which, as we have seen, is reckoned among the stars composing the sixth manzil: the seventh manzil includes, like the Hindu asterism, α and β Geminorum; it is named adh-Dhirā', "the paw"—i.e., of the Lion; the figure of Leo (see Ideler, p. 152 etc.) being by the Arabs so stretched out as to cover parts of Gemini, Cancer, Canis Minor, and other neighboring constellations.

8. Pushya; from the root push, "nourish, thrive"; another frequent name, which is the one employed by our treatise, is tishya, which is translated "auspicious"; Amara gives also sidhya, "prosperous." Its divinity is Bṛhaspati, the priest and teacher of the gods. It comprises three stars—the Khaṇḍa-Kaṭaka alone seems to give it but one—of which the middle one is the junction-star of the asterism. This is shown by the position assigned to it to be δ Cancri (4):

Pushya 106° 0' 0° 0'.
δ Cancri 108° 43' 0° 44' N.

The other two are doubtless γ (4.5) and θ (6) of the same constellation: the asterism is figured as a crescent and as an arrow, and the arrangement of the group admits of being regarded as representing a crescent, or the barbed head of an arrow. Were the arrow the only figure given, it might be possible to regard the group as composed of γ, θ, and δ (4), the latter representing the head of the arrow, and the nebulous cluster, Präsepe, between γ and θ, the feathering of its shaft: θ (105° 43'—0° 48' S.) would then be the junction-star.

The Arab manzil, an-Nathrāh, "the nose-gap"—i.e., of the Lion—comprises γ and δ Cancri, together with Präsepe; or, according to some authorities, Präsepe alone. The sixth sieu, Kuei, is δ Cancri, a star which is, at present, only with difficulty distinguished by the naked eye. Ptolemy rates it as of the fourth magnitude, like γ and δ: perhaps it is one of the stars of which the brilliancy has sensibly diminished during the past two or three thousand years, or else a variable star of very long period. The possibility of such changes requires to be taken into account, in comparing our heavens with those of so remote a past.
In this erroneous determination of the latitude all authorities agree: the Graha-Lâghava adds 1° to the error in polar longitude, reading 62° instead of 63°.

Here again there is an entire harmony among the three systems compared. The Arab manzil, al-Hâk'ah, is composed of the same stars which make up the Hindu asterism: the third sieu, named Tse, is the Hindu junction-star, α Orionis.

6. Árdra, "moist" the appellation very probably has some meteorological ground, which we have not traced out: this is indicated also by the choice of Rudra, the storm-god, as regent of the asterism. It comprises a single star only, and is figured as a gem. It is impossible not to regard the bright star of the first magnitude in Orion's right shoulder, or α Orionis, as the one here meant to be designated, notwithstanding the very grave errors in the definition of its position given by our text: the only visible star of which the situation at all nearly answers to that definition is 135 Tauri, of the sixth magnitude; we add its position below, with that of α Orionis:

<table>
<thead>
<tr>
<th>Star</th>
<th>Right Ascension</th>
<th>Declination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Árdra</td>
<td>1° 53′</td>
<td>65° 50′ S.</td>
</tr>
<tr>
<td>α Orionis</td>
<td>1° 4′</td>
<td>68° 43′ S.</td>
</tr>
<tr>
<td>135 Tauri</td>
<td>9° 10′</td>
<td>6° 38′ S.</td>
</tr>
</tbody>
</table>

The distance from the sun at which the heliacal rising and setting of Árdra is stated below (ix. 14) to take place would indicate a star of about the third magnitude; this adds to the difficulty of its identification with either of the two stars compared. We confess ourselves unable to account for the confusion existing with regard to this asterism, of which al-Bîrûnî also could obtain no intelligible account from his Indian teachers. But it is to be observed that all the authorities, excepting our text and the Cākalya-Sanhitā, give Árdra 11° of polar latitude instead of 9°, which would reduce the error of latitude, as compared with α Orionis, to an amount very little greater than will be met with in one or two other cases below, where the star is situated south of the ecliptic; and it is contrary to all the analogies of the system that a faint star should have been selected to form by itself an asterism. The Siddhânta-Ciromani etc. make the polar longitude of the asterism 20′ less than that given by the Sûrya-Siddhânta, and the Graha-Lâghava 1° 20′ less: these would add so much to the error of longitude.

Here, for the first time, the three systems which we are comparing disagree with one another entirely. The Chinese have adopted for the determinative of their fourth sieu, which is styled Tsan, the upper star in Orion's belt, or δ Orionis (2)—a strange and arbitrary selection, for which M. Biot is unable to find any explanation. The Arabs have established their sixth station close to the ecliptic, in the feet of Pollux, naming it al-Han'ah, "the pile": it comprises the two stars γ (2.3) and ζ (4.3) Geminorum: some authorities, however, extend the limits of the mansion so far as to include also the stars in the foot of the other twin, or γ, ρ, μ Geminorum; of which the latter is the next Chinese sieu.

7. Punarvasu: in all the more ancient lists the name appears as a dual, punarvasi: it is derived from punar, "again," and vasu, "good, brilliant": the reason of the designation is not apparent. The regent
Krittikā 39° 8' 4° 44' N.
Aleyone 39° 58' 4° 1' N.
27 Tauri 40° 20' 3° 53' N.
23 Tauri 39° 4' 41' 3° 55' N.

The Siddhānta-Ciromani etc. give Krittikā 2' less of polar longitude than the Surya-Siddhānta, and the Graha-Lāghava, on the other hand, 30' more: the latter, with the Khanda-Kataka, agree with our text as regards the polar latitude, which the others reckon at 4° 30', instead of 5°.

The Pleiades constitute the third manṣil of the Arabs, which is denominated ath-Thurayyât, "the little thick-set group," or an-Najm, "the constellation." Aleyone is likewise the first Chinese sieu, which is styled Mao.

4. Rohini, "ruddy"; so named from the hue of its principal star. Prajāpati, "the lord of created beings," is the divinity of the asterism. It contains five stars, in the grouping of which Hindu fancy has seen the figure of a wain (compare v. 18, below); some, however, figure it as a temple. The constellation is the well-known one in the face of Taurus to which we give the name of the Hyades, containing ε, δ, γ, θ, α Tauri; the latter, the most easterly (v. 19) and the brightest of the group—being the brilliant star of the first magnitude known as Aldebaran—is the junction-star, as is shown by the annexed comparison of positions:

Rohini 48° 9' 4° 49' S.
Aldebaran 49° 45' 5° 30' S.

The Siddhānta-Ciromani etc. here again present the insignificant variation from the polar longitude of our text, of 2' less: the former also makes its polar latitude 4° 30': the Graha-Lāghava reads, for the polar longitude, 40°. All these variations add to the error of defined position.

The fourth Arab manṣil is composed of the Hyades: its name is ad-Dabarân, "the follower"—i.e., of the Pleiades. We would suggest the inquiry whether this name may not be taken as an indication that the Arab system of mansions once began, like the Chinese, and like the Hindu system originally, with the Pleiades. There is, certainly, no very obvious propriety in naming any but the second of a series the "following" (sequens or secundus). Modern astronomy has retained the title as that of the principal star in the group, to which alone it was often also applied by the Arabs.

The second Chinese sieu, Pi, is the northernmost member of the same group, or ε Tauri, a star of the third to fourth magnitude.

5. Mrqagirsha, or Mrqagirias, "antelope's head": with this name the figure assigned to the asterism corresponds: the reason for the designation we have not been able to discover. Its divinity is Soma, or the moon. It contains three stars, of which the northern (v. 18) is the determinative. These three can be no other than the faint cluster in the head of Orion, or λ, φ¹, φ² Orions, although the Hindu measurement of the position of the junction-star, λ (magn. 4), is far from accurate, especially as regards its latitude:

Mrqagirsha 61° 3' 9° 49' S.
λ Orions 63° 40' 13° 25' S.
twenty-seventh sieu, named Leu (M. Biot has omitted to give us the signification of these titles), is β Arietis, the Hindu junction-star.

2. Bharani; also, as plural, bhäranyas; from the root bhar, "carry": in the Taittirīya lists the form apabhārani, "bearer away," in singular and plural, is also found. Its divinity is Yama, the ruler of the world of departed spirits; it is figured as the yoni, or pudendum muliebre. All authorities agree in assigning it three stars, and the southernmost is pointed out below (v. 18) as its junction-star. The group is unquestionably to be identified with the triangle of faint stars lying north of the back of the Ram, or 35, 39, and 41 Arietis: they are figured by some as a distinct constellation, under the name of Musca Borealis. The designation of the southern as the junction-star is not altogether unambiguous; as 35 and 41 were, in A.D. 560, very nearly equidistant from the equator; the latter would seem more likely to be the one intended, since it is nearer the ecliptic, and the brightest of the group—being of the third magnitude, while the other two are of the fourth: the defined position, however, agrees better with 35, and the error in longitude, as compared with 41, is greater than that of any other star in the series:

<table>
<thead>
<tr>
<th>Star</th>
<th>Longitude (°)</th>
<th>Latitude (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bharani</td>
<td>24° 35'</td>
<td>11° 6'</td>
</tr>
<tr>
<td>35 Arietis (α Muscæ)</td>
<td>26° 54'</td>
<td>11° 17'</td>
</tr>
<tr>
<td>41 Arietis (ε Muscæ)</td>
<td>26° 10'</td>
<td>10° 36'</td>
</tr>
</tbody>
</table>

The Graha-Laghava gives Bharani 1° more of polar longitude: this would reduce by the same amount the error in the determination of its longitude by the other authorities.

The second Arab manzil, al-Butain, "the little belly"—i.e., of the Ram—is by most authorities defined as comprising the three stars in the haunch of the Ram, or α, β, and γ (or else ζ) Arietis. Some, however, have regarded it as the same with Musca; and we cannot but think that al-Biruni, in identifying, as he does, Bharani with al-Butain, meant to indicate by the latter name the group of which the Hindu asterism is actually composed.

The last Chinese sieu, Oei, is the star 35 Arietis, or α Muscæ.

3. Kṛttikā; or, as plural, kṛttikās: the apppellative meaning of the word is doubtful. The regent of the asterism is Agni, the god of fire. The group, composed of six stars, is that known to us as the Pleiades. It is figured by some as a flame, doubtless in allusion to its presiding divinity: the more usual representation of it is a razor, and in the choice of this symbol is to be recognized the influence of the etymology of the name, which may be derived from the root kart, "cut," in the configuration of the group, too, may be seen, by a sufficiently prosaic eye, a broad-bladed knife, with a short handle. If the designation given below (v. 18) of the southern member of the group as its junction-star, be strictly true, this is not Alcyone, or η Tauri (magn. 3), the brightest of the six, but either Atlas (27 Tauri: magn. 4) or Merope (23 Tauri: magn. 5); the two latter were very nearly equally distant from the equator of A.D. 560, but Atlas is a little nearer to the ecliptic. The defined position agrees best with Alcyone, nor can we hesitate to regard this as actually the junction-star of the asterism. We compare the positions below:
hands: and these—together with a more exact comparison than was attempted by Colebrooke of the positions given by the Hindus to their junction-stars with the data of the modern catalogues, and a new and independent combination of the various materials which he himself furnishes—while they have led us to accept the greater number of his identifications, often establishing them more confidently than he was able to do, have also enabled us in many cases to alter and amend his results. Such a re-examination was necessary, in order to furnish safe ground for a more detailed comparison of the three systems, which, as will be seen hereafter, leads to important conclusions respecting their historical relations to one another.

1. Aćvini; this treatise exhibits the form aćvini; in the older lists, as also often elsewhere, we have the dual aćvindu, aćvayúdau, “the two horsemen, or Aćvins.” The Aćvins are personages in the ancient Hindu mythology somewhat nearly corresponding to the Castor and Pollux of the Greeks. They are the divinities of the asterism, which is named from them. The group is figured as a horse’s head, doubtless in allusion to its presiding deities, and not from any imagined resemblance. The dual name leads us to expect to find it composed of two stars, and that is the number allotted to the asterism by the Čākalya and Khandaka-Kataka. The Sūrya-Siddhānta (below, v. 16) designates the northern member of the group as its junction-star: that this is the star β Arietis (magn. 3.2), and not α Arietis (magn. 2), as assumed by Colebrooke, is shown by the following comparison of positions:

<table>
<thead>
<tr>
<th>Star</th>
<th>Long.</th>
<th>Lat.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aćvini</td>
<td>11° 50'</td>
<td>9° 11' N</td>
</tr>
<tr>
<td>β Arietis</td>
<td>13° 56'</td>
<td>8° 28' N</td>
</tr>
<tr>
<td>α Arietis</td>
<td>17° 37'</td>
<td>9° 57' N</td>
</tr>
</tbody>
</table>

Colebrooke was misled in this instance by adopting, for the number of stars in the asterism, three, as stated by the later authorities, and then applying to the group as thus composed the designation given by our text of the relative position of the junction-star as the northern, and he accordingly overlooked the very serious error in the determination of the longitude thence resulting. Indeed, throughout his comparison, he gives too great weight to the determination of latitude, and too little to that of longitude; we shall see farther on that the accuracy of the latter is, upon the whole, much more to be depended upon than that of the former.

Considered as a group of two stars, Aćvini is composed of β and γ Arietis (magn. 4.3); as a group of three, it comprises also α in the same constellation.

There is no discordance among the different authorities examined by us as regards the position of the junction-star of Aćvini, either in latitude or in longitude. The case is the same with the 8th, 10th, 12th, and 13th asterisms, and with them alone.

The first Arab manzil is likewise composed of β and γ Arietis, to which some add α: it is called ash-Sharaṭān, “the two tokens”—that is to say, of the opening year.

The Chinese series of sīeu commences, as did anciently the Hindu system of asterisms, with that which is later the third asterism. The
tradition has been of no decisive authority as regards the position and composition of the groups of stars constituting the asterisms: these must be determined upon the evidence of the more ancient data handed down in the astronomical treatises.

In order to an exact comparison of the positions of the junction-stars as defined by the Hindus with those of stars contained in our catalogues, we have reduced the polar longitudes and latitudes to true longitudes and latitudes, by the following formulas (see Fig. 30):

\[
\begin{align*}
(1 - \cos A) \cot EL.C &= \tan S_a_b \\
\sin S_a_b \sin S_a &= \sin S_b \\
\tan S_b \cot S_a_b &= \sin ab
\end{align*}
\]

A a being the polar longitude as stated in the text (= La + 180°), Sa the polar latitude, E L C the inclination of the ecliptic, S b the true latitude, and a b a quantity to be added to or subtracted from the polar longitude to give the true longitude. The true positions of the stars compared we take from Flamstead's Catalogus Brittanicus, subtracting in each case 15° 42' from the longitudes there given, in order to reduce them to distances from the vernal equinox of A. D. 560, assumed to coincide with the initial point of the Hindu sphere. There is some discordance among the different Hindu authorities, as regards the stated positions of the junction-stars of the asterisms. The Çakalya-Sanhitā, indeed, agrees in every point precisely with the Sūrya-Siddhānta. But the Siddhānta-Çiromani often gives a somewhat different value to the polar longitude or latitude, or both. With it, so far as the longitude is concerned, exactly accord the Brahma-Siddhānta, as reported by Colebrooke, and the Khandā-Kaṭaka, as reported by al-Bīrūnī. The latitudes of the Brahma-Siddhānta also are virtually the same with those of the Siddhānta-Çiromani, their differences never amounting, save in a single instance, to more than 3': but the latitudes of the Khandā-Kaṭaka often vary considerably from both. The Graha-Lāghava, the only other authority accessible to us, presents a series of variations of its own, independent of those of either of the other treatises. All these differences are reported by us below, in treating of each separate asterism. The presiding divinities of the asterisms we give upon the authority of the Tāttiriya-Sanhitā (iv. 4. 10. 1–3), the Tāttiriya-Brāhmaṇa (iii. 1. 1. 2, as cited by Weber, Zeitsch. f. d. K. d. Morg., vii. 266 etc., and Ind. Stud., i. 90 etc.), the(524,385),(559,446), the Muhūrta-Cintāmani, and Colebrooke: those of about half the asterisms are also indirectly given in our text, in the form of appellations for the asterisms derived from them.

The names and situations of the Arab lunar stations are taken from Ideler's Untersuchungen über die Sternnamen: for the Chinese mansions and their determining stars we rely solely upon the articles of Biot, to which we have already referred.

It has seemed to us advisable, notwithstanding the prior treatment by Colebrooke of the same subject, to enter into a careful re-examination and identification of the Hindu asterisms, because we could not accept in the bulk, and without modification, the conclusions at which he arrived. The identifications by Ideler of the Arab mansions, more thorough and correct than any which had been previously made, and Biot's comparison of the Chinese sieu, have placed new and valuable materials in our
their primitive identity with the Hindu asterisms demonstrated, by Biot, in a series of articles published in the Journal des Savants for 1840; and he has more recently, in the volume of the same Journal for 1859, reviewed and restated his former exposition and conclusions. These we shall present more fully hereafter; at present it will be enough to say that the Chinese divisions are equatorial, not zodiacal; that they are named sieu, "mansions"; and that they are the intervals in right ascension between certain single stars, which are also called sieu, and have the same title with the divisions which they introduce. We propose to present here a summary comparison of the Hindu, Arab, and Chinese systems, in connection with an identification of the stars and groups of stars forming the Hindu asterisms, and with the statement of such information respecting the latter, beyond that given in our text, as will best contribute to a full understanding of their character.

The identification of the asterisms is founded upon the positions of their principal or junction-stars, as stated in the astronomical text-books, upon the relative places of these stars in the groups of which they form a part, and upon the number of stars composing each group, and the figure by which their arrangement is represented: in a few cases, too, the names themselves of the asterisms are distinctive, and assist the identification. The number and configuration of the stars forming the groups are not stated in our text; we derive them mainly from Colebrooke, although ourselves also having had access to, and compared, most of his authorities, namely the Çakalya-Sanhitā, the Muhurta-Cintâmāni, and the Ratnamālā (as cited by Jones, As. Res., ii. 294). Sir William Jones, it may be remarked, furnishes (As. Res., ii. 293, plate) an engraved copy of drawings made by a native artist of the figures assigned to the asterisms. For the number of stars in each group we have an additional authority in al-Birûnî, the Arab savant of the eleventh century, who travelled in India, and studied with especial care the Hindu astronomy. The information furnished by him with regard to the asterisms we derive from Biot, in the Journal des Savants for 1845 (pp. 39–54); it professes to be founded upon the Khandā-Kaṭāka* of Brahmagupta. Al-Birûnî also gives an identification of the asterisms, so far as the Hindu astronomers of his day were able to furnish it to him, which was only in part: he is obliged to mark seven or eight of the series as unknown or doubtful. He speaks very slightly of the practical acquaintance with the heavens possessed by the Hindus of his time, and they certainly have not since improved in this respect; the modern investigators of the same subject, as Jones and Colebrooke, also complain of the impossibility of obtaining from the native astronomers of India satisfactory identifications of the asterisms and their junction-stars. The translator, in like manner, spent much time and effort in the attempt to derive such information from his native assistant, but was able to arrive at no results which could constitute any valuable addition to those of Colebrooke. It is evident that for centuries past, as at present, the native

* The true form of the name is not altogether certain, it being known only through its Arabic transcription; it seems to designate rather a chapter in a treatise than a complete work of its author.
the asterism Čravishtha is between the third and fourth quarters of the portion named for Čravana." After this interruption to the regularity of correspondence of the two systems—the asterism Abhijit being left without a portion, and the portion Čravishtha containing no asterism—they go on again harmoniously together to the close. The figure illustrates clearly this condition of things, and shows that, if Abhijit be left out of account, the two systems agree so far as this—that twenty-six asterisms fall within the limits of portions bearing the same name, while all the discordances are confined to one portion of the ecliptic, that comprising the 20th to the 23d portions. If, on the other hand, the ecliptic be divided into twenty-eighths, and if these be assigned as portions to the twenty-eight asterisms, it is seen from the figure that the discordances between the two systems will be very great; that only in twelve instances will a portion be occupied by the asterism bearing its own name, and by that alone; that in sixteen cases asterisms will be found to fall within the limits of portions of different name; that four portions will be left without any asterism at all, while four others will contain two each.

These discordances are enough of themselves to set the whole subject of the asterisms in a new light. Whereas it might have seemed, from what we have seen of it heretofore, that the system was founded upon a division of the ecliptic into twenty-seven equal portions, and the selection of a star or a constellation to mark each portion, and to be, as it were, its ruler, it now appears that the series of twenty-eight asterisms may be something independent of, and anterior to, any division of the ecliptic into equal arcs, and that the one may have been only artificially brought into connection with the other, complete harmony between them being altogether impossible. And this view is fully sustained by evidence derivable from outside the Hindu science of astronomy, and beyond the borders of India. The Pārsis, the Arabs, and the Chinese, are found also to be in possession of a similar system of division of the heavens into twenty-eight portions, marked or separated by as many single stars or constellations. Of the Pārsi system little or nothing is known excepting the number and names of the divisions, which are given in the second chapter of the Bundehesh (see Anquetil du Perron’s Zendavesta, etc., ii. 349). The Arab divisions are styled mañazil al-kamar, “lunar mansions, stations of the moon,” being brought into special connection with the moon’s revolution; they are marked, like the Hindu “portions,” by groups of stars. The first extended comparison of the Hindu asterisms and the Arab mansions was made by Sir William Jones, in the second volume of the Asiatic Researches, for 1790: it was, however, only a rude and imperfect sketch, and led its author to no valuable or trustworthy conclusions. The same comparison was taken up later, with vastly more learning and acuteness, by Colebrooke, whose valuable article, published also in the Asiatic Researches, for 1807 (ix. 323, etc.; Essays ii. 321, etc.), has ever since remained the chief source of knowledge respecting the Hindu asterisms and their relation to the lunar mansions of the Arabs. To Anquetil (as above) is due the credit of the first suggestion of a coincidence between the Pārsi, Hindu, and Chinese systems: but he did nothing more than suggest it: the origin, character, and use of the Chinese divisions were first established, and
Our calculations, it should be remarked, are founded upon the assumption that, at the time when the observations were made of which our text records the results, the vernal equinox coincided with the initial point of the Hindu sidereal sphere, or with the beginning of the portion of the asterism Açvin, a point 10° eastward on the ecliptic from the star ζ Piscium: this was actually the case (see above, under i. 27) about A.D. 560. The question how far this assumption is supported by evidence contained in the data themselves will be considered later. To fill out the table, we have also added the intervals in right ascension and in polar longitude.

The stars of which the text thus accurately defines the positions do not, in most cases, by themselves alone, constitute the asterisms (naksatra); they are only the principal members of the several groups of stars—each, in the calculation of conjunctions (yoga) between the planets and the asterisms (see below, vv. 14–15), representing its group, and therefore called (see below, vv. 16–19) the "junction-star" (yogatārā) of the asterism.

It will be at once noticed that while, in a former passage (ii. 64), the ecliptic was divided into twenty-seven equal arcs, as portions for the asterisms, we have here presented to us twenty-eight asterisms, very unequally distributed along the ecliptic, and at greatly varying distances from it. And it is a point of so much consequence, in order to the right understanding of the character and history of the whole system, to apprehend clearly the relation of the groups of stars to the arcs allotted to them, that we have prepared the accompanying diagram (Fig. 31) in illustration of that relation. The figure represents, in two parts, the circle of the ecliptic: along the central lines is marked its division into arcs of ten and five degrees: upon the outside of these lines it is farther divided into equal twenty-sevenths, or arcs of 13° 20', and upon the inside into equal twenty-eighths, or arcs of 12° 51'; these being the portions (bhoga) of two systems of asterisms, twenty-seven and twenty-eight in number respectively. The starred lines which run across all the divisions mark the polar longitudes, as stated in the text, of the junction-stars of the asterisms. The names of the latter are set over against them, in the inner columns: the names of the portions in the system of twenty-seven are given in full in the outer columns, and those in the system of twenty-eight are also placed opposite the portions, upon the inside, in an abbreviated form.

The text nowhere expressly states which one of the twenty-eight asterisms which it recognizes is, in its division of the ecliptic into only twenty-seven portions, left without a portion. That Abhijit, the twenty-second of the series, is the one thus omitted, however, is clearly implied in the statements of the fourth and fifth verses. Those statements, which have caused difficulty to more than one expounder of the passage, and have been variously misinterpreted, are made entirely clear by supplying the words "asterism" and "portion" throughout, where they are to be understood, thus: "the asterism Uttarā-Aṣāḍhā is at the middle of the portion styled Pūrva-Aṣāḍhā; the asterism Abhijit, likewise, is at the end of the portion Pūrva-Aṣāḍhā; the position of the asterism Čravana is at the end of the portion receiving its name from Uttarā-Aṣāḍhā; while
|---|---|---|---|---|---|---|---|

Fig. 31

|---|---|---|---|---|---|---|---|

220°
generally and familiarly known; the others will be stated further on. Nearly all these titles are to be found in our text, occurring here and there; a few of the asterisms, however, (the 5th, 6th, 9th, and 17th), are mentioned only by appellations derived from the names of the deities to whom they are regarded as belonging, and one (the 25th) chances not to be once distinctively spoken of. We append to the names, in a tabular form, the data presented in this passage; namely, the position of each asterism (naksatra) in the arc of the ecliptic to which it gives name, and which is styled its “portion” (bhoga), the resulting polar longitudes, and the polar latitudes. And since it is probable (see note to the latter half of v. 12, below) that the latter were actually derived by calculation from true declinations and right ascensions, ascertained by observation, we have endeavored to restore those more original data by calculating them back again, according to the data and methods of this Siddhânta—the declinations by ii. 28, the right ascensions by iii. 44–48—and we insert our results in the table, rejecting odd minutes less than ten.

Positions of the Junction-Stars of the Asterisms.

<table>
<thead>
<tr>
<th>No</th>
<th>Name</th>
<th>Position in its Portion</th>
<th>Polar Longitude</th>
<th>Polar Latitude</th>
<th>Right Ascension</th>
<th>True Declination</th>
<th>Interval in Longitude</th>
<th>Interval in R. A.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aćvini</td>
<td>0 8 0</td>
<td>10 0 N</td>
<td>18 30</td>
<td>13 20 N</td>
<td>12 0</td>
<td>11 0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Bharanî</td>
<td>6 40 20</td>
<td>5 0 S</td>
<td>19 20</td>
<td>0 0</td>
<td>17 30</td>
<td>16 50</td>
<td>12 0</td>
</tr>
<tr>
<td>3</td>
<td>Kṛttikâ</td>
<td>10 50 37 30</td>
<td>5 0</td>
<td>9 0</td>
<td>13 20</td>
<td>0 0</td>
<td>13 20</td>
<td>13 40</td>
</tr>
<tr>
<td>4</td>
<td>Rohini</td>
<td>9 30 39 30</td>
<td>5 0</td>
<td>19 20</td>
<td>0 0</td>
<td>12 0</td>
<td>13 20</td>
<td>13 40</td>
</tr>
<tr>
<td>5</td>
<td>Mrgaciraha</td>
<td>9 40 63 0</td>
<td>10 0</td>
<td>61 0</td>
<td>11 20</td>
<td>4 20</td>
<td>4 40</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Ārdra</td>
<td>0 40 67 20</td>
<td>9 0</td>
<td>65 40</td>
<td>13 20</td>
<td>35 40</td>
<td>27 30</td>
<td>13 40</td>
</tr>
<tr>
<td>7</td>
<td>Punarvasu</td>
<td>13 0 93 0</td>
<td>6 0</td>
<td>93 10</td>
<td>30 0</td>
<td>13 0</td>
<td>14 0</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Pushya</td>
<td>12 40 166 0</td>
<td>0 0</td>
<td>107 10</td>
<td>23 0</td>
<td>3 0</td>
<td>3 20</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Āchâsah</td>
<td>2 20 109 0</td>
<td>7 0</td>
<td>110 30</td>
<td>15 40</td>
<td>20 0</td>
<td>20 40</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Maghã</td>
<td>9 0 129 0</td>
<td>0 0</td>
<td>131 10</td>
<td>18 20</td>
<td>15 0</td>
<td>15 0</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>P-Phalguni</td>
<td>10 40 144 0</td>
<td>13 0</td>
<td>146 10</td>
<td>25 50</td>
<td>11 0</td>
<td>10 40</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>U-Phalguni</td>
<td>8 20 155 0</td>
<td>13 0</td>
<td>156 50</td>
<td>23 50</td>
<td>15 0</td>
<td>13 50</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Hasta</td>
<td>10 0 170 0</td>
<td>11 0</td>
<td>170 40</td>
<td>7 0 S</td>
<td>10 0</td>
<td>9 20</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Cittâ</td>
<td>6 40 180 0</td>
<td>2 0</td>
<td>180 0</td>
<td>2 0</td>
<td>19 0</td>
<td>17 40</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Svâti</td>
<td>12 20 199 0</td>
<td>37 0</td>
<td>197 40</td>
<td>29 20 N</td>
<td>14 0</td>
<td>13 10</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Viçâkha</td>
<td>13 0 213 0</td>
<td>13 0</td>
<td>213 0</td>
<td>14 20 S</td>
<td>11 0</td>
<td>11 0</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Anurâdha</td>
<td>10 40 224 0</td>
<td>3 0</td>
<td>224 50</td>
<td>19 20</td>
<td>5 0</td>
<td>5 0</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Jyeshthâ</td>
<td>2 20 239 0</td>
<td>4 0</td>
<td>239 0</td>
<td>21 50</td>
<td>12 0</td>
<td>12 0</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Mûlã</td>
<td>1 0 241 0</td>
<td>9 0</td>
<td>238 50</td>
<td>29 50</td>
<td>13 0</td>
<td>14 0</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>P-Asshâdha</td>
<td>0 40 254 0</td>
<td>5 30</td>
<td>252 50</td>
<td>28 30</td>
<td>6 0</td>
<td>6 30</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>U-Asshâdha</td>
<td>260 0 5 0</td>
<td>259 0</td>
<td>28 40</td>
<td>0 0</td>
<td>6 40</td>
<td>7 0</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Abhijit</td>
<td>266 40 60 0 N</td>
<td>266 20</td>
<td>36 0 N</td>
<td>13 20</td>
<td>14 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Çravana</td>
<td>280 0 30 0</td>
<td>280 0</td>
<td>6 20</td>
<td>10 0</td>
<td>10 40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Çravishtha</td>
<td>290 0 36 0</td>
<td>291 30</td>
<td>13 30</td>
<td>30 0</td>
<td>30 40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Çatvahishaj</td>
<td>12 20 320 0</td>
<td>0 30 S</td>
<td>322 10</td>
<td>15 40 S</td>
<td>6 0</td>
<td>6 0</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>P-Śhadrapadâ</td>
<td>6 0 326 0</td>
<td>24 0</td>
<td>328 10</td>
<td>10 50 N</td>
<td>11 0</td>
<td>10 30</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>U-Śhadrapadâ</td>
<td>3 40 337 0</td>
<td>26 0</td>
<td>338 40</td>
<td>16 50</td>
<td>22 50</td>
<td>21 10</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Revati</td>
<td>13 10 359 50</td>
<td>0 0</td>
<td>359 50</td>
<td>0 0</td>
<td>8 10</td>
<td>7 40</td>
<td></td>
</tr>
</tbody>
</table>
circle through that pole. Thus, in the figure, the declination (krānti) of S would be ε, or the distance of a from the equator at ε; its latitude (vikshepa) is a S, or its distance from a. We have, accordingly, the same term used here as before. To designate the position in longitude of a, on the other hand, we have a new term, dhruva, or, as below, (v. 12, 15), dhruvaka. This comes from the adjective dhruva, “fixed, immovable,” by which the poles of the heaven (see below, xii. 43) are designated; and, if we do not mistake its application, it indicates, as here employed, the longitude of a star as referred to the ecliptic by a circle from the pole. We venture, then, to translate it by “polar longitude,” as we also render vikshepa, in this connection, by “polar latitude,” it being desirable to have for these quantities distinctive names, akin with one another. Colebrooke employs “apparent longitude and latitude,” which are objectionable, as being more properly applied to the results of the process taught in the last chapter (vv. 7–10).

The mode of statement of the polar longitudes is highly artificial and arbitrary: a number is mentioned which, when multiplied by ten, will give the position of each asterism, in minutes, in its own “portion” (bhoga), or arc of 18° 20′ in the ecliptic (see ii. 64).

This passage presents a name for the asterisms, dhishnya, which has not occurred before; it is found once more below, in xi. 21.

2. Forty-eight, forty, sixty-five, fifty-seven, fifty-eight, four, seventy-eight, seventy-six, fourteen,

3. Fifty-four, sixty-four, fifty, sixty, forty, seventy-four, seventy-eight, sixty-four.

4. Fourteen, six, four: Uttara-Ashādhā, (vaičva) is at the middle of the portion (bhoga) of Pūrva-Ashādhā (āpya); Abhijit, likewise, is at the end of Pūrva-Ashādhā; the position of Čravaṇa is at the end of Uttara-Ashādhā;

5. Čravisthā, on the other hand, is at the point of connection of the third and fourth quarters (pada) of Čravaṇa: then, in their own portions, eighty, thirty-six, twenty-two,

6. Seventy-nine. Now their respective latitudes, reckoned from the point of declination (apakrama) of each: ten, twelve, five, north; south, five, ten, nine;

7. North, six; nothing; south, seven; north, nothing, twelve, thirteen; south, eleven, two; then thirty-seven, north;

8. South, one and a half, three, four, nine, five and a half, five; north, also, sixty, thirty, and also thirty-six;

9. South, half a degree; twenty-four, north, twenty-six degrees; nothing—for Aśvinī (dasya), etc., in succession.

The text here assumes that the names of the asterisms, and the order of their succession, are so familiarly known as to render it unnecessary to rehearse them. It has been already noticed (see above, i. 48–51, 55, 58–58, etc.) that a similar assumption was made as regards the names and succession of the months, signs of the zodiac, years of Jupiter’s cycle, and the like. Many of the asterisms have more than one appellation: we present in the annexed table those by which they are more
CHAPTER VIII.

OF THE ASTERISMS.

Contents:—1-9, positions of the asterisms; 10-12, of certain fixed stars; 12, direction to test by observation the accuracy of these positions; 13, splitting of Rohini’s waist; 14-15, how to determine the conjunction of a planet with an asterism; 16-19, which is the junction-star in each asterism; 20-21, positions of other fixed stars.

1. Now are set forth the positions of the asterisms (liba), in minutes. If the share of each one, then, be multiplied by ten, and increased by the minutes in the portions (bhoga) of the past asterisms (dhishnya), the result will be the polar longitudes (dhruve).

The proper title of this chapter is nakshatra-grahayutadhi-kara, “chapter of the conjunction of asterisms and planets,” but the subject of conjunction occupies but a small space in it, being limited to a direction (v. 14-15) to apply, with the necessary modifications, the methods taught in the preceding chapter. The chapter is mainly occupied with such a definition of the positions of the asterisms—to which are added also those of a few of the more prominent among the fixed stars—as is necessary in order to render their conjunctions capable of being calculated.

Before proceeding to give the passage which states the positions of the asterisms, we will explain the manner in which these are defined. In the accompanying figure (Fig. 30), let E L represent the equator, and C L the ecliptic, P and P′ being their respective poles. Let S be the position of any given star, and through it draw the circle of declination P S a. Then a is the point on the ecliptic of which the distance from the first of Aries and from the star respectively are here given as its longitude and latitude. So far as the latitude is concerned, this is not unaccordant with the usage of the treatise hitherto. Latitude (vikshepa, “disjunction”) is the amount by which any body is removed from the declination which it ought to have—that is, from the point of the ecliptic which it ought to occupy—declination (kranti, apakrama) being always, according to the Hindu understanding of the term, in the ecliptic itself. In the case of a planet, whose proper path is in the ecliptic, the point of that circle which it ought to occupy is determined by its calculated longitude: in the case of a fixed star, whose only motion is about the pole of the heavens, its point of declination is that to which it is referred by a
they contain a complete statement and definition of all the different kinds of conjunction recognized and distinguished by technical appellations; nor do they fully set forth the circumstances which determine the result of a hostile "encounter" between two planets: while a detailed explanation of some of the distinctions indicated—as, for instance, when a planet is "powerful" or the contrary—could not be given without entering quite deeply into the subject of the Hindu astrology. This we do not regard ourselves as called upon to do here: indeed, it would not be possible to accomplish it satisfactorily without aid from original sources which are not accessible to us. We shall content ourselves with following the example of the commentator, who explains simply the sense and connection of the verses, as given in our translation, citing one or two parallel passages from works of kindred subject. We would only point out farther that it has been shown in the most satisfactory manner (as by Whish, in Trans. Lit. Soc. Madras, 1827; Weber, in his Indische Studien, ii. 236 etc.) that the older Hindu science of astrology, as represented by Varāha-mihira and others, reposes entirely upon the Greek, as its later forms depend also, in part, upon the Arab; the latter connection being indicated even in the common title of the more modern treatises, tājika, which comes from the Persian tāzīt, "Arab." Weber gives (Ind. Stud. ii. 277 etc.) a translation of a passage from Varāha-mihira's lesser treatise, which states in part the circumstances determining the "power" of a planet in different situations, absolute or relative: partial explanations upon the same subject furnished to the translator in India by his native assistant, agree with these, and both accord closely with the teachings of the Tetrabiblos, the astrological work attributed to Ptolemy.

23. ... Perform in like manner the calculation of the conjunction (samyoga) of the planets with the moon.

This is all that the treatise says respecting the conjunction of the moon with the lesser planets: of the phenomenon, sometimes so striking, of the occultation of the latter by the former, it takes no especial notice. The commentator cites an additional half-verse as sometimes included in the chapter, to the effect that, in calculating a conjunction, the moon's latitude is to be reckoned as corrected by her parallax in latitude (avaṇñati), but rejects it, as making the chapter over-full, and as being superfluous, since the nature of the case determines the application here of the general rules for parallax presented in the fifth chapter. Of any parallax of the planets themselves nothing is said: of course, to calculate the moon's parallax by the methods as already given is, in effect, to attribute to them all a horizontal parallax of the same value with that assigned to the sun, or about 4'.

The final verse of the chapter is a caveat against the supposition that, when a "conjunction" of two planets is spoken of, anything more is meant than that they appear to approach one another; while nevertheless, this apparent approach requires to be treated of, on account of its influence upon human fates.

24. Unto the good and evil fortune of men is this system set forth: the planets move on upon their own paths, approaching one another at a distance.
south line, and it would only be necessary to set the second gnomon as far south of the first as the end of the shadow cast by the southern star was north of that cast by the other. Then, if a hole were sunk in the ground at the point of intersection of the two shadows, and a person enabled to place his eye there, he would, at the proper moment, see both the planets with the same glance, and each at the apex of its own gnomon.

In the eighteenth verse also we have ventured to disregard the authority of the commentator: he translates the words ērktūlyatām īḷas "come within the sphere of sight," while we understand by ērktūlyatā, as in other cases (ii. 14; iii. 11), the coincidence between observed and computed position.

Such passages as this and the preceding are not without interest and value, as exhibiting the rudeness of the Hindu methods of observation, and also as showing the unimportant and merely illustrative part which observation was meant to play in their developed system of astronomy.

18. . . . When there is contact of the stars, it is styled "depiction" (ulekhā); when there is separation, "division" (bhedā); 19. An encounter (yuddha) is called "ray-obliteration" (āncuvimārda) when there is mutual mingling of rays: when the interval is less than a degree, the encounter is named "dexter" (aṇopasavya)—if, in this case, one be faint (aṇu).

20. If the interval be more than a degree, it is "conjunction" (samāgama), if both are ended with power (bala). One that is vanquished (jīta) in a dexter encounter (aṇopasavya yuddha), one that is covered, faint (aṇu), destitute of brilliancy,

21. One that is rough, colorless, struck down (vidhvasta), situated to the south, is utterly vanquished (vijīta). One situated to the north, having brilliancy, large, is victor (jayin)—and even in the south, if powerful (bālin).

22. Even when closely approached, if both are brilliant, it is "conjunction" (samāgama); if the two are very small, and struck down, it is "front" (kūta) and "conflict" (vigrāha), respectively. 23. Venus is generally victor, whether situated to the north or to the south. . . .

In this passage, as later in a whole chapter (chap. xi), we quit the proper domain of astronomy, and trench upon that of astrology. However intimately connected the two sciences may be in practice, they are, in general, kept distinct in treatment—the Siddhāntas, or astronomical text-books, furnishing, as in the present instance, only the scientific basis, the data and methods of calculation of the positions of the heavenly bodies, their eclipses, conjunctions, risings and settings, and the like, while the Sanhitās, Jātakas, Taḍikas, etc., the astrological treatises, make the superstitious applications of the science to the explanation of the planetary influences, and their determination of human fates. Thus the celebrated astronomer, Varāha-mihira, besides his astronomies, composed separate astrological works, which are still extant, while the former have become lost. It is by no means impossible that these verses may be an interpolation into the original text of the Sūrya-Siddhānta. They form only a disconnected fragment: it is not to be supposed that
mined as that which the sun actually casts. As no case of precisely this character has hitherto been presented, we will briefly indicate the course of the calculation. The day and night of the planet, and its distance from the meridian, or its hour-angle, are found in the same manner as in the process previously explained (p. 312, above), excepting that here the planet’s latitude, and its declination as affected by latitude, must be calculated, by ii. 56–58; and then the hour-angle and the ascensional difference, by iii. 34–36, give the length of the shadow at the given time, together with that of its hypotenuse. The question would next be in what direction to lay off the shadow from the base of the gnomon. This is accomplished by means of the base (bhuya) of the shadow, or its value when projected on a north and south line. From the declination is found, by iii. 20–22, the length of the noon-shadow and its hypotenuse, and from the latter, with the declination, comes, by iii. 22–23, the measure of amplitude (agra) of the given shadow; whence, by iii. 23–25, is derived its base. Having thus both its length and the distance of its extremity from an east and west line running through the base of the gnomon, we lay it off without difficulty.

16. Take two gnomons, five cubits (hasta) in height, stationed according to the variation of direction, separated by the interval of the two planets, and buried at the base one cubit.

17. Then fix the two hypotenuses of the shadow, passing from the extremity of the shadow through the apex of each gnomon: and, to a person situated at the point of union of the extremities of the shadow and hypotenuse, exhibit

18. The two planets in the sky, situated at the apex each of its own gnomon, and arrived at a coincidence of observed place (dry). . . .

This is a proceeding of much the same character with that which forms the subject of the preceding passage. In order to make apprehensible, by observation, the conjunction of two planets, as calculated by the methods of this chapter, two gnomons, of about the height of a man, are set up. At what distance and direction from one another they are to be fixed is not clearly shown. The commentator interprets the expression “interval of the two planets” (v. 16), to mean their distance in minutes on the secondary to the prime vertical, as ascertained according to verse 12, above, reduced to digits by the method taught in iv. 26; while, by “according to the variation of direction,” he would understand merely, in the direction from the observer of the hemisphere in which the planets at the moment of conjunction are situated. The latter phrase, however, as thus explained, seems utterly nugatory; nor do we see of what use it would be to make the north and south interval of the bases of the gnomons, in digits, correspond with that of the planets in minutes. We do not think it would be difficult to understand the directions given in the text as meaning, in effect, that the two gnomons should be so stationed as to cast their shadows to the same point: it would be easy to do this, since, at the time in question, the extremities of two shadows cast from one gnomon by the two stars would be in the same north and
The second term of this proportion is represented by radius: for the first we have, according to the translation given, one half the sum of radius and the fourth hypothenuse, by which is meant the "variable hypothenuse" (cala-karna) found in the course of the fourth, or last, process for finding the true place of the planet (see above, ii. 43-45). The term, however (tricatukkarna), which is translated "radius and the fourth hypothenuse" is much more naturally rendered "third and fourth hypothenuses"; and the latter interpretation is also mentioned by the commentator as one handed down by tradition (sāṃpradāyika); but, he adds, owing to the fact that the length of the hypothenuse is not calculated in the third process, that for finding finally the equation of the centre (manda-karman), and that that hypothenuse cannot therefore be referred to here as known, modern interpreters understand the first member of the compound (tri) as an abbreviation for "radius" (trijyā), and translate it accordingly. We must confess that the other interpretation seems to us to be powerfully supported by both the letter of the text and the reason of the matter. The substitution of tri for trijyā in such a connection is quite too violent to be borne, nor do we see why half the sum of radius and the fourth hypothenuse should be taken as representing the planet's true distance, rather than the fourth hypothenuse alone, which was employed (see above, ii. 56-58) in calculating the latitude of the planets. On the other hand, there is reason for adopting, as the relative value of a planet's true distance, the average, or half the sum, of the third hypothenuse, or the planet's distance as affected by the eccentricity of its orbit, and the fourth, or its distance as affected by the motion of the earth in her orbit. There seems to us good reason, therefore, to suspect that verse 14—and with it, probably, also verse 13—is an intrusion into the Śūrya-Siddhānta from some other system, which did not make the grossly erroneous assumption, pointed out under ii. 39, of the equality of the sine of anomaly in the epicycle (bhujiya-phala) with the sine of the equation, but in which the hypothenuse and the sine of the equation were duly calculated in the process for finding the equation of the apsis (manda-karman), as well as in that for finding the equation of the conjunction (cikhara-karman).

15. Exhibit, upon the shadow-ground, the planet at the extremity of its shadow reversed: it is viewed at the apex of the gnomon in its mirror.

As a practical test of the accuracy of his calculations, or as a convincing proof to the pupil or other person of his knowledge and skill, the teacher is here directed to set up a gnomon upon ground properly prepared for exhibiting the shadow, and to calculate and lay off from the base of the gnomon, but in the opposite to the true direction, the shadow which a planet would cast at a given time; upon placing, then, a horizontal mirror at the extremity of the shadow, the reflected image of the planet's disk will be seen in it at the given time by an eye placed at the apex of the gnomon. The principle of the experiment is clearly correct, and the rules and processes taught in the second and third chapters afford the means of carrying it out, since from them the shadow which any star would cast, had it light enough, may be as readily deter-
13. The diameters upon the moon's orbit of Mars, Saturn, Mercury, and Jupiter, are declared to be thirty, increased successively by half the half; that of Venus is sixty.

14. These, divided by the sum of radius and the fourth hypothenuse, multiplied by two, and again multiplied by radius, are the respective corrected (sphuta) diameters; divided by fifteen, they are the measures (māna) in minutes.

We have seen above, in connection with the calculation of eclipses (iv. 2–5), that the diameters of the sun, moon, and shadow had to be reduced, for measurement in minutes, to the moon's mean distance, at which fifteen yojanas make a minute of arc. Here we find the dimensions of the five lesser planets, when at their mean distances from the earth, stated only in the form of the portion of the moon's mean orbit covered by them, their absolute size being left undetermined. We add them below, in a tabular form, both in yojanas and as reduced to minutes, appending also the corresponding estimates of Tycho Brahe (which we take from Delambre), and the true apparent diameters of the planets, as seen from the earth at their greatest and least distances.

Apparent Diameters of the Planets, according to the Sūrya-Siddhānta, to Tycho Brahe, and to Modern Science.

<table>
<thead>
<tr>
<th>Planet</th>
<th>Sūrya-Siddhānta:</th>
<th>Tycho Brahe:</th>
<th>Moderns:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>in yojanas.</td>
<td>in arc.</td>
<td>least.</td>
</tr>
<tr>
<td>Mars</td>
<td>30</td>
<td>2'</td>
<td>1' 40''</td>
</tr>
<tr>
<td>Saturn</td>
<td>37½</td>
<td>3' 30''</td>
<td>1' 50''</td>
</tr>
<tr>
<td>Mercury</td>
<td>45</td>
<td>3'</td>
<td>2' 30''</td>
</tr>
<tr>
<td>Jupiter</td>
<td>52⅓</td>
<td>3' 30''</td>
<td>2' 45''</td>
</tr>
<tr>
<td>Venus</td>
<td>60</td>
<td>4'</td>
<td>3' 15''</td>
</tr>
</tbody>
</table>

This table shows how greatly exaggerated are wont to be any determinations of the magnitude of the planetary orbs made by the unassisted eye alone. This effect is due to the well-known phenomenon of the irradiation, which increases the apparent size of a brilliant body when seen at some distance. It will be noticed that the Hindu estimates do not greatly exceed those of Tycho, the most noted and accurate of astronomical observers prior to the invention of the telescope. In respect to order of magnitude they entirely agree, and both accord with the relative apparent size of the planets, except that to Mercury and Venus, whose proportional brilliancy, from their nearness to the sun, is greater, is assigned too high a rank. Tycho also established a scale of apparent diameters for the fixed stars, varying from 2', for the first magnitude, down to 20'', for the sixth. We do not find that Ptolemy made any similar estimates, either for planets or for fixed stars.

The Hindus, however, push their empiricism one step farther, gravely laying down a rule by which, from these mean values, the true values of the apparent diameters at any given time may be found. The fundamental proportion is, of course,

ecliptic as determined by a secondary to the equator, which was ascer-
tained by the preceding process, is evidently as the text states it in verse
9. In the eastern hemisphere, which is the case illustrated by the figure,
s'v is additive to the longitude of \(\alpha' \), while \(\omega \varepsilon \) v is subtractive from the
longitude of \(\omega' \): in the western hemisphere, the contrary would be the
case. The final result thus arrived at is the longitude of the two points
\(\alpha \) and \(\varepsilon \), to which \(\Sigma \) and \(\nu \) are referred by the circles \(\Sigma N \) and \(\nu N \),
drawn through them from the north and south points of the horizon.

The many inaccuracies involved in these calculations are too palpable
to require pointing out in detail. The whole operation is a roughly
approximative one, of which the errors are kept within limits, and the
result rendered sufficiently correct, only by the general minuteness of
the quantity entering into it as its main element—namely, the latitude
of a planet—and by the absence of any severe practical test of its accu-
rac \(y \). It may be remarked that the commentary is well aware of, and
points out, most of the errors of the processes, excusing them by its
stereotyped plea of their insignificance, and the merciful disposition of
the divine author of the treatise.

Having thus obtained \(\alpha \) and \(\varepsilon \), the apparent longitudes of the two
planets at the time when their true longitude is \(\Sigma \), the question arises,
how we shall determine the time of apparent conjunction. Upon this
point the text gives us no light at all: according to the commentary, we
are to repeat the process prescribed in verses 2–6 above, determining,
from a consideration of the rate and direction of motion of the planets
in connection with their new places, whether the conjunction sought for
is past or to come, and then ascertaining, by dividing the distance \(\varepsilon \)
by their daily rate of approach or recession, the time of the conjunction.
It is evident, however, that one of the elements of the process of correc-
tion for latitude (akshad\(\varepsilon \)kkarman), namely the meridian-distance, is
changing so rapidly, as compared with the slow motion of the planets in
their orbits, that such a process could not yield results at all approaching
to accuracy: it also appears that two slow-moving planets might have
more than one, and even several apparent conjunctions on successive
days, at different times in the day, being found to stand together upon
the same secondary to the prime vertical at different altitudes. We
do not see how this difficulty is met by anything in the text or in
the commentary. The text, assuming the moment of apparent conjunc-
tion to have been, by whatever method, already determined, goes on to
direct us, in verse 12, to calculate anew, for that moment, the longitudes
of the two planets, in order to obtain their distance from one another.
Here, again, is a slight inaccuracy: the interval between the two, meas-
ured upon a secondary to the prime vertical, is not precisely equal to
the sum or difference of their latitudes, which are measured upon second-
aries to the ecliptic. The ascertainment of this interval is necessary, in
order to determine the name and character of the conjunction, as will
appear farther on (vv. 18–20, 22).

The cases mentioned in verse 11, in which, as well as in calculating
the conjunctions of two planets with one another, this operation for
apparent longitude (dr\(\varepsilon \)kkarman) needs to be performed, are the subjects
of the three following chapters.
Having the longitude of the point in question (M in the last figure), we calculate (by ii. 28) its declination, which gives us (by ii. 60) the radius of its diurnal circle, and (by ii. 61) its ascensional difference; whence, again, is derived (by ii. 62-63) the length of its day and night. Again, having the time of conjunction at M, we easily calculate the sun's longitude at the moment, and this and the time together give us (by iii. 46-48) the longitude of C, the orient ecliptic-point: then (by iii. 50) we ascertain directly the difference between the time when M rose and that when C rises, which is the altitude in time (unāta) of M: the difference between this and the half-day is the meridian-distance in time (nata) of the same point. If the conjunction takes place when M is below the horizon, or during its night, its distance from the horizon and from the inferior meridian is determined in like manner.

The direct object of this part of the general process being to find the value of \(s \cdot s'\), we note first that that distance is evidently greatest at the horizon; farther, that it disappears at the meridian, where the lines PS and NS coincide. If, then, it is argued, its value at the horizon can be ascertained, we may assume it to vary as the distance from the meridian. The accompanying figure (Fig. 29) will illustrate the method by which it is attempted to calculate \(s \cdot s'\) at the horizon. Suppose the planet S, being removed in latitude to the distance MS from M, the point of the ecliptic which determines its longitude, to be upon the horizon, and let \(s'\), as before, be the point to which it is referred by a circle from the north pole: it is desired to determine the value of \(s \cdot s'\). Let DR be the circle of diurnal revolution of the point M, meeting SS' in t, and the horizon in w:

![Fig. 29](image)

S'tw may be regarded as a plane right-angled triangle, having its angles at S and w respectively equal to the observer's latitude and co-latitude. In that triangle, to find the value of tw, we should make the proportion

\[
\cos tS = \sin tS \cdot w : tS : tw
\]

Now the first of these ratios, that of the cosine to the sine of latitude, is (see above, iii. 17) the same with that of the gnomon to the equinoctial shadow: again, as the difference of Mt and Ms was in the preceding process neglected, so here the difference of SM and St; and finally, tw, the true result of the process, is accepted as the equivalent of \(s \cdot s'\), the distance sought. The proportion then becomes

\[
\text{gnom. : eq. shad. : : latitude : required dist. at horizon}
\]

The value of the required distance at the horizon having been thus ascertained, its value at any given altitude is, as pointed out above, determined by a proportion, as follows: as the planet's distance in time from the meridian when upon the horizon is to the value of this correction at the horizon, so is any given distance from the meridian (nata) to the value at that distance; or

\[
\text{half-day : mer. dist. in time : : result of last proportion : required distance}
\]

The direction in which the distance thus found is to be reckoned, starting in each case from the āyana graha, or place of the planet on the
all the quantities which it contains being in terms of minutes. To bring this proportion, now, to the form in which it appears in the text, it is made to undergo a most fantastic and unscientific series of alterations. The greatest declination (ii. 28) being 24°, and its sine 1397', which is nearly fifty-eight times twenty-four—since $58 \times 24 = 1392$—it is assumed that fifty-eight times the number of degrees in any given arc of declination will be equal to the number of minutes in the sine of that arc. Again, the value of radius, 3438', admits of being roughly divided into the two factors fifty-eight and sixty—since $58 \times 60 = 3480$. Substituting, then, these values in the proportion as stated, we have

$$58 \times 60 : 58 \times \text{decl. } M' \text{ in degr. : : latitude in min. : } M' t$$

Cancelling, again, the common factor in the first two terms, and transferring the factor 60 to the fourth term, we obtain finally

$$1 : \text{decl. } M' \text{ in degr. : : latitude in min. : } M' t \times 60$$

that is to say, if the latitude of the planet, in minutes, be multiplied by the declination, in degrees, of a point 90° in advance of the planet, the result will be a quantity which, after being divided by sixty, or reduced from seconds to minutes, is to be accepted as the required interval on the ecliptic between the real place of the planet and the point to which it is referred by a secondary to the equator.

This explanation of the rule is the one given by the commentator, nor are we able to see that it admits of any other. The reduction of the original proportion to its final form is a process to which we have heretofore found no parallel, and which appears equally absurd and uncalled for. That $M' t$ is taken as equivalent to $M' t$ has, as will appear from a consideration of the next process, a certain propriety.

The value of the arc $M s'$ being thus found, the question arises, in which direction it shall be measured from M. This depends upon the position of M with reference to the solstitial colure. At the colure, the lines $P S$ and $P S$ coincide, so that, whatever be the latitude of a planet, it will, by a secondary to the equator, be referred to the ecliptic at its true point of longitude. From the winter solstice onward to the summer solstice, or when the point M is upon the sun's northward path (utтарāyana), a planet having north latitude will be referred backward on the ecliptic by a circle from the pole, and a planet having south latitude will be referred forward. If M, on the other hand, be upon the sun's southward path (dakshināyana), a planet having north latitude at that point will be referred forward, and one having south latitude backward: this is the case illustrated by the figure. The statement of the text virtually agrees with this, it being evident that, when M is on the northward path, the declination of the point 90° in advance of it will be north; and the contrary.

We come now to consider the other part of the operation, or the ākha ārākṣa, which forms the subject of verses 7-9. As the first step, we are directed to ascertain the day and the night respectively of the point of the ecliptic at which the two planets are in conjunction in longitude, for the purpose of determining also its distance in time from the horizon and from the meridian. This is accomplished as follows.
in order to find $M s$, we ascertain the values of $s s'$ and $M s'$; and, in like manner, to find $M v$, we ascertain the values of $v v'$ and $M v'$. Now at the equator, or in a right sphere, the circles $N S$ and $P S$ would coincide, and the distance $s s'$ disappear; hence, the amount of $s s'$ being dependent upon the latitude (oksha) of the observer, $N P$, the process by which it is calculated is called the “operation for latitude” (akshadrykarman, or else aksha dṛkkarman). Again, if P and P' were the same point, or if the ecliptic and equator coincided, $P S$ and $P' S$ would coincide, and $M s'$ would disappear; hence the process of calculation of $M s'$ is called the “operation for ecliptic-deviation” (ayanadrykarman, or ayanakalas dṛkkarman). The latter of the two processes, although stated after the other in the text, is the one first explained by the commentary: we will also, as in the case of the deflection (note to iv, 24–25), give to it our first attention.

The point s', to which the planet is referred by a circle passing through the pole P, is styled by the commentary ayanagrha, “the planet’s longitude as corrected for ecliptic-deviation,” and the distance $M s'$, which it is desired to ascertain, is called ayanakalas, “the correction, in minutes, for ecliptic-deviation.” Instead, however, of finding $M s'$, the process taught in the text finds $M t$, the corresponding distance on the circle of daily revolution, $D R$, of the point M—which is then assumed equal to $M s'$. The proportion upon which the rule, as stated in verse 10, is ultimately founded, is

$$R : \sin MS : : MS : Mt$$

the triangle $MS t$, which is always very small, being treated as if it were a plane triangle, right-angled at t. But now also, as the latitude MS is always a small quantity, the angle $P S P'$ may be treated as if equal to $P MP'$ (not drawn in the figure); and this angle is, as was shown in connection with iv, 24–25, the deflection of the ecliptic from the equator ($aõana valana$) at M, which is regarded as equal to the declination of the point 90° in advance of M; this point, for convenience’s sake, we will call M'. Our proportion becomes, then
8. Multiply the latitude by the equinoctial shadow, and divide by twelve; the quotient multiply by the meridian-distance in nādis, and divide by the corresponding half-day:

9. The result, when latitude is north, is subtractive in the eastern hemisphere, and additive in the western; when latitude is south, on the other hand, it is additive in the eastern hemisphere, and likewisesubtractive in the western.

10. Multiply the minutes of latitude by the degrees of declination of the position of the planet increased by three signs: the result, in seconds (vikalā), is additive or subtractive, according as declination and latitude are of unlike or like direction.

11. In calculating the conjunction (yoga) of a planet and an asterism (nakshatra), in determining the setting and rising of a planet, and in finding the elevation of the moon’s cusps, this operation for apparent longitude (drkkarman) is first prescribed.

12. Calculate again the longitudes of the two planets for the determined time, and from these their latitudes; when the latter are of the same direction, take their difference; otherwise, their sum: the result is the interval of the planets.

The whole operation for determining the point on the ecliptic to which a planet, having a given latitude, will be referred by a secondary to the prime vertical, is called its drkkarman. Both parts of this compound we have had before—the latter, signifying “operation, process of calculation,” in ii. 37, 42, etc.—for the former, see the notes to iii. 28-34, and v. 5-6: here we are to understand it as signifying the “apparent longitude” of a planet, when referred to the ecliptic in the manner stated, as distinguished from its true or actual longitude, reckoned in the usual way: we accordingly translate the whole term, as in verse 11, “operation for apparent longitude.” The operation, like the somewhat analogous one by which the ecliptic-deflection (valana) is determined (see above, iv. 24-25), consists of two separate processes, which receive in the commentary distinct names, corresponding with those applied to the two parts of the process for calculating the deflection. The whole subject may be illustrated by reference to the next figure (Fig. 28). This represents the projection of a part of the sphere upon a horizontal plane, N and E being the north and east points of the horizon, and Z the zenith. Let C L be the position of the ecliptic at the moment of conjunction in longitude, C being the orient ecliptic-point (lagna); and let M be the point at which the conjunction in longitude of the two planets S and V, each upon its parallel of celestial latitude, c l and c’l, and having latitude equal to SM and V M respectively, will take place. Through V and S draw secondaries to the prime vertical, N V and N S, meeting the ecliptic in v and s: these latter are the points of apparent longitude of the two planets, which are still removed from a true conjunction by the distance v s; in order to the ascertainment of the time of that true conjunction, it is desired to know the positions of v and s, or their respective distances from M. From P, the pole of the equator, draw also circles through the two planets, meeting the ecliptic in s’ and v’: then,
determining whether the conjunction is past or to come, and at what distance, in arc and in time, three separate cases require to be taken into account—when both are advancing, when both are retrograding, and when one is advancing and the other retrograding. In the two former cases, the planets are approaching or receding from one another by the difference of their daily motions; in the latter, by the sum of their daily motions. The point of conjunction will be found by the following proportion: as the daily rate at which the two are approaching or receding from each other is to their distance in longitude, so is the daily motion of each one to the distance which it will have to move before, or which it has moved since, the conjunction in longitude. The time, again, elapsed or to elapse between the given moment and that of the conjunction, will be found by dividing the distance in longitude by the same divisor as was used in the other part of the process, namely the daily rate of approach or separation of the two planets.

The only other matter which seems to call for more special explanation than is to be found in the text is, at what moment the process of calculation, as thus conducted, shall commence. If a time be fixed upon which is too far removed—as, for instance, by an interval of several days—from the moment of actual conjunction, the rate of motion of the two planets will be liable to change in the mean time so much as altogether to vitiate the correctness of the calculation. It is probable that, as in the calculation of an eclipse (see above, note to iv. 7–8), we are supposed, before entering upon the particular process which is the subject of this passage, to have ascertained, by previous tentative calculations, the midnight next preceding or following the conjunction, and to have determined for that time the longitudes and rates of motion of the two planets. If so, the operation will give, without farther repetition, results having the desired degree of accuracy. The commentary, it may be remarked, gives us no light upon this point, as it gave us none in the case of the eclipse.

We have not, however, thus ascertained the time and place of the conjunction. This, to the Hindu apprehension, takes place, not when the two planets are upon the same secondary to the ecliptic, but when they are upon the same secondary to the prime vertical, or upon the same circle passing through the north and south points of the horizon. Upon such a circle two stars rise and set simultaneously; upon such a one they together pass the meridian: such a line, then, determines approximately their relative height above the horizon, each upon its own circle of daily revolution. We have also seen above, when considering the deflection (valana—see iv. 24–25), that a secondary to the prime vertical is regarded as determining the north and south directions upon the starry concave. To ascertain what will be the place of each planet upon the ecliptic when referred to it by such a circle is the object of the following processes.

7. Having calculated the measure of the day and night, and likewise the latitude (vishhepa), in minutes; having determined the meridian-distance (nata) and altitude (unnata), in time, according to the corresponding orient ecliptic-point (layna)
junction, is vanquished or victor; 22, farther definition of different kinds of conjunction; 23, usual prevalence of Venus in a conjunction; 23, planetary conjunctions with the moon; 24, conjunctions apparent only; why calculated.

1. Of the star-planets there take place, with one another, encounter (yuddha) and conjunction (samāgama); with the moon, conjunction (samāgama); with the sun, heliacal setting (astamana).

The “star-planets” (tārāgraha) are, of course, the five lesser planets, exclusive of the sun and moon. Their conjunctions with one another and with the moon, with the asterisms (nakṣatra), and with the sun, are the subjects of this and the two following chapters.

For the general idea of “conjunction” various terms are indifferently employed in this chapter, as samāgama, “coming together”, samyoga, “conjunction,” yoga, “junction” (in viii. 14, also, meloka, “meeting”): the word yuti, “union,” which is constantly used in the same sense by the commentary, and which enters into the title of the chapter, graha-yutyadhiikāra, does not occur anywhere in the text. The word which we translate “encounter,” yuddha, means literally “war, conflict.” Verses 18–20, and verse 22, below, give distinctive definitions of some of the different kinds of encounter and conjunction.

2. When the longitude of the swift-moving planet is greater than that of the slow one, the conjunction (samyoga) is past; otherwise, it is to come: this is the case when the two are moving eastward; if, however, they are retrograding (vākris), the contrary is true.

3. When the longitude of the one moving eastward is greater, the conjunction (samāgama) is past; but when that of the one that is retrograding is greater, it is to come. Multiply the distance in longitude of the planets, in minutes, by the minutes of daily motion of each,

4. And divide the products by the difference of daily motions, if both are moving with direct, or both with retrograde, motion: if one is retrograding, divide by the sum of daily motions.

5. The quotient, in minutes, etc., is to be subtracted when the conjunction is past, and added when it is to come: if the two are retrograding, the contrary: if one is retrograding, the quotients are additive and subtractive respectively.

6. Thus the two planets, situated in the zodiac, are made to be of equal longitude, to minutes. Divide in like manner the distance in longitude, and a quotient is obtained which is the time, in days, etc.

The object of this process is to determine where and when the two planets of which it is desired to calculate the conjunction will have the same longitude. The directions given in the text are in the main so clear as hardly to require explication. The longitude and the rate of motion of the two planets in question is supposed to have been found for some time not far removed from that of their conjunction. Then, in
The method of these processes is so clear as to call for no detailed explanation. The centre of the eclipsing body being supposed to be always in the arc \(11^\circ l\), drawn as directed in the last passage, we have only to fix a point in this arc which shall be at a distance from \(M\) corresponding to the calculated distance of the centres at the given time, and from that point to describe a circle of the dimensions of the eclipsed body, and the result will be a representation of the then phase of the eclipse. If the point thus fixed be distant from \(M\) by the difference of the two semi-diameters, as \(M i', M e'\), the circles described will touch the disk of the eclipsed body at the points of immersion and emergence, \(i\) and \(e\).

23. The part obscured, when less than half, will be dusky (\(sudhāmṛa\)); when more than half, it will be black; when emerging, it is dark copper-color (\(krṣṇatāmṛa\)); when the obscuration is total, it is tawny (\(kapila\)).

The commentary adds the important circumstance, omitted in the text, that the moon alone is here spoken of; no specification being added with reference to the sun, because, in a solar eclipse, the part obscured is always black.

A more suitable place might have been found for this verse in the fourth chapter, as it has nothing to do with the projection of an eclipse.

24. This mystery of the gods is not to be imparted indiscriminately: it is to be made known to the well-tried pupil, who remains a year under instruction.

The commentary understands by this mystery, which is to be kept with so jealous care, the knowledge of the subject of this chapter, the delineation of an eclipse, and not the general subject of eclipses, as treated in the past three chapters. It seems a little curious to find a matter of so subordinate consequence heralded so pompously in the first verse of the chapter, and guarded so cautiously at its close.

CHAPTER VII.
OF PLANETARY CONJUNCTIONS.

Contents:—1, general classification of planetary conjunctions; 2–6, method of determining at what point on the ecliptic, and at what time, two planets will come to have the same longitude; 7–10, how to find the point on the ecliptic to which a planet, having latitude, will be referred by a circle passing through the north and south points of the horizon; 11, when a planet must be so referred; 12, how to ascertain the interval between two planets when in conjunction upon such a north and south line; 13–14, dimensions of the lesser planets; 15–18, modes of exhibiting the coincidence between the calculated and actual places of the planets; 18–20, definition of different kinds of conjunction; 20–21, when a planet, in con-
that of the middle, and likewise between that of the separation and that of the middle,

15. Describe two fish-figures (matsya): from the middle of these having drawn out two lines projecting through the mouth and tail, wherever their intersection takes place,

16. There, with a line touching the three points, describe an arc: that is called the path of the eclipsing body, upon which the latter will move forward.

The deflection and the latitude of three points in the continuance of the eclipse having been determined and laid down upon the projection, it is deemed unnecessary to take the same trouble with regard to any other points, these three being sufficient to determine the path of the eclipsing body: accordingly, an arc of a circle is drawn through them, and is regarded as representing that path. The method of describing the arc is the same with that which has already been more than once employed (see above, iii. 1-4, 41-42): it is explained here with somewhat more fullness than before. Thus, in the figure, l, l', and l'' are the three extremities of the moon’s latitude, at the points of contact, opposition, and separation, respectively: we join $l l''$, $l'' l'$, and upon these lines describe fish-figures (see note to iii. 1-5); their two extremities (‘mouth’ and ‘tail’) are indicated by the intersecting dotted lines in the figure: then, at the point, not included in the figure, where the lines drawn through them meet one another, is the centre of a circle passing through l, l', and l''.

17. From half the sum of the eclipsed and eclipsing bodies subtract the amount of obscuration, as calculated for any given time: take a little stick equal to the remainder, in digits, and, from the central point,

18. Lay it off toward the path upon either side—when the time is before that of greatest obscuration, toward the side of contact; when the obscuration is decreasing, in the direction of separation—and where the stick and the path of the eclipsing body

19. Meet one another, from that point describe a circle with a radius equal to half the eclipsing body: whatever of the eclipsed body is included within it, that point out as swallowed up by the darkness (tamas).

20. Take a little stick equal to half the difference of the measures (māna), and lay it off in the direction of contact, calling it the stick of immersion (nimilana): where it touches the path,

21. From that point, with a radius equal to half the eclipsing body, draw a circle, as in the former case: where this meets the circle of the eclipsed body, there immersion takes place.

22. So also for the emergence (unmilana), lay it off in the direction of separation, and describe a circle, as before: it will show the point of emergence in the manner explained.
upon it. The point \(l^o \) is, accordingly, the position of the centre of the shadow at the middle of the eclipse, and if from that centre, with a radius equal to the semi-diameter of the eclipsing body, a circle be drawn, it will include so much of the disk of the eclipsed body as is covered when the obscuration is greatest. In the figure the eclipse is shown as total, the Hindu calculations making it so, although, in fact, it is only a partial eclipse.

12. By the wise man who draws the projection (chedya\(\text{\r{k}} \)a), upon the ground or upon a board, a reversal of directions is to be made in the eastern and western hemispheres.

This verse is inserted here in order to remove the objection that, in the eastern hemisphere, indeed, all takes place as stated, but, if the eclipse occurs west of the meridian, the stated directions require to be all of them reversed. In order to understand this objection, we must take notice of the origin and literal meaning of the Sanskrit words which designate the cardinal directions. The face of the observer is supposed always to be eastward: then "east" is pr\(\text{\r{a}} \)\(\text{\r{n}} \), "forward, toward the front"; "west" is pac\(\text{\r{c}} \)\(\text{\r{\acute{a}}} \), "backward, toward the rear"; "south" is dakh\(\text{\r{n}} \)\(\text{\r{i}} \)\(\text{\r{n}} \), "on the right"; "north" is ut\(\text{\r{\acute{a}}} \)\(\text{\r{r}} \)\(\text{\r{a}} \), "upward" (i.e., probably, toward the mountains, or up the course of the rivers in north-western India). These words apply, then, in etymological strictness, only when one is looking eastward—and so, in the present case, only when the eclipse is taking place in the eastern hemisphere, and the projector is watching it from the west side of his projection, with the latter before him; if, on the other hand, he removes to E, turning his face westward, and comparing the phenomena as they occur in the western hemisphere with his delineation of them, then "forward" (pr\(\text{\r{\acute{a}}} \)\(\text{\r{n}} \)) is no longer east, but west; "right" (dakh\(\text{\r{n}} \)\(\text{\r{i}} \)\(\text{\r{n}} \)) is no longer south, but north, etc.

It is unnecessary to point out that this objection is one of the most frivolous and hair-splitting character, and its removal by the text a waste of trouble: the terms in question have fully acquired in the language an absolute meaning, as indicating directions in space, without regard to the position of the observer.

13. Owing to her clearness, even the twelfth part of the moon, when eclipsed (gr\(\text{\r{\acute{a}}} \)\(\text{\r{\acute{r}}t} \)a), is observable; but, owing to his piercing brilliancy, even three minutes of the sun, when eclipsed, are not observable.

The commentator regards the negative which is expressed in the latter half of this verse as also implied in the former, the meaning being that an obscuration of the moon’s disk extending over only the twelfth part of it does not make itself apparent. We have preferred the interpretation given above, as being better accordant both with the plain and simple construction of the text and with fact.

14. At the extremities of the latitudes make three points, of corresponding names; then, between that of the contact and
8. ... In accordance with this, then, for the middle of the eclipse,
9. The deflection is to be laid off—eastward, when it and the latitude are of the same direction; when they are of different directions, it is to be laid off westward: this is for a lunar eclipse; in a solar, the contrary is the case.
10. From the end of the deflection, again, draw a line to the central point, and upon this line of the middle lay off the latitude, in the direction of the deflection.
11. From the extremity of the latitude describe a circle with a radius equal to half the measure of the eclipsing body: whatever of the disk of the eclipsed body is enclosed within that circle, so much is swallowed up by the darkness (tamas).

The phraseology of the text in this passage is somewhat intricate and obscure; it is fully explained by the commentary, as, indeed, its meaning is also deducible with sufficient clearness from the conditions of the problem sought to be solved. It is required to represent the deflection of the ecliptic from an east and west line at the moment of greatest obscuration, and to fix the position of the centre of the eclipsing body at that moment. The deflection is this time to be determined by a secondary to the ecliptic, drawn from near the north or south point of the figure. The first question is, from which of these two points shall the deflection be laid off, and the line to the centre drawn. Now since, according to verse 10, the latitude itself is to be measured upon the line of deflection, the latter must be drawn southward or northward according to the direction in which the latitude is to be laid off. And this is the meaning of the last part of verse 8; "in accordance," namely, with the direction in which, according to the previous part of the verse, the latitude is to be drawn. But again, in which direction from the north or south point, as thus determined, shall the deflection be measured? This must, of course, be determined by the direction of the deflection itself: if south, it must obviously be measured east from the north point and west from the south point; if north, the contrary. The rules of the text are in accordance with this, although the determining circumstance is made to be the agreement or non-agreement, in respect to direction, of the deflection with the moon’s latitude—the latter being this time reckoned in its own proper direction, and not, in a lunar eclipse, reversed. Thus, in the case for which the figure is drawn, as the moon’s latitude is south, and must be laid off northward from M, the deflection, \(w''w'' \), is measured from the north point; as deflection and latitude are both south, it is measured east from N. In an eclipse of the sun, on the other hand, the moon’s latitude would, if north, be laid off northward, as in the figure, and hence also, the deflection would be measured from the north point: but it would be measured eastward, if its own direction were south, or disagreed with that of the latitude.

The line of deflection, which is \(Mw'' \) in the figure, being drawn, and having the direction of a perpendicular to the ecliptic at the moment of opposition, the moon’s latitude for that moment, \(Ml'' \), is laid off directly
rection. In the case illustrated, the deflection for the contact is north; hence we lay it off northward from E, and then the line drawn from M to v, its extremity—which line represents the direction of the ecliptic at the moment—points northward. Again, upon the side of separation—which, for the moon, is the western side—we lay off the deflection for the moment of separation: but we lay it off from W in the reverse of its true direction, in order that the line from its extremity to the centre may truly represent the direction of the ecliptic. Thus, in the eclipse figured, the deflection for separation is south; we lay it off northward from W, and then the line v'M points, toward M, southward. In a solar eclipse, in which, since the sun's western limb is the first eclipsed, the deflection for contact must be laid off from W, and that for separation from E, the direction of the former requires to be reversed, and that of the latter to be maintained as calculated.

6. From the extremity of either deflection draw a line to the centre: from the point where that cuts the aggregate-circle (samásā) are to be laid off the latitudes of contact and of separation.

7. From the extremity of the latitude, again, draw a line to the central point: where that, in either case, touches the eclipsed body, there point out the contact and separation.

8. Always, in a solar eclipse, the latitudes are to be drawn in the figure (paridekha) in their proper direction; in a lunar eclipse, in the opposite direction ...

The lines v'M and v''M, drawn from v and v', the extremities of the sines or arcs which measure the deflection, to the centre of the figure, represent, as already noticed, the direction of the ecliptic with reference to an east and west line at the moments of contact and separation. From them, accordingly, and at right angles to them, are to be laid off the values of the moon's latitude at those moments. Owing, however, to the principle adopted in the projection, of regarding the eclipsed body as fixed in the centre of the figure, and the eclipsing body as passing over it, the lines v'M and v''M do not, in the case of a lunar eclipse, represent the ecliptic itself, in which is the centre of the shadow, but the small circle of latitude, in which is the moon's centre: hence, in laying off the moon's latitude to determine the centre of the shadow, we reverse its direction. Thus, in the case illustrated, the moon's latitude is always south: we lay off, then, the lines k l and k' l', representing its value at the moments of contact and separation, northward: they are, like the deflection, drawn as sines, and in such manner that their extremities, l and l', are in the aggregate-circle: then, since l'M and l''M are each equal to the sum of the two semi-diameters, and l k and l' k' to the latitudes, k'M and k''M will represent the distances of the centres in longitude, and l and l' the places of the centre of the shadow, at contact and separation: and upon describing circles from l and l', with radii equal to the semi-diameter of the shadow, the points c and c', where these touch the disk of the moon, will be the points of first and last contact: c and c' being also, as stated in the text, the points where l'M and l''M meet the circumference of the disk of the eclipsed body.
observer on the north side of his projection, as at N, and looking southward—a position which, in our latitude, he would naturally assume, for

Fig. 27.

the purpose of comparing the actual phases of the eclipse, as they occurred, with his delineation of them. The heavier circle, $l'l'$, is that drawn with the sum of the semi-diameters, or the "aggregate-circle;" while the outer one, NESW, is that for the deflection. This, in order to reduce the size of the whole figure, we have drawn upon a scale very much smaller than that prescribed; its relative dimensions being a matter of no consequence whatever, provided the sine of the deflection be made commensurate with its radius. In our own, or the Greek, method of laying off an arc, by its angular value, the radius of the circle of deflection would also be a matter of indifference: the Hindus, ignoring angular measurements, adopt the more awkward and bungling method of laying off the arc by means of its sine. Let π be equal the deflection, calculated for the moment of contact, expressed as a sine, and in terms of a circle in which $E M$ is radius. Now, as the moon's contact with the shadow takes place upon her eastern limb, the deflection for the contact must be laid off from the east point of the circle; and, as the calculated direction of the deflection indicates in what way the ecliptic is pointing eastwardly, it must be laid off from E in its own proper di-
The term *chedyaka* is from the root *chid*, “split, divide, sunder,” and indicates, as here applied, the instrumentality by which distinctive differences are rendered evident. The name of the chapter, *parilekhādhikāra*, is not taken from this word, but from *parilekha*, “delineation, figure,” which occurs once below, in the eighth verse.

2. Having fixed, upon a well prepared surface, a point, describe from it, in the first place, with a radius of forty-nine digits (*angula*), a circle for the deflection (*valana*):

3. Then a second circle, with a radius equal to half the sum of the eclipsed and eclipsing bodies; this is called the aggregate-circle (*samāsa*); then a third, with a radius equal to half the eclipsed body.

4. The determination of the directions, north, south, east, and west, is as formerly. In a lunar eclipse, contact (*grahanā*) takes place on the east, and separation (*nakṣha*) on the west; in a solar eclipse, the contrary.

The larger circle, drawn with a radius of about three feet, is used solely in laying off the deflection (*valana*) of the ecliptic from an east and west circle. We have seen above (iv. 24, 25) that the sine of this deflection was reduced to its value in a circle of forty-nine digits' radius, by dividing by seventy its value in minutes. The second circle is employed (see below, vv. 6, 7) in determining the points of contact and separation. The third represents the eclipsed body itself, always maintaining a fixed position in the centre of the figure, even though, in a lunar eclipse, it is the body which itself moves, relatively to the eclipsing shadow. For the scale by which the measures of the eclipsed and eclipsing bodies, the latitudes, etc., are determined, see above, iv. 26.

The method of laying down the cardinal directions is the same with that used in constructing a dial; it is described in the first passage of the third chapter (iii. 1–4).

The specifications of the latter half of verse 4 apply to the eclipsed body, designating upon which side of it obscuration will commence and terminate.

5. In a lunar eclipse, the deflection (*valana*) for the contact is to be laid off in its own proper direction, but that for the separation in reverse; in an eclipse of the sun, the contrary is the case.

The accompanying figure (Fig. 27) will illustrate the Hindu method of exhibiting, by a projection, the various phases of an eclipse. Its conditions are those of the lunar eclipse of Feb. 6th, 1860, as determined by the data and methods of this treatise: for the calculation see the Appendix. Let M be the centre of the figure and the place of the moon, and let NS and EW be the circles of direction drawn through the moon's centre; the former representing (see above, under iv. 24, 25) a great circle drawn through the north and south points of the horizon, the latter a small circle parallel to the prime vertical. In explanation of the manner in which these directions are presented by the figure, we would remark that we have adapted it to a supposed position of the
the effect of the parallax being equivalent either to a diminution of the moon's excess of motion, or to a protraction of the distance of the two centers—both of them in the ratio of the true to the mean half-duration. If then, for instance, it be required to know what will be the amount of obscuration of the sun half an hour after the first contact, we shall first subtract this interval from the true half-duration before conjunction; the remainder will be the actual interval to the middle of the eclipse: this interval, then, we shall reduce to its value as distance in longitude by diminishing it, either before or after its reduction to minutes of arc, in the ratio of the true to the mean half-duration. The rest of the process will be performed precisely as in the case of an eclipse of the moon.

Notwithstanding the ingenuity and approximate correctness of many of the rules and methods of calculation taught in this chapter, the whole process for the ascertainment of parallax contains so many elements of error that it hardly deserves to be called otherwise than cumbrous and bungling. The false estimate of the difference between the sun's and moon's horizontal parallax—the neglect, in determining it, of the variation of the moon's distance—the estimation of its value in time made always according to mean motions, whatever be the true motions of the planets at the moment—the neglect, in calculating the amount of parallax, of the moon's latitude—these, with all the other inaccuracies of the processes of calculation which have been pointed out in the notes, render it impossible that the results obtained should ever be more than a rude approximation to the truth.

In farther illustration of the subject of solar eclipses, as exposed in this and the preceding chapters, we present, in the Appendix, a full calculation of the eclipse of May 26th, 1854, mainly as made for the translator, during his residence in India, by a native astronomer.

CHAPTER VI.

OF THE PROJECTION OF ECLIPSES.

Contents:—1, value of a projection; 2-4, general directions; 5-6, how to lay off the deflection and latitude for the beginning and end of the eclipse; 7, to exhibit the points of contact and separation; 8-10, how to lay off the deflection and latitude for the middle of the eclipse; 11, to show the amount of greatest obscuration; 12, reversal of directions in the western hemisphere; 13, least amount of obscuration observable; 14-16, to draw the path of the eclipsing body; 17-19, to show the amount of obscuration at a given time; 20-22, to exhibit the points of immersion and emergence in a total eclipse; 23, color of the part of the moon obscured; 24, caution as to communicating a knowledge of these matters.

1. Since, without a projection (chedyaka), the precise (sphuta) differences of the two eclipses are not understood, I shall proceed to explain the exalted doctrine of the projection.
repeat the same process (see above, v. 9) by which that for conjunction was found: as we then started from the moment of true conjunction, and, by a series of successive approximations, ascertained the time when the difference of longitude would equal the parallax in longitude, so now we start from two moments removed from that of true conjunction by the equivalents in time of the two distances in longitude obtained by the last process, and, by a similar series of successive approximations, ascertain the times when the differences of longitude, together with the parallax, will equal those distances in longitude.

In the process, as thus conducted, there is an evident inaccuracy. It is not enough to apply the whole correction for parallax in latitude, and then that for parallax in longitude, since, by reason of the change effected by the latter in the times of contact and separation, a new calculation of the former becomes necessary, and then again a new calculation of the latter, and so on, until, by a series of doubly compounded approximations, the true value of each is determined. This was doubtless known to the framers of the system, but passed over by them, on account of the excessively laborious character of the complete calculation, and because the accuracy of such results as they could obtain was not sensibly affected by its neglect.

The question naturally arises, why the specifications of verse 15 are made hypothetical instead of positive, and why, in the latter half of verse 16, a case is supposed which never arises. The commentator anticipates this objection, and takes much pains to remove it: it is not worth while to follow his different pleas, which amount to no real explanation, saving to notice his last suggestion, that, in case an eclipse begins before sunrise, the parallax for its earlier phase or phases, as calculated according to the distance in time from the lower meridian, may be less than for its later phases—and the contrary, when the eclipse ends after sunset. This may possibly be the true explanation, although we are justly surprised at finding a case of so little practical consequence, and to which no allusion has been made in the previous processes, here taken into account.

The text, it may be remarked, by its use of the terms "eastern and western hemispheres" (kapāla, literally "cup, vessel"), repeats once more its substitution of the meridian ecliptic-point (madhyalagna) for the central ecliptic-point (tribhonalagna), as that of no parallax in longitude; the meridian forming the only proper and recognized division of the heavens into an eastern and a western hemisphere.

We are now prepared to see the reason of the special directions given in verses 19 and 23 of the last chapter, respecting the reduction, in a solar eclipse, of distance in time from the middle of the eclipse to distance in longitude of the two centres. The "mean half-duration" (madhyasthūṭiyārdha) of the eclipse is the time during which the true distance of the centres at the moments of contact or separation, as found by the process prescribed in verses 12 and 13 of this chapter, would be gained by the moon with her actual excess of motion, leaving out of account the variation of parallax in longitude; the "true half-duration" (sphūtasthūṭiyārdha) is the increased time in which, owing to that variation, the same distance in longitude is actually gained by the moon;
the separation less; and if, in the western hemisphere, the contrary is the case—

16. Then the difference of parallax in longitude is to be added to the half-duration on the side of separation, and likewise on that of contact (pragrahāna); when the contrary is true, it is to be subtracted.

17. These rules are given for cases where the two parallaxes are in the same hemisphere: where they are in different hemispheres, the sum of the parallaxes in longitude is to be added to the corresponding half-duration. The principles here stated apply also to the half-time of total obscuration.

We are supposed to have ascertained, by the preceding process, the true amount of apparent latitude at the moments of first and last contact of the eclipsed and eclipsing bodies, and consequently to have determined the dimensions of the triangle—corresponding, in a solar eclipse, to C G P, Fig. 21, in a lunar—made up of the latitude, the distance in longitude, and the sum of the two radii. The question now is how the duration of the eclipse will be affected by the parallax in longitude. If this parallax remained constant during the continuance of the eclipse, its effect would be nothing; and, having once determined by it the time of apparent conjunction, we should not need to take it farther into account. But it varies from moment to moment, and the effect of its variation is to prolong the duration of every part of a visible eclipse. For, to the east of the central eclipsing-point, it throws the moon's disk forward upon that of the sun, thus hastening the occurrence of all the phases of the eclipse, but by an amount which is all the time decreasing, so that it hastens the beginning of the eclipse more than the middle, and the middle more than the close: to the west of that same point, on the other hand, it depresses the moon's disk away from the sun's, but by an amount constantly increasing, so that it retards the end of the eclipse more than its middle, and its middle more than its beginning. The effect of the parallax in longitude, then, upon each half-duration of the eclipse, will be measured by the difference between its retarding and accelerating effects upon contact and conjunction, and upon conjunction and separation, respectively: and the amount of this difference will always be additive to the time of half-duration as otherwise determined. If, however, contact and conjunction, or conjunction and separation, take place upon opposite sides of the point of no parallax in longitude, then the sum of the two parallactic effects, instead of their difference, will be to be added to the corresponding half-duration: since the one, on the east, will hasten the occurrence of the former phase, while the other, on the west, will defer the occurrence of the latter phase. The amount of the parallax in longitude for the middle of the eclipse has already been found; if, now, we farther determine its amount—reckoned, it will be remembered, always in time—for the moments of contact and separation, and add the difference or the sum of each of these and the parallax for the moment of conjunction to the corresponding half-duration as previously determined, we shall have the true times of half-duration. In order to find the parallax for contact and separation, we
tion for the time of apparent conjunction (madhyagrahāna). The distance thus found will determine the amount of greatest obscuration, and the character of the eclipse, as taught in verse 10 of the preceding chapter. It is then farther to be taken as the foundation of precisely such a process as that described in verses 12–15 of the same chapter, in order to ascertain the half-time of duration, or of total obscuration: that is to say, the distance in latitude of the two centres being first assumed as invariable through the whole duration of the eclipse, the half-time of duration, and the resulting moments of contact and separation are to be ascertained: for these moments the latitude and parallax in latitude are to be calculated anew, and by them a new determination of the times of contact and separation is to be made, and so on, until these are fixed with the degree of accuracy required. If the eclipse be total, a similar operation must be gone through with to ascertain the moments of immersion and emergence. No account is made, it will be noticed, of the possible occurrence of an annular eclipse.

The intervals thus found, after correction for parallax in latitude only, between the middle of the eclipse and the moments of contact and separation respectively, are those which are called in the last chapter (vv. 19, 23), the “mean half-duration” (madhyasthityardha).

In this process for finding the net result, as apparent latitude, of the actual latitude and the parallax in latitude, is brought out with distinctness the inaccuracy already alluded to; that, whatever be the moon’s actual latitude, her parallax is always calculated as if she were in the ecliptic. In an eclipse, however, to which case alone the Hindu processes are intended to be applied, the moon’s latitude can never be of any considerable amount.

The propriety of determining the direction of the parallax in latitude by means of that of the meridian-sine (ZL in Fig. 20), of which the direction is established as south or north by the process of its calculation, is too evident to call for remark.

In verse 13 is given a somewhat confused specification of matters which are, indeed, affected by the parallax in latitude, but in different modes and degrees. The amount of greatest obscuration, and the (mean) half-times of duration and total obscuration, are the quantities directly dependent upon the calculation of that parallax, as here presented: to find the amount of obscuration at a given moment—as also the time corresponding to a given amount of obscuration—we require to know also the true half-duration, as found by the rules stated in the following passage: while the scale of projection and the deflection are affected by parallax only so far as this alters the time of occurrence of the phases of the eclipse.

14. For the end of the lunar day, diminished and increased by the half-duration, as formerly, calculate again the parallax in longitude for the times of contact (grāsa) and of separation (moksha), and find the difference between these and the parallax in longitude (harija) for the middle of the eclipse.

15. If, in the eastern hemisphere, the parallax in longitude for the contact is greater than that for the middle, and that for
entity, or, from multiplying it by forty-nine, and dividing it by radius.

In the expression given above for the value of the parallax in latitude, all the terms are constant excepting the sine of ecliptic zenith-distance. The difference of the mean daily motions is 731° 27′, and fifteen times radius is 51,570′. Now 731° 27′ − 51,570′ equals $\frac{14}{3}$ or 48.77 :− R; to which the expressions given in the text are sufficiently near approximations.

12. The parallax in latitude is to be regarded as south or north according to the direction of the meridian-sine (madhyajya). When it and the moon's latitude are of like direction, take their sum; otherwise, their difference:

13. With this calculate the half-duration (sthiti), half total obscuration (vimarda), amount of obscuration (grāsa), etc., in the manner already taught; likewise the scale of projection (pramāna), the deflection (valana), the required amount of obscuration, etc., as in the case of a lunar eclipse.

In ascertaining the true time of occurrence of the various phases of a solar eclipse, as determined by the parallax of the given point of observation, we are taught first to make the whole correction for parallax in latitude, and then afterward to apply that for parallax in longitude. The former part of the process is succinctly taught in verses 12 and 13: the rules for the other follow in the next passage. The language of the text, as usual, is by no means so clear and explicit as could be wished. Thus, in the case before us, we are not taught whether, as the first step in this process of correction, we are to calculate the moon's parallax in latitude for the time of true conjunction (tithyanta, "end of the lunar day"), or for that of apparent conjunction (madhyagrahamana, "middle of the eclipse"). It might be supposed that, as we have thus far only had in the text directions for finding the sine and cosine of ecliptic zenith-distance at the moment of true conjunction, the former of them was to be used in the calculations of verses 10 and 11, and the result from it, which would be the parallax at the moment of true conjunction, applied here as the correction needed. Nor, so far as we have been able to discover, does the commentator expound what is the true meaning of the text upon this point. It is sufficiently evident, however, that the moment of apparent conjunction is the time required. We have found, by a process of successive approximation, at what time (see Fig. 25), the moon (her latitude being neglected) being at m and the sun at n, the parallax in longitude and the difference of true longitude will both be the same quantity, $m\cdot n$, and so, when apparent conjunction will take place. Now, to know the distance of the two centres at that moment, we require to ascertain the parallax in latitude, $n\cdot M$, for the moon at m, and to apply it to the moon's latitude when in the same position, taking their sum when their direction is the same, and their difference when their direction is different, as prescribed by the text; the net result will be the distance required. The commentary, it may be remarked, expressly states that the moon's latitude is to be calculated in this opera-
moon, and divided by fifteen times radius, the result will be the parallax in latitude (avanati).

As the sun's greatest parallax is equal to the fifteenth part of his mean daily motion, and that of the moon to the fifteenth part of hers (see note to iv. 1, above), the excess of the moon's parallax over that of the sun is equal, when greatest, to one fifteenth of the difference of their respective mean daily motions. This will be the value of the parallax in latitude when the ecliptic coincides with the horizon, or when the sine of ecliptic zenith-distance becomes equal to radius. On the other hand, the parallax in latitude disappears when this same sine is reduced to nullity. Hence it is to be regarded as varying with the sine of ecliptic zenith-distance, and, in order to find its value at any given point, we say "if, with a sine of ecliptic zenith-distance which is equal to radius, the parallax in latitude is one fifteenth of the difference of mean daily motions, with a given sine of ecliptic zenith-distance what is it?" or

\[R : \text{diff. of mean m.} : \div 15 \] : sin ecl. zen.-dist. : parallax in lat.

This proportion, it is evident, would give with entire correctness the parallax at the central ecliptic-point (B in Fig. 26), where the whole vertical parallax is to be reckoned as parallax in latitude. But the rule given in the text also assumes that, with a given position of the ecliptic, the parallax in latitude is the same at any point in the ecliptic. Of this the commentary offers no demonstration, but it is essentially true. For, regarding the little triangle \(MnB \) as a plane triangle, right-angled at \(n \), and with its angle \(mM \) equal to the angle \(ZmB \), we have

\[R : \sin ZmB : : Mm : Mn \]

But, in the spherical triangle \(ZmB \), right-angled at \(B \),

\[R : \sin ZmB : : \sin Zm : \sin ZB \]

Hence, by equality of ratios,

\[\sin Zm : \sin ZB : : Mm : Mn \]

But, as before shown,

\[R : \sin Zm : : \text{gr. parallax} : Mm \]

Hence, by combining terms,

\[R : \sin ZB : : \text{gr. parallax} : Mn \]

That is to say, whatever be the position of \(m \), the point for which the parallax in latitude is sought, this will be equal to the product of the greatest parallax into the sine of ecliptic zenith-distance, divided by radius; or, as the greatest parallax equals the difference of mean motions divided by fifteen,

\[\text{par. in lat.} = \frac{\sin \text{ecl. zen.-dist.} \times \text{diff. of } m, m \div 15}{R} \] or \[\frac{\sin \text{ecl. zen.-dist.} \times \text{diff. of } m, m}{R \times 15} \]

The next verse teaches more summary methods of arriving at the same quantity.

11. Or, the parallax in latitude is the quotient arising from dividing the sine of ecliptic zenith-distance (drikhshepa) by sev-
and this can be the case only when \(Zm \), as well as \(P'm \), is a quadrant, or when \(m \) is on the horizon. Here again, however, precisely as in the case last noticed, the importance of the error is kept within very narrow limits by the fact that, as its relative consequence increases, the amount of the parallax in longitude affected by it diminishes.

9. When the sun's longitude is greater than that of the meridian ecliptic-point (madhyalagna), subtract the parallax in longitude from the end of the lunar day; when less, add the same; repeat the process until all is fixed.

The text so pertinaciously reads "meridian ecliptic-point" (madhyalagna) where we should expect, and ought to have, "central ecliptic-point" (tribhonalagna), that we are almost ready to suspect it of meaning to designate the latter point by the former name. It is sufficiently clear that, whenever the sun and moon are to the eastward of the central ecliptic-point, the effect of the parallax in longitude will be to throw the moon forward on her orbit beyond the sun, and so to cause the time of apparent to precede that of real conjunction; and the contrary. Hence, in the eastern hemisphere, the parallax, in time, is subtractive, while in the western it is additive. But a single calculation and application of the correction for parallax is not enough; the moment of apparent conjunction must be found by a series of successive approximations: since if, for instance, the moment of true conjunction is 25° 21', and the calculated parallax in longitude for that moment is 2° 21', the apparent end of the lunar day will not be at 27° 23', because at the latter time the parallax will be greater than 2° 21', deferring accordingly still farther the time of conjunction; and so on. The commentary explains the method of procedure more fully, as follows: for the moment of true conjunction in longitude calculate the parallax in longitude, and apply it to that moment: for the time thus found calculate the parallax anew, and apply it to the moment of true conjunction: again, for the time found as the result of this process, calculate the parallax, and apply it as before; and so proceed, until a moment is arrived at, at which the difference in actual longitude, according to the motions of the two planets, will just equal and counterbalance the parallax in longitude.

The accuracy of this approximative process cannot but be somewhat impaired by the circumstance that, while the parallax is reckoned in difference of mean motions, the corrections of longitude must be made in true motions. Indeed, the reckoning of the horizontal parallax in time as 4 nādis, whatever be the rate of motion of the sun and moon, is one of the most palpable among the many errors which the Hindu process involves.

To ascertain the moment of apparent conjunction in longitude, only the parallax in longitude requires to be known; but to determine the time of occurrence of the other phases of the eclipse, it is necessary to take into account the parallax in latitude, the ascertainment of which is accordingly made the subject of the next rule.

10. If the sine of ecliptic zenith-distance (drkkshepa) be multiplied by the difference of the mean motions of the sun and
sine of ecliptic-altitude is greatest, and that it would be only parallax in latitude when the ecliptic should be a horizontal circle, or when the sine of ecliptic-altitude should be reduced to nothing, the Hindus assume it to vary in the interval as that sine, and accordingly make the proportion: "if, with a sine of ecliptic-altitude that is equal to radius, the parallax in longitude is equal to the vertical parallax, with any given sine of ecliptic-altitude what is it?"—or, inverting the middle terms,

\[R : \sin \text{ ecl.-alt.} : : \text{vert. parallax} : \text{parallax in long.} \]

But we had before

\[R : 4 : : \sin \text{ zen.-dist.} : : \text{vert. parallax} \]

hence, by combining terms,

\[R^2 : 4 \sin \text{ ecl.-alt.} : : \sin \text{ zen.-dist.} : : \text{parallax in long.} \]

For the third term of this proportion, now, is substituted the sine of the distance of the given point from the central ecliptic-point: that is to say, \(B m \) (Fig. 20) is substituted for \(Z m \); the two are in fact of equal value only when they coincide, or else at the horizon, when each becomes a quadrant; but the error involved in the substitution is greatly lessened by the circumstance that, as it increases in proportional amount, the parallax in longitude itself decreases, until at \(B \) the latter is reduced to nullity, as is the vertical parallax at \(Z \). The text, indeed, as in verses 1 and 9, puts \textit{madhyalagna}, \(L \), for \textit{tribhonalagna}, \(B \), in reckoning this distance; but the commentary, without ceremony or apology, reads the latter for the former. These substitutions being made, and the proportion being reduced to the form of an equation, we have

\[\text{par. in long.} = \frac{\sin \text{ dist.} \times 4 \sin \text{ ecl.-alt.}}{R^2} \]

which reduces to

\[\frac{\sin \text{ dist.}}{R^2} \div 4 \sin \text{ ecl.-alt.} \quad \text{or} \quad \frac{\sin \text{ dist.}}{4R^2} \div \sin \text{ ecl.-alt.} \]

and since \(4R^2 = (\frac{1}{2}R)^2 \), and \(\frac{1}{2}R = \sin 30^\circ \), we have finally

\[\text{par. in long.} = \frac{\sin \text{ dist.}}{\sin^2 30^\circ \div \sin \text{ ecl.-alt.}} \]

which is the rule given in the text. To the denominator of the fraction, in its final form, is given the technical name of \textit{cheda}, "divisor," which word we have had before similarly used, to designate one of the factors in a complicated operation (see above, iii. 35, 38).

We will now examine the correctness of the second principal proportion from which the rule is deduced. It is, in terms of the last figure (Fig. 20),

\[R : \sin ZP' (==B R) : : m M : m n \]

Assuming the equality of the little triangles \(m m n \) and \(M m n' \), and accordingly that of the angles \(m M n \) and \(M m n' \), which latter equals \(Z m P' \), we have, by spherical trigonometry, as a true proportion,

\[\sin m n' M : \sin M m n' : : m M : m n' \]

or

\[R : \sin Zm P' : : m M : m n \]

Hence the former proportion is correct only when \(\sin ZP' \) and \(\sin Zm P' \) are equal; that is to say, when \(ZP' \) measures the angle \(Zm P' \);
commentator from Bhāskara's Siddhānta-Chīromāni (found on page 221 of the published edition of the Ganita-dhyāya) directs the sines of zenith-distance and altitude of B (tribhōnalagnā) when upon the meridian—that is to say, the sine and cosine of the arc ZF—to be substituted for those of Z.B in a hasty process: but the value of the sine would in this case be too small, as in the other it was too great: and as the text nowhere directly recognizes the point B, and as directions have been given in verse 5 for finding the meridian zenith-distance of L, it seems hardly to admit of a doubt that the latter is the point to which the text here intends to refer.

Probably the permission to make this substitution is only meant to apply to cases where Z.L is of small amount, or where C has but little amplitude.

7. . . . Divide the square of the sine of one sign by the sine called that of ecliptic-altitude (āryagatijiva); the quotient is the "divisor" (cheda).

8. By this "divisor" divide the sine of the interval between the meridian ecliptic-point (madhyatagna) and the sun's place: the quotient is to be regarded as the parallax in longitude (lambana) of the sun and moon, eastward or westward, in nādīs, etc.

The true nature of the process by which this final rule for finding the parallax in longitude is obtained is altogether hidden from sight under the form in which the rule is stated. Its method is as follows:

We have seen, in connection with the first verse of the preceding chapter, that the greatest parallaxes of the sun and moon are quite nearly equivalent to the mean motion of each during 4 nādīs. Hence, were both bodies in the horizon, and the ecliptic a vertical circle, the moon would be depressed in her orbit below the sun to an amount equal to her excess in motion during 4 nādīs. This, then, is the moon's greatest horizontal parallax in longitude. To find what it would be at any other point in the ecliptic, still considered as a vertical circle, we make the proportion

R : 4 (hor. par.) : : sin zen.-dist. : vert. parallax

This proportion is entirely correct, and in accordance with our modern rule that, with a given distance, the parallax of a body varies as the sine of its zenith-distance: whether the Hindus had made a rigorous demonstration of its truth, or whether, as in so many other cases, seeing that the parallax was greatest when the sine of zenith-distance was greatest, and nothing when this was nothing, they assumed it to vary in the interval as the sine of zenith-distance, saying "if, with a sine of zenith-distance which is equal to radius, the parallax is four nādīs, with a given sine of zenith-distance what is it?"—this we will not venture to determine.

But now is to be considered the farther case in which the ecliptic is not a vertical circle, but is depressed below the zenith a certain distance, measured by the sine of ecliptic zenith-distance (āryakkshepa), already found. Here again, noting that the parallax is all to be reckoned as parallax in longitude when the ecliptic is a vertical circle, or when the
as if it were a plane horizontal triangle, and similar to \(ZOS \), and the proportion is made

\[
ZS:SO:ZL:BL
\]
or

\[
R:or.-sine::mer.-sine:BL
\]

This is so far a correct process, that it gives the true sine of the arc \(BL \): for, by spherical trigonometry, in the spherical triangle \(ZBL \), right-angled at \(B \),

\[
\sin ZBL = \sin BZL = \sin \text{arc} ZL = \sin \text{arc} BL
\]
or

\[
R:SO::ZL:\sin BL
\]

But the third side of a plane right-angled triangle of which the sines of the arcs \(ZB \) and \(ZL \) are hypothenuse and perpendicular, is not the sine of \(BL \). If we conceive the two former sines to be drawn from \(Z \), meeting in \(b \) and \(l \) respectively the lines drawn from \(B \) and \(L \) to the centre, then the line joining \(bl \) will be the third side, being plainly less than \(\sin BL \). Hence, on subtracting \(\sin^2 BL \) from \(\sin^2 ZL \), and taking the square root of the remainder, we obtain, not \(\sin ZB \), but a less quantity, which may readily be shown, by spherical trigonometry, to be \(\sin ZB \cos BL \). The value, then, of the sine of ecliptic zenith-distance (\(drkkshepa \)) as determined by this process, is always less than the truth, and as the corresponding cosine (\(drygati \)) is found by subtracting the square of the sine from that of radius, and taking the square root of the remainder, its value is always proportionally greater than the truth. This inaccuracy is noticed by the commentator, who points out correctly its reason and nature: probably it was also known to those who framed the rule, but disregarded, as not sufficient to vitiate the general character of the process: and it may, indeed, well enough pass unnoticed among all the other inaccuracies involved in the Hindu calculations of the parallax.

As regards the terms employed to express the sines of ecliptic zenith-distance and altitude, we have already met with the first member of each compound, \(dr \), literally “sight,” in other connected uses: as in \(drgya \), “sine of zenith-distance” (see above, iii. 33), \(drgyatta \), “vertical-circle” (commentary to the first verse of this chapter): here it is combined with words which seem to be rather arbitrarily chosen, to form technical appellations for quantities used only in this process: the literal meaning of \(kshepa \) is “throwing, hurling;” of \(gati \), “gait, motion.”

7. The sine and cosine of meridian zenith-distance (\(natancas \)) are the approximate (\(asphuta \)) sines of ecliptic zenith-distance and altitude (\(drkkshepa, drygati \)). . . .

This is intended as an allowable simplification of the above process for finding the sines of ecliptic zenith-distance and altitude, by substituting for them other quantities to which they are nearly equivalent, and which are easier of calculation. These are the sines of zenith-distance and altitude of the meridian ecliptic-point (\(madhyalagna -- L \) in Fig. 26) the former of which has already been made an element in the other process, under the name of “meridian-sine” (\(madhyajya \)). It might, indeed, from the terms of the text, be doubtful of what point the altitude and zenith-distance were to be taken; a passage cited by the
tude of the observer take the sum, when their direction is the same; otherwise, take their difference.

5. The result is the meridian zenith-distance, in degrees (natān-
ças): its sine is denominated the meridian-sine (madhyayjā).

The accompanying figure (Fig. 26) will assist the comprehension of
this and the following processes. Let N E S W be a horizontal plane,
N S the projection upon it of the meridian, and E W that of the prime vertical, Z being the zenith. Let C L T be the
ecliptic. Then C is the orient
ecliptic-point (lagna), and C D the sine of its amplitude
(udayayjā), found by the last
process. The meridian ecliptic
point (madhyalagna) is L: it
is ascertained by the method
prescribed in iii. 49, above.
Its distance from the zenith
is found from its declination
and the latitude of the place
of observation, as taught in
iii. 20–22; and the sine of
that distance, by which, in
the figure, it is seen projected,
is Z L: it is called by the technical name madhyayjā, which we have
translated "meridian-sine."

5. . . . Multiply the meridian-sine by the orient-sine, and divide
by radius: square the result.

6. And subtract it from the square of the meridian-sine: the
square root of the remainder is the sine of ecliptic zenith-distance
(drkkashepa); the square root of the difference of the squares
that and radius is the sine of ecliptic-altitude (draggati).

Here we are taught how to find the sines of the zenith-distance and
altitude respectively of that point of the ecliptic which has greatest alti-
itude, or is nearest to the zenith, and which is also the central point
of the portion of the ecliptic above the horizon: it is called by the
commentary, as already noticed (see note to v. 1), tribhkonalagna. Thus,
in the last figure, if Q R be the vertical circle passing through the pole
of the ecliptic, P, and cutting the ecliptic, C T, in B, B is the central
ecliptic-point (tribhkonalagna), and the arcs seen projected in Z B and
B R are its zenith-distance and altitude respectively. In order, now, to
find the sine of Z B, we first find that of B L, and by the following pro-
cess. C D is the orient-sine, already found. But since C Z and C P
are quadrants, C is a pole of the vertical circle Q R, and C R is a quad-
rant. E S is also a quadrant: take away their common part CS, and
C E remains equal to S R, and the sine of the latter, S O, is equal to
that of the former, C D, the "orient-sine." Now, then, Z B L is treated
The term uniformly employed by the commentary, and more usually by the text, to express parallax in longitude, namely lambana, is from the same root which we have already more than once had occasion to notice (see above, under i. 25, 60), and means literally “hanging downward.” In this verse, as once or twice later (vv. 14, 16), the text uses harija, which the commentary explains as equivalent to kṣhitija, “produced by the earth;” this does not seem very plausible, but we have nothing better to suggest. For parallax in latitude the text presents only the term avanati, “bending downward, depression;” the commentary always substitutes for it nati, which has nearly the same sense, and is the customary modern term.

2. How parallax in latitude arises by reason of the difference of place (deça) and time (kāla), and also parallax in longitude (lambana) from direction (diç) eastward or the contrary—that is now to be explained.

This distribution of the three elements of direction, place, and time, as causes respectively of parallax in longitude and in latitude, is somewhat arbitrary. The verse is to be taken, however, rather as a general introduction to the subject of the chapter, than as a systematic statement of the causes of parallax.

3. Calculate, by the equivalents in oblique ascension (udayāsavas) of the observer’s place, the orient ecliptic-point (lagna) for the moment of conjunction (parvavindhyas): multiply the sine of its longitude by the sine of greatest declination, and divide by the sine of co-latitude (lamba): the result is the quantity known as the orient-sine (udaya).

The object of this first step in the rather tedious operation of calculating the parallax is to find for a given moment—here the moment of true conjunction—the sine of amplitude of that point of the ecliptic which is then upon the eastern horizon. In the first place the longitude of that point (lagna) is determined, by the data and methods taught above, in iii. 46-48, and which are sufficiently explained in the note to that passage: then its sine of amplitude is found, by a process which is a combination of that for finding the declination from the longitude, and that for finding the amplitude from the declination. Thus, by ii. 28,

\[R : \sin \text{ gr. decl.} : \sin \text{ long.} : \sin \text{ decl.} \]

and, by iii. 22-23,

\[\sin \text{ co-lat.} : R : \sin \text{ decl.} : \sin \text{ ampl.} \]

Hence, by combining terms, we have

\[\sin \text{ co-lat.} : \sin \text{ gr. decl.} : \sin \text{ long.} : \sin \text{ ampl.} \]

This sine of amplitude receives the technical name of udaya, or udayaavyā: the literal meaning of udaya is simply “rising.”

4. Then, by means of the equivalents in right ascension (lankoyalasavas), find the ecliptic-point (lagna) called that of the meridian (madhya): of the declination of that point and the lati-
It is evident from this explication how far the Hindu view of parallax is coincident with our own. The principle is the same, but its application is somewhat different. Instead of taking the parallax absolutely, determining that for the sun, which is BSC, and that for the moon, which is BMC, the Hindus look at the subject practically, as it must be taken account of in the calculation of an eclipse, and calculate only the difference of the two parallaxes, which is M BM, or, what is virtually the same thing, MCM. The Sûrya-Siddhânta, however, as we shall see hereafter more plainly, takes no account of any case in which the line CS would not pass through M, that is to say, the moon’s latitude is neglected, and her parallax calculated as if she were in the ecliptic.

We cite farther from the commentary, in illustration of the resolution of the parallax into parallax in longitude and parallax in latitude.

“Now by how many degrees, measured on the moon’s sphere (gola), the line drawn from the earth’s surface up to the sun cuts the moon’s vertical circle (dravyeratta) above the point occupied by the moon—this is, when the vertical circle and the ecliptic coincide, the moon’s parallax in longitude (lambana). But when the ecliptic deviates from a vertical circle, then, to the point where the line from the earth’s surface cuts the moon’s sphere on the moon’s vertical circle above the moon [i.e., to M, Fig. 25], draw through the pole of the ecliptic (kadamba) a circle [P’m’n’] north and south to the ecliptic on the moon’s sphere [M’n’]; and then the east and west interval [M’n’] on the ecliptic between the point occupied by the moon [M] and the point where the circle as drawn cuts the ecliptic on the moon’s sphere [n’] is the moon’s true (sphuta) parallax in longitude, in minutes, and is the perpendicular (koti). And since the moon moves along with the ecliptic, the north and south interval, upon the circle we have drawn, between the ecliptic and the vertical circle [m’n’] is, in minutes, the parallax in latitude (nati); which is the base (bhuya). The interval, in minutes, on the vertical circle [ZA], between the lines from the earth’s centre and surface [mM], is the vertical parallax (drglambara), and the hypothenuse.”

The conception here presented, it will be noticed, is that the moon’s path, or the “ecliptic on the moon’s sphere,” is depressed away from CL, which might be called the “ecliptic on the sun’s sphere,” to an amount measured as latitude by m’n’, and as longitude by n’M. To our apprehension, m n M, rather than m n’ M, would be the triangle of resolution: the two are virtually equal.

The commentary then goes on farther to explain that when the vertical circle and the secondary to the ecliptic coincide, the parallax in longitude disappears, the whole vertical parallax becoming parallax in latitude: and again, when the vertical circle and the ecliptic coincide, the parallax in latitude disappears, the whole vertical parallax becoming parallax in longitude.
longitude (harija): farther, when terrestrial latitude (aksha) and north declination of the meridian ecliptic-point (madhyahbha) are the same, there takes place no parallax in latitude (avanati).

The latter of these specifications is entirely accurate: when the north declination of that point of the ecliptic which is at the moment upon the meridian (madhyalagna; see iii. 49) is equal to the observer's latitude—regarded by the Hindus as always north—the ecliptic itself passes through the zenith, and becomes a vertical circle; of course, then, the effect of parallax would be only to depress the body in that circle, not to throw it out of it. The other is less exact: when the sun is upon the meridian, there is, indeed, no parallax in right ascension, but there is parallax in longitude, unless the ecliptic is also bisected by the meridian. Here, as below, in verses 8 and 9, the text commits the inaccuracy of substituting the meridian ecliptic-point (L in Fig. 26) for the central or highest point of the ecliptic (B in the same figure). The latter point, although we are taught below (vv. 5–7) to calculate the sine and cosine of its zenith-distance, is not once distinctly mentioned in the text; the commentary calls it tribhonaalgna, "the orient ecliptic-point (lagnena—see above, iii. 46–48: it is the point C in Fig. 26) less three signs." The commentary points out this inaccuracy on the part of the text.

In order to illustrate the Hindu method of looking at the subject of parallax, we make the following citation from the general exposition of it given by the commentator under this verse: "At the end of the day of new moon (amavasya) the sun and moon have the same longitude; if, now, the moon has no latitude, then a line drawn from the earth's centre [C in the accompanying figure] to the sun's place [S] just touches the moon [M]: hence, at the centre, the moon becomes an eclipsing, and the sun an eclipsed, body. Since, however, men are not at the earth's centre, (gurba, "womb") but upon the earth's surface (prstha, "back"), a line drawn from the earth's surface [B] up to the sun does not just touch the moon; but it cuts the moon's sphere above the point occupied by the moon [at m], and when the moon arrives at this point, then is she at the earth's surface the eclipser of the sun. But when the sun is at the zenith (khmadhya, "mid-heaven"), then the lines drawn up to the sun from the earth's centre and surface, being one and the same, touch the moon, and so the moon becomes an eclipsing body at the end of the day of new moon. Hence, too, the interval [M m] of the lines from the earth's centre and surface is the parallax (lambana)."
that three minutes of arc at the horizon, and four at the zenith, are
equal to a digit, the difference between the two, or the excess above
three minutes of the equivalent of a digit at the zenith, being one
minute. To ascertain, then, what will be, at any given altitude, the
excess above three minutes of the equivalent of a digit, we ought prop-
erly, according to the commentary, to make the proportion

\[R : 1' : \sin \text{altitude} : \text{corresp. excess} \]

Since, however, it would be a long and tedious process to find the alti-
tude and its sine, another and approximative proportion is substituted
for this “by the blessed Sun,” as the commentary phrases it, “through
compassion for mankind, and out of regard to the very slight difference
between the two.” It is assumed that the scale of four minutes to the
digit will be always the true one at the noon of the planet in question,
or whenever it crosses the meridian, although not at the zenith; and so
likewise, that the relation of the altitude to 90° may be measured by
that of the time since rising or until setting (unmata—see above, ill.
37–39) to a half-day. Hence the proportion becomes

\[\text{half-day} : 1' : \text{altitude in time} : \text{corresp. excess} \]

and the excess of the digital equivalent above 3' equals \(\frac{\text{alt. in time}}{\text{half-day}} \).

Adding, now, the three minutes, and bringing them into the fractional
expression, we have

\[\text{equiv. of digit in minutes at given time} = \frac{\text{alt. in time} + 3 \text{ half-days}}{\text{half-day}} \]

The title of the fourth chapter is candragrahanadhitika, “chapter of
lunar eclipses,” as that of the fifth is suryaagrahanadhitika, “chapter of
solar eclipses.” In truth, however, the processes and explanations of
this chapter apply not less to solar than to lunar eclipses, while the next
treats only of parallax, as entering into the calculation of a solar eclipse.
We have taken the liberty, therefore, of modifying accordingly the
headings which we have prefixed to the chapters.

CHAPTER V.
OF PARALLAX IN A SOLAR ECLIPSE.

Contents:—1, when there is no parallax in longitude, or no parallax in latitude;
2, causes of parallax; 3, to find the orient-sine; 4–5, the meridian-sine; 5–7, and
the sines of ecliptic zenith-distance and altitude; 7–8, to find the amount, in time,
of the parallax in longitude; 9, its application in determining the moment of
apparent conjunction; 10–11, to find the amount, in arc, of the parallax in lati-
tude; 12–13, its application in calculating an eclipse; 14–17, application of the
parallax in longitude in determining the moments of contact, of separation, etc.

1. When the sun’s place is coincident with the meridian
ecliptic-point (madhyatagona), there takes place no parallax in
of the hour-angle, Z.P.M or M.P.N, although with a certain modification which the commentary prescribes, and which makes of it something very near the angle T.P.N. The text says simply natojyā, "the sine of the hour-angle" (for nata, see notes to iii. 34-36, and 14-16), but the commentary specifies that, to find the desired angle in degrees, we must multiply the hour-angle in time by 90, and divide by the half-day of the planet. This is equivalent to making a quadrant of that part of the circle of diurnal revolution which is between the horizon and the meridian, or to measuring distances upon D.R as if they were proportional parts of E'Q. To make the Hindu process correct, the product of this modification should be the angle P.N.T, with which, however, it only coincides at the horizon, where both T.P.N and T.N.P become right-angles, and at the meridian, where both are reduced to nullity. The error is closely analogous to that involved in the former process, and is of slight account when latitude is small, as is also the error in substituting T for O or M when neither the latitude nor the declination is great.

The direction of the ecliptic deflection (āyana valana) is the same, evidently, with that of the declination a quadrant eastward from the point in question; thus, in the case illustrated by the figure, it is south. The direction of the equatorial deflection (āksha valana) depends upon the position of the point considered with reference to the meridian, being— in northern latitudes, which alone the Hindu system contemplating—north when that point is east of the meridian, and south when west of it, as specified in verse 24: since, for instance, E' being the east point of the horizon, the equator at any point between E' and Q points, eastward, toward a point north of the prime vertical. In the case for which the figure is drawn, then, the difference of the two would be the finally resulting deflection. Since, in making the projection of the eclipse, it is laid off as a straight line (see the illustration given in connection with chapter vi), it must be reduced to its value as a sine; and moreover, since it is laid down in a circle of which the radius is 49 digits (see below, vi. 2), or in which one digit equals 70°—for 3438° 49 = 70°, nearly—that sine is reduced to its value in digits by dividing it by 70.

The general subject of this passage, the determination of directions during an eclipse, for the purpose of establishing the positions, upon the disk of the eclipsed body, of the points of contact, immersion, emergence, and separation, also engaged the attention of the Greeks; Ptolemy devotes to it the eleventh and twelfth chapters of the sixth book of his Syntaxis: his representation of directions, however, and consequently his method of calculation also, are different from those here exposed.

26. To the altitude in time (unnata) add a day and a half, and divide by a half-day; by the quotient divide the latitudes and the disks; the results are the measures of those quantities in digits (angula).

By this process due account is taken, in the projection of an eclipse, of the apparent increase in magnitude of the heavenly bodies when near the horizon. The theory lying at the foundation of the rule is this:
solstice, is nothing, and when at the equinox is equal to the greatest declination, it is therefore always equal to the declination at a quadrant's distance from the planet. This is, as we have seen, a false conclusion, and leads to an erroneous result: whether they who made the rule were aware of this, but deemed the process a convenient one, and its result a sufficiently near approximation to the truth, we will not venture to say.

The other part of the operation, to determine the amount of deflection of the circle of declination from the east and west small circle, is considerably more difficult, and the Hindu process correspondingly defective. We will first present the explanation of it which the commentator gives. He states the problem thus: "by whatever interval the directions of the equator are deflected from directions corresponding to those of the prime vertical, northward or southward, that is the deflection due to latitude (ākṣa vālana). Now then: if a movable circle be drawn through the pole of the prime vertical (ṣaṃa) and the point occupied by the planet [i.e., the circle N M S, Fig. 22], then the interval of the 'easts,' at the distance of a quadrant upon each of the two circles, the equator and the prime vertical, from the points where they are respectively cut by that circle [i.e., from T and V] will be the deflection. . . . Now when the planet is at the horizon [as at D, referred to E'], then that interval is equal to the latitude [Z Q]; when the planet is upon the meridian (yāmyottara vrata, "south and north circle") [i.e., when it is at R, referred to Q and Z], there is no interval [as at E']. Hence, by the following proportion—with a sine of the hour-angle which is equal to radius the sine of deflection for latitude is equal to the sine of latitude; then with any given sine of the hour-angle what is it?—a sine of latitude is found, of which the arc is the required deflection for latitude." This is, in the Hindu form of statement, the proportion represented by the rule in verse 24, viz. R: sin lat.: = sin hour-angle: sin deflection.

It seems to us very questionable, at least, whether the Hindus had any more rigorous demonstration than this of the process they adopted, or knew wherein lay the inaccuracies of the latter. These we will now proceed to point out. In the first place, instead of measuring the angle made at the point in question, M, by the two small circles, the east and west circle and that of daily revolution—which would be the angle P M N—they refer the body to the equator by a circle passing through the north and south points of the horizon, and measure the deflection of the equator from a small east and west circle at its intersection with that circle—which is the angle P T N. Or, if we suppose that, in the process formerly explained, no regard was had to the circle of daily revolution, D R, the intention being to measure the difference in direction of the ecliptic at M and the equator at O, then the two parts of the process are inconsistent in this, that the one takes as its equatorial point of measurement O, and the other T, at which two points the direction of the equator is different. But neither is the value of P T N correctly found. For, in the spherical triangle P N T, to find the angle at T, we should make the proportion

\[
\sin P T \text{ (or } R) : \sin P N :: \sin P N T : \sin P T N
\]

But, as the third term in this proportion, the Hindus introduce the sine
C. L. and the circle of daily revolution, D R, which angle is equal to P. M. P', is also measured; this the commentary calls ayana valana, "the deflection due to the deviation of the ecliptic from the equator;" the text has no special name for it. The sum of these two results, or their difference, as the case may be, is the valana, or the deflection of the ecliptic from the small east and west circle at M, or the angle P'MN.

In explaining the method and value of these processes, we will commence with the second one, or with that by which P M P', the ayana valana, is found. In the following figure (Fig. 23), let O Q be the equator, and M L the ecliptic, P and P' being their respective poles. Let M be the point at which the amount of deflection of M L from the circle of diurnal revolution, D R, is sought. Let M L equal a quadrant; draw P' L, cutting the equator at Q; as also P L, cutting it at B; then draw P M and Q M. Now P' M L is a tri-quadrantal triangle, and hence M Q is a quadrant; and therefore Q is a pole of the circle P O M, and Q O is also a quadrant, and Q M O is a right angle. But D R also makes right angles at M with P M; hence Q M and D R are tangents to one another at M, and the spherical angle Q M L is equal to that which the ecliptic makes at M with the circle of declination, or to P M P': and Q M L is measured by Q L. The rule given in the text produces a result which is a near approach to this, although not entirely accordant with it excepting at the solstice and equinox, the points where the deflection is greatest and where it is nothing. We are directed to reckon forward a quadrant from the position of the eclipsed body—that is, from M to L, in the figure—and then to calculate the declination at that point, which will be the amount of deflection. But the declination at L is B L, and since L B Q is a right-angled triangle, having a right angle at B, and since L Q and L B are always less than quadrants, L B must be less than L Q. The difference between them, however, can never be of more than trifling amount; for, as the angle Q L B increases, Q L diminishes; and the contrary.

In order to show how the Hindus have arrived at a determination of this part of the deflection so nearly correct, and yet not quite correct, we will cite the commentator's explanation of the process. He says: "The 'east' (pradet) of the equator [i. e., apparently, the point of the equator eastward toward which the small circle must be considered as pointing at M] is a point 90° distant from that where a circle drawn from the pole (dhwava) through the planet cuts the equator;" that is to say, it is the point Q (Fig. 23), a quadrant from O: "and the interval by which this is separated from the 'east' of the ecliptic at 90° from the planet, that is the ayana valana." This is entirely correct, and would give us Q L, the true measure of the deflection. But the commentator goes on farther to say that since this interval, when the planet is at the
25. From the position of the eclipsed body increased by three signs calculate the degrees of declination: add them to the degrees of deflection, if of like direction; take their difference, if of different direction: the corresponding sine is the deflection (valana)—in digits, when divided by seventy.

This process requires to be performed only when it is desired to project an eclipse. In making a projection according to the Hindu method, as will be seen in connection with the sixth chapter, the eclipsed body is represented as fixed in the centre of the figure, with a north and south line, and an east and west line, drawn through it. The absolute position of these lines upon the disk of the eclipsed body is, of course, all the time changing: but the change is, in the case of the sun, not observable, and in the case of the moon it is disregarded: the Sūrya-Siddhānta takes no notice of the figure visible in the moon's face as determining any fixed and natural directions upon her disk. It is desired to represent to the eye, by the figure drawn, where, with reference to the north, south, east, and west points of the moment, the contact, immersion, emergence, separation, or other phases of the eclipse, will take place. In order to this, it is necessary to know what is, at each given moment, the direction of the ecliptic, in which the motions of both eclipsed and eclipsing bodies are made. The east and west direction is represented by a small circle drawn through the eclipsed body, parallel to the prime vertical; the north and south direction, by a great circle passing through the body and through the north and south points of the horizon: and the direction of the ecliptic is determined by ascertaining the angular amount of its deflection from the small east and west circle at the point occupied by the eclipsed body. Thus, in the annexed figure (Fig. 22), if M be the place of the eclipsed body upon the ecliptic, C L, and if E W be the small east and west circle drawn through M parallel with E Z, the prime vertical, then the deflection will be the angle made at M by C M and E M, which is equal to P' M N, the angle made by perpendiculars to the two circles drawn from their respective poles. In order to find the value of this angle, a double process is adopted: first, the angle made at M by the two small circles E M and D M, which is equivalent to P M N, is approximately determined: as this depends for its amount upon the observer's latitude, being nothing in a right sphere, it is called by the commentary aksa valana, "the deflection due to latitude;" the text calls it simply valanāṇcās, "degrees of deflection," since it does not, like the net result of the whole operation, require to be expressed in terms of its sine. Next, the angle made at M by the ecliptic,
to find the perpendicular, here we have the base and perpendicular given to find the hypotenuse. The perpendicular is furnished us in time, and the rule supposes it to be stated in the form of the interval between the given moment and that of contact or of separation: a form to which, of course, it may readily be reduced from any other mode of statement. The interval of time is reduced to its equivalent as difference of longitude by a proportion the reverse of that given in verse 13, by which difference of longitude was converted into time; the moon's latitude is then calculated; from the two the hypotenuse is deduced; and the comparison of this with the sum of the radii gives the measure of the amount of obscuration.

Verse 21 seems altogether superfluous: it merely states the method of proceeding in case the time given falls anywhere between the middle and the end of the eclipse, as if the specifications of the preceding verses applied only to a time occurring before the middle: whereas they are general in their character, and include the former case no less than the latter.

When the eclipse is one of the sun, allowance needs to be made for the variation of parallax during its continuance; this is done by the process described in verse 19, of which the explanation will be given in the notes to the next chapter (pp. 14–17).

In verse 20, for the first and only time, we have latitude called kṣhepa, instead of vikaśhepa, as elsewhere. In the same verse, the term employed for "hypotenuse" is prava, "hearing, organ of hearing;" this, as well as the kindred pravana, which is also once or twice employed, is a synonym of the ordinary term karna, which means literally "ear." It is difficult to see upon what conception their employment in this signification is founded.

22. From half the sum of the eclipsed and eclipsing bodies subtract any given amount of obscuration, in minutes: from the square of the remainder subtract the square of the latitude at the time, and take the square root of their difference.

23. The result is the perpendicular (koti) in minutes—which, in an eclipse of the sun, is to be multiplied by the true, and divided by the mean, half-duration—and this, converted into time by the same manner as when finding the duration of the eclipse, gives the time of the given amount of obscuration (grāṣa).

The conditions of this problem are precisely the same with those of the problem stated above, in verses 12–15, excepting that here, instead of requiring the instant of time when obscuration commences, or becomes total, we desire to know when it will be of a certain given amount. The solution must be, as before, by a succession of approximative steps, since, the time not being fixed, the corresponding latitude of the moon cannot be otherwise determined.

24. Multiply the sine of the hour-angle (nata) by the sine of the latitude (ākṣha), and divide by radius: the arc corresponding to the result is the degrees of deflection (valanāṅgās), which are north and south in the eastern and western hemispheres (kāpāla) respectively.
16. The middle of the eclipse is to be regarded as occurring at the true close of the lunar day: if from that time the time of half-duration be subtracted, the moment of contact (grāsa) is found; if the same be added, the moment of separation.

17. In like manner also, if from and to it there be subtracted and added, in the case of a total eclipse, the half-time of total obscuration, the results will be the moments called those of immersion and emergence.

The instant of true opposition, or of apparent conjunction (see below, under ch. v. 9), in longitude, of the sun and moon, is to be taken as the middle of the eclipse, even though, owing to the motion of the moon in latitude, and also, in a solar eclipse, to parallax, that instant is not midway between those of contact and separation, or of immersion and emergence. To ascertain the moment of local time of each of these phases of the eclipse, we subtract and add, from and to the local time of opposition or conjunction, the true intervals found by the processes described in verses 12 to 15.

The total disappearance of the eclipsed body within, or behind, the eclipsing body, is called nimilana, literally the “closure of the eyelids, as in winking”: its first commencement of reappearance is styled unmilana, “parting of the eyelids, peeping.” We translate the terms by “immersion” and “emergence” respectively.

18. If from half the duration of the eclipse any given interval be subtracted, and the remainder multiplied by the difference of the daily motions of the sun and moon, and divided by sixty, the result will be the perpendicular (koṭi) in minutes.

19. In the case of an eclipse (graха) of the sun, the perpendicular in minutes is to be multiplied by the mean half-duration, and divided by the true (sphuta) half-duration, to give the true perpendicular in minutes.

20. The latitude is the base (bhuja): the square root of the sum of their squares is the hypothenuse (grava): subtract this from half the sum of the measures, and the remainder is the amount of obscuration (grāsa) at the given time.

21. If that time be after the middle of the eclipse, subtract the interval from the half-duration on the side of separation, and treat the remainder as before: the result is the amount remaining obscured on the side of separation.

The object of the process taught in this passage is to determine the amount of obscuration of the eclipsed body at any given moment during the continuance of the eclipse. It, as well as that prescribed in the following passage, is a variation of that which forms the subject of verses 12 and 13 above, being founded, like the latter, upon a consideration of the right-angled triangle formed by the line joining the centres of the eclipsed and eclipsing bodies as hypothenuse, the difference of their longitudes as perpendicular, and the moon’s latitude as base. And whereas, in the former problem, we had the base and hypothenuse given
the given time of the moon's true motion in a day over that of the sun is to a day, or sixty nadais, so are A C and B C, the amounts which the moon has to gain in longitude upon the sun between the moments of contact and immersion respectively and the moment of opposition, to the corresponding intervals of time.

But the process, as thus conducted, involves a serious error: the moon's latitude, instead of remaining constant during the eclipse, is constantly and sensibly changing. Thus, in the figure above, of which the conditions are those found by the Hindu processes for the eclipse of Feb. 6th, 1860, the moon's path, instead of being upon the line H K, parallel to the ecliptic, is really upon Q R. The object of the process next taught is to get rid of this error.

14. Multiply the daily motions by the half-duration, in nadais, and divide by sixty: the result, in minutes, subtract for the time of contact (praagraha), and add for that of separation (moksha), respectively;

15. By the latitudes hence derived, the half-duration, and likewise the half-time of total obscuration, are to be calculated anew, and the process repeated. In the case of the node, the proper correction, in minutes, etc., is to be applied in the contrary manner.

This method of eliminating the error involved in the supposition of a constant latitude, and of obtaining another and more accurate determination of the intervals between the moment of opposition and those of first and last contact, and of immersion and emergence, is by a series of successive approximations. For instance: A C, as already determined, being assumed as the interval between opposition and first contact, a new calculation of the moon's longitude is made for the moment A, and, with this and the sum of the radii, a new value is found for A C. But now, as the position of A is changed, the former determination of its latitude is vitiated and must be made anew, and made to furnish anew a corrected value of A C; and so on, until the position of A is fixed with the degree of accuracy required. The process must be conducted separately, of course, for each of the four quantities affected; since, where latitude is increasing, as in the case illustrated, the true values of A C and B C will be greater than their mean values, while G C and F C, the true intervals in the after part of the eclipse, will be less than A C and B C: and the contrary when latitude is decreasing.

We have illustrated these processes by reference only to a lunar eclipse: their application to the conditions of a solar eclipse requires the introduction of another element, that of the parallax, and will be explained in the notes upon the next chapter.

The first contact of the eclipsed and eclipsing bodies is styled in this passage praagraha, "seizing upon, laying hold of;" elsewhere it is also called grasa, "devouring," and spara, "touching:" the last contact, or separation, is named moksha, "release, letting go." The whole duration of the eclipse, from contact to separation, is the sthiti, "stay, continuance;" total obscuration is vimarda, "crushing out, entire destruction."
The word *grāsa*, used in verse 11 for obscuration or eclipse, means literally "eating, devouring," and so speaks more distinctly than any other term we have had of the old theory of the physical cause of eclipses.

12. Divide by two the sum and difference respectively of the eclipsed and eclipsing bodies: from the square of each of the resulting quantities subtract the square of the latitude, and take the square roots of the two remainders.

13. These, multiplied by sixty and divided by the difference of the daily motions of the sun and moon, give, in nādis, etc., half the duration (*sthiti*) of the eclipse, and half the time of total obscuration.

These rules for finding the intervals of time between the moment of opposition or conjunction in longitude, which is regarded as the middle of the eclipse, and the moments of first and last contact, and, in a total eclipse, of the beginning and end of total obscuration, may be illustrated by help of the annexed figure (Fig. 21).

Let ECL represent the ecliptic, the point C being the centre of the shadow, and let CD be the moon's latitude at the moment of opposition; which, for the present, we will suppose to remain unchanged through the whole continuance of the eclipse. It is evident that the first contact of the moon with the shadow will take place when, in the triangle CAM, AC equals the moon's distance in longitude from the centre of the shadow, AM her latitude, and CM the sum of her radius and that of the shadow. In like manner, the moon will disappear entirely within the shadow when BC equals her distance in longitude from the centre of the shadow, BN her latitude, and CN the difference of the two radii. Upon subtracting, then, the square of AM or BN from those of CM and CN respectively, and taking the square roots of the remainders, we shall have the values of AC and BC in minutes. These may be reduced to time by the following proportion: as the excess at
and the moment of opposition or conjunction, verse 8 teaches us how to ascertain the true longitudes for that moment: it is by calculating—in the manner taught in i. 67, but with the true daily motions—the amount of motion of the sun, moon, and node during the interval, and applying it as a corrective equation to the longitude of each at midnight, subtracting in the case of the sun and moon, and adding in the case of the node, if the moment was then already past; and the contrary, if it was still to come. Then, if the process has been correctly performed, the longitudes of the sun and moon will be found to correspond, in the manner required by verse 7.

For the days of new and full moon, and their appellations, see the note to ii. 66, above. The technical expression employed here, as in one or two other passages, to designate the “moment of opposition or conjunction” is parvanādyas, “nādis of the parvan,” or “time of the parvan in nādis, etc.” parvan means literally “knob, joint,” and is frequently applied, as in this term, to denote a conjuncture, the moment that distinguishes and separates two intervals, and especially one that is of prominence and importance.

9. The moon is the eclipser of the sun, coming to stand underneath it, like a cloud: the moon, moving eastward, enters the earth’s shadow, and the latter becomes its eclipser.

The names given to the eclipsed and eclipsing bodies are either chādyā and, as here, chādakau, “the body to be obscured” and “the obscurer,” or grāhya and grāhaka, “the body to be seized” and “the seizer.” The latter terms are akin with grahāṇa and graha, spoken of above (note to v. 6), and represent the ancient theory of the phenomena, while the others are derived from their modern and scientific explanation, as given in this verse.

10. Subtract the moon’s latitude at the time of opposition or conjunction from half the sum of the measures of the eclipsed and eclipsing bodies: whatever the remainder is, that is said to be the amount obscured.

11. When that remainder is greater than the eclipsed body, the eclipse is total; when the contrary, it is partial; when the latitude is greater than the half sum, there takes place no obscurantion (grādo).

It is sufficiently evident that when, at the moment of opposition, the moon’s latitude—which is the distance of her centre from the ecliptic, where is the centre of the shadow—is equal to the sum of the radii of her disk and of the shadow, the disk and the shadow will just touch one another; and that, on the other hand, the moon will, at the moment of opposition, be so far immersed in the shadow as her latitude is less than the sum of the radii: and so in like manner for the sun, with due allowance for parallax. The Hindu mode of reckoning the amount eclipsed is not by digits, or twelfths of the diameter of the eclipsed body, which method we have inherited from the Greeks, but by minutes.
It will be noticed that no attempt is made here to define the lunar and solar ecliptic limits, or the distances from the moon’s node within which eclipses are possible. Those limits are, for the moon, nearly 12°; for the sun, more than 17°.

The word used to designate “eclipse,” *grahaṇa*, means literally “seizure”: it, with other kindred terms, to be noticed later, exhibits the influence of the primitive theory of eclipses, as seizures of the heavenly bodies by the monster Rāhu. In verses 17 and 19, below, instead of *grahaṇa* we have *graha*, another derivative from the same root *grah* or *grabh*, “grasp, seize.” Elsewhere *graha* never occurs except as signifying “planet,” and it is the only word which the Sūrya-Siddhānta employs with that signification: as so used, it is an active instead of a passive derivative, meaning “seizer,” and its application to the planets is due to the astrological conception of them, as powers which “lay hold upon” the fates of men with their supernatural influences.

7. The longitudes of the sun and moon, at the moment of the end of the day of new moon (*amāvāsyā*), are equal, in signs, etc.; at the end of the day of full moon (*paūrṇamāsī*) they are equal in degrees, etc., at a distance of half the signs.

8. When diminished or increased by the proper equation of motion for the time, past or to come, of opposition or conjunction, they are made to agree, to minutes: the place of the node at the same time is treated in the contrary manner.

The very general directions and explanations contained in verses 6, 7, and 9 seem out of place here in the middle of the chapter, and would have more properly constituted its introduction. The process prescribed in verse 8, also, which has for its object the determination of the longitudes of the sun, moon, and moon’s node, at the moment of opposition or conjunction, ought no less, it would appear, to precede the ascertain-ment of the true motions, and of the measures of the disks and shadow, already explained. Verse 8, indeed, by the lack of connection in which it stands, and by the obscurity of its language, furnishes a striking instance of the want of precision and intelligibility so often characteristic of the treatise. The subject of the verse, which requires to be supplied, is, “the longitudes of the sun and moon at the instant of midnight next preceding or following the given opposition or conjunction”; that being the time for which the true longitudes and motions are first calculated, in order to test the question of the probability of an eclipse. If there appears to be such a probability, the next step is to ascertain the interval between midnight and the moment of opposition or conjunction, past or to come: this is done by the method taught in ii. 66, or by some other analogous process: the instant of the occurrence of opposition or conjunction, in local time, counted from sunrise of the place of observation, must also be determined, by ascertaining the interval between mean and apparent midnight (ii. 46), the length of the complete day (ii. 69), and of its parts (ii. 60–63), etc.; the whole process is sufficiently illustrated by the two examples of the calculation of eclipses given in the Appendix. When we have thus found the interval between midnight
was reduced, for measurement, to its value at the distance EM'; so, to be made commensurate with it, all the data of this process must be similarly modified. That is to say, the proportion

$$EM' : EM : f \cdot g : f' \cdot g'$$

—substituting, as before, the ratio of the moon’s mean to her true motion for that of EM' to EM—gives $f' \cdot g'$, which the text calls the $sicit$: the word means literally “needle, pyramid”; we do not see precisely how it comes to be employed to designate the quantity $f' \cdot g'$, and have translated it, for lack of a better term, and in analogy with the language of the text respecting the diameters of the sun and moon, “corrected diameter of the earth.” It is also evident that

$$EM' : f \cdot h + g \cdot k' : EM : f' \cdot h' + g' \cdot k'$$

hence, substituting the latter of these ratios for the former in our first proportion, and inverting the middle terms, we have

$$ES : EM : t \cdot u - FG : f' \cdot h' + g' \cdot k'$$

Once more, now, we have a substitution of ratios, $ES : EM$ being replaced by the ratio of the sun’s mean diameter to that of the moon. In this there is a slight inaccuracy. The substitution proceeds upon the assumption that the mean apparent values of the diameters of the sun and moon are precisely equal, in which case, of course, their absolute diameters would be as their distances; but we have seen, in the note to the first verse of this chapter, that the moon’s mean angular diameter is made a little less than the sun’s, the former being 32', the latter 32' 24''. The error is evidently neglected as being too small to impair sensibly the correctness of the result obtained: it is not easy to see, however, why we do not have the ratio of the mean distances represented here, as in verses 2 and 3, by that of the orbits, or by that of the revolutions in an Age taken inversely. The substitution being made, we have the final proportion on which the rule in the text is based, viz., the sun’s mean diameter is to the moon’s mean diameter as the excess of the sun’s corrected diameter over the actual diameter of the earth is to a quantity which, being subtracted from the $sicit$, or corrected diameter of the earth, leaves as a remainder the diameter of the shadow as projected upon the moon’s mean orbit: it is expressed in yojanas, but is reduced to minutes, as before, by dividing by fifteen. The earth’s penumbra is not taken into account in the Hindu process of calculation of an eclipse.

The lines $f \cdot g, f' \cdot g'$, etc., are treated here as if they were straight lines, instead of arcs of the moon’s orbit: but the inaccuracy never comes to be of any account practically, since the value of these lines always falls inside of the limits within which the Hindu methods of calculation recognize no difference between an arc and its sine.

6. The earth’s shadow is distant half the signs from the sun: when the longitude of the moon’s node is the same with that of the shadow, or with that of the sun, or when it is a few degrees greater or less, there will be an eclipse.

To the specifications of this verse we need to add, of course, “at the time of conjunction or of opposition.”
We meet for the first time, in this passage, the term employed in the treatise to designate a planetary orbit, namely \textit{kakśhā}, literally "border, girdle, periphery." The value finally obtained for the apparent diameter of the sun or moon, as later of the shadow, is styled its \textit{māna}, "measure."

In order to furnish a practical illustration of the processes taught in this chapter, we have calculated in full, by the methods and elements of the Sūrya-Siddhānta, the lunar eclipse of Feb. 6th, 1860. Rather, however, than present the calculation piecemeal, and with its different processes severed from their natural connection, and arranged under the passages to which they severally belong, we have preferred to give it entire in the Appendix, whither the reader is referred for it.

4. Multiply the earth's diameter by the true daily motion of the moon, and divide by her mean motion: the result is the earth's corrected diameter (\textit{sūcit}). The difference between the earth's diameter and the corrected diameter of the sun

5. Is to be multiplied by the moon's mean diameter, and divided by the sun's mean diameter: subtract the result from the earth's corrected diameter (\textit{sūcit}), and the remainder is the diameter of the shadow; which is reduced to minutes as before.

The method employed in this process for finding the diameter of the earth's shadow upon the moon's mean orbit may be explained by the aid of the following figure (Fig. 20).

As in the last figure, let E represent the earth's place, S and M points in the mean orbits of the sun and moon, and \(M'\) the moon's actual place. Let \(tu\) be the sun's corrected diameter, or the part of his mean orbit which his disk at its actual distance covers, ascertained as directed in the preceding passage, and let \(FG\) be the earth's diameter. Through

\[\text{Fig. 20.}\]

\[F\] and \(G\) draw \(vFf\) and \(wGg\) parallel to \(SM\), and also \(tFh\) and \(uGk\): then \(hk\) will be the diameter of the shadow where the moon actually enters it. The value of \(hk\) evidently equals \(fg\) (or \(FG\)) \(- (fh+gk)\); and the value of \(fh+gk\) may be found by the proportion

\[Fv\ (or\ ES) : tu+w \ (or \ t-u\ -FG) :: Ff\ (or\ EM') : fh+gk\]

But the Hindu system provides no method of measuring the angular value of quantities at the distance \(EM'\), nor does it ascertain the value of \(EM'\) itself; and as, in the last process, the diameter of the moon
The method of the process will be made clear by the annexed figure (Fig. 19). Let E be the earth's place, $E \, M$ or $E \, m$ the mean distance of the moon, and $E \, S$ the mean distance of the sun. Let $T \, U$ equal the sun's diameter, $6500\times$. But now let the sun be at the greater distance $E \, S'$: the part of his mean orbit which his disk will cover will no longer be $T \, U$, but a less quantity, $t \, u$, and $t \, u$ will be to $T \, U$, or $T' \, U'$, as $E \, S$ to $E \, S'$. But the text is not willing to acknowledge here, any more than in the second chapter, an actual inequality in the distance of the sun from the earth at different times, even though that inequality be most unequivocally implied in the processes it prescribes: so, instead of calculating $E \, S'$ as well as $E \, S$, which the method of epicycles affords full facilities for doing, it substitutes, for the ratio of $E \, S$ to $E \, S'$, the inverse ratio of the daily motion at the mean distance $E \, S$ to that at the true distance $E \, S'$. The ratios, however, are not precisely equal. The arc $a \, m$ (Fig. 4, p. 211) of the eccentric circle is supposed to be traversed by the sun or moon with a uniform velocity. If, then, the motion at any given point, as m, were perpendicular to $E \, m$, the apparent motion would be inversely as the distance. But the motion at m is perpendicular to $e \, m$ instead of $E \, m$. The resulting error, it is true, and especially in the case of the sun, is not very great. It may be added that the eccentric circle which best represents the apparent motions of the sun and moon in their elliptic orbits, gives much more imperfectly the distances and apparent diameters of those bodies. The value of $t \, u$, however, being thus at least approximately determined, $t' \, u'$, the arc of the moon's mean orbit subtended by it, is then found by the proportion $E \, m$ (or $E \, M$) :: $t \, u$:: $t' \, u'$—excepting that here, again, for the ratio of the distances, $E \, S$ and $E \, M$, is substituted either that of the whole circumferences of which they are respectively the radii, or the inverse ratio of the number of revolutions in a given time of the two planets, which, as shown in the note to the preceding passage, is the same thing. Having thus ascertained the value of $t' \, u'$ in yojanas, division by 15 gives us the number of minutes in the arc $t' \, u'$, or in the angle $t' \, E \, u'$.

In like manner, if the moon be at less than her mean distance from the earth, as $E \, M'$, she will subtend an arc of her mean orbit $n \, o$, greater than $N \, O$, her true diameter; the value of $n \, o$, in yojanas and in minutes, is found by a method precisely similar to that already described.

There is hardly in the whole treatise a more curious instance than this of the mingling together of true theory and false assumption in the same process, and of the concealment of the real character of a process by substituting other and equivalent data for its true elements.
is, of course, proportionally over-estimated, being made to be nearly 4° (more exactly, 3° 59′.4), instead of 8′.6, its true value, an amount so small that it should properly have been neglected as inappreciable.

It is an important property of the parallaxes of the sun and moon, resulting from the manner in which the relative distances of the latter from the earth are determined, that they are to one another as the mean daily motions of the planets respectively: that is to say,

\[53° 20′: 3° 59′:: 790° 35′: 59′ 8″ \]

Each is likewise very nearly one fifteenth of the whole mean daily motion, or equivalent to the amount of arc traversed by each planet in 4 nādis; the difference being, for the moon, about 38″, for the sun, about 3″. We shall see that, in the calculations of the next chapter, these differences are neglected, and the parallaxes taken as equal, in each case, to the mean motion during 4 nādis.

The circumference of the sun’s orbit being 4,381,500 yojanas, the assignment of 6500 yojanas as its diameter implies that his mean apparent diameter was considered to be 32° 24′.8; for

\[360°: 33′ 24″:: 4,331,500: 6500? \]

The true value of the sun’s apparent diameter at his mean distance is 32° 3′.6.

The results arrived at by the Greek astronomers relative to the parallax, distance, and magnitude of the sun and moon are not greatly discordant with those here presented. Hipparchus found the moon’s horizontal parallax to be 57′: Aristarchus had previously, by observation upon the angular distance of the sun and moon when the latter is half-illuminated, made their relative distances to be as 19 to 1; this gave Hipparchus 3′ as the sun’s parallax. Ptolemy makes the mean distances of the sun and moon from the earth equal to 1210 and 59 radii of the earth, and their parallaxes 2′ 51″ and 58′ 14″ respectively: he also states the diameter of the moon, earth, and sun to be as 1,3,8, 18, while the Hindus make them as 1,3, and 13, and their true values, as determined by modern science, are as 1,3, and 412, nearly.

2. These diameters, each multiplied by the true motion, and divided by the mean motion, of its own planet, give the corrected (sphuṭa) diameters. If that of the sun be multiplied by the number of the sun’s revolutions in an Age, and divided by that of the moon’s,

3. Or if it be multiplied by the moon’s orbit (kakṣāḥ), and divided by the sun’s orbit, the result will be its diameter upon the moon’s orbit: all these, divided by fifteen, give the measures of the diameters in minutes.

The absolute values of the diameters of the sun and moon being stated in yojanas, it is required to find their apparent values, in minutes of arc. In order to this, they are projected upon the moon’s orbit, or upon a circle described about the earth at the moon’s mean distance, of which circle—since 324,000 \(\div \) 21,600 = 15—one minute is equivalent to fifteen yojanas.
ally nearly 8', being from 53° 48'' at the apogee, to 61° 24'', at the perigee.

How the amount of the parallax was determined by the Hindus—if, indeed, they had the instruments and the skill in observation requisite for making themselves an independent determination of it—we are not informed. It is not to be supposed, however, that an actual estimate of the mean horizontal parallax as precisely 53° 20'' lies at the foundation of the other elements which seem to rest upon it; for, in the making up of the artificial Hindu system, all these elements have been modified and adapted to one another in such a manner as to produce certain whole numbers as their results, and so to be of more convenient use.

From this parallax the moon’s distance may be deduced by the proportion

\[\sin 53° 20'' : R :: \text{earth’s rad.} : \text{moon’s dist.} \]

or

\[53\frac{1}{4} : 3438’ : 8000’ : 51,570’ \]

The radius of the moon’s orbit, then, is 51,570 yojanas, or, in terms of the earth’s radius, 64.47. The true value of the moon’s mean distance is 59.96 radii of the earth.

The farther proportion

\[3438’ : 5400’ : 57,570’ : 81,000’ \]

would give, as the value of a quadrant of the moon’s orbit, 81,000 yojanas, and, as the whole orbit, 324,000 yojanas. This is, in fact, the circumference of the orbit assumed by the system, and stated in another place (xii. 85). Since, however, the moon’s distance is nowhere assumed as an element in any of the processes of the system, and is even directed (xii. 84) to be found from the circumference of the orbit by the false ratio of \(1 : \sqrt{10}\), it is probable that it was also made no account of in constructing the system, and that the relations of the moon’s parallax and orbit were fixed by some such proportion as

\[53° 20'' : 360° : 800’ : 324,000’ \]

The moon’s orbit being 324,000 yojanas, the assignment of 480 yojanas as her diameter implies a determination of her apparent diameter at her mean distance as 32'; since

\[360° : 32’ : 324,000’ : 480’ \]

The moon’s mean apparent diameter is actually 31° 7’.

In order to understand, farther, how the dimensions of the sun’s orbit and of the sun himself are determined by the Hindus, we have to notice that, the moon’s orbit being 324,000 yojanas, and her time of sidereal revolution 27 d. 32167416, the amount of her mean daily motion is 11,8587.717. The Hindu system now assumes that this is the precise amount of the actual mean daily motion, in space, of all the planets, and ascertains the dimensions of their several orbits by multiplying it by the periodic time of revolution of each (see below, xii. 80–90). The length of the sidereal year being 365 d. 25875648, the sun’s orbit is, as stated elsewhere (xii. 86), 4,331,500 yojanas. From a quadrant of this, by the ratio 5400’ : 3438’, we derive the sun’s distance from the earth, 689,430 yojanas, or 861.8 radii of the earth. This is vastly less than his true distance, which is about 24,000 radii. His horizontal parallax
CHAPTER IV.

OF ECLIPSES, AND ESPECIALLY OF LUNAR ECLIPSES.

Contents:—1, dimensions of the sun and moon; 2-3, measurement of their apparent dimensions; 4-6, measurement of the earth’s shadow; 6, conditions of the occurrence of an eclipse; 7-8, ascertainmont of longitude at the time of conjunction or of opposition; 9, causes of eclipses; 10-11, to determine whether there will be an eclipse, and the amount of obscuration; 12-15, to find half the time of duration of the eclipse, and half that of total obscuration; 16-17, to ascertain the times of contact and of separation, and, in a total eclipse, of immersion and emergence; 18-21, to determine the amount of obscuration at a given time; 22-23, to find the time corresponding to a given amount of obscuration; 24-25, measurement of the deflection of the ecliptic, at the point occupied by the eclipsed body, from an east and west line; 26, correction of the scale of projection for difference of altitude.

1. The diameter of the sun’s disk is six thousand five hundred yojanas; of the moon’s, four hundred and eighty.

We shall see, in connection with the next passage, that the diameters of the sun and moon, as thus stated, are subject to a curious modification, dependent upon and representing the greater or less distance of those bodies from the earth; so that, in a certain sense, we have here only their mean diameters. These represent, however, in the Hindu theory—which affects to reject the supposition of other orbits than such as are circular, and described at equal distances about the earth—the true absolute dimensions of the sun and moon.

Of the two, only that for the moon is obtained by a legitimate process, or presents any near approximation to the truth. The diameter of the earth being, as stated above (i. 59), 1600 yojanas, that of the moon, 480 yojanas, is 3 of it: while the true value of the moon’s diameter in terms of the earth’s is 2716, or only about a tenth less. An estimate so nearly correct supposes, of course, an equally correct determination of the moon’s horizontal parallax, distance from the earth, and mean apparent diameter. The Hindu valuation of the parallax may be deduced from the value given just below (v. 3), of a minute on the moon’s orbit, as 15 yojanas. Since the moon’s horizontal parallax is equal to the angle subtended at her centre by the earth’s radius, and since, at the moon’s mean distance, 1° of arc equals 15 yojanas, and the earth’s radius, 800 yojanas, would accordingly subtend an angle of 53° 20′ — the latter angle, 53° 20′, is, according to the system of the Sūrya-Siddhānta, the moon’s parallax, when in the horizon and at her mean distance. This is considerably less than the actual value of the quantity, as determined by modern science, namely 57° 1′; and it is practically, in the calculation of solar eclipses, still farther lessened by 3′ 51″, the excess of the value assigned to the sun’s horizontal parallax, as we shall see farther on. Of the variation in the parallax, due to the varying distance of the moon, the Hindu system makes no account: the variation is actu-
4° 25', will rise. The problem, is, virtually, to ascertain the arc of the equator intercepted between p, the point which rose with the sun, and h, which will rise with H, since that arc determines the time elapsed between sunrise and the rise of H, or the time in the day at which the latter will take place. In order to this, we ascertain, by a process similar to that illustrated in connection with the last passage, the bhogyāsava, "ascensional equivalent of the part of the sign to be traversed," of the point having less longitude—or $p g$—and the bhuktāsava, "ascensional equivalent of the part traversed," belonging to H, the point having greater longitude—or $l h$—and add the sum of both to that of the ascensional equivalents of the intervening whole signs, $g e$ and $e l$, which the text calls antaralagnāsava, "equivalent respirations of the interval;" the total is, in respirations of time, corresponding to minutes of arc, the interval of time required: it will be found to be 6555½, or 18° 12½ 3½.; and this, in the case assumed, is the time in the day at which the rise of H takes place: were H, on the other hand, the position of the sun, 18° 12½ 3½ would be the time before sunrise of the same event, and would require to be subtracted from the calculated length of the day to give the instant of local time.

It is evident that the main use of this process must be to determine the hour at which a given planet, or a star of which the longitude is known, will pass the horizon, or at which its "day" (see above, ii. 59–63) will commence. A like method—substituting only the equivalents in right for those in oblique ascension—might be employed in determining at what instant of local time the complete day, āhordātra, of any of the heavenly bodies, reckoned from transit to transit across the lower meridian, would commence: and this is perhaps to be regarded as included also in the terms of verse 50; even though the following verse plainly has reference to the time of rising, and the word lagna, as used in it, means only the point upon the horizon.

The last verse we take to be simply an obvious and convenient rule for determining at a glance in which part of the civil day will take place the rising of any given point of the ecliptic, or of a planet occupying that point. If the longitude of a planet be less than that of the sun, while at the same time they are not more than three signs apart—this and the other corresponding restrictions in point of distance are plainly implied in the different specifications of the verse as compared with one another, and are accordingly explicitly stated by the commentator—the hour when that planet comes to assume the position called in the text lagna, or to pass the eastern horizon, will evidently be between midnight and sunrise, or in the after part (seshā, literally "remainder") of the night: if, again, it be more than three and less than six signs behind the sun, or, which is the same thing, more than six and less than nine signs in advance of him, its time of rising will be between sunset and midnight: if, once more, it be in advance of the sun by less than six signs, it will rise while the sun is above the horizon.

The next three chapters treat of the eclipses of the sun and moon, the fourth being devoted to lunar eclipses, and the fifth to solar, and the sixth containing directions for projecting an eclipse.
any other reason, the manner of proceeding would be somewhat different. Thus, if $A \theta H$ (Fig. 18) were the sun’s longitude, and $p \theta P$ the line of the eastern horizon, we should first find $h \theta p$, by subtracting the part of the day already elapsed from the calculated length of the day (this step is, in the text, omitted to be specified); from it we should then subtract the $bhuktäsavas, lk$, and then the equivalents of the signs through which the sun has already passed, in inverse order, until there remained only the part of an equivalent, $p \theta g$, which would be converted into the corresponding arc of longitude, $P \theta G$, in the same manner as before; and the subtraction of $P \theta G$ from $A G$ would give $A \theta P$, the longitude of the point P.

But again, if it be required to determine the point of the ecliptic which is at any given time upon the meridian, the general process is the same as already explained, excepting that for the time from sunrise is substituted the time until or since noon, and also for the equivalents in oblique ascension those in right ascension, or, in the language of the text, the “times of rising at Lankā” ($lankodāyāsavas$); since the meridian, like the equatorial horizon, cuts the equator at right angles.

It will be observed that all these calculations assume the increments in longitude of to be proportional to those of ascension throughout each sign: in a process of greater pretensions to accuracy, this would lead to errors of some consequence.

The use and value of the methods here taught, and of the quantities found as their results, will appear in the sequel (see ch. v. 1–9; vii. 7; ix. 5–11; x. 2).

The term $kshitiya$, by which the horizon is designated, may be understood, according to the meaning attributed to $kshiti$ (see above, under ii. 61–63), either as the “circle of situation”—that is, the one which is dependent upon the situation of the observer, varying with every change of place on his part—or as the “earth-circle,” the one produced by the intervention of the earth below the observer, or drawn by the earth upon the sky. Probably the latter is its true interpretation.

50. Add together the ascensional equivalents, in respirations, of the part of the sign to be traversed by the point having less longitude, of the part traversed by that having greater longitude, and of the intervening signs—thus is made the ascertainment of time ($kālasādhanā$).

51. When the longitude of the point of the ecliptic upon the horizon ($tāgna$) is less than that of the sun, the time is in the latter part of the night; when greater, it is in the day-time; when greater than the longitude of the sun increased by half a revolution, it is after sunset.

The process taught in these verses is, in a manner, the converse of that which is explained in the preceding passage, its object being to find the instant of local time when a given point of the ecliptic will be upon the horizon, the longitude of the sun being also known. Thus (Fig. 18), supposing the sun’s longitude, $A \theta P$, to be, at a given time, $1^\circ 12^\circ$; it is required to know at what time the point H, of which the longitude is
The word *lagna* means literally "attached to, connected with," and hence, "corresponding, equivalent to." It is, then, most properly, and likewise most usually, employed to designate the point or the arc of the equator which corresponds to a given point or arc of the ecliptic. In such a sense it occurs in this passage, in verse 47, where *lagnāsvaśa* is precisely equivalent to *udayāsvaśa*, explained in connection with the next preceding passage; also below, in verse 50, and in several other places. In verses 48 and 49, however, it receives a different signification, being taken to indicate the point of the ecliptic which, at a given time, is upon the meridian or at the horizon; the former being called *lagnam kṣhitiye, "lagna at the horizon"—or, in one or two cases elsewhere, simply *lagna*—the other receiving the name of *madhyalagna*, "meridian-lagna."

The rules by which, the sun's longitude and the hour of the day being known, the points of the ecliptic at the horizon and upon the meridian are found, are very elliptically and obscurely stated in the text; our translation itself has been necessarily made in part also a paraphrase and explication of them. Their farther illustration may be best effected by means of an example, with reference to the last figure (Fig. 18).

At a given place of observation, as Washington, let the moment of local time—reckoned in the usual Hindu manner, from sunrise—be 18° 12' 30", and let the longitude of the sun, as corrected by the precession, be, by calculation, 42°, or 1° 12' 20": it is required to know the longitude of the point of the ecliptic (*lagna*) then upon the eastern horizon.

Let P (Fig. 18) be the place of the sun, and H h the line of the horizon, at the given time; and let p be the point of the equator which rose with the sun; then the arc p h is equivalent to the time since sunrise, 18° 12' 30", or 6555'. The value of *tg*, the equivalent in oblique ascension of the second sign TG, in which the sun is, is given in the table presented at the end of the note upon the preceding passage as 1312'. To find the value of the part of it *pq* we make the proportion

\[
\frac{TG}{PG} = \frac{tg}{pq}
\]

or

\[
30° : 18° :: 1312' : 787'
\]

From *pq*, or 6555', we now subtract *pq*, 787', and then, in succession, the ascensional equivalents of the following signs, G C and C L—that is, *gc*, or 1733', and *el*, or 2137'—until there is left a remainder, I h, or 1898', which is less than the equivalent of the next sign. To this remainder of oblique ascension the corresponding arc of longitude is then found by a proportion the reverse of that formerly made, namely

\[
\frac{l v}{l h} = \frac{L V}{L H}
\]

or

\[
2278' : 1898' :: 30° : 25°
\]

The result thus obtained being added to A L, or 4°, the sum, 4° 25', or 145°, is the longitude of H.

The arc *pq* is called in the text *bhogyāsvaśa*, "the equivalent in respirations of the part of the sign to be traversed," while *tp* is styled *bhuktitāsvaśa*, "the respirations of the part traversed."

If, on the other hand, it were desired to arrive at the same result by reckoning in the opposite direction from the sun to the horizon, either on account of the greater proximity of the two in that direction, or for
Farther, to find the oblique equivalents in the second quadrant, we are directed to invert the right equivalents, and to add to each its own carakhand, decrement of ascensional difference. Thus
\[v' = L' + (c C' - LL') \]
\[v' = V' + (1L' - v V') \]
and finally,
\[vS = V'S + vV' = 2248'. \]

It is obvious without particular explanation that the arcs of oblique ascension thus found as the equivalents, in a given latitude, of the first six signs of the ecliptic, are likewise, in inverse order, the equivalents of the other six. We have, then, the following table of times of rising (udayāsava), for the equator and for the latitude of Washington, of all the divisions of the ecliptic:

Equivalents in Right and Oblique Ascension of the Signs of the Ecliptic.

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Equivalent in Right Ascension</th>
<th>Lat. of Washington</th>
<th>Sign.</th>
<th>Name</th>
<th>Equivalent in Obl. Ascension</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aries, meha,</td>
<td>1670</td>
<td>192</td>
<td>Pisces, maha,</td>
<td>12.</td>
<td>1092</td>
</tr>
<tr>
<td>2</td>
<td>Taurus, vrshan,</td>
<td>1725</td>
<td>1681</td>
<td>Aquarius, kumbha,</td>
<td>11.</td>
<td>1312</td>
</tr>
<tr>
<td>3</td>
<td>Gemini, mithuna,</td>
<td>1935</td>
<td>1663</td>
<td>Capricornus, makara,</td>
<td>10.</td>
<td>1733</td>
</tr>
<tr>
<td>4</td>
<td>Cancer, karkata,</td>
<td>1935</td>
<td>1661</td>
<td>Sagittarius, dhanus,</td>
<td>9.</td>
<td>2137</td>
</tr>
<tr>
<td>5</td>
<td>Leo, sinea,</td>
<td>1705</td>
<td>578</td>
<td>Scorpion, dli,</td>
<td>8.</td>
<td>2278</td>
</tr>
<tr>
<td>6</td>
<td>Virgo, kanyak,</td>
<td>1670</td>
<td>192</td>
<td>Libra, tuld,</td>
<td>7.</td>
<td>2348</td>
</tr>
</tbody>
</table>

For the expression “at Lankan,” employed in verse 43 to designate the equator, see above, under i. 62.

46. From the longitude of the sun at a given time are to be calculated the ascensional equivalents of the parts past and to come of the sign in which he is: they are equal to the number of degrees traversed and to be traversed, multiplied by the ascensional equivalent (udayāsava) of the sign, and divided by thirty.

47. Then, from the given time, reduced to respirations, subtract the equivalent, in respirations, of the part of the sign to come, and also the ascensional equivalents (lagndsava) of the following signs, in succession—so likewise, subtract the equivalents of the part past, and of the signs past, in inverse order.

48. If there be a remainder, multiply it by thirty and divide by the equivalent of the unsubtracted sign; add the quotient, in degrees, to the whole signs, or subtract it from them: the result is the point of the ecliptic (lagna) which is at that time upon the horizon (kshtita).

49. So, from the east or west hour-angle (nata) of the sun, in nadis, having made a similar calculation, by means of the equivalents in right ascension (lankodaysava), apply the result as an additive or subtractive equation to the sun’s longitude: the result is the point of the ecliptic then upon the meridian (madhyalagna).
Upon working out the process, by means of the table of sines given in the second chapter (vv. 15–22), and assuming the inclination of the plane of the ecliptic to be 24° (ii. 28), we find, by the rule given above (ii. 60), that the day-radii of one, of two, and of three sines, or \(tt', gg', \) Cc, are 3366', 3216', and 3140' respectively, and that the sines of \(x \) and \(y \) are 1604' and 2007', to which the corresponding arcs are 27° 50' and 57° 45', or 1670' and 3465'. The former is the ascensional equivalent of the first sign; subtracting it from the latter gives that of the second sign, which is 1795', and subtracting 3465' from a quadrant, 5400', gives the equivalent of the third sign, which is 1935'—all as stated in the text.

These, then, are the periods of sidereal time which the first three signs of the ecliptic will occupy in rising above the horizon at the equator, or in passing the meridian of any latitude. It is obvious that the same quantities, in inverse order, will be the equivalents in right ascension of the three following signs also, and that the series of six equivalents thus found will belong also to the six signs of the other half of the ecliptic. In order, now, to ascertain the equivalents of the signs in oblique ascension, or the periods of sidereal time which they will occupy in rising above the horizon of a given latitude, it is necessary first to calculate, for that latitude, the ascensional difference (\(\text{cara} \)) of the three points \(T, G, \) and \(C \) (Fig. 17), which is done by the rule given in the last chapter (vv. 61, 62). We have calculated these quantities, in the Hindu method, for the latitude of Washington, 38° 54', and find the ascensional difference of \(T \) to be 578', that of \(G \) 1061', and that of \(C \) 1263'. The manner in which these are combined with the equivalents in right ascension to produce the equivalents in oblique ascension may be explained by the following figure (Fig. 18), which, although not a true projection, is sufficient for the purpose of illustration. Let \(A C S \) be a semicircle of the ecliptic, divided into its successive signs, and \(A S \) a semicircle of the equator, upon which \(A T', T' G', \) etc., are the equivalents of those signs in right ascension; and let \(t, g, \) etc., be the points which rise simultaneously with \(T, G, \) etc. Then \(t T' \) and \(v V' \), the ascensional difference of \(T \) and \(V \), are 578', \(g G' \) and \(t l' \) are 1061', and \(c C' \) is 1263'. Then \(A t \), the equivalent in oblique ascension of \(A T \), equals \(A T' - t T' \), or 1092'. To find, again, the value of \(t g \), the second equivalent, the text directs to subtract from \(T' G' \) the difference between \(t T' \) and \(g G' \), which is called the \(\text{carakakhand} \), "portion of ascensional difference"—that is to say, the increment or decrement of ascensional difference at the point \(G \) as compared with \(T \). Thus

\[
\begin{align*}
 t g &= T' G' - (g G' - t T') = T' G' + t T' - g G' = t G' - g G' = 1312' \\
 g c &= G' C' - (c C' - g G') = G' C' + g G' - c C' = g G' - c C' = 1783'
\end{align*}
\]
difference (\textit{carakhandā}), as calculated for a given place, are the times of rising at that place.

45. Invert them, and add their own portions of ascensional difference inverted, and the sums are the three signs beginning with Cancer: and these same six, in inverse order, are the other six, commencing with Libra.

The problem here is to determine the “times of rising” (\textit{udayāsvas}) of the different signs of the ecliptic—that is to say, the part of the 5400 respirations (\textit{asavas}) constituting a quarter of the sidereal day, which each of the three signs making up a quadrant of the ecliptic will occupy in rising (\textit{udaya}) above the horizon. And in the first place, the times of rising at the equator, or in the right sphere—which are the equivalents of the signs in right ascension—are found as follows:

Let ZN (Fig. 17) be a quadrant of the solstitial colure, AN the projection upon its plane of the equinoctial colure, AZ of the equator, and AC of the ecliptic; and let A, T, G, and C be the projections upon AC of the initial points of the first four signs; then AT is the sine of one sign, or of 30°, AG of two signs, or of 60°, and AC, which is radius, the sine of three signs, or of 90°. From T, G, and C, draw TT', GG', Cc', perpendicular to AN. Then ATT' and ACC' are similar triangles, and, since AC equals radius,

$$R:Cc::AT:Tt$$

But the arc of which Tt is sine, is the same part of the circle of diurnal revolution of which the radius is tt', as the required ascensional equivalent of one sign is of the equator; hence the sine of the latter, which we may call x, is found by reducing TT' to the measure of a great circle, which is done by the proportion

$$tt':R::Tt:\sin x$$

Combining this with the preceding proportion, we have,

$$tt':Cc::AT:\sin x$$

Again, to find the ascensional equivalent of two signs, which we will call y, we have first, by comparison of the triangles AGg and ACC',

$$R:Cc::AG:Gg$$

and

$$gg':R::Gg:\sin y$$

therefore, as before,

$$gg':Cc::AG:\sin y$$

Hence, the sines of the ascensional equivalents of one and of two signs respectively are equal to the sines of one and of two signs, AT and AG, multiplied by the day-radius of three signs, Cc, and divided each by its own day-radius, tt' and gg'; and the conversion of the sines thus obtained into arc gives the ascensional equivalents themselves. The rule of the text includes also the equivalent of three signs, but this is so obviously equal to a quadrant that it is unnecessary to draw out the process, all the terms in the proportions disappearing except radius.
manner: first, as was shown in connection with verse 7 of this chapter,

hyp. shad.: meas. ampl.: \(EC : CA \) (Fig. 13, p. 254)

but \(EC : CA :: EH : BC \)

therefore hyp. shad.: meas. ampl.: \(EH : BC \)

BC, the sine of declination, being thus ascertained, the longitude is
deduced from it as in a previous process (see above, vv. 17-20).

41. . . . Upon a given day, the distances of three bases, at
noon, in the forenoon, and in the afternoon, being laid off,

42. From the point of intersection of the lines drawn between
them by means of two fish-figures, (matsya), and with a radius
touching the three points, is described the path of the shadow . . .

This method of drawing upon the face of the dial the path which
will be described by the extremity of the shadow upon a given day pro-
ceeds upon the assumption that that path will be an arc of a circle—an
erroneous assumption, since, excepting within the polar circles, the path
of the shadow is always a hyperbola, when the sun is not in the equator.
In low latitudes, however, the difference between the arc of the hyper-
bola, at any point not too far from the gnomon, and the arc of a circle,
is so small, that it is not very surprising that the Hindus should have
overlooked it. The path being regarded as a true circle, of course it
can be drawn if any three points in it can be found by calculation: and
this is not difficult, since the rules above given furnish means of ascer-
taining, if the sun’s declination and the observer’s latitude be known,
the length of the shadow and the length of its base, or the distance of
its extremity from the east and west axis of the dial, at different times
during the day. One part of the process, however, has not been provid-
ed for in the rules hitherto given. Thus (Fig. 9, p. 241), supposing
\(d, m, \) and \(l \) to be three points in the same daily path of the shadow, we
require, in order to lay down \(l \) and \(m \), to know not only the bases \(l \beta, \beta m \),
but also the distances \(b \beta, b m \). But these are readily found
when the shadow and the base corresponding to each are known, or
they may be calculated from the sines of the respective hour-angles.

The three points being determined, the mode of describing a circle
through them is virtually the same with that which we should employ:
lines are drawn from the noon-point to each of the others, which are
then, by fish-figures (see above, under vv. 1-5), bisected by other lines at
right angles to them, and the intersection of the latter is the centre of
the required circle.

42. . . . Multiply by the day-radius of three signs, and divide
by their own respective day-radii.

43. In succession, the sines of one, of two, and of three signs;
the quotients, converted into arc, being subtracted, each from the
one following, give, beginning with Aries, the times of rising
(udayāśavas) at Lankā:

44. Namely sixteen hundred and seventy, seventeen hundred
and ninety-five, and nineteen hundred and thirty-five respira-
tions. And these, diminished each by its portion of ascensional
The processes for deriving from the sine of altitude that of zenith-distance, and from both the length of the corresponding shadow and its hypothenuse, are precisely the same as in the last problem.

For the meaning of *antya*—which, for lack of a better term, we have translated "day-measure"—see above, under verse 7. The word *nata*, by which the hour-angle is designated, is the same with that employed above with the signification of "meridian zenith-distance"; see the note to verses 14-17.

37. If radius be multiplied by a given shadow, and divided by the corresponding hypothenuse, the result is the sine of zenith-distance (*ārc*): the square root of the difference between the square of that and the square of radius

38. Is the sine of altitude (*canku*); which, multiplied by radius and divided by the sine of co-latitude (*lamba*), gives the "divisor" (*cheda*); multiply the latter by radius, and divide by the radius of the diurnal circle,

39. And the quotient is the sine of the sun's distance from the horizon (*unnata*); this, then, being subtracted from the day-measure (*antya*), and the remainder turned into arc by means of the table of versed sines, the final result is the hour-angle (*nata*), in respirations (*asau*), east or west.

The process taught in these verses is precisely the converse of the one described in the preceding passage. The only point which calls for further remark in connection with it is, that the line *GQ* (Fig. 16) is in verse 39 called the "sine of the unnata." By this latter term is designated the opposite of the hour-angle (*nata*)—that is to say, the sun's angular distance from the horizon upon his own circle, *O'A*', reduced to time, or to the measure of a great circle. Thus, when the sun is at *O'* his hour-angle (*nata*), or the time till noon, is *Q'E*; his distance from the horizon (*unnata*), or the time since sunrise, is *Q'G*'. But *GQ* is with no propriety styled the sine of *G'Q*'; it is not itself a sine at all, and the actual sine of the arc in question would have a very different value.

40. Multiply the sine of co-latitude by any given measure of amplitude (*ogrā*), and divide by the corresponding hypothenuse in digits; the result is the sine of declination. This, again, is to be multiplied by radius, and divided by the sine of greatest declination;

41. The quotient, converted into arc, is, in signs, etc., the sun's place in the quadrant; by means of the quadrants is then found the actual longitude of the sun at that point. . . .

By the method taught in this passage, the sun's declination, and, through that, his true and mean longitude, may, the latitude of the observer being known, be found from a single observation upon the shadow at any hour in the day. The declination is obtained from the measure of amplitude and the hypothenuse of the shadow, in the following
36. By radius, gives the sine of altitude (γανκύ): subtract its sine from that of radius, and the square root of the remainder is the sine of zenith-distance (δρύ): the shadow and its hypo-

The object of this process is, to find the sine of the sun’s altitude at any given hour of the day, when his distance from the meridian, his declination, and the latitude, are known. The sun’s angular distance from the meridian, or the hour-angle, is found, as explained by the commentary, by subtracting the time elapsed since sunrise, or which is to elapse before sunset, from the half day, as calculated by a rule previously given (ii. 61-63). From the declination and the latitude the sine of ascensional difference (καράγυδ) is supposed to have been already derived, by the method taught in the same passage; as also, from the declina-

The successive steps of the process of calculation will be made clear by a reference to the annexed figure (Fig. 16), taken in connection with Fig. 13 (p. 254), with which it corresponds in dimensions and lettering. Let G C’E represent a portion of the plane of the equator, C being its centre, and GE its intersection with the plane of the me-

Let CG equal the sine of ascensional difference, and AB its corre-

Let Q’ be the place of the sun at a given time; the angle Q’CD, measured by the arc of the equator Q’E, is the hour-angle: from Q’ draw Q’Q perpendicular to CE; then Q’Q is the sine, and QE is the versed sine, of Q’E. Add to radius, EC, the sine of ascensional difference, CG; their sum, EG—

which is the equivalent, in terms of a great circle, of DA, that part of the diameter of the circle of diurnal revolution which is above the horizon, and which consequently measures the length of the day—is the day-measure (άντυδ). From EG deduct EQ, the versed sine of the hour-angle; the remainder, GQ, is the same quantity in terms of a great circle which AO is in terms of the diurnal circle: hence the reduction of GQ to the dimensions of the lesser circle, by the proportion

\[\text{CE} : \text{BD} : : \text{GQ} : \text{AO} \]

gives us the value of AO; to this the text gives the technical name of “divisor” (χέθα). But, by Fig. 13,

\[\text{CE} : \text{EH} : : \text{AO} : \text{OR} \]

hence OR, which is the sine of the sun’s altitude at the given time, equals AO, the “divisor,” multiplied by EH, the cosine of latitude, and divided by CE, or radius.
nearly the same propriety be called the "shadow," as that of the former the "gnomon." The particular sine of altitude which is the result of the present process is commonly known as the konaçanka, from the word kona, which, signifying originally "angle," is used, in connection with the dial, to indicate the angles of the circumscribing square (see Fig. 9, p. 241), and then the directions in which those angles lie from the gnomon. The word itself is doubtless borrowed from the Greek γωνία, the form given to it being that in which it appears in the compounds τρίγωνον (Sanskrit trikona), etc. Lest it seem strange that the Hindus should have derived from abroad the name for so familiar and elementary a quantity as an angle, we would direct attention to the striking fact that in that stage of their mathematical science, at least, which is represented by the Sūrya-Siddhānta, they appear to have made no use whatever in their calculations of the angle: for, excepting in this passage (v. 34) and in the term for "square" employed in a previous verse (v. 5) of this chapter, no word meaning "angle" is to be met with anywhere in the text of this treatise. The term δύσ, used to signify "zenith-distance"—excepting when this is measured upon the meridian; see above, under vv. 14–16—means literally "sight": in this sense, it occurs here for the first time: we have had it more than once above with the signification of "observed place," as distinguished from a position obtained by calculation. In verse 32, sūnu might be understood as used in the sense of "zenith," yet it has there, in truth, its own proper signification of "gnomon;" the meaning being, that the sun, in the cases supposed, makes his revolution to the south or to the north of the gnomon itself, or in such a manner as to cast the shadow of the latter, at noon, northward or southward. One of the factors in the calculation is styled karani, "surd" (see Colebrooke’s Hind. Alg., p. 145), rather, apparently, as being a quantity of which the root is not required to be taken, than one of which an integral root is always impossible; or, it may be, as being the square of a line which is not, and cannot be, drawn. The term translated "fruit." (phala) is one of very frequent occurrence elsewhere, as denoting "quotient, result, corrective equation," etc.

The form of statement and of injunction employed in verses 29 and 30, in the phrases "the result obtained by the wise," and "let the wise man set down," etc., is so little in accordance with the style of our treatise elsewhere, while it is also frequent and familiar in other works of a kindred character, that it furnishes ground for suspicion that this passage, relating to the konaçanka, is a later interpolation into the body of the text; and the suspicion is strengthened by the fact that the process prescribed here is so much more complicated than those elsewhere presented in this chapter.

34. . . . If radius be increased by the sine of ascensional difference (cara) when declination is north, or diminished by the same, when declination is south,

35. The result is the day-measure (antya); this, diminished by the versed sine (vtrkramajja) of the hour-angle (nata), then multiplied by the day-radius and divided by radius, is the "divisor" (cheda); the latter, again, being multiplied by the sine of co-latitude (lamba), and divided
\(-\sqrt{\frac{1}{2}}, \text{sin alt. by } x, \text{and cos alt. by } \sqrt{1-x^2}, \text{we have } a^2 - 2abx + b^2x^2 = \frac{1}{4}(1-x^2); \text{ and, by reduction, } x^2 - \frac{2ab}{a^2 + b^2} x = \frac{1}{4} - \frac{a^2}{a^2 + b^2}. \text{ Representing, again, } \frac{a}{a^2 + b^2} \text{ by } f, \text{and } \frac{1}{a^2 + b^2} \text{ by } s, \text{and reducing, we have } x = f + \sqrt{f^2 + s}. \text{ But } f \text{ is evidently the same with the “fruit,” since } b, \text{or tan lat., equals eq. sh. × gnom., and therefore } \frac{a}{a^2 + b^2} = \frac{\text{eq. sh. × gnom. × sin. ampl.}}{\text{gnom.}^2 + \text{eq. sh.}^2}; \text{ and } s \text{ is also the same with the “surd,” for } \frac{1}{a^2 + b^2} = \frac{\text{eq. sh.}^2}{\text{gnom.}^2 + \text{eq. sh.}^2}.\]

If the latitude being north, we consider the north direction as positive, \(b\) will be positive. The value of \(f\), given above, will then evidently be positive or negative as the sign of \(a\) is plus or minus. But \(a\), the sine of amplitude, is positive when declination is north, and negative when declination is south. Hence \(f\) is to be added to or subtracted from the radical, according as the sun is north or south of the equator, as prescribed by the Hindu rule. A minus sign before the radical would correspond to a second passage of the sun across the south-east and north-west vertical circle; which, except in a high latitude, would take place always below the horizon.

The construction of the last part of verse 32 is by no means clear, yet we cannot question that the meaning intended to be conveyed by it is truly represented by our translation. When declination is greater than north latitude, the sun’s revolution is made wholly to the north of the prime vertical, and the vertical circles which he crosses are the north-east and the north-west. The process prescribed in the text, however, gives the correct value for the sine of altitude in this case also. For, in the triangle SZP (Fig. 15), all the parts remain the same, excepting that the angle \(\angle PZS\) becomes 45°, instead of 135°: but the cosine of the former is the same as that of the latter arc, with a difference only of sign, which disappears in the process, the cosine being squared.

The sine of altitude being found, that of its complement, or of zenith-distance, is readily derived from it by the method of squares (as above, in vv. 16, 17). To ascertain, farther, the length of the corresponding shadow and of its hypotenuse, we make the proportions:

\[
\frac{\text{sin alt.}}{\text{sin zen. dist.}} = \frac{\text{gnom.}}{\text{shad.}}
\]

and

\[
\frac{\text{sin alt.}}{R} = \frac{\text{gnom.}}{\text{hyp. shad.}}
\]

In this passage, as in those that follow, the sine of altitude is called by the same name, \(\text{canku}, \text{“staff,” which is elsewhere given to the gnomon: the gnomon, in fact, representing in all cases, if the hypotenuse be made radius, the sine of the sun’s altitude. The word is frequently used in this sense in the modern astronomical language: thus } \text{V C (Fig. 13, p. 254), the sine of the sun’s altitude when upon the prime vertical, is called the } \text{samamanda\=dalecanku, “prime vertical staff,” and B T, the sine of altitude when the sun crosses the unmanda\=la, or east and west hour-circle, is styled the unmanda\=dalecanku: of the latter line, however, the } \text{S\=urya-Siddh\=anta makes no account. We are surprised, however, not to find a distinct name for the altitude, as for its complement, the zenith-distance: the sine of the latter might with very
In like manner, \(d e^2 = 2 \) meas. ampl. But the similar triangles \(C d e \) and \(C D E \) give \(C d^2 : d e^2 : : C D^2 : D E^2 \); which, by halving the two consequents, and observing the constant relation of \(C d \) to the measure of amplitude (see above, under v. 7), gives \(R^2 : \sin \text{ ampl.}^2 : : R^2 : \frac{1}{2} D E^2 : \) whence \(\frac{1}{2} D E^2 = \sin \text{ ampl.}^2 \), or \(D E^2 = 2 \sin \text{ ampl.}^2 \\
Now the required sine of altitude is \(D G \), and \(D G = D H + H G = D H + I J \). And, obviously, the triangles \(D H I \), \(D I E \), \(E F C \), \(I J C \), and \(C b e \) are all similar. Then, from \(D H I \) and \(C b e \), we derive

\[
\frac{D H}{D I : D I : D b : C e}
\]
from \(D I E \) and \(C b e \),

\[
\frac{D I}{D I : D E : 2b : C e}
\]
and, by combining terms, \(\frac{D H}{D I : D E : b \times C b : C e^2} \)

whence \(D H \left(\frac{\sqrt{2} \times \text{eq. sh.} \times \text{gn.} \times \sqrt{2} \times \sin \text{ ampl.}}{\text{gn.}^2 + 2 \text{eq. sh.}^2} \right) \)

Again, from \(D H I \) and \(E F C \), we derive

\[
\frac{I H^2}{D I : D I : E F^2 : E C^2}
\]
from \(I J C \) and \(E F C \),

\[
\frac{I J^2}{I J : I C^2 : E F^2 : E C^2}
\]
whence, by adding the terms of the equal ratios, and observing that \(I H^2 + I J^2 = J H^2 \), and \(D I^2 + I C^2 = D C^2 = E C^2 \), we have

\[
\frac{J H^2}{I C^2 : E F^2 : E C^2}
\]
or \(J H^2 = E F^2 \). Hence \(I J^2 = J H^2 - I H^2 = E F^2 - J H^2 = E F^2 - D I^2 + D H^2 \)
But from \(E F C \) and \(C b e \) are derived

\[
\frac{C e^2}{C b^2 : C b^2 : E C^2 : E F^2}
\]
from \(D I E \) and \(C b e \),

\[
\frac{C e^2}{C b^2 : C b^2 : D E^2 : D I^2}
\]
whence \(D E^2 = \frac{E C^2 \times D I^2}{C e^2} \), and \(E F^2 - D I^2 = \frac{(E C^2 - D E^2) C b^2}{C e^2} \)

that is to say,

\[
E F^2 - D I^2 = \frac{(R^2 - \sin \text{ ampl.}^2) \times \text{gn.}^2}{\text{gn.}^2 + 2 \text{eq. sh.}^2} = \text{surd.}
\]

But, as was shown above, \(I J^2 = E F^2 - D I^2 + D H^2 = \text{surd} + \text{fruit}^2 \)
and \(\sqrt{\text{surd} + \text{fruit}^2} + \text{fruit} = I J + D H = D G \) = sine of altitude.

When declination is south, so that the sun crosses the circle of altitude at \(D' \), \(I H' \), the equivalent of \(D H \) is to be subtracted from \(I J \), to give \(D' G' \), the sine of altitude.

The correctness of the Hindu formulas may likewise be briefly and succinctly demonstrated by means of our modern methods. Thus, let \(P Z S \) (Fig. 15) be a spherical triangle, of which the three angular points are \(P \), the pole, \(Z \), the zenith, and \(S \), the place of the sun when upon the south-east or the south-west vertical circles; \(P Z \), then, is the co-latitude, \(Z S \) the zenith-distance, or co-altitude, and \(P S \) the co-declination; and the angle \(P Z S \) is 135°; the problem is, to find the sine of the complement of \(Z S \), or of the sun's altitude. By spherical trigonometry, \(\cos S P = \cos Z S \cos Z P + \sin Z S \sin Z P \cos Z \). Dividing by \(\sin Z P \), and observing that \(\cos S P = \sin Z P = \sin \text{ decl.} + \cos \text{ lat.} = \text{sine of amplitude}, \) we have \(\sin \text{ ampl.} = \sin \text{ alt. tan lat.} + \cos \text{ alt. cos 135}^\circ \). If, now, we represent \(\sin \text{ ampl.} \) by \(a \), \(\tan \text{ lat.} \) by \(b \), \(\cos 135^\circ \) by
32. Is the sine of altitude (canku) of the southern intermediate directions (vidic); and equally, whether the sun's revolution take place to the south or to the north of the gnomon (canku)—only, in the latter case, the sine of altitude is that of the northern intermediate directions.

33. The square root of the difference of the squares of that and of radius is styled the sine of zenith-distance (drc.). If, then, the sine of zenith-distance and radius be multiplied respectively by twelve, and divided by the sine of altitude,

34. The results are the shadow and hypotenuse at the angles (kona), under the given circumstances of time and place.

The method taught in this passage of finding, with a given declination and latitude, the sine of the sun's altitude at the moment when he crosses the south-east and south-west vertical circles, or when the shadow of the gnomon is thrown toward the angles (kona) of the circumscribing square of the dial, is, when stated algebraically, as follows:

\[
\begin{align*}
\left(\frac{R^2 - \sin^2 \text{ampl.}}{\sin^2 + \text{eq. sh.}^2}\right) \times \text{gn.}^2 &= \text{surd.} \\
\left(\frac{\text{eq. sh.} \times \text{gn.} \times \sin \text{ampl.}}{\sin^2 + \text{eq. sh.}^2}\right) &= \text{fruit.}
\end{align*}
\]

\[
\sqrt{\text{surd} + \text{fruit}^2} = \text{fruit} = \sin \text{alt.}, \text{ declination being north.}
\]

\[
\sqrt{\text{surd} + \text{fruit}^2} = \text{fruit} = \sin \text{alt.}, \text{ declination being south.}
\]

It is at once apparent that a problem is here presented more complicated and difficult of solution than any with which we have heretofore had to do in the treatise. The commentary gives a demonstration of it, in which, for the first time, the notation and processes of the Hindu algebra are introduced, and with these we are not sufficiently familiar to be able to follow the course of the demonstration. The problem, however, admits of solution without the aid of mathematical knowledge of a higher character than has been displayed in the processes already explained; by means, namely, of the consideration of right-angled triangles, situated in the same plane, and capable of being represented by a single figure. We give below such a solution, which, we are persuaded, agrees in all its main features with the process by which the formulas of the text were originally deduced.

Let ZEK be the south-eastern circle of altitude, from the zenith, Z, to the horizon, K; let E be its intersection with the equator, and D the position of the sun; and let Cb represent the gnomon.

Since \(e \) is in the line of the equinoctial shadow (see above, v. 7), and since \(be \) makes an angle of 45° with either axis of the dial, we have \(be^2 = 2 \text{ eq. sh.}^2 \), and \(C \epsilon^2 = Cb^2 + be^2 = gn.^2 + 2 \text{ eq. sh.}^2 \)
in the former proportion: and therefore

\[\frac{BC}{CH} = \frac{C'h}{C'} \]

or

\[\sin decl. : \sin lat. :: \text{gnom.} : \text{hyp. pr. vert. shad.} \]

but

\[\sin lat. : \cos lat. :: \text{eq. shad.} : \text{gnom.} \]

therefore, by combining terms,

\[\sin decl. : \cos lat. :: \text{eq. shad.} : \text{hyp. pr. vert. shad.} \]

and the reduction of the first and third of these proportions to the form of equations gives the rules of the text.

The other method of finding the same quantity is an application of the principle demonstrated above, under verse 7, that, with a given declination, the measure of amplitude of any shadow is to that of any other shadow as the hypothenuse of the former to that of the latter. Now when the sun is upon the prime vertical, the shadow falls directly eastward or directly westward, and hence its extremity lies in the east and west axis of the dial, and its measure of amplitude is equal to the equinoctial shadow. The noon measure of amplitude is, accordingly, to the hypothenuse of the noon shadow as the equinoctial shadow to the hypothenuse of the shadow cast when the sun is upon the prime vertical.

27. . . . If the sine of declination of a given time be multiplied by radius and divided by the sine of co-latitude, the result is the sine of amplitude (agranăuruviśa).

28. And this, being farther multiplied by the hypothenuse of a given shadow at that time, and divided by radius, gives the measure of amplitude (agran), in digits (angula), etc. . . .

The sine of the sun’s amplitude is found—his declination and the latitude being known—by a comparison of the similar triangles ABC and C E H (Fig. 13), in which

\[\frac{HE}{EC} = \frac{BC}{CA} \]

or

\[\cos lat. : R :: \sin decl. : \sin ampl. \]

And the proportion upon which is founded the rule in verse 28—namely, that radius is to the sine of amplitude as the hypothenuse of a given shadow to the corresponding measure of amplitude—has been demonstrated under verse 7, above.

28. . . . If from half the square of radius the square of the sine of amplitude (agran) be subtracted, and the remainder multiplied by twelve,

29. And again multiplied by twelve, and then farther divided by the square of the equinoctial shadow increased by half the square of the gnomon—the result obtained by the wise

30. Is called the “surd” (karaṇi): this let the wise man set down in two places. Then multiply the equinoctial shadow by twelve, and again by the sine of amplitude,

31. And divide as before: the result is styled the “fruit” (phāla). Add its square to the “surd,” and take the square root of their sum; this, diminished and increased by the “fruit,” for the southern and northern hemispheres,
25. ... Multiply the sines of co-latitude and of latitude respectively by the equinoctial shadow and by twelve,
26. And divide by the sine of declination; the results are the hypotenuse when the sun is on the prime vertical (samamandala). When north declination is less than the latitude, then the mid-day hypotenuse (prava),
27. Multiplied by the equinoctial shadow, and divided by the mid-day measure of amplitude (agri), is the hypotenuse. . . .

Here we have two separate and independent methods of finding the hypotenuse of the east and west shadow cast by the sun at the moment when he is upon the prime vertical. In connection with the second of the two are stated the circumstances under which alone a transit of the sun across the prime vertical will take place: if his declination is south, or if, being north, it is greater than the latitude, his diurnal revolution will be wholly to the south, or wholly to the north, of that circle.

The first method is illustrated by the following figures. Let \(V C'' \) (Fig. 12) be an arc of the prime vertical, \(V \) being the point at which the sun crosses it in his daily revolution; and let \(C' \) be the centre; then \(V C' \) is radius, and \(V C \) the sine of the sun's altitude; and, \(C'b \) being the gnomon, \(b v \) will be the shadow, and \(C'v \) its hypotenuse. But, by similarity of triangles,

\[V C : V C' : C'b : C'v \]

Again, in the other figure (Fig. 13)—of which the general relations are those of Fig. 8 (p. 232)—\(A D \) being the projection of the circle of the sun's diurnal revolution, and the point at which it crosses the prime vertical being seen projected in \(V \), \(V C \) is the sine of the sun's altitude at that point. But \(V C B \) and \(E C H \) are similar triangles, the angles \(B V C \) and \(C E H \) being each equal to the latitude; hence

\[V C : E C : B C : C H \]

Now the first of these ratios is—since \(E C \) equals \(V C' \), both being radius—the same with the first
gles A B C and C E H (Fig. 13, p. 254), which are similar, since the angles A C B and C E H are each equal to the latitude of the observer. Hence

\[\frac{E H}{E C} = \frac{B C}{A C} \]

But the triangles C E H (Fig. 13) and C b e (Fig. 11) are also similar; and

\[\frac{E H}{E C} = \frac{C b}{C e} \]

Hence, by equality of ratios, \[\frac{C b}{C e} = \frac{B C}{A C} \]

and A C, the sine of the sun’s amplitude, equals B C—which is the sine of declination, being equal to D F—multiplied by C e, the equinoctial hypothenuse, and divided by C b, the gnomon. The remaining part of the process depends upon the principle which we have demonstrated above, under verse 7, that the measure of amplitude is to the hypothenuse of the shadow as the sine of amplitude to radius.

Why the gnomon is in this passage called the “gnomon-sine,” it is not easy to discover. Verse 23 presents also a name for radius, madhyakarna, “half-diameter,” which is not found again; nor is karna often employed in the sense of “diameter” in this treatise.

23. . . . The sum of the equinoctial shadow and the sun’s measure of amplitude (arkāgrā), when the sun is in the southern hemisphere, is the base, north.

24. When the sun is in the northern hemisphere, the base is found, if north, by subtracting the measure of amplitude from the equinoctial shadow; if south, by a contrary process—according to the direction of the interval between the end of the shadow and the east and west axis.

25. The mid-day base is invariably the midday shadow. . . .

We have already had occasion to notice, in connection with the first verses of this chapter, that the base (bhaṣja) of the shadow is its projection upon a north and south line, or the distance of its extremity from the cast and west axis of the dial. It is that line which, as shown above (under v. 7), corresponds to and represents the perpendicular let fall from the sun upon the plane of the prime vertical. Thus, if (Fig. 11, p. 250) K, L, D, D be different positions of the sun—K and L being conceived to be upon the surface of the sphere—the perpendiculæ KB, LB, DD, DD are represented upon the dial by kb, lb, db, db, or, in Fig. 9 (p. 241), by kb, lb, db, db. Of these, the two latter coincide with their respective shadows, the shadow cast at noon being always itself upon a north and south line. The base of any shadow may be found by combining its measure of amplitude (agrā) with the equinoctial shadow. When the sun is in the southern hemisphere, as at D’ or K (Fig. 11), the measure of amplitude, ed’ or ek, is to be added always to the equinoctial shadow, be, in order to give the base, bd’ or bk. If, on the contrary, the sun’s declination be north, a different method of procedure will be necessary, according as he is north or south from the prime vertical. If he be south, as at D, the shadow, bd, will be thrown northward, and the base will be found by subtracting the measure of amplitude, de, from the equinoctial shadow, be: if he be north, as at L, the extremity of the shadow, l, will be south from the east and west axis, and the base, bl, will be obtained by subtracting the equinoctial shadow, be, from the measure of amplitude, le.
This passage teaches how, when the latitude of the observer is known, the sun's declination, and his true and mean longitudes, may be found by observing his zenith-distance at noon. The several parts of the process are all of them the converse of processes previously given, and require no explanation. To find the sun's declination from his meridian zenith-distance and the latitude (reckoned as south, by v. 14), the rule given above, in verses 15 and 16, is inverted; the true longitude is found from the declination by the inversion of the method taught in ii. 28, account being taken of the quadrant in which the sun may be according to the principle of ii. 30: and finally, the mean may be derived from the true longitude by a method of successive approximation, applying in reverse the equation of the centre, as calculated by ii. 39.

It is hardly necessary to remark that this is a very rough process for ascertaining the sun's longitude, and could give, especially in the hands of Hindu observers, results only distantly approaching to accuracy.

20. ... The sum of the latitude of the place of observation and the sun's declination, if their direction is the same, or, in the contrary case, their difference.

21. Is the sun's meridian zenith-distance (natāṃcās); of that find the base-sine (bahuṣyā) and the perpendicular-sine (kotijyā). If, then, the base-sine and radius be multiplied respectively by the measure of the gnomon in digits,

22. And divided by the perpendicular-sine, the results are the shadow and hypothenuse at mid-day. . . .

The problem here is to determine the length of the shadow which will be cast at mid-day when the sun has a given declination, the latitude of the observer being also known. First, the sun's meridian zenith-distance is found, by a process the converse of that taught in verses 15 and 16; then, the corresponding sine and cosine having been calculated, a simple proportion gives the desired result. Thus, let us suppose the sun to be at D' (Fig. 11, p. 250): the sum of his south declination, E'D', and the north latitude, EZ, gives the zenith-distance, ZD': its sine (bhujayā) is D' E', and its cosine (kotijyā) is C B'. Then

\[\frac{C B'}{B' D'} = \frac{C b}{b d'} \]

and

\[\frac{C B'}{C D'} = \frac{C b}{C d'} \]

which proportions, reduced to equations, give the value of \(b d' \), the shadow, and \(C d' \), its hypothenuse.

22. ... The sine of declination, multiplied by the equinoctial hypothenuse, and divided by the gnomon-sine (sankujyāvā),

23. Gives, when farther multiplied by the hypothenuse of any given shadow, and divided by radius (madhyakarna), the sun's measure of amplitude (ardāgarā) corresponding to that shadow...

In this passage we are taught, the declination being known, how to find the measure of amplitude (agrā) of any given shadow, as preparatory to determining, by the next following rule, the base (bhujā) of the shadow, by calculation instead of measurement. The first step is to find the sine of the sun's amplitude: in order to this, we compare the trian-
17. Is the sine of co-latitude...

This passage applies to cases in which the sun is not upon the equator, but has a certain declination, of which the amount and direction are known. Then, from the shadow cast at noon, may be derived his zenith-distance when upon the meridian, and the latitude. Thus, supposing the sun, having north declination ED (Fig. 11), to be upon the meridian, at D: the shadow of the gnomon will be bd, and the proportion

$$Cd:db::CD:DB''''$$

gives DB'''', the sine of the sun's zenith-distance, ZD, which is found from it by the conversion of sine into arc by a rule previously given (ii. 33). ZD in this case being south, and ED being north, their sum, EZ, is the latitude: if, the declination being south, the sun were at D', the difference of ED' and ZD' would be EZ, the latitude. The figure does not give an illustration of north zenith-distance, being drawn for the latitude of Washington, where that is impossible. The latitude being thus ascertained, it is easy to find its sine and cosine; the only thing which deserves to be noted in the process is that, to find the cosine from the sine, resort is had to the laborious method of squares, instead of taking from the table the sine of the complementary arc, or the kotijya.

The sun's distance from the zenith when he is upon the meridian is called natas, "deflected," an adjective belonging to the noun liptas, "minutes," or bhagats, ancts, "degrees." The same term is also employed, as will be seen farther on (vv. 34–36), to designate the hour-angle. For zenith-distance off the meridian another term is used (see below, v. 33).

17. ... The sine of latitude, multiplied by twelve, and divided by the sine of co-latitude, gives the equinoctial shadow. ...

That is (Fig. 11),

$$BC:BE::Cb:be$$

the value of the gnomon in digits being substituted in the rule for the gnomon itself.

17. ... The difference of the latitude of the place of observation and the sun's meridian zenith-distance in degrees (nata-bhagats), if their direction be the same, or their sum,

18. If their direction be different, is the sun's declination: if the sine of this latter be multiplied by radius and divided by the sine of greatest declination, the result, converted to arc, will be the sun's longitude, if he is in the quadrant commencing with Aries;

19. If in that commencing with Cancer, subtract from a half-circle; if in that commencing with Libra, add a half-circle; if in that commencing with Capricorn, subtract from a circle: the result, in each case, is the true (sphuta) longitude of the sun at mid-day.

20. To this if the equation of the apsis (manda phala) be repeatedly applied, with a contrary sign, the sun's mean longitude will be found...
known only by names formed by combining one of the words for shadow (chāyā, bhā, prabhā), with vishvat, “equinox” (see above, under v. 6). In modern Hindu astronomy it is also called okshabhā, “shadow of latitude”—i.e., which determines the latitude—and pata-bhā, of which, as used in this sense, the meaning is obscure.

13. . . . Radius, multiplied respectively by gnomon and shadow, and divided by the equinoctial hypotenuse.

14. Gives the sines of co-latitude (lamba) and of latitude (aksha): the corresponding arcs are co-latitude and latitude, always south. . . .

The proportions upon which these rules are founded are illustrated by the following figure (Fig. 11), in which, as in a previous figure (Fig. 8, p. 232), ZS represents a quadrant of the meridian, Z being the zenith and S the south point, C being the centre, and EC the projection of the plane of the equator. In order to illustrate the corresponding relations of the dial, we have conceived the gnomon, Cb, to be placed at the centre. Then, when the sun is on the meridian and in the equator, at E, the shadow cast, which is the equinoctial shadow, is be, while Ce is the corresponding hypotenuse. But, by similarity of triangles,

$$\frac{Ce}{be} = \frac{CE}{BE}$$

and

$$\frac{Ce}{Cb} = \frac{CE}{CB}$$

and as BE is the sine of EZ, which equals the latitude, and CB the sine of ES, its complement, the reduction of these proportions to the form of equations gives the rules of the text.

14. . . . The mid-day shadow is the base (bhujā); if radius be multiplied by that,

15. And the product divided by the corresponding hypotenuse, the result, converted to arc, is the sun’s zenith-distance (nata), in minutes: this, when the base is south, is north, and when the base is north, is south. Of the sun’s zenith-distance and his declination, in minutes,

16. Take the sum, when their direction is different—the difference, when it is the same; the result is the latitude, in minutes. From this find the sine of latitude; subtract its square from the square of radius, and the square-root of the remainder
have perceived that, if the precession were to be explained by a revolution in an epicycle, its rate of increase would not be equable, but as the increment of the sine of the arc in the epicycle traversed by the movable point, farther varied by the varying distance at which it would be seen from the centre in different parts of the revolution; and also that, the dimensions of the epicycle being 108°, the amount of precession would never come to equal 27°, but would, when greatest, fall short of 18°, being determined by the radius of the epicycle. Bentley’s whole treatment of the passage shows a thorough misapprehension of its meaning and relations: he even commits the blunder of understanding the first half of verse 9 to refer to the motion of the equinox, instead of to that of the initial point of the sidereal sphere.

Among the Greek astronomers, Hipparchus is regarded as the first who discovered the precession of the equinoxes; their rate of motion, however, seems not to have been confidently determined by him, although he pronounces it to be at any rate not less than 36'' yearly. For a thorough discussion of the subject of the precession in Greek astronomy see Delambre’s History of Ancient Astronomy, ii, 247, etc. From the observations reported as the data whence Hipparchus made his discovery, Delambre deduces very nearly the true rate of the precession. Ptolemy, however, was so unfortunate as to adopt for the true rate Hipparchus’s minimum, of 36'' a year: the subject is treated of by him in the seventh book of the Syntaxis. The actual motion of the equinox at the present time is 50''.25; its rate is slowly on the increase, having been, at the epoch of the Greek astronomy, somewhat less than 50''. How the Hindus succeeded in arriving at a determination of it so much more accurate than was made by the great Greek astronomer, or whether it was anything more than a lucky hit on their part, we will not attempt here to discuss.

The term by which the precession is designated in this passage is *ayandāca, “degrees of the *ayana.” The latter word is employed in different senses: by derivation, it means simply “going, progress,” and it seems to have been first introduced into the astronomical language to designate the half-revolutions of the sun, from solstice to solstice; these being called respectively (see xiv. 9) the *uttarayana and *dakṣiṇāyana, “northern progress” and “southern progress.” From this use the word was transferred to denote also the solstices themselves, as we have translated it in the first half of verse 11. In the latter sense we conceive it to be employed in the compound *ayandāca; although why the name of the precession should be derived from the solstice we are unable clearly to see. The term *krāntipātagati, “movement of the node of declination,” which is often met with in modern works on Hindu astronomy, does not occur in the Sūrya-Siddhānta.

12. ... In like manner, the equatorial shadow which is cast at mid-day at one’s place of observation

13. Upon the north and south line of the dial—that is the equinoctial shadow (vishvatprabha) of that place. . . .

The equinoctial shadow has been already sufficiently explained, in connection with a preceding passage (above, v. 7). In this treatise it is
that in the original composition of the Siddhānta a clearer explanation, and one more consistent in its method and language with those of the treatise generally, would not have been found for the subject. We even discover evidences of more than one revision of the passage. The first half of verse 9 so distinctly teaches, if read independently of what follows it, a complete revolution of the equinoxes, that, especially when taken in connection with Bhāskara’s statement, as cited above, it almost amounts to proof that the theory put forth in the Sūrya-Siddhānta was at one time that of a complete revolution. The same conclusion is not a little strengthened, farther, by the impossibility of deducing from verse 9, through the processes prescribed in the following verses, a true expression for the direction of the movement at present: we can see no reason why, if the whole passage came from the same hand, at the same time, this difficulty should not have been avoided; while it is readily explainable upon the supposition that the libratory theory of verse 10 was added as an amendment to the theory of verse 9, while at the same time the language of the latter was left as nearly unaltered as possible.

There seems, accordingly, sufficient ground for suspecting that in the Sūrya-Siddhānta, as originally constituted, no account was taken of the precession; that its recognition is a later interpolation, and was made at first in the form of a theory of complete revolution, being afterward altered to its present shape. Whether the statement of Bhāskara truly represents the earlier theory, as displayed in the Sūrya-Siddhānta of his time, we must leave an undetermined question. The very slow rate assigned by it to the movement of the equinox—only 9” a year—throws a doubt upon the matter: but it must be borne in mind that, so far as we can see, the actual amount of the precession since about A. D. 570 (see above, under i. 27) might be that first theory have been distributed over the whole duration of the present Age, since B. C. 3102.

In his own astronomy, Bhāskara teaches the complete revolution of the equinoxes, giving the number of revolutions in an æon (of 4,320,000,000 years) as 199,669; this makes the time of a single revolution to be 21,635,8073 years, and the yearly rate of precession 59⅛.9007. It is not to be supposed that he considered himself to have determined the rate with such exactness as would give precisely the odd number of 199,669 revolutions to the æon; the number doubtless stands in some relation which we do not at present comprehend to the other elements of his astronomical system. Bhāskara’s own commentators, however, reject his theory, and hold to that of a libration, which has been and is altogether the prevailing doctrine throughout India, and seems to have made its way thence into the Arabian, and even into the early European astronomy (see Colebrooke, as above).

Bentley, it may be remarked here, altogether denies (Hind. Ast., p. 130, etc.) that the libration of the equinoxes is taught in the Sūrya-Siddhānta, maintaining, with arrogant and unbecoming depreciation of those who venture to hold a different opinion, that its theory is that of a continuous revolution in an epicycle, of which the circumference is equal to 108° of the zodiac. In truth, however, Bentley’s own theory derives no color of support from the text of the Siddhānta, and is besides, in itself utterly untenable. It is not a little strange that he should not
looks the same way: as having to do with a revolution, as entering into the calculation of mean longitudes, it should have found a place where such matters are treated of, in the first chapter; and even in the second chapter, in connection with the rule for finding the declination, it would have been better introduced than it is here. Again, in the twelfth chapter, where the orbits of the heavenly bodies are given, in terms dependent upon their times of revolution, such an orbit is assigned to the asterisms (v. 88) as implies a revolution once in sixty years: it is, indeed, very difficult to see what can have been intended by such a revolution as this; but if the doctrine respecting the revolution of the asterisms given in verse 9 of this chapter had been in the mind of the author of the twelfth chapter, he would hardly have added another and a conflicting statement respecting the same or a kindred phenomenon. It appears to us even to admit of question whether the adoption by the Hindus of the sidereal year as the unit of time does not imply a failure to recognize the fact that the equinox was variable. We should expect, at any rate, that if, at the outset, the ever-increasing discordance between the solar and the sidereal year had been fully taken into account by them, they would have more thoroughly established and defined the relations of the two, and made the precession a more conspicuous feature of their general system than they appear to have done. In the construction of their cosmical periods they have reckoned by sidereal years only, at the same time assuming (as, for instance, above, i. 13, 14) that the sidereal year is composed of the two ayanas, "progresses" of the sun from solstice to solstice. The supposition of an after-correction likewise seems to furnish the most satisfactory explanation of the form given to the theory of the precession. The system having been first constructed on the assumption of the equality of the tropical and sidereal years, when it began later to appear, too plainly to be disregarded, that the equinox had changed its place, the question was how to introduce the new element. Now to assign to the equinox a complete revolution would derange the whole system, acknowledging a different number of solar from sidereal years in the chronological periods; if, however, a libratory motion were assumed, the equilibrium would be maintained, since what the solar year lost in one part of the revolution of libration it would gain in another, and so the tropical and sidereal years would coincide, in number and in limits, in each great period. The circumstance which determined the limit to be assigned to the libration we conceive to have been, as suggested by Bentley (Hind. Ast., p. 132), that the earliest recorded Hindu year had been made to begin when the sun entered the asterism Kṛttikā, or was 26° 40' west of the point fixed upon as the commencement of the sidereal sphere for all time (see above, under i. 27), on which account it was desirable to make the arc of libration include the beginning of Kṛttikā.

Besides these considerations, drawn from the general history of the Hindu astronomy, and the position of the element of the precession in the system of the Śrūya-Siddhānta, we have still to urge the blind and incoherent, as well as unusual, form of statement of the phenomenon, as fully exposed above. There is nothing to compare with it in this respect in any other part of the treatise, and we are unwilling to believe
The question now arises, in which direction is the precession, thus ascertained, to be reckoned? And here especially is brought to light the awkwardness and insufficiency, and even the inconsistency, of the process as taught in the text. Not only have we no rule given which furnishes us the direction, along with the amount, of the precessional movement, but it would even be a fair and strictly legitimate deduction from verse 9, that that movement is taking place at the present time in an opposite direction from the actual one. We have already remarked above that the last complete period of libratory revolution closed with the close of the last Brazen Age, and the process of calculation has shown that we are now in the third quarter of a new period, and in the third quadrant of the current revolution. Therefore, if the revolution is an eastward one, as taught in the text, only taking place upon a folded circle, so as to be made libratory, the present position of the movable point, Piscium, ought to be to the west of the equinox, instead of to the east, as it actually is. It was probably on account of this unfortunate flaw in the process, that no rule with regard to the direction was given, excepting the experimental one contained in verses 11 and 12, which, moreover, is not properly supplementary to the preceding rules, but rather an independent method of determining, from observation, both the direction and the amount of the precession. In verse 12, it may be remarked, in the word dartya, “turning back,” is found the only distinct intimation to be discovered in the passage of the character of the motion as libratory.

We have already above (under ii. 28) hinted our suspicions that the phenomenon of the precession was made no account of in the original composition of the Sūrya-Siddhānta, and that the notice taken of it by the treatise as it is at present is an afterthought: we will now proceed to expose the grounds of those suspicions.

It is, in the first place, upon record (see Colebrooke, As. Res., xii. 215; Essays, ii. 380, etc.) that some of the earliest Hindu astronomers were ignorant of, or ignored, the periodical motion of the equinoxes; Brahmagupta himself is mentioned among those whose systems took no account of it; it is, then, not at all impossible that the Sūrya-Siddhānta, if an ancient work, may originally have done the same. Among the positive evidences to that effect, we would first direct attention to the significant fact that, if the verses at the head of this note were expunged, there would not be found, in the whole body of the treatise besides, a single hint of the precession. Now it is not a little difficult to suppose that a phenomenon of so much consequence as this, and which enters as an element into so many astronomical processes, should, had it been borne distinctly in mind in the framing of the treatise, have been hidden away thus in a pair of verses, and unacknowledged elsewhere—no hint being given, in connection with any of the processes taught, as to whether the correction for precession is to be applied or not, and only the general directions contained in the latter half of verse 10, and ending with an “etc.,” being even here presented. It has much more the aspect of an after-thought, a correction found necessary at a date subsequent to the original composition, and therefore inserted, with orders to “apply it wherever it is required.” The place where the subject is introduced
circumstance is one of less significance, that the form in which the number of revolutions is stated, $\text{trin\text{c}akrtyas}$, “thirty twentys,” has no parallel in the usage of this Siddhânta elsewhere.

We may also mention in this connection that Bhâskara, the great Hindu astronomer of the twelfth century, declares in his Siddhânta-Ciromani (Goladh., vi. 17) that the revolutions of the equinox are given by the Sûrya-Siddhânta as thirty in an Age (see Colebrooke, As. Res., xii. 209, etc.; Essays, ii. 374, etc., for a full discussion of this passage and its bearings); thus not only ignoring the theory of libration, but giving a very different number of revolutions from that presented by our text. As regards this latter point, however, the change of a single letter in the modern reading (substituting $\text{trin\text{c}akrtyas}$, “thirty times,” for $\text{trin\text{c}akrtyas}$, “thirty twentys”) would make it accord with Bhâskara’s statement. We shall return again to this subject.

The number of revolutions, of whatever kind they may be, being 600 in an Age, the position at any given time of the initial point of the sphere with reference to the equinox is found by a proportion, as follows: as the number of days in an Age is to the number of revolutions in the same period, so is the given “sum of days” (see above, under i. 48–51) to the revolutions and parts of a revolution accomplished down to the given time. Thus, let us find, in illustration of the process, the amount of precession on the first of January, 1860. Since the number of years elapsed before the beginning of the present Iron Age ($\text{kali} \ \text{yuga}$) is divisible by 7299, it is unnecessary to make our calculation from the commencement of the present order of things; we may take the sum of days since the current Age began, which is (see above, under i. 53) 1,811,945. Hence the proportion

$1,577,917,8284 : 6000000 : 1,811,945 : 0000248.3'38.9$ gives us the portion accomplished of the current revolution. Of this we are now directed (v. 10) to take the part which determines the sine (dos, or bhuja—for the origin and meaning of the phrase, see above, under ii. 29, 30). This direction determines the character of the motion as libatory. For a motion of 91°, 92°, 93°, etc., gives, by it, a precession of 89°, 88°, 87°, etc.; so that the movable point virtually returns upon its own track, and, after moving 180°, has reverted to its starting-place. So its farther motion, from 180° to 270°, gives a precession increasing from 0° to 90° in the opposite direction; and this, again, is reduced to 0° by the motion from 270° to 360°. It is as if the second and third quadrants were folded over upon the first and fourth, so that the movable point can never, in any quadrant of its motion, be more than 90° distant from the fixed equinox. Thus, in the instance taken, the bhuja of 248° 2' 8.9° is its supplement, or 68° 2' 89.9°; the first 180° having only brought the movable point back to its original position, its present distance from that position is the excess over 180° of the arc obtained as the result of the first process. But this distance we are now farther directed to multiply by three and divide by ten; this is equivalent to reducing it to the measure of an arc of 27°, instead of 90°, as the quadrant of libration, since 3 : 10 :: 27 : 90. This being done, we find the actual distance of the initial point of the sphere from the equinox on the first of January, 1860, to be 20° 24' 38.87".
11. The circle, as thus corrected, accords with its observed place at the solstice (āyana) and at either equinox; it has moved eastward, when the longitude of the sun, as obtained by calculation, is less than that derived from the shadow.

12. By the number of degrees of the difference; then, turning back, it has moved westward by the amount of difference, when the calculated longitude is greater.

Nothing could well be more awkward and confused than this mode of stating the important fact of the precession of the equinoxes, of describing its method and rate, and of directing how its amount at any time is to be found. The theory which the passage, in its present form, is actually intended to put forth is as follows: the vernal equinox liberates westward and eastward from the fixed point, near ζ Piscium, assumed as the commencement of the sidereal sphere—the limits of the libratory movement being 27° in either direction from that point, and the time of a complete revolution of liberation being the six-hundredth part of the period called the Great Age (see above, under i. 15–17), or 7200 years; so that the annual rate of motion of the equinox is 54°. We will examine with some care the language in which this theory is conveyed, as important results are believed to be deducible from it.

The first half of verse 9 professes to teach the fundamental fact of the motion in precession. The words bhānām cakram, which we have rendered "circle of the asterisms," i.e., the fixed zodiac, would admit of being translated "circle of the signs," i.e., the movable zodiac, as reckoned from the actual equinox, since bha is used in this treatise in either sense. But our interpretation is shown to be the correct one by the directions given in verses 11 and 12, which teach that when the sun's calculated longitude—which is his distance from the initial point of the fixed sphere—is less than that derived from the shadow by the process to be taught below (vv. 17–19)—which is his distance from the equinox—the circle has moved eastward, and the contrary: it is evident, then, that the initial point of the sphere is regarded as the movable point, and the equinox as the fixed one. Now this is no less strange than inconsistent with the usage of the rest of the treatise. Elsewhere ζ Piscium is treated as the one established limit, from which all motion commenced at the creation, and by reference to which all motion is reckoned, while here it is made secondary to a point of which the position among the stars is constantly shifting, and which hardly has higher value than a node, as which the Hindu astronomy in general treats it (see p. 230). The word used to express the motion (lambate) is the same with that employed in a former passage (i. 25) to describe the eastward motion of the planets, and derivatives of which (as lamba, lambana, etc.) are not infrequent in the astronomical language; it means literally to "lag, hang back, fall behind;" here we have it farther combined with the prefix pari, "about, round about," which seems plainly to add the idea of a complete revolution in the retrograde direction indicated by it, and we have translated the line accordingly. This verse, then, contains no hint of a libratory movement, but rather the distinct statement of a continuous eastward revolution. It should be noticed farther, although the
measure of amplitude of any given shadow will be to that of any other, as the hypotenuse of the former to that of the latter.

The lettering of the above figure is made to correspond, as nearly as may be, with that of the one preceding, and also with that of the one given later, under verses 13 and 14, in either of which the relations of the problem may be further examined.

There are other methods of proving the constancy of the ratio borne by the measure of amplitude to the hypotenuse of the shadow, but we have chosen to give the one which seemed to us most likely to be that by which the Hindus themselves deduced it. Our demonstration is in one respect only liable to objection as representing a Hindu process—it is founded, namely, upon the comparison of oblique-angled triangles, which elsewhere in this treatise are hardly employed at all. Still, although the Hindus had no methods of solving problems excepting in right-angled trigonometry, it is hardly to be supposed that they refrained from deriving proportions from the similarity of oblique-angled triangles. The principle in question admits of being proved by means of right-angled triangles alone, but these would be situated in different planes.

Why the line on the dial which thus measures the sun's amplitude is called the agrā, we have been unable thus far to discover. The word, a feminine adjective (belonging, probably, to rekha, "line," understood), literally means "extreme, first, chief." Possibly it may be in some way connected with the use of antyā, "final, lowest," to designate the line E7 or EG (Fig. 8, p. 232); see below, under v. 35. The sine of amplitude itself, aC or AC (Fig. 8), is called below (vv. 27–30) agrajyā.

8. The square root of the sum of the squares of the gnomon and shadow is the hypotenuse: if from the square of the latter the square of the gnomon be subtracted, the square root of the remainder is the shadow: the gnomon is found by the converse process.

This is simply an application of the familiar rule, that in a right-angled triangle the square of the hypotenuse is equal to the sum of the squares of the other two sides, to the triangle produced by the gnomon as perpendicular, the shadow as base, and the hypotenuse of the shadow, the line drawn from the top of the gnomon to the extremity of the shadow, as hypotenuse.

The subject next considered is that of the precession of the equinoxes.

9. In an Age (yuga), the circle of the asterisms (bhā) falls back eastward thirty score of revolutions. Of the result obtained after multiplying the sum of days (dyugana) by this number, and dividing by the number of natural days in an Age,

10. Take the part which determines the sine, multiply it by three, and divide by ten; thus are found the degrees called those of the precession (ayana). From the longitude of a planet as corrected by these are to be calculated the declination, shadow, ascensional difference (carada), etc.
line of the equinoctial shadow, or \(d \), \(d' \), \(e \), \(k \), \(e' \), \(l \), \(e'' \), \(m \), \(e''' \) respectively, is denominated the \(agra \) of that shadow or of that time.

The term \(agra \) we have translated "measure of amplitude," because it does in fact represent the sine of the sun's amplitude—understanding by "amplitude" the distance of the sun at rising or setting from the east or west point of the horizon—varying with the hypothenuse of the shadow, and always maintaining to that hypothenuse the fixed ratio of the sine of amplitude to radius. That this is so, is assumed by the text in its treatment of the \(agra \), but is nowhere distinctly stated, nor is the commentator at the pains of demonstrating the principle. Since, however, it is not an immediately obvious one, we will take the liberty of giving the proof of it.

In the annexed figure (Fig. 10) let \(C \) represent the top of the gnomon, and let \(K \) be any given position of the sun in the heavens. From \(K \) draw \(K B' \) at right angles to the plane of the prime vertical, meeting that

![Fig. 10.](image)

plane in \(B' \), and let the point of its intersection with the plane of the equator be in \(E' \). Join \(K C, E'C, \) and \(B'C \). Then \(K C \) is radius, and \(E'K \) is equal to the sine of the sun's amplitude; for if, in the sun's daily revolution, the point \(K \) is brought to the horizon, \(E'B' \) will disappear, \(K E'C \) will become a right angle, \(KCE' \) will be the amplitude, and \(E'K \) its sine; but, with a given declination, the value of \(E'K \) remains always the same, since it is a line drawn in a constant direction between two parallel planes, that of the circle of declination and that of the equator.

Now conceive the three lines intersecting in \(C \) to be produced until they meet the plane of the dial in \(b', \ e' \), and \(k \) respectively; these three points will be in the same straight line, being in the line of intersection with the horizon of the plane \(KB'C \) produced, and this line, \(b'k \), will be at right angles to \(B'b' \), since it is the line of intersection of two planes, each of which is at right angles to the plane of the prime vertical, in which \(B'b' \) lies. \(KB' \) and \(k'b' \) are therefore parallel, and the triangles \(CEK \) and \(c'e'k \) are similar, and \(e'k : CK :: E'K : CK \).

But \(CK \) is the hypothenuse of the shadow at the given time, and \(e'k \) is the \(agra \), or measure of amplitude, since \(e' \), by what was said above, is in the line of the equinoctial shadow; therefore \(\sin \text{ ampl.} : \text{hyp. shad.} = \sin \text{ ampl.} : R \). Hence, if the declination and the latitude, which together determine the sine of amplitude, be given, the measure of amplitude will vary with the hypothenuse of the shadow, and the
7. Draw likewise an east and west line through the extremity of the equinoctial shadow (vishuvadbha); the interval between any given shadow and the line of the equinoctial shadow is denominated the measure of amplitude (agrd).

The equinoctial shadow is defined in a subsequent passage (vv. 12, 13); it is, as we have already had occasion to notice (under ii. 61–63), the shadow cast at mid-day when the sun is at either equinox—that is to say, when he is in the plane of the equator. Now as the equator is a circle of diurnal revolution, the line of intersection of its plane with that of the horizon will be an east and west line; and since it is also a great circle, that line will pass through the centre, the place of the observer: if, therefore, we draw through the extremity of the equinoctial shadow a line parallel to the east and west axis of the dial, it will represent the intersection with the dial of an equinoctial plane passing through the top of the gnomon, and in it will terminate the lines drawn through that point from any point in the plane of the equator; and hence, it will also coincide with the path of the extremity of the shadow on the day of the equinox. Thus, let the following figure (Fig. 9) represent the plane of the dial, N S and E W being its two axes, and b the base of the gnomon: and let the shadow cast at noon when the sun is upon the equator be, in a given latitude, be; then be is the equinoctial shadow, and QQ', drawn through e and parallel to E W, is the path of the equinoctial shadow, being the line in which a ray of the sun, from any point in the plane of the equator, passing through the top of the gnomon, will meet the face of the dial. In the figure as given, the circle is supposed to be described about the base of the gnomon with a radius of forty digits, and the graduation of the eastern and western sides of the circumscribing square, used in measuring the base (bhujā) of the shadow, is indicated: the length given to the equinoctial shadow corresponds to that which it has in the latitude of Washington.

It is not, however, on account of the coincidence of QQ' with the path of the equinoctial shadow that it is directed to be permanently drawn upon the dial-face: its use is to determine for any given shadow its agrd, or measure of amplitude. Thus, let bd, bd', bk, bl, bm, be shadows cast by the gnomon, under various conditions of time and declination; then the distance from the extremity of each of them to the...
described about the general centre, or about a circle drawn about that centre, the eastern and western sides of which are divided into digits; its use is, to aid in ascertaining the "base" (bhujā) of any given shadow, which is the value of the latter when projected upon a north and south line (see below, vv. 23-25); the square is drawn, as explained by the commentary, in order to insure the correctness of the projection, by a line strictly parallel to the east and west line.

The figure (Fig. 9) given below, under verse 7, will illustrate the form of the Hindu dial, as described in this passage.

The term used for "gnomon" is āṅku, which means simply "staff." For the shadow, we have the common word chāyā, "shadow," and also, in many places, prabhā and bhā, which properly signify the very opposite of shadow, namely "light, radiance;" it is difficult to see how they should come to be used in this sense; so far as we are aware, they are applied to no other shadow than that of the gnomon.

6. The east and west line is called the prime vertical (sama-mandala); it is likewise denominated the east and west hour circle (unmandala) and the equinoctial circle (visvuvanmandala).

The line drawn east and west through the base of the gnomon may be regarded as the line of common intersection at that point of three great circles, as being a diameter to each of the three, and as thus entitled to represent them all. These circles are the ones which in the last figure (Fig. 8, p. 232) are shown projected in their diameters ZZ', P P', and E E'; the centre C, in which the diameters intersect, is itself the projection of the line in question here. ZZ' represents the prime vertical, which is styled sama-mandala, literally "even circle." P P' is the hour circle, or circle of declination, which passes through the east and west points of the observer's horizon; it is called unmandala, "up-circle"—that is to say, the circle which in the oblique sphere is elevated; E E' finally, the equator, has the name of visvuvanmandala, or visvuvardvrtta, "circle of the equinoxes;" the equinoctial points themselves being denominated visvuvat, or visvuka, which may be rendered "point of equal separation." The same line of the dial might be regarded as the representative in like manner of a fourth circle, that of the horizon (kāhitīja), projected, in the figure, in SN: hence the commentary adds it also to the other three; it is omitted in the text, perhaps, because it is represented by the whole circle drawn about the base of the gnomon, and not by this diameter alone.

The specifications of this verse, especially of the latter half of it, are of little practical importance in the treatise, for there hardly arises a case, in any of its calculations, in which the east and west axis of the dial comes to be taken as standing for these circles, or any one of them. In drawing the base (bhujā) of the shadow, indeed, it does represent the plane of the prime vertical (see below, under vv. 23-25); but this is not distinctly stated, and the name of the prime vertical (sama-mandala) occurs in only one other passage (below, v. 26): the east and west hour-circle (unmandala) is nowhere referred to again: and the equator, as will be seen under the next verse, is properly represented on the dial, not by its east and west axis, but by the line of the equinoctial shadow.
1. On a stony surface, made water-level, or upon hard plaster, made level, there draw an even circle, of a radius equal to any required number of the digits (angula) of the gnomon (canku).

2. At its centre set up the gnomon, of twelve digits of the measure fixed upon; and where the extremity of its shadow touches the circle in the former and after parts of the day,

3. There fixing two points upon the circle, and calling them the forenoon and afternoon points, draw midway between them, by means of a fish-figure (timi), a north and south line.

4. Midway between the north and south directions draw, by a fish-figure, an east and west line: and in like manner also, by fish-figures (matsya) between the four cardinal directions, draw the intermediate directions.

5. Draw a circumscribing square, by means of the lines going out from the centre; by the digits of its base-line (bhutasutra) projected upon that is any given shadow reckoned.

In this passage is described the method of construction of the Hindu dial, if that can properly be called a dial which is without hour-lines, and does not give the time by simple inspection. It is, as will be at once remarked, a horizontal dial of the simplest character, with a vertical gnomon. This gnomon, whatever may be the length chosen for it, is regarded as divided into twelve equal parts called digits (angula, "finger"). The ordinary digit is one-twelfth of a span (vilasiti), or one twenty-fourth of a cubit (hasta): if made according to this measure, then, the gnomon would be about nine inches long. Doubtless the first gnomons were of such a length, and the rules of the gnomonic science were constructed accordingly, "twelve" and "the gnomon" being used, as they are used everywhere in this treatise, as convertible terms: thus twelve digits became the unvarying conventional length of the staff, and all measurements of the shadow and its hypotenuse were made to correspond. How the digit was subdivided, we have nowhere any hint. In determining the directions, the same method was employed which is still in use; namely, that of marking the points at which the extremity of the shadow, before and after noon, crosses a circle described about the base of the gnomon; these points being, if we suppose the sun's declination to have remained the same during the interval, at an equal distance upon either side from the meridian line. In order to bisect the line joining these points by another at right angles to it, which will be the meridian, the Hindus draw the figure which is called here the "fish" (matsya or timi); that is to say, from the two extremities of the line in question as centres, and with a radius equal to the line itself, arcs of circles are described, cutting one another in two points. The lenticular figure formed by the two arcs is the "fish;" through the points of intersection, which are called (in the commentary) the "mouth" and "tail," a line is drawn, which is the one required. The meridian being thus determined, the east and west line, and those for the intermediate points of directions, are laid down from it, by a repetition of the same process. A square (caturasra, "having four corners") is then farther
Most of these names are very obscure: the last three mean "hawk," "serpent," and "quadruped." Karana itself is, by derivation, "factor, cause?" in what sense it is applied to denote these divisions of the month, we do not know. Nor have we found anywhere an explanation of the value and use of the karanas in Hindu astronomy or astrology.

The time which we have had in view in our other calculations being, as is shown under the preceding passage, in the first half of the eighth lunar day, is, of course, in the fifteenth karana, which is named Vishtiti.

The remaining half-verse is simply a winding-up of the chapter.

69. . . . Thus has been declared the corrected (aphuta) motion of the sun and the other planets.

The following chapter is styled the "chapter of the three inquiries" (trisraçnadikāra). According to the commentary, this means that it is intended by the teacher as a reply to his pupil's inquiries respecting the three subjects of direction (dira), place (dega), and time (kāla).

CHAPTER III.

OF DIRECTION, PLACE, AND TIME.

Contents:—1-6, construction of the dial, and description of its parts; 7, the measure of amplitude; 8, of the gnomon, hypotenuse, and shadow, any two being given, to find the third; 9-12, precession of the equinoxes; 12-13, the equinoctial shadow; 13-14, to find, from the equinoctial shadow, the latitude and co-latitude; 14-17, the sun's declination being known, to find, from a given shadow at noon, his zenith-distance, the latitude, and its sine and cosine; 17, latitude being given, to find the equinoctial shadow; 17-20, to find, from the latitude and the sun's zenith-distance at noon, his declination and his true and mean longitude; 20-22, latitude and declination being given, to find the noon-shadow and hypotenuse; 22-23, from the sun's declination and the equinoctial shadow, to find the measure of amplitude; 23-25, to find, from the equinoctial shadow and the measure of amplitude at any given time, the base of the shadow; 25-27, to find the hypotenuse of the shadow when the sun is upon the prime vertical; 27-28, the sun's declination and the latitude being given, to find the sine and the measure of amplitude; 28-33, to find the sines of the altitude and zenith-distance of the sun, when upon the south-east and south-west vertical circles; 33-34, to find the corresponding shadow and hypotenuse; 34-36, the sun's ascensional difference and the hour-angle being given, to find the sines of his altitude and zenith-distance, and the corresponding shadow and hypotenuse; 37-39, to find, by a contrary process, from the shadow of a given time, the sun's altitude and zenith-distance, and the hour-angle; 40-41, the latitude and the sun's amplitude being known, to find his declination and true longitude; 41-42, to draw the path described by the extremity of the shadow; 42-45, to find the arcs of right and oblique ascension corresponding to the several signs of the ecliptic; 46-48, the sun's longitude and the time being known, to find the point of the ecliptic which is upon the horizon; 49, the sun's longitude and the hour-angle being known, to find the point of the ecliptic which is upon the meridian; 50-51, determination of time by means of these data.
to 12°, or 720', which are, as stated in verse 64, is its portion (bhoga).
To find the current lunar day, we divide by this amount the whole excess of the longitude of the moon over that of the sun at the given time; and to find the part past and to come of the current day, we convert longitude into time in a manner analogous to that employed in the case of the yoga.

Thus, to find the date in lunar time of the midnight preceding the first of January, 1860, we first deduct the longitude of the sun from that of the moon; the remainder is 2° 29' 24", or 5364': dividing by 720, it appears that the current lunar day is the eighth, and that 324' of its portion are traversed, leaving 396' to be traversed. Multiplying these numbers respectively by 60, and dividing by 675' 38", the difference of the daily motions at the time, we find that 28° 46' 29' have passed since the beginning of the lunar day, and that it still has 35° 10' 8" to run.

The lunar days have, for the most part, no distinctive names, but those of each half month (paksaa—see above, under i. 48-51) are called first, second, third, fourth, etc., up to fourteenth. The last, or fifteenth, of each half has, however, a special appellation: that which concludes the first, the light half, ending at the moment of opposition, is called pauramâsâ, pûrânimâ, pûrnamâ, "day of full moon:" that which closes the month, and ends with the conjunction of the two planets, is styled amâvatâsa, "the day of dwelling together."

Each lunar day is farther divided into two halves, called karanâ, as appears from the next following passage.

67. The fixed (dhruva) karanâs, namely cakuni, naga, catupadâ the third, and kinstughna, are counted from the latter half of the fourteenth day of the dark half-month.

68. After these, the karanâs called movable (cara), namely bava, etc., seven of them: each of these karanâs occurs eight times in a month.

69. Half the portion (bhoga) of a lunar day is established as that of the karanâs...

Of the eleven karanâs, four occur only once in the lunar month, while the other seven are repeated each of them eight times to fill out the remainder of the month. Their names, and the numbers of the half lunar days to which each is applied, are presented below:

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Kinstughna</td>
<td>1st</td>
</tr>
<tr>
<td>2</td>
<td>Bava</td>
<td>2nd, 9th, 16th, 23rd, 30th, 37th, 44th, 51st</td>
</tr>
<tr>
<td>3</td>
<td>Balâva</td>
<td>3rd, 10th, 17th, 24th, 31st, 38th, 45th, 52nd</td>
</tr>
<tr>
<td>4</td>
<td>Kaulava</td>
<td>4th, 11th, 18th, 25th, 32nd, 39th, 46th, 53rd</td>
</tr>
<tr>
<td>5</td>
<td>Taitila</td>
<td>5th, 12th, 19th, 26th, 33rd, 40th, 47th, 54th</td>
</tr>
<tr>
<td>6</td>
<td>Gara</td>
<td>6th, 13th, 20th, 27th, 34th, 41st, 48th, 55th</td>
</tr>
<tr>
<td>7</td>
<td>Baji</td>
<td>7th, 14th, 21st, 28th, 35th, 42nd, 49th, 56th</td>
</tr>
<tr>
<td>8</td>
<td>Vashli</td>
<td>8th, 15th, 22nd, 29th, 36th, 43rd, 50th, 57th</td>
</tr>
<tr>
<td>9</td>
<td>Cakuni</td>
<td>58th</td>
</tr>
<tr>
<td>10</td>
<td>Naga</td>
<td>59th</td>
</tr>
<tr>
<td>11</td>
<td>Catupadâ</td>
<td>60th</td>
</tr>
</tbody>
</table>
flying the yoga for each day, with the time of its termination. The names of the twenty-seven yogas are as follows:

There is also in use in India (see Colebrooke, as above) another system of yogas, twenty-eight in number, having for the most part different names from these, and governed by other rules in their succession. Of this system the Śurya-Siddhānta presents no trace.

We will find the time in yogas corresponding to that for which the previous calculations have been made.

The longitude of the moon at that time is 11° 17' 39", that of the sun is 8° 18' 15"; their sum is 8° 5° 54", or 14,764. Dividing by 800, we find that eighteen yogas of the series are past, and that the current one is the nineteenth, Parigha, of which 354' are past, and 446' to come. To ascertain the time at which the current yoga began and that at which it is to end, we divide these parts respectively by 7983\(\frac{1}{3}\), the sum of the daily motions of the sun and moon at the given time, and multiply by 60 to reduce the results to nādis: and we find that Parigha began 26° 36' before, and will end 33° 30' 40" after the given time.

The name yoga, by which this astrological period is called, is applied to it, apparently, as designating the period during which the “sum” (yoga) of the increments in longitude of the sun and moon amounts to a given quantity. It seems an entirely arbitrary device of the astrologers, being neither a natural period nor a subdivision of one, not being of any use that we can discover in determining the relative position, or aspect, of the two planets with which it deals, nor having any assignable relation to the asterisms, with which it is attempted to be brought into connection. Were there thirty yogas, instead of twenty-seven, the period would seem an artificial counterpart to the lunar day, which is the subject of the next verse; being derived from the sum, as the other from the difference, of the longitudes of the sun and moon.

66. From the number of minutes in the longitude of the moon diminished by that of the sun are found the lunar days (tīthi), by dividing the difference by the portion (bhoga) of a lunar day. Multiply the minutes past and to come of the current lunar day by sixty, and divide by the difference of the daily motions of the two planets: the result is the time in nādis.

The tīthi, or lunar day, is (see i. 13) one thirtieth of a lunar month, or of the time during which the moon gains in longitude upon the sun a whole revolution, or 360°: it is, therefore, the period during which the difference of the increment of longitude of the two planets amounts
constantly varying amount by which the apparent day and night differ from the equatorial day and night of one half the whole day each. The gnomon, the equinoctial shadow, etc., are treated of in the next chapter.

64. The portion (bhoga) of an asterism (bha) is eight hundred minutes; of a lunar day (tithi), in like manner, seven hundred and twenty. If the longitude of a planet, in minutes, be divided by the portion of an asterism, the result is its position in asterisms: by means of the daily motion are found the days, etc.

The ecliptic is divided (see ch. viii) into 27 lunar mansions, or asterisms, of equal amount; hence the portion of the ecliptic occupied by each asterism is $13^\circ 20'$, or $800'$. In order to find, accordingly, in which asterism, at a given time, the moon or any other of the planets is, we have only to reduce its longitude, not corrected by the precession, to minutes, and divide by 800: the quotient is the number of asterisms traversed, and the remainder the part traversed of the asterism in which the planet is. The last clause of the verse is very elliptical and obscure; according to the commentary, it is to be understood thus: divide by the planet's true daily motion the part past and the part to come of the current asterism, and the quotients are the days and fractions of a day which the planet has passed, and is to pass, in that asterism. This interpretation is supported by the analogy of the following verses, and is doubtless correct.

The true longitude of the moon was found above (under v. 39) to be $11^\circ 17^\circ 39'$, or $20,859'$. Dividing by 800, we find that, at the given time, the moon is in the 27th, or last, asterism, named Revati, of which it has traversed $59'$, and has $741'$ still to pass over. Its daily motion being $737'$, it has spent $28^\circ 4'$, and has yet to continue $1^\circ 0^\circ 19^\circ 35'$, in the asterism.

The latter part of this process proceeds upon the assumption that the planet's rate of motion remains the same during its whole continuance in the asterism. A similar assumption, it will be noticed, is made in all the processes from verse 59 onward; its inaccuracy is greatest, of course, where the moon's motion is concerned.

Respecting the lunar day (tithi) see below, under verse 66.

65. From the number of minutes in the sum of the longitudes of the sun and moon are found the yogas, by dividing that sum by the portion (bhoga) of an asterism. Multiply the minutes past and to come of the current yoga by sixty, and divide by the sum of the daily motions of the two planets: the result is the time in nādīs.

What the yoga is, is evident from this rule for finding it; it is the period, of variable length, during which the joint motion in longitude of the sun and moon amounts to $13^\circ 20'$, the portion of a lunar mansion. According to Colebrooke (As. Res., ix. 365; Essays, ii. 362, 363), the use of the yogas is chiefly astrological; the occurrence of certain movable festivals is, however, also regulated by them, and they are so frequently employed that every Hindu almanac contains a column speci-
here by a triangle of which a gnomon of twelve digits is the perpen-
dicular, and its equinoctial shadow, cast when the sun is in the equator
and on the meridian (see the next chapter, verse 7, etc.), is the base.
Hence the proportion $EH : HC : BC : AB$ is equivalent—since BC
equals DF, the sine of declination—to gnom.: eq. shad.: sin decl.:
earth-sine. But the arc of which AB is sine is the same part of
the circle of diurnal revolution as the ascensional difference is of the
equator; hence the reduction of AB to the dimensions of a great circle, by
the proportion $BD : AB : CE : CG$, gives the value of CG, the sine
of the ascensional difference. The corresponding arc is the measure in
time of the amount by which the part of the diurnal circle intercepted
between the meridian and the horizon differs from a quadrant, or by
which the time between sun-rise or sun-set and noon or midnight differs
from a quarter of the day.

In illustration of the process, we will calculate the respective length
of the sun's day and night at Washington at the time for which our
previous calculations have been made.

The latitude of Washington being $38^\circ 54'$, the length of the equi-
noctial shadow cast there by a gnomon twelve digits long is found, by
the rule given below (iii. 17), to be 94.68. The sine, dF or bC, of the
sun's declination at the given time, $23^\circ 41' S$, is $1380'$. Hence the
proportion

$$12:968::1380:1113$$
gives us the value of the earth-sine, $a:b$, as $1113'$. This is reduced to
the dimensions of a great circle by the proportion

$$3148:3438::1113:1216$$

The value of CG, the sine of ascensional difference, is therefore $1216'$: the
(corresponding arc is $20^\circ 44'$, or $1244'$, which, as a minute of arc
equals a respiration of time, is equivalent to $3^n 27' 2''$. The total
length of the day was found above (under v. 59) to be $60^n 11' $; in-
crease and diminish the quarter of this by the ascensional difference,
and double the sum and remainder, and the length of the night is found
to be $37^n 0' 1''$, and that of the day $23^n 10' 5'$', which are equivalent
respectively to $14^h 45^m 38.6$ and $2^h 14^m 48.9$, mean solar time.

Of course, the respective parts of a sidereal day during which each
of the lunar mansions, as represented by its principal star, will remain
above and below the horizon of a given latitude, may be found in
the same manner, if the declination of the star is known; and this is stated
in the chapter (ch. viii) which treats of the asterisms.

Why AB is called $kahitiyā$ is not easy to see. One is tempted
to understand the term as meaning rather "sine of situation" than
"earth-sine," the original signification of $kahiti$ being "abode, resi-
dence"; it might then indicate a sine which, for a given declination,
varies with the situation of the observer. But that $kahiti$ in this com-
pound is to be taken in its other acceptance, of "earth," is at least
strongly indicated by the other and more usual name of the sine in
question, $kujiyā$, which is used by the commentary, although not in the
text, and which can only mean "earth-sine." The word $cara$, used to
denote the ascensional difference, means simply "variable"; we have
elsewhere $carakhanda$, $caradala$, "variable portion"; that is to say, the
then it is evident that BD is equal to EC diminished by EF; which is the versed sine of ED, the declination.

For "radius" we have hitherto had only the term $trijyā$ (or its equivalents, $trijyā$, $trihajyā$, $trihajyā$, $trihamārvaikā$), literally "the sine of three signs," that is, of $90°$. That term, however, is applicable only to the radius of a great circle, or to tabular radius. In this verse, accordingly, we have for "day-radius" the word $dīnajyāsodala$, "half-diameter of the day;" and other expressions synonymous with this are found used instead of it in other passages. A more frequent name for the same quantity in modern Hindu astronomy is $dyuajyā$, "day-sine:" this, although employed by the commentary, is not found anywhere in our text.

It is a matter for surprise that we do not find the day-radius declared equal simply to the cosine ($kotijyā$) of declination.

In illustration of the rule, it will be sufficient to find the radius of the diurnal circle described by the sun at the time for which his place has been determined. His declination, ED (Fig. 8) was found to be $23°41'$; of this the versed sine, EF, is, by the table given above (ii. 22-27), $290'$; the difference between this and radius, EC, or $3438'$, is $3148'$, which is the value of CF or b, the day-radius. The declination in this case being south, the day-radius is also south of the equator.

61. Multiply the sine of declination by the equinoctial shadow, and divide by twelve; the result is the earth-sine ($kshitiyā$); this, multiplied by radius and divided by the day-radius, gives the sine of the ascensional difference ($caru$); the number of respirations due to the ascensional difference.

62. Is shown by the corresponding arc. Add these to, and subtract them from, the fourth part of the corresponding day and night, and the sum and remainder are, when declination is north, the half-day and half-night.

63. When declination is south, the reverse; these, multiplied by two, are the day and the night. The day and the night of the asterisms ($bhā$) may be found in like manner, by means of their declination, increased or diminished by their latitude.

We were taught in verse 59 how to find the length of the entire day of a planet at any given time; this passage gives us the method of ascertaining the length of its day and of its night, or of that part of the day during which the planet is above, and that during which it is below, the horizon.

In order to this, it is necessary to ascertain, for the planet in question, its ascensional difference ($caru$), or the difference between its right and oblique ascension, the amount of which varies with the declination of the planet and the latitude of the observer. The method of doing this is stated in verse 61; it may be explained by means of the last figure (Fig. 8). First, the value of the line AB, which is called the "earth-sine" ($kshitiyā$), is found, by comparing the two triangles ABC and CHE, which are similar, since the angles ABC and CEH are each equal to the latitude of the observer. The triangle CHE is represented.
manner of this Siddhânta, or from transit to transit across the inferior meridian, differs from a sidereal day: the difference is additive when the motion of the planet is direct; subtractive, when this is retrograde.

Thus, to find the length of the sun's day, or the interval between two successive apparent transits, at the time for which his true longitude and rate of motion have already been ascertained. The sun's longitude, as corrected by the precession, is 9º 8' 40''; he is accordingly in the tenth sign, of which the time of rising (udayaśasra), or the equivalent in right ascension, is 19º 35'. His rate of daily motion in longitude is 61º 26''. Hence the proportion

\[1800' : 1935' : 61' 26'' : 66º 04''\]

shows that his day differs from the true sidereal day by 11º 09'.04. As his motion is direct, the difference is additive: the length of the apparent day is therefore 60º 11º 09'.04, which is equivalent to 24h 0m 27s.5, mean solar time. According to the Nautical Almanac, it is 24h 0m 28s.6. By a similar process, the length of Jupiter's day at the same time is found to be 59º 58v 44, or 23h 55m 30s.8; by the Nautical Almanac, it is 23h 55m 30s.

60. Calculate the sine and versed sine of declination: then radius, diminished by the versed-sine, is the day-radius: it is either south or north.

The quantities made use of, and the processes prescribed, in this and the following verses, may be explained and illustrated by means of the annexed figure (Fig. 8).

Let the circle ZSZN represent the meridian of a given place, C being the centre, the place of the observer; SN the section of the plane of his horizon—S being the south, and N the north point—Z and Z' the zenith and its opposite point, the nadir; P and P' the north and south poles, and E and E' the points on the meridian cut by the equator. Let ED be the declination of a planet at a given time; then DD' will be the diameter of the circle of diurnal revolution described by the planet, and BD the radius of that circle; BD is the line which in verse 60 is called the "day-radius." Draw DF perpendicular to EC:
as obtained by modern science. The comparison is made in the annexed table. As the longitudes given by the Sūrya-Siddhānta contain a constant error of 2° 20', owing to the incorrect rate of precession adopted by the treatise, and the false position thence assigned to the equinox, we give, under the head of longitude, the distance of each planet both from the Hindu equinox, and from the true vernal equinox of Jan. 1, 1860. The Hindu daily motions are reduced from longitude to right ascension by the rule given in the next following verse (v. 59). The modern data are taken from the American Nautical Almanac.

True Places and Motions of the Planets, Jan. 1st, 1860, midnight, at Washington, according to the Sūrya-Siddhānta and to Modern Science.

<table>
<thead>
<tr>
<th>Planet</th>
<th>True Longitude</th>
<th>Declination</th>
<th>Daily Motion in Right Ascension</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sūrya Siddhānta</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>from Hindu eq.</td>
<td>from true eq.</td>
<td></td>
</tr>
<tr>
<td>Sun</td>
<td>278° 40'</td>
<td>276° 20'</td>
<td>280° 5'</td>
</tr>
<tr>
<td>Moon</td>
<td>8° 4'</td>
<td>5° 44'</td>
<td>7° 27'</td>
</tr>
<tr>
<td>Mercury</td>
<td>255° 16'</td>
<td>252° 56'</td>
<td>257° 25'</td>
</tr>
<tr>
<td>Venus</td>
<td>305° 0'</td>
<td>302° 40'</td>
<td>303° 25'</td>
</tr>
<tr>
<td>Mars</td>
<td>219° 10'</td>
<td>216° 50'</td>
<td>221° 33'</td>
</tr>
<tr>
<td>Jupiter</td>
<td>114° 36'</td>
<td>113° 16'</td>
<td>111° 34'</td>
</tr>
<tr>
<td>Saturn</td>
<td>141° 27'</td>
<td>139° 7'</td>
<td>145° 32'</td>
</tr>
</tbody>
</table>

The proper subject of the second chapter, the determination of the true places of the planets, being thus brought to a close, we should expect to see the chapter concluded here, and the other matters which it contains put off to that which follows, in which they would seem more properly to belong. The treatise, however, is nowhere distinguished for its orderly and consistent arrangement.

59. Multiply the daily motion of a planet by the time of rising of the sign in which it is, and divide by eighteen hundred; the quotient add to, or subtract from, the number of respirations in a revolution: the result is the number of respirations in the day and night of that planet.

In the first half of this verse is taught the method of finding the increment or decrement of right ascension corresponding to the increment or decrement of longitude made by any planet during one day. For the “time of rising” (udayaprāṇas, or, more commonly, udayāsava, literally “respirations of rising”) of the different signs, or the time in respirations (see i. 11), occupied by the successive signs of the ecliptic in passing the meridian—or, at the equator, in rising above the horizon—see verses 42–44 of the next chapter. The statement upon which the rule is founded is as follows: if the given sign, containing 1800' of arc (each minute of arc corresponding, as remarked above, under i. 11–12, to a respiration of sidereal time), occupies the stated number of respirations in passing the meridian, what number of respirations will be occupied by the arc traversed by the planet on a given day? The result gives the amount by which the day of each planet, reckoned in the
The planet's distance from the node being determined, its latitude would be found by a process similar to that prescribed in verse 28 of this chapter, if the earth were at the centre of motion; and that rule is accordingly applied in the case of the moon; the proportion being, as radius is to the sine of the distance from the node, so is the sine of extreme latitude (or the latitude itself, the difference between the sine and the arc being of little account when the arc is so small) to the latitude at the given point. In the case of the other planets, however, this proportion is modified by combination with another, namely: as the last variable hypothenuse (caula kurna), which is the line drawn from the earth to the finally determined place of the planet, or its true distance, is to radius, its mean distance, so is its apparent latitude at the mean distance to its apparent latitude at its true distance. That is, with:

\[R : \sin \text{nod. dist.} :: \text{extreme lat.} : \text{actual lat. at dist.} \]

combining var. hyp: \[R :: \text{lat. at dist.} \cdot \text{R. lat. at true dist.} \]

we have var. hyp: \[\sin \text{nod. dist.} :: \text{extreme lat.} : \text{actual lat. at true dist.} \]

which, turned into an equation, is the rule in the latter half of v. 57.

The latitude, as thus found, is measured, of course, upon a secondary to the ecliptic. By the rule in verse 58, however, it is treated as if measured upon a circle of declination, and is, without modification, added to or subtracted from the declination, according as the direction of the two is the same or different. The commentary takes note of this error, but explains it, as in other similar cases, as being, "for fear of giving men trouble, and on account of the very slight inaccuracy, overlooked by the blessed Sun, moved with compassion."

We present in the annexed table the results of the processes for calculating the latitude, the declination, and the true declination as affected by latitude, of all the planets, at the time for which their longitude has already been found. The declination is calculated by the rule in verse 28 of this chapter, the precession at the given time being, as found under verses 9–12 of the next chapter, 29° 24° 39°. Upon the line for the sun in the table are given the results of the process for calculating his declination, the equinox itself being accounted as a "node": it is, in fact, styled, in modern Hindu astronomy, krantiptita, "node of declination," although that term does not occur in this treatise.

Results of the Process for finding the Latitude and Declination of the Planets.

<table>
<thead>
<tr>
<th>Planet</th>
<th>Longitude of Node</th>
<th>do. corrected</th>
<th>Distance from Node</th>
<th>Size</th>
<th>Latitude</th>
<th>Declination</th>
<th>Corrected Declination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sun</td>
<td>90° 24° 38</td>
<td>9</td>
<td>8° 40</td>
<td>1357</td>
<td>23° 41° S.</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Moon</td>
<td>9° 24° 43</td>
<td>1</td>
<td>23° 14</td>
<td>2754</td>
<td>3° 36° N.</td>
<td>4° 56° N.</td>
<td>8° 32° N.</td>
</tr>
<tr>
<td>Mercury</td>
<td>0° 20° 40</td>
<td>0</td>
<td>22° 43</td>
<td>3134</td>
<td>2° 4° N.</td>
<td>23° 10° S.</td>
<td>21° 6°</td>
</tr>
<tr>
<td>Venus</td>
<td>1° 29° 39</td>
<td>1</td>
<td>29° 16</td>
<td>3097</td>
<td>1° 21° S.</td>
<td>20° 27° S.</td>
<td>31° 48°</td>
</tr>
<tr>
<td>Mars</td>
<td>4° 10</td>
<td>4</td>
<td>13° 47</td>
<td>2816</td>
<td>4° 4° N.</td>
<td>14° 52° N.</td>
<td>13° 48°</td>
</tr>
<tr>
<td>Jupiter</td>
<td>3° 19.40</td>
<td>3</td>
<td>22° 45</td>
<td>682</td>
<td>0° 15° N.</td>
<td>21° 42° N.</td>
<td>21° 57° N.</td>
</tr>
<tr>
<td>Saturn</td>
<td>3° 10° 20° 35</td>
<td>3</td>
<td>14° 35</td>
<td>970</td>
<td>0° 37° N.</td>
<td>14° 40° N.</td>
<td>15° 17° N.</td>
</tr>
</tbody>
</table>

We are now able to compare the Hindu determinations of the true places and motions of the planets with their actual positions and motions,
found, as nearly as the Hindus are able to find it, the true heliocentric place of the planet, the distance from which to the node determines, of course, the amount of removal from the ecliptic. Instead, however, of taking this distance directly, rejecting altogether the fourth equation, that for the parallax of the earth’s place, the Hindus apply the latter both to the planet and to the node; their relative position thus remains the same as if the other method had been adopted.

Thus, for instance, the position of Jupiter’s node upon the first of January, 1860, is found from the data already given above (see i. 41–44) to be 2° 19′ 40″; his true heliocentric longitude, employed as a datum in the fourth process (see p. 216), is 3° 1° 6″; Jupiter’s heliocentric distance from the node is, accordingly, 11° 26′. Or, by the Hindu method, the planet’s true geocentric place is 3° 4° 11′, and the corrected longitude of its node is 2° 22° 45″; the distance remains, as before, 11° 26′.

In the case of the inferior planets, as the assumptions of the Hindus respecting them were farther removed from the truth of nature, so their method of finding the distance from the node is more arbitrary and less accurate. In their system the heliocentric position of the planet is represented by the place of its conjunction (ṣīghra), and they had, as is shown above (see ii. 8), recognized the fact that it was the distance of the latter from the node which determined the amount of deviation from the ecliptic. Now, in ascertaining the heliocentric distance of an inferior planet from its node, allowance needs to be made, of course, for the effect upon its position of the eccentricity of its orbit. But the Hindu equation of the apsis is no true representative of this effect; it is calculated in order to be applied to the mean place of the sun, the assumed centre of the epicycle—that is, of the true orbit; its value, as found, is geocentric, and, as appears by the table on p. 220, is widely different from its heliocentric value; and its sign is plus or minus according as its influence is to carry the planet, as seen from the earth, eastward or westward; while, in either case, the true heliocentric effect may be at one time to bring the planet nearer to, at another time to carry it farther from, the node. The Hindus, however, overlooking these incongruities, and having, apparently, no distinct views of the subject to guide them to a correcter method, follow with regard to Venus and Mercury what seems to them the same rule as was employed in the case of the other planets—they apply the equation of the apsis, the result of the third process, to the mean place of the conjunction; only here, as before, by an indirect process: instead of applying it to the conjunction itself, they apply it with a contrary sign to the node, the effect upon the relative position of the two being the same.

Thus, for instance, the longitude of Mercury’s conjunction at the given time is (see p. 214) 4° 16° 57″; from this subtract 2° 2′; the equation of the apsis found by the third process, and its equated longitude is 4° 14° 55″; now deducting the longitude of the node at the same time, which is 20° 41′, we ascertain the planet’s distance from the node to be 3° 24° 14′. Or, by the Hindu method, add the same equation to the mean position of the node, and its equated longitude is 22° 43′; subtract this from the mean longitude of the conjunction, and the distance is, as before, 3° 24° 14′.
gradation, since these are dependent for their correctness upon the accuracy of the elements assumed, and the processes employed, both of which have been already sufficiently illustrated.

The last verse of the passage adds little to what had been already said, being merely a repetition, in other and less precise terms, of the specifications of the preceding verse, together with the assertion of a relation between the limits of retrogradation and the dimensions of the respective epicycles; a relation which is only empirical, and which, as regards Venus and Mars, does not quite hold good.

56. To the nodes of Mars, Saturn, and Jupiter, the equation of the conjunction is to be applied, as to the planets themselves respectively; to those of Mercury and Venus, the equation of the apsis, as found by the third process, in the contrary direction.

57. The sine of the arc found by subtracting the place of the node from that of the planet—or, in the case of Venus and Mercury, from that of the conjunction—being multiplied by the extreme latitude, and divided by the last hypothenuse—or, in the case of the moon, by radius—gives the latitude (vīkṣepa).

58. When latitude and declination (āpakrama) are of like direction, the declination (krāntī) is increased by the latitude; when of different direction, it is diminished by it, to find the true (opasīta) declination: that of the sun remains as already determined.

How to find the declination of a planet at any given point in the ecliptic, or circle of declination (krāntivṛttā), was taught us in verse 28 above, taken in connection with verses 9 and 10 of the next chapter: here we have stated the method of finding the actual declination of any planet, as modified by its deviation in latitude from the ecliptic.

The process by which the amount of a planet's deviation in latitude from the ecliptic is here directed to be found is more correct than might have been expected, considering how far the Hindus were from comprehending the true relations of the solar system. The three quantities employed as data in the process are, first, the angular distance of the planet from its node; second, the apparent value, as latitude, of its greatest removal from the ecliptic, when seen from the earth at a mean distance, equal to the radius of its mean orbit; and lastly, its actual distance from the earth. Of these quantities, the second is stated for each planet in the concluding verses of the first chapter; the third is correctly represented by the variable hypothenuse (caḷa karna) found in the fourth process for determining the planet's true place (see above, under vv. 43–45); the first is still to be obtained, and verse 58 with the first part of verse 57 teach the method of ascertaining it. The principle of this method is the same for all the planets, although the statement of it is so different; it is, in effect, to apply to the mean place of the planet, before taking its distance from the node, only the equation of the apsis, found as the result of the third process. In the case of the superior planets, this method has all the correctness which the Hindu system admits; for by the first three processes of correction is
The first verse gives the theory of the physical cause of the phenomenon: it is to be compared with the opening verses of the chapter, particularly verse 2. We note here, again, the entire disavowal of the system of epicycles as a representation of the actual movements of the planets. How the slowness of the cords by which each planet is attached to, and attracted by, the supernatural being at its conjunction, furnishes an explanation of its retrogradation which should commend itself as satisfactory to the mind even of one who believed in the supernatural being and the cords, we find it very hard to see, in spite of the explanation of the commentary: it might have been better to omit verse 52 altogether, and to suffer the phenomenon to rest upon the simple and intelligible explanation given at the end of the preceding verse, which is a true statement of its cause, expressed in terms of the Hindu system. The actual reason of the apparent retrogradation is, indeed, different in the case of the inferior and of the superior planets. As regards the former, when they are traversing the inferior portion of their orbits, or are nearly between the sun and the earth, their heliocentric eastward motion becomes, of course, as seen from the earth, westward, or retrograde; by the parallax of the earth's motion in the same direction this apparent retrogradation is diminished, both in rate and in continuance, but is not prevented, because the motion of the inferior planets is more rapid than that of the earth. The retrogradation of the superior planets, on the other hand, is due to the parallax of the earth's motion in the same direction when between them and the sun, and is lessened by their own motion in their orbits, although not done away with altogether, because their motion is less rapid than that of the earth. But, in the Hindu system, the revolution of the planet in the epicycle of the conjunction represents in the one case the proper motion of the planet, in the other, that of the earth, reversed; hence, whenever its apparent amount, in a contrary direction, exceeds that of the movement of the centre of the epicycle—which is, in the one case, that of the earth, in the other, that of the planet itself—retrogradation is the necessary consequence.

Verses 53-55 contain a statement of the limits within which retrogradation takes place. The data of verse 53 belong to the different planets in the order, Mars, Mercury, Jupiter, Venus, and Saturn (see above, under i. 51, 52). That is to say, Mercury retrogrades, when his equated commutation, as made use of in the fourth process for finding his true place (see above, under vv. 43-45), is more than 144° and less than 216°; Venus, when her commutation, in like manner, is between 163° and 197°; Mars, between 184° and 196°; Jupiter, between 180° and 230°; Saturn, between 115° and 245°. These limits ought not, however, even according to the theory of this Siddhānta, to be laid down with such exactness; for the precise point at which the subtractive equation of motion for the conjunction will exceed the proper motion of the planet must depend, in part, upon the varying rate of the latter as affected by its eccentricity, and must accordingly differ a little at different times. We have not thought it worth while to calculate the amount of this variation, nor to draw up a comparison of the Hindu with the Greek and the modern determinations of the limits of retro-
The final abandonment by the Hindus of the principle of equable circular motion, which lies at the foundation of the whole system of eccentrics and epicycles, is, as already pointed out above (under vv. 43–45), distinctly exhibited in this process: \(m'm \) (Fig. 7), the arc in the epicycle traversed by the planet during a given interval of time, is no fixed and equal quantity, but is dependent upon the arc \(M'M \), the value of which, having suffered correction by the result of a triply complicated process, is altogether irregular and variable. This necessarily follows from the assumption of simultaneous and mutual action on the part of the being at the apsis and conjunction, and the consequent impossibility of constructing a single connected geometrical figure which shall represent the joint effect of the two disturbing influences. By the Ptolemaic method the principle is consistently preserved: the fixed axis of the epicycle (see Fig. 6, p. 217), to the revolution of which that of the epicycle itself is bound, is \(xP \); and as the angle \(xPT \), like \(xA'' \), increases equally, the planet traverses the circumference of the epicycle with an unvarying motion relative to the fixed point \(x \); although the equation is derived, not from the arc \(xT \), but from \(eT \), the equivalent of \(CR \), its part \(eX \) varying with the varying angle \(EPX \).

In case the reverse motion of the planet upon the half-circumference of the epicycle within the mean orbit is, when projected upon the orbit, greater than the direct motion of the centre of the epicycle, the planet will appear to move backward in its orbit, at a rate equal to the excess of the former over the latter motion. This is, as the last table shows, the case with Jupiter and Saturn at the given time. The subject of the retrogradation of the planets is continued and completed in the next following passage.

52. When at a great distance from its conjunction (\textit{cīghrocca}), a planet, having its substance drawn to the left and right by slack cords, comes then to have a retrograde motion.

53. Mars and the rest, when their degrees of commutation (\textit{kendra}), in the fourth process, are, respectively, one hundred and sixty-four, one hundred and forty-four, one hundred and thirty, one hundred and sixty-three, one hundred and fifteen,

54. Become retrograde (\textit{vākrīn}) and when their respective commutations are equal to the number of degrees remaining after subtracting those numbers, in each several case, from a whole circle, they cease retrogradation.

55. In accordance with the greatness of their epicycles of the conjunction (\textit{cīghraparādhi}), Venus and Mars cease retrograding in the seventh sign, Jupiter and Mercury in the eighth, Saturn in the ninth.

The subject of the stations and retrogradations of the planets is rather briefly and summarily disposed of in this passage, although treated with as much fullness, perhaps, as is consistent with the general method of the Siddhānta. Ptolemy devotes to it the greater part of the twelfth book of the Syntaxis.
In illustration of the rule, we will calculate the true rate of daily motion of the planet Mars, at the same time for which the previous calculations have been made.

By the process already illustrated under the preceding passage, the equation of Mars’s daily motion for the effect of the apsis, as derived from the data of the third process for ascertaining his true place, is found to be \(-3^\circ 41''\), the difference of tabular sines being 131'. Accordingly,

from the mean daily motion of Mars (I. 24),

\[31^\circ 26''\]

deduct the equation for the apsis,

\[3.41\]

Mars's equated daily motion,

\[37.45\]

Now, to find the equated daily synodical motion,

from the daily motion of Mars's conjunction (the sun),

\[59^\circ 8''\]

deduct his equated daily motion,

\[27.45\]

Mars's equated daily synodical motion,

\[31.23\]

The variable hypotenuse used in the last process for finding the true place was 3984'; its excess above radius is 548'. The proportion

\[3984' : 548' : 31' 43'' : 4' 18''\]

shows, then, that the equation of motion due to the conjunction at the given time is 4' 18''. Since the hypotenuse is greater than radius—that is to say, since the planet is in the half-orbit in which the influence of the conjunction is accelerative—the equation is additive. Therefore,

add to Mars’s equated daily motion,

\[27.45''\]

Mars's true daily motion at the given time,

\[32.3\]

In this calculation we have followed the rule stated in the text: had we accepted the amendment of the commentary, and, in finding the second term of our proportion, substituted for radius the cosine of \(33^\circ 44'\), the resulting equation would have been more than doubled, becoming 8' 51'', instead of 4' 18''; this happening to be a case where the difference is nearly as great as possible. We have deemed it best, however, in making out the corresponding results for all the five planets, as presented in the annexed table, to adhere to the directions of the text itself. The inaccuracy, it may be observed, is greatest when the equation of motion is least, and the contrary; so that, although sometimes very large relatively to the equation, it never comes to be of any great importance absolutely.

Results of the Processes for finding the True Daily Motion of the Planets.

<table>
<thead>
<tr>
<th>Planet</th>
<th>Diff of Sines</th>
<th>Equation of Apsis</th>
<th>Equated Motion</th>
<th>Equation of Synod. Motion</th>
<th>Equation of Conjunction</th>
<th>True Motion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>205</td>
<td>-4 21</td>
<td>54 47</td>
<td>190 45</td>
<td>-25 45</td>
<td>+29 3</td>
</tr>
<tr>
<td>Venus</td>
<td>219</td>
<td>+1 53</td>
<td>61 1</td>
<td>35 7</td>
<td>+11 17</td>
<td>+73 18</td>
</tr>
<tr>
<td>Mars</td>
<td>131</td>
<td>-3 41</td>
<td>27 45</td>
<td>31 23</td>
<td>+4 18</td>
<td>+33 3</td>
</tr>
<tr>
<td>Jupiter</td>
<td>37</td>
<td>-0 4</td>
<td>4 55</td>
<td>54 13</td>
<td>-12 41</td>
<td>-7 46</td>
</tr>
<tr>
<td>Saturn</td>
<td>119</td>
<td>+0 8</td>
<td>2 8</td>
<td>57 0</td>
<td>-5 11</td>
<td>-3 3</td>
</tr>
</tbody>
</table>

VOL. VI.
As in a previous figure (Fig. 5, p. 212), C MM' represents the mean orbit of a planet, E the earth, and M the planet's mean position, at a given time, relative to its conjunction, C: the circle described about M is the epicycle of the conjunction; it is drawn, in the figure, of the relative dimensions of that assumed for Mars. Suppose M'M to be the amount of motion of the centre of the epicycle, or the (equated) mean synodical motion of the planet, during one day; \(m'm \) is the arc of the epicycle traversed by the planet in the same time. As the amount of daily synodical motion is in every case small, these arcs are necessarily greatly exaggerated in the figure, being made about twenty-four times too great for Mars. Had the planet remained stationary in the epicycle at \(m' \) while the centre of the epicycle moved from \(M' \) to \(M \), its place at the given time would be at \(e \); having moved to \(m \), it is seen at \(t \); hence \(st \) is the equation of daily motion, of which it is required to ascertain the value. Produce \(E m' \) to \(n \), making \(E n \) equal to \(E m \), and join \(m n \); from \(M \) draw \(M o \) at right angles to \(E m \). Then, since the arc \(m m' \) is very small, the angles \(E m n \) and \(E n m \), as also \(M m m' \) and \(M m' m \), may be regarded as right angles; \(M m o \) and \(n m m' \) are therefore equal, each being the complement of \(E m m' \), and the triangles \(m n m' \) and \(M m o \) are similar. Hence

\[
\frac{Mm}{m} = \frac{m}{m'} = \frac{m}{m' m}.
\]

But

\[
\frac{EM}{MM} = \frac{MM'}{mm'}.
\]

Hence, by combining terms,

\[
\frac{E}{M} = \frac{Mm}{m} = \frac{MM'}{mm'}.
\]

But

\[
\frac{ts}{Et} = \frac{mm}{Em}.
\]

Therefore, since \(EM \) equals \(Et \),

\[
\frac{ts}{m} = \frac{EM}{MM'} = \frac{Em}{M}
\]

by again combining,

and, reducing the proportion to an equation, \(ts \), the required equation of motion, equals \(Mm' \), the equated mean synodical motion in a day, multiplied by \(m \), and divided by \(Em \), the variable hypotenuse. This, however, is not precisely the rule given above; for in the text of this Siddhânta, \(mt \), the difference between the variable hypotenuse and radius, is substituted for \(m \), as if the two were virtually equivalent: a highly inaccurate assumption, since they differ from one another by the versed sine, \(ot \), of the equation of the conjunction, \(M \), which equation is sometimes as much as \(40^\circ \); and indeed, the commentary, contrary to its usual habit of obscurousness to the inspired text with which it has to deal, rejects this assumption, and says, without even an apology for the liberty it is taking, that by the word "radius" in verse 50 is to be understood the cosine (kotiṣyā) of the second equation of the conjunction.
Moon's mean daily motion (i. 30),
deduct daily motion of apsis (i. 33),

\[
\begin{align*}
&790'35'' \\
&6'41''
\end{align*}
\]

Moon's mean anomalistic motion,

\[
783'54''
\]

From the process of calculation of the moon's true place, given above, we take

Moon's mean anomaly,

\[
10^\circ 18^\circ 46'15''
\]

Sine of anomaly (\textit{bhujaya}),

\[
2366'
\]

From the table of sines (ii. 15–27), we find

Corresponding difference of tabular sines,

\[
174'
\]

Hence the proportion

\[
225':174'::783'54''::606'13''
\]

shows the increase of the sine of anomaly in a day at this point to be

\[
606'13''
\]

The dimensions of the epicycle were found to be \(31^\circ 47''\). Hence the proportion

\[
360^\circ:31^\circ 47'::606'13''::53'31''
\]

give us the desired equation of motion, as \(53'31''\). By verse 49 it is subtractive, the planet being less than a quadrant from the apsis, or its anomaly being more than nine and less than three signs. Therefore, from the

Moon's mean daily motion,

\[
790'35''
\]

subtract the equation,

\[
53'31''
\]

Moon's true daily motion at given time,

\[
737'4'
\]

The roughness of the process is well illustrated by this example. Had the sine of anomaly been but \(2'\) greater, the difference of sines would have been \(10'\) less, and the equation only about \(50'\).

The equation of the sun's motion, calculated in a similar manner, is found to be \(3'21''\), and his true motion \(61'26''\).

The corrected rate of motion of the other planets will be given under the next following passage.

50. Subtract the daily motion of a planet, thus corrected for the apsis (\textit{manda}), from the daily motion of its conjunction (\textit{cīghra}); then multiply the remainder by the difference between the last hypothenuse and radius,

51. And divide by the variable hypothenuse (\textit{cala karna}): the result is additive to the daily motion when the hypothenuse is greater than radius, and subtractive when this is less; if, when subtractive, the equation is greater than the daily motion, deduct the latter from it, and the remainder is the daily motion in a retrograde (\textit{vakra}) direction.

The commentary gives no demonstration of the rule by which we are here taught to calculate the variation of the rate of motion of a planet occasioned by the action of its conjunction: the following figure, however (Fig. 7), will illustrate the principle upon which it is founded.
Only the effect of the apsis upon the daily rate of motion is treated of in these verses; the farther modification of it by the conjunction is the subject of those which succeed.

Verse 47 is a separate specification under the general rule given in the following verse, applying to the moon alone. The rate of a planet's motion in its epicycle being equal to its mean motion from the apsis, or its anomalistic motion, it is necessary in the case of the moon, whose apsis has a perceptible forward movement, to subtract the daily amount of this movement from that of the planet in order to obtain the daily rate of removal from the apsis.

In the first half of verse 48 the commentary sees only an intimation that, as regards the apsis, the equation of motion is found in the same general method as the equations of place, a certain factor being multiplied by the circumference of the epicycle and divided by that of the orbit. Such a direction, however, would be altogether trifling and superfluous, and not at all in accordance with the usual compressed style of the treatise; and moreover, were it to be so understood, we should lack any direction as to which of the several places found for a planet in the process for ascertaining its true place should be assumed as that for which this first equation of motion is to be calculated. The true meaning of the line, beyond all reasonable question, is, that the equation is to be derived from the same data from which the equation of place for the apsis was finally obtained, to be applied to the planet's mean position, as this is applied to its mean motion; from the data, namely, of the third process, as given above.

The principle upon which the rule is founded may be explained as follows. The equation of motion for any given time is evidently equal to the amount of acceleration or of retardation effected during that time by the influence of the apsis. Thus, in Fig. 3 (p. 208), _m n_, the sine of _a'm_, is the equation of motion for the whole time during which the centre of the epicycle has been traversing the arc _A M_. If that arc, and the arc _a'm_, be supposed to be divided into any number of equal portions, each equal to a day's motion, the equation of motion for each successive day will be equal to the successive increments of the sines of the increasing arcs in the epicycle; and these will be equal to the successive increments from day to day of the sines of mean anomaly, reduced to the dimensions of the epicycle. But the rate at which the sine is increasing or decreasing at any point in the quadrant is approximately measured by the difference of the tabular sines at that point; and as the arcs of mean daily motion are generally quite small—being, except in the case of the moon, much less than 3° 45', the unit of the table—we may form this proportion: if, at the point in the orbit occupied by the planet, a difference of 3° 45' in arc produces an increase or decrease of a given amount in sine, what increase or decrease of sine will be produced by a difference of arc equal to the planet's daily motion? or, 225 : diff. of tab. sines : : planet's daily motion : corresponding diff. of sine. The reduction of the result of this proportion to the dimensions of the epicycle gives the equation sought.

We will calculate by this method the true daily motion of the moon at the time for which her true longitude has been found above.
By this rule, allowance is made for that part of the equation of time, or of the difference between mean and apparent solar time, which is due to the difference between the sun's mean and true places. The instruments employed by the Hindus in measuring time are described, very briefly and insufficiently, in the thirteenth chapter of this work: in all probability the gnomon and shadow was that most relied upon; at any rate, their have had no means of keeping mean time with any accuracy, and it appears from this passage that apparent time alone is regarded as ascertainable directly. Now if the sun moved in the equinoctial instead of in the ecliptic, the interval between the passage of his mean and his true place across the meridian would be the same part of a day, as the difference of the two places is of a circle: hence the proportion upon which the rule in the text is founded: as the number of minutes in a circle is to that in the sun's equation (which is the same with his "result from the base-sine:" see above, v. 39), so is the whole daily motion of any planet to its motion during the interval. And since, when the sun is in advance of his true place, he comes later to the meridian, the planet moving on during the interval, and the reverse, the result is additive to the planet's place, or subtractive from it, according as the sun's equation is additive or subtractive.

The other source of difference between true and apparent time, the difference in the daily increment of the arcs of the ecliptic, in which the sun moves, and of those of the equinoctial, which are the measures of time, is not taken account of in this treatise. This is the more strange, as that difference is, for some other purposes, calculated and allowed for.

At the time for which we have ascertained above the true places of the planets, the sun is so near the perigee, and his equation of place is so small, that it renders necessary no modification of the places as given: even the moon moves but a small fraction of a second during the interval between mean and apparent midnight.

By bhukti, as used in this verse, we are to understand, of course, not the mean, but the actual, daily motion of the planet: the commentary also gives the word this interpretation. How the actual rate of motion is found at any given time, is taught in the next passage.

47. From the mean daily motion of the moon subtract the daily motion of its apsis (manda), and, having treated the difference in the manner prescribed by the next rule, apply the result, as an additive or subtractive equation, to the daily motion.

48. The equation of a planet's daily motion is to be calculated like the place of the planet in the process for the apsis: multiply the daily motion by the difference of tabular sines corresponding to the base-sine (dorjya) of anomaly, and then divide by two hundred and twenty-five;

49. Multiply the result by the corresponding epicycle of the apsis (mandoparidhi), and divide by the number of degrees in a circle (bhaagana); the result, in minutes, is additive when in the half-orbit beginning with Cancer, and subtractive when in that beginning with Capricorn.
of the epicycle also affects a corresponding diminution of the equation, carrying the planet forward where the equation is subtractive, and backward where it is additive; but we hardly feel justified in assuming that it is to be regarded as an empirical correction, applied to make the results of calculation agree more nearly with those of observation, because its amount and place stand in no relation which we have been able to trace to the true elements of the planetary orbits, nor is the accuracy of either the Hindu calculations or observations so great as to make such slight corrections of appreciable importance. We are compelled to leave the solution of this difficulty, if it shall prove solvable, to later investigation, and a more extended comparison of the different textbooks of Hindu astronomical science.

As regards the numerical value of the elements adopted by the two systems—their mutual relation, and their respective relations to the true elements established by modern science, are exhibited in the annexed table. The first part of it presents the comparative dimensions of the planetary orbits, or the value of the radius of each in terms of that of the earth's orbit. In the case of Mercury and Venus, this is represented by the relation of the radius of the epicycle (of the conjunction) to that of the orbit; in the case of the superior planets, by that of the radius of the orbit to the radius of the epicycle. For the Hindu system it was necessary to give two values in every case, derived respectively from the greatest and least dimensions of the epicycles. Such a relative determination of the moon's orbit, of course, could not be obtained; its absolute dimensions will be found stated later (see under iv. 3 and xii. 84). The second part of the table gives, as the fairest practicable comparison of the values assigned by each system to the eccentricities, the greatest equations of the centre. For Mercury and Venus, however, the ancient and modern determinations of these equations are not at all comparable, the latter giving their actual heliocentric amount, the former their apparent value, as seen from the earth.

Relative Dimensions and Eccentricities of the Planetary Orbits, according to Different Authorities.

<table>
<thead>
<tr>
<th>Planet</th>
<th>Sūrya-Siddhānta</th>
<th>Ptolemy</th>
<th>Moderns</th>
<th>Sūrya-Siddhānta</th>
<th>Ptolemy</th>
<th>Moderns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sun</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>2 10 31</td>
<td>2 23</td>
</tr>
<tr>
<td>Moon</td>
<td>..................</td>
<td>........</td>
<td>.........</td>
<td>..................</td>
<td>5 2 46</td>
<td>5 1</td>
</tr>
<tr>
<td>Mercury</td>
<td>.3694</td>
<td>.3667</td>
<td>.3750</td>
<td>.3871</td>
<td>4 27 35</td>
<td>2 53</td>
</tr>
<tr>
<td>Venus</td>
<td>.7778</td>
<td>.7322</td>
<td>.7194</td>
<td>.7333</td>
<td>1 45 3</td>
<td>2 33</td>
</tr>
<tr>
<td>Mars</td>
<td>1.5139</td>
<td>1.5513</td>
<td>1.5190</td>
<td>1.5237</td>
<td>11 32 3</td>
<td>11 32</td>
</tr>
<tr>
<td>Jupiter</td>
<td>5.1429</td>
<td>5.0000</td>
<td>5.2174</td>
<td>5.2028</td>
<td>5 5 58</td>
<td>5 16</td>
</tr>
</tbody>
</table>

46. Multiply the daily motion (bhūkti) of a planet by the sun's result from the base-sine (bāryaphala), and divide by the number of minutes in a circle (bhacakra); the result, in minutes, apply to the planet's true place, in the same direction as the equation was applied to the sun.
that, hampered by false assumptions, and imperfectly provided with instruments, they were able to construct a science containing so much of truth, and serving as a secure basis for the improvements of after time: whether we pay the same tribute to the genius of the Hindu will depend upon whether we consider him also, like all the rest of the world, to have been the pupil of the Greek in astronomical science, or whether we shall believe him to have arrived independently at a system so closely the counterpart of that of the West.

The differences between the two systems are much less fundamental and important. The assumption of a centre of equal distance different from that of equal angular motion—and, in the case of Mercury, itself also movable—is unknown to the Hindus: this, however, appears to be an innovation introduced into the Greek system by Ptolemy, and unknown before his time; it was adopted by him, in spite of its seeming arbitrariness, because it gave him results according more nearly with his observations. The moon's ejection, the discovery of Ptolemy, is equally wanting in the Hindu astronomy. As regards the combined application of the equations of the apsis and the conjunction, the two systems are likewise at variance. Ptolemy follows the truer, as well as the simpler, method: he applies first the whole correction for the eccentricity of the orbit, obtaining as a result, in the case of the superior planets, the planet's true heliocentric place; and he then corrects for the parallax of the earth's position. Here, too, ignorant as he was of the actual relation between the two equations, we may suppose him to have been guided by the better coincidence with observation of the results of his processes when thus conducted. The Hindus, on the other hand, not knowing to which of the two supernatural beings at the apsis and conjunction should be attributed the priority of influence, conceived them to act simultaneously, and adopted the method stated above, in verse 44, of obtaining an average place whence their joint effect should be calculated. This is the only point where they forsook the geometrical method, and suffered their theory respecting the character of the forces producing the inequalities of motion to modify their processes and results. The change of dimensions of the epicycles is also a striking peculiarity of the Hindu system, and to us, thus far, its most enigmatical feature. The virtual effect of the alteration upon the epicycles themselves is to give them a form approximating to the elliptical. But, although the epicycles of the conjunction of the inferior planets represent the proper orbits of those planets, and those of the superior the orbit of the earth, it is not possible to see in this alteration an unconscious recognition of the principle of ellipticity, because the major axis of the quasi-ellipse—or, in the case of Jupiter and Saturn, the minor axis—is constantly pointed toward the earth. Its effect upon the orbit described by the planet is, as concerns the epicycle of the apsis, to give to the eccentric circle an ovoid shape, flattened in the first and fourth quadrants, bulging in the second and third: this is, so far as it goes, an approximation toward Ptolemy's virtual orbit, a circle described about a centre distant from the earth's place by only half the equivalent of the radius of the Hindu epicycle (the circle A'P in figure 6): but the approximation seems too distant to furnish any hint of an explanation. A diminution
to the place of the planet as already once equated gives the final result sought for, its geocentric place.

In the case of Mercury, Ptolemy introduces the additional supposition that the centre of equal distances, instead of being fixed at Q, revolves in a retrograde direction upon the circumference of a circle of which X is the centre, and XQ the radius.

After a thorough discussion of the observations upon which his data and his methods are founded, and a full exposition of the latter, Ptolemy proceeds himself to construct tables, which are included in the body of his work, from which the true places of the planets at any given time may be found by a brief and simple process. The Hindus are also accustomed to employ such tables, although their construction and use are nowhere alluded to in this treatise. Hindu tables, in part professing to be calculated according to the Śūrya-Siddhānta, have been published by Bailly (Travail de l'Astr. Ind. etât, p. 335, etc.), by Bentley (Hind. Ast., p. 219, etc.), by Warren (Kāla Sankalita, Tables), by Mr. Hoisington (Oriental Astronomer, p. 61, etc.), and, for the sun and moon, by Davis (As. Res., ii. 255, 256).

We are now in a condition to compare the planetary system of the Hindus with that of the Greeks, and to take note of the principal resemblances and differences between them. And it is evident, in the first place, that in all their grand features the two are essentially the same. Both alike analyze, with remarkable success, the irregularities of the apparent motions of the planets into the two main elements of which they are made up, and both adopt the same method of representing and calculating those irregularities. Both alike substitute eccentric circles for the true elliptic orbits of the planets. Both agree in assigning to Mercury and Venus the same mean orbit and motion as to the sun, and in giving them epicycles which in fact correspond to their heliocentric orbits, making the centre of those epicycles, however, not the true, but the mean place of the sun, and also applying to the latter the correction due to the eccentricity of the orbit. Both transfer the centre of the orbits of the superior planets from the sun to the earth, and then assign to each, as an epicycle, the earth's orbit; not, however, in the form of an ellipse, nor even of an eccentric, but in that of a true circle; and here, too, both make the place of the centre of the epicycle to depend upon the mean, instead of the true, place of the sun. The key to the whole system of the Greeks, and the determining cause both of its numerous accordances with the actual conditions of things in nature, and of its inaccuracies, is the principle, distinctly laid down and strictly adhered to by them, that the planetary movements are to be represented by a combination of equable circular motions alone, none other being deemed suited to the dignity and perfection of the heavenly bodies. By the Hindus, this principle is nowhere expressly recognized, so far as we are aware, as one of binding influence, and although their whole system, no less than that of the Greeks, seems in other respects inspired by it, it is in one point, as we shall note more particularly hereafter, distinctly abandoned and violated by them (see below, under vv. 50, 51). We cannot but regard with the highest admiration the acuteness and industry, the power of observation, analysis, and deduction of the Greeks,
The Hindu method of finding the true longitudes of the five planets whose apparent position is affected by the parallax of the earth's motion having thus been fully explained, we will proceed to indicate, as succinctly as possible, the way in which the same problem is solved by the great Greek astronomer. The annexed figure (Fig. 6) will illustrate his method: it is taken from those presented in the Syntaxis, but with such modifications of form as to make it correspond with the figures previously given here: the conditions which it represents are only hypothetical, not according with the actual elements of any of the planetary orbits.

Let E be the earth's place, and let the circle A p C, described about E as a centre, represent the mean orbit of any planet, E A being the direction of its line of apsides, and E C that of its conjunction (ṣīghra), called by Ptolemy the apogee of its epicycle. Let E X be the double eccentricity, or the equivalent to the radius of the Hindu epicycle of the apsis; and let E X be bisected in Q. Then, as regards the influence of the eccentricity of the orbit upon the place of the planet, the centre of equable angular motion is at X, but the centre of equal distance is at Q: the planet virtually describes the circle A' P, of which Q is the centre, but at the same rate as if it were moving equably upon the dotted circle, of which the centre is at X. The angle of mean anomaly, accordingly, which increases proportionally to the time, is $x X A''$, but P is the planet's place, P E A the true anomaly, and E P X the equation of place. The value of E P X is obtained by a process analogous to that described above, under verse 39 (pp. 210, 211); E B and B X, and Q D and D X, are first found; then D P, which, by subtracting D X, gives X P; X P added to B X gives B P; and from B P and B E is derived E P B, the equation required; subtract this from P X A, and the remainder is R E A, the planet's true distance from the apsis. About P describe the epicycle of the conjunction, and draw the radius P T parallel to E C: then T is the planet's place in the epicycle, p its apparent position in the mean orbit, and T E P the equation of the epicycle, or of the conjunction. In order to arrive at the value of this equation, Ptolemy first finds that of S E R, the corresponding angle when the centre of the epicycle is placed at R, at the mean distance E R, or radius, from E: he then diminishes it by a complicated process, into the details of which it is not necessary here to enter, and which, as he himself acknowledges, is not strictly accurate, but yields results sufficiently near to the truth. The application of the equation thus obtained
We have calculated by this method the true places of the five planets, and present the results of the processes in the following tables. Those of the first process have been already given under the preceding passage: the application of half the equations there found to the mean longitude gives us the longitude once equated as a basis for the next process.

Results of the Second Process for finding the True Places of the Planets.

<table>
<thead>
<tr>
<th>Planet</th>
<th>Equated Longitude</th>
<th>Longitude of Apoapsis</th>
<th>Equated Anomaly</th>
<th>Basisine</th>
<th>Corrected Epicycle</th>
<th>Equation of Apoapsis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>8 7 37</td>
<td>7 10 28 20</td>
<td>11 2 51</td>
<td>1568</td>
<td>11 48</td>
<td>+ 0 22</td>
</tr>
<tr>
<td>Venus</td>
<td>9 1 17</td>
<td>2 19 52 17</td>
<td>5 18 35</td>
<td>681</td>
<td>11 48</td>
<td>+ 0 22</td>
</tr>
<tr>
<td>Mars</td>
<td>6 10 1</td>
<td>4 10 2 40</td>
<td>10 0 2</td>
<td>2077</td>
<td>72 24</td>
<td>- 10 2</td>
</tr>
<tr>
<td>Jupiter</td>
<td>2 26 59</td>
<td>5 21 22 19</td>
<td>2 24 23</td>
<td>3420</td>
<td>32 0</td>
<td>+ 5 5</td>
</tr>
<tr>
<td>Saturn</td>
<td>3 22 1</td>
<td>7 36 37 34</td>
<td>4 4 37</td>
<td>2829</td>
<td>48 11</td>
<td>+ 6 20</td>
</tr>
</tbody>
</table>

Again, the application of half these equations to the longitudes as once equated furnishes the data for the third process. The longitudes of the apsides, being the same as in the second operation, are not repeated in this table.

Results of the Third Process for finding the True Places of the Planets.

<table>
<thead>
<tr>
<th>Planet</th>
<th>Equated Longitude</th>
<th>Equated Anomaly</th>
<th>Basisine</th>
<th>Corrected Epicycle</th>
<th>Equation of Apoapsis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>8 6 34</td>
<td>11 3 54</td>
<td>1512</td>
<td>29 7</td>
<td>- 2 3</td>
</tr>
<tr>
<td>Venus</td>
<td>9 1 38</td>
<td>5 18 24</td>
<td>691</td>
<td>11 48</td>
<td>+ 0 23</td>
</tr>
<tr>
<td>Mars</td>
<td>6 5 0</td>
<td>10 5 3</td>
<td>2814</td>
<td>72 33</td>
<td>- 9 30</td>
</tr>
<tr>
<td>Jupiter</td>
<td>2 20 30</td>
<td>2 21 53</td>
<td>3403</td>
<td>32 1</td>
<td>+ 5 4</td>
</tr>
<tr>
<td>Saturn</td>
<td>3 25 11</td>
<td>4 1 27</td>
<td>2932</td>
<td>48 9</td>
<td>+ 6 33</td>
</tr>
</tbody>
</table>

The original mean longitudes are now corrected by the results of the third process, to obtain a position from which shall be once more calculated the equation of the conjunction; and the application of this to the position which furnished it yields, as a final result, the true place of each planet.

Results of the Fourth Process for finding the True Places of the Planets.

<table>
<thead>
<tr>
<th>Planet</th>
<th>Equated Longitude</th>
<th>Equated Conjunction</th>
<th>Basisine</th>
<th>Correct Epicycle</th>
<th>Result from R-basisine</th>
<th>Result from P-basisine</th>
<th>Variable Hypoth.</th>
<th>Equation of Conj.</th>
<th>True Longitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>8 16 11</td>
<td>8 0 40</td>
<td>3000</td>
<td>1101</td>
<td>616</td>
<td>3029</td>
<td>-31 20</td>
<td>7 24 51</td>
<td></td>
</tr>
<tr>
<td>Venus</td>
<td>8 18 36</td>
<td>2 3 14</td>
<td>3669</td>
<td>2218</td>
<td>1118</td>
<td>5067</td>
<td>+25 59</td>
<td>9 14 35</td>
<td></td>
</tr>
<tr>
<td>Mars</td>
<td>5 15 1</td>
<td>3 3 12</td>
<td>3432</td>
<td>2212</td>
<td>124</td>
<td>3084</td>
<td>+33 44</td>
<td>6 18 45</td>
<td></td>
</tr>
<tr>
<td>Jupiter</td>
<td>3 1 6</td>
<td>5 17 7</td>
<td>766</td>
<td>150</td>
<td>656</td>
<td>2986</td>
<td>+3 5</td>
<td>3 4 11</td>
<td></td>
</tr>
<tr>
<td>Saturn</td>
<td>3 26 45</td>
<td>4 31 28</td>
<td>2141</td>
<td>236</td>
<td>296</td>
<td>3151</td>
<td>+4 17</td>
<td>4 1 2</td>
<td></td>
</tr>
</tbody>
</table>

We cannot furnish a comparison of the Hindu determinations of the true places of the planets with their actual positions as ascertained by our modern methods, until after the subject of the latitude has been dealt with: see below, under verses 56–58.
44. To the mean place of the planet apply half the equation of the conjunction (cīghrapāla), likewise half the equation of the apsis; to the mean place of the planet apply the whole equation of the apsis (mandapāla), and also that of the conjunction.

45. In the case of all the planets, and both in the process of correction for the conjunction and in that for the apsis, the equation is additive (dhanā) when the distance (kendra) is in the half-orbit beginning with Aries; subtractive (ṛṣa), when in the half-orbit beginning with Libra.

The rule contained in the last verse is a general one, applying to all the processes of calculation of the equations of place, and has already been anticipated by us above. Its meaning is, that when the anomaly, (mandakendra), or commutation (cīghrakendra), reckoned always forward from the planet to the apsis or conjunction, is less than six signs, the equation of place is additive; when the former is more than six signs, the equation is subtractive. The reason is made clear by the figures given above, and by the explanations under verses 1–5 of this chapter.

It should have been mentioned above, under verse 29, where the word kendra was first introduced, that, as employed in this sense by the Hindus, it properly signifies the position (see note to i. 53) of the “centre” of the epicycle—which coincides with the mean place of the planet itself—relative to the apsis or conjunction respectively. In the text of the Sūrya-Siddhānta it is used only with this signification: the commentary employs it also to designate the centre of any circle.

Since the sun and moon have but a single inequality, according to the Hindu system, the calculation of their true places is simple and easy. With the other planets the case is different, on account of the existence of two causes of disturbance in their orbits, and the consequent necessity both of applying two equations, and also of allowing for the effect of each cause in determining the equation due to the other. For, to the apprehension of the Hindu astronomer, it would not be proper to calculate the two equations from the mean place of the planet; nor, again, to calculate either of the two from the mean place, and, having applied it, to take the new position thus found as a basis from which to calculate the other; since the planet is virtually drawn away from its mean place by the divinity at either apex (vaca) before it is submitted to the action of the other. The method adopted in this Siddhānta of balancing the two influences, and arriving at their joint effect upon the planet, is stated in verses 43 and 44. The phrasology of the text is not entirely explicit, and would bear, if taken alone, a different interpretation from that which the commentary puts upon it, and which the rules to be given later show to be its true meaning; this is as follows: first calculate from the mean place of the planet the equation of the conjunction, and apply the half of it to the mean place; from the position thus obtained calculate the equation of the apsis, and apply half of it to the longitude as already once equated; from this result find once more the equation of the apsis, and apply it to the original mean place of the planet; and finally, calculate from, and apply to, this last place the whole equation of the conjunction.
The position of Mercury with reference to the conjunction is accordingly very nearly that of M', in Fig. 5. The arc which determines the base-sine (bhujajjya), or OM', is $58^\circ 44'$, while $M'D$, its complement, from which the perpendicular-sine (kotiyya) is taken, is $31^\circ 16'$. The corresponding sines, $M'B'$ and $M'G'$, are 2938' and 1784' respectively.

The epicycle of Mercury is one degree less at D than at O. Hence the proportion

$$3438:60::2938:51$$

gives 51' as the diminution at M': the circumference of the epicycle at M, then, is $132^\circ 9'$. The two proportions

$$360^\circ:132^\circ 9'::2938:1078$$

and

$$360^\circ:132^\circ 9'::1784:655,$$

give us the value of $m'n'$ as 1078', and that of $n'M'$ as 655'. The commutation being more than three and less than nine signs, or in the half-orbit beginning with Cancer, the fourth sign, $n'M'$ is to be subtracted from EM', or radius, 3438'; the remainder, 2783', is the perpendicular $E'n'$.

To the square of Em',

$$7,745,089$$

add the square of $n'm'$,

$$1,162,084$$

of their sum,

$$8,907,173$$

the square root,

$$2984$$

is the variable hypotenuse (cala karna), Em'. The comparison of the triangles $Em'n'$ and $Eo'q'$ gives the proportion $Em':m'n':Eo':o'q'$, or

$$2984:1078::3438:1242$$

The value of $o'q'$, the sine of the equation, is accordingly 1242': the corresponding arc, $o'M$, is found by the process prescribed in verse 33 to be $21^\circ 12'$. The figure shows the equation to be subtractive.

The annexed table presents the results of the calculation of the equation of the conjunction (sighrakarman) for the five planets.

Results of the First Process for finding the True Places of the Planets.

<table>
<thead>
<tr>
<th>Planet</th>
<th>Mean Longitude</th>
<th>Longitude of Conjunction</th>
<th>Mean Commutation</th>
<th>Base-sine</th>
<th>Cerr. Epicycle</th>
<th>Result from R. sine</th>
<th>Result from P. sine</th>
<th>Vs. ab. H.</th>
<th>Equat'n of Conj.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>8 18 13 13</td>
<td>4 16 57 22</td>
<td>7 28 44 49</td>
<td>9 2938</td>
<td>132 9 1078</td>
<td>655</td>
<td>2984</td>
<td>-21 12</td>
<td></td>
</tr>
<tr>
<td>Venus</td>
<td>8 18 13 13</td>
<td>10 21 49 47</td>
<td>3 36 34 3080</td>
<td>260 13</td>
<td>2226</td>
<td>1104</td>
<td>5658</td>
<td>+26 7</td>
<td></td>
</tr>
<tr>
<td>Mars</td>
<td>5 24 30 57</td>
<td>8 18 13 13</td>
<td>2 23 42 16 3416</td>
<td>232 1</td>
<td>2203</td>
<td>225</td>
<td>4274</td>
<td>+31 1</td>
<td></td>
</tr>
<tr>
<td>Jupiter</td>
<td>2 26 2 14</td>
<td>8 18 13 13</td>
<td>5 22 10 59</td>
<td>468</td>
<td>70 16 91</td>
<td>665</td>
<td>7774</td>
<td>+1 53</td>
<td></td>
</tr>
<tr>
<td>Saturn</td>
<td>3 20 12 3</td>
<td>8 18 13 13</td>
<td>4 28 1 1820</td>
<td>39 32</td>
<td>200</td>
<td>320</td>
<td>3124</td>
<td>+3 40</td>
<td></td>
</tr>
</tbody>
</table>

This is, however, only a first step in the whole operation for finding the true longitudes of these five planets, as is laid down in the next passage.

43. The process of correction for the apsis (mānda karman) is the only one required for the sun and moon: for Mars and the other planets are prescribed that for the conjunction (gaikhya), that for the apsis (mānda), again that for the apsis, and that for the conjunction—four, in succession.
Suppose, now, the mean place of the planet, relative to its conjunction (śīghrocca) at C, to be at M: its place in the epicycle is at m, as far from C as in either direction, as M from C. The arc of the epicycle already traversed is indicated in this figure, as in Fig. 3, by the heavier line. Draw Em, cutting the orbit in o; then o is the planet’s true place, and oM is the equation, or the amount of removal from the mean place by the attraction of the being at C.

The sine and cosine of the distance from the conjunction, the dimensions of the epicycle, and the value of the corresponding elements in the epicycle to the sine and cosine, are found as in the preceding process. Add n M, the result from the cosine (koṭijyāphala), to M E, the radius: the result is the perpendicular, E n, of the triangle Em n. To the square of E n add that of the base n m, the result from the sine (bhujjyāphala); the square root of the sum is the line Em, the hypothenuse: it is termed the variable hypothenuse (cāla karna) from its constantly changing its length. We have now the two similar triangles Em n and E o g, a comparison of the corresponding parts of which gives us the proportion Em : m n :: E o : o g; that is to say, o g, which is the sine of the equation oM, equals the product of E o, the radius, into m n, the result from the base-sine, divided by the variable hypothenuse, Em.

When the planet’s mean place is in the quadrant D O, as at M’, the result from the perpendicular-sine (koṭijyāphala), or M’ n’, is subtracted from the radius, and the remainder, E n’, is employed as before to find the value of E m’, the variable hypothenuse; and the comparison of the similar triangles Em’ n’ and E o’ g’ gives o’ g’, the sine of the equation, o’ M’.

It is obvious that when the mean distance of a planet from its conjunction is less than a quadrant in either direction, as at M, the base E n is greater than radius; when that distance is more than a quadrant, as at M’, the base E n’ is less than radius: the cosine is to be added to radius in the one case, and subtracted from it in the other. This is the meaning of the rule in verse 40: compare the notes to i. 58 and ii. 30.

In illustration of the process, we will calculate the equation of the conjunction of Mercury for the given time, or for midnight preceding January 1st, 1860, at Washington.

Since the Hindu system, like the Greek, interchanges in the case of the two inferior planets the motion and place of the planet itself and of the sun, giving to the former as its mean motion that which is the mean apparent motion of the sun, and assigning to the conjunction (śīghrocca) a revolution which is actually that of the planet in its orbit, the mean position of Mercury at the given time is that found above (under v. 39) to be that of the sun at the same time, while to find that of its conjunction we have to add the equation for difference of meridian (deśāntara-phala, i. 60, 61), to the longitude given under i. 53 as that of the planet.

Longitude of Mercury’s conjunction (śīghrocca), midnight, at Ujjayinī, 4° 15' 13' 8'

Longitude of conjunction at required time	4° 16' 57' 22'
Mean longitude of Mercury	8° 18' 13' 13'
Mean commutation (śīghrakendra,)	7° 28' 44' 9'
making the circuit of the heavens about E, the earth, as a centre, in the direction indicated by the arrow, from C through M and M' to O, and so on. But since, in every case, the conjunction moves more rapidly eastward than the planet, overtaking and passing it, if we suppose the conjunction stationary at C, the virtual motion of the planet relative to that point is backward, or from O through M' and M to C, its mean rate of approach toward C being the difference between the mean motion of the planet and that of the sun. As before, the amount to which the planet is drawn away from its mean place toward the conjunction is calculated by means of an epicycle. The circles drawn in the figure to represent the epicycle are of the relative dimensions of that assigned to Mercury, or a little more than half that of Mars. The direction of the planet's motion in the epicycle is the reverse of that in the epicycle of the apsis, as regards the actual motion of the planet in its orbit, being eastward at the conjunction; as regards the motion of the planet relative to the conjunction, it is the same as in the former case, being in the contrary direction at the conjunction: its effect, of course, is to increase the rate of the eastward movement at that point. The time of the planet's revolution about the centre of the epicycle is the interval between two successive passages through the point C, the conjunction: that is to say, it is equal to the period of synodical revolution of each planet. These periods are, according to the elements presented in the text of this Siddhānta, as follows:

<table>
<thead>
<tr>
<th>Planet</th>
<th>Time (in days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>154 21 42m</td>
</tr>
<tr>
<td>Venus</td>
<td>583 21 37</td>
</tr>
<tr>
<td>Mars</td>
<td>779 22 11</td>
</tr>
<tr>
<td>Jupiter</td>
<td>398 21 20</td>
</tr>
<tr>
<td>Saturn</td>
<td>378 2 4</td>
</tr>
</tbody>
</table>

The arc of the epicycle traversed by the planet, at any point in its revolution, is equal to its distance from the conjunction, when reckoned forward from the planet, according to the method prescribed in verse 29.
circle is at e, and Ee, which equals Aa, is the eccentricity, which is given. Join em; the angle mea equals M EA, the mean anomaly, and Em e equals Meo, the equation. Extend me to d, where it meets Ed, a perpendicular let fall upon it from E. Then, in the right-angled triangle Eed, the side ee and the angles—since Eed equals mea—are given, to find the other sides, ed and de. Add ed to em, the radius; add the square of the sum to that of Ed; the square root of their sum is Em: then, in the right-angled triangle med, all the sides and the right angle are given, to find the angle Em e, the equation.

This process is equivalent to a transfer of the epicycle from M to E; Ed becomes the result from the base-sine (bhujajyapala), and de that from the perpendicular-sine (koti jyapala), and the angle of the equation is found in the same manner as its sine, ec, is found in the Hindu process next to be explained; while, in that which we have been considering, Ed is assumed to be equal to ec.

Ptolemy also adds to the moon’s orbit an epicycle, to account for her second inequality, the egression, the discovery of which does him so much honor. Of this inequality the Hindus take no notice.

40. The result from the perpendicular-sine (kotipala) of the distance from the conjunction is to be added to radius, when the distance (kendra) is in the half-orbit beginning with Capricorn; but when in that beginning with Cancer, the result from the perpendicular-sine is to be subtracted.

41. To the square of this sum or difference add the square of the result from the base-sine (bhuupala); the square root of their sum is the hypothenuse (karna) called variable (cal). Multiply the result from the base-sine by radius, and divide by the variable hypothenuse:

42. The arc corresponding to the quotient is, in minutes, etc., the equation of the conjunction (chhriya phala); it is employed in the first and in the fourth process of correction (karman) for Mars and the other planets.

The process prescribed by this passage is essentially the same with that explained and illustrated under the preceding verse, the only difference being that here the sine of the required equation, instead of being assumed equal to that of the arc traversed by the planet in the epicycle, is obtained by calculation from it. The annexed figure (Fig. 5) will exhibit the method pursued.

The larger circle, CMM'O, represents, as before, the orbit in which any one of the planets, as also the being at its conjunction (aghroces) are
Once more, by verse 39, we make the proportion, circ. of orbit : circ. of epicycle :: M B : m n ; or,

\[360\degree : 31\degree 47' :: 2266 : 200 \]

The value, then, of m n, the result from the base-sine \((bhujajyaphalu)\), is 200'; which, as m n is assumed to equal q g, is the sine of the equation. Being less than 225', its arc (see the table of sines, above) is of the same value: 30° 20', accordingly, is the moon's equation of the apsis \((m\text{\'{a}nda phala})\) at the given time: the figure shows it to be subtractive \((rna)\), as the rule in verse 45 also declares it. Hence, from the

<table>
<thead>
<tr>
<th>Moon's mean longitude,</th>
<th>11° 26' 59'</th>
</tr>
</thead>
<tbody>
<tr>
<td>deduct the equation,</td>
<td>3 20</td>
</tr>
</tbody>
</table>

Moon's true longitude, 11° 17' 39''

We present below, in a briefer form, the results of a similar calculation made for the sun, at the same time,

Sun's mean longitude, midnight, at Ujjayini (i. 53), 8° 17° 48' 7''

add for difference of meridian (i. 60, 61),

add for difference of meridian (i. 60, 61),

\[25 6 \]

Sun's mean longitude at required time, 8° 18' 13' 13''

Longitude of sun's apsis (i. 41),

\[2 17 17 24' \]

Sun's mean anomaly (ii. 29),

subtract from two quadrants (ii. 30),

\[5 29 4 11 \]

Arc determining base-sine,

Base-sine \((bhujajy\ldots)\), 55° 49''

Dimensions of epicycle (ii. 33), 56°

Result from base-sine \((bhujajyaphalu)\), or sine of equation (ii. 39), 14°

Equation \((m\text{\'{a}nda phala}, ii. 40)\),

\[2' \]

Sun's true longitude, 8° 18° 15' 15''

In making these calculations, we have neglected the seconds, rejecting the fraction of a minute, or counting it as a minute, according as it was less or greater than a half. For, considering that this method is followed in the table of sines, which lies at the foundation of the whole process, and considering that the sine of the arc in the epicycle is assumed to be equal to that of the equation, it would evidently be a waste of labor, and an affectation of an exactness greater than the process contemplates, or than its general method renders practicable, to carry into seconds the data employed.

As stated below, in verse 43, the equation thus found is the only one required in determining the true longitude of the sun and of the moon: in the case of the other planets, however, of which the apparent place is affected by the motion of the earth, a much longer and more complicated process is necessary, of which the explanation commences with the next following passage.

The Ptolemaic method of making the calculation of the equation of the centre for the sun and moon is illustrated by the annexed figure (Fig. 4). The points E, A, M, a, m, and o, correspond with those similarly marked in the last figure (Fig. 3). The centre of the eccentric
all cases small, m_n may without any considerable error be assumed to be equal to $o \phi$, which is the sine of the arc $o M$, the equation: this assumption is accordingly made, and the conversion of m_n as sine, into its corresponding arc, gives the equation required.

The same explanation applies to the position of the planet at M': $a''m'$, the equivalent of $A M M'$, is here the arc of the epicycle traversed; $m''n''$, its sine, is calculated from $M'B'$, as before, and is assumed to equal $o'q'$, the sine of the equation $o'M'$.

To give a farther and practical illustration of the process, we will proceed to calculate the equation of the apsis for the moon, at the time for which her mean place has been found in the notes to the last chapter, viz., the 1st of January, 1860, midnight, at Washington.

Moon's mean longitude, midnight, at Ujjayini (i. 53),
add the equation for difference of meridian (deśhataraphala),
or for her motion between midnight at Ujj and Wash. (i. 60, 61),

Moon's mean longitude at required time,	11° 15' 23' 24'
Longitude of moon's apsis, midnight, at Ujjayini (i. 53), add for difference of meridian, as above,	10° 9' 42' 25'
Longitude of moon's apsis at required time, deduct moon's mean longitude (ii. 29),	10° 9' 45' 16'

Moon's mean anomaly (manda-kendra), 10° 18' 46' 15'

The anomaly being reckoned forward, on the orbit from the planet, the position thus found for the moon relative to the apsis is, nearly enough for purposes of illustration, represented by M in the figure. By the rule given above, in verse 30, the base-sine (bhujayā) — since the anomaly is in the fourth, an even, quadrant — is to be taken from the part of the quadrant not included in the anomaly, or $A M$; the perpendicular-sine (kotiyā) is that corresponding to its complement, or $M D$. That is to say:

From the anomaly,

deduct three quadrants, 10° 18° 46° 15'
remains the arc $M D$,
take this from a quadrant,
remains the arc $A M$.

And by the method already illustrated under verses 31, 32, the sine corresponding to the latter arc, which is the base-sine (bhujayā), or the sine of mean anomaly, $M B$, is found to be 2266; that from $M D$, which is $M F$, or $E B$, the perpendicular-sine (kotiyā), or cosine of mean anomaly, is 2585.

The next point is to find the true size of the epicycle at M. By verse 34, the contraction of its circumference amounts at D to 20°; hence, according to the rule in verse 38, we make the proportion, $\sin A D : 20' : : \sin A M : : \text{diminution at } M$; or,

$3439 : 20' : : 2266 : 13$

Deducting from 32°, the circumference of the epicycle at A, the amount of diminution thus ascertained, we have 31° 47' as its dimensions at M.

Vol. VI. 27
A a, the radius of the epicycle. This identity of the virtual orbit with an eccentric circle, of which the eccentricity is equal to the radius of the epicycle, was doubtless known to the Hindus, as to Ptolemy; the latter, in the third book of his Syntaxis, demonstrates the equivalence of the suppositions of an epicycle and an eccentric, and chooses the latter to represent the first inequality: the Hindus have preferred the other supposition, as better suited to their methods of calculation, and as admitting a general similarity in the processes for the apsis and the conjunction. The Hindu theory, however, as remarked above (under vv. 1-5 of this chapter), rejects the idea of the actual motion of the planet in the epicycle, or on the eccentric circle: the method is but a device for ascertaining the effect of the attractive force of the being at the apsis. Thus the planet really moves in the circle A M M' P, and if the lines E m, E m' be drawn, meeting the orbit in ω and ω', its actual place is at ω and ω', when its mean place is at M and M' respectively. To ascertain the value of the arcs M and M', which are the amount of removal from the mean place, or the equation, is the object of the process prescribed by the text.

Suppose the planet's mean place to be M, its mean distance from the apsis being M a. It has traversed, as above explained, an equal arc, a'm, in the epicycle. From M draw MB and MF, and from M draw mn, at right angles to the lines upon which they respectively fall: then MB is the base-sine (bhujýyá), or the sine of mean anomaly, and MF, or its equal EB, is the perpendicular-sine (kotijýá), or cosine, and m n and n M are corresponding sine and cosine in the epicycle. But as the relation of the circumference of the orbit to that of the epicycle is known, and as all corresponding parts of two circles are to one another as their respective circumferences, the values of m n and n M are found by a proportion, as follows: as 360° is to the number of degrees in the circumference of the epicycle at M, so is MB to m n, and EB to n M. Hence m n is called the "result from the base-sine" (bhujýyáphala, or, more briefly, bhujýphala, or bhúyphala), and n M the "result from the perpendicular-sine" (kotijýáphala, or kotiphala): the latter of the two, however, is not employed in the process for calculating the equation of the apsis. Now, as the dimensions of the epicycle of the apsis are in
away from its mean place by the disturbing influence of the apsis. In modern phraseology, it is called the first inequality, due to the ellipticity of the orbit; or, the equation of the centre.

Figure 3, upon the next page, will serve to illustrate the method of the process.

Let $AMMP$ represent a part of the orbit of any planet, which is supposed to be a true circle, having E, the earth, for its centre. Along this orbit the planet would move, in the direction indicated by the arrow, from A through M and M' to P, and so on, with an equable motion, were it not for the attraction of the beings situated at the apsis ($mandocca$) and conjunction ($cighrocce$) respectively. The general mode of action of these beings has been explained above, under verses 1–5 of this chapter: we have now to ascertain the amount of the disturbance produced by them at any given point in the planet's revolution. The method devised is that of an epicycle, upon the circumference of which the planet revolves with an equable motion, while the centre of the epicycle traverses the orbit with a velocity equal to that of the planet's mean motion, having always a position coincident with the mean place of the planet. At present, we have to do only with the epicycle which represents the disturbing effect of the apsis ($mandocca$). The period of the planet's revolution about the centre of the epicycle is the time which it takes the latter to make the circuit of the orbit from the apsis around to the apsis again, or the period of its anomalistic revolution. This is almost precisely equal to the period of sidereal revolution in the case of all the planets excepting the moon, since their apsides are regarded by the Hindus as stationary (see above, under i. 41–44): the moon's apsis, however, has a forward motion of more than 40° in a year; hence the moon's anomalistic revolution is very perceptibly longer than its sidereal, being $27^d\ 13^h\ 18^m$. The arc of the epicycle traversed by the planet at any mean point in its revolution is accordingly always equal to the arc of the orbit intercepted between that point and the apsis, or to the mean anomaly, when the latter is reckoned, in the usual manner, from the apsis forward to the planet. Thus, in the figure, suppose A to be the place of the apsis ($mandocca$, the apogee of the sun and moon, the aphelion of the other planets), and P that of the opposite point (perigee, or perihelion; it has in this treatise no distinctive name); and let M and M' be two mean positions of the planet, or actual positions of the centre of the epicycle; the lesser circles drawn about these four points represent the epicycle: this is made, in the figure, of twice the size of that assumed for the moon, or a little smaller than that of Mars. Then, when the centre of the epicycle is at A, the planet's place in the epicycle is at a; as the centre advances to M, M', and P, the planet moves in the opposite direction, to m, m', and p, the arc am being equal to AM, $a'm'$ to $A'M'$, and ap to AP. It is as if, while the axis EA revolves about E, the part of it AA remained constant in direction, parallel to EA, assuming the positions A_m, A_m', and AP successively. The effect of this combination of motions is to make the planet virtually traverse the orbit indicated in the figure by the broken line, which is a circle of equal radius with the true orbit, but having its centre removed from E, toward A, by a distance equal to
of the week, viz., Mars, Mercury, Jupiter, Venus, and Saturn (see above, under i. 51, 52). The annexed table gives the dimensions of the epicycles, both their circumferences, which are presented directly by the text, and their radii, which we have calculated after the method of this Siddhānta, assuming the radius of the orbit to be 3438'.

Dimensions of the Epicycles of the Planets.

<table>
<thead>
<tr>
<th></th>
<th>Epicycle of the apsis</th>
<th>Epicycle of the conjunction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>at even quadrant, cir.</td>
<td>at odd quadrant, cir.</td>
</tr>
<tr>
<td>sun</td>
<td>14° 133° 70</td>
<td>13° 40' 136° 53</td>
</tr>
<tr>
<td>moon</td>
<td>32° 305° 60</td>
<td>31° 40' 302° 43</td>
</tr>
<tr>
<td>venus</td>
<td>42° 114° 60</td>
<td>11° 105° 05</td>
</tr>
<tr>
<td>mars</td>
<td>75° 716° 25</td>
<td>72° 688° 60</td>
</tr>
<tr>
<td>jupiter</td>
<td>33° 315° 15</td>
<td>32° 305° 60</td>
</tr>
<tr>
<td>saturn</td>
<td>49° 467° 95</td>
<td>48° 458° 40</td>
</tr>
</tbody>
</table>

A remarkable peculiarity of the Hindu system is that the epicycles are supposed to contract their dimensions as they leave the apsis or the conjunction respectively (excepting in the case of the epicycles of the conjunction of Jupiter and Saturn, which expand instead of contracting), becoming smallest at the quadrature, then again expanding till the lower apsis, or opposition, is reached, and decreasing and increasing in like manner in the other half of the orbit; the rate of increase and diminution being as the sine of the distance from the apsis, or conjunction. Hence the rule in verse 38, for finding the true dimensions of the epicycle at any point in the orbit. It is founded upon the simple proportion: as radius, the sine of the distance at which the diminution (or increase) is greatest, is to the amount of diminution (or of increase) at that point, so is the sine of the given distance to the corresponding diminution (or increase); the application of the correction thus obtained to the dimensions of the epicycle at the apsis, or conjunction, gives the true epicycle.

We shall revert farther on to the subject of this change in the dimensions of the epicycle.

The term employed to denote the epicycle, paridhi, means simply “circumference,” or “circle;” it is the same which is used elsewhere in this treatise for the circumference of the earth, etc. In a single instance, in verse 38, we have vṛttapadisthā instead of paridhi; its signification is the same, and its other uses are closely analogous to those of the more usual term.

39. By the corrected epicycle multiply the base-sine (bhujajya) and perpendicular-sine (koṭijya) respectively, and divide by the number of degrees in a circle: then, the arc corresponding to the result from the base-sine (bhujajyaphala) is the equation of the apsis (māndaphala), in minutes, etc.

All the preliminary operations having been already performed, this is the final process by which is ascertained the equation of the apsis, or the amount by which a planet is, at any point in its revolution, drawn
The extreme conciseness aimed at in the phraseology of the text, and not unfrequently carried by it beyond the limit of distinctness, or even of intelligibility, is well illustrated by verse 33, which, literally translated, reads thus: "having subtracted the sine, the remainder, multiplied by 225, divided by its difference, having added to the product of the number and 225, it is called the arc." In verse 31, also, the important word "remainder" is not found in the text.

The proper place for this passage would seem to be immediately after the table of sines and versed sines: it is not easy to see why verses 28–30 should have been inserted between, or indeed, why the subject of the inclination of the ecliptic is introduced at all in this part of the chapter, as no use is made of it for a long time to come.

34. The degrees of the sun's epicycle of the apsis (manda-paridhi) are fourteen, of that of the moon, thirty-two, at the end of the even quadrants; and at the end of the odd quadrants, they are twenty minutes less for both.

35. At the end of the even quadrants, they are seventy-five, thirty, thirty-three, twelve, forty-nine; at the odd (oja) they are seventy-two, twenty-eight, thirty-two, eleven, forty-eight.

36. For Mars and the rest; farther, the degrees of the epicycle of the conjunction (çigra) are, at the end of the even quadrants, two hundred and thirty-five, one hundred and thirty-three, seventy, two hundred and sixty-two, thirty-nine;

37. At the end of the odd quadrants, they are stated to be two hundred and thirty-two, one hundred and thirty-two, seventy-two, two hundred and sixty, and forty, as made use of in the calculation for the conjunction (çighrakaranam).

38. Multiply the base-sine (bhujjayā) by the difference of the epicycles at the odd and even quadrants, and divide by radius (brijyā); the result, applied to the even epicycle (vrita), and additive (dhana) or subtractive (rta), according as this is less or greater than the odd, gives the corrected (sphuta) epicycle.

The corrections of the mean longitudes of the planets for the disturbing effect of the apsis (mandaça) and conjunction (çighraca) of each—that is to say, for the effect of the ellipticity of their orbits, and for that of the annual parallax, or of the motion of the earth in its orbit—are made in Hindu astronomy by the Ptolemaic method of epicycles, or secondary circles, upon the circumference of which the planet is regarded as moving, while the centre of the epicycle revolves about the general centre of motion. The details of the method, as applied by the Hindus, will be made clear by the figures and processes to be presented a little later; in this passage we have only the dimensions of the epicycles assumed for each planet. For convenience of calculation, they are measured in degrees of the orbits of the planets to which they severally belong; hence only their relative dimensions, as compared with the orbits, are given us. The data of the text belong to the planets in the order in which these succeed one another as regents of the days.
determined by the arc \(A\ P \), the arc passed over in reckoning the anomaly, while \(A\ G \) or \(\text{EM} \), the perpendicular-sine, or cosine, is taken from the arc \(A\ Q \), the remaining part of the quadrant. The same is true in the other odd quadrant, \(R\ S \); the sine \(C\ H \), or \(E\ L \), comes from \(R\ C \), the part of the quadrant between the planet and the apsis; the cosine \(C\ L \) is from its complement. But in the even quadrants, \(Q\ R \) and \(S\ P \), the case is reversed; the sines, \(C\ H \), or \(E\ F \), and \(D\ M \), are determined by the arcs \(B\ R \) and \(D\ P \), the parts of the quadrant not included in the anomaly, and the cosines, \(B\ F \) and \(K\ D \), or \(E\ M \), correspond to the other portions of each quadrant respectively.

This process of finding what portion of any arc greater than a quadrant is to be employed in determining its sine, is ordinarily called in Hindu calculations "taking the bhuya of an arc."

31. Divide the minutes contained in any arc by two hundred and twenty-five; the quotient is the number of the preceding tabular sine (\(jyopinda \)). Multiply the remainder by the difference of the preceding and following tabular sines, and divide by two hundred and twenty-five;

32. The quotient thus obtained add to the tabular sine called the preceding; the result is the required sine. The same method is prescribed also with respect to the versed sines.

33. Subtract from any given sine the next less tabular sine; multiply the remainder by two hundred and twenty-five, and divide by the difference between the next less and next greater tabular sines; add the quotient to the product of the serial number of the next less sine into two hundred and twenty-five; the result is the required arc.

The table of sines and versed sines gives only those belonging to arcs which are multiples of \(3^\circ\ 45' \); the first two verses of this passage state the method of finding, by simple interpolation, the sine or versed sine of any intermediate arc; while the third verse gives the rule for the contrary process, for converting any given sine or versed sine in the same manner into the corresponding arc.

In illustration of the first rule, let us ascertain the sine corresponding to an arc of \(24^\circ \), or \(1440' \). Upon dividing the latter number by 225, we obtain the quotient 6, and the remainder 90'. This preliminary step is necessary, because the Hindu table is not regarded as containing any designation of the arcs to which the sines belong, but as composed simply of the sines themselves in their order. The sine corresponding to the quotient obtained, or the sixth, is \(1397' \); the difference between it and the next following sine is \(205' \). Now a proportion is made: if, at this point in the quadrant, an addition of \(225' \) to the arc causes an increase in the sine of \(205' \), what increase will be caused by an addition to the arc of \(90' \); that is to say, \(225 : 205 :: 90 : 82 \). Upon adding the result, \(82' \), to the sixth sine, the amount, \(1397' \), is the sine of the given arc, as stated in verse 28. The actual value, it may be remarked, of the sine of \(24^\circ \), is \(1398' 26'' \).

The other rule is the reverse of this, and does not require illustration.
very foundation of the method of calculating the true place of a planet by means of a system of epicycles, than to find one, as noticed above (under i. 52), at the base of the theory of planetary regency upon which depend the names and succession of the days of the week. Both anomaly and commutation, it will be noticed, are, according to this treatise, to be reckoned always forward from the planet to its apsis and conjunction respectively; excepting that, in the case of Mercury and Venus, owing to the exchange with regard to those planets of the place of the planet itself with that of its conjunction, the commutation is really reckoned the other way. The functions of any arc being the same with those of its negative, it makes no difference, of course, whether the distance is measured from the planet to the apex (ucca), or from the apex to the planet.

The quantities actually made use of in the calculations which are to follow are the sine and cosine of the anomaly, or of the commutation. The terms employed in the text require a little explanation. Bhuja means "arm;" it is constantly applied, as are its synonyms bahu and dva, to designate the base of a right-angled triangle; kati is properly "a recurved extremity," and, as used to signify the perpendicular in such a triangle, is conceived of as being the end of the bhuja, or base, bent up to an upright position; bhuja and kati, then, are literally the values, as sines, of the base and perpendicular of a right-angled triangle of which the hypothenuse is made radius: owing to the relation to one another of the oblique angles of such a triangle, they are respectively as sine and cosine. We have not been willing to employ these latter terms in translating them, because, as before remarked, the Hindus do not seem to have conceived of the cosine, the sine of the complement, of an arc, as being a function of the arc itself.

To find the sine and cosine of the planet’s distance from either of its apices (ucca) is accordingly the object of the directions given in verse 30 and the latter part of the preceding verse. The rule itself is only the awkward Hindu method of stating the familiar truth that the sine and cosine of an arc and of its supplement are equal. The accompanying figure will, it is believed, illustrate the Hindu manner of looking at the subject. Let P be the place of a planet, and divide its orbit into the four quadrants PQ, QR, RS, and SP; the first and third of these are called the odd (vishaka) quadrants; the second and fourth, the even (yukna) quadrants. Let A, B, C, and D, be four positions of the apsis (or of the conjunction); then the arcs PA, PQB, PQR, PQRSD will be the values of the anomaly in each case. AM, the base-sine, or sine of anomaly, when the apsis is in the first quadrant, is
subject under verses 9 and 10 of the next chapter. The "sine" employed is, of course, the sine of the distance from the vernal equinox, or of the longitude as corrected by the precession.

The annexed figure will explain the rule, and the method of its demonstration.

Let ACE represent a quadrant of the plane of the equatorial, and ACG a quadrant of that of the ecliptic, AC being the line of their intersection: then AP is the equinoctial colure, PE the solstitial, GE, or the angle GCE, the inclination of the ecliptic, or the greatest declination ($paramāyakrama$, or $paramakrānti$), and GD its sine ($paramakrāntiyā$). Let S be the position of the sun, and draw the circle of declination PH; SH, or the angle SCH, is the declination of the sun at that point, and SF the sine of declination ($krāntiyā$). From S and F draw SB and FB at right angles to AC; then SB is the sine of the arc AS, or of the sun’s longitude. But GCD and SBF are similar right-angled triangles, having their angles at C and B each equal to the inclination. Therefore $CG : GD : : GD \times SB$; and $SF = \frac{CG}{GD}$.

That is, \sin decl. $= \frac{\sin$ incl. $\times \sin$ long. $}{R}$.

The same result is, by our modern methods, obtained directly from the formula in right-angled spherical trigonometry: $\sin c = \sin a \sin C$; or, in the triangle ASH, right-angled at H, $\sin SH = \sin SA \sin SAH$.

29. Subtract the longitude of a planet from that of its apsis ($mandocca$); so also, subtract it from that of its conjunction ($pighra$); the remainder is its anomaly ($kendra$); from that is found the quadrant ($pada$); from this, the base-sine ($bhujājyā$), and likewise that of the perpendicular ($koti$).

30. In an odd ($viśhama$) quadrant, the base-sine is taken from the part past, the perpendicular from that to come; but in an even ($yuṣma$) quadrant, the base-sine ($bāhujyā$) is taken from the part to come, and the perpendicular-sine from that past.

The distance of a planet from either of its two apices of motion, or centres of disturbance, is called its $kendra$; according to the commentary, its distance from the apsis ($mandocca$) is called $mandakendra$, and that from the conjunction ($pighrocca$) is called $pighrakendra$; the Sūrya-Siddhānta, however, nowhere has occasion to employ these terms. The former of the two corresponds to what in modern astronomy is called the anomaly, the latter to what is known as the commutation. The word $kendra$ is not of Sanskrit origin, but is the Greek $στρογγυλον$; it is a circumstance no less significant to meet with a Greek word thus at the
In this passage, the sine is called *jyārdha*, “half-chord”; hereafter, however, that term does not once occur, but *jyā* “chord” (literally “bow-string”) is itself employed, as are also its synonyms *jivā, mārvikā*, to denote the sine. The usage of Albategnius is the same. The sines of the table are called *pīnda*, or *jyāpīnda*, “the quantity corresponding to the sine.” The term used for versed sine, *utkramojyā*, means “inverse-order sine,” the column of versed sines being found by subtracting that of sines in inverse order from radius.

The ratio of the diameter to the circumference involved in the expression of the value of radius by 3438' is, as remarked above (under i. 59, 60), 1 : 3.14138. The commentator asserts that value to come from the ratio 1250 : 3927, or 1 : 3.1416, and it is, in fact, the nearest whole number to the result given by that ratio. If the ratio were adopted which has been stated above (in i. 59), of 1 : √10, the value of radius would be only 3415'. It is to be observed with regard to this latter ratio, that it could not possibly be the direct result of any actual process adopted for ascertaining the value of the diameter from that of the circumference, or the contrary. It was probably fixed upon by the Hindus because it looked and sounded well, and was at the same time a sufficiently near approximation to the truth to be applied in cases where exactness was neither attainable by their methods, nor of much practical consequence; as in fixing the dimensions of the earth, and of the planetary orbits. The nature of the system of notation of the Hindus, and their constantly recurring extraction of square roots in their trigonometrical processes, would cause the suggestion to them, much more naturally than to the Greeks, of this artificial ratio, as not far from the truth; and their science was just of that character to choose for some uses a relation expressed in a manner so simple, and of an aspect so systematical, even though known to be inaccurate. We do not regard the ratio in question, although so generally adopted among the Hindu astronomers, as having any higher value and significance than this.

28. The sine of greatest declination is thirteen hundred and ninety-seven; by this multiply any sine, and divide by radius; the arc corresponding to the result is said to be the declination.

The greatest declination, that is to say, the inclination of the plane of the ecliptic, is here stated to be 24°, 1397' being the sine of that angle. The true inclination in the year 300 of our era, which we may assume to have been not far from the time when the Hindu astronomy was established, was a little less than 23° 40', so that the error of the Hindu determination was then more than 20': at present, it is 32° 34'. The value assigned by Ptolemy (Syntaxis, i) to the inclination was between 23° 50' and 23° 52' 30''; an error, as compared with its true value in the time of Hipparchus, of only about 7'.

The second half of the verse gives, in the usual vague and elliptical language of the treatise, the rule for finding the declination of any given point in the ecliptic. We have not in this case supplied the ellipses in our translation, because it could not be done succinctly, or without introducing an element, that of the precession, which possibly was not taken into account when the rule was made. See what is said upon this
of the formula \(R \sin (a \pm n) = \sin a \cos n \pm \cos a \sin n \), reduces to
\[2 \sin a \cos n \div R - 2 \sin a, \text{ or } 2 \left(\frac{\cos n}{R} - 1 \right) \sin a. \]
That is to say, the second difference is equal to the product of the sine of the arc \(a \) into a certain constant quantity, or it varies as the sine. When \(a \) equals \(3^\circ 45' \), as in the Hindu table, it is easy to show, upon working out the last expression by means of the tables, that the constant factor is, as stated by Delambre, \(\frac{\pi}{35} \), instead of being \(\frac{\pi}{34} \), as empirically determined by the Hindus.

It deserves to be noticed, that the commentary of Ranganatha recognizes the dependence of the rule given in the text upon the value of the second differences. According to him, however, it is by describing a circle upon the ground, laying off the arcs, drawing the sines, and determining their relations by inspection, that the method is obtained. The differences of the sines, he says, will be observed to decrease, while the differences of those differences increase; and it will be noticed that the last second difference is \(15' 16'' 48''' \). A proportion is then made: if at the radius the second difference is of this value, what will it be at any sine! or, taking the first sine as an example, \(3438' : 15' 16'' 48''' : 225 : 1. \) Nothing can be clearer, however, than that this pretended result of inspection is one of calculation merely. It would be utterly impossible to estimate by the eye the value of a difference with such accuracy, and, were it possible, that difference would be found very considerably removed from the one here given, being actually only about \(14' 45'' \). The value \(15' 16'' 48''' \) is assumed only in order to make its ratio to the radius exactly \(\frac{\pi}{34} \).

The earliest substitution of the sines, in calculation, for the chords, which were employed by the Greeks, is generally attributed (see Whewell's History of the Inductive Sciences, B. III. ch. iv. 8) to the Arab astronomer Albategnus (al-Battani), who flourished in the latter part of the ninth century of our era. It can hardly admit of question, however, that sines had already at that time been long employed by the Hindus. And considering the derivation by the Arabs from India of their system of notation, and of so many of the elements of their mathematical science, it would seem not unlikely that the first hint of this so convenient and practical improvement of the methods of calculation may also have come to them from that country. This cannot be asserted, however, with much confidence, because the substitution of the sines for the chords seems so natural and easy, that it may well enough have been hit upon independently by the Arabs; it is a matter for astonishment, as remarked by Delambre (Histoire de l’Astronomie du Moyen Age, p. 12), that Ptolemy himself, who came so near it, should have failed of it. If Albategnus got the suggestion from India, he, at any rate, got no more than that. His table of sines, much more complete than that of the Hindus, was made from Ptolemy’s table of chords, by simply halving them. The method, too, which in India remained comparatively barren, led, to valuable developments in the hands of the Arab mathematicians, who went on by degrees to form also tables of tangents and co-tangents, secants and co-secants; while the Hindus do not seem to have distinctly appreciated the significance even of the cosine.
be developed, the one from the other, in order, nothing could be more natural than to take the differences of the successive sines, and the differences of those differences, as we have given them under the headings Δ' and Δ'' in the annexed table.

Hindu Sines, with their First and Second Differences.

<table>
<thead>
<tr>
<th>No.</th>
<th>Sine.</th>
<th>Δ'</th>
<th>Δ''</th>
<th>No.</th>
<th>Sine.</th>
<th>Δ'</th>
<th>Δ''</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>000</td>
<td>225</td>
<td>1</td>
<td>12</td>
<td>2431</td>
<td>154</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>225</td>
<td>224</td>
<td>2</td>
<td>13</td>
<td>2585</td>
<td>143</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>449</td>
<td>222</td>
<td>3</td>
<td>14</td>
<td>2728</td>
<td>131</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>671</td>
<td>219</td>
<td>4</td>
<td>15</td>
<td>2859</td>
<td>119</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>890</td>
<td>215</td>
<td>5</td>
<td>16</td>
<td>2978</td>
<td>106</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td>1105</td>
<td>210</td>
<td>6</td>
<td>17</td>
<td>3084</td>
<td>93</td>
<td>13</td>
</tr>
<tr>
<td>6</td>
<td>1315</td>
<td>205</td>
<td>7</td>
<td>18</td>
<td>3177</td>
<td>79</td>
<td>14</td>
</tr>
<tr>
<td>7</td>
<td>1530</td>
<td>199</td>
<td>8</td>
<td>19</td>
<td>3256</td>
<td>65</td>
<td>14</td>
</tr>
<tr>
<td>8</td>
<td>1719</td>
<td>191</td>
<td>9</td>
<td>20</td>
<td>3321</td>
<td>51</td>
<td>14</td>
</tr>
<tr>
<td>9</td>
<td>1910</td>
<td>183</td>
<td>10</td>
<td>21</td>
<td>3372</td>
<td>37</td>
<td>14</td>
</tr>
<tr>
<td>10</td>
<td>2093</td>
<td>174</td>
<td>11</td>
<td>22</td>
<td>3409</td>
<td>22</td>
<td>15</td>
</tr>
<tr>
<td>11</td>
<td>2267</td>
<td>164</td>
<td>12</td>
<td>23</td>
<td>3431</td>
<td>7</td>
<td>15</td>
</tr>
<tr>
<td>12</td>
<td>2431</td>
<td></td>
<td></td>
<td>24</td>
<td>3438</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

With these differences before him, an acute observer could hardly fail to notice the remarkable fact that the differences of the second order increase as the sines; and that each, in fact, is about the $\frac{1}{227}$th part of the corresponding sine. Now let the successive sines be represented by 0, s, s', s'', s''', and so on; and let q equal $\frac{1}{\sqrt{2}}$, or $\frac{1}{a}$; let the first differences be $d = s - 0$, $d' = s' - s$, $d'' = s'' - s'$, $d''' = s''' - s''$, etc. The second differences will be: $-aq = d' - d$, $-s'q = d'' - d'$, etc. These last expressions give

$$d' = d - sq = s - sq$$
$$d'' = d' - s'q = s - sq - s'q$$
$$d''' = d'' - s''q = s - sq - s'q - s''q,$$

Hence, also,

$$s' = s + d' = s + s - sq$$
$$s'' = s' + d'' = s' + s - sq - s'q$$
$$s''' = s'' + d''' = s'' + s - sq - s'q - s''q,$$

and so on, according to the rule given in the text.

That the second differences in the values of the sines were proportional to the sines themselves, was probably known to the Hindus only by observation. Had their trigonometry sufficed to demonstrate it, they might easily have constructed a much more complete and accurate table of sines. We add the demonstration given by Delambre (Histoire de l'Astronomie Ancienne, i. 458), from whom the views here expressed have been substantially taken.

Let a be any arc in the series, and put $3^\circ 45' = n$. Then $\sin(a - n)$, $\sin a$, $\sin(a + n)$, will be three successive terms in the series: $\sin a - \sin(a - n)$, and $\sin(a + n) - \sin a$, will be differences of the first order; and their difference, $\sin(a + n) + \sin(a - n) - 2\sin a$, will be a difference of the second order. But this last expression, by virtue
and so on, through the whole series, any fraction larger than a half being counted as one, and a smaller fraction being rejected. In the majority of cases, as is made evident by the table, this process yields correct results: we have marked in the column of “true sines” with a plus or minus sign such modern values of the sines as differ by more than half a minute from those assigned by the Hindu table.

It is not to be supposed, however, that the Hindu sines were originally obtained by the process described in the text. That process was, in all probability, suggested by observing the successive differences in the values of the sines as already determined by other methods. Nor is it difficult to discover what were those methods; they are indicated by the limitation of the table to arcs differing from one another by 3° 45', and by what we know in general of the trigonometrical methods of the Hindus. The two main principles, by the aid of which the greater portion of all the Hindu calculations are made, are, on the one hand, the equality of the square of the hypotenuse in a right-angled triangle to the sum of the squares of the other two sides, and, on the other hand, the proportional relation of the corresponding parts of similar triangles. The first of these principles gave the Hindus the sine of the complement of any arc of which the sine was already known, it being equal to the square root of the difference between the squares of radius and of the given sine. This led farther to the rule for finding the versed sine, which is given above in the text: it was plainly equal to the difference between the sine complement and radius. Again, the comparison of similar triangles showed that the chord of an arc was a mean proportional between its versed sine and the diameter; and this led to a method of finding the sine of half any arc of which the sine was known: it was equal to half the square root of the product of the diameter into the versed sine. That the Hindus had deduced this last rule does not directly appear from the text of this Siddhânta, nor from the commentary of Râganâtha, which is the one given by our manuscript and by the published edition; but it is distinctly stated in the commentary which Davis had in his hands (As. Res. ii. 247); and it might be confidently assumed to be known upon the evidence of the table itself; for the principles and rules which we have here stated would give a table just such as the one here constructed. The sine of 90° was obviously equal to radius, and the sine of 30° to half radius: from the first could be found the sines of 45°, 22° 30', and 11° 15'; from the latter, those of 15°, 7° 30', and 3° 45'. The sines thus obtained would give those of the complementary arcs, or of 86° 15', 82° 30', 78° 45', 75°, etc.; and the sine of 75°, again, would give those of 37° 30' and 18° 45'. By continuing the same processes, the table of sines would soon be made complete for the twenty-four divisions of the quadrant; but these processes could yield nothing farther, unless by introducing fractions of minutes; which was undesirable, because the symmetry of the table would thus be destroyed, and no corresponding advantage gained; the table was already sufficiently extended to furnish, by interpolation, the sines intermediate between those given, with all the accuracy which the Hindu calculations required.

If, now, an attempt were made to ascertain a law of progression for the series, and to devise an empirical rule by which its members might
tions after the Hindu method, we have added a column of the differences of the sines, and have farther turned the sines themselves into decimal parts of the radius. For the purpose of illustrating the accuracy of the table, we have also annexed the true values of the sines, in minutes, as found by our modern tables. Comparison may also be made of the decimal column with the corresponding values given in our ordinary tables of natural sines.

Table of Sines and Versed Sines.

<table>
<thead>
<tr>
<th>No.</th>
<th>Ares,</th>
<th>in °</th>
<th>in ′</th>
<th>Hindu Sines,</th>
<th>Diff. in parts of rad.</th>
<th>True Sines,</th>
<th>Versed Sines,</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3° 45′</td>
<td>225′</td>
<td>0</td>
<td>225′</td>
<td>0.065.445</td>
<td>224′.84′</td>
<td>7′</td>
</tr>
<tr>
<td>2</td>
<td>7° 30′</td>
<td>450′</td>
<td>0</td>
<td>449′</td>
<td>0.130.599</td>
<td>448′.77′</td>
<td>29′</td>
</tr>
<tr>
<td>3</td>
<td>11° 15′</td>
<td>675′</td>
<td>0</td>
<td>671′</td>
<td>0.195.172</td>
<td>670′.67′</td>
<td>66′</td>
</tr>
<tr>
<td>4</td>
<td>15°</td>
<td>900′</td>
<td>0</td>
<td>890′</td>
<td>0.258.871</td>
<td>889′.76′</td>
<td>117′</td>
</tr>
<tr>
<td>5</td>
<td>18° 45′</td>
<td>1125′</td>
<td>0</td>
<td>1105′</td>
<td>0.321.408</td>
<td>1104′.03′</td>
<td>183′</td>
</tr>
<tr>
<td>6</td>
<td>22° 30′</td>
<td>1350′</td>
<td>0</td>
<td>1315′</td>
<td>0.382.489</td>
<td>1314′.57′</td>
<td>261′</td>
</tr>
<tr>
<td>7</td>
<td>26° 15′</td>
<td>1575′</td>
<td>0</td>
<td>1520′</td>
<td>0.442.117</td>
<td>1519′.48′</td>
<td>354′</td>
</tr>
<tr>
<td>8</td>
<td>30°</td>
<td>1800′</td>
<td>0</td>
<td>1710′</td>
<td>0.500.000</td>
<td>1718′.88′</td>
<td>460′</td>
</tr>
<tr>
<td>9</td>
<td>33° 45′</td>
<td>2025′</td>
<td>0</td>
<td>1910′</td>
<td>0.555.555</td>
<td>1909′.91′</td>
<td>579′</td>
</tr>
<tr>
<td>10</td>
<td>37° 30′</td>
<td>2250′</td>
<td>0</td>
<td>2093′</td>
<td>0.608.784</td>
<td>2092′.77′</td>
<td>760′</td>
</tr>
<tr>
<td>11</td>
<td>41° 15′</td>
<td>2475′</td>
<td>0</td>
<td>2267′</td>
<td>0.659.395</td>
<td>2266′.67′</td>
<td>863′</td>
</tr>
<tr>
<td>12</td>
<td>45°</td>
<td>2700′</td>
<td>0</td>
<td>2431′</td>
<td>0.707.997</td>
<td>2430′.86′</td>
<td>1007′</td>
</tr>
<tr>
<td>13</td>
<td>48° 45′</td>
<td>2925′</td>
<td>0</td>
<td>2585′</td>
<td>0.751.894</td>
<td>2584′.64′</td>
<td>1171′</td>
</tr>
<tr>
<td>14</td>
<td>52° 30′</td>
<td>3150′</td>
<td>0</td>
<td>2728′</td>
<td>0.793.484</td>
<td>2727′.35′</td>
<td>1345′</td>
</tr>
<tr>
<td>15</td>
<td>56° 15′</td>
<td>3375′</td>
<td>0</td>
<td>2855′</td>
<td>0.831.588</td>
<td>2854′.38′</td>
<td>1528′</td>
</tr>
<tr>
<td>16</td>
<td>60°</td>
<td>3600′</td>
<td>0</td>
<td>2978′</td>
<td>0.866.201</td>
<td>2977′.18′</td>
<td>1719′</td>
</tr>
<tr>
<td>17</td>
<td>63° 45′</td>
<td>3825′</td>
<td>0</td>
<td>3084′</td>
<td>0.897.033</td>
<td>3083′.22′</td>
<td>1918′</td>
</tr>
<tr>
<td>18</td>
<td>67° 30′</td>
<td>4050′</td>
<td>0</td>
<td>3177′</td>
<td>0.924.084</td>
<td>3176′.07′</td>
<td>2132’</td>
</tr>
<tr>
<td>19</td>
<td>71° 15′</td>
<td>4275′</td>
<td>0</td>
<td>3255′</td>
<td>0.947.663</td>
<td>3254′.31′</td>
<td>2333’</td>
</tr>
<tr>
<td>20</td>
<td>75°</td>
<td>4500′</td>
<td>0</td>
<td>3321′</td>
<td>0.965.690</td>
<td>3320′.61′</td>
<td>2548’</td>
</tr>
<tr>
<td>21</td>
<td>78° 45′</td>
<td>4725′</td>
<td>0</td>
<td>3372′</td>
<td>0.980.803</td>
<td>3371′.70′</td>
<td>2767’</td>
</tr>
<tr>
<td>22</td>
<td>82° 30′</td>
<td>4950′</td>
<td>0</td>
<td>3409′</td>
<td>0.991.565</td>
<td>3408′.34′</td>
<td>2989’</td>
</tr>
<tr>
<td>23</td>
<td>86° 15′</td>
<td>5175′</td>
<td>0</td>
<td>3431′</td>
<td>0.997.964</td>
<td>3430′.39′</td>
<td>3113’</td>
</tr>
<tr>
<td>24</td>
<td>90°</td>
<td>5400′</td>
<td>0</td>
<td>3438′</td>
<td>1.000.000</td>
<td>3438′.75’</td>
<td>3438’</td>
</tr>
</tbody>
</table>

The rule by which the sines are, in the text, directed to be found, may be illustrated as follows. Let $s, s', s'', s''', s'''', etc.,$ represent the successive sines. The first of the series, $s,$ is assumed to be equal to its arc, or 225′, from which quantity, as is shown in the table above, it differs only by an amount much smaller than the table takes any account of. Then

$$ s' = s + \frac{s}{s} $$

$$ s'' = s' + \frac{s'}{s} $$

$$ s''' = s'' + \frac{s''}{s} $$
taken up. And the first thing in order is the table of sines, by means of which all the after calculations are performed.

15. The eighth part of the minutes of a sign is called the first sine (jyaśrdha); that, increased by the remainder left after subtracting from it the quotient arising from dividing it by itself, is the second sine.

16. Thus, dividing the tabular sines in succession by the first, and adding to them, in each case, what is left after subtracting the quotients from the first, the result is twenty-four tabular sines (jyaśrdhapinda), in order, as follows:

17. Two hundred and twenty-five; four hundred and forty-nine; six hundred and seventy-one; eight hundred and ninety; eleven hundred and five; thirteen hundred and fifteen;

18. Fifteen hundred and twenty; seventeen hundred and nineteen; nineteen hundred and ten; two thousand and ninety-three;

19. Two thousand two hundred and sixty-seven; two thousand four hundred and thirty-one; two thousand five hundred and eighty-five; two thousand seven hundred and twenty-eight;

20. Two thousand eight hundred and fifty-nine; two thousand nine hundred and seventy-eight; three thousand and eighty-four; three thousand one hundred and seventy-seven;

21. Three thousand two hundred and fifty-six; three thousand three hundred and twenty-one; three thousand three hundred and seventy-two; three thousand four hundred and nine;

22. Three thousand four hundred and thirty-one; three thousand four hundred and thirty-eight. Subtracting these, in reversed order, from the half-diameter, gives the tabular versed-sines (ubhramayjyaśrdhapinda):

23. Seven; twenty-nine; sixty-six; one hundred and seventeen; one hundred and eighty-two; two hundred and sixty-one; three hundred and fifty-four;

24. Four hundred and sixty; five hundred and seventy-nine; seven hundred and ten; eight hundred and fifty-three; one thousand and seven; eleven hundred and seventy-one;

25. Thirteen hundred and forty-five; fifteen hundred and twenty-eight; seventeen hundred and nineteen; nineteen hundred and eighteen;

26. Two thousand one hundred and twenty-three; two thousand three hundred and thirty-three; two thousand five hundred and forty-eight; two thousand seven hundred and sixty-seven;

27. Two thousand nine hundred and eighty-nine; three thousand two hundred and thirteen; three thousand four hundred and thirty-eight: these are the versed sines.

We first present, in the following table, in a form convenient for reference and use, the Hindu sines and versed sines, with the arcs to which they belong, the latter expressed both in minutes and in degrees and minutes. To facilitate the practical use of the table in making calcula-
10. Mars and the rest, on account of their small size, are, by the supernatural beings (daivarata) called conjunction (cighrvocca) and apsis (mandocca), drawn away very far, being caused to vacillate exceedingly.

11. Hence the excess (dhana) and deficiency (rna) of these latter is very great, according to their rate of motion. Thus do the planets, attracted by those beings, move in the firmament, carried on by the wind.

The dimensions of the sun and moon are stated below, in iv. 1; those of the other planets, in vii. 13.

We have ventured to translate ativegata, at the end of the tenth verse, as it is given above, because that translation seemed so much better to suit the requirements of the sense than the better-supported rendering "caused to move with exceeding velocity." In so doing, we have assumed that the noun vega, of which the word in question is a denominative, retains something of the proper meaning of the root vy, "to tremble," from which it comes.

12. The motion of the planets is of eight kinds: retrograde (vakra), somewhat retrograde (anuvakra), transverse (kutila), slow (manda), very slow (mandatara), even (sama); also, very swift (cighratara), and swift (cighra).

13. Of these, the very swift (atighra), that called swift, the slow, the very slow, the even—all these five are forms of the motion called direct (ru); the somewhat retrograde is retrograde.

This minute classification of the phases of a planet's motion is quite gratuitous, so far as this Siddhanta is concerned, for the terms here given do not once occur afterward in the text, with the single exception of vakra, which, with its derivatives, is in not infrequent use to designate retrogradation. Nor does the commentary take the trouble to explain the precise differences of the kinds of motion specified. According to Mr. Hoisington (Oriental Astronomer [Tamil and English], Jaffna: 1848, p. 133), anuvakra is applied to the motion of a planet, when, in retrograding, it passes into a preceding sign. From the classification given in the second of the two verses it will be noticed that kutila is omitted: according to the commentator, it is meant to be included among the forms of retrograde motion; we have conjectured, however, that it might possibly be used to designate the motion of a planet when, being for the moment stationary in respect to longitude, and accordingly neither advancing nor retrograding, it is changing its latitude; and we have translated the word accordingly.

14. By reason of this and that rate of motion, from day to day, the planets thus come to an accordance with their observed places (drg)—this, their correction (sphutikarana), I shall carefully explain.

Having now disposed of matters of general theory and preliminary explanation, the proper subject of this chapter, the calculation of the true (sphuta) from the mean places of the different planets, is ready to be
The words used in verse 5 for "excess" and "deficiency," or for additive and subtractive equation, mean literally "wealth" (dhana) and "debt" (ṛṇa).

6. In like manner, also, the node, Rāhu, by its proper force, causes the deviation in latitude (wikshepa) of the moon and the other planets, northward and southward, from their point of declination (apakrama).

7. When in the half-orbit behind the planet, the node causes it to deviate northward; when in the half-orbit in front, it draws it away southward.

8. In the case of Mercury and Venus, however, when the node is thus situated with regard to the conjunction (śīghra), these two planets are caused to deviate in latitude, in the manner stated, by the attraction exercised by the node upon the conjunction.

The name Rāhu, by which the ascending node is here designated, is properly mythological, and belongs to the monster in the heavens, which, by the ancient Hindus, as by more than one other people, was believed to occasion the eclipses of the sun and moon by attempting to devour them. The word which we have translated "force" is ṛṇah, more properly "rapidity, violent motion;" in employing it here, the text evidently intends to suggest an etymology for rāhu, as coming from the root ṛḥ or ṛnah, "to rush on;" with this same root Weber (Ind. Stud. i. 272) has connected the group of words in which rāhu seems to belong. For the Hindu fable respecting Rāhu, see Wilson's Vaiṣṇu Purāṇa, p. 78.

The moon's descending node was also personified in a similar way, under the name of Ketu, but to this no reference is made in the present treatise.

The description of the effect of the node upon the movement of the planet is to be understood, in a manner analogous with that of the effect of the apices in the next preceding passage, as referring to the direction in which the planet is made to deviate from the ecliptic, and not to that in which it is moving with reference to the ecliptic. From the ascending node around to the descending, of course, or while the node is nearest to the planet from behind, the latitude is northern; in the other half of the revolution it is southern.

For an explanation of some of the terms used here, see the note to the last passage of the preceding chapter.

As, in the case of Mercury and Venus, the revolution of the conjunction takes the place of that of the planet itself in its orbit, it is necessary, in order to give the node its proper effect, that it be made to exercise its influence upon the planet through the conjunction. The commentator gives himself here not a little trouble, in the attempt to show why Mercury and Venus should in this respect constitute an exception to the general rule, but without being able to make out a very plausible case.

9. Owing to the greatness of its orb, the sun is drawn away only a very little; the moon, by reason of the smallness of its orb, is drawn away much more;
Upon passing this point, the planet begins to fall behind its mean place, but at the same time to gain velocity, so that at the quadrature it is farthest behind, but is moving at its mean rate; during the next quadrant it gains both in rate of motion and in place, until at the perigee, or perihelion, it is moving most rapidly, and has made up what it before lost, so that the mean and true places coincide. Upon passing that point again, it gains upon its mean place during the first quadrant, and loses what it thus gained during the second, until mean and true place again coincide at the apsis. Thus the equation of motion is greatest at the apsides, and nothing at the quadratures, while the equation of place is greatest at the quadratures, and nothing at the apsides; and thus the planet is always behind its mean place while passing from the higher to the lower apsis, and always in advance of it while passing from the lower to the higher; that is, it is constantly drawn away from its mean place toward the higher apsis, mandocca.

In treating of the effect of the conjunction, the pithrocoo, we have to distinguish two kinds of cases. With Mercury and Venus (see above, i. 29, 31, 32), the revolution of the conjunction takes the place, in the Hindu system as in the Greek, of that of the planet itself, the conjunction being regarded as making the circuit of the zodiac in the same time, and in the same direction, as the planet really revolves about the sun; while the mean place of these planets is always that of the sun itself. While, therefore, the conjunction is making the half-tour of the heavens eastward from the sun, the planet is making its eastward elongation and returning to the sun again, being all the time in advance of its mean place, the sun; when the conjunction reaches a point in the heavens opposite to the sun, the planet is in its inferior conjunction, or at its mean place; during the other half of the revolution of the conjunction, when it is nearest the planet upon the western side, the latter is making and losing its western elongation, or is behind its mean place. Accordingly, as stated in the text, the planet is constantly drawn away from its mean place, the sun, toward that side of the heavens in which the conjunction is.

Once more, as concerns the superior planets. The revolutions assigned to these by the Hindus are their true revolutions; their mean places are their mean heliocentric longitudes; and the place of the conjunction (pithrocoo) of each is the mean place of the sun. Since they move but slowly, as compared with the sun, it is their conjunction which approaches, overtakes, and passes them, and not they the conjunction. Their time of slowest motion is when in opposition with the sun; of swiftest, when in conjunction with him: from opposition on to conjunction, therefore, or while the sun is approaching them from behind, they are, with constantly increasing velocity of motion, all the while behind their mean places, or drawn away from them in the direction of the sun; but no sooner has the sun overtaken and passed them, than they, leaving with their most rapid motion the point of coincidence between mean and true place, are at once in advance, and continue to be so until opposition is reached again; that is to say, they are still drawn away from their mean place in the direction of the conjunction.

VOL. VI.
motions, regarded as being the real motions, of the planets. The worldwide difference between the spirit of the Hindu astronomy and that of the Greek is not less apparent here than in the manner of presentation of the elements in the last chapter: the one is purely scientific, devising methods for representing and calculating the observed motions, and attempting nothing farther; the other is not content without fabricating a fantastic and absurd theory respecting the superhuman powers which occasion the movements with which it is dealing. The Hindu method has this convenient peculiarity, that it absolves from all necessity of adapting the disturbing forces to one another, and making them form one consistent system, capable of geometrical representation and mathematical demonstration; it regards the planets as actually moving in circular orbits, and the whole apparatus of epicycles, given later in the chapter, as only a device for estimating the amount of the force, and of its resulting motion, exerted at any given point by the disturbing cause.

The commentator gives two different explanations of the provector wind, spoken of in the third verse: one, that it is the general current, mentioned below, in xii. 73, as impelling the whole firmament of stars, and which, though itself moving westward, drives the planets, in some unexplained way, towards its own apex of motion, in the east; the other, that a separate vortex for each planet, called provector on account of its analogy with that general current, although not moving in the same direction, carries them around in their orbits from west to east, leaving only the irregularities of their motion to be produced by the disturbing forces. This latter we regard as the proper meaning of the text: neither is very consistent with the theory of the lagging behind of the planets, given above, in i. 25, 26, as the explanation of their apparent eastward motion. The commentary also states more explicitly the method of production of the disturbance: a cord of air, equal in length to the orbit of each planet less the disk of the latter itself, is attached to the extremities of its diameter, and passes through the two hands of the being stationed at the point of disturbance; and he always draws it toward himself by the shorter of the two parts of the cord. The term ceça, which we have translated “apex,” applies both to the apsis (manda, mandocca, “apex of slowest motion”—the apogee in the case of the sun and moon, the aphelion, though not recognized as such, in the case of the other planets), and to the conjunction (ṣighra, ṣighrocça, “apex of swiftest motion”). The statement made of the like effect of the two upon the motion of the planet is liable to cause difficulty, if it be not distinctly kept in mind that the Hindus understand by the influence of the disturbing cause, not its acceleration and retardation of the rate of the planet’s motion, but its effect in giving to the planet a position in advance of, or behind, its mean place. It may be well, for the sake of aiding some of our readers to form a clearer apprehension of the Hindu view of the planetary motions, to expand and illustrate a little this statement of the effect upon them of the two principal disturbing forces.

First, as regards the apsis. This is the remoter extremity of the major axis of the planet’s proper orbit, and the point of its slowest motion.
CHAPTER II.

OF THE TRUE PLACES OF THE PLANETS.

Contents:—1-3, causes of the irregularities of the planetary motions; 4-5, disturbing influence of the apsis and conjunction; 6-8, of the node; 9-11, different degree of irregularity of the motion of the different planets; 12-13, different kinds of planetary motion; 14, purpose of this chapter; 15-16, rule for constructing the table of sines; 17-22, table of sines; 22-27, table of versed sines; 28, inclination of the ecliptic, and rule for finding the declination of any point in it; 29-30, to find the sine and cosine of the anomaly; 31-32, to find, by interpolation, the sine or versed sine corresponding to any given arc; 33, to find, in like manner, the arc corresponding to a given sine or versed sine; 34-37, dimensions of the epicycles of the planets; 38, to find the true dimensions of the epicycle at any point in the orbit; 39, to find the equation of the apsis, or of the centre; 40-42, to find the equation of the conjunction, or the annual equation; 43-45, application of these equations in finding the true places of the different planets; 46, correction of the place of a planet for difference between mean and apparent solar time; 47-49, how to correct the daily motion of the planets for the effect of the apsis; 50-51, the same for that of the conjunction; 51-55, retrogradation of the lesser planets; 56, correction of the place of the node; 57-58, to find the celestial latitude of a planet, and its declination as affected by latitude; 59, to find the length of the day of any planet; 60, to find the radius of the diurnal circle; 61-63, to find the day-sine, and the respective length of the day and night; 64, to find the number of asterisms traversed by a planet, and of days elapsed, since the commencement of the current revolution; 65, to find the yoga; 66, to find the current lunar day, and the time in it of a given instant; 67-69, of the divisions of the lunar month called kurapya.

1. Forms of Time, of invisible shape, stationed in the zodiac (bhaganā), called the conjunction (gīthrocca), apsis (mandocca), and node (pāta), are causes of the motion of the planets.

2. The planets, attached to these beings by cords of air, are drawn away by them, with the right and left hand, forward or backward, according to nearness, toward their own place.

3. A wind, moreover, called provector (pravaha) impels them toward their own apices (ucca); being drawn away forward and backward, they proceed by a varying motion.

4. The so-called apex (ucca), when in the half-orbit in front of the planet, draws the planet forward; in like manner, when in the half-orbit behind the planet, it draws it backward.

5. When the planets, drawn away by their apices (ucca), move forward in their orbits, the amount of the motion so caused is called their excess (dhana); when they move backward, it is called their deficiency (tana).

In these verses is laid before us the Hindu theory of the general nature of the forces which produce the irregularities of the apparent
Hindus: in this treatise, at least, the distance of the node from the apsis (mandocca) is not introduced as an element into the process for determining a planet's latitude. The other cause of variation is duly allowed for (see below, ii. 57). Its effect, in the case of the three superior planets, is to make their greatest latitude sometimes greater, and sometimes less, than the inclination of their orbits, according as the planet is nearer to us than to the sun, or the contrary; hence the values given in the text for Mars, Jupiter, and Saturn, as they represent the mean apparent values, as latitude, of the greatest distance of each planet from the ecliptic, should nearly equal the inclination. In the case of Mercury and Venus, also, the quantities stated are the mean of the different apparent values of the greatest heliocentric latitude, but this mean is of course less, and for Mercury very much less, than the inclination. Ptolemy, in the elaborate discussion of the theory of the latitude contained in the thirteenth book of his Syntaxis, has deduced the actual inclination of the orbits of the two inferior planets: this the Hindus do not seem to have attempted.

We present below a comparative table of the inclinations of the orbits of the planets as determined by Ptolemy and by modern astronomers, with those of the Hindus, so far as given directly by the Sūrya-Siddhānta.

Inclination of the Orbits of the Planets, according to Different Authorities.

<table>
<thead>
<tr>
<th>Planet</th>
<th>Sūrya-Siddhānta</th>
<th>Ptolemy</th>
<th>Moderns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>7</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>Venus</td>
<td>3 30</td>
<td>3 23</td>
<td>5</td>
</tr>
<tr>
<td>Mars</td>
<td>1 30</td>
<td>1 18</td>
<td>18 30</td>
</tr>
<tr>
<td>Jupiter</td>
<td>2 30</td>
<td>2 29</td>
<td>18 29</td>
</tr>
<tr>
<td>Moon</td>
<td>4 30</td>
<td>5 8</td>
<td>5 8</td>
</tr>
</tbody>
</table>

The verb in verses 68 and 69, which we have translated "caused to deviate," is vi kṣhipyate, literally "is hurled away," disjicitur; from it is derived the term used in this treatise to signify celestial latitude, vikṣhepa, "disjection." The Hindus measure the latitude, however, as we shall have occasion to notice more particularly hereafter, upon a circle of declination, and not upon a secondary to the ecliptic. In the words chosen to designate it is seen the influence of the theory of the node's action, as stated in the first verses of the next chapter. The forcible removal is from the point of declination (krānti, "gait," or apakrama, "withdrawal," i.e., from the celestial equator) which the planet ought at the time to occupy.

The title given to this first chapter (adhikāra, "subject, heading") is madhyomadhihikāra, which we have represented in the title by "mean motions of the planets," although it would be more accurately rendered by "mean places of the planets," that is to say, the data and methods requisite for ascertaining their mean places. Now follows the spasṭādhihikāra, "chapter of the true, or corrected, places of the planets."
69. Jupiter, to the ninth part of that multiplied by two; Mars, to the same amount multiplied by three; Mercury, Venus, and Saturn are by their nodes caused to deviate to the same amount multiplied by four.

70. So also, twenty-seven, nine, twelve, six, twelve, and twelve, multiplied respectively by ten, give the number of minutes of mean latitude (vikshepa) of the moon and the rest, in their order.

The deviation of the planets from the plane of the ecliptic is here stated in two different ways, which give, however, the same results; thus:

<table>
<thead>
<tr>
<th>Planet</th>
<th>Expression</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moon</td>
<td>$\frac{21600'}{80} = 270'$</td>
<td>or $27' \times 10 = 270' = 4^\circ 30'$</td>
</tr>
<tr>
<td>Mars</td>
<td>$\frac{270'}{9} \times 3 = 90'$</td>
<td>or $9' \times 10 = 90' = 1^\circ 30'$</td>
</tr>
<tr>
<td>Mercury</td>
<td>$\frac{270'}{9} \times 4 = 120'$</td>
<td>or $12' \times 10 = 120' = 2^\circ$</td>
</tr>
<tr>
<td>Jupiter</td>
<td>$\frac{270'}{9} \times 2 = 60'$</td>
<td>or $6' \times 10 = 60' = 1^\circ$</td>
</tr>
<tr>
<td>Venus</td>
<td>$\frac{270'}{9} \times 4 = 120'$</td>
<td>or $12' \times 10 = 120' = 2^\circ$</td>
</tr>
<tr>
<td>Saturn</td>
<td>$\frac{270'}{9} \times 4 = 120'$</td>
<td>or $12' \times 10 = 120' = 2^\circ$</td>
</tr>
</tbody>
</table>

The subject of the latitude of the planets is completed in verses 6–8, and verse 57, of the following chapter; the former passage describes the manner, and indicates the direction, in which the node produces its disturbing effect; the latter gives the rule for calculating the apparent latitude of a planet at any point in its revolution.

There is a little discrepancy between the two specifications presented in these verses, as regards the description of the quantities specified: the one states them to be the amounts of greatest (parama) deviation from the ecliptic; the other, of mean (madhya) deviation. Both descriptions are also somewhat inaccurate. The first is correct only with reference to the moon, and the two terms require to be combined, in order to be made applicable to the other planets. The moon has its greatest latitude at 90° from its node, and this latitude is obviously equal to the inclination of its orbit to the ecliptic; for although its absolute distance from the ecliptic at this point of its course varies, as does its distance from the earth, on account of the eccentricity of its orbit, and the varying relation of the line of its apsides to that of its nodes, its angular distance remains unchanged. So, to an observer stationed at the sun, the greatest latitude of any one of the primary planets would be the same in its successive revolutions from node to node, and equal to the inclination of its orbit. But its greatest latitude as seen from the earth is very different in different revolutions, both on account of the difference of its absolute distance from the ecliptic when at the point of greatest removal from it in the two halves of its orbit, and, much more, on account of its varying distance from the earth. The former of these two causes of variation was not recognized by the
Mean Longitudes of the Planets, Jan. 1st, 1860, midnight, at Washington.

<table>
<thead>
<tr>
<th>Planet</th>
<th>According to Śūrya-Siddhānta: text.</th>
<th>According to Śūrya-Siddhānta: with bija.</th>
<th>According to moderns.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sun,</td>
<td>96 16 21</td>
<td>96 16 21</td>
<td>100 5 6</td>
</tr>
<tr>
<td>Mercury,</td>
<td>155 4 54</td>
<td>148 25 39</td>
<td>151 28 20</td>
</tr>
<tr>
<td>Venus,</td>
<td>339 54 55</td>
<td>334 57 18</td>
<td>330 13 36</td>
</tr>
<tr>
<td>Mars,</td>
<td>122 5 58</td>
<td>100 58 25</td>
<td>123 35 17</td>
</tr>
<tr>
<td>Jupiter,</td>
<td>107 6 25</td>
<td>100 58 25</td>
<td>137 10 10</td>
</tr>
<tr>
<td>Saturn,</td>
<td>218 17 11</td>
<td>133 14 49</td>
<td>12 41 23</td>
</tr>
<tr>
<td>Moon,</td>
<td>9 4 9</td>
<td>9 4 9</td>
<td>326 47 35</td>
</tr>
<tr>
<td>" apsis,</td>
<td>327 50 24</td>
<td>326 11 11</td>
<td></td>
</tr>
<tr>
<td>" node,</td>
<td>312 29 51</td>
<td>310 50 38</td>
<td></td>
</tr>
</tbody>
</table>

In the next following table is farther given a view of the errors of the Hindu determinations—both the absolute errors, as compared with the actual mean place of each planet, and the relative, as compared with the place of the sun, to which it is the aim of the Hindu astronomical systems to adapt the elements of the other planets. Annexed to each error is the approximate date at which it was nothing, or at which it will hereafter disappear, ascertained by dividing the amount of present error by the present yearly loss or gain, absolute or relative, of each planet; excepting in the case of the moon, where we have made allowance, according to the formula used by the American Nautical Almanac, for the acceleration of her motion.

Errors of the Mean Longitudes of the Planets, as calculated according to the Śūrya-Siddhānta.

<table>
<thead>
<tr>
<th>Planet</th>
<th>Errors according to text:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>absolute.</td>
</tr>
<tr>
<td>Sun,</td>
<td>-3 46 45</td>
</tr>
<tr>
<td>Mercury,</td>
<td>+3 34 10</td>
</tr>
<tr>
<td>Venus,</td>
<td>-3 41 19</td>
</tr>
<tr>
<td>Mars,</td>
<td>-4 50 37</td>
</tr>
<tr>
<td>Jupiter,</td>
<td>+0 53 5</td>
</tr>
<tr>
<td>Saturn,</td>
<td>-8 52 59</td>
</tr>
<tr>
<td>Moon,</td>
<td>-3 37 14</td>
</tr>
<tr>
<td>" apsis,</td>
<td>+1 2 49</td>
</tr>
<tr>
<td>" node,</td>
<td>-0 18 19</td>
</tr>
</tbody>
</table>

To complete the view of the planetary motions, and the statement of the elements requisite for ascertaining their position in the sky, it only remains to give the movement in latitude of each, its deviation from the general planetary path of the ecliptic. This is done in the concluding verses of the chapter.

68. The moon is, by its node, caused to deviate from the limit of its declination (kuññi), northward and southward, to a distance, when greatest, of an eightieth part of the minutes of a circle;
This verse appears to us to be an astrological precept, asserting the regency of the sun and the other planets, in their order, over the successive portions of time assigned to each, to begin everywhere at the same instant of absolute time, that of their true commencement upon the prime meridian; so that, for instance, at Washington, Sunday, as the day placed under the guardianship of the sun, would really begin at eleven minutes before two on Saturday afternoon, by local time. The commentator, however, sees in it merely an intimation of what moment of local time, in places east and west of the meridian, corresponds to the true beginning of the day upon the prime meridian, and he is at much pains to defend the verse from the charge of being superfluous and unnecessary, to which it is indeed liable, if that be its only meaning.

The rules thus far given have directed us only how to find the mean places of the planets at a given midnight. The following verse teaches the method of ascertaining their position at any required hour of the day.

67. Multiply the mean daily motion of a planet by the number of nādis of the time fixed upon, and divide by sixty: subtract the quotient from the place of the planet, if the time be before midnight; add, if it be after: the result is its place at the given time.

The proportion is as follows: as the number of nādis in a day (sixty) is to those in the interval between midnight and the time for which the mean place of the planet is sought, so is the whole daily motion of the planet to its motion during the interval; and the result is additive or subtractive, of course, according as the time fixed upon is after or before midnight.

In order to furnish a practical test of the accuracy of this text-book of astronomy, and of its ability to yield correct results at the present time, we have calculated, by the rule given in this verse, the mean longitudes of the planets for a time after midnight of the first of January, 1860, on the meridian of Ujjayini, which is equal to the distance in time of the meridian of Washington, viz. 25° 28' 10.8, or 04.42453; and we present the results in the annexed table. The longitudes are given as reckoned from the vernal equinox of that date, which we make to be distant 18° 5' 8.25 from the point established by the Sūrya-Siddhānta as the beginning of the Hindu sidereal sphere; this is (see below, chap. viii) 10° east of ζ Piscium. We have ascertained the mean places both as determined by the text of our Siddhānta, and by the same with the correction of the bija. Added are the actual mean places at the time designated: those of the primary planets have been found from Le Verrier’s elements, presented in Biot’s treatise, as cited above; those of the moon, and of her apsis and node, were kindly furnished us from the office of the American Nautical Almanac, at Cambridge.

* We would warn our readers, however, of a serious error of the press in the table as given by Biot; as the yearly motion of the earth, read 1,298.977.28, instead of ... 972.28.
63. When, in a total eclipse of the moon, the emergence (unmilana) takes place after the calculated time for its occurrence, then the place of the observer is to the east of the central meridian;

64. When it takes place before the calculated time, his place is to the west: the same thing may be ascertained likewise from the immersion (nimilana). Multiply by the difference of the two times in nādis the corrected circumference of the earth at the place of observation,

65. And divide by sixty: the result, in yojanas, indicates the distance of the observer from the meridian, to the east or to the west, upon his own parallel; and by means of that is made the correction for difference of longitude.

Choice is made, of course, of a lunar eclipse, and not of a solar, for the purpose of the determination of longitude, because its phenomena, being unaffected by parallax, are seen everywhere at the same instant of absolute time; and the moments of total disappearance and first reappearance of the moon in a total eclipse are farther selected, because the precise instant of their occurrence is observable with more accuracy than that of the first and last contact of the moon with the shadow. For the explanation of the terms here used see the chapters upon eclipses (below, iv–vi).

The interval between the computed and observed time being ascertained, the distance in longitude (dečantara) is found by the simple proportion: as the whole number of nādis in a day (sixty) is to the interval of time in nādis, so is the circumference of the earth at the latitude of the point of observation to the distance of that point from the prime meridian, measured on the parallel. Thus, for instance, the distance of Ujjaini from Greenwich, in time, being 5h 3m 8s, and that of Washington from Greenwich 5h 8m 11s (Am. Naut. Almanac), that of Ujjaini from Washington is 10h 11m 19s, or, in Hindu time, 25h 28v 18.8, or 25.4718; and by the proportion 60 : 25.4718 : : 3936.75 : 1671.28, we obtain 1671.28 yojanas as the distance in longitude (dečantara) of Washington from the Hindu meridian, the constant quantity to be employed in finding the mean places of the planets at Washington.

We might have expected that calculators so expert as the Hindus would employ the interval of time directly in making the correction for difference of longitude, instead of reducing it first to its value in yojanas. That they did not measure longitude in our manner, in degrees, etc., is owing to the fact that they seem never to have thought of applying to the globe of the earth the system of measurement by circles and divisions of circles which they used for the sphere of the heavens, but, even when dividing the earth into zones (see below, xii. 59–66) reduced all their distances laboriously to yojanas.

66. The succession of the week-day (vāra) takes place, to the east of the meridian, at a time after midnight equal to the difference of longitude in nādis; to the west of the meridian, at a corresponding time before midnight.
assigned to Lankā might not be easy to determine. The "seat of the gods" is Mount Meru, situated at the north pole (see below, xii. 34, etc.). The meridian is usually styled that of Lankā, and "at Lankā" is the ordinary phrase made use of in this treatise (as, for instance, above, v. 50; below, iii. 43) to designate a situation either of no longitude or of no latitude.

But the circumstance which actually fixes the position of the prime meridian is the situation of the city of Ujjayinī, the ὸξηρυμ of the Greeks, the modern Ojein. It is called in the text by one of its ancient names, Avanti. It is the capital of the rich and populous province of Mālava, occupying the plateau of the Vindhya mountains just north of the principal ridge, and of the river Narmadā (Nerbudda), and from old time a chief seat of Hindu literature, science, and arts. Of all the centres of Hindu culture, it lay nearest to the great ocean-route by which, during the first three centuries of our era, so important a commerce was carried on between Alexandria, as the mart of Rome, and India and the countries lying still farther east. That the prime meridian was made to pass through this city proves it to have been the cradle of the Hindu science of astronomy, or its principal seat during its early history. Its actual situation is stated by Warren (Kāla Sankalita, p. 9) as lat. 23° 11' 30" N., long. 75° 53' E. from Greenwich; a later authority, Thornton's Gazetteer of India (London: 1857), makes it to be in lat. 23° 10' N., long. 75° 47' E.; in our farther calculations, we shall assume the latter position to be the correct one.

The situation of Rohitaka is not so clear; we have not succeeded in finding such a place mentioned in any work on the ancient geography of India to which we have access, nor is it to be traced upon Lassen's map of ancient India. A city called Rohtuk, however, is mentioned by Thornton (Gazetteer, p. 836), as the chief place of a modern British district of the same name, and its situation, a little to the north-west of Delhi, in the midst of the ancient Kurukshetra, leads us to regard it as identical with the Rohitaka of the text. That the meridian of Lankā was expressly recognised as passing over the Kurukshetra, the memorable site of the great battle described by the Mahābhārata, seems clear. Bhāskara (Siddh.-Cir., Gan., vii. 2) describes it as follows: "the line which, passing above Lankā and Ujjayinī, and touching the region of the Kurukshetra, etc., goes through Meru—that line is by the wise regarded as the central meridian (madhyarekha) of the earth." Our own commentary also explains samhithāram sarah, which we have translated "adjacent lake," as signifying Kurukshetra. Warren (as above) takes the same expression to be the name of a city, which seems to us highly improbable; nor do we see that the word saras can properly be applied to a tract of country; we have therefore thought it safest to translate literally the words of the text, confessing that we do not know to what they refer.

If Rohitaka and Rohtuk signify the same place, we have here a measure of the accuracy of the Hindu determinations of longitude; Thornton gives its longitude as 76° 38', or 51' to the east of Ujjayinī. The method by which an observer is to determine his distance from the prime meridian is next explained.
latitude being, in effect, the radius of the circle of latitude. Radius and cosine of latitude are tabular numbers, derived from the table to be given afterward (see below, ii. 17-21). This treatise is not accustomed to employ cosines directly in its calculations, but has special names for the complements of the different arcs which it has occasion to use. Terrestrial latitude is styled asaka, "axle," which term, as appears from xii. 42, is employed elliptically for askhoonnati, "elevation of the axle," i.e., "of the pole:" lamba, co-latitude, which properly signifies "lagging, dependence, falling off," is accordingly the depression of the pole, or its distance from the zenith. Directions for finding the co-latitude are given below (iii. 13, 14).

The latitude of Washington being 38° 54', the sine of its co-latitude is 2675; the proportion 3438 : 2675 : 5059.64 : 3936.75 gives us, then, the earth's circumference at Washington as 3936.75 yojanas.

60. Multiply the daily motion of a planet by the distance in longitude (decanta) of any place, and divide by its corrected circumference;

61. The quotient, in minutes, subtract from the mean position of the planet as found, if the place be east of the prime meridian (rekhā); add, if it be west; the result is the planet's mean position at the given place.

The rules previously stated have ascertained the mean places of the planets at a given midnight upon the prime meridian; this teaches us how to find them for the same midnight upon any other meridian, or, how to correct for difference of longitude the mean places already found. The proportion is: as the circumference of the earth at the latitude of the point of observation is to the part of it intercepted between that point and the prime meridian, so is the whole daily motion of each planet to the amount of its motion during the time between midnight on the one meridian and on the other. The distance in longitude (decanta, literally "difference of region") is estimated, it will be observed, neither in time nor in arc, but in yojanas. How it is ascertained is taught below, in verses 63-65.

The geographical position of the prime meridian (rekhā, literally "line") is next stated.

62. Situated upon the line which passes through the haunt of the demons (rākhasa) and the mountain which is the seat of the gods, are Rohitaka and Avanti, as also the adjacent lake.

The "haunt of the demons" is Lankā, the fabled seat of Rāvana, the chief of the Rākshasas, the abduction by whom of Rāma's wife, with the expedition to Lankā of her heroic husband for her rescue, its accomplishment, and the destruction of Rāvana and his people, form the subject of the epic poem called the Rāmāyana. In that poem, and to the general apprehension of the Hindus, Lankā is the island Ceylon; in the astronomical geography, however (see below, xii. 39), it is a city, situated upon the equator. How far those who established the meridian may have regarded the actual position of Ceylon as identical with that
ought not to vary far from eighteen inches; but the higher measures
differ greatly in their relation to it. The usual reckoning makes the
yojana equal 32,000 cubits, but it is also sometimes regarded as com-
posed of 16,000 cubits; and it is accordingly estimated by different au-
thorities at from four and a half to rather more than ten miles English.
This uncertainty is no merely modern condition of things: Huien-Thsang,
the Chinese monk who visited India in the middle of the seventh cen-
tury, reports (see Stanislas Julien's Mémoires de Hien-Thsang, i. 59,
etc.) that in India "according to ancient tradition a yojana equals forty
li; according to the customary use of the Indian kingdoms, it is thirty
li; but the yojana mentioned in the sacred books contains only sixteen
li." this smallest yojana, according to the value of the li given by Wil-
lams (Middle Kingdom, ii. 154), being equal to from five to six English
miles. At the same time, Huien-Thsang states the subdivisions of the
yojana in a manner to make it consist of only 16,000 cubits. Such
being the condition of things, it is clearly impossible to appreciate the
value of the Hindu estimate of the earth's dimensions, or to determine
how far the disagreement of the different astronomers on this point may
be owing to the difference of their standards of measurement. Arya-
bhaṭa (see Colebrooke's Hind. Alg. p. xxxviii; Essays, ii. 468) states the
earth's diameter to be 1050 yojanas; Bhāskara (Siddh. -Ci. vii. 1) gives
it as 1581: the latter author, in his Lilāvatī (i. 5, 6), makes the yojana
consist of 32,000 cubits.

The ratio of the diameter to the circumference of a circle is here
made to be 1 : \sqrt{10}, or 1.31623, which is no very near approxima-
It is not a little surprising to find this determination in the same treatise
with the much more accurate one afforded by the table of sines given in
the next chapter (vv. 17-21), of 3438 : 10,800, or 1 : 3.14136; and then
farther, to find the former, and not the latter, made use of in calculating
the dimensions of the planetary orbits (see below, xii. 83). But the
same inconsistency is found also in other astronomical and mathematical
authorities. Thus Aryabhāṭa (see Colebrooke, as above) calculates the
earth's circumference from its diameter by the ratio 7 : 22, or 1 : 3.14286,
but makes the ratio 1 : \sqrt{10} the basis of his table of sines, and Brahma-
gupta and Čridhara also adopt the latter. Bhāskara, in stating the earth's circumference at 4967 yojanas, is very near the truth, since
1581 : 4967 : : 1 : 3.14168: his Lilāvatī (v. 201) gives 7 : 22, and also,
as much exact, 1250 : 3927, or 1 : 3.1416. This subject will be reverted
to in connection with the table of sines.

The greatest circumference of the earth, as calculated according to
the data and method of the text, is 5059.556 yojanas. The astronomical
yojana must be regarded as an independent standard of measurement,
by which to estimate the value of the other dimensions of the solar
system stated in this treatise. To make the earth's mean diameter cor-
rect as determined by the Sūrya-Siddhānta, the yojana should equal
4.94 English miles; to make the circumference correct, it should equal
4.91 miles.

The rule for finding the circumference of the earth upon a parallel of
latitude is founded upon a simple proportion, viz., rad. : cos. latitude ::
circ. of earth at equator : do. at the given parallel; the cosine of the
In the translation given above of the second half of verse 58, not a little violence is done to the natural construction. This would seem to require that it be rendered: "and the rest are in whole signs (have come to a position which is without a remainder of degrees); they, being of slow motion, are not stated here." But the actual condition of things at the epoch renders necessary the former translation, which is that of the commentator also. We cannot avoid conjecturing that the natural rendering was perhaps the original one, and that a subsequent alteration of the elements of the treatise compelled the other and forced interpretation to be put upon the passage.

The commentary gives the positions of the apsides and nodes (those of the nodes, however, in reverse) for the epoch of the end of the Golden Age, but, strangely enough, both in the printed edition and in our manuscript, commits the blunder of giving the position of Saturn's node a second time, for that of his apsis, and also of making the seconds of the position of the node of Mars 12, instead of 24. We therefore add them below, in their correct form.

Motion of the Apsides and Nodes of the Planets, to the End of the last Golden Age.

<table>
<thead>
<tr>
<th>Planet</th>
<th>Apoapsis</th>
<th>Node</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(rev.) *</td>
<td>(rev.) *</td>
</tr>
<tr>
<td>Sun</td>
<td>(175) 0 7 28 12</td>
<td>(320) 8 11 16 48</td>
</tr>
<tr>
<td>Mercury</td>
<td>(166) 5 4 4 48</td>
<td>(408) 4 17 25 48*</td>
</tr>
<tr>
<td>Venus</td>
<td>(241) 11 13 21 0</td>
<td>(96) 9 11 20 24</td>
</tr>
<tr>
<td>Mars</td>
<td>(22) 3 3 14 24</td>
<td>(78) 8 8 56 24</td>
</tr>
<tr>
<td>Jupiter</td>
<td>(407) 0 9 0 0</td>
<td>(299) 4 20 13 12</td>
</tr>
</tbody>
</table>

The method of finding the mean places of the planets for midnight on the prime meridian having been now fully explained, the treatise proceeds to show how they may be found for other places, and for other times of the day. To this the first requisite is to know the dimensions of the earth.

59. Twice eight hundred yojanas are the diameter of the earth: the square root of ten times the square of that is the earth's circumference.

60. This, multiplied by the sine of the co-latitude (lambajyā) of any place, and divided by radius (trijivā), is the corrected (sphuta) circumference of the earth at that place.

There is the same difficulty in the way of ascertaining the exactness of the Hindu measurement of the earth as of the Greek; the uncertain value, namely, of the unit of measure employed. The yojana is ordinarily divided into kroça, "cries" (i.e., distances to which a certain cry may be heard); the kroça into dhanus, "bow-lengths," or danda, "poles;" and these again into hasta, "cubits." By its origin, the latter

stated above to have a slow motion—their position cannot be expressed in whole signs.

It is curious to observe how the Sûrya-Siddhânta, lest it should seem to admit a later origin than that which it claims in the second verse of this chapter, is compelled to ignore the real astronomical epoch, the beginning of the Iron Age; and also how it avoids any open recognition of the lesser cycle of 1,080,000 years, by which its calculations are so evidently intended to be made.

The words at the end of verse 56 the commentator interprets to mean: “from the beginning of the current, i.e., the Silver Age.” In this he is only helping to keep up the pretence of the work to immemorial antiquity, even going therein beyond the text itself, which expressly says: “from any desired (î śhataś) yuga.” Possibly, however, we have taken too great a liberty in rendering yuga by “epoch,” and it should rather be “Age,” i.e., “beginning of an Age.” The word yuga comes from the root yuj, “to join” (Latin, jüngus; Greek, αυγαίον: the word itself is the same with jüngus, τευχέον), and seems to have been originally applied to indicate a cycle, or period, by means of which the conjunction or correspondence of discordant modes of reckoning time was kept up; thus it still signifies also the lustrum, or cycle of five years, which, with an intercalated month, anciently maintained the correspondence of the year of 360 days with the true solar year. From such uses it was transferred to designate the vaster periods of the Hindu chronology.

As half an Age, or two of the lesser periods, are accounted to have elapsed between the end of the Golden and the beginning of the Iron Age, the planets, at the latter epoch, have again returned to a position of mean conjunction: the moon’s node, also, is still in the first of Libra, but her apsis has changed its place half a revolution, to the first of Cancer (see above, under vv. 29–34). The positions of the apsides and nodes of the other planets at the same time have been given already, under verses 41–44.

The Hindu names of the signs correspond in signification with our own, having been brought into India from the West. There is nowhere in this work any allusion to them as constellations, or as having any fixed position of their own in the heavens: they are simply the names of the successive signs (rāci, bha) into which any circle is divided, and it is left to be determined by the connection, in any case, from what point they shall be counted. Here, of course, it is the initial point of the fixed Hindu sphere (see above, under v. 27). As the signs are, in the sequel, frequently cited by name, we present annexed, for the convenience of reference of those to whose memory they are not familiar in the order of their succession, their names, Latin and Sanskrit, their numbers, and the figures generally used to represent them. Those enclosed in brackets do not chance to occur in our text.

amount of movement to signs shows us that the current year is the 5019th since the epoch: divide this by 60, to cast out whole cycles, and the remainder, 39, is the number of the year in the current cycle. This treatise nowhere gives the names of the years of Jupiter, but, as in the case of the months, the signs of the zodiac, and other similar matters, assumes them to be already familiarly known in their succession: we accordingly present them below. We take them from Mr. Davis’s paper, alluded to above, not having access at present to any original authority which contains them.

7. Vikārin. 27. Siddhārthini. 47. Pramāthin.

It appears, then, that the current year of Jupiter’s cycle is named Prajāpati; upon dividing by the planet’s mean daily motion the part of the current sign already passed over, it will be found that, according to the text, that year commenced on the twenty-third of February, 1859; or, if the correction of the bija be admitted, on the third of April.

Although it is thus evident that the Sūrya-Siddhānta regards both the existing order of things and the Iron Age as having begun with Vijaya, that year is not generally accounted as the first, but as the twenty-seventh, of the cycle, which is thus made to commence with Prabhava. An explanation of this discrepancy might perhaps throw important light upon the origin or history of the cycle.

This method of reckoning time is called (see below, xiv. 1, 2) the bārhaspatya māna, “measure of Jupiter.”

56. The processes which have thus been stated in full detail, are practically applied in an abridged form. The calculation of the mean place of the planets may be made from any epoch (yuga) that may be fixed upon.

57. Now, at the end of the Golden Age (kṛta yuga), all the planets, by their mean motion—excepting, however, their nodes and apsides (mandaoca) —are in conjunction in the first of Aries.

58. The moon’s apsis (ucca) is in the first of Capricorn, and its node is in the first of Libra; and the rest, which have been
bijā: prefixed are the numbers of complete revolutions accomplished since the epoch. In the cases of the moon’s apsis and node, however, it was necessary to employ the numbers of revolutions given for the whole Age, these not being divisible by four, and also to add to their ascertained amount of movement their longitude at the epoch (see below, under vv. 57, 58).

54. Thus also are ascertained the places of the conjunction (cīghra) and apsis (mandocca) of each planet, which have been mentioned as moving eastward; and in like manner of the nodes, which have a retrograde motion, subtracting the result from a whole circle.

The places of the apsides and nodes have already been given above (under vv. 41–44), both for the commencement of the Iron Age, and for A.D. 1850. The place of the conjunctions of the three superior planets is, of course, the mean longitude of the sun. In the case of the inferior planets, the place of the conjunction is, in fact, the mean place of the planet itself in its proper orbit, and it is this which we have given for Mercury and Venus in the preceding table: while to the Hindu apprehension, the mean place of those planets is the same with that of the sun.

55. Multiply by twelve the past revolutions of Jupiter, add the signs of the current revolution, and divide by sixty; the remainder marks the year of Jupiter’s cycle, counting from Vijaya.

This is the rule for finding the current year of the cycle of sixty years, which is in use throughout all India, and which is called the cycle of Jupiter, because the length of its years is measured by the passage of that planet, by its mean motion, through one sign of the zodiac. According to the data given in the text of this Siddhānta, the length of Jupiter’s year is 364d 6h 38m; the correction of the bijā makes it about 12m longer. It was doubtless on account of the near coincidence of this period with the true solar year that it was adopted as a measure of time; but it has not been satisfactorily ascertained, so far as we are aware, where the cycle originated, or what is its age, or why it was made to consist of sixty years, including five whole revolutions of the planet. There was, indeed, also in use a cycle of twelve of Jupiter’s years, or the time of one sidereal revolution; see below, xiv. 17. Davis (As. Res. iii. 209, etc.) and Warren (Kalā Sankalita, p. 197, etc.) have treated at some length of the greater cycle, and of the different modes of reckoning and naming its years usual in the different provinces of India.

In illustration of the rule, let us ascertain the year of the cycle corresponding to the present year, A.D. 1859. It is not necessary to make the calculation from the creation, as the rule contemplates: for, since the number of Jupiter’s revolutions in the period of 1,080,000 years is divisible by five, a certain number of whole cycles, without a remainder, will have elapsed at the beginning of the Iron Age. The revolutions of the planet since that time, as stated in the table last given, are 418, and it is in the 3rd sign of the 419th revolution; the reduction of the whole
12), they never made that division of the day into twenty-four hours upon which the order of regency depends, it follows that the whole system was of foreign origin, and introduced into India along with other elements of the modern sciences of astronomy and astrology, to which it belonged. Its proper foundation, the lordship of the successive hours, is shown by the other passage (xii. 78) to have been also known to the Hindus; and the name by which the hours are there called (hordā ṣeṣa) indicates beyond a question the source whence they derived it.

58. Multiply the sum of days (dinarāci) by the number of revolutions of any planet, and divide by the number of civil days; the result is the position of that planet, in virtue of its mean motion, in revolutions and parts of a revolution.

By the number of revolutions and of civil days is meant, of course, their number, as stated above, in an Age. For “position of the planet,” etc., the text has, according to its usual succinct mode of expression, simply “is the planet, in revolutions, etc.” There is no word for “position” or “place” in the vocabulary of this Siddhânta.

This verse gives the method of finding the mean place of the planets at any given time for which the sum of days has been ascertained, by a simple proportion: as the number of civil days in a period is to the number of revolutions during the same period, so is the sum of days to the number of revolutions and parts of a revolution accomplished down to the given time. Thus, for the sun:

\[1,577,917,836 : 4,332,000 :: 714,404,168,572 : 1,555,884,860 \text{rev.} 85 \text{°} 48' 7'' \]

The mean longitude of the sun, therefore, Jan. 1st, 1860, at midnight on the meridian of Ujjayini, is 207° 48' 7''. We have calculated in this manner the positions of all the planets, and of the moon's apsis and node—availing ourselves, however, of the permission given below, in verse 56, and reckoning only from the last epoch of conjunction, the beginning of the Iron Age (from which time the sum of days is 1,811,945), and also employing the numbers afforded by the lesser period of 1,080,000 years—and present the results in the following table.

Mean Places of the Planets, Jan. 1st, 1860, midnight, at Ujjayini.

<table>
<thead>
<tr>
<th>Planet</th>
<th>According to the Sûrya-Siddhânta.</th>
<th>'The same corrected by the bikā.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sun</td>
<td>(rev.) 8 17 48 7</td>
<td>8 17 48 7</td>
</tr>
<tr>
<td>Mercury</td>
<td>(20,597) 4 15 13 8</td>
<td>4 8 35 16</td>
</tr>
<tr>
<td>Venus</td>
<td>(8,633) 10 21 8 59</td>
<td>10 16 11 22</td>
</tr>
<tr>
<td>Mars</td>
<td>(2,637) 5 24 17 36</td>
<td>5 24 17 36</td>
</tr>
<tr>
<td>Jupiter</td>
<td>(418) 2 26 0 7</td>
<td>2 22 41 41</td>
</tr>
<tr>
<td>Saturn</td>
<td>(106) 3 20 11 12</td>
<td>3 25 8 50</td>
</tr>
<tr>
<td>Moon</td>
<td>(66,338) 11 15 23 24</td>
<td>11 15 23 24</td>
</tr>
<tr>
<td>* apsis</td>
<td>(560) 10 9 42 26</td>
<td>10 8 3 13</td>
</tr>
<tr>
<td>* node</td>
<td>(207) 9 24 26 4</td>
<td>9 22 40 51</td>
</tr>
</tbody>
</table>

The positions are given as deduced both from the numbers of revolutions stated in the text, and from the same as corrected by the
<table>
<thead>
<tr>
<th>Name of day</th>
<th>Presiding Planet</th>
<th>Succession, as Lord of day, month, year, hour.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rāvīrā,</td>
<td>Sunday, Sun</td>
<td>1 1 1 1</td>
</tr>
<tr>
<td>Somāvāra,</td>
<td>Monday, Moon</td>
<td>2 5 6 4</td>
</tr>
<tr>
<td>Mangalavāra,</td>
<td>Tuesday, Mars</td>
<td>3 2 4 7</td>
</tr>
<tr>
<td>Bodhavāra,</td>
<td>Wednesday, Mercury</td>
<td>4 6 2 3</td>
</tr>
<tr>
<td>Gurusvāra,</td>
<td>Thursday, Jupiter</td>
<td>5 3 7 6</td>
</tr>
<tr>
<td>Čukravāra,</td>
<td>Friday, Venus</td>
<td>6 7 5 2</td>
</tr>
<tr>
<td>Čanivāra,</td>
<td>Saturday, Saturn</td>
<td>7 4 3 5</td>
</tr>
</tbody>
</table>

As the first day of the subsistence of the present order of things is supposed to have been a Sunday, it is only necessary to divide the sum of days by seven, and the remainder will be found, in the first column, opposite the name of the planet to which the required day belongs. Thus, taking the sum of days found above, adding to it one, for the first of January itself, and dividing by seven, we have:

\[\frac{714404108573}{103057729799}=1 \]

The first of January, 1860, accordingly, falls on a Sunday by Hindu reckoning, as by our own.

On referring to the table, it will be seen that the lords of the months follow one another at intervals of two places. To find, therefore, by a summary process, the lord of the month in which occurs any given day, first divide the sum of days by thirty; the quotient, rejecting the remainder, is the number of months elapsed; multiply this by two, that each month may push the succession forward two steps, add one for the current month, divide by seven in order to get rid of whole series, and the remainder is, in the column of lords of the day, the number of the regent of the month required. Thus:

\[\frac{30) 714404108572}{238134703854}=3 \]
\[\frac{47526940570}{1}=1 \]
\[\frac{747526940571}{6803848652}=7 \]

The regent of the month in question is therefore Saturn.

By a like process is found the lord of the year, saving that, as the lords of the year succeed one another at intervals of three places, the multiplication is by three instead of by two. Upon working out the process, it will be found that the final remainder is five, which designates Jupiter as the lord of the year at the given time.

Excepting here and in the parallel passage xii. 77, 78, no reference is made in the Sārya-Siddhānta to the week, or to the names of its days. Indeed, it is not correct to speak of the week at all in connection with India, for the Hindus do not seem ever to have regarded it as a division of time, or a period to be reckoned by; they knew only of a certain order of succession, in which the days were placed under the regency of the seven planets. And since, moreover, as remarked above (under vv. 11,
other by three, add one to each product, and divide by seven; the remainders indicate the lords of the month and of the year.

These verses explain the method of ascertaining, from the sum of days already found, the planet which is accounted to preside over the day, and also those under whose charge are placed the month and year in which that day occurs.

To find the lord of the day is to find the day of the week, since the latter derives its name from the former. The week, with the names and succession of its days, is the same in India as with us, having been derived to both from a common source. The principle upon which the assignment of the days to their respective guardians was made has been handed down by ancient authors (see Ideler, Handbuch d. math. u. tech. Chronologie, i. 178, etc.), and is well known. It depends upon the division of the day into twenty-four hours, and the assignment of each of these in succession to the planets, in their natural order; the day being regarded as under the dominion of that planet to which its first hour belongs. Thus, the planets being set down in the order of their proximity to the earth, as determined by the ancient systems of astronomy (for the Hindu, see below, xii. 84-88), beginning with the remotest, as follows: Saturn, Jupiter, Mars, sun, Venus, Mercury, moon, and the first hour of the twenty-four being assigned to the Sun, as chief of the planets, the second to Venus, etc., it will be found that the twenty-fifth hour, or the first of the second day, belongs to the moon; the forty-fifth, or the first of the third day, to Mars, and so on. Thus is obtained a new arrangement of the planets, and this is the one in which this Siddhanta, when referring to them, always assumes them to stand (see, for instance, below, v. 70; ii. 35-37): it has the convenient property that by it the sun and moon are separated from the other planets, from which they are by so many peculiarities distinguished. Upon this order depend the rules here given for ascertaining also the lords of the month and of the year. The latter, as appears both from the explanation of the commentator, and from the rules themselves, are no actual months and years, but periods of thirty and three hundred and sixty days, following one another in uniform succession, and supposed to be placed, like the day, under the guardianship of the planets to whom belong their first subdivisions: thus the lord of the day is the lord of its first hour; the lord of the month is the lord of its first day (and so of its first hour); the lord of the year is the lord of its first month (and so of its first day and hour). We give below this artificial arrangement of the planets, with the order in which they are found to succeed one another as lords of the periods of one, thirty, and three hundred and sixty days; we add their natural order of succession, as lords of the hours; and we farther prefix the ordinary names of the days, with their English equivalents. Other of the numerous names of the planets, it is to be remarked, may be put before the word sára to form the name of the day: sára itself means literally "successive time," or "turn," and is not used, so far as we are aware, in any other connection, to denote a day.
side"), lasts from new moon to full moon, or while the moon is waxing; the other, called the dark half (krshna paksha, "black side"), lasts from full moon to new moon, or while the moon is waning.

The table shows that Jan. 1, 1860, is the eighth day of the tenth month of the 4961st year of the Iron Age. The time, then, for which we have to find the sum of days, is 1,955,884,960 y., 9 m., 7 d.

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of complete years elapsed</td>
<td>1,955,884,960</td>
</tr>
<tr>
<td>multiply by number of solar months in a year</td>
<td>12</td>
</tr>
<tr>
<td>Number of months</td>
<td>23,470,619,520</td>
</tr>
<tr>
<td>add months elapsed of current year</td>
<td>9</td>
</tr>
<tr>
<td>Whole number of months elapsed</td>
<td>23,470,619,529</td>
</tr>
</tbody>
</table>

Now a proportion is made: as the whole number of solar months in an Age is to the number of intercalary months in the same period, so is the number of months above found to that of the corresponding intercalary months: or, 51,840,000 : 1,593,336 : : 23,470,619,529 : 721,384,703 +

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole number of months, as above</td>
<td>23,470,619,529</td>
</tr>
<tr>
<td>add intercalary months</td>
<td>721,384,703</td>
</tr>
<tr>
<td>Whole number of lunar months</td>
<td>24,192,004,932</td>
</tr>
<tr>
<td>multiply by number of lunar days in a month</td>
<td>30</td>
</tr>
<tr>
<td>Number of lunar days</td>
<td>725,760,126,960</td>
</tr>
<tr>
<td>add lunar days elapsed of current month</td>
<td>7</td>
</tr>
<tr>
<td>Whole number of lunar days elapsed</td>
<td>725,760,126,967</td>
</tr>
</tbody>
</table>

To reduce, again, the number of lunar days thus found to the corresponding number of solar days, a proportion is made, as before: as the whole number of lunar days in an Age is to the number of omitted lunar days in the same period, so is the number of lunar days in the period for which the sum of days is required to that of the corresponding omitted lunar days: or, 1,503,000,980 : 25,082,252 : : 725,760,126,967 : 11,356,018,395 +

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole number of lunar days as above</td>
<td>725,760,126,967</td>
</tr>
<tr>
<td>deduct omitted lunar days</td>
<td>11,356,018,395</td>
</tr>
<tr>
<td>Total number of civil days from end of creation</td>
<td>714,404,180,572</td>
</tr>
<tr>
<td>to beginning of Jan. 1, 1860</td>
<td>714,404,180,572</td>
</tr>
</tbody>
</table>

This, then, is the required sum of days, for the beginning of the year A.D. 1860, at midnight, upon the Hindu prime meridian.

The first use which we are instructed to make of the result thus obtained is an astronomical one.

51. . . . From this may be found the lords of the day, the month, and the year, counting from the sun. If the number be divided by seven, the remainder marks the lord of the day, beginning with the sun.

52. Divide the same number by the number of days in a month and in a year, multiply the one quotient by two and the
thus obtained: the remainder is, at midnight, on the meridian of Lankā.

51. The sum of days, in civil reckoning.

In these verses is taught the method of one of the most important and frequently recurring processes in Hindu Astronomy, the finding, namely, of the number of civil or natural days which have elapsed at any given date, reckoning either from the beginning of the present creation, or (see below, v. 56) from any required epoch since that time. In the modern technical language, the result is uniformly styled the ahargana, "sum of days;" that precise term, however, does not once occur in the text of the Sūrya-Siddhānta: in the present passage we have ḍyagana, which means the same thing, and in verse 53 dinarāpi, "heap or quantity of days."

The process will be best illustrated and explained by an example. Let it be required to find the sum of days to the beginning of Jan. 1, 1860.

It is first necessary to know what date corresponds to this in Hindu reckoning. We have remarked above that the 4960th year of the Iron Age is completed in April, 1859; in order to exhibit the place in the next following year of the date required, and, at the same time, to present the names and succession of the months, which in this treatise are assumed as known, and are nowhere stated, we have constructed the following skeleton of a Hindu calendar for the year 4961 of the Iron Age.

<table>
<thead>
<tr>
<th>Solar Year.</th>
<th>Luni-solar Year.</th>
</tr>
</thead>
<tbody>
<tr>
<td>month.</td>
<td>first day.</td>
</tr>
<tr>
<td>(I. A. 4960.)</td>
<td></td>
</tr>
</tbody>
</table>

The names of the solar months are derived from the names of the asterisms (see below, chap. viii.) in which, at the time of their being first so designated, the moon was full during their continuance. The same names are transferred to the lunar months. Each lunar month is divided into two parts; the first, called the light half (ṛukla pāksha, "bright
46. The twenty-seven Ages (yuga) that are past, and likewise the present Golden Age (kṣīra yuga); from their sum subtract the time of creation, already stated in terms of divine years.

47. In solar years: the result is the time elapsed at the end of the Golden Age; namely, one billion, nine hundred and fifty-three million, seven hundred and twenty thousand solar years.

We have already presented this computation, in full, in the notes to verses 23 and 24.

48. To this, add the number of years of the time since past

As the Sūrya-Siddhānta professes to have been revealed by the Sun about the end of the Golden Age, it is of course precluded from taking any notice of the divisions of time posterior to that period: there is nowhere in the treatise an allusion to any of the eras which are actually made use of by the inhabitants of India in reckoning time, with the exception of the cycle of sixty years, which, by its nature, is bound to no date or period (see below, v. 55). The astronomical era is the commencement of the Iron Age, the epoch, according to this Siddhānta, of the last general conjunction of the planets; this coincides, as stated above (under vv. 29–34) with Feb. 18, 1612 J. P., or 3102 B. C. From that time will have elapsed, upon the eleventh of April, 1859, the number of 4960 complete sidereal years of the Iron Age. The computation of the whole period, from the beginning of the present order of things, is then as follows:

- From end of creation to end of last Golden Age, 1,953,720,000
- Silver Age, 2,996,000
- Brazen Age, 864,000
- Of Iron Age, 4,960,2,164,960

Total from end of creation to April, 1859, 1,955,884,960

Since the Sūrya-Siddhānta, as will appear from the following verses, reckons by luni-solar years, it regards as the end of I. A. 4960 not the end of the solar sidereal year of that number, but that of the luni-solar year, which, by Hindu reckoning, is completed upon the third of the same month (see Ward, Kāla Sankalita, Table, p. xxxii).

48 Reduce the sum to months, and add the months expired of the current year, beginning with the light half of Cāitra.

49. Set the result down in two places; multiply it by the number of intercalary months, and divide by that of solar months, and add to the last result the number of intercalary months thus found; reduce the sum to days, and add the days expired of the current month;

50. Set the result down in two places; multiply it by the number of omitted lunar days, and divide by that of lunar days; subtract from the last result the number of omitted lunar days
The data of the Ārya and Pārācara Siddhāntas, from which the positions given in the table are calculated, are derived from Bentley (Hind. Ast. pp. 139, 144). To each position is prefixed the number of completed revolutions; or, in the case of the nodes, of which the motion is retrograde, the number of whole revolutions of which each falls short by the amount expressed by its position.

The almost universal disagreement of these four authorities with respect to the number of whole revolutions accomplished, and their general agreement as to the remainder, which determines the position,* prove that the Hindus had no idea of any motion of the apsides and nodes of the planets as an actual and observable phenomenon; but, knowing that the moon’s apsis and node moved, they fancied that the symmetry of the universe required that those of the other planets should move also; and they constructed their systems accordingly. They held, too, as will be seen at the beginning of the second chapter, that the nodes and apsides, as well as the conjunctions (çghra), were beings, stationed in the heavens, and exercising a physical influence over their respective planets, and, as the conjunctions revolved, so must these also.

In framing their systems, then, they assigned to these points such a number of revolutions in an Āeon as should, without attributing to them any motion which admitted of detection, make their positions what they supposed them actually to be. The differences in respect to the number of revolutions were in part rendered necessary by the differences of other features of the systems; thus, while that of the Siddhānta-Çiromani makes the planetary motions commence at the beginning of the Āeon, by that of the Sûrya-Siddhānta they commence 17,064,000 years later (see above, v. 24), and by that of the Ārya-Siddhānta, 3,024,000 years later (Bentley, Hind. Ast. p. 139); in part, however, they are merely arbitrary; for, although the Pārācara-Siddhānta agrees with the Siddhānta-Çiromani as to the time of the beginning of things, its numbers of revolutions correspond only in two instances with those of the latter.

It may be farther remarked, that the close accordance of the different astronomical systems in fixing the position of points which are so difficult of observation and deduction as the nodes and apsides, strongly indicates, either that the Hindus were remarkably accurate observers, and all arrived independently at a near approximation to the truth, or that some one of them was followed as an authority by the others, or that all alike derived their data from a common source, whether native or foreign. We reserve to the end of this work the discussion of these different possibilities, and the presentation of data which may tend to settle the question between them.

45. Now add together the time of the six Patriarchs (manu), with their respective twilights, and with the dawn at the commencement of the Āeon (kalpa); farther, of the Patriarch Manu, son of Vivasvant,

* It is altogether probable that, in the two cases where the Ārya-Siddhānta seems to disagree with the others, its data were either given incorrectly by Bentley’s authority, or have been incorrectly reported by him.
Sūrya-Siddhānta.

pass through an arc of one minute, and the position of each, according to the system, in 1850; the latter being reckoned in our method, from the vernal equinox. Further, we have added the actual positions for Jan. 1, 1850, as given by Biot (Traité d'Astronomie, tom. v. 529); and finally, the errors of the positions as determined by this Sūrya-Siddhānta.

Table of Revolutions and Present Position of the Apsides and Nodes of the Planets.

<table>
<thead>
<tr>
<th>Planet</th>
<th>No. of rev. in an Ån.</th>
<th>Time of revolution in years</th>
<th>No. of years to 1' of motion</th>
<th>Resulting position, A. D. 1850</th>
<th>True position, A. D. 1850</th>
<th>Error of Hindu position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apsides:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sun,</td>
<td>387</td>
<td>11,153,790.7</td>
<td>516.8</td>
<td>95 4</td>
<td>100 22</td>
<td>- 5 16</td>
</tr>
<tr>
<td>Mercury,</td>
<td>368</td>
<td>11,730,130.4</td>
<td>533.5</td>
<td>233 15</td>
<td>255 7</td>
<td>- 16 52</td>
</tr>
<tr>
<td>Venus,</td>
<td>535</td>
<td>8,074,766.4</td>
<td>373.8</td>
<td>97 39</td>
<td>309 24</td>
<td>- 211 43</td>
</tr>
<tr>
<td>Mars,</td>
<td>204</td>
<td>21,176,470.6</td>
<td>980.4</td>
<td>147 49</td>
<td>153 18</td>
<td>- 5 29</td>
</tr>
<tr>
<td>Jupiter,</td>
<td>900</td>
<td>4,800,000.0</td>
<td>222.2</td>
<td>189 9</td>
<td>201 55</td>
<td>- 2 46</td>
</tr>
<tr>
<td>Saturn,</td>
<td>39</td>
<td>110,769,230.8</td>
<td>5128.2</td>
<td>254 24</td>
<td>270 6</td>
<td>- 15 42</td>
</tr>
<tr>
<td>Nodes:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercury,</td>
<td>488</td>
<td>8,852,459.0</td>
<td>409.8</td>
<td>38 27</td>
<td>46 33</td>
<td>- 8 6</td>
</tr>
<tr>
<td>Venus,</td>
<td>903</td>
<td>4,784,053.2</td>
<td>321.5</td>
<td>77 7</td>
<td>75 19</td>
<td>2 7</td>
</tr>
<tr>
<td>Mars,</td>
<td>214</td>
<td>20,186,615.9</td>
<td>934.6</td>
<td>57 49</td>
<td>64 23</td>
<td>9 26</td>
</tr>
<tr>
<td>Jupiter,</td>
<td>174</td>
<td>24,827,586.2</td>
<td>1144.4</td>
<td>97 26</td>
<td>98 54</td>
<td>- 1 28</td>
</tr>
<tr>
<td>Saturn,</td>
<td>662</td>
<td>6,525,698.2</td>
<td>303.1</td>
<td>118 7</td>
<td>112 22</td>
<td>5 45</td>
</tr>
</tbody>
</table>

A mere inspection of this table is sufficient to show that the Hindu astronomers did not practically recognize any motion of the apsides and nodes of the planets; since, even in the case of those to which they assigned the most rapid motion, two thousand years, at the least, would be required to produce such a change of place as they, with their imperfect means of observation, would be able to detect.

This will, however, be made still more clearly apparent by the next following table, in which we give the positions of the apsides and nodes as determined by four different text-books of the Hindu science, for the commencement of the Iron Age.

Positions of the Apsides and Nodes of the Planets, according to Different Authorities, at the Commencement of the Iron Age, 3102 B. C.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Apsides:</td>
<td>(rev.)</td>
<td>(rev.)</td>
<td>(rev.)</td>
<td>(rev.)</td>
</tr>
<tr>
<td>Sun,</td>
<td>(157)</td>
<td>2 27 7 48</td>
<td>219</td>
<td>2 17 45 36</td>
</tr>
<tr>
<td>Mercury,</td>
<td>(166)</td>
<td>7 10 19 12</td>
<td>151</td>
<td>7 14 47</td>
</tr>
<tr>
<td>Venus,</td>
<td>(242)</td>
<td>2 19 39 0</td>
<td>308</td>
<td>2 21 10</td>
</tr>
<tr>
<td>Mars,</td>
<td>(93)</td>
<td>4 9 5 36</td>
<td>133</td>
<td>4 8 18 14</td>
</tr>
<tr>
<td>Jupiter,</td>
<td>(407)</td>
<td>5 21 0 0</td>
<td>390</td>
<td>5 22 15 36</td>
</tr>
<tr>
<td>Saturn,</td>
<td>(17)</td>
<td>7 26 35 36</td>
<td>18</td>
<td>8 20 53 31</td>
</tr>
<tr>
<td>Nodes:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercury,</td>
<td>(221)</td>
<td>0 20 52 48</td>
<td>238</td>
<td>0 21 20 53</td>
</tr>
<tr>
<td>Venus,</td>
<td>(409)</td>
<td>3 0 1 48</td>
<td>408</td>
<td>3 0 5 2</td>
</tr>
<tr>
<td>Mars,</td>
<td>(97)</td>
<td>1 10 8 24</td>
<td>132</td>
<td>1 21 59 40</td>
</tr>
<tr>
<td>Jupiter,</td>
<td>(79)</td>
<td>3 19 44 24</td>
<td>29</td>
<td>3 22 3 38</td>
</tr>
<tr>
<td>Saturn,</td>
<td>(300)</td>
<td>3 10 37 12</td>
<td>267</td>
<td>3 13 23 31</td>
</tr>
</tbody>
</table>
We add a few explanatory remarks respecting some of the terms employed in this passage, or the divisions of time which they designate.

The natural day, nycthemeron, is, for astronomical purposes, reckoned in the Sûrya-Siddhânta from midnight to midnight, and is of invariable length; for the practical uses of life, the Hindus count it from sunrise to sunrise; which would cause its duration to vary, in a latitude as high as our own, sometimes as much as two or three minutes. As above noticed, the system of Brahmagupta and some others reckon the astronomical day also from sunrise.

For the lunar day, the lunar and solar month, and the general constitution of the year, see above, under verse 13. The lunar month, which is the one practically reckoned by, is named from the solar month in which it commences. An intercalation takes place when two lunar months begin in the same solar month: the former of the two is called an intercalary month (adhimâsâ, or adhimâsaka, "extra month"), of the same name as that which succeeds it.

The term "omitted lunar day" (tithikshaya, "loss of a lunar day") is explained by the method adopted in the calendar, and in practice, of naming the days of the month. The civil day receives the name of the lunar day which ends in it; but if two lunar days end in the same solar day, the former of them is reckoned as loss (kskhaya), and is omitted, the day being named from the other.

Lunar months

<table>
<thead>
<tr>
<th>Days</th>
<th>53,433,336</th>
<th>13,358,334</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiply by no. of lunar days in a month</td>
<td>30</td>
<td>30</td>
</tr>
</tbody>
</table>

Lunar days

<table>
<thead>
<tr>
<th>Days</th>
<th>1,663,000,860</th>
<th>400,750,020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deduct civil days</td>
<td>1,577,917,928</td>
<td>394,479,457</td>
</tr>
</tbody>
</table>

Omitted lunar days

| Days | 25,082,252 | 6,270,563 |

| 41. The revolutions of the sun’s apsis (manda), moving eastward, in an Æon, are three hundred and eighty-seven; of that of Mars, two hundred and four; of that of Mercury, three hundred and sixty-eight; |
| 42. Of that of Jupiter, nine hundred; of that of Venus, five hundred and thirty-five; of the apsis of Saturn, thirty-nine. Farther, the revolutions of the nodes, retrograde, are: |
| 43. Of that of Mars, two hundred and fourteen; of that of Mercury, four hundred and eighty-eight; of that of Jupiter, one hundred and seventy-four; of that of Venus, nine hundred and three; |
| 44. Of the node of Saturn, the revolutions in an Æon are six hundred and sixty-two: the revolutions of the moon’s apsis and node have been given here already. |

In illustration of the curious feature of the Hindu system of astronomy presented in this passage, we first give the annexed table; which shows the number of revolutions in the Æon, or period of 4,320,000,000 years, assigned by the text to the apsis and node of each planet, the resulting time of revolution, the number of years which each would require to
In the additional notes at the end of the work, we shall revert to the subject of these data, and of the light thrown by them upon the origin and age of the system.

34. ... The number of risings of the asterisms, diminished by the number of the revolutions of each planet respectively, gives the number of risings of the planets in an Age.

35. The number of lunar months is the difference between the number of revolutions of the sun and of the moon. If from it the number of solar months be subtracted, the remainder is the number of intercalary months.

36. Take the civil days from the lunar, the remainder is the number of omitted lunar days (tithikṣaṇa). From rising to rising of the sun are reckoned terrestrial civil days;

37. Of these there are, in an Age, one billion, five hundred and seventy-seven million, nine hundred and seventeen thousand, eight hundred and twenty-eight; of lunar days, one billion, six hundred and three million, and eighty;

38. Of intercalary months, one million, five hundred and ninety-three thousand, three hundred and thirty-six; of omitted lunar days, twenty-five million, eighty-two thousand, two hundred and fifty-two;

39. Of solar months, fifty-one million, eight hundred and forty thousand. The number of risings of the asterisms, diminished by that of the revolutions of the sun, gives the number of terrestrial days.

40. The intercalary months, the omitted lunar days, the sidereal, lunar, and civil days—these, multiplied by a thousand, are the number of revolutions, etc., in an Æon.

The data here given are combinations of, and deductions from, those contained in the preceding passage (vv. 29–34). For convenience of reference, we present them below in a tabular form.

<table>
<thead>
<tr>
<th></th>
<th>In 4,320,000 years</th>
<th>In 1,080,000 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sidereal days,</td>
<td>1,582,237,828</td>
<td>395,559,457</td>
</tr>
<tr>
<td>deduct solar revolutions,</td>
<td>4,320,000</td>
<td>1,080,000</td>
</tr>
<tr>
<td>Natural, or civil days,</td>
<td>1,577,917,828</td>
<td>394,479,457</td>
</tr>
<tr>
<td>Sidereal solar years,</td>
<td>4,320,000</td>
<td>1,080,000</td>
</tr>
<tr>
<td>multiply by no. of solar months in a year,</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Solar months,</td>
<td>51,840,000</td>
<td>12,960,000</td>
</tr>
<tr>
<td>Moon's sidereal revolutions,</td>
<td>57,753,336</td>
<td>14,438,334</td>
</tr>
<tr>
<td>deduct solar revolutions,</td>
<td>4,320,000</td>
<td>1,080,000</td>
</tr>
<tr>
<td>Synodical revolutions, lunar months,</td>
<td>53,433,336</td>
<td>13,358,334</td>
</tr>
<tr>
<td>deduct solar months,</td>
<td>51,840,000</td>
<td>12,960,000</td>
</tr>
<tr>
<td>Intercalary months,</td>
<td>1,593,336</td>
<td>398,334</td>
</tr>
</tbody>
</table>

VOL. VI.
The first five of these might be regarded as unimportant variations of the same error, but it would seem that the last is an independent determination, and one of later date than the others; while, if all are independent, that of the Sūrya-Siddhānta has the appearance of being the most ancient. Such questions as these, however, are not to be too hastily decided, nor from single indications merely; they demand the most thorough investigation of each different treatise, and the careful collection of all the evidence which can be brought to bear upon them.

Here lies Bentley's chief error. He relied solely upon his method of examining the elements, applying even that, as we have seen, only partially and uncritically, and never allowing his results to be controlled or corrected by evidence of any other character. He had, in fact, no philology, and he was deficient in sound critical judgment. He thoroughly misapprehended the character of the Hindu astronomical literature, thinking it to be, in the main, a mass of forgeries framed for the purpose of deceiving the world respecting the antiquity of the Hindu people. Many of his most confident conclusions have already been overthrown by evidence of which not even he would venture to question the verity, and we are persuaded that but little of his work would stand the test of a thorough examination.

The annexed table presents a comparison of the times of mean sidereal revolution of the planets assumed by the Hindu astronomy, as represented by two of its principal text-books, with those adopted by the great Greek astronomer, and those which modern science has established. The latter are, for the primary planets, from Le Verrier; for the moon, from Nichol (Cyclopedia of the Physical Sciences, London: 1857). Those of Ptolemy are deduced from the mean daily rates of motion in longitude given by him in the Syntaxis, allowing for the movement of the equinox according to the false rate adopted by him, of 36̊ yearly.

Comparative Table of the Sidereal Revolutions of the Planets.

<table>
<thead>
<tr>
<th>Planet</th>
<th>Sūrya-Siddhānta</th>
<th>Siddhānta-Ḍiromani</th>
<th>Ptolemy</th>
<th>Moderns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sun</td>
<td>365 6 12 36.6</td>
<td>365 6 13 9.0</td>
<td>365 36 9 48.6</td>
<td>365 6 9 10.8</td>
</tr>
<tr>
<td>Mercury</td>
<td>87 23 18 22.3</td>
<td>87 23 16 41.5</td>
<td>87 23 16 42.9</td>
<td>87 23 15 43.9</td>
</tr>
<tr>
<td>Venus</td>
<td>234 16 45 56.3</td>
<td>234 16 45 1.9</td>
<td>234 16 51 56.8</td>
<td>234 16 49 8.0</td>
</tr>
<tr>
<td>Mars</td>
<td>686 23 56 23.5</td>
<td>686 23 57 1.5</td>
<td>686 23 31 56.1</td>
<td>686 23 30 41.4</td>
</tr>
<tr>
<td>Jupiter</td>
<td>4,332 7 41 44.4</td>
<td>4,332 5 45 43.7</td>
<td>4,332 18 9 10.5</td>
<td>4,332 14 2 8.6</td>
</tr>
<tr>
<td>Saturn</td>
<td>10,765 18 33 13.6</td>
<td>10,765 19 33 56.5</td>
<td>10,758 17 48 14.9</td>
<td>10,759 16 32.2</td>
</tr>
<tr>
<td>Moon</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sid. rev.</td>
<td>27 7 43 12.6</td>
<td>27 7 43 12.1</td>
<td>27 7 43 12.1</td>
<td>27 7 43 11.4</td>
</tr>
<tr>
<td>synod. rev.</td>
<td>29 12 44 2.8</td>
<td>29 12 44 2.3</td>
<td>29 12 44 2.3</td>
<td>29 12 44 2.9</td>
</tr>
<tr>
<td>rev. of apsis, " node,</td>
<td>3,332 2 14 53.4</td>
<td>3,332 17 37 6.0</td>
<td>3,332 9 52 13.6</td>
<td>3,332 13 48 29.6</td>
</tr>
</tbody>
</table>
time as Bentley would have pronounced, upon internal evidence, to have been composed early in the sixteenth century; while, nevertheless, the original error of the sun would remain, untouched and increasing, to indicate what was the true state of the case.

But what is the actual position of things with regard to our Siddhânta? We find that it presents us a set of planetary elements, which, when tested by the errors of position, in the manner already explained, do not appear to have been constructed so as to give the true sidereal positions at any assignable epoch, but which, on the other hand, exhibit evidences of an attempt to bring the places of the other planets into an accordance with that of the sun, made sometime in the tenth or eleventh century—the precise time is very doubtful, the discrepancies of the times of no error being far too great to give a certain result. Now it is as certain as anything in the history of Sanskrit literature can be, that there was a Sûrya-Siddhânta in existence long before that date; there is also evidence in the references and citations of other astronomical works (see Colebrooke, Essays, ii. 484; Hind. Alg., p. 1) that there have been more versions than one of a treatise bearing the title; and we have seen above, in verse 9, a not very obscure intimation that the present work does not present precisely the same elements which had been accepted formerly as those of the Sûrya-Siddhânta. What can lie nearer, then, than to suppose that in the tenth or eleventh century a correction of bija was calculated for application to the elements of the Siddhânta, and was then incorporated into the text, by the easy alteration of four or five of its verses; and accordingly, that while the comparative errors of the other planets betray the date of the correction, the absolute error of the sun indicates approximately the true date of the treatise?

In our table, the time of no error of the sun is given as A.D. 250. The correctness of this date, however, is not to be too strongly insisted upon, being dependent upon the correctness with which the sun’s place was first determined, and then referred to the point assumed as the origin of the sphere. It was, of course, impossible to observe directly when the sun’s centre, by his mean motion, was 10° east of ζ Piscium, and there are grave errors in the determination by the Hindus of the distances from that point of the other points fixed by them in their zodiac. And a mistake of 1° in the determination of the sun’s place would occasion a difference of 425 years in the resulting date of no error. We shall have occasion to recur to this subject in connection with the eighth chapter.

There is also an alternative supposition to that which we have made above, respecting the conclusion from the date of no error of the sun. If the error in the sun’s motion were a fundamental feature of the whole Hindu system, appearing alike in all the different text-books of the science, that date would point to the origin rather of the whole system than of any treatise which might exhibit it. But although the different Siddhântas nearly agree with one another respecting the length of the sidereal year, they do not entirely accord, as is made evident by the following statement, in which are included all the authorities to which we have access, either in the original, or as reported by Colebrooke, Bentley, and Warren:
In the first place, Bentley has made a very serious error in that part of his calculations which concerns the planet Mercury. As that planet was, at the epoch, many degrees behind its assumed place, it was necessary, of course, to assign to it a slower than its true rate of motion. But the rate actually given it by the text is not quite enough slower, and, instead of exhausting the original error of position in the tenth century of our era, as stated by Bentley, would not so dispose of it for many hundred years yet to come. Hence the correction of the bija, as reported by Bentley himself, instead of giving to Mercury, as to all the rest, a more correct rate of motion, is made to have the contrary effect, in order the sooner to run out the original error of assumed position, and produce a coincidence between the calculated and the true places of the planet.

In the case of the other planets, the times of no error found by Bentley agree pretty nearly with those which we have ourselves obtained, both by calculating backward from the errors of A.D. 1860, and by calculating downward from those of B.C. 3102, and which are presented in the table given under verse 67. Upon comparing the two tables, however, it will be seen at once that Bentley's conclusions are drawn, not from the sidereal errors of position of the planets, but from the errors of their positions as compared with that of the sun, and that of the sun's own error he makes no account at all. This is a method of procedure which certainly requires a much fuller explanation and justification than he has seen fit anywhere to give of it. The Hindu sphere is a sidereal one, and in no wise bound to the movement of the sun. The sun, like the other planets, was not in the position assumed for him at the epoch of 3102 B.C., and consequently the rate of motion assigned to him by the system is palpably different from the real one: the sidereal year is about three minutes and a half too long. Why then should the sun's error be ignored, and the sidereal motions of the other planets considered only with reference to the incorrect rate of motion established for him? It is evident that Bentley ought to have taken fully into consideration the sun's position also, and to have shown either that it gave a like result with those obtained from the other planets, or, if not, what was the reason of the discrepancy. By failing to do so, he has, in our opinion, omitted the most fundamental datum of the whole calculation, and the one which leads to the most important conclusions. We have seen, in treating of the bija, that it has been the aim of the modern Hindu astronomers, leaving the sun's error untouched, to amend those of the other planets to an accordance with it. Now, as things are wont to be managed in the Hindu literature, it would be no matter for surprise if such corrections were incorporated into the text itself: had not the Śūrya-Siddhānta been, at the beginning of the sixteenth century, so widely distributed, and its data so universally known, and had not the Hindu science outlived already that growing and productive period of its history when a school of astronomy might put forth a corrected text of an ancient authority, and expect to see it make its way to general acceptance, crowding out, and finally causing to disappear, the older version—such a process of alteration might, in our view, have passed upon it, and such a text might have been handed down to our
Now if it is possible by this method to arrive approximately at the date of a correction applied to the elements of a Siddhānta, it should be possible in like manner to arrive at the date of those elements themselves. For, owing to the false assumption of position at the epoch, there is but one point of time at which any of the periods of revolution will give the true place of its planet: if, then, as is to be presumed, the true places were nearly determined when any treatise was composed, and were made to enter as an element into the construction of its system, the comparison of the dates of no error will point to the epoch of its composition. The method, indeed, as is well known to all those who have made any studies in the history of Hindu astronomy, has already been applied to this purpose, by Mr. Bentley. It was first originated and put forth by him (in vol. vi. of the Asiatic Researches) at a time when the false estimate of the age and value of the Hindu astronomy presented by Bailly was still the prevailing one in Europe; he strenuously defended it against more than one attack (As. Res., viii. and Hind. Ast.), and finally employed it very extensively in his volume on the History of Hindu Astronomy, as a means of determining the age of the different Siddhāntas. We present below the table from which, in the latter work (p. 126), he deduces the age of the Sūrya-Siddhānta: the column of approximate dates of no error we have ourselves added.

Bentley’s Table of Errors in the Positions of the Planets, as calculated, for successive periods, according to the Sūrya-Siddhānta.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A. D.</td>
<td>A. D.</td>
<td>A. D.</td>
<td>A. D.</td>
<td>A. D.</td>
<td>A. D.</td>
<td></td>
</tr>
<tr>
<td>Mercury</td>
<td>+33 35 35 35 35 9 5 5</td>
<td>+16 54 9 8 38 26 3 21 46</td>
<td>-1 12 28</td>
<td></td>
<td></td>
<td></td>
<td>945</td>
</tr>
<tr>
<td>Venus</td>
<td>-33 43 36 36 34 37 31</td>
<td>-16 31 26 -8 25 21 -3 14 45</td>
<td>+1 14 3</td>
<td></td>
<td></td>
<td></td>
<td>939</td>
</tr>
<tr>
<td>Mars</td>
<td>+13 5 42 9 20 39 24 6 47 22 4 8 12 2 26 30</td>
<td>+58 29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1458</td>
</tr>
<tr>
<td>Jupiter</td>
<td>-17 2 53 -12 44 16 16 -8 35 36 -4 7 2 -1 21 47</td>
<td>+41 14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>966</td>
</tr>
<tr>
<td>Saturn</td>
<td>+20 59 3 +15 43 20 20</td>
<td>+10 27 37 +5 11 54 +1 51 10 -1 -4 25</td>
<td>887</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moon</td>
<td>- 5 52 41 - 3 50 48 - 2 9 17 -9 52 33 -18 30 -0 0 11</td>
<td>1097</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>" apsis, -30 11 25 -33 9 36 -16 7 47 -9 5 56 -4 36 26</td>
<td>-43 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1193</td>
</tr>
<tr>
<td></td>
<td>" node, +23 37 31 +17 59 21 +13 31 11 7 3 1 3 33 19</td>
<td>+31 50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1158</td>
</tr>
</tbody>
</table>

From an average of the results thus obtained, Bentley draws the conclusion that the Sūrya-Siddhānta dates from the latter part of the eleventh century; or, more exactly, A. D. 1091.

The general soundness of Bentley's method will, we apprehend, be denied at the present time by few, and he is certainly entitled to not a little credit for his ingenuity in devising it, for the persevering industry shown in its application, and for the zeal and boldness with which he propounded and defended it. He succeeded in throwing not a little light upon an obscure and misapprehended subject, and his investigations have contributed very essentially to our present understanding of the Hindu systems of astronomy. But the details of his work are not to be accepted without careful testing, and his general conclusions are often unsound, and require essential modification, or are to be rejected altogether. This we will attempt to show in connection with his treatment of the Sūrya-Siddhānta.
presented by several treatises of that as well as of later date, not having been yet superseded by others intended to secure yet greater correctness.

Mean Motions of the Planets as corrected by the bija.

<table>
<thead>
<tr>
<th>Planet</th>
<th>Correction</th>
<th>Corrected number of revolutions in 4,280,000 years</th>
<th>Corrected time of revolution</th>
<th>Corrected daily motion.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sun</td>
<td>0</td>
<td>4,320,000, 1,880,000</td>
<td>355 15 31 1.14</td>
<td>59 8 10 10.4</td>
</tr>
<tr>
<td>Mercury</td>
<td>16</td>
<td>17,937,044, 4,884,061</td>
<td>87 58 11 1.36</td>
<td>4 5 32 19 54.3</td>
</tr>
<tr>
<td>Venus</td>
<td>-12</td>
<td>7,022,364, 1,755,591</td>
<td>224 41 56 1.35</td>
<td>1 36 7 43 1.8</td>
</tr>
<tr>
<td>Mars</td>
<td>0</td>
<td>2,596,832, 574,308</td>
<td>686 59 30 5.87</td>
<td>31 26 28 11.1</td>
</tr>
<tr>
<td>Jupiter</td>
<td>-8</td>
<td>364,212, 91,053</td>
<td>4,332 24 56 5.56</td>
<td>4 59 8 24.9</td>
</tr>
<tr>
<td>Saturn</td>
<td>12</td>
<td>1,60,580, 36,645</td>
<td>10,704 53 30 1.11</td>
<td>2 0 33 28.9</td>
</tr>
<tr>
<td>Moon</td>
<td>0</td>
<td>57,753,336, 14,438,334</td>
<td>27 19 18 0.16</td>
<td>13 10 34 52 3.8</td>
</tr>
<tr>
<td>* apsis*</td>
<td>-4</td>
<td>488,199, 123,049</td>
<td>3,332 7 12 3.37</td>
<td>6 40 58 30.7</td>
</tr>
<tr>
<td>* node*</td>
<td>+ 4</td>
<td>232,242, 58,060</td>
<td>6,794 16 58 0.66</td>
<td>3 10 44 55.0</td>
</tr>
</tbody>
</table>

We need not, however, rely on external testimony alone for information as to the period when this correction was made. If the attempt to modify the elements in such a manner as to make them give the true positions of the planets at the time when they were so modified was in any tolerable degree successful, we ought to be able to discover by calculation the date of the alteration. If we ascertain for any given time the positions of the planets as given by the system, and compare them with the true positions as found by our best modern methods, and if we then divide the differences of position by the differences in the mean motions, we shall discover, in each separate case, when the error was or will be reduced to nothing. The results of such a calculation, made for Jan. 1, 1860, are given below, under v. 67. We see there that, if regard is had to the absolute errors in the positions of the planets, no conclusion of value can be arrived at; the discrepancies between the dates of no error are altogether too great to allow of their being regarded as indicating any definite epoch of correction. If, on the other hand, we assume the place of the sun to have been the standard by which the positions of the other planets were tested, the dates of no error are seen to point quite distinctly to the first half of the sixteenth century as the time of the correction, their mean being A.D. 1541. Upon this assumption, also, we see why no correction of bija was applied to Mars or to the moon: the former had, at the given time, only just passed his time of complete accordance with the sun, and the motion of the moon was also already so closely adjusted to that of the sun, that the difference between their errors of position is even now less than 10'. Nor is there any other supposition which will explain why the serious error in the position of the sun himself was overlooked at the time of the general correction, and why, by that correction, the absolute errors of position of more than one of the planets are made greater than they would otherwise have been, as is the case. It is, in short, clearly evident that the alteration of the elements of the Śrīra-Siddhānta which was effected early in the sixteenth century, was an adaptation of the errors of position of the other planets to that of the sun, assumed to be correct and regarded as the standard.
elapsed must be an exact multiple of the lesser period of 1,080,000 years, or the quarter-Age; in order to give its proper position to the moon’s apsis, that time must contain a certain number of whole Ages, which are the periods of conjunction of the latter with the planets, together with a remainder of three quarter-Ages; for the moon’s node, in like manner, it must contain a certain number of half-Ages, with a remainder of one quarter-Age. Now the whole number of years elapsed between the beginning of the Æon and that of the current Iron Age is equal to 1826 quarter-Ages, with an odd surplus of 864,000 years: from it subtract an amount of time which shall contain this surplus, together with three, seven, eleven, fifteen, or the like (any number exceeding by three a multiple of four), quarter-Ages, and the remainder will fulfill the conditions of the problem. The deduction actually made is of fifteen periods + the surplus.

This deduction is a clear indication that, as remarked above (under v. 17), the astronomical system was compelled to adapt itself to an already established Puranic chronology. It could, indeed, fix the previously undetermined epoch of the commencement of the Iron Age, but it could not alter the arrangement of the preceding periods.

It is evident that, with whatever accuracy the mean positions of the planets may, at a given time, be ascertained by observation by the Hindu astronomers, their false assumption of a conjunction at the epoch of 3102 B.C. must introduce an element of error into their determination of the planetary motions. The annual amount of that error may indeed be small, owing to the remoteness of the epoch, and the great number of years among which the errors of assumed position are divided, yet it must in time grow to an amount not to be ignored or neglected even by observers so inaccurate, and theorists so unscrupulous, as the Hindus. This is actually the case with the elements of the Sûrya-Siddhânta; the positions of the planets, as calculated by them for the present time, are in some cases nearly 9° from the true places. The later astronomers of India, however, have known how to deal with such difficulties without abrogating their ancient text-books. As the Sûrya-Siddhânta is at present employed in astronomical calculations, there are introduced into its planetary elements certain corrections, called bija (more properly bija; the word means literally “seed”; we do not know how it arrived at its present significations in the mathematical language). That this was so, was known to Davis (As. Res., ii. 236), but he was unable to state the amount of the corrections, excepting in the case of the moon’s apsis and node (ibid., p. 275). Bentley (Hind. Ast., p. 179) gives them in full, and upon his authority we present them in the annexed table. They are in the form, it will be noticed, of additions to, or subtractions from, the number of revolutions given for an Age, and the numbers are all divisible by four, in order not to interfere with the calculation by the lesser period of 1,080,000 years. We have added the corrected number of revolutions, for both the greater and lesser period, the corrected time of revolution, expressed in Hindu divisions of the day, and the corrected amount of mean daily motion.

These corrections were first applied, according to Mr. Bentley (As. Res., viii. 220), about the beginning of the sixteenth century; they are
tendent of the American Ephemeris and Nautical Almanac. The positions of the primary planets are obtained by Le Verrier’s times of sidereal revolution, given in the Annales de l’Observatoire, tom. ii (also in Biot’s Astronomie, 3me edition, tom. v, 1857), that of the moon by Peirce’s tables, and those of its apogee and node by Hansen’s Tables de la Lune. The origin of the Hindu sphere is regarded as being 18° 5′ 8″ east of the vernal equinox of Jan. 1, 1860, and 50° 22′ 29″ west of that of Feb. 17, 3102 B.C., the precession in the interval being 68° 27′ 37″. We add, in a second column, the mean longitudes, as reckoned from the vernal equinox of the given date, for the sake of comparison with the similar data given by Bentley (Hind. Ast., p. 125) and by Bailly (Ast. Ind. et Or., pp. 111, 182), which we also subjoin.

Positions of the Planets, midnight, at Ujjayini, Feb. 17–18, 3102 B.C.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sun</td>
<td>- 7 51 43</td>
<td>301 45 43</td>
<td>301 1 1</td>
</tr>
<tr>
<td>Mercury</td>
<td>- 41 3 26</td>
<td>368 34 5</td>
<td>367 35 26</td>
</tr>
<tr>
<td>Venus</td>
<td>+ 24 58 59</td>
<td>334 36 30</td>
<td>334 14 37</td>
</tr>
<tr>
<td>Mars</td>
<td>- 19 49 26</td>
<td>389 48 5</td>
<td>388 55 19</td>
</tr>
<tr>
<td>Jupiter</td>
<td>+ 8 38 36</td>
<td>318 16 7</td>
<td>318 3 54</td>
</tr>
<tr>
<td>Saturn</td>
<td>- 28 1 13</td>
<td>281 36 18</td>
<td>280 1 18</td>
</tr>
<tr>
<td>Moon</td>
<td>- 1 33 41</td>
<td>308 3 50</td>
<td>307 5 34</td>
</tr>
<tr>
<td>do. apos.</td>
<td>+ 95 19 21</td>
<td>44 56 42</td>
<td>61 12 26</td>
</tr>
<tr>
<td>do. node</td>
<td>+ 198 24 45</td>
<td>148 2 16</td>
<td>144 37 41</td>
</tr>
</tbody>
</table>

The want of agreement between the results of the three different investigations illustrates the difficulty and uncertainty even yet attending inquiries into the positions of the heavenly bodies at so remote an epoch. It is very possible that the calculations of the astronomers who were the framers of the Hindu system may have led them to suppose the approach to a conjunction nearer than it actually was; but, however that may be, it seems hardly to admit of a doubt that the epoch was arrived at by astronomical calculation carried backward, and that it was fixed upon as the date of the last general conjunction, and made to determine the commencement of the present Age of the world, because the errors of the assumed positions of the planets at that time would be so small, and the number of years since elapsed so great, as to make the errors in the mean motions into which those positions entered as an element only trifling in amount.

The moon’s aposis and node, however, were treated in a different manner. Their distance from the initial point of the sphere, as shown by the table, was too great to be disregarded. They were accordingly exempted from the general law of a conjunction once in 1,080,000 years, and such a number of revolutions was assigned to them as should make their positions at the epoch come out, the one a quadrant, the other a half-revolution, in advance of the initial point of the sphere.

We can now see why the deduction spoken of above (v. 24), for time spent in creation, needed to be made. In order to bring all the planets to a position of mean conjunction at the epoch, the time previously
Mean Motions of the Planets.

<table>
<thead>
<tr>
<th>Planet</th>
<th>Number of revolutions in 6,320,000 years.</th>
<th>Number of revolutions in 1,080,000 years.</th>
<th>Length of a revolution in mean solar time.</th>
<th>Mean daily motion.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sun</td>
<td>4,320,000</td>
<td>1,080,000</td>
<td>365 15 31 3.14</td>
<td>59 8 10 10.4</td>
</tr>
<tr>
<td>Mercury</td>
<td>17,937,060</td>
<td>4,884,665</td>
<td>87 58 10 5.57</td>
<td>4 5 32 20 41.9</td>
</tr>
<tr>
<td>Venus</td>
<td>7,022,376</td>
<td>1,755,594</td>
<td>224 41 53 5.06</td>
<td>1 36 7 43 37.3</td>
</tr>
<tr>
<td>Mars</td>
<td>2,268,832</td>
<td>574,308</td>
<td>686 59 50 5.87</td>
<td>31 26 28 11.1</td>
</tr>
<tr>
<td>Jupiter</td>
<td>364,320</td>
<td>91,055</td>
<td>4,332 19 14 2.09</td>
<td>4 59 8 48.6</td>
</tr>
<tr>
<td>Saturn</td>
<td>1,46,568</td>
<td>36,642</td>
<td>10,765 45 23 0.41</td>
<td>2 0 22 53.4</td>
</tr>
<tr>
<td>Moon</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sider. rev.</td>
<td>57,753,336</td>
<td>14,438,334</td>
<td>27 79 18 0.16</td>
<td>13 10 34 52 3.8</td>
</tr>
<tr>
<td>synod. rev.</td>
<td>53,433,336</td>
<td>13,358,334</td>
<td>29 31 50 0.70</td>
<td>12 11 26 41 53.4</td>
</tr>
<tr>
<td>rev. of aphis,</td>
<td>488,203</td>
<td>123,650</td>
<td>3,332 5 37 1.36</td>
<td>6 40 58 42.5</td>
</tr>
<tr>
<td>node</td>
<td>232,238</td>
<td>58,694</td>
<td>6,794 23 59 2.35</td>
<td>3 10 44 43.3</td>
</tr>
</tbody>
</table>

The arbitrary and artificial method in which the fundamental elements of the solar system are here presented is not peculiar to the Sûrya-Siddhânta; it is also adopted by all the other text-books, and is to be regarded as a characteristic feature of the general astronomical system of the Hindus. Instead of deducing the rate of motion of each planet from at least two recorded observations of its place, and establishing a genuine epoch, with the ascertained position of each at that time, they start with the assumption that, at the beginning of the present order of things, all the planets, with their apsides and nodes, commenced their movement together at that point in the heavens (near 12° Pisces, as explained above, under verse 27) fixed upon as the initial point of the sidereal sphere, and that they return, at certain fixed intervals, to a universal conjunction at the same point. As regards, however, the time when the motion commenced, the frequency of recurrence of the conjunction, and the date of that which last took place, there is discordance among the different authorities. With the Sûrya-Siddhânta, and the other treatises which adopt the same general method, the determining point of the whole system is the commencement of the current Iron Age (kali yuga); at that epoch the planets are assumed to have been in mean conjunction for the last time at the initial point of the sphere, the former conjunctions having taken place at intervals of 1,080,000 years previous. The instant at which the Age is made to commence is midnight on the meridian of Ujjaini (see below, under v. 62), at the end of the 588,465th and beginning of the 588,466th day (civil reckoning) of the Julian Period, or between the 17th and 18th of February 1612 J.P., or 3102 B.C. (see below, under vv. 45-53, for the computation of the number of days since elapsed). Now, although no such conjunction as that assumed by the Hindu astronomers ever did or ever will take place, the planets were actually, at the time stated, approximating somewhat nearly to a general conjunction in the neighborhood of the initial point of the Hindu sphere; this is shown by the next table, in which we give their actual mean positions with reference to that point (including also those of the moon's apogee and node); they have been obligingly furnished us by Prof. Winlock, Superin-
work. But the apparent motions of the planets are greatly complicated by the fact, unknown to the Greek and the Hindu, that they are revolving about a centre about which the earth also is revolving. When any planet is on the opposite side of the sun from us, and is accordingly moving in space in a direction contrary to ours, the effect of our change of place is to increase the rate of its apparent change of place; again, when it is upon our side of the sun, and moving in the same direction with us, the effect of our motion is to retard its apparent motion, and even to cause it to seem to retrograde. This explains the "revolutions of the conjunction" of the three superior planets: their "conjunctions" revolve at the same rate with the earth, being always upon the opposite side of the sun from us; and when, by the combination of its own proper motion with that of its conjunction, the planet gets into the latter, its rate of apparent motion is greatest, becoming less in proportion as it removes from that position. The meaning of the word which we have translated "conjunction" is "swift, rapid;" a literal rendering of it would be "swift-point," or "apex of swiftest motion;" but, after much deliberation, and persevering trial of more than one term, we have concluded that "conjunction" was the least exceptional word by which we could express it. In the case of the inferior planets, the revolution of the conjunction takes the place of the proper motion of the planet itself. By the definition given in verse 27, a planet must, in order to complete a revolution, pass through the whole zodiac; this Mercury and Venus are only able to do as they accompany the sun in his apparent annual revolution about the earth. To the Hindus, too, who had no idea of their proper movement about the sun, the annual motion must have seemed the principal one; and that by virtue of which, in their progress through the zodiac, they moved now faster and now slower, must have appeared only of secondary importance. The term "conjunction," as used in reference to these planets, must be restricted, of course, to the superior conjunction. The physical theories by which the effect of the conjunction (ṣṭhāna) is explained, are given in the next chapter. In the table that follows we have placed opposite each planet its own proper revolutions only.

It is farther to be observed that all the numbers of revolutions, excepting those of the moon's axis and node, are divisible by four, so that, properly speaking, a quarter of an Age, or 1,080,000 years, rather than a whole Age, is their common period. This is a point of so much importance in the system of the Sūrya-Siddhānta, that we have added, in a second column, the number of revolutions in the lesser period.

In the third column, we add the period of revolution of each planet, as found by dividing by the number of revolutions of each the number of civil days in an Age (which is equal to the number of sidereal days, given in v. 34, diminished by the number of revolutions of the sun; see below, v. 37); they are expressed in days, nādis, vinādis, and respirations; the latter may be converted into sexagesimals of the third order by moving the decimal point one place farther to the right.

In the fourth column are given the mean daily motions.

We shall present later some comparison of these elements with those adopted in other systems of astronomy, ancient and modern.
portion." The proper signification of *rāci*, translated "sign," is simply "heap, quantity," it is doubtless applied to designate a sign as being a certain number, or sum, of degrees, analogous to the use of *gana* in *bhagaṇa* (explained above, in the last note), and of *rāci* itself in *dinarteği*, "sum of days" (below, v. 53). In the Hindu description of an arc, the sign is as essential an element as the degree, and no arcs of greater length than thirty degrees are reckoned in degrees alone, as we are accustomed to reckon them. The Greek usage was the same. We shall hereafter see that the signs into which any circle of revolution is divided are named Aries, Taurus, etc., beginning from the point which is regarded as the starting point; so that these names are applied simply to indicate the order of succession of the arcs of thirty degrees.

29. In an Age (*yuga*), the revolutions of the sun, Mercury, and Venus, and of the conjunctions (*ṣighra*) of Mars, Saturn, and Jupiter, moving eastward, are four million, three hundred and twenty thousand;

30. Of the moon, fifty-seven million, seven hundred and fifty-three thousand, three hundred and thirty-six; of Mars, two million, two hundred and ninety-six thousand, eight hundred and thirty-two;

31. Of Mercury's conjunction (*ṣighra*), seventeen million, nine hundred and thirty-seven thousand, and sixty; of Jupiter, three hundred and sixty-four thousand, two hundred and twenty;

32. Of Venus's conjunction (*ṣighra*), seven million, twenty-two thousand, three hundred and seventy-six; of Saturn, one hundred and forty-six thousand, five hundred and sixty-eight;

33. Of the moon's apsis (*ucca*), in an Age, four hundred and eighty-eight thousand, two hundred and three; of its node (*pāta*), in the contrary direction, two hundred and thirty-two thousand, two hundred and thirty-eight;

34. Of the asterisms, one billion, five hundred and eighty-two million, two hundred and thirty-seven thousand, eight hundred and twenty-eight....

These are the fundamental and most important elements upon which is founded the astronomical system of the Sūrya-Siddhānta. We present them below in a tabular form, but must first explain the character of some of them, especially of some of those contained in verse 29, which we have omitted from the table.

The revolutions of the sun, and of Mars, Jupiter, and Saturn, require no remark, save the obvious one that those of the sun are in fact sidereal revolutions of the earth about the sun. To the sidereal revolutions of the moon we add also her synodical revolutions, anticipated from the next following passage (see v. 35). By the moon's "apsis" is to be understood her apoγee; *ucca* is literally "height," i.e. "extreme distance"; the commentary explains it by *mandrocco*, "apex of slowest motion:" as the same word is used to designate the apheres of the planets, we were obliged to take in translating it the indifferent term apsis, which applies equally to both geocentric and heliocentric motion. The "node" is the ascending node (see ii. 7); the dual "nodes" is never employed in this
The absolute motion eastward of all the planets being equal, their apparent motion is, of course, in the (inverse) ratio of their distance, or of the dimensions of their orbits.

The word translated “revolution” is bhāgāṇa, literally “troop of asterisms;” the verbal root translated “pass through” is bhuj, “enjoy,” from which comes also the common term for the daily motion of a planet, bhūkti, literally “enjoyment.” When a planet has “enjoyed the whole troop of asterisms,” it has made a complete revolution.

The initial point of the fixed Hindu sphere, from which longitudes are reckoned, and at which the planetary motions are held by all the schools of Hindu astronomy to have commenced at the creation, is the end of the asterism Revaṭi, or the beginning of Aṣvinī (see chapter viii. for a full account of the asterisms). Its situation is most nearly marked by that of the principal star of Revaṭi, which, according to the Śūrya-Siddhānta, is 10° to the west of it, but according to other authorities exactly coincides with it. That star is by all authorities identified with ζ Piscium, of which the longitude at present, as reckoned by us, from the vernal equinox, is 17° 54’. Making due allowance for the precession, we find that it coincided in position with the vernal equinox not far from the middle of the sixth century, or about A.D. 570. As such coincidence was the occasion of the point being fixed upon as the beginning of the sphere, the time of its occurrence marks approximately the era of the fixation of the sphere, and of the commencement of the history of modern Hindu astronomy. We say approximately only, because, in the first place, as will be shown in connection with the eighth chapter, the accuracy of the Hindu observations is not to be relied upon within a degree; and, in the second place, the limits of the asterisms being already long before fixed, it was necessary to take the beginning of some one of them as that of the sphere, and the Hindus may have regarded that of Aṣvinī as sufficiently near to the equinox for their purpose, when it was, in fact, two or three degrees, or yet more, remote from it, on either side; and each degree of removal would correspond to a difference in time of about seventy years.

In the most ancient recorded lists of the Hindu asterisms (in the texts of the Black Yajur-Veda and of the Atharva-Veda), Kṛttikā, now the third, appears as the first. The time when the beginning of that asterism coincided with the vernal equinox would be nearly two thousand years earlier than that given above for the coincidence with it of the first point of Aṣvinī.

28. Sixty seconds (viśkalā) make a minute (kalā); sixty of these, a degree (bhāga); of thirty of the latter is composed a sign (rāsi); twelve of these are a revolution (bhāgāṇa).

The Hindu divisions of the circle are thus seen to be the same with the Greek and with our own, and we shall accordingly make use, in translating, of our own familiar terms. Of the second (viśkalā) very little practical use is made; it is not more than two or three times alluded to in all the rest of the treatise. The minute (kalā) is much more often called liptā (or liptikā); this is not an original Sanskrit word, but was borrowed from the Greek στρόφος. The degree is called either bhāga or anca; both words, like the equivalent Greek word μέση, mean a “part,
27. One which moves swiftly passes through them in a short time; one which moves slowly, in a long time. By their movement, the revolution is accounted complete at the end of the asterism Revati.

We have here presented a part of the physical theory of the planetary motions, that which accounts for the mean motions: the theory is supplemented by the explanation given in the next chapter of the disturbing forces which give rise to the irregularities of movement. The earth is a sphere, and sustained immovable in the centre of the universe (xii. 32), while all the heavenly bodies, impelled by winds, or vortices, called pro-vectors (ii. 3), revolve about it from east to west. In this general westward movement, the planets, as the commentary explains it, are, owing to their weight and the weakness of their vortices, beaten by the asterisms (nakshatra or bha, the groups of stars constituting the lunar mansions [see below, chapter viii], and used here, as in various other places, to designate the whole firmament of fixed stars), and accordingly fall behind (lambante—labuntur, delabuntur), as if from shame; and this is the explanation of their eastward motion, which is only apparent and relative, although wont to be regarded as real by those who do not understand the true causes of things. But now a new element is introduced into the theory, which does not seem entirely consistent with this view of the merely relative character of the eastward motion. It is asserted that the planets lag behind equally, or that each, moving in its own orbit, loses an equal amount daily, as compared with the asterisms. And we shall find farther on (xii. 73–89) that the dimensions of the planetary orbits are constructed upon this sole principle, of making the mean daily motion of each planet eastward to be the same in amount, namely 11,858,717 yojanas: the amount of westward motion being equal, in each case, to the difference between this amount and the whole orbit of the planet. Now if the Hindu idea of the symmetry and harmony of the universe demanded that the movements of the planets should be equal, it was certainly a very awkward and unsatisfactory way of complying with that demand to make the relative motions alone, as compared with the fixed stars, equal, and the real motions so vastly different from one another. We should rather expect that some method would have been devised for making the latter come out alike, and the former unlike, and the result of differences in the weights of the planets and the forces of the impelling currents. It looks as if this principle, and the conformity to it of the dimensions of the orbits, might have come from those who regarded the apparent daily motion as the real motion. But we know that Āryabhata held the opinion that the earth revolved upon its axis, causing thereby the apparent westward motion of the heavenly bodies (see Colebrooke's Hindu Algebra, p. xxxviii; Essays, ii. 467), and so, of course, that the planets really moved eastward at an equal rate among the stars; and although the later astronomers are nearly unanimous against him, we cannot help surmising that the theory of the planetary orbits emanated from him or his school, or from some other of like opinion. It is not upon record, so far as we are aware, that any Hindu astronomer, of any period, held, as did some of the Greek philosophers (see Whewell's History of the Inductive Sciences, B. V. ch. i), a heliocentric theory.
accepted: under the word kalpa, in the Lexicon of Böhtlingk and Roth, may be found another system of names for these periods. *Manu* (i. 61, 62) gives the names of the Patriarchs of the past Patriarchates; the Purānas add other particulars respecting them, and also respecting those which are still to come (see Wilson’s Vish. Pur. p. 259, etc.).

The end of the Golden Age of the current Great Age is the time at which the Sūrya-Siddhānta claims to have been revealed, and the epoch from which its calculations profess to commence. We will, accordingly, as the Sun directs, compute the number of years which are supposed to have elapsed before that period.

<table>
<thead>
<tr>
<th>Divine years</th>
<th>Solar years</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,400</td>
<td>1,728,000</td>
</tr>
<tr>
<td>3,140,800</td>
<td>1,850,688,000</td>
</tr>
<tr>
<td>324,000</td>
<td>116,640,000</td>
</tr>
<tr>
<td>5,469,600</td>
<td>1,669,268,000</td>
</tr>
<tr>
<td>4,860</td>
<td>1,728,000</td>
</tr>
<tr>
<td>5,474,400</td>
<td>1,970,784,000</td>
</tr>
<tr>
<td>432,000,000,000</td>
<td>155,520,000,000,000</td>
</tr>
</tbody>
</table>

As the existing creation dates from the commencement of the current *Aeon*, the second of the above totals is the only one with which the Sūrya-Siddhānta henceforth has anything to do.

We are next informed that the present order of things virtually began at a period less distant than the commencement of the *Aeon*.

24. One hundred times four hundred and seventy-four divine years passed while the All-wise was employed in creating the animate and inanimate creation, plants, stars, gods, demons, and the rest.

That is to say:

<table>
<thead>
<tr>
<th>Divine years</th>
<th>Solar years</th>
</tr>
</thead>
<tbody>
<tr>
<td>5,474,400</td>
<td>1,970,784,000</td>
</tr>
<tr>
<td>47,400</td>
<td>17,064,000</td>
</tr>
<tr>
<td>5,427,000</td>
<td>1,953,720,000</td>
</tr>
</tbody>
</table>

This, then, is the time elapsed from the true commencement of the existing order of things to the epoch of this work. The deduction of this period as spent by the Deity in the work of creation is a peculiar feature of the Sūrya-Siddhānta. We shall revert to it later (see below, under vv. 29–34), as its significance cannot be shown until other data are before us.

25. The planets, moving westward with exceeding velocity, but constantly beaten by the asterisms, fall behind, at a rate precisely equal, proceeding each in its own path.

26. Hence they have an eastward motion. From the number of their revolutions is derived their daily motion, which is different according to the size of their orbits; in proportion to this daily motion they pass through the asterisms.
We have already found indications of an assumed destruction of existing things at the termination of the lesser periods called the Age and the Patriarchate, in the necessity of a new revelation of virtue and knowledge for every Age, and of a new father of the human race for every Patriarchate. These are left, it should seem, to show us how the system of cosmical periods grew to larger and larger dimensions. The full development of it, as exhibited in the Purāṇas and here, admits only two kinds of destruction: the one occurring at the end of each Æon, or day of Brahma, when all creatures, although not the substance of the world, undergo dissolution, and remain buried in chaos during his night, to be created anew when his day begins again; the other taking place at the end of Brahma's life, when all matter even is resolved into its ultimate source.

According to the commentary, the "hundred" in verse 21 means a hundred years, each composed of three hundred and sixty days and nights, and not a hundred days and nights only, as the text might be understood to signify; since, in all statements respecting age, years are necessarily understood to be intended. The length of Brahma's life would be, then, 864,000,000,000 divine years, or 311,040,000,000,000 solar years. This period is also called in the Purāṇas a para, "extreme period," and its half a parārdha (see Wilson's Vish. Pur. p. 25); although the latter term has obtained also an independent use, as signifying a period still more enormous (ibid. p. 630). It is curious that the commentator does not seem to recognize with this period of the expression used in the text, param āyuk, "extreme age," but gives two different explanations of it, both of which are forced and unnatural.

The author of the work before us is modestly content with the number of years thus placed at his disposal, and attempts nothing farther. So is it also with the Purāṇas in general; although some of them, as the Vishnu (Wilson, p. 637) assert that two of the greater parārdhas constitute only a day of Vishnu, and others (ibid. p. 25) that Brahma's whole life is but a twinkling of the eye of Krishna or of Viṣṇu.

21.... The half of his life is past; of the remainder, this is the first Æon.

22. And of this Æon, six Patriarchs (manu) are past, with their respective twilights; and of the Patriarch Manu son of Vivasvan, twenty-seven Ages are past;

23. Of the present, the twenty-eighth, Age, this Golden Age is past: from this point, reckoning up the time, one should compute together the whole number.

The designation of the part already elapsed of this immense period seems to be altogether arbitrary. It agrees in general with that given in the Purāṇas, and, so far as the Patriarchs and their periods are concerned, with Manu also. The name of the present Æon is Varāha, "that of the boar," because Brahma, in performing anew at its commencement the act of creation, put on the form of that animal (see Wilson's Vish. Pur. p. 27, etc.). The one preceding is called the Pādman, "that of the lotus." This nomenclature, however, is not universally
We ought to remark, however, that in the text itself of Manu (i. 68-71) the duration of the Great Age, called by him Divine Age, is given as twelve thousand years simply, and that it is his commentator who, by asserting these to be divine years, brings Manu's cosmogony to an agreement with that of the Purânas. This is a strong indication that the divine year is an afterthought, and that the period of 4,320,000 years is an expansion of an earlier one of 12,000. Vast as this period is, however, it is far from satisfying the Hindu craving after infinity. We are next called upon to construct a new period by multiplying it by a thousand.

18. One and seventy Ages are styled here a Patriarchate (manvantara); at its end is said to be a twilight which has the number of years of a Golden Age, and which is a deluge.

19. In an Æon (kalpa) are reckoned fourteen such Patriarchs (manu) with their respective twilights; at the commencement of the Æon is a fifteenth dawn, having the length of a Golden Age.

The Æon is accordingly thus composed:

<table>
<thead>
<tr>
<th>Divine years</th>
<th>Solar years</th>
</tr>
</thead>
<tbody>
<tr>
<td>The introductory dawn, 4,800</td>
<td>1,728,000</td>
</tr>
<tr>
<td>Seventy-one Great Ages, 852,000</td>
<td>306,720,000</td>
</tr>
<tr>
<td>A twilight, 4,800</td>
<td>1,728,000</td>
</tr>
<tr>
<td>Duration of one Patriarchate, 856,800</td>
<td>308,448,000</td>
</tr>
<tr>
<td>Fourteen Patriarchates, 11,995,200</td>
<td>4,318,272,000</td>
</tr>
<tr>
<td>Total duration of an Æon, 12,000,000</td>
<td>4,320,000,000</td>
</tr>
</tbody>
</table>

Why the factors fourteen and seventy-one were thus used in making up the Æon is not obvious; unless, indeed, in the division by fourteen is to be recognized the influence of the number seven, while at the same time such a division furnished the equal twilights, or intermediate periods of transition, which the Hindu theory demanded. The system, however, is still that of the Purânas (see Wilson's Vish. Pur. p. 24, etc.); and Manu (i. 72, 79) presents virtually the same, although he has not the term Æon (kalpa), but states simply that a thousand Divine Ages make up a day of Brahma, and seventy-one a Patriarchate. The term manvantara, "patriarchate," means literally "another Manu," or, "the interval of a Manu." Mann, a word identical in origin and meaning with our "man," became to the Hindus the name of a being personified as son of the Sun (Vivasvánti) and progenitor of the human race. In each Patriarchate there arises a new Mann, who becomes for his own period the progenitor of mankind (see Wilson's Vish. Pur. p. 24).

20. The Æon, thus composed of a thousand Ages, and which brings about the destruction of all that exists, is styled a day of Brahma; his night is of the same length.

21. His extreme age is a hundred, according to this valuation of a day and a night...
The composition of the Age, or Great Age, is then as follows:

<table>
<thead>
<tr>
<th></th>
<th>Divine years</th>
<th>Solar years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dawn</td>
<td>400</td>
<td>144,000</td>
</tr>
<tr>
<td>Golden Age (krta yuga)</td>
<td>4000</td>
<td>1,440,000</td>
</tr>
<tr>
<td>Twilight</td>
<td>400</td>
<td>144,000</td>
</tr>
<tr>
<td>Total duration of the Golden Age</td>
<td>4,800</td>
<td>1,728,000</td>
</tr>
<tr>
<td>Dawn</td>
<td>300</td>
<td>108,000</td>
</tr>
<tr>
<td>Silver Age (tretá yuga)</td>
<td>3000</td>
<td>1,080,000</td>
</tr>
<tr>
<td>Twilight</td>
<td>300</td>
<td>108,000</td>
</tr>
<tr>
<td>Total duration of the Silver Age</td>
<td>3,600</td>
<td>1,296,000</td>
</tr>
<tr>
<td>Dawn</td>
<td>200</td>
<td>72,000</td>
</tr>
<tr>
<td>Brazen Age (dadha yuga)</td>
<td>2000</td>
<td>720,000</td>
</tr>
<tr>
<td>Twilight</td>
<td>200</td>
<td>72,000</td>
</tr>
<tr>
<td>Total duration of the Brazen Age</td>
<td>2,400</td>
<td>864,000</td>
</tr>
<tr>
<td>Dawn</td>
<td>100</td>
<td>36,000</td>
</tr>
<tr>
<td>Iron Age (kali yuga)</td>
<td>1000</td>
<td>360,000</td>
</tr>
<tr>
<td>Twilight</td>
<td>100</td>
<td>36,000</td>
</tr>
<tr>
<td>Total duration of the Iron Age</td>
<td>1,200</td>
<td>432,000</td>
</tr>
</tbody>
</table>

Neither of the names of the last three ages is once mentioned in the Sūrya-Siddhānta. The first and last of the four are derived from the game of dice: *krta*, “made, won,” is the side of the die marked with four dots—the lucky, or winning one; *kali* is the side marked with one dot only—the unfortunate, the losing one. In the other names, of which we do not know the original and proper meaning, the numerals *tri*, “three,” and *dvā*, “two,” are plainly recognizable. The relation of the numbers four, three, two, and one, to the length of the several periods, as expressed in divine years, and also as compared with one another, is not less clearly apparent. The character attached to the different Ages by the Hindu mythological and legendary history so closely resembles that which is attributed to the Golden, Silver, Brazen, and Iron Ages, that we have not hesitated to transfer to them the latter appellations. An account of this character is given in Manu i. 81–86. During the Golden Age, Virtue stands firm upon four feet, truth and justice abound, and the life of man is four centuries; in each following Age Virtue loses a foot, and the length of life is reduced by a century, so that in the present, the Iron Age, she has but one left to hobble upon, while the extreme age attained by mortals is but a hundred years. See also Wilson’s Vishnu Purāṇa, p. 622, etc., for a description of the vices of the Iron Age.

This system of periods is not of astronomical origin, although the fixing of the commencement of the Iron Age, the only possibly historical point in it, is, as we shall see hereafter, the result of astronomical computation. Its arbitrary and artificial character is apparent. It is the system of the Purāṇas and of Manu, a part of the received Hindu cosmogony, to which astronomy was compelled to adapt itself.
currence of the civil and lunar days, and the lunar and solar months, is a process of great complexity, into the details of which we need not enter here (see Warren, as above, p. 57, etc.). It will be seen later in this chapter (vv. 48–51) that the Sūrya-Siddhānta reckons time by this latter system, by the combination of civil, lunar, and sidereal elements.

13. . . . This is called a day of the gods.
14. The day and night of the gods and of the demons are mutually opposed to one another. Six times sixty of them are a year of the gods, and likewise of the demons.

"This is called," etc.: that is, as the commentary explains, the year composed of twelve solar months, as being those last mentioned; the sidereal year. It appears to us very questionable whether, in the first instance, anything more was meant by calling the year a day of the gods than to intimate that those beings of a higher order reckoned time upon a grander scale: just as the month was said to be a day of the Fathers, or Manes (xiv. 14), the Patriarchate (v. 18), a day of the Patriarchs (xiv. 21), and the Aon (v. 20), a day of Brahma; all these being familiar Puranic designations. In the astronomical reconstruction of the Puranic system, however, a physical meaning has been given to this day of the gods: the gods are made to reside at the north pole, and the demons at the south; and then, of course, during the half-year when the sun is north of the equator, it is day to the gods and night to the demons; and during the other half-year, the contrary. The subject is dwelt upon at some length in the twelfth chapter (xii. 45, etc.). To make such a division accurate, the year ought to be the tropical, and not the sidereal; but the author of the Sūrya-Siddhānta has not yet begun to take into account the precession. See what is said upon this subject in the third chapter (vv. 9–10).

The year of the gods, or the divine year, is employed only in describing the immense periods of which the statement now follows.

15. Twelve thousand of these divine years are denominated a Quadruple Age (caturyuga); of ten thousand times four hundred and thirty-two solar years

16. Is composed that Quadruple Age, with its dawn and twilight. The difference of the Golden and the other Ages, as measured by the difference in the number of the feet of Virtue in each, is as follows:

17. The tenth part of an Age, multiplied successively by four, three, two, and one, gives the length of the Golden and the other Ages, in order: the sixth part of each belongs to its dawn and twilight.

The period of 4,320,000 years is ordinarily styled Great Age (mahāyuga), or, as above in two instances, Quadruple Age (caturyuga). In the Sūrya-Siddhānta, however, the former term is not once found, and the latter occurs only in these verses; elsewhere, Age (yuga) alone is employed to denote it; and always denotes it, unless expressly limited by the name of the Golden (krta) Age.
tioned in this work, or, so far as we know, made account of in any Hindu method of reckoning time. The civil (śāvana) day is the natural day: it is counted in India, from sunrise to sunrise (see below, v. 36), and is accordingly of variable length: it is, of course, an important element in all computations of time. A month of thirty, and a year of three hundred and sixty, such days, are supposed to have formed the basis of the earliest Hindu chronology, an intercalary month being added once in five years. This method is long since out of use, however, and the month and year referred to here in the text, of thirty and three hundred and sixty natural days respectively, without intercalations, are elsewhere assumed and made use of only in determining, for astrological purposes, the lords of the month and year (see below, v. 52).

The standard of the lunar measure of time is the lunar month, the period of the moon’s synodical revolution. It is reckoned either from new-moon to new-moon, or from full-moon to full-moon; generally, the former is called mukhya, “primary,” and the latter gāuna, “secondary”; but, according to our commentator, either of them may be denominated primary, although in fact, in this treatise, only the first of them is so regarded; and the secondary lunar month is that which is reckoned from any given lunar day to the next of the same name. This natural month, containing about twenty-nine and a half days, mean solar time, is then divided into thirty lunar days (titih), and this division, although of so unnatural and arbitrary a character, the lunar days beginning and ending at any moment of the natural day and night, is, to the Hindu, of the most prominent practical importance, since by it are regulated the performance of many religious ceremonies (see below, xiv. 13), and upon it depend the chief considerations of propitious and unpropitious times, and the like. Of the lunar year of twelve lunar months, however, we know of no use made in India, either formerly or now, except as it has been introduced and employed by the Mohammedans.

Finally, the year last mentioned, the solar year, is that by which time is ordinarily reckoned in India. It is, however, not the tropical solar year, which we employ, but the sidereal, no account being made of the precession of the equinoxes. The solar month is measured by the continuance of the sun in each successive sign, and varies, according to the rapidity of his motion, from about twenty-nine and a third, to a little more than thirty-one and a half, days. There is no day corresponding to this measure of the month and of the year.

In the ordinary reckoning of time, these elements are variously combined. Throughout Southern India (see Warren’s Kāla Sankalita, Madras: 1825, p. 4, etc.), the year and month made use of are the solar, and the day the civil; the beginning of each month and year being counted, in practice, from the sunrise nearest to the moment of their actual commencement. In all Northern India the year is lunar-solar; the month is lunar, and is divided into both lunar and civil days; the year is composed of a variable number of months, either twelve or thirteen, beginning always with the lunar month of which the commencement next precedes the true commencement of the sidereal year. But, underneath this division, the division of the actual sidereal year into twelve solar months is likewise kept up, and to maintain the con-
"unreal" time. They are thus stated in Bhāskara's Siddhānta-Ciromāni (i. 19, 20), along with the other, the astronomical, table:

<table>
<thead>
<tr>
<th>100 atoms (truti)</th>
<th>30 specks (tattara)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 twinklings</td>
<td>30 bits (kāhā)</td>
</tr>
<tr>
<td>30 minutes</td>
<td>30 hours</td>
</tr>
<tr>
<td>2 half-hours</td>
<td></td>
</tr>
</tbody>
</table>

This makes the atom equal to \(\frac{1}{360,000,000}\)th of a day, or \(\frac{1}{3,600,000}\)th of a second. Some of the Purāṇas (see Wilson's Vish. Pur. p. 22) give a different division, which makes the atom about \(\frac{1}{10}\)th of a second; but they carry the division three steps farther, to the subtilissima (paramāṇu), which equals \(\frac{1}{2,880,000,000}\)th of a day, or very nearly \(\frac{1}{3,600,000}\)th of a second.

We have introduced here a statement of these minute subdivisions, because they form a natural counterpart to the immense periods which we shall soon have to consider, and are, with the latter, curiously illustrative of a fundamental trait of Hindu character: a fantastic imaginativeness, which delights itself with arbitrary theorizings, and is unrestrained by, and careless of, actual realities. Thus, having no instruments by which they could measure even seconds with any tolerable precision, they vied with one another in dividing the second down to the farthest conceivable limit of minuteness; thus, seeking infinity in the other direction also, while they were almost destitute of a chronology or a history, and could hardly fix with accuracy the date of any event beyond the memory of the living generation, they devised, and put forth as actual, a framework of chronology reaching for millions of millions of years back into the past and forward into the future.

12. ... Of thirty of these sidereal days is composed a month; a civil (sāvaka) month consists of as many sunrises;

13. A lunar month, of as many lunar days (tithi); a solar (sāura) month is determined by the entrance of the sun into a sign of the zodiac: twelve months make a year. . . .

We have here described days of three different kinds, and months and years of four; since, according to the commentary, the last clause translated means that twelve months of each denomination make up a year of the same denomination. Of some of these, the practical use and value will be made to appear later; but as others are not elsewhere referred to in this treatise, and as several are merely arbitrary divisions of time, of which, so far as we can discover, no use has ever been made, it may not be amiss briefly to characterize them here.

Of the measures of time referred to in the twelfth verse, the day is evidently the starting-point and standard. The sidereal day is the time of the earth's revolution on its axis; data for determining its length are given below, in v. 34, but it does not enter as an element into the later processes. Nor is a sidereal month of thirty sidereal days, or a sidereal year of three hundred and sixty such days (being less than the true sidereal year by about six and a quarter sidereal days), elsewhere men-
The epithet kalavātmakā, applied to actual time in the first half of the verse, is not easy of interpretation. The commentary translates it "is an object of knowledge, is capable of being known," which does not seem satisfactory. It evidently contains a suggested etymology (kāla, "time," from kālana), and in translating it as above we have seen in it also an antithesis to the epithet bestowed upon Time the divinity. Perhaps it should be rather "has for its office enumeration."

11. That which begins with respirations (prāṇa) is called real; that which begins with atoms (teṣās) is called unreal. Six respirations make a vināḍi, sixty of these a nādi;

12. And sixty nādis make a sidereal day and night.

The manuscripts without commentary insert, as the first half of v. 11, the usual definition of the length of a respiration: "the time occupied in pronouncing ten long syllables is called a respiration."
The table of the divisions of sidereal time is then as follows:

- 10 long syllables (guruṣuṣhara) = 1 respiration (prāṇa, period of four seconds);
- 6 respirations = 1 vināḍi (period of twenty-four seconds);
- 60 vināḍis = 1 nādi (period of twenty-four minutes);
- 60 nādis = 1 day.

This is the method of division usually adopted in the astronomical text-books: it possesses the convenient property that its lowest subdivision, the respiration, is the same part of the day as the minute is of the circle, so that a respiration of time is equivalent to a minute of revolution of the heavenly bodies about the earth. The respiration is much more frequently called åsu, in the text both of this and of the other Siddhāntas. The vināḍi is practically of small consequence, and is only two or three times made use of in the treatise: its usual modern name is pala, but as this term nowhere occurs in our text, we have not felt justified in substituting it for vināḍi. For nādi also, the more common name is đanda, but this, too, the Sūrya-Siddhānta nowhere employs, although it uses instead of nādi, and quite as often, nāḍikā and ghatikā. We shall uniformly make use in our translation of the terms presented above, since there are no English equivalents which admit of being substituted for them.

The ordinary Puranic division of the day is slightly different from the astronomical, viz:

- 15 twinkleings (naiveśa) = 1 bit (kaḍāṭkā);
- 30 bits = 1 minute (kaḍā);
- 30 minutes = 1 hour (mukhaṭta);
- 30 hours = 1 day.

Manu (i. 64) gives the same, excepting that he makes the bit to consist of 18 twinkleings. Other authorities assign different values to the lesser measures of time, but all agree in the main fact of the division of the day into thirty hours, which, being perhaps an imitation of the division of the month into thirty days, is unquestionably the ancient and original Hindu method of reckoning time.

The Sūrya-Siddhānta, with commendable moderation, refrains from giving the imaginary subdivisions of the respiration which make up
7. Thus having spoken, the god disappeared, having given directions unto the part of himself. This latter person thus addressed Maya, as he stood bowed forward, his hands suppliantly joined before him:

8. Listen with concentrated attention to the ancient and exalted science, which has been spoken, in each successive Age, to the Great Sages (maharshi), by the Sun himself.

9. This is that very same original text-book which the Sun of old promulgated: only, by reason of the revolution of the Ages, there is here a difference of times.

According to the commentary, the meaning of these last verses is that, in the successive Great Ages, or periods of 4,320,000 years (see below, under vv. 15–17), there are slight differences in the motions of the heavenly bodies, which render necessary a new revelation from time to time on the part of the Sun, suited to the altered conditions of things; and that when, moreover, even during the continuance of the same Age, differences of motion are noticed, owing to a difference of period, it is customary to apply to the data given a correction, which is called bija. All this is very suitable for the commentator to say, but it seems not a little curious to find the Sun’s superhuman representative himself insisting that this his revelation is the same one as had formerly been made by the Sun, only with different data. We cannot help suspecting in the ninth verse, rather, a virtual confession on the part of the promulgators of this treatise, that there was another, or that there were others, in existence, claiming to be the sun’s revelation, or else that the data presented in this were different from those which had been previously current as revealed by the Sun. We shall have more to say hereafter (see below, under vv. 29–34) of the probable existence of more than one version of the Sūrya-Siddhānta, of the correction called bija, and of its incorporation into the text of the treatise itself. The repeated revelation of the system in each successive Great Age, as stated in verse 8, presents no difficulty. It is the Puranic doctrine (see Wilson’s Vishnu Purāna, p. 269, etc.) that during the Iron Age the sources of knowledge become either corrupted or lost, so that a new revelation of scripture, law, and science becomes necessary during the Age succeeding.

10. Time is the destroyer of the worlds; another Time has for its nature to bring to pass. This latter, according as it is gross or minute, is called by two names, real (mārta) and unreal (amārta).

There is in this verse a curious mingling together of the poetical, the theoretical, and the practical. To the Hindus, as to us, Time is, in a metaphorical sense, the great destroyer of all things; as such, he is identified with Death, and with Yama, the ruler of the dead. Time, again, in the ordinary acceptation of the word, has both its imaginary, and its appreciable and practically useful divisions: the former are called real (mārta, literally “embodied”), the latter unreal (amārta, literally “unembodied”). The following verse explains these divisions more fully.
The blessed Sun spoke:

5. Thine intent is known to me; I am gratified by thine austerities; I will give thee the science upon which time is founded, the grand system of the planets.

6. No one is able to endure my brilliancy; for communication I have no leisure; this person, who is a part of me, shall relate to thee the whole.

The manuscripts without commentary insert here the following verse:

"Go therefore to Romaka-city, thine own residence; there, undergoing incarnation as a barbarian, owing to a curse of Brahma, I will impart to thee this science."

If this verse really formed a part of the text, it would be as clear an acknowledgment as the author could well convey indirectly, that the science displayed in his treatise was derived from the Greeks. Romaka-city is Rome, the great metropolis of the West; its situation is given in a following chapter (see xii. 39) as upon the equator, ninety degrees to the west of India. The incarnation of the Sun there as a barbarian, for the purpose of revealing astronomy to a demon of the Hindu Pantheon, is but a transparent artifice for referring the foreign science, after all, to a Hindu origin. But the verse is clearly out of place here; it is inconsistent with the other verses among which it occurs, which give a different version of the method of revelation. How comes it here then? It can hardly have been gratuitously devised and introduced. The verse itself is found in many of the manuscripts of this Siddhânta; and the incarnation of the Sun at Romaka-city, among the Yavanas, or Greeks, and his revelation of the science of astronomy there, are variously alluded to in later works; as, for instance, in the Jñāna-bhāskara (see Weber's Catalogue of the Berlin Sanskrit Manuscripts, p. 287, etc.), where he is asserted to have revealed also the Romaka-Siddhânta. Is this verse, then, a fragment of a different, and perhaps more ancient, account of the origin of the treatise, for which, as conveying too ingenuous a confession of the source of the Hindu astronomy, another has been substituted later? Such a supposition, certainly, does not lack plausibility. There is something which looks the same way in the selection of a demon, an Asura, to be the medium of the sun's revelation; as if, while the essential truth and value of the system was acknowledged, it were sought to affix a stigma to the source whence the Hindus derived it. Weber (Ind. Stud. ii. 243; Ind. Lit. p. 225), noticing that the name of the Egyptian sovereign Ptolemaios occurs in Indian inscriptions in the form Toramaya, conjectures that Asura Maya is an alteration of that name, and that the demon Maya accordingly represents the author of the Almagest himself; and the conjecture is powerfully supported by the fact that al-Birâni (see Reinard, as above) ascribes the Pâuliça-Siddhânta, which the later Hindus attribute to a Puliça, to Paulus al-Yunani, Paulus the Greek, and that another of the astronomical treatises, alluded to above, is called the Romaka-Siddhânta.

It would be premature to discuss here the relation of the Hindu astronomy to the Greek; we propose to sum up, at the end of this work, the evidence upon the subject which it contains.
According to this, the Sûrya-Siddhânta was revealed more than 2,164,000 years ago, that amount of time having elapsed, according to Hindu reckoning, since the end of the Golden Age; see below, under verse 48, for the computation of the period. As regards the actual date of the treatise, it is, like all dates in Hindu history and the history of Hindu literature, exceedingly difficult to ascertain. It is the more difficult, because, unlike most, or all, of the astronomical treatises, the Sûrya-Siddhânta attaches itself to the name of no individual as its author, but professes to be a direct revelation from the Sun (sûrya). A treatise of this name, however, is confessedly among the earliest textbooks of the Indian science. It was one of the five earlier works upon which was founded the Pâṇâca-siddhântika, Compendium of Five Astronomies, of Vârâha-mihiras one of the earliest astronomers whose works have been, in part, preserved to us, and who is supposed to have lived about the beginning of the sixth century of our era. A Sûrya-Siddhânta is also referred to by Brahmagupta, who is assigned to the close of the same century and the commencement of the one following. The arguments by which Mr. Bentley (Hindu Astronomy, p. 158, etc.) attempts to prove Vârâha-mihira to have lived in the sixteenth century, and his professed works to be forgeries and impositions, are sufficiently refuted by the testimony of al-Bîrûnî (the same person as the Abu-r-Raihân, so often quoted in the first article of this volume), who visited India under Mahmûd of Ghazna, and wrote in A.D. 1031 an account of the country: he speaks of Vârâha-mihira and of his Pâṇâca-siddhântika, assigning to both nearly the same age as is attributed to them by the modern Hindus (see Reinaud in the Journal Asiatique for Sept. 1844, iv., Série, iv. 286; and also his Mémoire sur l'Inde). He also speaks of the Sûrya-Siddhânta itself, and ascribes its authorship to Lâta (Mémoire sur l'Inde, pp. 331, 332), whom Weber (Verlesungen über Indische Literaturengeschichte, p. 229) conjecturally identifies with a Lâdha who is cited by Brahmagupta. Bentley has endeavored to show by internal evidence that the Sûrya-Siddhânta belongs to the end of the eleventh century; see below, under verses 29–34, where his method and results are explained, and their value estimated.

Of the six Vedângas, "limbs of the Veda," sciences auxiliary to the sacred scriptures, astronomy is claimed to be the first and chief, as representing the eyes; grammar being the mouth, ceremonial the hands, prosody the feet, etc. (see Siddhânta-Çiromani, i. 12–14). The importance of astronomy to the system of religious observance lies in the fact that by it are determined the proper times of sacrifice and the like. There is a special treatise, the Jyotisha of Lagadha, or Lagata, which, attaching itself to the Vedic texts, and representing a more primitive phase of Hindu science, claims to be the astronomical Vedânga; but it is said to be of late date and of small importance.

The word jyotisa, "heavenly body," literally "light," although the current names for astronomy and astronomers are derived from it, does not elsewhere occur in this treatise.

4. Gratified by these austerities, and rendered propitious, the Sun himself delivered unto that Maya, who besought a boon, the system of the planets.
CHAPTER I.

OF THE MEAN MOTIONS OF THE PLANETS.

CONTENTS:—1, homage to the Deity; 2-9, revelation of the present treatise; 10-11, modes of dividing time; 11-12, subdivisions of a day; 12-14, of a year; 14-17, of the Ages; 18-19, of an Æon; 20-21, of Brahma's life; 21-23, part of it already elapsed; 24, time occupied in the work of creation; 25-27, general account of the movements of the planets; 28, subdivisions of the circle; 29-33, number of revolutions of the planets, and of the moon's apsis and node, in an Age; 34-39, number of days and months, of different kinds, in an Age; 40, in an Æon; 41-44, number of revolutions, in an Æon, of the apsides and nodes of the planets; 45-47, time elapsed from the end of creation to that of the Golden Age; 48-51, rule for the reduction to civil days of the whole time since the creation; 51-52, method of finding the lords of the day, the month, and the year; 53-54, rule for finding the mean place of a planet, and of its apsis and node; 55, to find the current year of the cycle of Jupiter; 56, simplification of the above calculations; 57-58, situation of the planets, and of the moon's apsis and node, at the end of the Golden Age; 59-60, dimensions of the earth; 60-61, correction for difference of longitude, of the mean place of a planet as found; 62, situation of the principal meridian; 63-65, ascertainment of difference of longitude by difference between observed and computed time of a lunar eclipse; 66, difference of time owing to difference of longitude; 67, to find the mean place of a planet for any required hour of the day; 68-70, inclination of the orbits of the planets.

1. To him whose shape is inconceivable and unmanifested, who is unaffected by the qualities, whose nature is quality, whose form is the support of the entire creation—to Brahma be homage!

The usual propitiatory expression of homage to some deity, with which Hindu works are wont to commence.

2. When but little of the Golden Age (kṛta yuga) was left, a great demon (asura), named Maya, being desirous to know that mysterious, supreme, pure, and exalted science,

3. That chief auxiliary of the scripture (vedānga), in its entirety—the cause, namely, of the motion of the heavenly bodies (jyotis), performed, in propitiation of the Sun, very severe religious austerities.
far as is necessary. In both the translation and the notes, moreover, we keep steadily in view the interests of the two classes of readers for whose benefit the work is undertaken: those who are orientalists without being astronomers, and those who are astronomers without being orientalists. For the sake of the former, our explanations and demonstrations are made more elementary and full than would be necessary, were we addressing mathematicians only; for the sake of the latter, we cast the whole into a form as occidental as may be, translating every technical term which admits of translation: since to compel all those who may desire to inform themselves respecting the scientific content of the Hindu astronomy to learn the Sanskrit technical language would be highly unreasonable. To furnish no ground of complaint, however, to those who are familiar with and attached to these terms, we insert them liberally in the translation, in connection with their English equivalents. The derivation and literal signification of the greater part of the technical terms employed in the treatise are also given in the notes, since such an explanation of the history of a term is often essential to its full comprehension, and throws valuable light upon the conceptions of those by whom it was originally applied.

We adopt, as the text of our translation, the published edition of the Siddhânta, referred to above, following its readings and its order of arrangement, wherever they differ, as they do in many places, from those of the manuscripts without commentary in our possession. The discordances of the two versions, when they are of sufficient consequence to be worth notice, are mentioned in the notes.

As regards the transcription of Sanskrit words in Roman letters, we need only specify that ś represents the sound of the English ch in "church," Italian c before e and i; that ṣ is the English j; that ġ is pronounced like the English sh, German sch, French ch, while sh is a sound nearly resembling it, but uttered with the tip of the tongue turned back into the top of the mouth, as are the other lingual letters, t, d, n; finally, that the Sanskrit r used as a vowel (which value it has also in some of the Slavonic dialects) is written with a dot underneath, as r.

The demonstrations of principles and processes given by the native commentary are made without the help of figures. The figures which we introduce are for the most part our own, although a few of them were suggested by those of a set obtained in India, from native mathematicians.

For the discussion of such general questions relating to this Siddhânta as its age, its authorship, the alterations which it may have undergone before being brought into its present form, the stage which it represents in the progress of Hindu mathematical science, the extent and character of the mathematical and astronomical knowledge displayed in it, and the relation of the same to that of other ancient nations, especially of the Greeks, the reader is referred to the notes upon the text. The form in which our publication is made does not allow us to sum up here, in a preface, the final results of our investigations into these and kindred topics. It may perhaps be found advisable to present such a summary at the end of the article, in connection with the additional notes and other matters to be there given.
Sanskrit College at Puna. But notwithstanding this, there remained not a few obscure and difficult points, connected with the demonstration and application of the processes taught in the text. In the solution of these, I have received very important assistance from the Committee of Publication of the Society. They have also—the main share of the work falling to Prof. Whitney—enriched the notes with much additional matter of value. My whole collected material, in fact, was placed in their hands for revision, expansion, and reduction to the form best answering to the requirements of modern scholars, my own engrossing occupations, and distance from the place of publication, as well as my confidence in their ability and judgment, leading me to prefer to intrust this work to them rather than to undertake its execution myself.

We have also to express our acknowledgments to Mr. Hubert A. Newton, Professor of Mathematics in Yale College, for valuable aid rendered us in the more difficult demonstrations, and in the comparison of the Hindu and Greek astronomies, as well as for his constant advice and suggestions, which add not a little to the value of the work.

The Sûrya-Siddhânta, like the larger portion of the Sanskrit literature, is written in the verse commonly called the göka, or in stanzas of two lines, each line being composed of two halves, or pâdhas, of eight syllables each. With its metrical form are connected one or two peculiarities which call for notice. In the first place, for the terms used there are often many synonyms, which are employed according to the exigencies of the verse; thus, the sun has twelve different names, Mars six, the divisions of time two or three each, radius six or eight, and so on. Again, the method of expressing numbers, large or small, is by naming the figures which compose them, beginning with the last and going backward; using for each figure not only its own proper name, but that of any object associated in the Hindu mind with the number it represents. Thus, the number 1,577,917,828 (i. 37) is thus given: Vasu (a class of deities, eight in number) -two-eight-mountain (the seven mythical chains of mountains) -form-figure (the nine digits) -seven-mountain-lunar days (of which there are fifteen in the half-month). Once more, the style of expression of the treatise is, in general, excessively concise and elliptical, often to a degree that would make its meaning entirely unintelligible without a commentary, the exposition of a native teacher, or such a knowledge of the subject treated of as should show what the text must be meant to say. Some striking instances are pointed out in the notes. This over-conciseness, however, is not wholly due to the metrical form of the treatise: it is characteristic of much of the Hindu scientific literature, in its various branches; its text-books are wont to be intended as only the text for written comment or oral explanation, and hint, rather than fully express, the meaning they contain. In our translation, we have not thought it worth while to indicate, by parentheses or otherwise, the words and phrases introduced by us to make the meaning of the text evident: such a course would occasion the reader much more embarrassment than satisfaction. Our endeavor is, in all cases, to hit the true mean between unintelligibility and diffuseness, altering the phraseology and construction of the original only so
upon Bailly and the earliest of the essays in the Asiatic Researches, partakes, of course, of the incompleteness of his authorities. Works of value have been published in India also, into which more or less of Hindu astronomy enters, as Warren's Kāla Sankalita, Jervis's Weights Measures and Coins of India, Hoisington's Oriental Astronomer, and the like; but these, too, give, for the most part, hardly more than the practical processes employed in parts of the system, and they are, like many of the authorities already mentioned, only with difficulty accessible. In short, there was nothing in existence which showed the world how much and how little the Hindus know of astronomy, as also their mode of presenting the subject in its totality, the intermixture in their science of old ideas with new, of astronomy with astrology, of observation and mathematical deduction with arbitrary theory, mythology, cosmogony, and pure imagination. It seemed to me that nothing would so well supply the deficiency as the translation and detailed explication of a complete treatise of Hindu astronomy: and this work I accordingly undertook to execute.

Among the different Siddhāntas, or text-books of astronomy, existing in India in the Sanskrit language, none appeared better suited to my purpose than the Sūrya-Siddhānta. That it is one of the most highly esteemed, best known, and most frequently employed, of all, must be evident to any one who has noticed how much oftener than any other it is referred to as authority in the various papers on the Hindu astronomy. In fact, the science as practised in modern India is in the greater part founded upon its data and processes. In the lists of Siddhāntas given by native authorities it is almost invariably mentioned second, the Brahma-Siddhānta being placed first: the latter enjoys this preminence, perhaps, mainly on account of its name; it is, at any rate, comparatively rare and little known. For completeness, simplicity, and conciseness combined, the Sūrya-Siddhānta is believed not to be surpassed by any other. It is also more easily obtainable. In general, it is difficult, without official influence or exorbitant pay, to gain possession of texts which are rare and held in high esteem. During my stay in India, I was able to procure copies of only three astronomical treatises besides the Sūrya-Siddhānta; the Cākyala-Sanhitā of the Brahma-Siddhānta, the Siddhānta-Ciromani of Bhāskara, and the Graha-Laghava, of which the two latter have also been printed at Calcutta. Of the Sūrya-Siddhānta I obtained three copies, two of them giving the text alone, and the third also the commentary entitled Gūḍhārthapratīkācaka, by Ranganātha, of which the date is unknown to me. The latter manuscript agrees in all respects with the edition of the Sūrya-Siddhānta, accompanied by the same commentary, of which the publication, in the series entitled Bibliotheca Indica, has been commenced in India by an American scholar, and a member of this Society, Prof. Fitz-Edward Hall of Benares; to this I have also had access, although not until my work was nearly completed.

My first rough draft of the translation and notes was made while I was still in India, with the aid of Brahmans who were familiar with the Sanskrit and well versed in Hindu astronomical science. In a few points also I received help from the native Professor of Mathematics in the
ARTICLE III.

TRANSLATION
OF THE
Sûrya-Siddhânta,
A TEXT-BOOK OF HINDU ASTRONOMY;
WITH NOTES, AND AN APPENDIX.

BY REV. EBENEZER BURGESS,
FORMERLY MISSIONARY OF THE A.B.C.F.M. IN INDIA,
ASSISTED BY THE COMMITTEE OF PUBLICATION.

Presented to the Society May 17, 1858.

INTRODUCTORY NOTE.

Soon after my entrance upon the missionary field, in the Marâtha country of western India, in the year 1839, my attention was directed to the preparation, in the Marâthi language, of an astronomical textbook for schools. I was thus led to a study of the Hindu science of astronomy, as exhibited in the native text-books, and to an examination of what had been written respecting it by European scholars. I at once found myself, on the one hand, highly interested by the subject itself, and, on the other, somewhat embarrassed for want of a satisfactory introduction to it. A comprehensive exhibition of the Hindu system had nowhere been made. The Astronomie Indienne of Bailly, the first extended work upon its subject, had long been acknowledged to be founded upon insufficient data, to contain a greatly exaggerated estimate of the antiquity and value of the Hindu astronomy, and to have been written for the purpose of supporting an untenable theory. The articles in the Asiatic Researches, by Davis, Colebrooke, and Bentley, which were the first, as they still remain the most important, sources of knowledge respecting the matters with which they deal, relate only to particular points in the system, of especial prominence and interest. Bentley's volume on Hindu astronomy is mainly occupied with an endeavor to ascertain the age of the principal astronomical treatises, and the epochs of astronomical discovery and progress, and is, moreover, even in these respects, an exceedingly unsafe guide. The treatment of the subject by Delambre, in his History of Ancient Astronomy, being founded only
unga si still found all along the eastern coast of Africa, in both
nouns and verbs, all of the same import as amanga and uku
unga in the Isizulu; thus, Cape Delgado, ulongo, it is false, a
falsehood, a lie; si ulongo, it is not a lie; Swaheli, wongo, a lie;
nea wongo, to tell a lie; Nika, ulongo, a lie, to tell a lie; Kam-
ba, uvungu, a lie; a jia uvungu, to tell a lie; Pokomo, muongo,
a lie; Hiau, anga, a lie; Mpongwe, noka; Setshuana, aka—to lie.
58. Ewe, a simple form of assent = yes; Swaheli, eiwa; Kam-
bo, wo, wiu—yes.
54. Ehe, an expression of assent = yes, it is so. Mpongwe,
ih; Mandingo, aka; Benga and Setshuana, e or eh—yes.
55. Ishi, ishilo—the first form a contraction of the second
(the pronoun i, referring to inkosi, the chief, + tshilo, the present
perfect tense of tsho, speak) = he has spoken, assented, affirmed;
hence, yes, truly, it must be so.
56. Yebo (ye + bo) = yes, indeed! Setshuana, ebo; Mandingo,
yes—yes.

In the Isizulu, as in many other languages, especially among
the tribes of Africa, the same word appears, according to its use
and connection, sometimes as an adverb, and sometimes as a
preposition, or as a conjunction. Several words which are used
in the twofold capacity of an adverb and a preposition, when
they serve as the latter, are always followed by another, as by
kwa or na; thus, pesu kwomuti (kwa + umuti), upon the tree;
edze nentaba (na + intaba), near the mountain.

This use of a complementary preposition prevails in many of
the cognates of the Isizulu; thus, in the Tete and Sena, pakati
pa—, in the midst of; as pakati patsika, in the midst of the night,
midnight; Inhambane, bakari nya—; as bakari nyashigu, in the
midst of the night, midnight; Delagoa, tshikare kadambu, mid-
day; Mosambique, nzua va—; as nzua vamuru, midday; Cape
Delgado, wakati wa—; as wakati wamfula, in the midst of the
rainy season, winter. So in the Swaheli, tini ya—, under; ju ya—,
over; Nika, zini ya—, under; zulu ya—, over; Pokomo, nsi ya—,
under; ulu wa—, over; Hiau, pasi ya—, under, etc., like the Zulu
pansi kwa—, under, pesu kwa—, over. Or perhaps these and similar
examples should be considered as instances of prepositions fol-
lowed by the genitive, and more like the use of ngenza ya—;
thus, ngenza yake, on account of him, for cause of him. In fact,
all examples of this kind serve to confirm the opinion that many
of the prepositions were originally nouns.

Umsunduzi, May 8th, 1858.
Now take one of these words, the verb *shimbisa*, change the causative into the reciprocal form, *shimbana*, restore the radical consonants to their original strength and simplicity, *sh* to *s*, and *mb* to *b*, and we have *sibana*, the form of which in the locative would be *sinyaneni*, contr. *sinyane*; and prefixing the adverbial incipient *ma*, we have *masinyane*; and from this, by prefixing *ka*, we have *kamsinyane*, contr. *kamsinya*; contr. again, *kamsinya*.

43. *Ngisibomu*, *ngamabomu* (*nga* + *isibomu* or *amabomu*, purpose, design) = by design, on purpose, willfully; *Nika*, *mbomu*, great; *ubomu*, greatness.

45. *Nyalo* (*nja*, like, + *lo*, dem. adv., this) = like this, so, thus, likewise. *Kanjalo* (*ka* + *njalo*), thus, so, likewise. Inhambane, *kararo*, thus; *Galla*, *akana*, thus; Mpongwe, *ga*, *egaleni*, yena, *nana*, and *ka*, so, thus, after this fashion; Setshuana, *yualo*, *yalo*, thus.

50. *Ai*, the negative *a* prolonged and strengthened by the aid of the vowel *i*, and sometimes also by the semivowel *y*, *ai*; or it may take also an initial breathing *h*, giving *hai*, or *hayi*—no. The Mosambique has *vai*; Maravi, *iai*; Tete, *ai-ai*; Mandingo, *a-a*; Setshuana, *ga*—no.

51. *Aitshe* (*ai*, *no*, + *tse*, no, obsolete in the Isizulu, but still in use among the Betshuana) = no, not so, not that, but; Suaheli, *sifio*; *Nika*, *sifio*—no.

52. *Amanda*, a noun plural, signifying deception, falsehood, pretense; hence the adverbial meaning, no, not so, it is false—from the verb *uku unga*, to feign, deceive, entice. This root
36. Kuningi, kuningi (ka, ku, + ngingi; much, many) = often, much, enough, plentifully; Delagoa, nyinge; Inhambane, singi, tingi; Tete and Sena, kinshe; Mosambique, indshe; Cape Delgado, nyingi—much; Suaheli, Nika, and Pokomo, nenji; Mpongwe, nyanje; Setshuana, gautsi—much, often.

37. Kuhle, kuhle (ka, ku, + hle, nice) = well, nicely, beautifully; Nika, wizo; Kamba, neza; Setshuana, single—well.

38. Futi, again, often; Sena, futi, since; Mpongwe, fa, again. Compare Gothic, uta; English and Saxon, oft, often, etc.

39. Nza (noun inza = side, sake, portion, interest) = where, if, when. Ngenza (nga + inza), on account of.

40. Ko, a word, or part of a word, probably from the verb ka; usually classed as an adverb, and used sometimes by itself, especially in a negative connection, but more frequently in composition, to signify present, extant, in being, here, there. The Tete and Sena dialects have uko, there; Suaheli and Pokomo, huko; Nika, hiko; Hiau, akoko—there; Setshuana, mo, ku; and Mpongwe, gogo—there.

41. Konje, manje = immediately, now, speedily, are generally supposed to be compounded of the adverbial preformative ko or ma, and nje = thus, so, in like manner. But the ordinary use of nje, nya, does not readily suggest the idea generally expressed by these words konje, manje = immediately, etc., unless we are to suppose that the notion of similarity, which nya is used to express, bears hard upon the notion of sameness = same time, at once—a suggestion which has some color of support from the use of the probable synonym ga in the Mpongwe dialect, which is there defined as signifying both like and same. For further remarks on these words, see the next.

42. Masinyane (masinya, kamsinyane, kamsinya) = soon, immediately, speedily, quick, now, was probably derived from some noun or verb (now obsolete in the Isizulu), signifying speed, to hasten, be quick. And keeping in mind the laws of mutation among consonants in the Isizulu and its cognates—that s sometimes gives place to ts; that b changes to tsh, and sometimes to j; m to ny; and mb to nj—bearing in mind also that the nasal m or n is not really radical in some words, but introduced to soften down the hard elastic nature of a mute, m being taken by a labial, and n by a lingual—it is not improbable that further researches may prove both manje and masinyane, and possibly the verb tshetsha, to have a common origin, and to be, perhaps, radically the same as some of the following words in cognate dialects: Sofala, Nika, and Pokomo, sambi, now; Cape Delgado, sambe (changing mb to nj = sanje, meaning the same as the Zulu manje) = now; Hiau, sambano; Tete and Sena, ku tshimbetsa—quick; tshimbisa, shimbisa, shimbisisa, tshimbiza, fast, quickly; ku tshimb-i-lishimbi, tshambizino, immediately, soon.
harka duwa dufe, he comes with empty hands (i.e. hands alone, hands only) = Isizulu, izanhlâ zodwa.

23. Kanti (ku + nti or anti, the contrary, but) = on the contrary, but, whereas, yet, nevertheless; Setshuana, kanti, whilst; Kamba, ndi, but, yet; Mpongwe, ndo, but; kande, because; Mandingo, warante, or, or else. Query—has this word any connection with the Greek árî, Latin ante?

24. Ze, vain, empty, naked; noun, ize, ilize, also ubuze, vanity, emptiness, nakedness, nothing; Sena, peze (pa + ize), false; pezi, in vain; zapezi, empty; Mpongwe, zyele, not, nothing.

25. Kaku (ku, of, + kulu, great; verb, uku kula, to grow large) = greatly. The root of this word is very common in the kindred dialects; thus, in the Delagoa, the adjective kulu, great; Inhambane, kongolo; Sofala, guru; Tete and Sena, kuru; Cape Delgado, kulu—great. So in the Nika, mkulu; Pokomo, mkú; Kiriman, ula; Kisama, Lubalo, and Longo, kolu; Kasands, golá; Orungu, mpolo; Mpongwe, polu and mpolú—great; Setshuana, hagolu, greatly.

26. Kutangi, day before yesterday; Suaheli, tangu, since; tangu miaka niumi, since two years; Nika and Pokomo, hangu, since; hangu miaka muri, since two years; Pulo, hanki, yesterday.

27. Izola, yesterday; Delagoa, atolo; Sofala, Tete and Sena, zuru; Quelimane, nzura, nzilo; Maravi, dzulo; Nika and Pokomo, zana; Kongo and Basunde, zono; Kiriman, nzilo; Nyombe, dzono; Mimboma, ozoni; Musentandu, zonu; Ngoala, ezo—yesterday.

28. Kusasa (ku, it, + sa, yet, + sa, dawn; ekuseni, locative case of uku sa, to dawn) = early (to-morrow morning); Mosambique, utana, early; utsha, utshaka, in the twilight; Kamba, katene, early.

29. Emini, at mid-day, in the day-time; Avekwom, emini, to-day; Eflik, imfin, to-day.

30. Intamboma, ‘matambam’, afternoon, towards evening; Cape Delgado, ruremba, evening; Delagoa, adiambá va-pela, sunset; Inhambane, dambo ya gubele, sunset.

31. Nyomso (nga + umso, in the morning) = to-morrow, from the verb uku sa, to dawn; Cape Delgado, matsese; Pokomo, keso; Suaheli, kesho; Setshuana, usasane, to-morrow.

32. Namhla (na + umhla, with the day, this very day) = to-day; Delagoa, namasha; Sofala, nyamashi; Inhambane, nyambe, to-day.

33. Nyemhla (nga + imihla, pl. of umhla, day—by days) = daily; Sena, tsiko-zonke; Mpongwe, nshug’ wedu, (every day) = daily.

34. Endulo, anciently; mandulo, at first (from ukwandula, anduele, to precede, be first); Mosambique, muwulu, old; Hiau, longola; Nika, longola mbera; Suaheli, tangutia mbele—precede.

35. Kanye, kanye (ka, ku, + nye, one) = once, at once, together; Tete, kabosi; Sena, kabosi; Nika, vamenga; Kamba, wamue; Pokomo and Mosambique, vamozane; Setshuana, gangue—once, together.
two verbs, *uku va*, to come, follow after; and *uku buya*, to return. Already we find: in the Batanga, *via*, come; Mponwe, *bia*; Sofala, *via*; Mosambique, *pia*; Delagoa, *bua*—come; *Nika, tua*, follow; Sualheli, *fiuta*, follow; *Nika, uy*, return. The Mponwe has the adverbs *fa* and *va*, again.

20. *Neno, nganeno*. The radical substance and general import of the adverb and preposition *neno* and *nganeno*, signifying on this side, prevail extensively in the cognates of the Isizulu. In some dialects its use corresponds to that of the Zulu *apa*; and in some instances we find the two, or parts of the two, combined in one word; and in some dialects we find *va*, where others use either *apa* or *neno*. Thus, Hiau, *hapano*, here, hither; Sualheli, *hapano*, thence; Quilimane, *uno*; Tete and Sena, *kuno*—here, on this side; Tete, *sani kuno*; Maravi, *dsani kuno*—come ye here; Mponwe, *gunu*, here; Setshuana, *monu*, *kuanu*, here; *kayenu*, now, to-day; Quilimane, *uanene*, now; Mosambique, *nananu*, *nanano*, now, soon, just now; Tete, *zapanapanu*, now. In Isizulu and Inhambane we have *apa*; in Tete and Sena, *kuno*; and in Mosambique, *va*—here.

This adverb and preposition *neno* is evidently compounded of a preposition (in the Zulu, *na*), and the pronoun second person plural (in the Isizulu, the conjunctive, genitive form, *inu* or *enu*, the sharp final *u* being softened to *o*; thus *na* + *inu* or *enu*, = *neno*) = within from you, between the person speaking and those addressed, this side of; hither, here; as *nganeno kwako*, this side of thee. Hence *si lapa*, we are here present (*apa*, close by) = *si nenu*, we are with you, on this side of (from which we address) you. So in Tete and Sena, *kuno* (= *ku*, to, by, + *no*, softened from the suffix pronoun *nu* [as in *anu*, *wanu*, *zunu*, etc. = yours, of you]) = by you; Sualheli, *hapano* (*pa* or *apa*, by, + the pronoun *nui*); Hiau, *hapano*—thence, hither, here; Setshuana, *monu* (no, in, among, + *enu*, suffix pronoun second person plural) = here. So *kuanu* (*kua*, at, + *enu*) = here; Mponwe, *gunu* (go, at, to, + *anu*, ye, contr. *nu*) = here. See also Tete, *zapanapanu*; Quilimane, *uanene*; and Mosambique, *nananu*, *nanano* —now, soon.

21. Malungana (adverbial prefix *ma*, + *lungana*, be straight with—reciprocal form of the verb *lunga*, be straight, right) = straight with, over against, opposite to, side by side, near.

22. Kodwa. The Isizulu has *kodwa* (*ka* + *udwa* or *odwa*) = only, simply, singly; and its various pronominal forms, as *ngedwa*, *sodwa*, *yedwa*, *bodwa*, *zodwa*, etc., I, we, he, or they alone. The Inhambane has *molda*, *muedo*, one; Quilimane, *moda*, *modzo*, one; Mosambique, *mora*; Maravi, *modze*; Kasands, Songo, and Kisama, *moshi* and *mosi*; Meto, *modshi*; Matatan, *mota* and *mora*—one; the Galla and Pokomo, *koda*, a part, portion; the Galla, *dua* or *duwa*, empty, void, merely; thus the Galla, *in*
and mbe; Kum, mbe and mba; Bagba, Bamou, and Momenya, mbe; Nhalemoe, Param, Papia, Pazi, Musu, and Puka, mba—two; Kamba, iti, two; Kambali, ile, two; Suahele, mbili; Nika, mbiri; Kirima, beti; Meto and Matatan, peli—two. Kamba, mbe; Suahele, mbele; Nika, Pokomo, Hiau, and Cape Delgado, mbere—before; Sena, kumbare, opposite; Tete, pambare, by the side; mbare, along beside; Sofala, pambede, before; Orungu, mbani, two; Mpongwe, mbani vani, ambani, two; mbe, or; kambe and kambenle, wherefore; Benga, tombeti, either, or; ibali, two; Wakuafi, arre, warre, two; Setshuana, gaber, twice; kepele, before; kampo, perhaps. So the verb, in Isizulu, pamba, cross, opposite; Mpongwe, simbi, oppose. We may notice also the resemblance, at least external, between some of these Hamitic words, as pambili, kepele, before, in front, and the Hebrew k’bel (הבדל), the front, over against, before.

16. Kade, kude. Corresponding to the root de (kade, kude, long, far), the Kamba has ndi, far; Suahele, nde, abroad; Mpongwe, da, nda, long; Setshuana, gute, far; guteni, far off; Galla, dera, high; Nika, kure, far; Tete and Sena, kutari, far, distant.

17. Katshana. According to the form of this word, we must regard it as a diminutive of kati (umkati, space) = a short space, a little distant, not far away. But the use of the word by the natives always indicates rather a long distance, remote, far away. Hence they sometimes define it by giving kade as a synonym; and they have recommended it as a proper rendering of such phrases as the prayer “be not far from me, O Lord” = U nga bi katshana kumi, ‘Ikos. It would be more in accordance with the signification which the natives give this word, to suppose it a diminutive of de, far, long, distant, a formation not much unlike impanjana (imandzhana), from impande; so kade, dim. ka-jana (kadzhana). The Efik has amjan, long; the Kongo, tshela, long; Sofala, tambo, far, which would make the diminutive tan-jana (tandzhana), little far; Mandingo, jaang, long.

18. Eduze = near, close, not far away; Galla, deo, near; Mosambique, uduli, after.

19. Emua (emuva, ngemua, nga senua, kamva) = after, behind, in the rear. The Tete and Sena dialects have buio, mumbuio, kumbiuio, after; ngambuire, beyond; Benga, ombiwa, behind; Inhambane, muaye, behind. This word, emua, is a noun originally, umua, rear, from the verb va (uku va, to come) = come, follow after; from which verb we have also the noun umvo, a remainder, or an excess over and above ten, twenty, thirty, or any exact number of tens—what comes after ten or tens. And, as the native counts with his fingers, when he has gone through with both hands and made up ten, he turns back = a buya, and goes over the same again. Further knowledge of kindred dialects may show still closer relation than we now see, between the
above, up, upwards; Mosambique, vazulu, uzulu, ozulu, over, above; Quilimane, vazuru, above; Suaheli, ju, above; ju ya-, over; Nika, zulu, above; zulu ya-, over; Kamba, ulu, above; zulu ya-, over; Pokomo, zu, above; ulu wa-, over; so the Isizulu, pezulu, above; pezu kwa-, over. The noun itself may be traced much farther; the following are a few specimens of its forms in different dialects: Fanti, esuru, sky; Avekwom, ezube, sky; Kongo, ezulu; Emboma, zulu; Basunde and Babuma, yulu; Mbomba and Bumbete, yolo; Kabenda, yilu and kuyihi; Kambali, usuto and ozulo—sky, heaven.

13. Enhla, enhle, panhle. The preposition enhla, up, above; and the adverb enhle, in the field, abroad, without; also panhle (pa + enhle), without, outside, abroad—are all derived from the noun inhla, an open field, waste, desert, wilderness, an uncultivated, desolate section of country; hence, an elevated, upland district, since the natives prefer the rivers and fertile valleys; and hence the significations of the adverbs and preposition, abroad, without, above. The Inhambane has papardshe; Sofala, kunshe; Tete and Sena, and Cape Delgado, kunsha and kunshe—without, outside; Suaheli, nde; Nika and Pokomo, nse; Kamba, nsa; and Setshuana, ka intle—without, abroad.

14. Pakati (pa + kati, the root of umkatu, space; isikati, time) = in the midst, between, within, inside. Among kindred dialects we have the following: Delagoa, tshikarre ka-, in the midst of; Tete and Sena, mukati, within; pakati pa-, in the midst of; Cape Delgado, vakati wa-, in the midst of; Suaheli, kati, middle; kati, katika, between; Nika, kahi, middle; kahikah, between; Kamba, kati, middle; kati ya-, between; Pokomo, kahi, middle; kahi kahi, between; Hian, jirikati, middle; pajirikati, between; Mpongwe, gare, go gare, middle, centre, between; Setshuana, ka gare, between.

15. Kambi, kumbe, pambi, pembali, kabi. In the words kambi, of course; kumbe, perhaps; pambi or pembali, in front, before; and kabi, second (isibili, zimbili, etc., two), we find radically the same element or elements, and the same generic idea, both in the Isizulu and in many of its kindred dialects, viz.: bi, mbi or mbe, bili, mbili, mbite = else, other, opposite; and hence, second, two, in front, before, of course, perchance, perhaps. The root mbe is still heard occasionally, especially from the older men, as an adjective, in the sense of other, another; thus, a n'gii lazi ilizwi elimbe, I do not know another saying, proverb; so izindaba ezimbe, other matters (= izindaba ezinye). This root, mbi, having i final instead of e, is not uncommon in the Kafir (Xosa) dialect, where it also signifies another, other, a different one. In some cognates of the Isizulu we find one element of the full form mbili or mbele, and in some another element; and in other cognates the two combined: thus, Pokomo, mbi, two; Ndob, be
10. *Kusupi* = short, near, not far distant. The root of this word, *jupi*, may be traced in many cognates of the Isizulu: in the Inhambane, Tete and Sena, *pajupi*, near; Suaheli, *mfsupi*, short; *karupi*, near; Nika, *mfusi*, short; *feji*, near; Kamba, *mu-gwwe*, short; *ve-gwwe*, near; Pokomo, *mfsi*, short; *hafisi*, near; Emboma, *kuf*, short; Mpongwe, *pe* and *epe*, short; Setshuana, *gasi*, near; Kongo, *kofo*, short. In both the form and import of this word, there is much to suggest that it may be radically a mere reduplication of *pa*, originally = *papa*, near by.

11. *Esensi*, *pansi*. The root *nsi*, or *ansi*, which occurs in *esensi* (*esi* + *ansini*, contr. *esansi*), the locative plural of an obsolete Zulu noun *esensi* = sand, sea shore, bed of a river, and hence *esensi*, signifying sea-ward, down country, lower down, aground—which root occurs also in *pansi* (*pa* + *nsi* or *ansi*) = aground, on the ground, down, beneath, below, under; and is doubtless seen also in *amanzi* = water, the sharp aspirate *s* having passed over into the weaker *z* of the same organ—is found, in substance, still in use with a similar meaning, in many Zulu cognates: Nhalomoe, *nsi*, sand; Melon, *nsi*, sand; Ngoten, *nshe*; Mbofon and Udom, *nshishe*; Eafen, *aseve*; Orungu, *deseye*, pl. *masaye*; Babuma, *ndshe*; Undaza, *eshe*, pl. *manshe*—sand; Fanti, *nsi* or *nsi*, water; Quelimane, *nunshi*, river; Zulu, *amanzi*, water, loc. *emanzini*, in the water; Param, *nsi* and *nse*; Papia, *nsi* or *ndshi*; Pati, *ndsi*; Bayon, *ndshib*; Mbamba and Bumbete, *andsha* and *mandsha*; Kiriman, *mandshe*—water. So also, Cape Delgado, *madshi*, water; *pansi*, low place; Tete and Sena, *madzi*, water; *pandzi*, low place; *panze*, or *pandze*, beneath, on the ground; Sofala, *madshi*, water; *pashi*, low place; Quelimane, (Kiriman?), *mandshe* or *mainshe*, water; Maravi, *madze* or *matse*, water; *panze*, beneath, on the ground; Cape Delgado, *sini*, beneath; Suaheli, *madshi* or *madji*, water; *nti*, earth; *tini*, below; *tini ya*, under; Nika, *mazi*, water; *zi*, earth; *sini*, below; *sini ya*, under; Kamba, *mansi*, water; *ndi*, earth; *deo*, below; *deo ya*, under; Pokomo, *mazi*, water; *nsi*, earth; below; *nsi ya*, under; Hiau, *messi*, water; *pasi ya*, under; Setshuana, *metse*, water; *tlase* or *thlase*, below, beneath, under.

The connection between *esensi* and *pansi* in the Zulu dialect, and many of the above words in its cognates, will be more apparent by observing that the *s* in these Zulu words has a kind of guttural aspiration, which some have attempted to represent by the use of *t*, and by writing the words, as they are generally written in the Kafir (Xosa) dialect, thus, *ezansi*, *pansi*.

12. *Pezulu*, *pezu*. The adverb *pezulu*, preposition *pezu* = over, above, on, upon (*pa*, near, at, + *izulu*, sky, heaven), is found in many of the neighboring dialects. In some it consists of the noun alone; in others, of the noun and preposition *pa*, or *va*, as in the Isizulu; thus, Tete and Sena, *pavuru* or *kazuru*, over,

The root of the same adverb is seen again in the Zulu interrogative *po*? *poge*? why? *po ini*? then why? *ini po*? why then? and the classical scholar will readily observe the likeness, both in form and import, which this particle bears to the Greek *nør*, where? *nós*, how? *nér*, whither? etc.

Many Hebrew scholars derive the Hebrew preposition *b* (ם) from the noun *beth*, house, in the house; hence in, by, near. In some instances its Hamitic equivalent *pa* (*po, va, vo*) carries with it the idea of being at home; thus, Sena, *a ri po*? is he at home? Mosambique, *ngi ya vo*, I am at home; *mukungwa wa va*, the master is at home; *u hi vo*, he is absent.

7. *La* is a demonstrative particle entering into the composition of the demonstrative pronouns, and of a few of the adverbs; thus, *lokupi* (la + ukupi), this, then, when; *lapa* (la + apa [a + pa]), here; *lapo*, there; *lapayi*, yonder.

8. *Ya* is an adverbial suffix, derived, perhaps, from the verb *uku ya*, to go; denoting distance in place, and generally accompanied by some gesticulation, as pointing the finger, or inclining the head = yonder. Thus, *leya*, that, or there yonder; *lapaya*, away yonder. The Suaheli has *ya kule*, far; Pokomo, *kuye*, far, distant. The Setshuana and Mpongwe make use of *la* in a similar manner: thus, Setshuana, *kakala*, far, distant; Mpongwe, *la*, distant: so the Hiao, *kula*, distant.

9. *Apa, apo, apaya*. In the adverb *apa*, we have the inseparable *pa* = near, close, by, and the genitive particle *a*, which is sometimes preceded and strengthened by the demonstrative *la*; thus, *apa* or *lapa*, here, at this place, hither, at the time, when; *apo* or *lapo*, there, at that place, thither, wherever; *apaya* or *lapaya*, yonder, at a distance. In some of the neighboring dialects, this adverb has reference to adjacent or contiguous time as well as place. Thus, Inhambane, *apa*, here, now; *apa apa*, just now; Mpongwe, *vena*, here; *vata*, soon; *vata-vena*, now; *vava*, there; *vana* and *mevana*, yonder; Suaheli, *hapa*, here; Nika, *hiva*; Pokomo, *hafa*; Hiao, *hapano*—here, hither; Suaheli, *hapa*, there; *mahali hapa*, *hapano*, thence; Nika, *kua hiva*, hence (from here); Benga, *okava*, here; *okavani*, there; *ovani*, there, yonder; *ove*, where; *pani*, this moment.
6. Pa. The inseparable particle or preposition pa = close, near, by, at, in, among, which enters into so many of the adverbs and prepositions in Isizulu, enters in like manner into the composition of the same parts of speech in numerous African dialects, and is closely allied, if not identical, with a similar particle in other families of language. Thus, in the Tete and Sena, pazuru, above; panze or pandze, below; pangoro pangoro, gradually; pambari, by the side; paboze, only; paupi, near; pakati, in the midst. In the Sofala, padoko padoko, gradually; pambedshe, before. In the Inhambane, papandshe, outside; padokuana, slowly; pashani, above. In the Quilimane and Mosambique, changing p into another letter of the same organ, v; thus, vazu and vazulu, above; vati = pansi in the Zulu, beneath; Mosambique, va, here, on this side; vakuviri, near; vamosa, once. In Cape Delgado, wakati = pakati of the Isizulu, in the midst; papiri, sometimes. The Mpongwe has va = in, in the space of, both separable and in composition with other words, especially those which denote time; thus, va, among, at; vale, soon; vatevena, now; and the Benga has picle, near.

Not only as a prefix, and in general signification, but virtually in form also, this particle pa is found in the English prefix by or be, German bei, Gothic bi, etc. And this prefix is perhaps allied to the Danish paa, and the Russian po; "the Latin has it in possessio and a few other words;" and its prevailing sense and chief element are found again in the Semitic prefix b (ב, beth)—a relic, perhaps, of an original language in common use before the dispersion on the plain of Shinar, and a still living ligament between the three divisions of the tripartite tongue since known as the Semitic, Japhetic, and Hamitic.*

The substance of this particle pa is seen also in the Zulu interrogative adverb pi, which is sometimes joined with the preposition nga; thus, ngapi na? where? whither? whence? close upon what? about how many?—and sometimes with the personal pronoun, the subject of inquiry; thus, upi na? where is he? bapi na? zipi na? whereabout are they (in respect to situation, number, or quantity)? Nor is this use of the particle confined to the Isizulu. The Inhambane has tingapi? how much? Tete, bangapi? how many? Mosambique, gavi? and Cape Delgado, vingapi? how many? Inhambane, dipi? where? whither? So-

* We must be permitted to observe that, while the extensive analogies traced by our correspondent among the languages of Africa appear to us highly interesting and important, we cannot regard it as safe, in the present state of philological science, to draw any inference from occasional and isolated resemblances to Indo-European or Semitic forms. When it shall be proved by cautious and comprehensive investigation, that a real connection exists between the Indo-European and Semitic families of languages, it will be time to make a similar attempt for other families more widely and obviously diverse from each other.—Comm. or Publ.
2. *Nga* is a preposition, signifying by, through, by means of, on account of, in respect to, at, with, toward, near, about. The Setshuana has *ga* = at, with, concerning, of, from, respecting; and the Mpongwe, *go* = at, upon, to; *gvi* = at, in, from; and *gore* = for, to, at. Some of the uses of *ga* in the Setshuana would seem to indicate its correspondence to the Zulu *ka*; and some of the uses of *go* and *gvi* in the Mpongwe are closely related to the use of *ku* in the Isizulu.

3. *Ku*, the preposition = to, from, in, with, is not only used as a separate word, but enters as a prefix into the composition of several adverbs, especially those which are formed from adjectives. With the initial *u*, it forms the sign of the infinitive; thus, *uku tanda*, to love. *Ku* is also found in many of the cognates of the Isizulu, both as a mark of the infinitive, and as an element in the formation of adverbs. Thus, in the Suaheli, *ku nena*, to speak; *ku jani*, to make; Maravi, *ku lira*, to weep; Cape Delgado, Tete and Sena, *ku rira*; Inhambane, *ku lila*—to weep; Mpongwe, *go kamba*, to speak; Setshuana, *go bofa*, to bind. So in adverbs, Tete and Sena have *kunsha*, Cape Delgado and Sofala, *kundsha*, while the Inhambane has *papandshe*, all in the sense of the Zulu *panhle*, without, outside. So again, Tete and Sena and Quelimane have *ku zogoro* and *padzogoro* = before; Tete and Sena, *kumbari* and *pambari* = by the side; *kuzuru*, above; *kumbuia*, after; *kuno*, on this side.

4. *Ka*. The particle *ka*, as seen in many adverbs, is originally a preposition—the genitive *a* hardened by *k*; thus, *kaku* (of size), greatly; *ka loku* (of this), now; *kanye* (of one), once. The same is found in the Setshuana as a preposition separable = for, by, in, with; and sometimes inseparable, and in the softer form *ga*; thus, *yanque*, once; *gaber*, twice; *gantsi*, frequently; and in some words, as *hagalu*, the sound of *g* is reduced to a mere aspirate. The Setshuana has the preposition *ka* as separable, in some cases where the Isizulu has the inseparable *pa*; thus, Setshuana *ka pele* = Isizulu *pambili*, before; *ka inle* = *panhle*, without; *ka gare* = *pakati*, within. We find *ka* used in the Tete and Sena as in the Isizulu; thus, *kabozi*, *kaposi*, once; *kavire-konze* or *kabiri-konzi*, twice; *kaviri-kaviri*, always. So in the Inhambane, *karini*? how? *karora*, thus.

5. *Kua* is evidently composed of *ku* = to, from, + the genitive *a*, the sign of source, possession, and designation; hence the general signification, to, from, of, at, with, in—its more specific import being determined by its connection; thus, *ngi ya kua Zulu*, I go to the Zulu country; *ngi vela kwa Zulu*, I come from the Zulu country; *abantu ba kua Misi*. Musi's people, or the people are with Musi, are at his place, or they belong to him, according to the connection in which the phrase is used. So in the Suaheli, *nime kuenda kwa Wali*, I went to the Governor; Mpongwe, *agendaga gvi longa*, he went to (the) country.
ARTICLE II.

OBSERVATIONS

ON THE

PREPOSITIONS, CONJUNCTIONS, AND OTHER PARTICLES

OF THE

ISIZULU AND ITS COGNATE LANGUAGES.

BY REV. LEWIS GROUT,
MISSIONARY OF THE A. B. C. F. M. IN SOUTH AFRICA.

Presented to the Society Nov. 4, 1858.

1. Na is both a conjunction and a preposition, signifying and, even, also, with; it is also used as an interrogative particle. The same word na = and, with, etc., prevails among all the cognates of the Isizulu, along the eastern coast of Africa—at Delagoa Bay, Inhambane, Sofala, Tete and Sena, Quelimane, Mosambique, Cape Delgado; also in the Suaheli, the Nika, Kamba, Pokomo, and Hiau dialects. It is also common in some of the interior and western dialects; sometimes, however, with some modification of form and import; thus, in the Mpongwe, na, ni, n' = with, for; Benga, na = with; Setshuana, na = with, and; as nabo, with them; nalu, with you.

Corresponding to the use of na as an interrogative particle, which always follows the interrogative phrase or sentence, and takes an accent with the falling slide of the voice, the Mandingo has di in many cases; and the Bornu language has ba, originally ra; and this ra is the same word which is used in that language as a conjunction = or. As the asking of a question implies the return of an answer—an additional remark—the indicating of a question by the use of a conjunction is not unphilosophical; nor does it differ in principle from the English, which makes most questions to end in an elevated or rising tone, thus indicating a state of suspense and the expectation of an answer.
at the same time, the number truly belonging to pearl is 65.3.2, and not 65.4. This transposition, though not the wrong number for pearl, occurs also in Gladwin’s translation; and in correspondence with it, in both the French and the English presentation of ‘Abu-r-Raihān’s results, the water-equivalents of pearl and lapis lazuli are transposed, that of pearl being 37.1 for 38.3, and that of lapis lazuli 38.3 for 37.1. If, however, the specific gravity of pearl was supposed by the Arabs to be less than that of lapis lazuli, agreeably to our table, its water-equivalent must have been rated the highest. It is scarcely to be believed that any accidental difference of quality in the pearls of ‘Abu-r-Raihān from those experimented upon by ‘al-Khāzīnī, could have led the former to a water-equivalent for pearl precisely the same as that which the latter found for lapis lazuli.

Again, M. Clément-Mullet’s list of specific gravities deviates in several instances from the results which should have been brought out by the water-equivalents given, as: silver 10.35 for 10.30, copper 8.70 for 8.69 (according to ‘al-Khāzīnī, 8.66), etc. The specific gravity obtained for amber, 2.53, while agreeing with the water-equivalent assigned to it, 39.3, so far exceeds the modern valuation as to occasion a remark by the French savant: but our author gives it a much higher water-equivalent, namely 118, and consequently a much lower specific gravity, namely .85. It would seem, then, altogether likely that not amber, but some other substance, was here referred to by ‘Abu-r-Raihān; perhaps coral, which is given by ‘al-Khāzīnī in the same connection.

These remarks cover all the substances mentioned by ‘Abu-r-Raihān, excepting gold, lead, iron, celestial hyacinth, and crystal—in regard to all of which there is no disagreement between him and ‘al-Khāzīnī—so that, besides their purpose in the way of criticism, they serve to show an almost entire identity between ‘Abu-r-Raihān’s tables, so far as they go, and those of our author. The course pursued by the latter, in his tabular statements, would seem to have been to adopt, with some correction, the results obtained by the earlier philosopher—to whom, it will be remembered, he frequently refers as an authority—and to add to them by experiments of his own.
our knowledge of the sciences of the East. It may not be amiss, then, to indicate here some errors in the tabular statements of the paper referred to.

Since the sum of the water-equivalent and the corresponding water-weight must in every instance be 100 mithkāls, the water-equivalents given for mercury, silver, and emerald require the water-weights of these substances, respectively, to be 92.3.3, 90.1.3, and 63.4, instead of 92.0.3, 90.1, and 68.4, as stated.

The water-equivalent of copper is stated to be 11.3, whereas our author gives us 11.3.1; but the weight assigned to the equal volume of copper also differs from our author's statement, being 45.4 instead of 45.3. This brings us to a point of greater apparent disagreement between 'Abū-r-Raḥīm and al-Khāzinī, the columns of weights of equal volumes. Now, as these weights must in every case be derived from the data furnished by the preceding columns, by a rule which our author gives, although it is nowhere presented in the quotation from the Āyn-'Akbarī, we must be allowed to mention the following as errors under this head, viz.: mercury 71.1.3 for 71.1.1, silver 53.5.1 for 54.0.2, bronze 46.1.2 for 46.2, copper 45.4 for 45.3, brass 44.5.1 for 45, tin 38.0.3 for 38.2.2; ruby (or red hyacinth) 97.1.1 for 97.0.3, ruby balai (if the same as ruby of Badakhshān) 90.2.2 for 90.2.3, emerald 69.2.3 for 69.3, cornelian 64.3.3 for 64.4.2.

But, if we examine the statement of the weights of equal volumes in Gladwin's translation of the Āyn-'Akbarī, we shall find that this may be so interpreted as to come into exact coincidence with our author's statement, in all but one of the cases here in question. For, supposing that Gladwin's figure 8, wherever it occurs in the fractional columns, comes from a wrong reading of $\frac{\varepsilon}{\varepsilon} = 0$, agreeably to a suggestion of M. Clément-Mullet, or is a mistake for $3 = \frac{\varepsilon}{\varepsilon}$; and farther, that Gladwin's figure 5, given for tassbjs in the weight of the equal volume of brass, is a mis-reading of δ for \cdot; and lastly, supposing Gladwin's mithkāl-figure 4 in 94.0.3 for amethyst (or red hyacinth) to be a mis-reading of δ for γ—suppositions which derive support from an extended comparison of the tables given by Gladwin with the corresponding tables of the foregoing article—we obtain the following weights of equal volumes from the English translation of the Āyn-'Akbarī, viz.: mercury 71.1.1, silver 54.0.3 (instead of the true number 54.0.2), bronze 46.2, copper 45.3, brass 45; amethyst (or red hyacinth) 97.0.3, ruby (probably ruby of Badakhshān) 90.2.3, emerald 69.3, cornelian 64.4.2.

We have thus far passed over pearl and lapis lazuli, because the weights which the French savant gives to equal volumes of these substances show a double error—their respective numbers being transposed, while,
planation which is finished under the beam on the left. We therefore regard this term as appropriated to the frame of the tongue. The etymology and form of the word itself give it the meaning of "that which fronts;" but, unfortunately, neither the Sihâh, nor the Kâmûs, nor any European dictionary of the Arabic which we have been able to consult, defines it in its application to the balance.

In making these suggestions we have been aided by a scientific friend, Rev. C. S. Lyman of New Haven, to whom we desire to express our obligations.

34, p. 97. So called, we may suppose, from their being obtained by calculation.

35, p. 98. To explain this formula,
Let \(W \) be the weight in mithkâls of a compound body (gold and silver);
\(x \) the weight in mithkâls of the silver contained in it;
\(w - x \) " the gold " "
Then \(s.\text{gr.} \) (the spec. grav. of the compound) \(= W \) (its weight in air) divided by the weight of water which it displaces. But if \(d' \) and \(d'' \) are the specific gravities of gold and silver, the water displaced by \((W - x) \) mithkâls of gold will weigh \((W - x) \div d' \); that displaced by \(x \) mithkâls of silver, \(x \div d'' \). Hence

\[
\frac{W}{W - x} = s.\text{gr.}; \quad \text{or} \quad \frac{W}{s.\text{gr.}} = \left(\frac{W - x}{d'} + \frac{x}{d''}\right) = W \cdot \frac{1}{d'} - \frac{x}{d'} + \frac{x}{d''}.
\]

By transposition,
\[
\frac{z}{d'} - \frac{x}{d''} = \frac{W}{d'} - \frac{1}{s.\text{gr.}}; \quad \text{whence} \quad x = W \cdot \frac{1}{d'} - \frac{1}{d''}.
\]

36, p. 105. See note 5.

We have just received, in the Journal Asiatique, v° Série, xi., 1858, a paper by M. Clément-Mullet, which exhibits tables of water-equivalents, water-weights, weights of equal volumes of substances, and specific gravities, derived from 'Abû-r-Raihân, through the medium of the Āyn-Ākbarî. The foregoing article will be found to correct and supplement the statements of M. Clément-Mullet's paper, in many particulars, as, indeed, it rests upon a much wider basis; and we feel sure of its meeting with a cordial welcome from the French savant, whose interest in the subject has been manifested by valuable contributions to
some of the leading parts of the construction. Those sloping pieces are called by the name of the Book of the Balance of Wisdom, substituted for the ms. reading, which makes no sense. Of this term the Sihâh says: "the are those two pieces which show the tongue of the balance." But the Kāmūs is more definite, and says: two pieces of iron which enclose the tongue of the balance, and signifies that I have made for the tongue such two pieces, and that it is , which is equivalent to saying that it has stops put to it." Plainly, then, the tongue of the balance moved from one to the other of the two pieces of iron thus described, and must have been in the same plane with them; and, since the middle vertical line of the tongue would of course range with that of its frame, the axis must have been bisected, longitudinally, by the same line. Thus, then, we are able to conjecture what the two parallel pieces in our larger drawing are intended to represent. They may be the supports of the two ends of the axis; and the inconsistency between this drawing and the one on p. 88, which we have alluded to, may be only apparent. For above the supports of the axis, and between the lower ends of the , there must have been an opening to allow the tongue to play within its prescribed field of motion—whether the frame of the tongue rested upon one of the supports of the axis, as our large drawing seems to show, or stood between the two. In accordance with this view, we regard the figure on p. 88 as representing only the tongue and its frame, and the bends at the bottom of it as bends of the.

Both of the parallel pieces are represented as if indefinitely prolonged towards the right, and, though this may be a mere inaccuracy of drawing, it is not unlikely that they were attached, in some way, to a fixed upright support, on that side, for the sake of giving a more stable position to the axis.

It remains for us to state the grounds on which we have assigned to the word the signification of "front-piece." This term is inscribed, in both of our drawings, on the top-piece of the frame of the tongue, and also, in the larger one, along the nearer of the two parallel pieces, at e: so that one might think that two different parts of the structure were called by the same name, on account of something in common between them; or else that it was applied to the whole structure consisting of the frame of the tongue and the two parallels. But we believe the inscription of this word along one of the parallels to be simply a misplacement, being there the first word of a sentence of ex-
The table is as follows:

<table>
<thead>
<tr>
<th>This Axis being</th>
<th>Revers.</th>
<th>This Axis being</th>
<th>Equip.</th>
</tr>
</thead>
<tbody>
<tr>
<td>below the C.</td>
<td>Revers.</td>
<td>at the C. of Grav.</td>
<td>Equip.</td>
</tr>
<tr>
<td></td>
<td>Equip.</td>
<td>above the C.</td>
<td></td>
</tr>
</tbody>
</table>

On the supposition that the centre spoken of is the centre of gravity of the beam, many more alterations would have been necessary.

32, p. 95. Our correspondent did not translate this passage, so that we alone are responsible for the description of the 'winged bowl.' We were about to offer some conjectures which seem naturally to suggest themselves in explanation of the peculiarities of this bowl; but, since we have so little ground for certainty in regard to it, we prefer to waive the subject. It will be noticed that our two drawings of the bowl are dissimilar, and that the one which is given in the figure of the whole balance is the least conformed to the description of our author.

33, p. 96. The figure of the Balance of Wisdom given here is as exact a copy as possible of the figure in M. Khanikoff's manuscript, excepting that it is reduced in dimensions one-third. Where the beam is crossed by the two slanting pieces, the shading of the one and the graduation of the other are both continued without a break, so that it is impossible to decide by the figure which is regarded as lying upon the other. This ambiguity the engraver has reproduced as well as he could. It is impossible, with no more light than we have on the subject at present, to determine the use and connection of all the parts of the balance here represented. There is even an apparent inconsistency between the figure on p. 88 and the drawing of the same part here given. The two drawings are, indeed, quite insufficient of themselves to explain the construction of the instrument. But what is especially to be regretted is that M. Khanikoff has omitted to cite our author's description of the axis and its pivots, or to give us so much as a hint of the mode in which the beam was held up. Yet, as the case now stands, a definition in the Kāmūs of the use of the two sloping pieces represented in our drawings on opposite sides of the tongue of the balance, enables us to make out...
cubit than that which is actually obtained by his process. The value
$c = 500 \text{ mm}$, namely, supposes \(rac{c^3}{m^3} = 0.1250\); the actual value of the
latter quotient, after modification of m^3, is 0.1291; before modification,
0.1287. We have not, therefore, in this instance, been at the pains of
verifying either the formulas or the calculations of our correspondent.

25, p. 86. In reproducing the figure here given by our correspond-
ent, we have reduced its dimensions one-third, without other alteration.

26, p. 86. This figure also is reduced one-third from that given in
M. Khanikoff’s manuscript.

27, p. 87. We have here followed our correspondent in giving only
the original term, not being sure enough of its precise signification to
venture to translate it, though we think it might be rendered “table of
plane projections,” or “planisphere.” The connection shows that it
denotes some astronomical instrument; and as well for this reason as
because صغریه عرض, and not زیدیع, means “latitude,” besides that
is not a plural, Casiri is wrong in translating كتاب زیدیع الصفايیم, in a
passage quoted from him on p. 115, as he does, by “Liber Tabularum
Latitudinum.”

28, p. 88. This figure is an exact copy of that given by M. Khani-
koff, except that it is reduced to one-third its original size. Its insuffi-
ciency to explain the construction and adjustment of the parts which it
represents is palpable. For further explanation see note 33.

29, p. 90. Our two diagrams on pp. 89, 91, though faithfully repre-
senting their originals, are, for convenience, made to differ from them
in dimensions.

30, p. 90. Literally “the point going downward,” implying the
conception of a concentration of the weight of a body in its centre of
gravity.

31, p. 94. We suppose the centre of gravity spoken of under the head
of “Determination relative to the Beam connected with the Tongue,”
in this table, to be the common centre of gravity of the tongue and
beam united. This seems to us to be indicated both by the reading of
the Arabic text of the table, as it came to us, and by the suppositions,
respecting the connection of the tongue and beam, considered in the
extract which precedes it. But some changes of reading were required
to make the table correct. The following fragment shows what are the
measurements otherwise required, and exposing the process to the chances of error to which they would give rise. We may also, perhaps, suppose that the original experimenter was actuated by a desire to furnish to any who might repeat the experiment after him the means of comparing their results with his, and that, in the want of any exact standard of measurement (since the measures may have varied in different localities not less than the weights are shown to have done by the table upon p. 81), he devised this method of the fine silver thread with the view of providing, in this case, such a standard.

23, p. 78. We have introduced into this table a number of emendations, which were imperatively called for. All the data for constructing it had been given before, in the table of water-equivalents upon p. 56, and the determination of the weight of the cubit cube of water just made, and we had only to work out, in the case of each metal, the proportion: the water equivalent of the metal, in tassújs: 2400::686,535.53; the weight of a cubic cubit of the metal. For mercury, the manuscript gives erroneously 387,973 m.; for silver, 294,607 m.; this would be the correct result if the calculator, by a slip of the pencil, had taken 686,435.53 as the third term of his proportion. For tin, the Arabic gives 209,300; but, as the translation presents the correct number, the former must be an error of M. Khanikoff's copyist. The column of istárs is left unfilled in the Arabic manuscript; our correspondent had supplied the deficiency, but incorrectly in the majority of cases (all excepting mercury, silver, and iron). It admitted, indeed, of some question how many istárs our author reckoned to the mann: we adopted 40, both because that seems to be the more usual valuation, and because, by assuming it, the column of fractions of istárs comes out in most instances quite correct: only in the case of lead, the manuscript gives a remainder of $\frac{1}{6} + \frac{1}{4}$; in that of iron, $\frac{1}{4}$; of tin, $\frac{1}{4} + \frac{1}{4}$. The same valuation of the istár was assumed in correcting the reading at the bottom of p. 77, where the great corruption of the whole passage, and the absurdity of its unamended readings, was very evident.

24, p. 82. Considering the uncertain character of even the main elements entering into this calculation, and that its result cannot accordingly be otherwise than approximate only, it seems to us that our correspondent might have spared himself the labor of calculating the effects of an assumed difference of temperature, pressure, and gravity: the modifications which are thus introduced lie far within the limits of probable error from other sources; and, in fact, had these modifying circumstances been left out of the account, a result would have been arrived at nearer to the value which M. Khanikoff finally adopts for the
20. p. 73. These terms are explained by a passage appended to this section in the translation of our correspondent, for which he has omitted to give the Arabic text. We quote the translation here:

"All the substances mentioned in this section sink in water if the weight of their equivalent volume of water is less than 2400 țassûjs, and float if that weight equals or exceeds the same number.

End of the first section."

21. p. 74. It might be suspected that the word الْعَلَم, "ivory," should rather be الخَلَل, "resin," this being one of the substances of which, in the opening of the chapter, our author proposed to give the water-equivalent. As, however, the specific gravity derived from the equivalent given is 1.64, and that of the common resins is only about 1. to 1.1, it is perhaps easier to assume that resin has been accidentally omitted from the table.

22. p. 76. This process can be made clearer by an algebraic method of statement. Let \(C \) = a cubit, \(c \) = the length of a side of the cube measured, and \(t \) = the diameter of the silver thread: then \(C = 4c + \frac{1}{4}(c - 4c) \); but \(c = 259t \); therefore, \(C = 1082 \frac{2}{5} t \). For the fraction \(\frac{2}{5} \), our author now substitutes \(\frac{6}{35} \), because, as appears from their use in the table on p. 46, sixtieths are to him what decimals are to us, and \(\frac{6}{35} \) are nearly equivalent to \(\frac{2}{5} \). \(C \), then, equals \(\frac{64,923}{60} \). Substituting, in the proportion \(c^2 : C^2 = 9415 \) țassûjs: the weight in țassûjs of a cubic cubit of water, the numerical value of the first two terms, we have \(17,373,970 : 273,650,180,698,467 \) : 9415 : 686,535,53. If the original fraction \(\frac{2}{5} \) had been retained, the result would have been 686,525 țassûjs.

The question naturally arises, why Abu-r-Railhan had recourse to the use of the silver thread in making this experiment. It is evident that, when once we have the value of \(C \) expressed in terms of \(c \), we may reject \(t \) altogether, and obtain the same result as before by the much less laborious reduction of the proportion \(1 : \frac{6,644,672}{91,125} \) (i.e. \(1^2 : \left(\frac{188}{45}\right)^2 \)) : 9415 : 686,525. This fact, however, our author does not seem to have noticed. Was the silver thread, then, employed merely as a mechanical device for facilitating an exact comparison of \(C \) and \(c \)? This seems by no means impossible, since, after finding the first remainder, and perceiving it to be equal to 46 diameters of the thread, the relation of that remainder to the side of the cube would be at once determined, without going through with the two additional, and more delicate,
"The crab is a river-animal of great use... on the other hand, the sea-crab is a petrified animal." One might ask the question, whether the latter was so called because found in the sea, or whether that name implies a belief that the sea once extended where afterwards was dry land, in accordance with modern geological discovery.

18, p. 66. In explanation of this term, our correspondent cites, from a Jaghatai Turkish translation of 'al-Kazwini's 'Ajā'ib 'al-Makhluqāt, a passage which states that "the finest quality of glass was Pharnoh's glass, found in Egypt." The original Arabic gives no such statement under the head of glass. For an account of the translation referred to, see M. Khanikoff in the Bulletin Hist.-Phil. of the Imperial Academy of St. Petersburg, for Nov. 8, 1854 (Mélanges Asiatiques tirés du Bulletin etc., ii. 440-446).

19, p. 72. We have substituted this citation from the original Arabic of 'al-Kazwini for a passage which our correspondent here quotes from the Jaghatai Turkish translation referred to above. The citation of M. Khanikoff, of which only the first sentence is recognizable in the Arabic, is as follows: "Khuwârazm is a vast, extensive, and populous province. There is in it a city named Jurjântyah. . . . The cold there is so intense that a man's face freezes upon his pillow; the trees split by reason of the cold; the ground cracks; and no one is able to go on horseback. One of its frontiers is Khurâsân, the other Mâwarâlnahr. The river Amû [the Jaihûn], freezes there, and the ice extends from there to the little sea. In the spring, the waters of the little sea mingle with the water of the Amû, and come to Khuwârazm;" on which our correspondent observes: "If I am not mistaken, this passage, which establishes with certainty that the waters of the Amû reached the Sea of Aral only during the spring freshests, is unique; and it points out to us, perhaps, the way in which the change of its mouth originally took place."

By way of illustration of 'al-Kazwini's description of the lower course of the Oxus, it may not be amiss to cite what Burnes says of it in his Travels into Bokhara, iii. 162. Having spoken of its winding among mountains till it reaches the vicinity of Balkh, Burnes says: "It here enters upon the desert by a course nearly N.W., fertilizes a limited tract of about a mile on either side, till it reaches the territories of Orgunje or Khiva, the ancient Kharasm, where it is more widely spread by art, and is then lost in the sea of Aral. In the latter part of its course, so great is the body of water drawn for the purposes of irrigation, and so numerous are the divisions of its branches, that it forms a swampy delta, overgrown with reeds and aquatic plants, impervious to the husbandman, and incapable of being rendered useful to man, from its unvarying humidity."
In thus rendering the word البقراتى, we conjecture it to be derived from البقرة with the signification "circulus ungulæ bubulæ magnitudine," as given by Freytag. Raineri gives us another reading for this word, namely البقراتى, and explains it as possibly signifying of Bukhārā—see text of 'at-Taifashl, p. 35, and annot., p. 100—which, however, seems to be quite impossible. The Arab mineralogist's description of the species of onyx bearing this name is as follows: البقراتى is a stone composed of three layers: a red layer, not transparent, followed by a white layer, also not transparent, next to which is a transparent, crystal-like layer. The best specimens are those of which the layers are even, whether thick or thin, which are free from roughness, and in which the contrast [of color] and its markings are plainly seen;" which corresponds to what Caesius, in his Mineralogia, Lugd., 1636, p. 569, says of the most precious sardonyx, thus: "Quæres tertio quenam sit sardonyx omnium perfectissima. Respondeo esse illum quæ ita referat unguem humanum carni impositum ut simul habeat tres colores, inferiorum nigrum, medium candidum, supremum rubentem... Nota autem, cum sardonyx est perfecta, hos tres colores esse debere impermixtos, id est, ut zona alba nihil habeat mixtum alieni coloris, et sic de nigra et purpurea." But, if our reading البقراتى is correct, and the derivation which we have suggested for the word is adopted, this species of onyx must have been so named from specimens with their layers of different colors intermingled, which the modern mineralogist would call by the name of agate rather than that of onyx. Perhaps, however, the reading should be البقراتى, the name of a certain plant, which we have not identified. In this case, the name would be similar in its origin to "basil-like" and "beet-like," applied to varieties of the emerald, and appropriate for specimens of onyx with either distinct or intermingled layers, the veining of the mineral having nothing to do with its name.

Caesius, Id., p. 520, says: "Dioscorides, Judaicus, inquit, lapis in Judæa nascitur, figurâ glandis, eleganter et concinne confectus, lineis inter se equalibus veluti torno factis," etc. Prof. J. D. Dana of Yale College, to whom we are indebted for the foregoing quotation, infers from this description that the Jews' stone was the olive-shaped head of the fossil encrinite. Ancient physicians dissolved it for a draught to cure gravel. 'Ibu-Baitār, in his Mufridāt, ed. Sonthheimer, i. 285, speaks of it in the same terms as Caesius does.

Probably a fossil. M. Khanikoff quotes the following from the Kāmūs: السرطان دابة نهيرة كبيرة النفع ... وما المجرى منه فحبوان
9, p. 50. We alone are responsible for the translation of this section, our correspondent having left it untranslated. In the lettering of the first figure here introduced, we have so far deviated from our Arabic original as to substitute zar and ṣ for ẓ and ṣ, respectively, in order to simplify the transcription.

10, p. 53. The meaning of this somewhat obscure statement is probably as follows. Two heavy bodies at opposite extremities of a lever act upon each other by their gravity to produce motion, and remain at rest only when their common centre of gravity is supported. The same is true of balls thrown into a spherical vase: they act upon each other by their gravity to produce motion, and they remain at rest only when their common centre of gravity is supported, that is, when it stands over the lowest point of the spherical surface.

11, p. 54. In our reproduction of this figure, we have reduced its size one half, improved the form of the “bowl,” f, and given in the margin the explanations which in the original manuscript are written upon the figure itself, at the points where the letters of reference are placed.

12, p. 56. We have taken the liberty of slightly altering our correspondent's manuscript in order to insert the table here given, because the latter seemed to be so distinctly referred to upon page 78 that it was necessary to assume that the Arabic work originally contained it. M. Khanikoff gives the mean weight for bronze as 11 m., 2 ½ d.; but, considering the acknowledged corrupt state of the manuscript in this part, we have thought ourselves justified in amending the reading to 11 m., 2 d., since this value is required by that of the “result” derived from it for the succeeding table. In the table on p. 78, it will be noticed, bronze is omitted.

13, p. 63. 'Aḥmad 'at-Taifāshl, in his book on precious stones, ed. Raineri, page 10 of text, describes the yāḵūṭ āsmānjuṭīn as including “the cerulean, that which resembles lapsī lazuli, the indigo-like, the collyrium-like, and the dusky”—by which may be intended, as the editor says (annot., p. 80), all sorts of sapphire and aqua marina.

14, p. 63. According to 'at-Taifāshl, page 13 of text, the raḥānī, or basil-like, is a variety of the emerald, “of pale color, like the leaves of the basil”; the same authority defines the silki, or beet-like, as another variety of this mineral, “in color like the beet,” that is, probably, like beet-leaves.
been compelled to amend the text slightly as regards the lettered points referred to, as well as the lettering of the figure itself, inasmuch as the latter in the manuscript was so imperfect and inaccurate as to be unintelligible. For the purpose of showing the alteration we have made, we present herewith an exact copy of the portion of the manuscript figure about the equator of equilibrium. It will illustrate also the manner in which the numbering of the instrument is indicated (very inaccurately upon the left scale) in the figure.

7. p. 42. See the statement, on page 98, that the Arab physicists were accustomed to engrave silver points upon the right arm of the beam of the balance, for specific gravities; and the description of the balance on page 97. To graduate by round points seems to have been the mode among the Arabs.

8. p. 47. We have constructed this table anew, and have corrected at many points the sixtieths of our original: in some cases, the readings of the latter may have become corrupt; in most, there was probably a want of accuracy in the original constructor.

The readings of the manuscript which we have altered are as follows:

<table>
<thead>
<tr>
<th>Line of Numbers</th>
<th>Parts</th>
<th>Sixtieths</th>
<th>Line of Numbers</th>
<th>Parts</th>
<th>Sixtieths</th>
</tr>
</thead>
<tbody>
<tr>
<td>105</td>
<td>95</td>
<td>16</td>
<td>87</td>
<td>114</td>
<td>58</td>
</tr>
<tr>
<td>104</td>
<td>96</td>
<td>12</td>
<td>86</td>
<td>116</td>
<td>12</td>
</tr>
<tr>
<td>103</td>
<td>97</td>
<td>9</td>
<td>83</td>
<td>120</td>
<td>30</td>
</tr>
<tr>
<td>102</td>
<td>98</td>
<td>6</td>
<td>76</td>
<td>131</td>
<td>36</td>
</tr>
<tr>
<td>101</td>
<td>99</td>
<td>3</td>
<td>69</td>
<td>144</td>
<td>54</td>
</tr>
<tr>
<td>99</td>
<td>101</td>
<td>2</td>
<td>64</td>
<td>156</td>
<td>16</td>
</tr>
<tr>
<td>98</td>
<td>102</td>
<td>5</td>
<td>62</td>
<td>161</td>
<td>20</td>
</tr>
<tr>
<td>97</td>
<td>103</td>
<td>8</td>
<td>61</td>
<td>163</td>
<td>58</td>
</tr>
<tr>
<td>96</td>
<td>104</td>
<td>21</td>
<td>55</td>
<td>181</td>
<td>50</td>
</tr>
<tr>
<td>94</td>
<td>106</td>
<td>21</td>
<td>52</td>
<td>192</td>
<td>20</td>
</tr>
<tr>
<td>88</td>
<td>113</td>
<td>37</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

There are also several cases in which we have retained the figures given by the manuscript, although not quite correct, when they differed by less than 1 from the true value. Thus, opposite the number 106, we find set down a remainder of 21 sixtieths, while the true remainder is 20.376, and, of course, 20 would have been more accurate.
Committee of Publication,

of 'Abû-Jafâr 'al-Khâzin, as indicated in an extract from one of the mss. of the Bodleian Library, given in Catal. Bibl. Bodl., ii. 261, as follows:

"وأقتصر فيه على اختصار الفظ وتقليل الأشكال من غير حل شكل ولا دفع الأشكال," he aimed at brevity in the work, abridging the phraseology and diminishing the number of the figures, without removing doubt or doing away with obscurity," which refers to a commentary on Euclid, seems to us very like that of our author.

Upon the whole, we incline to believe that our author and 'Abû-Jafâr 'al-Khâzin and the optician Alhazen, perhaps also D'Herbelot's Khazeni, are one and the same person. We venture, at least, to suggest this, for confirmation or refutation by farther research. We may here say that we have been in some doubt whether to read the name of our author 'al-Khâzin or 'al-Khâzinl, the Arabic ms. sent to us by M. Khanikoff, which gives the latter reading, not being decisive authority on this point. We beg our correspondent to settle the question by reference to the original ms. For the proposed identification, however, it is equally well to assume the name to be 'al-Khâzinl, inasmuch as, according to Risner, the author of the book on optics was called "Alhazen fil. Alhayzen," that is, 'al-Khâzin Bin 'al-Khâzin, to which 'al-Khâzinl, in the sense of "related to 'al-Khâzin," is equivalent.

4, p. 37. In reproducing this figure, we have struck out a point assumed in the original between h and t, and made use of in the fifth theorem, because it is of no service, and only makes the figure inconsistent, and less applicable to the following theorems.

5, p. 39. It seems to us that the remark of our author here referred to is misinterpreted by M. Khanikoff. The former means simply to say that no interference with one another's motion is apparent in the case of the celestial spheres, while he neither affirms nor denies the principle of universal gravitation.

6, p. 42. The figure here given of the areometer of Pappus is considerably altered from that presented by M. Khanikoff. The latter occurs twice in the manuscript, once in the Arabic text, and once in the translation: the two forms are of somewhat different dimensions, and are quite inconsistent with one another with respect to the details of the graduation, which are moreover, in both, altogether inaccurate. Both, however, agree in offering, instead of a double scale, two separate scales, standing in a reversed position at a slight interval from one another. As it was impossible to reconcile such a figure with the directions given in the text, we have preferred to construct a new one, in accordance with our best understanding of those directions. In so doing, we have
Possibly our author is the individual of whom D'Herbelot makes this record: "Khazen. The name of an author who invented and described several mathematical instruments, of which he also indicated the use"—see Bibl. Or., p. 504. Or he may be the same as 'Abû-Jafar 'al-Khâzin, of whom an Arab author, quoted by Casiri, says: "'Abû-Jafar 'al-Khâzin, a native of Persia, distinguished in arithmetic, geometry, and the theory of the motion of the stars, conversant with observations and their use, famed in his day for this sort of knowledge. He was the author of several works, among which is the Book of the Zîj-'aṣ-Ṣafâ'îh (كتاب ریض الصفا), the most eminent and elegant work on the subject, and the Book of Numerical Theorems (كتاب المسائل العددية)"—see Bibl. Arabico-Hisp., i. 408. Von Hammer, apparently on the authority of Sédillot, fixes his death in A.D. 1075—see Literaturgesch. d. Araber, vi. 428. Or our author may be identical with Alhazen, a person long known by name as the author of a treatise on optics translated by Risner, and published at Basel in 1572. It is also possible that one and the same individual is referred to under these several names. Risner intimates to us the original title of that treatise on optics in these words: "et ut inscriptionem operis, quae author est de aspectibus, graeco, concinniores et breviores nomine opticam nominarem;" and we hoped to be able to obtain from Hâjî Khalîfah's lexicon some information respecting other works by the same author, which should throw light upon the authorship of the work before us. But this clue to a reference proved insufficient, and after several fruitless searches we have not found any notice by Hâjî Khalîfah of the famous optician. As to the period when Alhazen lived, Risner declares himself ignorant, but supposes that it was about A.D. 1100: it will be remembered that our author wrote in 1121. That our 'al-Khâzîn was a native of Persia, as is asserted of 'Abû-Jafar 'al-Khâzin, there is some reason to suppose, from his occasional use of Persian words; and here it may be well to observe that it is only by an error that Alhazen the optician is made a native of Baṣrah: the error is to confound him with Hasan Bin 'al-Hasan Bin 'al-Hâtham of Baṣrah, which has been widely spread, though corrected by Montucla and Priestley—see Gartz, De Interpp. et Explanatt. Euclidis Arab., p. 22. The subject of the work before us is one which the Arabs were accustomed to class, with optics and other sciences, under the general head of geometry—see preface to Hâjî Khalîfah's lexicon, ed. Flügel, i. 85; and there is, indeed, a little sentence in our author's introduction, which, with reference to the time when it was written, would seem even to betray a writer addicted to philosophizing on light: "For the essence of light is its being manifest of itself, and so seen, and that it makes other things manifest, and is thus seen by"—see p. 7. Again, the style
which he rarely mentions the scientific labors of those whose memoirs he gives, and partly to the circumstance that a work destined for the royal treasury, like official reports of the present day, might remain a long time unknown to the public."

We have thought it proper thus to give the substance of our correspondent's conjecture. But there can be no doubt that, in the extracts from the Book of the Balance of Wisdom which M. Khanikoff has given us, the author names himself three times, though in so modest a manner as scarcely to attract attention. Instead of heralding himself at once, in his first words, after the usual expressions of religious faith, as Arab authors are wont to do, he begins his treatise by discourse on the general idea of the balance, with some reference, as it would seem, to the Bāṭinian heresy, which gave so much trouble to the Saljūk princes, and then simply says: "Says 'al-Khāzini, after speaking of the balance in general..."—see p. 8, and proceeds to enumerate the advantages of the balance of wisdom, so called, which he is to describe and explain in the following work. Farther on, after a section devoted to a specification of the different names of the water-balance, and to some notices of those who had treated of it before him, he begins the next section thus: "Says 'al-Khāzini, coming after all the above named..."—see p. 14, and goes on to mention certain varieties in the mechanism of the water-balance. The form of expression which he uses in the latter of these two passages implies that 'al-Khāzini is no other than the author himself; for Arabic usage does not allow itgurol to be employed to introduce what one writer quotes from another, though nothing is more common than for an author to use the preterit تار, with his name appended, to preface his own words. Besides, if 'al-Khāzini is not our author, but one of those from whom he quotes, who had previously treated of the water-balance, why did he not name him in the section appropriated to the enumeration of his predecessors in the same field of research? In the title to a table which our correspondent cites in the latter part of his analysis, we read again: "Table etc. added by 'al-Khāzini"—see p. 69, which also intimates the authorship of the work before us, for the writer introduces that table as supplementary to one which he cites from another author. Yet farther, if our author's name be really 'al-Khāzini, his statement respecting the destination of his work for the royal treasury—see p. 16—accords with his own name, for 'al-Khāzini signifies "related to the treasurer," and, as M. Khanikoff well observes, "the Orientals show as much jealousy in affairs of state as in their domestic concerns."

Who, then, is our 'al-Khāzini? Though unable to answer this question decisively, we will offer some considerations with reference to it.
To this supplementary note we will only add that we could not hesitate to translate the name of the person to whom Menelaus is said to have addressed one of his books, which our correspondent failed to identify, namely دوماتبيانوس, by Domitian. As the emperor Domitian reigned from A.D. 81 to 96, Menelaus must have been living in his time.

Respecting the authorship of the Book of the Balance of Wisdom, after observing that, although the dedication proves it to have been composed at the court of the Saljuḳe Sultan Sanjar (who reigned over a large part of the ancient Khallate of Baghdad from A.D. 1117 to 1157), the recent developments of the history of the Saljuḳes by Defremery afford no clue to the identification of the author, our correspondent quotes a passage from Khondemir’s Dastūr ‘al-Wuzara’ which he thinks may possibly allude to him, as follows: “Nāṣir ‘ad-Dīn Mahmūd Bin Muẓaffar of Khuwārazm was deeply versed both in the sciences founded in reason and in those based upon tradition, and was especially able in jurisprudence after the system of ‘ash-Shāfi‘i’; at the same time he was famed for his knowledge of finance and the usages and customs of the public treasury. He was the constant protector of scholars and distinguished men. The Kāḍhi ‘Umar Bin Sahlān of Sāwah dedicated to him his work entitled Maṣā‘ir-i-Nāṣiri, on physical science and logic. In the Jawāmi’ ‘at-Tawārikh it is stated that Nāṣir ‘ad-Dīn commenced his career as secretary of the administration of the kitchens and stables of Sultan Sanjar, and that, as he acquitted himself creditably in that office, the Sultan named him secretary of the treasury of the whole kingdom, and he reached at length the high dignity of Wazir, but, on account of the modesty common to men of studious habits, and which was native to him, he could not properly perform the duties attached to it. The Sultan accordingly discharged him from it, and again entrusted to him the administration of the finances, which he transmitted to his son Shams ‘ad-Dīn ‘Alī.” On this passage M. Khanikoff remarks: “I do not pretend by the aid of this passage to establish irrevocably that Nāṣir ‘ad-Dīn is the author of the treatise before us. But his being a Khuwārazmian accords with what our author says of the place where he made his researches; his participation in the administration of the finances would explain his having composed a work for the king’s treasury; and lastly, the positive testimony of history as to his erudition... and the dedication to him of a work treating of physics give some probability to the supposition that he may have occupied himself with the subject. The absence of any direct notice of this treatise on the balance in his biography may be ascribed in part to the predilection of Khondemir for politics rather than literary history, in consequence of...
‘al-Māmūn. With him originated a well known astronomical table, which astronomers make use of to our day. Having been a Jew, he became a Muslim by the favor of ‘al-Māmūn. Several well known works on the stars and on arithmetical calculation were written by him.”

Respecting Yūḥannā Bin Yūsīf, Casiri, Id., i. 426, quotes the following from an Arab author: “Yūḥannā the Christian presbyter, Bin Yūsīf, Bin ‘al-Ḥarīth Bin ‘al-Batrīk was a savant distinguished in his time for lecturing on the Book of Euclid, and other books on geometry. He made translations from the Greek, and was the author of several works.”

Ṭbn ‘al-Haitham of Basrah, whose full name was ‘Abū-‘Ali Muḥammad Bin ‘al-Ḥasan Ṭbn ‘al-Haitham of Basrah, as we are told by Wüstenfeld in his Gesch. d. Arab. Aerzte u. Naturforscher, pp. 76, 77, was a good mathematician as well as skilled in medicine. He rose to eminence in his paternal city of Basrah, but, on the invitation of the Fatimid Khalīf ‘al-Ḥakīm, A.D. 996–1020, went to Egypt to execute some engineering, for the irrigation of the country when the Nile should rise less high than usual. In this undertaking he failed. The latter part of his life was devoted to works of piety and to authorship. He died at Cairo, A.H. 430, A.D. 1038. Our ms. gives him the title البصري, but, as he was generally called from his native city, and the other title might so easily be an error of the ms., we have altered it to البصري.

From an Arab author, again, quoted by Casiri, Id., i. 442, 443, we derive the following notice of ‘Abū-Sahl of Kūhistān: “Wijan Bin Wastam ‘Abū-Sahl of Kūhistān was a perfect astronomer, accomplished in knowledge of geometry and in the science of the starry heavens, of the highest eminence in both. He distinguished himself under the Buwaihid dynasty, in the days of ‘Adhad ‘ad-Daulah [A.D. 949–982—see Abulfeda’s Annales Musul. ed. Reiske, ii. 454, 550]. After Sharf ‘ad-Daulah had come to Baghdad, on the expulsion of his brother Ṣamṣām ‘ad-Daulah from the government of Trāk [A.D. 986—see Abulf. Ann., ii. 560], he ordered, in the year 378, that observations should be taken on the seven stars, in respect to their course and their passage among their Zodical signs, as ‘al-Māmūn had done in his day, and he committed the accomplishment of this task to ‘Abū-Sahl of Kūhistān. Consequently, the latter built a house within the royal residence, at the end of the garden, and there made instruments which he had contrived, and afterwards took observations which were written out in two declarations, bearing the signatures of those who had been present, in affirmation of what they had witnessed and were agreed in.”
II. Notes on Translation and Analysis.

Referred to by Numerals.

1, p. 20. The length of the cubit, الذراع, was somewhat variable. We read (1.) of ذراع اليد, the hand-dhirâ', of the Spanish Arabs, measuring five اصابع, fingers; (2.) of the dhirâ' called المشاشية —cubitus a situâ cuius magnitudinem aequat ita dictus, as Casiri says—used in Spain, which measured six قبادح, fingers; (3.) of ذراع اليد العادلة, the exact-hand dhirâ', used in the East, having the same length as the last named; (4.) of الذراع السوداء, the black dhirâ', so called because, as is said, its length was determined by that of the arm of a slave of امام, measuring six اصابع and three fingers, and by which were sold the byssus and other valuable stuffs of the bazaars of Baghdâd; and (5.) of the dhirâ' called الملكية or فارسية, of Persian origin, measuring one and a third of No. (3.), that is, eight fists. Our author elsewhere speaks definitely of ذراع اليد العادلة, by which he probably intends ذراع اليد, and of the dhirâ' of clothing-bazaars. What he calls the dhirâ', without qualification, is probably to be understood as No. (5.). See Casiri’s Bibl. Arabico-Hisp., i. 365, ff.; and Ferganensis . . . Elem. Astron. op. J. Golii, pp. 73, 74.

2, p. 24. This term is explained by the figure of the SUN, given on page 97.

3, p. 25. Having satisfied ourselves that M. Khanikoff’s conjecture as to the authorship of the work before us is incorrect, we propose simply to give the substance of it in this note, in connection with what seems to us to be the true view. But we will first bring together a few notices of learned men whom our author speaks of as his predecessors in the same field of research, who are not particularly referred to in M. Khanikoff’s note on pages 24, 25.

Sand Bin ’Ali is characterized by an Arab author quoted by Casiri, in Bibl. Arabico-Hisp., i. 439, 440, as follows: “An excellent astronomer, conversant with the theory of the motion of the stars, and skilled in making instruments for observations and the astrolabe. He entered into the service of امام to prepare instruments for observation, and to make observations, in the quarter called ’ash-Shamâsîyah at Baghdâd; and he did accordingly, and tested the positions of the stars. He did not finish his observations, on account of the death of
Committee of Publication,

Page.
73. I. 2, h⁴, ms. وماياها; I. 3, ḫ⁴, ms. وذهبنا; I. 6, ḫ⁴, ms. ومن;
I. 8, h⁴, ms. السنتكاني.

75. L. 1, ḫ⁴, before the bab al rahib ms. has وقبل الباب الراوي. But the second division of the book commences with the fifth lecture — see p. 17; and ... 'is evidently a blundering anticipation of the title of this fourth chapter of the third lecture.

76. L. 1, m⁴, ms. عند; L. 4, ṣ⁴, ms. ثمانية; L. 6, ṣ⁴, ms. مضروب for a word illegible in ms.; L. 7, ṣ⁴, ms. كأو كذي; L. 12, ṣ⁴, ms.
خمس عشرة وخمسين; L. 13, ṣ⁴, ms. مئات.

77. L. 1, ḫ⁴, ms. الملاك; L. 13, ṣ⁴, ms. مايتين omitted in ms.; L. 14, ṣ⁴, ms. وثماني وعشرين استارا for وثماني وعشرين استارا ms. has وثامین وعشیرین واستارا; L. 15, ṣ⁴, ms. و половина; L. 4, ṣ⁴, ms. ×⁴, x⁴, ms. كالم.

78. L. 1, y⁴, ms. يناظر; x⁴, ms. مثقال; a⁵, ms. وماها; L. 3, b⁵, ms. وخمس وربع وخمس;
L. 15, ṣ⁴, ms. مئات; L. 6, ṣ⁴, ms. استار.

90. L. 6, ṣ⁵, ms. ومعارة; L. 7, ḫ⁵, ms. العالم.

92. L. 9, ḫ⁵, ms. ثمانية عمر — This correction is required by the multiplication together of the numbers of the incidents combined. The enumeration just made involves nine specifications relative to the position of the axis, covering the two cases of separation and connection between the tongue and beam, and also the two cases supposed with regard to the position of the tongue when joined to the beam; and this number nine is multiplied by the number of the specifications respecting the position of the line of suspension of the bowls.

93. ḫ⁴, ms. كفاية; ḫ⁵, ms. مستوى; ḫ⁵, ms. مقلوب.

97. L. 15, m⁵, ms. الغنائم; L. 18, ṭ⁵, ms. سلسان.

98. L. 20, ṭ⁵, ms. المواضع.

99. L. 5, ṭ⁵, ms. كما omitted in ms.; L. 6, ṭ⁵, ms. محمد conjectural for an abbreviation of the ms.

100. L. 3, ṭ⁵, ms. وتعذب; L. 7, ṭ⁵, ms. للعوارث; ṭ⁵, ms. أو الغوام.

103. L. 4, ṭ⁵, ms. وأربما, ṭ⁵, ms. وبعدهاء sa. L. 5, ṭ⁵, ms. for the df. ms. has البعداء إلى القربي and the correcting البعداء إلى القربي to the b. Sonto.
Notes on the Book of the Balance of Wisdom.

30. l. 6, k^2, ms. مركز; l. 10, l^2, ms. مركز.
31. l. 8, m^2, ms. مركز.
32. l. 10, n^2, ms. فاعلهم.
33. l. 2, o^2, ms. فاعلهم.
34. l. 4, p^2, ms. لا جمرة, a fragment of a sentence, which we have completed as in the text: الخمس يسَّمَي يُبَدِّل قوته لا بُقَد جمرة in accordance with the French translation of our correspondent.
35. l. 2, q^2, ms. مقات.
36. l. 3, r^2, ms. أعظمها.
37. l. 6, s^2, ms. أنية, t^2, ms. الماء; l. 7, u^2, ms. اللاتينية, v^2, ms. وياء;
38. l. 8, w^2, ms. اللاتينية; l. 9, x^2, ms. إذا, y^2, ms. كأن;
39. l. 10, z^2, ms. اللاتينية.
40. l. 12, a^3, ms. تخبها.
41. l. 9, b^3, ms. خمساتها.
42. l. 3, c^3, ms. الشبيبة; l. 4, d^3, ms. قاعدة.
43. l. 9, e^3, كَمَا العَدَد المَحْفَوظ إلى تَقْل الماء supplied to complete the sense.
44. l. 2, f^3, ms. منها; l. 6, g^3, ms. التَقْلية — by an oversight of the copyist, التَقْلية and التَقْلية in this sentence were transposed; l. 7, h^3, ms. الرَّطْوَة; l. 12, i^3, ms. انتقل رُسُب فيها إلى فِي بالتكا菲 supplied to complete the sense; l. 16, k^3, ms. أَج.
45. l. 4, l^3, ms. تم بِب مَقِيس المَآَعات وَتَبَادَل المَائَة الأولى لفَوْق الرَّومِي.
46. l. 16, m^3, ms. بذُورته.
47. l. 4, n^3, ms. ماء, o^3, ms. أَرْضِ البَكْرَةٍ والثَّلْكَس. supplied to make out the sense.
48. l. 12, p^3, ms. المَآَج.
49. l. 3, q^3, ms. البَدْخَشَي; l. 7, r^3, ms. البَدْخَشَي supplied to make out the sense.
50. l. 12, s^3, ms. ثلاثة.
51. l. 12, t^3, ms. البَدْخَشَي; l. 17, u^3, ms. البَدْخَشَي.
52. l. 11, v^3, ms. البَدْخَشَي omitted in ms.
53. l. 17, w^3, ms. البَدْخَشَي; l. 10, x^3, ms. فَشِئٌ.
54. l. 18, y^3, ms. البَدْخَشَي; l. 13, z^3, ms. البَدْخَشَي.
55. l. 5, a^4, ms. البَدْخَشَي; l. 8, b^4, ms. البَدْخَشَي; l. 9, c^4, ms. البَدْخَشَي.
56. l. 4, d^4, ms. البَدْخَشَي.
57. l. 9, e^4, ms. البَدْخَشَي.
58. l. 4, f^4, ms. البَدْخَشَي.

72. l. 4, g^4, ms. بعضها.
Committee of Publication,

12. l. 6, i, ms. دوماطيانوس; l. 8, j, ms. أين; l. 13, k, ms. أين.
13. l. 6, m, ms. بين; l. 14, n, ms. الاسفراري, and so wherever else the name occurs.
15. l. 1, o, ms. موضوعها; l. 4, p, ms. اللؤصر; l. 11, q, ms. الددين omitted in ms.
16. l. 13, r, ms. انساب.
17. l. 2, s, ms. منه; l. 7, t, ms. منه.
18. l. 6, u, ms. والمطيعة; l. 8, v, ms. المصرى—see note 3, p. 111.
19. l. 3, w, ms. حمزة أبواب omitted in ms.
20. l. 11, x, ms. ميلانون;
21. l. 2, y, ms. أربعة أبواب omitted in ms; l. 12, z, l omitted in ms, and so wherever else this numeral appears in the table of contents.
22. l. 3, a², ms. المركب; l. 9, b², ms. بعضها; l. 11, c², ms. الهوى.
23. l. 5, d², ms. ثمانية—This correction is required by the statement of the contents of the second and third parts of the work given on page 17; l. 11, e², ms. خمسة—see preceding note. The numbering of the chapters of this lecture has been altered in accordance with the corrections of the text here made.
24. l. 10, f², ms. مائة وخمسون, for تستعة وأربعون, g², ms. خمسون.

A collation of the whole ms, from which our extracts are made is necessary to verify this statement. Some of the numerals indicating the numbers of sections are obscurely written in the ms. which we have in our hands; and, though our correspondent's analysis has given us certainty in some of the doubtful cases, it still remains uncertain whether the number of sections in chh. 1 and 3 of lect. 4, chh. 4 and 10 of lect. 6, and ch. 4 of lect. 7 is i.e. 3, as stated, or i.e. 8. We have also doubted whether to read i.e. 7, or i.e. 4, for the number of sections in ch. 5 of lect. 8; and what value to assign to a character, repeatedly used, which resembles the letter خ. In our ms. of the table given on pages 73, 74, the same character is used for 0, but of course this is not its value in the table of contents. From its similarity to the Indian numeral for 4, and because in one instance the letter خ seems to be added to explain it, we have assigned to it that value. On the grounds assumed, the total number of sections comes out larger, by twenty-one, than the statement of our ms.

26. l. 6, k², ms. المغوني—see note 3, p. 111; l. 7, l², ms. المصرى—see note 3, p. 111; l. 9, j², l omitted in ms.
clearly see why Europe could scarcely at all profit by the scientific monuments of the East of the Khalifate, and why the scientific experience of true Orientals has been almost entirely withdrawn from its notice.

Let me be allowed, in conclusion, to add a single observation, which is, that it is an error to attribute to Arab genius all the great results that the East has attained in the sciences. This error rests upon the fact that most of the scientific treatises of Orientals are written in the Arabic language. But would language alone authorize us to give the name of Roman to Copernicus, Kepler, and Newton, to the prejudice of the glory of those nations which gave them birth? Should, then, 'al-Ḥamadânî, 'al-Firuzabay, 'al-Khâjayyâmî, and many others, figure in the history of science as Arabs, only because they enriched the literature of this people with the Makâmât, the Kâmûs, expositions of the Qurân, physical researches, and algebraic treatises? It would be more just, as it seems to me, to restore these to the Iranian race, and to suppress the injuriously restrictive name of Arab civilization, substituting for it that of the contribution of the Orient to the civilization of humanity.

9 Nov., 1856.

Notes by the Committee of Publication.

Besides re- translating the Arabic extracts in the foregoing article, and making other changes which are specified in the following notes, we have freely altered whatever seemed to us to admit of improvement, being desirous to do full justice to so valuable a communication, according to our best judgment and that of scientific friends who have aided us, and fully believing that our correspondent, if we could have consulted him, would have approved of every alteration which we have made.

Comm. of Publ.

I. Notes on the Text.

Referred to by Letters.

<table>
<thead>
<tr>
<th>Page</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.</td>
<td>l. 8, a, ms.</td>
</tr>
<tr>
<td></td>
<td>l. 11, b, ms.</td>
</tr>
<tr>
<td>6.</td>
<td>l. 3, c, ms.</td>
</tr>
<tr>
<td>8.</td>
<td>l. 11, d, al-ا</td>
</tr>
<tr>
<td>11.</td>
<td>l. 6, e, ms.</td>
</tr>
<tr>
<td></td>
<td>l. 14, g, ms.</td>
</tr>
<tr>
<td></td>
<td>h, ms.</td>
</tr>
</tbody>
</table>
they already recognized that the air has weight, by the influence which it exerts upon the weight of bodies.

4. That they observed the action of a capillary force holding liquids in suspension within tubes of small diameters, open at both ends.

5. That they made frequent use of the areometer, which they had inherited from antiquity, and that this instrument, very probably, served them for a thermometer, to distinguish, by difference of density, the different temperatures of liquids.

6. That they already had sufficiently full and accurate tables of the specific gravities of most of the solids and liquids known to them.

7. That they had attained, as Baron v. Humboldt very correctly remarks, to experimentation; that they recognized even in a force so general as gravity, acting upon all the molecules of bodies, a power of revealing to us the hidden qualities of those bodies, as effective as chemical analysis, and that weight is a key to very many secrets of nature; that they formed learned associations, like the Florentine Academy; and that the researches of the students of nature in Khwárazm, of the twelfth century, well deserve to be searched for and published.

Here an inquiry very naturally suggests itself. It is generally known that, at the time when the taste for arts and sciences awoke to so brilliant a life in Europe, the Arabs powerfully influenced the development of several of the sciences. How comes it, then, that their progress in physics can have remained so completely unknown to the learned of Europe? The answer seems to me perfectly simple. The immense extent of the Kha-lifate was a cause which produced and perpetuated the separation and isolation of the interests of the various heterogeneous parts which composed it. A philosopher of Maghrib would doubtless understand the writings of a philosopher of Ghaznah; but how should he know that such a person existed? The journeys so often undertaken by the Arabs were insufficient to establish a free interchange of ideas; even the pilgrimage to Makkah, which brought together every year representatives of all the nations subject, whether willingly or unwillingly, to the law of the Muslim Prophet, failed, by reason of its exclusive character, to modify in any degree that separation of moral interests which kept the different Muslim countries apart from one another. Moreover, the crusades had an effect to intercept communication between the Muslim East and West. At length, the Mongol and Turkish invasions split the Muslim world into two parts wholly estranged from one another, and, so to speak, shut up the scientific treasures of each part within the countries where they were produced. If, now, we reflect that the era of the renaissance in Europe precisely coincides with that same invasion of the Turks, we shall
The balance-level consisted of a long lever, to the two ends of which were attached two fine silken cords, turning on an axis fixed at a point a little above its centre of gravity, and suspended between two sight-pieces of wood, graduated. At the moment when the lever became horizontal, the cords were drawn in a horizontal direction, without deranging its equilibrium, and the divisions of the scales of the sight-pieces, corresponding to the points where the cords touched them, were noted. For levelling plane surfaces, use was made of a pyramid with an equilateral, triangular base, and hollow and open to the light, from the summit of which hung a thread ending with a heavy point. The base of the pyramid thus arranged was applied to the plane which was to be levelled, and carried over this plane in all directions. Wherever the plane ceased to be horizontal, the point deviated from the centre of the base.

The balance-clock consisted of a long lever suspended similarly to the balance-level. To one of its arms was attached a reservoir of water, which, by means of a small hole perforated on the bottom of it, emptied itself in twenty-four hours. This reservoir, being filled with water, was poised by weights attached to the other arm of the lever, and, in proportion as the water flowed from it, the arm bearing it was lifted, the weights on the other arm slid down, and by their distance from the centre of suspension indicated the time which had elapsed.

Recapitulating, now, briefly, the results brought out in this analysis, we see:

1. That the Muslim natural philosophers of the twelfth century were much in advance of the ancients as regards their ideas of attraction. It is true, they ventured not to consider this attraction as a universal force; they attributed it to a direction towards the centre of the earth, as the centre of the universe; and they excluded the heavenly bodies from its influence. Yet they knew that it acts in a ratio of distance from the centre of attraction. As to their strange supposition that the action of this force is in the direct ratio of the distance, having gone so far as they had in physics, they must very soon have discovered that it was not in accordance with nature.

2. That they had sufficiently correct ideas respecting certain mechanical principles; that they knew the equation which connects velocity with space traversed and time employed in going over it; that they were in possession of several theorems relative to centres of gravity; and that the theory of the loaded lever was very familiar to them.

3. That, without yet daring to reject the ideas which had been handed down to them by antiquity as to heaviness and lightness,
the way to be considerate is to watch [the balance]. If, now, one of the two sides [of the beam] goes up, and if, upon the transfer of gravity to the other movable bowl, this side still goes up, the tampering which we have spoken of is made certain. If one of the two sides goes up, and then, when there has been a transfer [of gravity], the other side goes up, the body is compounded of the two substances.

The distribution [of weight] must be made agreeably to instructions; and one must beware of being deceived in the second case concerning it; for example, in the case of a compound of gold and silver [supposed, but not proved by distribution]; and, considering that there may be some hollow place within, which opposes [the discovery in it of] gold, and makes it [appear as if] of the lightness of silver, one should remove its weight to the bowl [adjusted] for silver; whereupon, by reason of a hollow place, one's conclusion may be changed.

It is evident from this passage that the Muslim natural philosophers of the twelfth century had so elaborated the balance as to make it indicate, not only the absolute and the specific gravity of bodies, but also, for bodies made up of two simple substances, a quantity dependent on the absolute and the specific gravity; which may be expressed by the formula

\[
x = W \frac{d^1 - s \cdot gr.}{d^d - d^{d''}}
\]

where \(W \) is the absolute weight of the body examined, \(s \cdot gr. \) its specific gravity, \(d^1 \), \(d^{d''} \) the densities of its two supposed components, and \(x \) the absolute weight of the latter component. In order to accomplish that object, however, they were led to make their balance of enormous dimensions, such as rendered it very inconvenient for general researches.

I will bring this analysis to a close by a concise exposition of the manner in which the Muslim natural philosophers applied the balance to levelling and to the measuring of time.
and if in the distillation, if it be not made in the universal mixture, as we have described it, we shall find the mixture of the two metals in the middle of the mixture. If, then, the right side of the beam goes up, we transfer the mithkal from the bowl nearer to the tongue to that which is farther from it; and, if the right side goes down, we transfer mithkals from the farther bowl to the nearer; and so on, until the balance is in equilibrium. Then, after it is even, we look to see how many mithkals are in the bowl suspended at the point of the specific gravity of a metal, and those constitute the weight of that metal in the compound; and the mithkals in the other bowl constitute the weight of the other component. If we fail to distribute exactly between the two bowls by mithkals, we take the weight of the mithkals in Makkah-sand, or, when sand is not to be had, sifted seeds supply its place; and we distribute the sand [or seeds] between the two bowls. When the balance is brought to an equilibrium, we weigh what is in each of the two movable bowls, and so is obtained a result as perfect as can be.

Should the balance not be made even in either the first or the second instance [namely, by putting all the mithkals in one or the other of the two movable bowls], nor by distribution [between the two bowls], then the compound either does not consist of the two substances which may have been mentioned, or is composed of three or more substances; or else the two [as compounded together] have been tampered with, and purposely fissured or hollowed. A cavity gives occasion for transfer of gravity and weight. One must be careful and considerate, therefore; and
Trial of a Binary, made up of any two Substances [supposed], e. g. of two Metals, and similar to Gold; whereby the Assignment of their True Value to Dirhams and Dinars is determined.

After having adjusted the two extreme bowls and the water-bowl, we set the two movable bowls at the two [points indicating the] specific gravities of the two metals supposed, or, one of them at the [point indicating the] specific gravity of a precious stone, and the other at [the point indicating the specific gravity of] its like in color, crystal or glass; and then we poised the balance, with the utmost exactness, until its tongue stands erect. Then we weigh the body [under examination] with the two air-bowls, taking the greatest care; and in the next place dip it into the water-bowl, being careful that the water reaches all its parts—which is a matter that the weigher can manage, as it respects void places in sight, or seams, so as to be able to remove uncertainty—after which we transfer the mithkâls [from the air-bowl on the right hand] to the movable bowl suspended at the [point indicating the] specific gravity [of one of the two substances supposed], and watch the balance. If the balance is in equilibrium, the body is that substance, pure. If it is not even, we transfer the mithkâls to the other movable bowl; and if the tongue then stands erect, the body is a colored imitation, having naturally the [latter] specific gravity. These remarks apply especially, though not exclusively, to precious stones.

In the case of metals, when neither movable bowl brings the balance to an equilibrium, the body is compounded of the two [metals supposed]; and, if we wish to distinguish [the quantity of] each compo-
Section First.

Trial of Single Simple Substances, after placing the Movable Bowl at the [Point indicating the] Specific Gravity of the Metal [or Precious Stone], and after the Poising of the Balance.

When that is the trial which we wish to make, we weigh the substance—it being on the left, and the mithkals on the right, in the two air-bowls; then we let it down into the water-bowl, until it is submerged, and the water reaches all sides and penetrates all parts of it. If there happens to be a perforation or a hollow place in it, that must be filled with water; and the weigher endeavors to have it so, taking all possible care that the water reaches all its parts, in order that there may remain in it no hollow place, nor perforation, containing air, which the water does not penetrate, because a void place in the substance has the same effect as if it were mingled with something lighter than itself. After this we transfer the mithkals from the extreme bowl [on the right] to the movable bowl, placed at the [point indicating the] specific gravity of the substance; whereupon, if the balance is poised, and stands even, not inclining any way, the substance is what it is [supposed to be], pure, whether a metal or a precious stone. Should the balance lean any way, the substance is not what it is [supposed to be], if a precious stone; and, as to the case of a metal, it is not purely that, but only something like it, different from it. If the rising [of the beam] is on the side of the mithkals, the substance [being a metal] is mixed with some body heavier than itself; if on the side of the substance, then with some lighter body.

On the other hand, since the substance may not be an imitation, but may have been tampered with, and expressly made hollow, blown with air, fissured, or the like, trickishly, let that be looked out for, and made manifest, with regard to metals, by striking them.
Chapter Fourth. [Lect. 6.]

Application of the Comprehensive Balance.

Having finished experimenting with the balance, and fixing upon it the [points indicating] specific gravities, it only remains for us to go into the application of it, and the trial of a [supposed] pure metal or precious stone, by means of the two movable bowls [that called "the movable" and "the winged"], reference being had to specific gravity, with the least trouble and in the shortest time, by way of distinguishing [such metal or precious stone] from one which is alloyed, or from imitations, or from its like in color—the substance being either simple or binary, not trial, nor yet more complex.

We adjust the two air-bowls of the balance, put the water-bowl into the water, and then set the movable bowl at the [point indicating the] specific gravity of the given substance, and equilibrate by means of the pomegranate-counterpoise and the scale, until the tongue of the balance stands erect. Thus we proceed when the trial respects simple substances. When the trial is in reference to a mixture of two substances, or a fancy-likeness in color, we set the two movable bowls at the [two points indicating the] specific gravities of the two substances, and bring the balance to an equilibrium, with the utmost precision possible, and make the trial.
one hundred mithkâls; and we refer [all] operations to that [result, as a standard], and keep it in mind against the time when we are called upon to perform them, if the Supreme God so wills.

In winter, one must operate with tepid, not very cold, water, on account of the inspissation and opposition to gravity of the latter, in consequence of which the water-weight of the body [weighed in it] comes out less than it is found to be in summer. This is the reason why the water-bowl settles down when the water has just the right degree of coldness, and is in slow motion, while, in case it is hot and moving quickly, or of a lower temperature, yet warmer than it should be, the bowl does not settle down as when the water is tepid. The temperature of water is plainly indicated, both in winter and summer; let these particulars, therefore, be kept in mind.

'Abu-Raihân—to whom may God be merciful!—made his observations on the water-weight of metals and precious stones in Jurjâniyyâ [a city] of Khwârazm, early in autumn, and with waters of middling coldness, and set them down in his treatise already spoken of.

This passage puts it beyond doubt that the Muslim natural philosophers of the twelfth century knew the air to have weight, though they were without the means of measuring it. The sentence italicized would lead one to believe that they had some means of measuring the temperature of water; and, not to resort to the supposition that they possessed any thermometrical instrument, even of the sort used by Otto Guericke, which was a balance, I think that they simply used the areometer for that purpose; and that this instrument was the means of their recognizing that the density of water is greater exactly in the ratio of its increase in coldness.

As a last citation of the words of the author whose work we have been analyzing, I shall transcribe and translate the passage in which he exhibits the application of the balance of wisdom to the examination of metals and precious stones, with regard to their purity. It is as follows:
Beam], because they are not connected until after Experiment with regard to the Place of Connection.

Our author recapitulates, briefly, his description of the different parts of the balance of wisdom, and then proceeds to speak, in detail, of the mode of adjusting it. Nothing of what he says on this point deserves to be cited. I will only borrow from it the observation that the Arab physicists were accustomed to mark the specific gravities of different bodies, on the right arm of the beam, by points of silver encahced at different places along the scale, where the movable bowl was to be put in order to counterbalance the loss of weight of different metals and precious stones when plunged into water. This accounts for the term الشعمرات, “round points,” applied to marks of specific gravity upon the beam of the balance; and similar usage in respect to all marks of weight upon the beam led to the more general application of this term.

But, before proceeding to describe the application of this balance to the examination of metals and precious stones, as to their purity—which will bring out all the workings of the instrument—I think it incumbent upon me to transcribe and translate the following passage, which is, without doubt, one of the most remarkable in the whole work:

الفصل الثالث

في وضعية فيه

الوزن الهوازي لا تختلف اختلافاً طافراً وإن كان لا تخلو منه بسبب اختلاف الأغذية وأما وزنها السابعة فيظهر فيه تفاوت باختلاف مياء البقاء والإثار المستنفعة في الجو ونسبة بما يعرض فيه من اختلاف القصول والمحقق في اختيار من الماء بلغة معينة وبلد معروف ونوصل وزنها السابعة ونعلم

Section Fifth. [Lect. 5, Chap. 4.]

Instruction relative to the Application.

Air-weight does not apparently vary, although there is actual variation, owing to difference of atmospheres.

As regards its water-weight, a body visibly changes, according to the difference between waters of [different] regions, wells, and reservoirs, in respect to rarity and density, together with the incidental difference due to the variety of seasons and uses. So then, the water of some determined region and known city is selected, and we observe upon the water-weight of the body, noting exactly what it is, relatively to the weight of
Figure of the Balance of Wisdom, called the Comprehensive.

above, on the left:
النصف الأيسر لل الأجواهر
for Substances.
along the beam, on the left:
الشعيّرات الشاعرة
Plain Round-point Numbers.

above, on the right:
النصف الأيمن للصنادق
for Counterpoises.
along the beam, on the right:
الشعيّرات comptative
Hidden Round-point Numbers.

under the beam, on the right:
The Specific Gravities are marked on this Side of the Beam.

a. المعلق
Means of Suspension.
b. الرأس
Front-piece.
c. اللسان
Tongue.
d. الخبيثين
Two Cheeks [of the Front-piece].
e. جلبه
and under the beam on the left:
العينة وال العالي
if the laws and judgments
أو الأحكام نهما بعد الأحكام في
موضعهما
The Front-piece and the Tongue as disconnected [from the

VOl. VI.

f. الطرفية اليلوية
Air-bowl for the End.
g. الطرفية اليسارية
Second Air-bowl for the End.
h. كتلة الماء الثالثة
Third [or] Water-bowl.
i. الجزء الرابع
Fourth [or] Winged Bowl.
j. المنجلة الخامسة
Fifth [or] Movable Bowl.
hemispherical in shape, might be moved along the right arm of the beam; it was called "the movable" bowl, المنقلة. The spherical bowl, also, was moved along the right arm. The bowl intended to be plunged into water was made fast underneath the aerial bowl of the left arm, and bore the name of "the aquatic" bowl, المائيّة. As to the spherical bowl, its name, sufficiently explained by its form, just now described, and given to it in the extract, was "the winged" bowl, المجناحة. Our author adds that it was indispensable to have at least one movable bowl, in order to balance the two which were used when the body weighed was plunged into the water.

The following is a copy of our author's drawing of these five bowls grouped together:

a. اللغة الأولى اليمى
 First, Right-hand Bowl.

b. اللغة الثانية اليسرى
 Second, Left-hand Bowl.

c. اللغة الثالثة المخروطة يقال لها الحاكم
 Third, Conical Bowl, called the Judge.

d. اللغة الرابعة المجناحة محوورة
 Fourth, Winged Bowl, cut on the two sides.

e. اللغة الخامسة كفة المنقلة
 Fifth Bowl, which is the Movable Bowl.

Having devoted a paragraph to describing the form which should be given to the rings of suspension for the bowls, all of which are shaped like m in the figure on the next page, the author at length presents a complete drawing of the balance of wisdom. This we here reproduce, with all the accompanying explanations:
The author farther describes the bowls of the balance, five in number. He advises to make them of very thin plates of bronze, and to give to three of them the form of hemispheres, measuring thirty divisions of the scale of the beam in diameter. The bowl destined to be plunged into water was finished at the bottom with a cone, in order that it might more easily overcome the resistance of the fluid during the immersion. The remaining bowl was spherical in shape. There give the passage describing this last bowl, remarking only that it will be found not to correspond altogether with the figure d in the representation of all the bowls together, presently to be introduced, although evidently referring to that one.

Then we take a fourth clepsydra, [turning] on an axis h, of which the diameter measures thirty divisions [of the scale of the beam], as does that of the two air-bowls; and we cut it on the two sides [of the axis], measuring five divisions [once and twice] in the direction of the axis, towards the centre of the bulge—of which cuts one is tnl and the other hmk—leaving, between the axis h and the point n, a distance of five divisions, and, between h and the point m, a distance of ten divisions, and calling tl the inner side, and hk the outer side; so that the remainder [of the diameter of the clepsydra] between the two cuts measures fifteen divisions of the standard-measure. In the next place, we take a thin plate [of bronze], as large as the clepsydra, and mark upon it a circle opening with a certain spread, namely, of fifteen divisions of the standard-measure, and cut off from that [plate] all that is outside of that [marked circle]; after which we cut that [circle] into two unequal parts, bend each part, and weld it, separately, to one of the outer edges of the two sides; and we call this the winged bowl.

Two of these bowls bore the name of "the aerial," and were permanently attached to the beam. Another bowl,
<table>
<thead>
<tr>
<th>Necessary</th>
<th>Parallelogram</th>
<th>Reversion</th>
<th>Equipoise</th>
<th>Necessary</th>
<th>Parallelogram</th>
<th>Reversion</th>
<th>Equipoise</th>
<th>Necessary</th>
<th>Parallelogram</th>
<th>Reversion</th>
<th>Equipoise</th>
<th>Necessary</th>
<th>Parallelogram</th>
<th>Reversion</th>
<th>Equipoise</th>
</tr>
</thead>
<tbody>
<tr>
<td>below the axe</td>
<td>above the axe</td>
<td>green with the axe</td>
<td>below the axe</td>
<td>above the axe</td>
<td>below the axe</td>
</tr>
</tbody>
</table>

Table of Variety of Incident pertaining to the Balance:

N. Klemming
<table>
<thead>
<tr>
<th>العدد</th>
<th>التزام</th>
<th>انقلاب</th>
<th>اتعدال</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>اتعدال</td>
<td>انقلاب</td>
<td>التزام</td>
</tr>
<tr>
<td>2</td>
<td>التزام</td>
<td>انقلاب</td>
<td>اتعدال</td>
</tr>
<tr>
<td>3</td>
<td>انقلاب</td>
<td>التزام</td>
<td>اتعدال</td>
</tr>
<tr>
<td>4</td>
<td>اتعدال</td>
<td>انقلاب</td>
<td>التزام</td>
</tr>
<tr>
<td>5</td>
<td>التزام</td>
<td>انقلاب</td>
<td>اتعدال</td>
</tr>
<tr>
<td>6</td>
<td>انقلاب</td>
<td>التزام</td>
<td>اتعدال</td>
</tr>
</tbody>
</table>
right line drawn to that [higher point, from the centre of the world] divides the plane \([a b j d]\) into two parts, of which the one going upward preponderates, so that it returns, and stops in a horizontal position; and [an axis] at any point fixed upon below \(l\) is the axis of reversion, so that, when the beam inclines, that part of it which goes downward has the greater bulk, and consequently tips until it turns upside down.

Should the tongue be made fast below the beam, in the direction of 'a, and so the common centre of gravity become the point \(g\), then [an axis at this point] is the axis of equipoise, and, therefore, when the beam is put in motion, it stops wherever it is left to itself. But, when the axis is put above \(g\), it becomes the axis of [parallelism by] necessary consequence, so that the part [of the beam] which goes upward returns, and stops in a horizontal position. When the axis is put below \(g\), it becomes the axis of reversion.

Inasmuch as there is change [in the adjustment of the balance] in several ways: 1, in respect to the beam's being either detached or joined to the tongue—[the tongue] standing up or reversed [according as it is made fast above or below the beam]; 2, in respect to the [position of the] axis [in each of the cases supposed with reference to the connection of the beam] either at, or above, or below, the centre of gravity; 3, in respect to the place on the beam of the means of suspension of the two bowls, either even with, or above, or below, the axis—twenty-seven incidents [constituting changes of adjustment] are made out, together with a result [as regards the action of the balance] dependent upon each particular adjustment, and we have drawn up for these incidents the following table:
The tongue may be made fast above [the beam], in the direction of a, the point l becoming the common centre of gravity; and an axis at this point is the axis of equipoise. So that the axis of [parallelism by] necessary consequence is at any point fixed upon above l, because a
into two like halves, and parallelism with the horizon is a necessary consequence.

Let $abjd$ be a detached beam, let the line mn divide it into halves, lengthwise, and the line $s'a$ halve it across, and let h, the point where the two lines meet, be the centre of gravity of the beam. When, therefore, we set the beam on an axis [at that point], so that it obeys [the equal weights of its two arms], it stops wherever it is left to itself; because the right line skh, drawn from h, the centre of the world, to h, the centre of gravity, divides the plane $abjd$ into like halves, according to an explanation which it would take long to state. This equal division occurs, however the beam may incline. When we set [the beam on an axis at r] above h, away from the centre of gravity, then the line krs [drawn from the centre of the world to the point of suspension] divides the plane into two parts differing one from the other, of which the one going upward has the greater bulk, so that it preponderates and returns, and parallelism with the horizon is a necessary consequence. When we set the beam on an axis at h, below h, away from the centre of gravity, and the beam leans, then that part of it which goes downward preponderates; because the right line [drawn from the centre of the world to the point of suspension] divides $abjd$ into two parts differing one from the other, and the mass going downward preponderates, so that the beam turns itself upside down.

So much for the beam when detached from the tongue.

In case of the combination of its own gravity with the gravity of the tongue, placed at right angles to it, in the middle of it, the common centre of gravity differs from that of the detached beam, and must necessarily be another point; and that other point corresponds to the centre of equipoise in the detached beam, so that, when the beam is set upon an axis [at that point], it stops wherever it is left to itself.
gravity, cuts it into like halves wherever it stops; 2, the axis of reversion, between the centre of the world and the centre of gravity of the beam, so that, when the beam is put in motion, it turns, of itself, upside down, because a right line drawn from the centre of the world [through the axis, when the centre of gravity is thrown out of that line] divides it into two parts differing one from the other, of which the one going downward preponderates, and the beam is consequently reversed; 3, the axis of [parallelism by] necessary consequence, above the centre of gravity of the beam, so that, when the beam is put in motion, a right line drawn from the centre of the world to its centre of suspension divides it into two parts differing one from the other, of which the one going upward exceeds in mass, and consequently preponderates and returns, and so the beam stops in a horizontal position; because, in this case, a right line [drawn from the centre of the world to the point of suspension] divides it.
that the longer it is the more sensitive will be the instrument. He directs to fasten it to the beam by two screws, after having carefully determined the centre of gravity of the beam, by placing it, experimentally, across the edge of a knife; and to fit it with nicety, so that the centre of gravity may be as little displaced as possible. We do not stop to give the description of the tongue and its frame, and limit ourselves to copying exactly the accompanying figure, which represents these parts of the balance:

| a. الأريكة | Front-piece. |
| b. المفق | Bending-place. |

After this, our author exhibits the general principles which concern the suspension of the beam of the balance. The passage deserves to be transcribed and literally translated, as is done below.

الفصل الرابع

في العلم الكلي المطلق في احكام الأخور والمقب والمفق

اذ كان العقود أسطوانية الشكل ساحجة عن اللسان فخور يقع عليه من ثلاثة وجهات معاً واصداً وعلى طوله فيكون عقود الاعتدال وله ان يكون على مركز ثقله في وسطه الحقيقي كما على طوله فيكون العقود سلس المدار مطولاً بلوزن ان يقف حيث يهمد في دورانه ولا يوارى الاقد طبعاً لأن اليس الافار من مركز العالم إلى مركز ثقله يقع بالقطع بنصفين متضلين حيث يقف

SECTION FOURTH. [Lect. 5, Chap. 2.]

Scientific Principles of a General Nature, universally applicable, relative to Determination of the Axis, the Place of Perforation [for it], and the Point of [its] Support [to the Beam].

The beam being columnar in shape, detached from the tongue, there are three varieties of axis: 1, the axis of equipoise, at the centre of gravity of the beam, exactly in the middle of it, and perpendicular to its length; so that the beam readily gyrates in obedience to equiponderance [in its two equal arms], stopping, in its going round, wherever that [moving force] ceases to act, and not becoming, of itself, parallel with the horizon; because a right line drawn from the centre of the world to its centre of
A note inserted in my manuscript between the two bowls, which I have copied and translated below, explains the mode of using this balance.

When the body in question is pure silver, the bowl containing it will be balanced at a, which is the extremity of the beam, and the place where the scale commences. When it is the purest gold, the bowl will come as near to the tongue as possible, at b. When it is mixed, it will stop at h, between a and b; and the relation of the gold in the body to what it contains of silver will be as the relation of the parts [of the scale] $a:b$ to the parts $a:b$. Let this, then, be kept in mind with regard to the matter.

A third balance described by our author is that of 'Abū-Hāfiẓ 'Umar Bin 'Ibrāhīm al-Khayāmī. I do not copy the figure of it, because it is in every respect similar to the balance of Archimedes, excepting the movable weight. Its application is very simple. A piece of gold is weighed in air, and then in water; the same thing is done with a piece of silver; and a piece of metal about which one is doubtful whether it is pure gold, or silver, or contains both metals at once, is also tried; and the comparison of specific gravities thus obtained serves to settle the question.

Finally, in the fifth lecture, he gives a very minute description of the balance of wisdom, according to 'Abū-Hātim al-Muzaffar Bin 'Isma'īl of Isfāzār. He begins by remarking that, the balance being an instrument for precision, like astronomical instruments, such as the astrolabe and the zij 'as-sa'ā'īh, its whole workmanship should be carefully attended to. He next describes the beam, the front-piece, the two checks, between which the tongue moves, and the tongue itself, which is regarded as the beam, he advises that it be as long as it may, "because length influences the sensibility of the instrument"; and indicates a length of four bazaar-cubits, or two metres, as sufficient. He gives to his beam the form of a parallelepiped, and marks upon its length a division into parts, two of which must be equivalent to its breadth. It must be of iron or bronze. The tongue has the form of a two-edged blade, one cubit in length; but he observes, as in regard to the beam,
This is the figure of the Balance of Archimedes given in my manuscript:

صورة ميزان أرشميدس

Figure of the Balance of Archimedes.

a. كَعْقِة الْذَّهَب
Bowl for Gold.

c. المَنْقَلَة
Movable Weight.

b. كَعْقِة الْفَضَّة
Bowl for Silver.

Another balance described by our author is that of Muhammad Bin Zakarīya of Rai. It is distinguished from that of Archimedes by the introduction of the needle, called by the Arabs السَّاً, "the tongue," and by the substitution of a movable suspended scale for the movable weight. The following is an exact copy of the figure representing it:

c. كَعْقِة الْفَضَّة ثَابَتَة
Bowl for Silver, fixed.

d. كَعْقِة الْذَّهَب وَبِالْمَنْقَلَة
Bowl for Gold, movable.
<table>
<thead>
<tr>
<th>Substances</th>
<th>Specific Gravities:</th>
</tr>
</thead>
<tbody>
<tr>
<td>acc. to 'al-Khāzīn.</td>
<td>acc. to modern authorities.</td>
</tr>
<tr>
<td>Water of Indian Melon,</td>
<td>1.016</td>
</tr>
<tr>
<td>Salt Water,</td>
<td>1.134 saturated solution, 1.205 G.</td>
</tr>
<tr>
<td>Water of Cucumber,</td>
<td>1.017</td>
</tr>
<tr>
<td>Water of Common Melon,</td>
<td>1.030</td>
</tr>
<tr>
<td>Wine-vinegar,</td>
<td>1.097 Vinegar, 1.013-1.080 Br.</td>
</tr>
<tr>
<td>Wine,</td>
<td>1.032 various kinds, 0.992-1.038</td>
</tr>
<tr>
<td>Oil of Sesame,</td>
<td>0.915</td>
</tr>
<tr>
<td>Olive-oil,</td>
<td>0.920</td>
</tr>
<tr>
<td>Cow's Milk,</td>
<td>1.110</td>
</tr>
<tr>
<td>Hen's Egg,</td>
<td>1.035</td>
</tr>
<tr>
<td>Honey,</td>
<td>1.406</td>
</tr>
<tr>
<td>Blood of a Man in good health,</td>
<td>1.033 1.053 Br.</td>
</tr>
<tr>
<td>Warm Human Urine,</td>
<td>1.018</td>
</tr>
<tr>
<td>Cold " "</td>
<td>1.025</td>
</tr>
</tbody>
</table>

This table shows us that the Arabs conceived much earlier than we the idea of drawing up tables of specific gravities, for the first European tables of this character are, according to Liber (Hist. Philos. des Progrès de la Physique, iv. 113-114), due to Brisson, who died in 1806. The first person in Europe to occupy himself with determining the specific gravity of liquids was Athanasius Kircher, who lived 1602-1680: he attempted to attain his purpose by means of the laws of the refraction of light. After him, the same subject drew the attention of Galileo, Mersennes, Riccioli, the Academicians of Florence, assembled as a learned body in 1657, and finally of the celebrated Boyle, born 1627. The latter determined the specific gravity of mercury by two different methods: the first gave as its result 13.76, or 13.76, the other 13.357; both are less exact than the value found by the Arab physicists of the twelfth century.

I will conclude this analysis by a brief description of the different kinds of balance mentioned in this work; I shall cite the text itself but rarely, and only when it contains something worthy of special notice.

Our author first describes a balance which he calls Balance of Archimedes, and professes to quote the details respecting its use word for word from Menelaus: عصا حكابة الرجل حولا حرفا, without, however, giving the title of the latter's work.

In order to ascertain the relation between the weight of gold and that of silver, Archimedes took, according to our author, two pieces of the two metals which were of equal weight in air, then immersed the scales in water, and produced an equilibrium between them by means of the movable weight: the distance of this weight from the centre of the beam gave him the number required. To find the quantity of gold and of silver contained in an alloy of these two metals, he determined the specific gravity of the alloy, by weighing it first in air and then in water, and compared these two weights with the specific gravities of gold and of silver.
which consequently must be at the level of the sea. The modern values of the specific gravities are given, for the most part, and when not otherwise noted, from Schubarth's Sammlung physikalischer Tabellen (Berlin: 1849); a few are taken from the Annuaire du Bureau des Longitudes, Paris, for 1853 (marked "Ann."); from Schumacher's Jahrbuch for 1840 ("S."), from Brande's Encyclopaedia ("Br."), from Hallström, as cited above ("J. H."), and from Gmelin's Chemistry ("J. G."). The substances are arranged in the same order as they have been given in our author's tables.

<table>
<thead>
<tr>
<th>Substances</th>
<th>Specific Gravities:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>acc. to 'al-Khāżīn.</td>
</tr>
<tr>
<td>Gold,</td>
<td>19.05 cast,</td>
</tr>
<tr>
<td>Mercury,</td>
<td>13.56</td>
</tr>
<tr>
<td>Lead,</td>
<td>11.32</td>
</tr>
<tr>
<td>Silver,</td>
<td>10.30</td>
</tr>
<tr>
<td>Bronze,</td>
<td>8.82</td>
</tr>
<tr>
<td></td>
<td>statuary,</td>
</tr>
<tr>
<td></td>
<td>gun-metal,</td>
</tr>
<tr>
<td>Copper,</td>
<td>8.66</td>
</tr>
<tr>
<td></td>
<td>cast,</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Brass,</td>
<td>8.57</td>
</tr>
<tr>
<td>Iron,</td>
<td>7.74</td>
</tr>
<tr>
<td>Tin,</td>
<td>7.32</td>
</tr>
<tr>
<td>Celestial Hyacinth,</td>
<td>3.96</td>
</tr>
<tr>
<td>Red Hyacinth,</td>
<td>3.85</td>
</tr>
<tr>
<td>Ruby of Badakhshan,</td>
<td>3.58</td>
</tr>
<tr>
<td>Emerald,</td>
<td>2.75</td>
</tr>
<tr>
<td>Lapis Lazuli,</td>
<td>2.60</td>
</tr>
<tr>
<td>Fine Pearl,</td>
<td>2.60</td>
</tr>
<tr>
<td>Cornelian,</td>
<td>2.56</td>
</tr>
<tr>
<td>Coral,</td>
<td>2.56</td>
</tr>
<tr>
<td>Onyx and Crystal,</td>
<td>2.50</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharaoh's Glass,</td>
<td>2.49</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Clay of Siminjān,</td>
<td>1.99</td>
</tr>
<tr>
<td>Pure Salt,</td>
<td>2.19</td>
</tr>
<tr>
<td>Saline Earth,</td>
<td>1.11</td>
</tr>
<tr>
<td>Sandarach,</td>
<td>1.71</td>
</tr>
<tr>
<td>Amber,</td>
<td>.85</td>
</tr>
<tr>
<td>Enamel,</td>
<td>3.93</td>
</tr>
<tr>
<td>Pitch,</td>
<td>1.04 white,</td>
</tr>
<tr>
<td>Wax,</td>
<td>.95 yellow,</td>
</tr>
<tr>
<td>Ivory,</td>
<td>1.64</td>
</tr>
<tr>
<td>Black Ebony,</td>
<td>1.13</td>
</tr>
<tr>
<td>Pearl-shell,</td>
<td>2.48</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Bakhram-wood,</td>
<td>.94</td>
</tr>
<tr>
<td>Willow-wood,</td>
<td>.40</td>
</tr>
<tr>
<td>Sweet Water,</td>
<td>1.0</td>
</tr>
<tr>
<td>Hot Water,</td>
<td>.938 boiling,</td>
</tr>
<tr>
<td>Ice,</td>
<td>.965</td>
</tr>
<tr>
<td>Sea-water,</td>
<td>1.041</td>
</tr>
</tbody>
</table>

* At 17°.5 C., according to M. Abich.
silver wire by which 'Abu-r-Raiḥān measured the side of his cube, for \(w = \frac{45c}{4869c} \), or .000924c, or .462 mm. This *ne plus ultra* of the skill of the Arab jewellers will seem to us coarse enough, compared with the silver threads obtained by the ingenious process of Wollaston, of which the diameter is only .0008 mm., or \(\frac{3}{10000} \) of an English inch. But it should not be forgotten that it is not long since .006 mm. was regarded as the limit of the ductility of gold thread, and that accordingly, considering the imperfect mechanical means which the Arabs had at their disposal, a metallic wire of a thickness less than half a millimetre was in fact something remarkable.

On examining the determinations by the Arabs of specific gravities, we see that they had weighed, in all, fifty substances, of which nine were metals, ten precious stones, thirteen materials of which models were made, and eighteen liquids. The smallness of the list ought not to surprise us, for most of the substances which figure in our modern lists of specific gravities were entirely unknown to the Arabs. What is much more surprising is the exactness of the results which they obtained; for the coarseness of their means of graduating their instruments, and the imperfection at that time of the art of glass-making, rendered incomparably more difficult than now this kind of investigation, which, in spite of the immense progress of the mechanical arts, is still regarded as one of the most delicate operations in physical science. It is very remarkable that the Muslim physicists, who had detected the influence of heat on the density of substances, did not notice its effect upon their volume: at least, the dilatation of bodies by heat is nowhere mentioned by our author; and this circumstance, together with their ignorance of the differences of atmospheric pressure, introduces a certain degree of vagueness into the values which they give for specific gravities. In comparing, as I have done in the following table, our author's valuation of specific gravities with that obtained by modern science, I shall regard the former as having reference to water at the freezing point, and under a pressure of 760 mm., both as not knowing what else to do, and as supported by these two considerations: first, that we have already noticed the slight difference between the densities given by our author for cold and hot water, and that which is true of water at the freezing and boiling points;* secondly, that our author, according to his own statement, made the greater part of his determinations at Jurjānīyāh, which, in my opinion, is no other than the modern Kuna-Ūrghanj, a city situated about four geographical miles from the point where the Oxus empties into the Sea of Aral, where he was able to raise the temperature of water to 100° C., and

* See p. 80.
Hence it is seen that the particular values vary in either direction from this average, to as much as +0.342 gr. and −0.352 gr., and I accordingly believe that the value of the mithkal may be taken at 4.5 gr. without fear of any considerable error.

Accepting, then, $\frac{44}{10}$ grammes as the equivalent of a mithkal, we shall find that the weight of a cubit cube, 28,605.647 mithkals, is 128,725.41 grammes. In order to compare with this the weight of a cubic metre of water, it will be necessary to reduce the latter to the conditions of Ghaznah with respect to temperature, atmospheric pressure, and intensity of the force of gravity. Calling m^2 the weight of the cubic metre of water, and considering only the temperature of the water of 'Abu-r-Raihàn, we shall find $m^2 = 998,901$ gr., which would be the weight of a cubic metre of water in Paris at 16°.67 C. in a vacuum. Now, according to the experiments of M. Regnault, a litre of dry air in Paris, at zero of temperature, and under a barometric pressure of 760 mm., weighs 1.293187 gr.; a metre, then, will weigh, under the same conditions, 1293.187 gr. The intensity of gravity at Paris, g, is 9.80895 m.; and at Ghaznah, g^\prime, 9.78951 m.; then d^\prime, the weight of a cubic metre of dry air at Ghaznah, will equal 981.241 gr. As we have no means of ascertaining the hygrometric condition of the atmosphere during the experiment of 'Abu-r-Raihàn, we are compelled to treat it as if perfectly dry; by deducting, then, d^\prime from m^2, we shall render this latter number in all respects comparable with c^2, and we shall have \[\frac{c^2}{m^2} = 0.1291, \quad \frac{c}{m} = 0.505408 : \] c, then, equals 505.408 mm., a value which differs from that which we obtained by comparing the Arab measurement of a degree with our own, by 14.696 mm., that is to say, by about the average thickness of six grains of barley laid side by side; and I think we may assume, without danger of too great an error, $c = 500$ mm. Notwithstanding the hypotheses which I have been compelled to introduce into this calculation in order to render it practicable, the result obtained by it seems to me preferable to that derived from a comparison of the dimensions of the earth, for here we can at least form an approximate idea of the amount of possible error, while in the other case we are deprived of all power of applying a test, by our ignorance respecting the degree of precision of the geodetic instruments of the Arabs.

This furnishes us the means of ascertaining the fineness of the

* The accelerating force of gravity is here calculated by the formulas $g^\prime = g (1 - \frac{0.002588 \cos 2f}{1 - \frac{2z}{r}})$, and $r = 20,887,533 (1 + 0.001644 \cos 2f)$; where f = 34°, and z = 7000 Eng. ft.; and by the formula $d^\prime = g \frac{d^\prime}{gh} \left(\frac{3000 + 11t}{3000 + 11t} \right)$, where t is the temperature in degrees of Centigrade.
equivalent to 17°.89 Centigrade; and we may, as it seems to me, with sufficient probability, admit that the water used by 'Abur-Raihán was of a temperature about 62° Fahrenheit, and that its density, according to Hällström, was .999019, considered in reference to water at the zero Centigrade, and .998901, considered in reference to water at its maximum density. Now we know that a cubic metre of distilled water, at 4° C., weighed at Paris in a vacuum, weighs 1,000,000 grammes; if, then, we know the value of the mithkál in grammes, we shall be able to compare the metre and the cubit.

According to the Kâmûs, the mithkál is ½ dirhams, the dirham 6 dâniks, the dânik 2 kîrâts, the kîrât 2 tâssûjs; our author, however, makes use of a much less complicated mithkál, which is composed of 24 tâssûjs; if, then, these tâssûjs are the same as those of the Kâmûs, his mithkál is equivalent to the dirham of the latter. I shall not follow the methods pointed out by Oriental authors for determining the weight of the mithkál, for they are all founded upon the weight of different grains, no notice whatever being taken of the hygrometric condition of such grains; but I shall pursue an independent method. I would remark, in advance, that almost nowhere, not even at Baghadâd, has the Arab dominion of the first times of the Khalifs left so profound traces as in the Caucasus, where, as in Daghistân, for instance, while no one speaks Arabic, correspondence is carried on exclusively in that language. Now I have made, by order of the Government, and conjointly with M. Moritz, Director of the meteorological observatory at Tiflis, a comparison of the weights and measures used in the different provinces of Transcaucasia, and have found the value of the mithkál in grammes to be as follows:

<table>
<thead>
<tr>
<th>In the district of Kutais,</th>
<th>4.776 grammes.</th>
</tr>
</thead>
<tbody>
<tr>
<td>" Thelawí,</td>
<td>4.227 "</td>
</tr>
<tr>
<td>" Sighnâkh,</td>
<td>4.226 "</td>
</tr>
<tr>
<td>" Nakhiwân,</td>
<td>4.499 "</td>
</tr>
<tr>
<td>" Ordubad,</td>
<td>4.500 "</td>
</tr>
<tr>
<td>" Shemakhí,</td>
<td>4.305 "</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>In the city of Shemakhí,</th>
<th>4.704 "</th>
</tr>
</thead>
<tbody>
<tr>
<td>" (another),</td>
<td>4.572 "</td>
</tr>
<tr>
<td>"</td>
<td>4.621 "</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>In the district of Baku,</th>
<th>4.175 "</th>
</tr>
</thead>
<tbody>
<tr>
<td>" Karabâgh,</td>
<td>4.610 "</td>
</tr>
<tr>
<td>" Sheki,</td>
<td>4.496 "</td>
</tr>
<tr>
<td>" " canton Erêsh,</td>
<td>4.272 "</td>
</tr>
<tr>
<td>" " (another),</td>
<td>4.426 "</td>
</tr>
<tr>
<td>" " Khâjmasî,</td>
<td>4.869 "</td>
</tr>
<tr>
<td>" Lenkorân,</td>
<td>4.660 "</td>
</tr>
<tr>
<td>" Derbend,</td>
<td>4.538 "</td>
</tr>
<tr>
<td>" Samur,</td>
<td>4.792 "</td>
</tr>
</tbody>
</table>

Average of nineteen values, 4.527 grammes.

{Georgia.}

{"Muslim" Provinces.}

{Daghistân.}
total number of dirhams to be 18,446,744,073,709,551,615, expressed by him in abjad signs thus: خاوقاقعوژزخزززف. Then he applies himself to find the dimensions of the treasury in which this treasure should be deposited, and finally cites the verses of the poet 'Anṣārī, chief of the poets of the Sultān Mahmūd of Ghaznaw, which fix the time in which one might spend this sum at 200,000,000,000,000,000,000 years. The verses are as follows:

شامعا عزازار سال علیک اندریون بی: زان پس عزازار سال پناز ابدریون بی: سال عزازار ما و باسی صد عزازار روز: روزی عزازار ساعت و ساعت عزازار سال

"O king! Live a thousand years in power; after that, flourish a thousand years in pleasure; be each year a thousand months, and each month a hundred thousand days, each day a thousand hours, and each hour a thousand years."

Before giving a succinct description of the physical instruments described and mentioned in the Book of the Balance of Wisdom, I think it well to pause and review the results arrived at by the Arab physicists, and recorded by our author in the first part of his work. I will begin by attempting to give a little more precision than has been done hitherto to the units of measure, as the cubit and the mithkāl.

We have seen that the cubic cubit of water weighed by 'Abū-r-Raiḥān at Ghaznaw weighed 28,605.647 mithkāls. The elevation of Ghaznaw, according to Vigne, is 7000 English feet, or about 2134 metres, which would correspond to a medium barometric pressure of 582 millimetres. The temperature of the water made use of by 'Abū-r-Raiḥān in this experiment is not known to us; but not only have we seen our author state in the clearest manner that he was aware that temperature had an influence upon the density of liquids; we may also see, upon comparing the specific gravities of liquids obtained by the Arabs with those obtained by modern physicists, that their difference between the density of cold and of hot water was .041667, while, according to the experiments of Hällström (see Dove's Repert. d. Physik, i. 144–145), the difference between the densities of water at 3°.9 and at 100° (Centigrade) is .04044. We can assume, then, with great probability, that a physicist so experienced as 'Abū-r-Raiḥān would not have taken water at its maximum summer-heat, but that he would have made his experiments either in the autumn, as our author advises, or in the spring. The temperature of the rivers in those regions in autumn has not, to my knowledge, been directly determined by any one, but the temperature of the Indus, at 24° N. lat., in February, 1883, was measured by Sir A. Burnes (see Burnes' Cabool, p. 307), and was found to be, on an average, 64° 2 Fahrenheit, which is
This exhausts all the more interesting matter which admits of being extracted from the work now under analysis. In the section following the last translated, our author sets himself to calculate the quantity of gold which would compose a sphere equal to the globe of the earth. He prescribes to himself this task almost as a matter of religious obligation, in order to find the ransom which, according to the Kurân, the infidels would offer to God in vain for the pardon of their sins; for he begins with citing the eighty-fifth verse of the third chapter of the Kurân, which reads: "truly there will not be accepted as ransom from those who were infidels and died infidels as much gold as would fill the earth; for them there are severe pains; they shall have no defender." We will not follow the author in his laborious calculations, but will content ourselves with merely noting some of his results. He says that the cubit of the bazaar at Baghdâd is twenty-four fingers long, each finger being of the thickness of six grains of barley placed side by side. The mile contains four thousand cubits, and three miles make a farsang. The circumference of the earth is 20,400 miles, and its diameter is 6493.479 miles. Finally, the number of mithkâls of gold capable of filling the volume of the globe is, according to him:

$36,124,613,111,228,181,021,713,101,810$.

For the purpose of comparing these numbers with ours, I will observe that the radius of a sphere equal in volume to the spheroid of the earth is 6,370,284 metres; this would give us one mile = 1962.048 m., and one cubit = 490.512 millimetres: that is to say, if these measures admitted of a rigorous comparison; but Laplace has very justly observed* that the errors of which the geodetical operations of the Arabs were susceptible do not allow us to determine the length of the measure which they made use of, for this advantage can only be the result of the precision of modern operations. I have endeavored to measure the thickness of six grains of barley placed side by side, and in sixty trials I have obtained as maximum thickness 17.3 mm., as minimum 13 mm., the average of the sixty determinations being 15.31 mm.; which would give us for the length of the cubit 367.44 mm., a result evidently inexact, by reason of the want of delicacy of the standard by which the valuation was made. We shall return to this subject later, and shall attempt to find a more probable result, such as will show which of the two values is nearer the truth.

In the fifth and last chapter of our author's third lecture, he takes up the problem of the chess-board, of which he supposes the squares to be filled with dirhams, each square containing twice the number in the preceding. He begins with finding the

عدد أوزان الذراع المكسر من كل فلور

<table>
<thead>
<tr>
<th>كسور عا</th>
<th>أمناء السامير</th>
<th>مثاقيل</th>
<th>طسايجة</th>
</tr>
</thead>
<tbody>
<tr>
<td>316.7</td>
<td>316.7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ever is to the weight of its equivalent of water as 2400 tassújs of that metal to the [weight in] tassújs of its water-equivalent, put down opposite to it in the table [above given]. The first of these proportionals being unknown, if the second is multiplied into the third — I mean, the weight of a volume of water equivalent to [the cube of] one cubit, which is, in tassújs, 686,535, being multiplied by 2400 — and if this [product-] number is divided by the [weight of the] water-equivalent of each of those metals, the quotient is the weight in tassújs of a [cubic] cubit of that metal.

It will do no harm to put down, opposite to each metal, the weight of [a cube of] the measured cubit thereof, in mithkáls, tassújs, and fractions of tassújs, and the number of manns and 'istârs which that amounts to, in a table, as follows:

Numbers for the Weights of the measured Cubit of all Metals.

<table>
<thead>
<tr>
<th>Names of Metals</th>
<th>Mithkáls</th>
<th>Tassújs</th>
<th>Fractions</th>
<th>Manna</th>
<th>'Istârs</th>
<th>Fractions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gold.</td>
<td>544,869</td>
<td>11</td>
<td>1/6</td>
<td>2993</td>
<td>31</td>
<td>1/6+1/6</td>
</tr>
<tr>
<td>Mercury.</td>
<td>387,873</td>
<td>4</td>
<td>1/6</td>
<td>2131</td>
<td>6</td>
<td>1/6+1/6</td>
</tr>
<tr>
<td>Lead.</td>
<td>323,837</td>
<td>12</td>
<td>1/6+1/6</td>
<td>1779</td>
<td>14</td>
<td>1/6+1/6</td>
</tr>
<tr>
<td>Silver.</td>
<td>294,650</td>
<td>10</td>
<td>1/6+1/6</td>
<td>1618</td>
<td>38</td>
<td>1/6+1/6</td>
</tr>
<tr>
<td>Copper.</td>
<td>247,846</td>
<td>18</td>
<td>1/6+1/6</td>
<td>1361</td>
<td>31</td>
<td>1/6+1/6</td>
</tr>
<tr>
<td>Brass.</td>
<td>245,101</td>
<td>6</td>
<td>1/6+1/6</td>
<td>1347</td>
<td>8</td>
<td>1/6+1/6</td>
</tr>
<tr>
<td>Iron.</td>
<td>221,463</td>
<td>1</td>
<td>1/6+1/6</td>
<td>1216</td>
<td>33</td>
<td>1/6+1/6</td>
</tr>
<tr>
<td>Tin.</td>
<td>209,309</td>
<td>14</td>
<td>1/6+1/6</td>
<td>1150</td>
<td>2</td>
<td>1/6+1/6</td>
</tr>
</tbody>
</table>
Section Second.

Knowledge of Numbers for the Weights of the measured Cubit of all Metals.

The principle last considered having been made out, we turn to another, which is a difference [in weight] between heavy bodies of like masses, but differing in kind, by virtue of relations subsisting between metals in respect to volumes. We have already stated, in the first chapter of this lecture, that whatever may be the relation between heavy bodies alike [in volume], as to [absolute] weight, is known from their water-equivalents; and that the relation of the weight of the less water-equivalent to the weight of the greater water-equivalent is as the relation of the weight of that body of which the greater quantity of water is the equivalent to the weight of that body of which the less quantity of water is the equivalent. Consequently there must be an inverse relation between the [absolute] weights of heavy bodies and the dimensions in length, breadth, and height, of those water-equivalents put down.

Now for a second principle. Since the weight of a volume of water equivalent to the cube of the measured cubit is 28,605 mithkâls, together with 15 tâssûjs and \(\frac{1}{4}\) and \(\frac{1}{3}\), and since 182 mithkâls make a mân (one man being computed at 260 dirhams), [a cube of] the measured cubit of water weighs 157 manâns, 6 'istârs and \(\frac{1}{4}\) and \(\frac{1}{3}\) and \(\frac{1}{3}\). It is also known that the weight of the [cube of the] measured cubit of any metal what-
of the cube [thus shortened] was therefore understood to be divided into forty-fifth parts, of which the first remainder, the excess of a cubit above four times that length, made nine forty-fiths, and the second remainder of that length, (of which the first remainder was one-fifth,) made five forty-fiths, which is the same as one-ninth of that length. Consequently a cubit would take in \(\frac{1082}{2} \) of the mentioned diameters of the thread; which being multiplied by 45, 48,692 is produced as the [number of] diameters of the thread to forty-five cubits.

The cube of the [number of] diameters in the [shortened length of a] side, namely, 259, is 17,373,979; and the weight of water of the same volume is 9415 ϊσυάς. But we have said that the number of diameters of the thread to a cubit was [found to be] 1082\(\frac{1}{5} \), of which the cube is 273,650,180,696,467 \(\left[\text{273,650,180,696,467} \times \frac{1}{5} = 216,000\right] \). So then, if we multiply [this sum] by the [number of] ϊσυάς of [water contained within] the brazen cube, and divide the product by the third power of [the number of diameters of the thread held within the length of an inner side of] this cube, the quotient is the [weight in] ϊσυάς of a [cubic] cubit of water, namely, 686,335 and about \(\frac{1}{2} \) and \(\frac{1}{3} \) more. If we divide this weight by 24, the result is in mithkāls, of which there are 28,605, with a remainder of 15 ϊσυάς and \(\frac{1}{2} \) and \(\frac{1}{3} \). That is the weight of a cubic cubit of water. The fractions in this sum are consolidated [by multiplying] it into 360; which gives [the weight of] three hundred and sixty cubits cube [of water], amounting, in mithkāls, to 10,298,033.

This is what we wished to explain.
Chapter Fourth.

Device for Measuring Water, Comparison between a Cubic Cubit of Water and the same of the Metals, and Quantity of Gold sufficient to fill the Earth. In Three Sections.

Section First.

Device for Measuring Water, in order to the Determination of Relations between Heavy Bodies, on Premises of Superficial Mensuration.

Abu-r-Raihān ordered a cube of brass to be made, with as much exactness as possible, and that it should be bored on its face, at two opposite angles, with two holes, one for pouring water into it, and the other for the escape of air from it; and he weighed it in the flying balance, first empty and hollow, then filled with fresh river-water of the city of Ghazmah; [and] 392 mithkāls and $\frac{4}{6}$ and $\frac{1}{4}$ of a mithkāl [proved to be the weight of that water which it would contain]. Wanting, now, to get the superficial measure of one [inner] side of the cube, he had recourse to a thread of pure silver, so finely drawn that to every three mithkāls [of its weight] there was a length of fourteen of the cloth-cubits used in clothing-bazaars. He trimmed off from the length of a side [of the cube] the thickness of two of its opposite surfaces, and wound the thread around the remainder; and what this would hold of the thread wound around it, was 259 diameters. Now, the [length of a] side of the cube [thus shortened] would go into a cubit four times, with a remainder which would go five times into that length, leaving a [second] remainder which was one-ninth of that length. The [length of a] side
Section Second.

Knowledge of Weights of Liquids in a Vessel which holds twelve hundred [of any measure] of Sweet Water.

<table>
<thead>
<tr>
<th>Names</th>
<th>Weights</th>
<th>Names</th>
<th>Weights</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sweet Water</td>
<td>1200</td>
<td>Wine</td>
<td>1227</td>
</tr>
<tr>
<td>Hot Water</td>
<td>1150</td>
<td>Oil of Sesame</td>
<td>1098</td>
</tr>
<tr>
<td>Ice</td>
<td>1158</td>
<td>Olive-oil</td>
<td>1104</td>
</tr>
<tr>
<td>Sea-water</td>
<td>1249</td>
<td>Cow’s Milk</td>
<td>1332</td>
</tr>
<tr>
<td>Water of Indian Melon</td>
<td>1219</td>
<td>Hen’s Egg</td>
<td>1242</td>
</tr>
<tr>
<td>Salt Water</td>
<td>1361</td>
<td>Honey</td>
<td>1637</td>
</tr>
<tr>
<td>Water of Cucumber</td>
<td>1221</td>
<td>Blood of a Man in good health</td>
<td>1240</td>
</tr>
<tr>
<td>Water of Common Melon</td>
<td>1236</td>
<td>Warm Human Urine</td>
<td>1222</td>
</tr>
<tr>
<td>Wine-vinegar</td>
<td>1232</td>
<td>Cold</td>
<td>1230</td>
</tr>
</tbody>
</table>
Chapter Third.

Observation of Other Things than Metals and Precious Stones.

We are [now] led to [consider] the proportionate weights of wax, pitch, resin, pure clay, enamel, amber, and woods of well known trees—being the materials of models and patterns formed by goldsmiths, or others practising their art—for the sake of any one who may wish to cast an equivalent weight of some metal, after the goldsmith has prepared, by his art, a pattern [of] known [material and weight]; including also the proportionate weights of other substances necessarily or optionally made use of. We have set down all these substances, with their water-equivalents, and their weights [in equivalent volumes], in two tables. Let, then, the water-equivalent be measured by the [proper] table, and by that let the proportion of metal sought for be determined.

Here may be diversity of opinion—to every one his own!

This chapter has two sections.

Section First.

Knowledge of Weights of the [Water-equivalents of] Materials of Models, when the Weight obtained out of the Water is a Hundred Mithkals.

<table>
<thead>
<tr>
<th>Name</th>
<th>Mithkals</th>
<th>Dänika</th>
<th>Tassüja</th>
<th>Reduction to Tassüja</th>
<th>Floating and Sinking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clay of Siminján</td>
<td>50</td>
<td>2</td>
<td>0</td>
<td>1208</td>
<td>s.</td>
</tr>
<tr>
<td>Pure Salt</td>
<td>45</td>
<td>3</td>
<td>2</td>
<td>1094</td>
<td>"</td>
</tr>
<tr>
<td>Saline Earth</td>
<td>90</td>
<td>1</td>
<td>0</td>
<td>2164</td>
<td>"</td>
</tr>
<tr>
<td>Sandarach</td>
<td>140</td>
<td>4</td>
<td>2</td>
<td>3378</td>
<td>fl.</td>
</tr>
<tr>
<td>Amber</td>
<td>118</td>
<td>0</td>
<td>0</td>
<td>2332</td>
<td>"</td>
</tr>
<tr>
<td>Enamel</td>
<td>25</td>
<td>2</td>
<td>2</td>
<td>610</td>
<td>s.</td>
</tr>
<tr>
<td>Pitch</td>
<td>96</td>
<td>1</td>
<td>2</td>
<td>2310</td>
<td>"</td>
</tr>
</tbody>
</table>
at its outlet upon the little sea of Khuwarazm,* the water of which river is well known, of no doubtful quality; and [all our operations have been performed] early in the autumnal season of the year. The water may be such as men drink or such as beasts drink, not being fresh; either will answer our purpose, so long as we continue to make use of one and the same sort. Or we may use any liquid whatever, though differing from water in its constitution, under the same limitation. If, on the other hand, we operate sometimes with water which is fresh and sometimes with that which is brackish, we may not neglect to balance between the conditions of the two.

This is what we wished to specify.

* This is positive testimony that, already at the commencement of the twelfth century, the Oxus no longer emptied into the Caspian, but into the little sea of Khuwarazm, that is, into the Sea of Aral. In order to contribute to a complete collection of those passages of oriental authors which relate to this interesting fact in the geographical history of our globe, I will cite a passage from Kazwini's 'Aja'ib al-Makhluqat, referring to the same fact in the following century. In speaking of the Jaihun, this author says: 'The Jaihun, then passes by many cities, until it reaches Khuwarazm, and no region except Khuwarazm profits by it, because all others rise high out of its way'; afterwards it descends from Khuwarazm and empties into a little sea, called the sea of Khuwarazm, distant three days' journey from Khuwarazm.' See el-Cazwini's Kosmographie, ed. Wüstenfeld, 1 Th., 177, 19

\d The Tilydn, a commentary on the Kamitas, thus defines the two terms shareb and sharib: 'The shareb, which is brackish, is that which is not fresh, and is drunk by men just as it is; and that called sharib is water not fresh, which men do not drink except from necessity, but which is drunk by beasts.'
Book of the Balance of Wisdom.

71

specimens of this species have bubbles within, full of air, or, being mixed with earthy matter, are not without air on that account. Nor is the red hyacinth so splendid in color when first gathered, until fire, kindled upon it, has purified it; and, as it becomes hot, whenever there is air in the gem, it swells and is puffed up, and bursts, in order to the escape [of the air]. People, therefore, bore into this gem, by means of the diamond, opposite to every bubble or particle of dirt, to make way for the air, that it may escape without injuring the gem, and to prevent a violent and rupturing resistance to expansion. When such borings are not made, or are too small to allow of water entering into them, on our immersing the gem in the [conical] instrument, the quantity of water displaced is not precisely in accordance with the volume of the gem, but, on the contrary, is as that and the penetrated air-bubbles together determine. In like manner, when the emerald is broken, seams appear within, or, in their place, some foreign matter is found. Possibly, empty cavities always exist in this mineral. But its rarity prevents any diminution of its price on that account.

Whoever looks into our statements, and fixes his attention upon our employment of water, must be in no doubt as to well-known particulars concerning waters, which vary in their condition according to the reservoirs or streams from which they come, and their uses, and are changed in their qualities by the four seasons, so that one finds in them a likeness to the state of the air in those several seasons. We have made all our comparisons in one single corner of the earth, namely, in Jurjâniyâh [a city] of Khuwârnazm, situated where the river of Balkh becomes low,
---|---|---|---
Fine Pearl. | 61 | 3 | 0 | One thousand four hundred and sixty-six. | 1476
Cornelian. | 61 | 0 | 0 | One thousand four hundred and sixty-four. | 1464
Coral. | 60 | 5 | 1 | One thousand four hundred and sixty-one. | 1461
Onyx and Crystal. | 60 | 0 | 0 | One thousand four hundred and forty. | 1440
Pharaoh's Glass. | 59 | 5 | 0 | One thousand four hundred and thirty-six. | 1436

Section Fourth.

Instruction and Direction relative to Difference of Water-equivalents.

There is not the same assurance to be obtained in regard to these precious stones as in regard to fusible bodies. For the latter bear to be beaten, until their parts lie even, which expels the air that may have got into them in crucibles, and separates them from earthy matter. Moreover, we know not what is in the interior of stones, unless they are transparent, and can be seen through (for, in that case, whatever is within them appears), so that doubt has arisen in my mind as to the lightness of the red hyacinth, and the difference in weight between it and the dusky species. For, both the dusky and the yellow being very hard, no earthy matter, or air, or any thing else, mingles with them; which is rarely the case in respect to the red, inasmuch as most
Table of Water-weights to a Hundred Mithkāls in Air, added by 'al-Khāzīnī.

<table>
<thead>
<tr>
<th>Names of Precious Stones</th>
<th>Water-weights (Mithkāls, Dānīkas, Tassūjs)</th>
<th>Reduction to Tassūjs</th>
<th>Tassūjs in Numerals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Celestial Hyacinth.</td>
<td>74, 4, 2</td>
<td></td>
<td>1794</td>
</tr>
<tr>
<td>Red Hyacinth.</td>
<td>74, 0, 0</td>
<td></td>
<td>1776</td>
</tr>
<tr>
<td>[Ruby] of Badakhshān.</td>
<td>72, 0, 2</td>
<td></td>
<td>1730</td>
</tr>
<tr>
<td>Emerald.</td>
<td>63, 4, 0</td>
<td></td>
<td>1528</td>
</tr>
<tr>
<td>Lapis Lazuli.</td>
<td>62, 5, 0</td>
<td></td>
<td>1508</td>
</tr>
</tbody>
</table>
SECTION THIRD.

We resort again to water and the just balance, and propose thereby to ascertain the measure of the difference between the weight of any one of the several precious stones in water and its weight in air. When the bowl containing the precious stone is once in the water, that is enough—you thus get its weight in water, after having weighed it in air. This is a great help to a knowledge of what are genuine precious stones, and to their being distinguished from those [artificially] colored. 'Abu-r-Raihan does not speak of this matter, but at the same time his statement given in the first section of this chapter facilitates the settlement of it; that is to say, we may take the weight of its water-equivalent [there] stated, for each precious stone, and subtract it constantly from the hundred mitkáls constituting its air-weight, and the remainder will be its water-weight.

Now we have set down these water-weights in the following table.
Table of Weights of Precious Stones alike in Volume.

<table>
<thead>
<tr>
<th>Names of Precious Stones</th>
<th>Weights, when the Volume is equal to a Hundred Mithkâls of the Collyrium-like Hyacinth.</th>
<th>Reduction to Ṭassûja.</th>
<th>Ṭassûja in Numerals.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Celestial Hyacinth</td>
<td>100 0 0</td>
<td>Two thousand four hundred.</td>
<td>2400</td>
</tr>
<tr>
<td>Red Hyacinth</td>
<td>97 0 3</td>
<td>Two thousand three hundred and thirty-one.</td>
<td>2331</td>
</tr>
<tr>
<td>Ruby [of Badakhshân]</td>
<td>90 2 3</td>
<td>Two thousand one hundred and seventy-one.</td>
<td>2171</td>
</tr>
<tr>
<td>Emerald</td>
<td>69 3 0</td>
<td>One thousand six hundred and sixty-eight.</td>
<td>1668</td>
</tr>
<tr>
<td>Lapis Lazuli</td>
<td>67 5 2</td>
<td>One thousand six hundred and thirty.</td>
<td>1630</td>
</tr>
</tbody>
</table>
Table of Weights of the Water-equivalents of Precious Stones, supposing all the Weights in Air to be a Hundred Mithkâls.

<table>
<thead>
<tr>
<th>Names of Precious Stones</th>
<th>Weights of Water-equivalents</th>
<th>Water-equivalents reduced to Tassûjs.</th>
<th>Tassûjs in Numerals.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mithkâls, Dânika, Tassûjs.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Celestial Hyacinth.</td>
<td>25 1 2</td>
<td>Six hundred and six.</td>
<td>606</td>
</tr>
<tr>
<td>Red Hyacinth.</td>
<td>26 0 0</td>
<td>Six hundred and twenty-four.</td>
<td>624</td>
</tr>
<tr>
<td>[Ruby] of Badakhshan.</td>
<td>27 5 2</td>
<td>Six hundred and seventy.</td>
<td>670</td>
</tr>
<tr>
<td>Emerald.</td>
<td>36 2 0</td>
<td>Eight hundred and seventy-two.</td>
<td>872</td>
</tr>
<tr>
<td>Lapis Lazuli.</td>
<td>37 1 0</td>
<td>Eight hundred and ninety-two.</td>
<td>892</td>
</tr>
<tr>
<td>Fine Pearl.</td>
<td>38 3 0</td>
<td>Nine hundred and twenty-four.</td>
<td>924</td>
</tr>
<tr>
<td>Cornelian.</td>
<td>39 0 0</td>
<td>Nine hundred and thirty-six.</td>
<td>936</td>
</tr>
<tr>
<td>Coral.</td>
<td>39 0 3</td>
<td>Nine hundred and thirty-nine.</td>
<td>939</td>
</tr>
<tr>
<td>Onyx and Crystal.</td>
<td>40 0 0</td>
<td>Nine hundred and sixty.</td>
<td>960</td>
</tr>
<tr>
<td>Pharaoh’s Glass.</td>
<td>40 1 0</td>
<td>Nine hundred and sixty-four.</td>
<td>964</td>
</tr>
</tbody>
</table>

SECTION SECOND.

Relations between Weights of Precious Stones alike in Volume.

By way of correspondence with the computation already given of the weights of equal masses of metals, a similar estimate is [here] furnished relative to precious stones of like volume, supposing that each mass is equal in volume to a hundred mithkâls of the collyrium-like hyacinth; in order that one who would ascertain any proportion [of weight] required may be enabled to do so, through the properties of four mutually related numbers.
<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Leaf of the plant is white.</td>
</tr>
<tr>
<td>2</td>
<td>The roots are red.</td>
</tr>
<tr>
<td>3</td>
<td>The plant is petrified.</td>
</tr>
<tr>
<td>4</td>
<td>The plant is white and has a white stem.</td>
</tr>
<tr>
<td>5</td>
<td>The plant is white and has a white root.</td>
</tr>
</tbody>
</table>

Note: The table represents various observations of the plant.
Cornelian, Onyx, Lapis Lazuli, Crystal, and Glass (this last — although it is not the product of a mine, but, on the contrary, kindred to stones, or sand, or alkali — because it resembles crystal, for which reason we have submitted it to comparison), and precious stones similar to these, such as Malachite, Turquoise, Amethyst, and the like. The malachite itself, on account of the rarity of its occurrence, from there being no mine of it now known, has been unobtainable; so, too, the turquoise, which, besides, always has within it a mingling of foreign matter. This whole class of stones is not highly prized; excepting the onyx, for a certain value is attached to specimens of this mineral marked with ox-hoof circles, and likewise to those in which there happens to be presented the form of an animal, or some strange shape. Men have been long tired of the cornelian, so that it has ceased to be used as a stone for seal-rings, even for the hands of common people, to say nothing of the great. The lapis lazuli is employed on account of the tinting and variegation of its several species.

The Fine Pearl. The pearl is not a stone at all, but only the bone of an animal, and not homogeneous in its parts. Yet I associate it with the hyacinth for its beauty, as I join therewith the emerald both for its beauty and its rarity. It therefore comes in here with as good reason as they do. Besides, there is no such difference of opinion respecting the minerals which have been mentioned, as exists in regard to the water-equivalents obtained in the case of pearls; nor have the accessions or losses, as between small and large ones, been recorded—a point on which there is great diversity. What I shall state, as to the pearl, applies to those which are large, full, and rounded.
other metallic] bodies, so that its gold-nature was originally lead, afterwards became tin, then brass, then silver, and finally reached the perfection of gold; not knowing that the natural philosophers mean, in saying so, only something like what they mean when they speak of man, and attribute to him a completeness and equilibrium in nature and constitution—not that man was once a bull, and was changed into an ass, and afterwards into a horse, and after that into an ape, and finally became man. The common people have the same false notion, also, in regard to the species of hyacinth, and pretend that it is first white, afterwards becomes black, then dusky, then yellow, and at last becomes red, whereupon it has reached perfection; although they have not seen these species together in any one mine. Moreover, they imagine the red hyacinth to be perfect in weight and specific gravity, as they have found gold to be; whereas we have ascertained that the celestial species [sapphire] and the white [the diamond] exceed the red in gravity. Of the yellow I never happened to have a piece sufficiently large to be submitted to the same reliable comparisons already made with other species.

2. *Ruby of Badakhshán.* I have, in like manner, never obtained such a piece of the yellow species of this gem that I could distinguish it from the choice red, called piyázakt, that is, the bulb-like.

3. *Emerald* and *Chrysolite.* These names [الزمرد and the الزمرد] are interchangeable, whether applied to one and the same thing, or to two things of which one has no real existence; and the name of emerald is the more common. I have, however, seen a person who gave the name of emerald to all varieties of the mineral excepting the beet-like, or basil-like, which has an equally diffused green hue, and is perfect, transparent, and pure in color; and who denominated the latter chrysolite.
Section First.

Statement of the Results which we have obtained, by the [Conical] Instrument, in respect to Precious Stones.

We will first enumerate the precious stones which have been compared, and afterwards exhibit their proportions [of weight], as proved by comparison.

1. Hyacinths. When the common people hear from natural philosophers that gold is the most equal of bodies, and the one which has attained to perfection of maturity, at the goal of completeness, in respect to equilibrium, they firmly believe that it is something which has gradually come to that perfection by passing through the forms of all
pellicles, doubling one upon another, like the coats of an onion, its being reduced by fire to ashes or rotten bone, and its change of color from the action upon it of medicine or perfume, or other like causes of deterioration. Yet one finds no fault with its price, nor at all undervales it.

The number of the precious stones is not thus exhausted. But suffice it to say, on the other hand, that certain gems are mentioned, of which the mines are no longer found, and the specimens once in the hands of men have disappeared, so that people are now ignorant of what sort they were. There appear, also, from time to time, gems not before known, such as that red gem of Badakhshán, which, were it not for its softness, and that the water of its surface lasts but a little time, would be superior in beauty to the [red] hyacinth, and is no antiquated gem. The mountain containing it was fissured by an earthquake, and the windings of the rent brought to view, here and there, egg-like lumps of matter deposited in layers, resembling balls of fire, of which some were broken, so that a red light gleamed forth beneath where they lay. Lapidaries stumbled upon the gem, and gathered specimens, and, having nothing to guide them respecting [the purification of] its water, and the polishing of its face and making it brilliant, were, after a while, led by experiments to make use of the stone called, on account of likeness of color, the golden marcasite, and with that succeeded; and the mine has yielded abundantly.

It is not impossible that both fusible and infusible substances, now unknown, may be brought to light, at any time, from the undercliffs of mountains, and from the beds of rivers, the depths of seas, and the bowels of the earth. In respect to such, however, we will not barter away ready money for a credit, nor turn from the known for the sake of
Were it not for my fear of the physicians, I might also say that the soul's gladness at the sight of gold, the fine pearl, and the silk robe, falls little short of its delight in medicinal confections.* Nor does the soul take quietly the grinding up of gold, the pulverizing of the fine pearl, and the reducing of silk to ashes. It is only saddened thereat; for, though by such means alone the heart be strengthened, yet men, so hearing, turn away from the [offered] exhilaration.

Silver is next to gold as respects the peculiarities mentioned, and is, in like manner, made into tenders for things wanted and representatives of value for articles of necessity.

Nor does the description apply only to fusible minerals. On the contrary, you may extend it to substances not fusible. Of these, the red hyacinth\+ [ruby] is equivalent to gold, on account of the rarity of its occurrence, the hardness of its crust, the abundance of its water, its lustre, the depth of its redness, its bearing of fire, its withstanding causes of injury, and its durability. Next to this come the yellow hyacinth [topaz], that which is [blackish] like collyrium, the emerald, and the chrysolite, which differ [from the ruby] and are equivalents of silver. To all the above named the fine pearl is manifestly inferior, as appears from the softness of its body, its being generally composed of

* Our author evidently alludes, in jest, to the famous معاوجون مغر، "exhilarating confection," of the oriental physicians.

\+ For want of a better word, we use "hyacinth" in a generic sense in this chapter, to represent the Arabic "رَقَٰعَة\+", as applied to all precious stones alike, a word which has no proper equivalent in any European language. See De Sacy's Chrest. Arabe, 2ème éd. iii. 464.
ous of the adornments of wealth. Moreover, the only token by which men show a preference of some of the metals [over others] is their technical use of the letter k, stamped upon any precious metal of which articles wanted are made; and in regard to that they are controlled by the rarity of the occurrence of the metal, and the length of time that it lasts; both which are distinctive characteristics of gold." But if, beside the rarity of its occurrence, and its durability, and the little appearance of moisture on it, whether moisture of water or humidity of the earth, or of its being cracked or calcined by any fire, and consumed, together with its ready yielding to the stamp, which prevents counterfeiters from passing off something else for it, and, lastly, the beauty of its aspect—if there is not [beside all these characteristics] some inexplicable peculiarity pertaining to gold, why is the little infant delighted with it, and why does he stretch himself out from his bed in order to seize upon it? and why is the young child lured thereby to cease from weeping, although he knows no value that it has, nor by it supplies any want? and why do all people in the world make it the ground of being at peace one with another, not drawing their swords to fight, though at the sacrifice of the powers of body and soul; of family-connections, children, ground-possession, and every thing, with even a superfluity of renunciation, for the sake of acquiring that; and yet are ever longing for the third stream,* to stuff their bellies with the dust?

* There is here an evident allusion to the traditional saying: "ولن ان لاي ان علم ادم ولم يستل من الذهب والفضة لا حالة ابغيت فيهما" (and if the son of Adam were to possess two flowing rivers of gold and silver, doubtless he would desire a third.)
Table of Results from Water-equivalents of Bodies.

<table>
<thead>
<tr>
<th>Metals</th>
<th>Weights of Bodies equal in Volume.</th>
<th>Weights reduced to Taṣūj's.</th>
<th>Taṣūj's in Numerals.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mithkāla. Dānīka. Taṣūj's.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gold.</td>
<td>100</td>
<td>Two thousand four hundred</td>
<td>2400</td>
</tr>
<tr>
<td></td>
<td></td>
<td>and nine.</td>
<td></td>
</tr>
<tr>
<td>Mercury.</td>
<td>71</td>
<td>One thousand seven hundred</td>
<td>1709</td>
</tr>
<tr>
<td></td>
<td></td>
<td>and twenty-six.</td>
<td></td>
</tr>
<tr>
<td>Lead.</td>
<td>59</td>
<td>One thousand two hundred</td>
<td>1426</td>
</tr>
<tr>
<td></td>
<td></td>
<td>and ninety-eight.</td>
<td></td>
</tr>
<tr>
<td>Silver.</td>
<td>54</td>
<td>One thousand one hundred</td>
<td>1298</td>
</tr>
<tr>
<td></td>
<td></td>
<td>and twelve.</td>
<td></td>
</tr>
<tr>
<td>Bronze.</td>
<td>46</td>
<td>One thousand and ninety-</td>
<td>1112</td>
</tr>
<tr>
<td></td>
<td></td>
<td>two.</td>
<td></td>
</tr>
<tr>
<td>Copper.</td>
<td>45</td>
<td>One thousand and eighty-</td>
<td>1092</td>
</tr>
<tr>
<td></td>
<td></td>
<td>and seventy-five.</td>
<td></td>
</tr>
<tr>
<td>Brass.</td>
<td>45</td>
<td>Nine hundred and twenty-</td>
<td>1080</td>
</tr>
<tr>
<td>Iron.</td>
<td>40</td>
<td>Nine hundred and twenty-</td>
<td>975</td>
</tr>
<tr>
<td>Tin.</td>
<td>38</td>
<td>Two.</td>
<td>922</td>
</tr>
</tbody>
</table>

The fifth section is entirely wanting in my manuscript. As regards the sixth section, which is the last one in this chapter, it contains a recapitulation of all that had been before stated respecting the specific gravities of bodies, and may be summed up in the familiar enunciation that the specific gravity of a body is the ratio between its absolute weight and the weight of the volume of water which it displaces.

From this point onward, the condition of the manuscript permits me to resume the citation and translation of longer extracts.

الباب الثاني
في رصد المواد الأدبية وهو فصول
قال أبو الرَّحبان أن هذه الفلاحة لم يعرفها الناس إلا لانقيادها في النار لعل مصلحهم من الأوانى الصادرة على ما لا يحصر عليه غيرما ثم أت الفلاحية وأسلحة المرحب وغير ذلك ما لا يستغنى عنه المستُغل بإمتلاك الدنيا

Chapter Second.
Observation of Precious Stones. In several Sections.

"Men prize these metals," says 'Abu-r-Raiḥān, "only because, under the action of fire, they admit of being made into conveniences for them, such as vessels more durable than others, instruments of agriculture, weapons of war, and other things which no one can dispense with who is set to possess himself of the good things of life, and is desir-
في وزن مائة وخمسون مثقال مقدار الذهب مائة مثل، في وزن مائة لا يتغير عن مقدار الذهب، ولكن مثقال الذهب مائة مثل مثقال الفضه، في وزن مائة لا يتغير عن مقدار الفضه، وهو مثال على حكمة وحسن الفن. فلكننا، إنما لنا في مثقال الذهب على مثقال الفضه مثقالين، حتى إذا قسمت على الوزن هذه المبادئ خرج الوزن إجراهما وقد نظلت ذلك وراء عنا في هذا الجدول.

جدول النتيجية من وزن مياه الأجرام

<table>
<thead>
<tr>
<th>رقم القيم</th>
<th>مثاقلة القيم</th>
<th>وصفت القيم</th>
<th>موافق القيم</th>
<th>رسمي القيم</th>
<th>اسم القيم</th>
</tr>
</thead>
<tbody>
<tr>
<td>١٤٠٠</td>
<td>الذهب</td>
<td>الفن</td>
<td>الفين وعينه</td>
<td>١٤٠٠</td>
<td>١٤٠٠</td>
</tr>
<tr>
<td>١٧٠٩</td>
<td>الذهب</td>
<td>الفين</td>
<td>الفين وعينه</td>
<td>١٧٠٩</td>
<td>١٧٠٩</td>
</tr>
<tr>
<td>١٤٨٩</td>
<td>الفين</td>
<td>الفين وعينه</td>
<td>الفين وعينه</td>
<td>١٤٨٩</td>
<td>١٤٨٩</td>
</tr>
<tr>
<td>١٤٨٨</td>
<td>الفين</td>
<td>الفين وعينه</td>
<td>الفين وعينه</td>
<td>١٤٨٨</td>
<td>١٤٨٨</td>
</tr>
<tr>
<td>١١١٤</td>
<td>الفين</td>
<td>الفين وعينه</td>
<td>الفين وعينه</td>
<td>١١١٤</td>
<td>١١١٤</td>
</tr>
<tr>
<td>١٤٩٩</td>
<td>الفين</td>
<td>الفين وعينه</td>
<td>الفين وعينه</td>
<td>١٤٩٩</td>
<td>١٤٩٩</td>
</tr>
<tr>
<td>١٤٩٨</td>
<td>الفين</td>
<td>الفين وعينه</td>
<td>الفين وعينه</td>
<td>١٤٩٨</td>
<td>١٤٩٨</td>
</tr>
<tr>
<td>١٤٩٧</td>
<td>الفين</td>
<td>الفين وعينه</td>
<td>الفين وعينه</td>
<td>١٤٩٧</td>
<td>١٤٩٧</td>
</tr>
<tr>
<td>١٤٩٦</td>
<td>الفين</td>
<td>الفين وعينه</td>
<td>الفين وعينه</td>
<td>١٤٩٦</td>
<td>١٤٩٦</td>
</tr>
<tr>
<td>١٤٩٥</td>
<td>الفين</td>
<td>الفين وعينه</td>
<td>الفين وعينه</td>
<td>١٤٩٥</td>
<td>١٤٩٥</td>
</tr>
</tbody>
</table>

The body of gold to the weight of the body of silver, but is as the relation of the weight of the body of silver to the weight of the body of gold, by an inverse ratio. So then, if the weight of the gold is multiplied by the weight of its water-equivalent, and the product is divided by the weight of the water-equivalent of silver, or of any other body of which we wish to ascertain the weight [of an equivalent volume, the desired result is attained]. But we have designated a hundred mithkals as the weight of the gold, so that the product of the multiplication of that into its water-equivalent is an invariable quantity, namely, 525 mithkals. That number, then, must be kept in mind, in order to the results which we aim to obtain, until the division of it by these, [several] water-equivalents brings out, as quotients, the weights of [equal volumes of] the bodies having the [several] water-equivalents. We have done accordingly, and have placed the results in the following table.
the mean weights adopted by him for the two metals iron and tin, respecting which no notices are derivable from this part of the manuscript; and for the sake of clearness, and of uniformity of treatment with the other classes of substances given later, we present annexed, in a tabular form, the water-equivalents of the metals, or the weights of a volume of water equal to that of a certain fixed weight of each metal respectively.

<table>
<thead>
<tr>
<th>Metals</th>
<th>Weights of a volume of water equal to that of a hundred mithkâls of each metal.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mithkâls.</td>
</tr>
<tr>
<td>Gold</td>
<td>5</td>
</tr>
<tr>
<td>Mercury</td>
<td>7</td>
</tr>
<tr>
<td>Lead</td>
<td>8</td>
</tr>
<tr>
<td>Silver</td>
<td>9</td>
</tr>
<tr>
<td>Bronze</td>
<td>11</td>
</tr>
<tr>
<td>Copper</td>
<td>11</td>
</tr>
<tr>
<td>Brass</td>
<td>11</td>
</tr>
<tr>
<td>Iron</td>
<td>12</td>
</tr>
<tr>
<td>Tin</td>
<td>13</td>
</tr>
</tbody>
</table>

For the reduction of these weights to the form of an expression for the specific gravity, and for a comparison of the specific gravities thus obtained with those accepted by modern physicists, the reader is referred to the general comparative table, to be given farther on, at the conclusion of our presentation of this part of our author's work.

الفصل الرابع
في نسب التنقل بينهما

إذا استُطِفَ حجَمَاً، لَن أَنْ كُل مَاء أَنصَل بالانتقال فإن تكاثر الانتقال في النسبة بد تعلقاً ولذلَك إذا ارتب وزن واحد هذه الأجرام المساواة في الحجم لمثل مثقال ذهب وزيئ القدرة لمثل لا يكون نسبة وزن ماء الذهب إلى وزن ماء القدرة كنسبة وزن جرم الذهب إلى وزن جرم القدرة ولكنها تكون نسبة وزن جرم القدرة إلى وزن جرم الذهب بالتكافى فإذًا تصبح وزن الذهب

Section Fourth. [Lect. 3, Chap. 1.]

Relations of Gravity between the two [Metals].

When the volumes of the two agree, and because all water-equivalents are related by gravities, the two [water-equivalents of the two metals compared] are related to each other by inverse ratio of gravity. Therefore, in case one desires to ascertain the weight of one of these bodies equivalent in volume to a hundred mithkâls of gold—for example, silver—the relation, in weight, which the water-equivalent of gold bears to the water-equivalent of silver is not as the relation of the weight of the
In the third section of this chapter, our author gives the results of his experiments with the instrument of ‘Abu-r-Raihân to ascertain the specific gravity of the various metals. 1. *Gold.* He says that he purified this metal by melting it five times; after which it melted with difficulty, solidified rapidly, and left hardly any trace upon the touchstone; after that, he made ten trials, to obtain the weight of the volume of water displaced by different weights of the gold, and he found, for a hundred mithkâls of gold, weights varying from 5 mithkâls, 1 dânîk, and 1 tassûj, to 5 m., 2 d.: as mean weight, he adopts 5 m., 1 d., 2 t. 2. *Mercury.* Our author begins by saying that this is not, properly speaking, a metal, but that it is known to be the mother of the metals, as sulphur is their father. He had purified mercury by passing it several times through many folds of linen cloth, and had found the weight of a volume of water equal to a volume of a hundred mithkâls of mercury to be from 7 m., 1 d., 1½ t., to 7 m., 2 d., 2½ t.; of which the mean, according to him, is 7 m., 2 d., 1 t. 3. *Lead.* The weights found for a volume of water equal to that of a hundred mithkâls of this metal were from 8 m., 4 d., 1 t., to 9 m.; of which the mean, according to our author, is 8 m., 5 d. 4. *Silver.* This metal was purified in the same manner as the gold, and the weights of the corresponding volume of water were from 9 m., 2 d., 2 t., to 9 m., 4 d., 2 t.; the mean adopted by our author being 9 m., 4 d., 1 t. 5. *Bronze,* an amalgam of copper and tin; the proportion of the two metals is not given: the mean weight which he adopts is 11 m., 2 d. 6. *Copper.* Least weight, 11 m., 4 d., 1 t.; mean, 11 m., 3 d., 1 t. 7. A metal of which the copyist has omitted to give the name: the weights found for it vary from 11 m., 2 d., to 11 m., 4 d., 3 t., their mean being 11 m., 4 d.; this value identifies it with the metal given as brass in the later tables. From these same tables we are able also, by reversing our author’s processes, to discover
observation and comparison. In my manuscript of the Book of the Balance of Wisdom there remain only a few leaves of it, the contents of which cause the loss of the rest to be greatly lamented. Notwithstanding the multiplied errors of the copyist, omissions, and inaccuracies of every kind, which prevent me from giving the text itself, it is possible to perceive what is being treated of, and I shall cite here and there fragments of intelligible phrases, which have guided me in the following exposition. The first of the remaining leaves, after a few unintelligible words, which evidently belong to a phrase commenced upon the preceding leaf, contains a figure representing an instrument devised by 'Abu-r-Raiḥān for the determination of specific gravities. I
cصورة الألة المخروطية لأبي الرجاح
Form of the Conical Instrument of 'Abu-r-Raiḥān.

\begin{itemize}
\item \textit{a} عنقها Neck of the Instrument.
\item \textit{b} الثقبة Perforation.
\item \textit{c} انبعوثة على صورة الميزاب Tube in the Form of a Water-pipe.
\item \textit{d} عروتها Handle of the Instrument.
\item \textit{e} فم الألة Mouth of the Instrument.
\item \textit{f} مواضع الكفنة Place of the Bowl [of the Balance].
\end{itemize}

give an exact copy of it, with all the explanations which accompany it. A mere inspection of it will suffice to show that we have here to do with an instrument made for determining the volumes of different heavy bodies immersed in the water which fills a part of the cavity, by means of the weight of the water displaced by these bodies, which is ascertained by conducting it through a lateral tube into the bowl of a balance. The description given by our author of the use of this instrument, which he calls الألة المخروطية لأبي الرجاح, "the conical instrument of 'Abu-r-Raiḥān," confirms this idea; but he adds that the instrument is very difficult to manage, since very often the water remains suspended in the lateral tube, dropping from it little by little into the scale of the balance. The annunciation is accordingly known to the Arabs; and our author asserts that 'Abu-r-Raiḥān had ascertained that, if the lateral tube had a circular flexure given it, was made shorter than a semicircle, and was pierced with holes, the water would flow readily through it, no more remaining in the tube than just enough to moisten its inner surface:
line of the second scale corresponding to this division is \(118\) and \(38\) sixtieths; or, expressing the latter fraction by decimals, \(88\) corresponds to \(118.63353+\). Now it is clear that the specific gravity of water, taken as the unit, will be to the specific gravity of a liquid into which the areometer sinks to \(88\), as \(88\) to \(100\); the specific gravity of the latter will accordingly be \(1.1363636+\), or, if multiplied by \(100\), \(118.633636+\), which differs from the figure adopted by our author by \(0.00303\), or a fifth of a sixtieth, a fraction of which his table makes no account. So also \(95\), according to our author, corresponds to \(107.51666+\), and according to us, to \(107.526881+\), the difference of which is \(0.010215+\), or six tenths of a sixtieth; and so on. From this it appears, also, that by adopting the method of sixtieths our author gained the advantage of being able to make the figures in his table fewer, without affecting thereby the thousandths of his specific gravities. In order to understand why he supposes that the limits \(60\) and \(110\) are more than sufficient for all possible cases, I would remark that, as we shall see farther on, the Arabs at this period were acquainted with the specific gravities of only seventeen liquids, besides water, which they took for their unit, and mercury, which they classed among the metals, and not among the liquids. In this series, the heaviest liquid was, in their opinion, honey, of which the specific gravity, being \(1.406\), fell between \(71\) and \(72\) of the first scale of the areometer; the highest was oil of sesame, having a specific gravity of \(0.915\), which corresponded on the areometer to the interval between \(108\) and \(109\); while the table gives in addition specific gravities from \(2\) to \(0.902\).

The table of contents will have already excited the suspicion that the second lecture of the work, treating of the steelyard and its use, would be found to contain only elementary matters, of no interest. In truth, our author exhibits in the first chapter the opinions of Thabit Bin Kurrah respecting the influence of different mediums upon the weight of bodies transferred to them; in the second chapter he reverts to the theory of centres of gravity, and demonstrates that the principle of the lever applies equally to two or three balls thrown at the same moment into the bottom of a spherical vase;\(^{10}\) the third chapter contains a recapitulation of what had been already demonstrated respecting the parallelism with the plane of the horizon of the beam of a balance when loaded with equal weights; chapters four and five, finally, exhibit the theory, construction, and use of the steelyard.

The third lecture is beyond question the richest of all in results, which it is moreover the easier to exhibit, inasmuch as our author has taken the pains to collect them into a limited number of tables. The first chapter, according to the table of contents, should treat of the relations of the fusible metals, as shown by
The chapter on Pappus the Greek's instrument for measuring liquids is ended; and herewith ends the first lecture.

The substance of this demonstration, which our author states in a somewhat intricate manner, may be presented as follows.

A floating body always displaces a volume of liquid equal in weight to the entire weight of the body itself. The liquid acts upward with a force equivalent to this weight, and, the body acting in a contrary direction with the same force, equilibrium is maintained. If afterwards the same body is plunged into a liquid less dense than the former, the part of it which is submerged will be greater than when it was immersed in the denser liquid, because the volume of the rarer liquid required in order to weigh as much as the floating body will be greater. The absolute weight of these two bodies being the same, their specific gravities will be in the inverse ratio of their volumes; that is, \(g : g' = v' : v \); \(g \) and \(g' \) being the specific gravities of the two bodies, and \(v \) and \(v' \) their volumes. The most interesting circumstance connected with the statement of these principles is that the author professes to have derived it from the first chapter of a work of Archimedes, which he describes as "on the sustaining of one thing by another," and which is probably the same with his treatise περὶ τῶν ἔδαφος ἑρματικῶν or περὶ τῶν ἔξωμετρων.

I have copied the figure of the areometer of Pappus as given by our author, with the corrections required by his description of it. One may easily perceive that the instrument is nearly identical with the volumeter of Gay-Lussac, and that it was provided with two scales, the one with its numbers increasing upwards, to indicate the volume submerged in liquids of different density, the other with its numbers increasing downwards, to show the specific gravities corresponding to those submerged volumes. The table called "table of calculation by the rule" merely repeats the same thing. Let us take, for example, the line of the first scale marked 88. We find in the table that the
The relation of \(\alpha j \) to \(j t \) is exactly as the relation which
the weight of the light liquid, equivalent in volume to the cylinder \(\alpha m \),
bears to the weight of the heavy liquid, equivalent in volume to the

cylinder \(\alpha m \); which is what we wished to explain.

This having been made clear, we go back to the figure of the instru-
ment, and say that, if the cylinder \(st \) is put into any liquid, in an even
position, not inclined, and it sinks until the line \(akh \) is reached, the
weight of a daurak of that liquid is according to the measure of the
part-numbers at the line \(akh \); and so, when it sinks, in a liquid of more
gavity, [only] until the line \(fy \) is reached, the weight of that liquid is
according to the measure of the part-numbers at the line \(fy \). For, the
relation of the line \(ab \) to the line \(bf \), agreeably to the preceding ex-
planation, is the relation of the weight of the [lighter] liquid in which the
cylinder sinks to \(akh \) to the weight of the [heavier] liquid in which it
sinks to \(fy \), inversely. But the relation of the weight of the liquid in
which the balance sinks to the line \(fy \) [to the weight of the lighter
liquid], is the same as the relation of the number upon the line \(fy \) to
the number upon the line \(akh \); and the number upon the line \(fy \) is the
Section Sixth.

Basis of Demonstration to the Foregoing Statement.9

Let the cylinder nm be made, and set upon some liquid into which it drops down, even and erect, until the line td is reached; and, on the other hand, [let it be put] into some liquid of great gravity, so that it descends [only] until the line 'as' is reached. Accordingly, each of the two lines td and 'as'—two lines circling round the cylinder, parallel with each other, and parallel with the two bases of the cylinder—rests upon the level surface of the liquid. I say, then, that the relation of the line 'aj' to the margin jt is as the relation of the weight of the light liquid to the weight of the heavy liquid. For, the relation of the line 'aj' to the line jt is as the relation of the cylinder am to the cylinder tm; and so much of the light liquid, in which am is held up and immersed, as is equal in bulk to that cylinder, bears the identical relation to so much of the same liquid as is equal in bulk to the cylinder tm, which the line 'aj' bears to the line jt. But [that volume of] the liquid mentioned which is equivalent to the cylinder tm, equals, in weight, [a volume of] the liquid having more gravity equivalent to the cylinder 'am; because these two cylinders [of liquid] are each of equal gravity with the whole cylinder nm—as Archimedes has already explained in the first lecture of his book on the sustaining of one thing by
الفصل الثاني
في معرفة العين بها

وقد بينت هذه الآلية فيما ذكرت في قسم الراتبات غير جامع يمكننا أن نغرد
فيه بلا مانع وأن نعملنا مثباً من الراوي، ولهما ملائم دليل على وزن تلك الراتب.
بالإضافة إلى أن الأجسام المختلفة المطلوبة عند ذلك الراتب يзвук أن يكون مع بسيط الراتب أنا عرق ان يكون للرفيق أو بالقرب منه وحدها الموجه وذلك من مساحة الراتب المجموع أو مساحة الماء التي يفوق
otaqu irrita. وعلى هذا إذا قسمنا
Maas بلان التاريخ فيه المشاهدات، وإليهما ومنا أن أثنين من ماء أو
من وقائلاً الصحيح من ماء القصر المكتمل وكان أكثر من أي
جاذب الأنوار فهو أثر بقدر الشعيبات نسبة إلى الماء، وان أشباه عليه
عدد الشعيبات فلا يشتهي علينا سطر العدد لتنسبه إعداد، قسمنا على
ملتقى الماء منه نبأ عشرة الف مما خرج من القسم فهو عدد الشعيبات
المطلوبة، وذلك ما أردنا أن نذكر.

not inclined, it shows the weight of that liquid by some proportioned part-number, among the different part-numbers looked for, marked upon the submerged line, provided that number is even with the level surface of the liquid, so that the line of submergence is upon it, or nearly so. The number found for the liquid in question you keep in mind, and you say that so much of that liquid, with its mark according to the number kept in mind, as would fill the imagined daurak, is proportioned to 100, the weight of an equivalent volume of water, as the number kept in mind is to the specific gravity of water.

We proceed in the same manner when we compare the water of another country with that of the stream fixed upon; and thus it is made to appear which of the two is the rarer and lighter in weight. If a surface of water coincides with any line of less number than kh, that water is rarer than water of the stream fixed upon; and if it exceeds kh, that is, comes on the side of greater gravity, it is heavier, by the measure of the round points [counted to the surface], relatively to 100.

Should we be unable to distinguish the number of the round points, the line of even numbers is in plain sight. By [the number which marks] the point of coincidence on this line with the water we divide, constantly, 10,000; and the quotient of the division is the number of the round points looked for. This is what we wished to state.
N. Khanikoff,

الفصل الرابع

في تعيين مقدار زنة الرصاص

ويحتاج أن يكون مقدار الرصاص الذي ذكرناه الشبيه 4 بالصنوبرة الذي

قاعدته 5 بناءًا على سطحها الداخل مقدارًا إذا وتمت ميزان الرطوبة في الماء

وقف عليه وقوفًا مستويًا ورسب من غير أن تتحرك الرطوبة ولا الميزلان

حتى يصل إلى خط الاستواء للاعتتدال الذي عليه ووزنه المفرط كما في

مثاليًا للماء 6 ويستعمل في ذلك التحريج فلما أن ورود في الرصاص أو ينقص

منه حتى ينفد على ما قلنا ويجعل النقصان أو الزيدات الخروطًا بالسهم حتى

يكون السيم الذي ينتمي للاسطوانة مستويًا موزونًا فإذا استوى سطح الماء

مع خط الاستواء فقد بدأ الماء وذالك لفقر الرصاص يتحسن ماء نهر بلاد

وواد معرف نحو جهوجين أو الفرات أو غيرهما يقيس سامراء المياه إليها خففة

وفلذا ويحسن أن تكون من ماء إلى ماء آخر بتغير تليل الرصاص ورصد

هذا.

Section Fourth.

Specification of the Proportion in Weight of the Piece of Tin.

It is necessary that the piece of tin which has been mentioned, the
tunnel-like thing upon the base bm, on the inner plane of that base,
should be of such proportion [in weight] that the liquid-balance, when
put into water, stands even upon it, and sinks, without any agitation,
either of the liquid or of the balance, until the equator of equilibrium
is reached, upon which one's determined weight of the liquid is marked,
as, for instance, the 100 for water in our diagram. In order to deter-
mine this proportion, experiment is resorted to; for the tin is either too
heavy or too light, until the motion of the instrument is arrested at the
line spoken of; and you carefully reduce the deficit, or the excess, [in the
weight of the tin] by the lathe, until the cylinder, being of the allotted
size, is evenly balanced. When the surface of the water is even with
the equator [of equilibrium], the instrument is finished. So much for
the determination of the proportion of the piece of tin, adapted to water
from some known stream of a city or valley, such as the Jaihûn or the
Euphrates, or others—that being taken as the standard for all waters,
as to lightness or heaviness; and we may change from one water to an-
other by varying the weight of the piece of tin, and making observations
thereupon. Let this, then, be kept in mind.

Section Fifth.

Knowledge of the Application of the Instrument.

This instrument is such that, when cast into a liquid not having con-
sistence, it sinks therein without hindrance; and if you hold it up erect,
Table of Calculation by the Rule.

<table>
<thead>
<tr>
<th>Line of Numbers</th>
<th>Parts</th>
<th>Sixtieths</th>
<th>Line of Numbers</th>
<th>Parts</th>
<th>Sixtieths</th>
</tr>
</thead>
<tbody>
<tr>
<td>110</td>
<td>90</td>
<td>54</td>
<td>80</td>
<td>125</td>
<td>35</td>
</tr>
<tr>
<td>109</td>
<td>91</td>
<td>45</td>
<td>79</td>
<td>127</td>
<td>12</td>
</tr>
<tr>
<td>108</td>
<td>92</td>
<td>35</td>
<td>78</td>
<td>128</td>
<td>53</td>
</tr>
<tr>
<td>107</td>
<td>93</td>
<td>27</td>
<td>77</td>
<td>129</td>
<td>35</td>
</tr>
<tr>
<td>106</td>
<td>94</td>
<td>21</td>
<td>76</td>
<td>131</td>
<td>20</td>
</tr>
<tr>
<td>105</td>
<td>95</td>
<td>14</td>
<td>75</td>
<td>133</td>
<td>8</td>
</tr>
<tr>
<td>104</td>
<td>96</td>
<td>9</td>
<td>74</td>
<td>135</td>
<td>54</td>
</tr>
<tr>
<td>103</td>
<td>97</td>
<td>5</td>
<td>73</td>
<td>137</td>
<td>51</td>
</tr>
<tr>
<td>102</td>
<td>98</td>
<td>2</td>
<td>72</td>
<td>138</td>
<td>56</td>
</tr>
<tr>
<td>101</td>
<td>99</td>
<td>1</td>
<td>71</td>
<td>140</td>
<td>30</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>1</td>
<td>70</td>
<td>142</td>
<td>51</td>
</tr>
<tr>
<td>99</td>
<td>101</td>
<td>1</td>
<td>69</td>
<td>144</td>
<td>56</td>
</tr>
<tr>
<td>98</td>
<td>102</td>
<td>2</td>
<td>68</td>
<td>147</td>
<td>15</td>
</tr>
<tr>
<td>97</td>
<td>103</td>
<td>6</td>
<td>67</td>
<td>149</td>
<td>30</td>
</tr>
<tr>
<td>96</td>
<td>104</td>
<td>10</td>
<td>66</td>
<td>151</td>
<td>51</td>
</tr>
<tr>
<td>95</td>
<td>105</td>
<td>15</td>
<td>65</td>
<td>153</td>
<td>15</td>
</tr>
<tr>
<td>94</td>
<td>106</td>
<td>23</td>
<td>64</td>
<td>156</td>
<td>44</td>
</tr>
<tr>
<td>93</td>
<td>107</td>
<td>31</td>
<td>63</td>
<td>158</td>
<td>17</td>
</tr>
<tr>
<td>92</td>
<td>108</td>
<td>42</td>
<td>62</td>
<td>161</td>
<td>56</td>
</tr>
<tr>
<td>91</td>
<td>109</td>
<td>54</td>
<td>61</td>
<td>163</td>
<td>51</td>
</tr>
<tr>
<td>90</td>
<td>111</td>
<td>7</td>
<td>60</td>
<td>166</td>
<td>15</td>
</tr>
<tr>
<td>89</td>
<td>112</td>
<td>21</td>
<td>59</td>
<td>169</td>
<td>20</td>
</tr>
<tr>
<td>88</td>
<td>113</td>
<td>33</td>
<td>58</td>
<td>172</td>
<td>25</td>
</tr>
<tr>
<td>87</td>
<td>114</td>
<td>57</td>
<td>57</td>
<td>175</td>
<td>26</td>
</tr>
<tr>
<td>86</td>
<td>116</td>
<td>17</td>
<td>56</td>
<td>178</td>
<td>34</td>
</tr>
<tr>
<td>85</td>
<td>117</td>
<td>39</td>
<td>55</td>
<td>181</td>
<td>49</td>
</tr>
<tr>
<td>84</td>
<td>119</td>
<td>3</td>
<td>54</td>
<td>185</td>
<td>11</td>
</tr>
<tr>
<td>83</td>
<td>120</td>
<td>29</td>
<td>53</td>
<td>188</td>
<td>40</td>
</tr>
<tr>
<td>82</td>
<td>121</td>
<td>57</td>
<td>52</td>
<td>192</td>
<td>18</td>
</tr>
<tr>
<td>81</td>
<td>123</td>
<td>28</td>
<td>51</td>
<td>196</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>200</td>
<td></td>
</tr>
</tbody>
</table>
line of numbers below 100 is the basis of calculation for liquid heavier than water. [So that, for liquids lighter than water, we must have numbers above 100 to calculate upon.]

The basis of demonstration upon which this calculation rests will be stated hereafter;’ Abu-r-Raihán alludes to it in his treatise.

So much of the instrument as is above the equator [of equilibrium], and so much of the line of numbers as is above 100, pertains to liquid lighter than water, such as oil and the like. [In our table] we have contented ourselves with lines of numbers from 50 to 110, inasmuch as this instrument does not require to have upon it [for the calculation of specific gravities] numbers either greater than the one or less than the other of the two.

The rule drawn out in a tabular form follows presently.

When we wish to mark the proportioned part-numbers upon the instrument, we set the units of the part-numbers on the line h; and their fifths and tenths on the line w, in such manner that the [proportioned] number-letter of each of the parts of the line of numbers on the instrument, from 1 to 120, shall be just what the table makes it; and with a bent ruler, in the mode spoken of, you make lines of connection between h and w from 110 to 50. We begin with placing the number-letters [derived from the table] on the side of b, and proceed towards a; but those of them which come above the line of equilibrium constitute the measure for light liquid, and those below that line are the standard for heavy liquid—both being relative to the gravity of water.
into a hundred like parts. Then you connect the hundred points of that line with the line tj, by small arcs at even distances one from another, which are consequently parallel with the circles of the two bases; and you are to write on the surfaces [divided off] between the two lines ab and tj the [appropriate] number-letters, beginning at b and proceeding towards a, which make what we call the line of even number.

Section Third.

Arithmetical Development of a Rule for the Proportioned Part-numbers [indicating Specific Gravities], and Putting of them upon the Instrument.

You are now to understand how to find all numbers indicating the weights of liquids. In the first place, we fix, in imagination, upon any vessel whatever, as, for example, the daurak, capable of containing [a weight of] water equal to a hundred mithkals, or a hundred dirhams, or istars, or any thing else, at our pleasure; and we put down, for the height of the instrument [to the water-line], one hundred numbers, corresponding to the quantity of water assumed. Then, when we wish to make up a table, putting into it the proportioned part-numbers, we multiply 100 by 100, producing 10,000, which we keep in mind, it being the sum to be constantly divided; and if, then, we wish to obtain the proportional for each part of the line of numbers marked upon the instrument, we take [the number of] that part, from the line of numbers, and divide 10,000 constantly by it, and the quotient of the division is set down, opposite to [the number of] that part, in the table of part-numbers and fractions of part-numbers. But that portion of the
The instrument being thus made, when put into liquid in a reservoir or vessel, it stands upon it in an erect position, and does not incline any way.

Section Second.

Marking of Lines upon the Instrument.

You draw, in the first place, lengthwise, along the whole cylinder, a line $sa'b$, forming its side; and let the upper part of this line remain above [water] in the vessel, namely, a small piece measuring a sixth of the height of the cylinder, or less, as, making a part of the line [$aa'b$] contiguous to the line of one of the bases, $s'a$. You also draw other lines parallel with the line ab, namely, the lines rh, wm, ht, extending to the limit [$s'a$] mentioned. Moreover, you bisect the line ab at k, and lay off each of the lines tr, md, lt, equal to ka, and over the points k, t, d, l, you place a bent ruler, fitted to the bulge of the cylinder, and draw a circular line over those points; and, in like manner [after laying off the lines jl, tn, khd], you draw, over the points $ajnk$, a circle $ajnk$, which you call the equator of equilibrium. That part of the instrument above the equatorial line is the side of lighter gravities [than that of water], and that part below the same is the side of heavier gravities.

Afterwards, you divide the line ab into ten parts, for number-letters, and over the points of the several parts you make stripe-like arcs, resting upon the lines nr and ab; and you divide the distance between each two parts into ten parts, on the line nr, so that the line nr is divided
Form of Pappus the Greek's Instrument for Measuring Liquids.

Between s_b and h_r, Ascending Line of Numbers.

Between w_m and h_r, Descending Round-point Numbers of the Instrument.

 aku Equator of Equilibrium.

Above aku , Lighter Side.

Below aku , Heavier Side.

Along the line of descending numbers, Different Part-numbers sought for, determining the Weight of the Liquid.

On the cone at the lower end of the instrument, Cone made of Tin.

Above the cone, The Relation of Distance to Distance, successively, from the Base, is, by an Inverse Ratio, as the Round-point Numbers of the Second Distance to the Round-point Numbers of the First Distance.
the relation of gravity to gravity, inversely, [when the two are weighed] in water. The force of this fundamental principle, once conceded, leads to the construction of an instrument which shows us the exact relations in weight of all liquids, one to another, with the least labor, provided their bodies are of the same volume, definitely determining the lightness of one relatively to another; and which is very useful in respect to things concerning the health of the human body; and all this without resort to counterpoises or balance. We shall, therefore, speak of the construction of this instrument, the marking of lines upon it, and the development of a rule for the putting upon it of arithmetical calculation and letters [expressive of numbers]; also, of the application of the instrument, and of its basis of demonstration. This will occupy six sections.

Section First.

The length of this instrument, which is cylindrical in shape, measures half a hand-cubit; and the breadth is equal to that of two fingers, or less. It is made of brass, is hollow, not solid, and the lighter particles of brass are carefully turned off by the lathe. It has two bases, at its two ends, resembling two light drum-skins, each fitted to the end, carefully, with the most exact workmanship; and on the inner plane of one of the two bases is a piece of tin, carefully fitted to that plane by the lathe, shaped like a tunnel, the base of which is the drum-skin itself.
trial gravitation, for they had not the means of arriving at these conclusions. On the other hand, the principle of Archimedes, and the suspicion which they had of the different density of the atmosphere at different heights, taught them that the farther a body was removed from the earth's surface, and consequently from its centre, the less of its weight it would lose from the effect of the medium, that is to say, the heavier it would become; they did not, therefore, hesitate to admit the direct ratio of the distance. It is evident that the Arabs admitted the heaviness of the air, and even that they had, so to speak, discovered the means of estimating it, for they say that a given body loses less of its weight in a rarer than in a denser atmosphere; but in all probability they never made application of this means to ascertain the weight of a volume of air at different altitudes. Finally, neither the Greeks nor the Arabs, so far as appears, were in possession of any positive demonstration of the principle according to which a liquid in equilibrium takes the form of a sphere, but they admitted it as an evident principle, founded on the spherical form of the surfaces of great sheets of water. Upon the whole, it seems to me allowable to believe that the Arabs had one great advantage over the ancients with respect to the study of nature; this, namely, that they were to a much less degree than their predecessors in civilization bent upon fitting the facts observed into artificial systems, constructed in advance, and that they were vastly more solicitous about the fact itself than about the place which it should occupy in their theory of nature.

I shall make no extracts from the sixth chapter, which presents nothing at all worthy of note, but shall pass directly on to the seventh chapter.

It reads as follows, in the original and translated:

أثاب السايع

في صنعهة مقياس المابعات في التقل والخفية والعجل بد للهكيم فويس الرومي قد نصبت مما تقدمت من المسائل وعليه بعد من أمر نسب انتقال الاجرام ان نسبي حجم جريم كله تقليل إلى حجم جريم آخر تقليل على التوالي إذا امتنع وزنهم في الهواء كنسبيه الانتقال إلى التقل على خلاف النول في الماء وإذا

Chapter Seventh.

Mechanism of the Instrument for measuring Liquids, as to Heaviness or Lightness, and Application of it, according to the Philosopher Pappus the Greek.

It is evident, from the theorems already stated, and from what is to be presented respecting the relations between the gravities of bodies, that the relation of any volume of a heavy body to any volume of another heavy body, in direct ratio, when the two weigh alike in air, is as
the Arab philosophers with regard to gravitation are, in my opinion, much more remarkable; I will not call it universal gravitation, for our author expressly exempts the heavenly bodies from the influence of this force (see Chapter Fifth, Sect. First, 1.), but terrestrial gravitation. That this great law of nature did not present itself to their minds in the form of a mutual attraction of all existing bodies, as Newton enunciated it five centuries later, is quite natural, for at the time when the principles exhibited by our author were brought forward, the earth was still regarded as fixed immovably in the centre of the universe, and even the centrifugal force had not yet been discovered. But what is more astonishing is the fact that, having inherited from the Greeks the doctrine that all bodies are attracted toward the centre of the earth, and that this attraction acts in the direct ratio of the mass, having moreover not failed to perceive that attraction is a function of the distance of the bodies attracted from the centre of attraction, and having even been aware that, if the centre of the earth were surrounded by concentric spheres, all bodies of equal mass placed upon those spherical surfaces would press equally upon the same surfaces, and differently upon each sphere—that, in spite of all this, they held that weight was directly as the mass and the distance from the centre of the earth, without even suspecting, so far as it appears, that this attraction might be mutual between the body attracting and the bodies attracted, and that the law as enunciated by them was inconsistent with the principle which they admitted, that the containing surface of a liquid in equilibrium is a spherical surface. Many geometers of the first rank, such as Laplace, Ivory, Poisson, and others, have endeavored to establish the consequences of an attraction which should act directly as the distance from the centre of attraction; thus Poisson says: * "Among the different laws of attraction, there is one which is not that of nature, but which possesses a remarkable property. This law is that of a mutual action in the direct ratio of the distance, and the property referred to is this, that the result of the action of all the points of a body upon any one point is independent of the form and constitution of that body, whether homogeneous or heterogeneous, and is the same as if its whole mass was concentrated in its centre of gravity." Farther on, he shows that under the influence of this law the containing surfaces of a revolving liquid are ellipsoid or (with sufficient velocity) hyperboloid; the latter form being possible as a permanent figure only when the liquid is contained within a vessel. It is thus seen that none of the immediate effects of an action in the direct ratio of the distance were of such a character as to set the Arab philosophers on their guard against the consequences of their law of terres-

* Traité de Mécanique, 2e édition, ii. 550-553.
tion over the plane ab—after being so formed, and oscillating to and fro, it stops at a point d, contrary to the opinion of those who think that it is accumulated and oscillates perpetually. 7. Of liquids in receptacles, they contain a greater volume when nearer to the centre of the world, and when farther from it contain a less volume. Thus, let abh be [the bulge of water in] a receptacle, at the greater distance from h [the centre], and within the spherical surface of the water, ahb, over the top of the receptacle [by attraction] from the centre of the world, let the liquid in the hollow of the receptacle be contained, and let a section of the surface of the sphere—which you perceive to be not a plane—be ahb by aza, and let the right line between these two be zk; and, on the other hand, let there be a receptacle at the less distance tz, in case we fix upon t as the centre of the world, and let the new section of the surface of the sphere be adb, over the top of the receptacle, [by aza], and let the right line between these two be zd. So then, what is in the receptacle increases by the excess of zd [over zk], namely, the interval between two spherical surfaces at different distances from the centre of the world—which is what we wished to state.

I shall not stop to point out certain inaccuracies in the foregoing theorems of centres of gravity, since each reader will readily discover them for himself; but I will observe, in general, that the vagueness of the ideas of the Arab physicists respecting force, mass, and weight, a vagueness which is the principal cause of these inaccuracies, seems to have troubled them very little, for our author is nowhere at the pains to establish a distinction between those three ideas. But the ideas of
between the apexes is greater than that between the bases, because the two are on two straight lines drawn from the centre of the world, making the two legs of a triangle, of which the apex is the centre of the world, and the base [includes] the two apexes. When the stations of the two figures are connected [by a right line], we get the shape of two similar triangles, the longer of which as to legs is the broader as to base.

4. The place of incidence of a perpendicular line from the centre of the world, falling upon any even plane parallel with the horizon, is the middle of that plane, and the part of it which is nearest to the centre of the world. Thus, let the plane be ab the centre h, and the perpendicular line upon ab from the centre hz — that is the shortest line between the centre and the plane. 5. Let any liquid be poured upon the plane ab, and let its gathering-point be h, within the spherical surface abh, [formed by attraction] from the centre h; then, in case the volume of the liquid exceeds that limit, it overflows at the sides of ab. This is so only because any heavy body, liquid or not, inclines from above downwards, and stops on reaching the centre of the world; for which reason the surface of water is not flat, but, on the contrary, convex, of a spherical shape. On this account, one who is on the sea, with a lighthouse in the distance, first descries its summit, and afterwards makes out to discover, little by little, what is below the summit, all of which was before, as a matter of course, concealed; for, excepting the convexity of the earth, there is nothing to hide every other part but the summit, in the case supposed. 6. Let any sphere be formed by gravita-
with the plane of the horizon. 3. The cause of the differing force of the motion of bodies, in air and in water, is their difference of shape. 4. Yet, when a body lies at rest in the water-bowl, the beam rises according to the measure of the volume of the body, not according to its shape. 5. The rapidity of the motion of the beam is in proportion to the force of the body, not to its volume. 6. The air interferes with heavy bodies; and they are essentially and really heavier than they are found to be in that medium. 7. When moved to a rarer air, they are heavier; and, on the contrary, when moved to a denser air, they are lighter.

Section Third.

1. The weight of any heavy body, of known weight at a particular distance from the centre of the world, varies according to the variation of its distance therefrom; so that, as often as it is removed from the centre, it becomes heavier, and when brought nearer to it, is lighter. On this account, the relation of gravity to gravity is as the relation of distance to distance from the centre. 2. Any gravity inclines towards the centre of the world; and the place where the stone having that gravity falls, upon the surface of the earth, is its station; and the stone, together with its station, is on a straight line drawn from the centre of the world to the station mentioned. 3. Of any two like figures, standing on one of the great circles of the surface of the earth, the distance
transferred from a rarer to a denser air, it becomes lighter in weight; from a denser to a rarer air, it becomes heavier. This is the case universally, with all heavy bodies. 3. When one fixes upon two heavy bodies, if they are of one and the same substance, the larger of the two in bulk is the weightier of them. 4. When they are of two different substances, and agree in weight, and are afterwards transferred to a denser air, both become lighter; only that the deficient one, that is, the smaller of the two in bulk, is the weightier of them, and the other is the lighter. 5. If the two are transferred to a rarer air, both become heavier; only that the deficient one, that is, the smaller of the two in bulk, is the lighter of them in weight, and the other is the heavier.

Section Second.

1. When a heavy body moves in a liquid, one interferes with the other; and therefore water interferes with the body of any thing heavy which is plunged into it, and impairs its force and its gravity, in proportion to its body. So that gravity is lightened in water, in proportion to the weight of the water which is equal [in volume] to the body having that gravity; and the gravity of the body is so much diminished. As often as the body moving [in the water] is increased in bulk, the interference becomes greater. This interference, in the ease of the balance of wisdom, is called the rising up [of the beam]. 2. When a body is weighed in air, and afterwards in the water-bowl, the beam of the balance rises, in proportion to the weight of the water which is equal in volume to the body weighed; and therefore, when the counterpoises are proportionally lessened, the beam is brought to an equilibrium, parallel
The title of the third chapter is Theorems of Euclid respecting Weight and Lightness, and respecting the Measuring of Bodies by one another. It contains sundry geometrical definitions respecting volumes, the enunciation of the well-known equation of dynamics expressing the relation between the velocity of motion, the space traversed, and the time, \(v = \frac{s}{t} \), and that of the principle that gravity acts upon a body in the direct ratio of its mass.

The fourth chapter has for its title Theorems of Menelaus respecting Weight and Lightness. It contains only a few well-known developments of the principles of Archimedes applied to solid and hollow bodies (جسوم مثقلت and جسوم مصنعة), and I shall do no more than cite from it some of the technical terms made use of. The water into which a solid is plunged is called

"like water," if the water displaced by the immersed body be of the same weight with that body; and the latter is designated

"like body." If of less weight, the body is called "sinking body;" if of greater weight, it is styled "floating body."

The fifth chapter contains a recapitulation of the principles of centres of gravity, and is here given entire, with a translation:

الباب الخامس
في مسائل مادة للجسمان وهو يستعمل على ثلاثة فصول
الفصل الأول
في اختلاف أوزان الأجسام النقل في بعد واحد من مركز العالم
أقول أن الأجسام الاستثنائية لا تخلو عن معاوقة بعضها لبعض حسب جهته المركز وأضيف اختلاف الأجسام الفلكية إذا حول إلى جو اكنت إلى خلافه
الثاني إذا حول الجسم الواحد المنقول من الجو ما من الجو المنقول إلى الجو الالتف إلى الكهف احف ذ停工ا من الالتف إلى الالتف يصير من الجو اكنت عندج

Chapter Fifth.

Theorems recapitulated for the sake of Explanation. In Three Sections.

Section First.

Difference in the Weights of Heavy Bodies, at the same Distance from the Centre of the World.

1. I say that elementary bodies — differing in this from the celestial spheres — are not without interference, one with another [as to motion], in the two directions of the centre and of the circumference of the world, [as appears] when they are transferred from a denser to a rarer air, or the reverse. 2. When a heavy body, of whatever substance, is
through that point, and also passes through their two centres of gravity, one to the other. 2. Of any two heavy bodies balancing a single heavy body relatively to a single point, the one nearer to that point has more gravity than that which is farther from it. 3. Any heavy body balancing another heavy body relatively to a certain point, and afterwards moved in the direction towards that other body, while its centre of gravity is still on the same right line with the [common] centre, has more gravity the farther it is from that point. 4. Of any two heavy bodies alike in volume, force, and shape, but differing in distance from the centre of the world, that which is farther off has more gravity.

End of the theorems relative to centres of gravity.

The second chapter is entitled Theorems of Archimedes with respect to Weight and Lightness. I shall not give a translation of it, since it contains nothing which is not known. Our author commences by quoting from the Greek geometer, though without specifying the work from which he derives the quotation, to the effect that different bodies, solid and liquid, are distinguished by their respective weights; then he proceeds to enunciate, without demonstration, the principle of Archimedes, that the form of a liquid in equilibrium is spherical; that a floating body will sink into the water until it shall have displaced a volume of water equal in weight to its own entire weight; and finally, that if a body lighter than a liquid be plunged into that liquid, it will rise from it with a force proportionate to the difference between the weight of the submerged body and that of an equal volume of the liquid.
Section Eighth.

1. The centre of gravity of any body having like planes and similar parts is the centre of the body — I mean, the point at which its diameters intersect. 2. Of any two bodies of parallel planes, alike in force, and alike in altitude — their common altitude being at right angles with their bases — the relation of the gravity of one to the gravity of the other is as the relation of the bulk of one to the bulk of the other. 3. Any body of parallel planes, which is cut by a plane parallel with two of its opposite planes, is thereby divided into two bodies of parallel planes; and the two have [separate] centres of gravity, which are connected by a right line between them; and the body as a whole has a centre of gravity, which is also on this line. So that the relation of the gravities of the two bodies, one to the other, is as the relation of the two portions of the line [connecting their separate centres of gravity and divided at the common centre], one to the other, inversely. 4. Of any two bodies joined together, the relation of the gravity of one to the gravity of the other is as the relation of the two portions of the line on which are the three centres of gravity — namely, those pertaining to the two taken separately, and that pertaining to the aggregate of the two bodies — one to the other, inversely.

Section Ninth.

1. Of any two bodies balancing each other in gravity, with reference to a determined point, the relation of the gravity of one to the gravity of the other is as the relation of the two portions of the line which passes
the centre. 3. When its motion ceases, the position of its centre of gravity is not varied. 4. When several heavy bodies move towards the centre, and nothing interferes with them, they meet at the centre; and the position of their common centre of gravity is not varied. 5. Every heavy body has its centre of gravity. 6. Any heavy body is divided by any even plane projected from its centre of gravity into two parts balancing each other in gravity. 7. When such a plane divides a body into two parts balancing each other in gravity, the centre of gravity of the body is on that plane. 8. Its centre of gravity is a single point.

Section Seventh.

1. The aggregate of any two heavy bodies, joined together with care as to the placing of one with reference to the other, has a centre of gravity which is a single point. 2. A heavy body which joins together any two heavy bodies has its centre of gravity on the right line connecting their two centres of gravity; so that the centre of gravity of all three bodies is on that line. 3. Any heavy body which balances a heavy body is balanced by the gravity of any other body like to either in gravity, when there is no change of the centres of gravity. 4. One of any two bodies which balance each other being taken away, and a heavier body being placed at its centre of gravity, the latter does not balance the second body; it balances only a body of more gravity than that has.
The sixth section. If we consider the balance of a system of weights, it is found that when the system is in equilibrium, each weight acts through the center of gravity of the system. If the system is displaced, the center of gravity of the system will move in such a way that the new position of the center of gravity will be the same as the old position. When the system is displaced, the new equilibrium is established, and the center of gravity of the system will be at the new position.

The sixth section.

1. A heavy body moving towards the centre of the world does not deviate from the centre; and when it reaches that point its motion ceases.* 2. When its motion ceases, all its parts incline equally towards the centre of the world.

* This proves that the theory of moments was entirely unknown to the Arabs of the twelfth century, excepting for the case of the lever.
Book of the Balance of Wisdom.

7. That point in any heavy body which coincides with the centre of the world, when the body is at rest at that centre, is called the centre of gravity of that body.

Section Fifth.

1. Two bodies balancing each other in gravity, with reference to a determined point, are such that, when they are joined together by any heavy body of which that point is the centre of gravity, their two [separate] centres of gravity are on the two sides of that point, on a right line terminating in that point—provided the position of that body [by which they are joined] is not varied; and that point becomes the centre of gravity of the aggregate of the bodies. 2. Two bodies balancing each other in gravity, with reference to a determined plane, are such that, when they are joined together by any heavy body, their common centre of gravity is on that plane—provided the position of that body [by which they are joined] is not varied; and the centre of gravity common to all three bodies is on that plane. 3. Gravities balancing each other relatively to any one gravity, which secures a common centre to the aggregate, are alike. 4. When addition is made to gravities balancing each other relatively to that centre, and the common centre of the two is not varied, all three gravities are in equilibrium with reference to that centre. 5. When addition is made to gravities balancing each other, with reference to a determined plane, of gravities which are themselves in equilibrium with reference to that plane, all the gravities balance with
section fourth.

1. Heavy bodies may be alike in gravity, although differing in force, and differing in shape. 2. Bodies alike in gravity are those which, when they move in a liquid from some single point, move alike—I mean, pass over equal spaces in equal times. 3. Bodies differing in gravity are those which, when they move as just described, move differently; and that which has the most gravity is the most rapid in motion. 4. Bodies alike in force, volume, shape, and distance from the centre of the world, are like bodies. 5. Any heavy body at the centre of the world has the world’s centre in the middle of it; and all parts of the body incline, with all its sides, equally, towards the centre of the world; and every plane projected from the centre of the world divides the body into two parts which balance each other in gravity, with reference to that plane. 6. Every plane which cuts the body, without passing through the centre of the world, divides it into two parts which do not balance each other.

* The MS. reads أسرع, but it is evident that our author would say أبطأ.
SECTION SECOND.

1. Of heavy bodies differing in force some have a greater force, which are dense bodies. 2. Some of them have a less force, which are rare bodies. 3. Any body whatever, exceeding in density, has more force. 4. Any body whatever, exceeding in rarity, has less force. 5. Bodies alike in force are those, of like density or rarity, of which the corresponding dimensions are similar, their shapes being alike as to gravity. Such we call bodies of like force. 6. Bodies differing in force are those which are not such. These we call bodies differing in force.

SECTION THIRD.

1. When a heavy body moves in liquids, its motion therein is proportioned to their degrees of liquidness; so that its motion is most rapid in that which is most liquid. 2. When two bodies alike in volume, similar in shape, but differing in density, move in a liquid, the motion therein of the denser body is the more rapid. 3. When two bodies alike in volume, and alike in force, but differing in shape, move in a liquid, that which has a smaller superficies touched by the liquid moves therein more
Chapter First.

Main Theorems relative to Centres of Gravity, according to 'Abū-Sahl of Kūhīstān and 'Ibn 'al-Haitham of Basrah—to aid the Speculator in the Science of the Balance of Wisdom to the Conception of its Ideas. In Nine Sections.

Section First.

1. Heaviness is the force with which a heavy body is moved towards the centre of the world. 2. A heavy body is one which is moved by an inherent force, constantly, towards the centre of the world. Suffice it to say, I mean that a heavy body is one which has a force moving it towards the central point, and constantly in the direction of the centre, without being moved by that force in any different direction; and that the force referred to is inherent in the body, not derived from without, nor separated from it—the body not resting at any point out of the centre, and
Before going farther I must endeavor to discover who our author may have been, thus supplying a deficiency occasioned by his too great modesty. 3

Our author continues as follows:

وَنَشْعُرُ فِي الْقَسْمِ الْأَوَّلِ مِنَ الْكِتَابِ مِنْ تَوَكْلِيْنِ عَلَى اللَّهِ وَصِيَّرَشْنِ عَلَى نَبِيِّهِ محمدٍ وَاللَّهُ وَهَذَا الْقَسْمُ يَشْتَمِلُ عَلَى أَرْبَعَ مُقَالَاتٍ نَّذِكْرُوهَا مَفْتَحَةَ مَشْرُوْحَةَ

آن شاء الله تعالى

المقالة الأولى

في المقدمات الطبيعية والرياضية

نقول وبالله التوفيق إن الآحادية بروٍّ مسائل مكر الانقل والنقل والمنبهة وكيفية اختلافها في الزروق والبهوث والرسوب والنفق وسائط العلم النلى في

We now enter upon the First Part of the book, relying upon God, and imploring beneficences upon His Prophet Muhammad and his family. This Part includes four Lectures, which we shall set forth distinctly and clearly, if the Supreme God so wills.

Lecture First.

Fundamental Principles, Physical and Mathematical.

We say—God ordering all things by His Providence—that the comprehension of the main theorems relative to centres of gravity, and

3

likin’s Wafayat, ed. De Slane, p. 147. As to Muhammad Bin Zakariyyâ of Rai, he is said to have died A.H. 520 (A.D. 932), at a great age. [See Wüstefeld’s Gesch. d. Arab. Aeerzte u. Naturforscher, p. 41.] Consequently, he was contemporaneous with Naser Bin Ahmad the Šamânde. According to Haji Khalâfah, Ibn al-Amid died A.H. 360 (A.D. 970), so that he was contemporaneous with the Dailamite Ruki nd- Daulâh. The same authority gives us the date A.H. 428 (A.D. 1036) for the death of Ibn-Sinâ. See Haji Khalâfah Lex., ed. Flügel, iv. 496. The Habib as-Siyar of Khoudemir places it in the Ramadân of A.H. 427, at Hamadân, where I saw his tomb, in ruins, in 1852. ‘Abu-r-Raihân Muhammad, “surnamed al-Bîrunî, because originally of the city called Bîrûn, in the valley of the Indus, passed his youth, and perhaps was born, in Khirium. He was one of the society of savans formed in the capital of Khirium, at the court of the prince of the country, and of which the celebrated Avicenna [‘Ibn-Sinâ] was a member. Avicenna, so long as he lived, kept up relations of friendship with him. When Malikî undertook his expeditions into India, al-Bîrunî attached himself to his fortunes, and passed many years of his life in India, occupied in making himself master of the Indian sciences; he also endeavored to instruct the Hindu in Arab science, by composing certain treatises which were translated into Sanskrit.” See Reinaud’s learned paper in Journ. Asiat. for Aug. 1844, 4th Sér. iv. 123. Malikî of Ghanâmah, as is well known, made his first expedition into India A.D. 1000. ‘Abî-Hafs Úmar al-Khâyâmî, author of an algebraic treatise lately translated by Woepcke, was born, according to a learned notice by this savant in Journ. Asiat. for Oct.-Nov. 1854, 5th Sér. iv. 348, at Nishâpur, and died in that same city A.D. 1123.

Being limited to the resources of my own library, I am unable to assign more definite dates to the other philosophers mentioned in this treatise.
Chap. 2. Earth-balance, Levelling of the Earth’s Surface parallel with the Plane of the Horizon, and Reduction of the Surfaces of Walls to a Vertical Plane, in One Section.

Chap. 3. Even Balance, and Weighing with it from a Grain to a Thousand Dirhams or Dinars, by means of three Pomegranate-counterpoises, in Four Sections.

Chap. 4. Hour-balance, Mechanism of its Beam, and Arithmetical Calculation [put] upon it, in Two Sections.

Chap. 5. Mechanism of the Reservoir of Water or Sand, and Matters therewith connected, in Seven Sections.

Chap. 6. Numerical Marks and three Pomegranate-counterpoises, in Five Sections.

Chap. 7. Knowledge of Hours and their Fractions, in One Section.

In all, Eight Lectures, Forty-nine Chapters and One Hundred and Seventy-one Sections.*

* Although our author has taken pains to define by synchronisms the periods of most of the philosophers whom he refers to in his introduction and table of contents, I think it proper to add, here, some more exact intimations of the dates which concern them.

The Hiero mentioned must be Hiero ii., who died B.C. 216, at the age of not less than ninety years; and our author is evidently wrong in placing Archimedes before the time of Alexander the Great. It is well known that the great Greek geometer was killed at the taking of Syracuse by Marcellus, B.C. 212. Euclid composed his Elements about fifty years after the death of Plato, B.C. 347. Menaechmus was a celebrated mathematician of the time of Trajan, A.D. 98–117. But I have not been able to find any notice to guide me in identifying Dūmātīyānūs. Pappus was probably cotemporary with Theodosius the Great, A.D. 379–395. The philosophers of the time of Māmūn must have lived between A.D. 813 and 853. The great geometer Thābit Bin Kurrah was born in the reign of Mutassim, A.H. 221 (A.D. 835), at Harrān, and died at Baghdād A.H. 288 (A.D. 900). See Ibn-Khal-
Lecture Seventh.

Exchange-balance; Adjustment of it, for any determined Relation as to the Weight of Dirhams and Dinārs, by Suitable Counterpoises; Knowledge of Exchange, and of the Value of any Metal or Precious Stone, without Resort to Counterpoises; Adjustment of it to the Relation between Impost and the Article charged therewith, as also to that between Price and the Article appraised; and Settlement of Things by means of it. In Five Chapters.

Chap. 1. Statement concerning Relations, and their Necessity in the Case of Legal Tenders, in Four Sections.

Chap. 2. Adjustment of the Exchange-balance, and Levelling of it, in Two Sections.

Chap. 3. Weights of Dirhams and Dinārs, estimated by Suitable Counterpoises, in Four Sections.

Chap. 4. Exchange, and Knowledge of Values without Resort to Counterpoises, in Three Sections.

Chap. 5. Theorems pertaining to the Mint, and Singular Theorems relative to Exchange, in Four Sections.

Lecture Eighth. In Eight Chapters.

Chap. 1. Balance for weighing Dirhams and Dinārs, without Resort to Counterpoises, in Four Sections.
Chap. 2. Levelling of the Balance of Wisdom, Mode of Weighing Things by it, and Application of Numbers to the Conditions of Weight, in One Section.

Chap. 3. Mode of fixing upon the Balance [the points for] the Specific Gravities of Metals and Precious Stones, by Observation and the Table, in One Section.

Chap. 4. Knowledge of the Genuineness of Metals, by use of the two Movable Bowls, as well as of Precious Stones, whether in the State of Nature or partly Natural and partly Colored, and Discrimination of one Constituent from another of a Compound, without melting or refining, with the least labor and in the shortest time, provided they are compounded Two and Two, without any thing adverse, in Three Sections.

Chap. 5. Arithmetical Discrimination between Constituents of Compounds, through Employment of the Movable Bowl, in the plainest way, and by the easiest calculation, and its Basis of Demonstration, in Six Sections.

Chap. 6. Relations between Metals in respect to two Weights: Weight in Air and Weight in Water, and their Mutual Relations in respect to [Given] Volume, when the two [compared] agree in Weight, one with the other, ascertained by Pure Arithmetical Calculation, without Use of the Balance, in Two Sections.

Chap. 7. Certain Singular Theorems, in Two Sections.

8. Knowledge of the Weight of two Metals in Air, when they agree in Water-weight, in Two Sections.

Chap. 9. Certain Singular Theorems, and Knowledge of a Metal by its Weight, and the reverse, in Three Sections.

Chap. 10. Statement of the Values of Precious Stones in Past Times, as given by 'Abu-r-Raiḥān, in One Section.
LECTURE FIFTH.

Mechanism of the Balance of Wisdom, its Adjustment, Trial of it, and its Explanation. In Four Chapters.

Chap. 1. Mechanism of its Constituent Parts, as indicated by 'al-Muzaffar Bin 'Isma'il of Isfazar, in Four Sections.

Chap. 2. Adjustment of its Mechanism, and Arrangement of the Connection between its Constituent Parts, in Four Sections.

Chap. 3. Explanation of it, and Express Notice of its Names and the Names of its Constituent Parts, in Four Sections.

Chap. 4. Trial of it, and Statement of what happens or may happen to the Weigher in connection therewith, in Six Sections.

LECTURE SIXTH.

Selection of Appropriate Counterpoises; Mode of Operating thereby, including: 1. Discrimination between Mixed Metals, by means of the two Movable Bowls, and Distinction of Each One of two Constituents of a Compound, scientifically, with the least labor, 2. Arithmetical Determination [as to Quantity] of the Two; and Prices at which Precious Stones have been rated. In Ten Chapters.

Chap. 1. Selection of Appropriate Counterpoises, as regards Lightness and Heaviness, in One Section.
Chap. 3. Observation of Substances occasionally required, in Two Sections.

Chap. 4. Observation of a Cubic Cubit¹ of Water, Weight of a Volume of the Metals one Cubit cube, and Weight of so much Gold as would fill the Earth, in Three Sections.

Chap. 5. Dirhams doubled [successively] for the Squares of the Chessboard, Depositing of them in Chests, their Preservation in a Treasury, and Statement of the Length of Life in which one might expend them, in Two Sections.

Lecture Fourth.

Notice of Water-balances mentioned by Ancient and Modern Philosophers, their Shapes, and the Manner of Using them. In Five Chapters.

Chap. 1. Balance of Archimedes, which Menelaus tells of, and Manner of Using it, in Four Sections.

Chap. 2. Balance of Menelaus, and the Ways in which he distinguished between Metals compounded together, in Three Sections.

Chap. 3. Exposition of what Menelaus the Philosopher says respecting the Weights of Metals, in Two Sections.

Lecture Second.

Explanation of Weight and its Various Causes, according to Thábit; Fundamental Principles of Centres of Gravity; and Mechanism of the Steelyard, according to 'al-Muṣaffár of Iṣfázár. In Five Chapters.

Chap. 1. Quality of Weight, and its Various Causes, according to Thábit Bin Kurrah, in Six Sections.

Chap. 2. Explanation of Centres of Gravity, in Four Sections.

Chap. 3. Parallelism of the Beam of the Balance to the Plane of the Horizon, in Five Sections.

Chap. 4. Mechanism of the Steelyard, its Numerical Marks, and Application of it, in Five Sections.

Chap. 5. Change of the Marked Steelyard from one Weight to another, in Six Sections.

Lecture Third.

Relations between different Metals and Precious Stones in respect to [Given] Volume, according to 'Abu-r-Raihán Muhammad Bin Ahmad of Birín. In Five Chapters.

Chap. 1. Relations of the Fusible Metals and their Weights, proved by Observation and Comparison, in Six Sections.

Chap. 2. Observation of Precious Stones and their Relations to one another in respect to [Given] Volume, in Four Sections.
The book is therefore made up of eight lectures. Each lecture includes several chapters, and each chapter has several sections, as will be explained by the following table of contents, if the Supreme God, who is the Lord of Providence, so wills.

Table of Contents of the Book of the Balance of Wisdom, called the Comprehensive Balance, in Eight Lectures.

Lecture First.

Fundamental Principles, Geometrical and Physical, on which the Comprehensive Balance is based. In Seven Chapters.

Chap. 1. Main Theorems relative to Centres of Gravity, according to Tbn 'al-Haitham of Basrah and 'Abû-Sahl of Kuhistan, in Nine Sections.

Chap. 2. Main Theorems, according to Archimedes, in Four Sections.

Chap. 3. Main Theorems, according to Euclid, in Two Sections.

Chap. 4. Main Theorems, according to Menelaus, in Two Sections.

Chap. 5. Statement of Divers Theorems relative to Heaviness and Lightness, in Three Sections.

Chap. 6. Theorems relative to the Ship and the Proportion of its Submergence, in Four Sections.

Chap. 7. Instrument of Pappus the Greek for measuring Liquids, in Six Sections.
of weighing with it in air and in liquids; the instrument for measuring liquids, in order to ascertain which is the lighter and which the heavier of two, without resort to counterpoises; knowledge of the relations between different metals and precious stones, in respect to [given] volume; sayings of ancient and modern philosophers with regard to the water-balance, and their intimations on the subject. This part includes four lectures of the book in their order. 2. Mechanism of the balance of wisdom; trial of it; fixing upon it of [the points indicating] the specific gravities of metals and precious stones; adoption of counterpoises suited to it; application of it to the verification of metals and distinguishing of one from another [in a compound], without melting or refining, in a manner applicable to all balances; recognition of precious stones, and distinction of the genuine from their imitations, or similitudes in color. There are here added chapters on exchange and the mint, in connection with the mode of proceeding, in general, as to things saleable and legal tenders. This part embraces three lectures. 3. Novelties and elegant contrivances in the way of balances, such as: the balance for weighing dirhams and dinârs without resort to counterpoises; the balance for levelling the earth to the plane of the horizon; the balance known as “the even balance,” which weighs from a grain to a thousand dirhams, or dinârs, by means of three pomegranate counterpoises; and the hour-balance, which makes known the passing hours, whether of the night or of the day, and their fractions in minutes and seconds, and the exact correspondence therewith of the ascendant star, in degrees and fractions of a degree. This part is in one lecture.
N. Khanikoff,

In the face of these threats, I have sought assistance from his beams of light irradiating all quarters of the world, and was thereby guided to the extent of my power of accomplishment in this work, and composed a book on the balance of wisdom, for his high treasury, during the months of the year 515 of the Hijrah of our Elect Prophet Muhammad—may the benedictions of God rest upon him and his family, and may he have peace!

This book is finished by means of his auspiciousness, and the felicity of his high reign, embracing all sovereignties, by virtue of the Supreme God's special gifts to him of fortitude and valor—so that he has subdued the climes of the East and West—and the excellencies united in him, purity of lineage, nobleness of nature, exalted nationality, and lofty grandeur, both by inheritance and conquest. So then, may God perpetuate his reign, who is the chief of the people of the world, the possessor of all the distinctions of humanity! We ask the Supreme God that he would lengthen his days, and increase his eminence, his power, his rule, and his sway—God is equal to that, and able to bring it to pass.

Sect. 6. Division of the Book.

I have divided the book into three parts: 1. General and fundamental topics: such as heaviness and lightness; centres of gravity; the proportion of the submergence of ships in water; diversity of the causes of weight; mechanism of the balance, and the steelyard; mode

* A.D. 1121-22.
is the water-bowl; which is called "the satisfactory balance," or "the balance without movable bowl;" 3. one with five bowls, called "the comprehensive balance," the same as the balance of wisdom; three of the bowls of which are a water-bowl and two movable bowls. The knowledge of the relations of one metal to another depends upon that perfecting of the balance, by delicate contrivance, which has been accomplished by the united labors of all those who have made a study of it, or prepared it by fixing upon it [points indicating] the specific gravities of metals, relatively to a determined sort of water, similar in density to the water of the Jaihân of Khwârazm, exclusively of other waters.

It is also possible, however, for one who is attentive and acute, by means of this balance, to observe the specific gravities of precious stones and metals [marked] upon it, with any water agreed upon, at any time, with the least trouble, at the shortest notice, and with the greatest facility of operation; as I shall set forth in the course of this book, with the help of the Supreme God, and the felicity of the imperial power of the most magnificent Sultân, the exalted Shâh of Shâhs, the king of subject nations, the chief of the Sultâns of the world, the Sultân of God's earth, the protector of the religion of God, the guardian of the servants of God, the king of the provinces of God, designated as God's Khâlîf, the glory of the course of the world and of religion, the shelter of Islamism and of Muslims, the arm of victorious power, the crown of the illustrious creed, and the helper of the eminent religion, 'Abû-l-Hârîth Sanjar Bin Mâlikshâh Bin 'Alpârslan, Argument for the Faith, Prince of the Believers—may God perpetuate his reign, and double his power! For his felicity is the illuminating sun of the world, and his justice its vivifying breath.
N. Khaníkoff,

demonstrated the accuracy of observation upon it, and the perfection of operation with it—supposing a particular sort of water to be used—without having a marked balance. The eminent teacher 'Abd-Hátim 'al-Muzaffar Bin 'Isa'il of 'Isfahán, a cotemporary of the last named, also handled the subject, for some length of time, in the best manner possible, giving attention to the mechanism, and applying his mind to the scope of the instrument, with an endeavor to facilitate the use of it to those who might wish to employ it. He added to it two movable bowls, for distinguishing between two substances in composition; and intimated the possibility of the specific gravities of metals being [marked] upon its beam, for reading and observation, relatively to any particular sort of water. But he failed to note the distances of specific gravities from the axis, by parts divided off and numbers; nor did he show any of the operations performed with them, except as the shape of the balance implied them. It was he, too, who named it “the balance of wisdom.” He passed away, to meet the mercy of the Supreme God, before perfecting it and reducing all his views on the subject to writing.

Sect. 5. Forms and Shapes of the Water-balance.

Sayá 'al-Kházání, coming after all the above named,—Balances used in water are of three varieties of shape: 1. one with two bowls arranged in the ordinary way, called “the general simple balance”; to the beam of which are frequently added round-point numbers; 2. one with three bowls for the extreme ends, one of which is suspended below another, and
thought about the water-balance, and brought out certain universal arithmetical methods to be applied to it; and there exists a treatise by him on the subject. It was then four hundred years after Alexander. Subsequently, in the days of Māmūn, the water-balance was taken into consideration by the modern philosophers Sand Bin 'Ali, Yūhannā Bin Yūsif and 'Ahmad Bin al-Faḍḥi the surveyor; and in the days of the Sāmānīde dynasty, by Muhammad Bin Zakariyā of Rai, who composed a treatise on the subject, which he speaks of in his Book of the Eleven, and named this balance “the physical balance;” and in the days of the Dailamite dynasty, by Ibn 'al-Amid and the philosopher Ibn-Sīnā, both of whom distinguished [the components of] a compound body scientifically and exactly, but composed no work on the subject; and in the days of the house of Naṣir ‘ad-Din, by ‘Abu-r-Raihān, who took observations on the relations of [different] metallic bodies and precious stones, one to another, as indicated by this balance, and carried his deductions so far as to distinguish one from another [in a compound], exactly and scientifically, without melting or refining, by arithmetical methods.

Some one of the philosophers who have been mentioned added to the balance a third bowl, connected with one of the two bowls, in order to ascertain the measure, in weight, of the rising of one of the two bowls in the water: and by that addition somewhat facilitated operations. Still later, under the victorious dynasty now reigning—may the Supreme God establish it!—the water-balance was taken up by the eminent teacher Abū-Haṣṣ ‘Umar al-Khайyāmī, who verified what was said of it, and
to other sciences, we shall call them up so far as may be necessary, in the way of allusion and passing notice.

Sect. 4. Institution of the Water-balance; Names of those who have discussed it, in the order of their succession; and Specific Forms of Balances used in Water, with their Shapes and Names.

It is said that the [Greek] philosophers were first led to think of setting up this balance, and moved thereto, by the book of Menelaus addressed to Domitian, in which he says: "O King, there was brought one day to Hiero King of Sicily a crown of great price, presented to him on the part of several provinces, which was strongly made and of solid workmanship. Now it occurred to Hiero that this crown was not of pure gold, but alloyed with some silver; so he inquired into the matter of the crown, and clearly made out that it was composed of gold and silver together. He therefore wished to ascertain the proportion of each metal contained in it; while at the same time he was averse to breaking the crown, on account of its solid workmanship. So he questioned the geometers and mechanicians on the subject. But no one sufficiently skillful was found among them, except Archimedes the geometician, one of the courtiers of Hiero. Accordingly, he devised a piece of mechanism which, by delicate contrivance, enabled him to inform king Hiero how much gold and how much silver was in the crown, while yet it retained its form." That was before the time of Alexander. Afterwards, Menelaus
Sec. 3. Fundamental Principles of the Art of Constructing this Balance.

Every art, we say, has its fundamental principles, upon which it is based, and its preliminaries to rest upon, which one who would discuss it must not be ignorant of. These fundamental principles and preliminaries class themselves under three heads: 1. those which rise up [in the mind] from early childhood and youth, after one sensation or several sensations, spontaneously; which are called first principles, and common familiar perceptions; 2. demonstrated principles, belonging to other departments of knowledge; 3. those which are obtained by experiment and elaborate contrivance. Now as this art which we propose to investigate involves both geometrical and physical art, uniting as it does the consideration of quantity and quality; and as to each of these two arts pertain the fundamental principles mentioned, it has itself, necessarily, such fundamental principles; so that one cannot possess a thorough knowledge of it, without being well grounded in them. But inasmuch as some of the familiar perceptions relative to this art are so perfectly evident that it is useless to draw upon them in books, we leave them unnoticed; pursuing a different course in respect to certain first principles not perfectly evident, which we shall speak of as there is occasion. As for those derivative fundamental principles, obtained by experiment and ocular proof, and likewise, as to demonstrated principles belonging
Sec. 2. Theory of the Balance of Wisdom.

This just balance is founded upon geometrical demonstrations, and deduced from physical causes, in two points of view: 1. as it implies centres of gravity, which constitute the most elevated and noble department of the exact sciences, namely, the knowledge that the weights of heavy bodies vary according to difference of distance from a point in common—the foundation of the steelyard; 2. as it implies a knowledge that the weights of heavy bodies vary according to difference in rarity or density of the liquids in which the body weighed is immersed—the foundation of the balance of wisdom.

To these two principles the ancients directed attention in a vague way, after their manner, which was to bring out things abstruse, and to declare dark things, in relation to the great philosophies and the precious sciences. We have, therefore, seen fit to bring together, on this subject, whatever useful suggestions their works, and the works of later philosophers, have afforded us, in connection with those discoveries which our own meditation, with the help of God and His aid, has yielded.
2. that it distinguishes pure metal from its counterfeit, each being recognized by itself, without any refining; 3. that it leads to a knowledge of the constituents of a metallic body composed of any two metals, without separation of one from another, either by melting, or refining, or change of form, and that in the shortest time and with the least trouble; 4. that it shows the superiority in weight of one of two metals over the other in water, when their weight in air is the same; and reversely, in air, when their weight in water is the same; and the relations of one metal to another in volume, dependent on the weight of the two [compared] in the two media; 5. that it makes the substance of the thing weighed to be known by its weight—differing in this from other balances, for they do not distinguish gold from stone, as being the two things weighed; 6. that, when one varies the distances of the bowls from the means of suspension in a determined ratio, as, for example, in the ratio of impost to the value of the article charged therewith, or the ratio of seven to ten, which subsists between dirhams and dinars, surprising things are ascertained relative to values, without resort to counterpoises—[for instance,] essential substance is indicated, and the [merely] similitude of a thing is decisively distinguished; and theorems relative to exchange and legal tenders and the mint, touching the variation of standard value, and certain theorems of curious interest, are made clear; 7. the gain above all others—that it enables one to know what is a genuine precious stone.

* Impost, السعر, in this passage, denotes the valuation in units of money of a unity of provisions of a given sort; and this unity is the thing charged with the impost, السعر. Hence the relation of one to the other must be numerical, like that between dirhams and dinars, which are proportioned to one another as 7 to 10. This explanation is derived from the second chapter of the eighth lecture of our author's work, which is not of sufficient importance to be translated.

Says 'al-Khāzîn, after speaking of the balance in general,—The balance of wisdom is something worked out by human intellect, and perfected by experiment and trial, of great importance on account of its advantages, and because it supplies the place of ingenious mechanicians. Among these [advantages] are: 1. exactness in weighing: this balance shows variation to the extent of a mithkāl, or of a grain, although the entire weight is a thousand mithkāls, provided the maker has a delicate hand, attends to the minute details of the mechanism, and understands it;
felicity, when attacked by doubts and uncertainties; of whom is the just ruler alluded to in the words of the Blessed: "the Sultán is the shadow of the Supreme God, upon His earth, the refuge of every one injured, and the judge;" 3. the balance, which is the tongue of justice, the article of mediation between the commonality and the great; the criterion of just judgment, which with its final decision satisfies all the good and wicked, just-doers and doers of iniquity; the standard, by its rectitude, for the settlement of men’s alternations; the security of order and justice among men, in respect to things which are left to them and committed to their disposal; made by God the associate of His Kurán, which He joins on to the pearl-strings of His beneficence, so that the Supreme says: “God who hath sent down the True Book and the balance,”* and connects the benefit of the institution of the balance with that of the raising of the heavens, in the divine words: “and as for the heavens, He hath raised them; and He hath instituted the balance; transgress not respecting the balance, do justice in weighing, and diminish not with the balance.”† The Supreme God also says: "weigh with an even balance." ‡ Indeed, the balance is one of the Supreme God’s lights, which He has bountifully bestowed upon His servants, out of the perfection of His justice, in order that they may thereby distinguish between the true and the false, the right and the wrong. For the essence of light is its being manifest of itself, and so seen, and that it makes other things manifest, and is thus seen by; while the balance is an instrument which, of itself, declares its own evenness or deflection, and is the means of recognizing the rectitude or deviation therefrom of other things. It is on account of the great power of the balance, and its binding authority, that God has magnified and exalted

* Kur. xliii. 16. † Kur. lv. 6, 7, 8. ‡ Kur. xvii. 37.
N. Khanikoff,

Justice is the support of both religion and the course of the world, and the stay of future as well as present felicity; so that whoever takes hold of it, or of one of its branches, takes hold of a strong handle to which there is no breaking. Furthermore, because the mercy of the Supreme God intended to secure the rewards of virtue to His servants, and to establish them in the open way of His rectitude, He willed that justice should abide among them to the last day, uninterrupted, and unimpaired by the lapse of times and ages. Knowing that men would injure one another by compliance with the requirements of their natural impulses, He gave them self-command, as an inherent prerogative of their being—which they are naturally capable of and fitted for—and, in the amplitude of His mercy, and the breadth of His compassion, has provided for them, with constant goodness, by raising up among them just judges, their never-failing securities for justice. Of these there are three, answering to the several divisions of justice: 1. the glorious Book of God, which, from beginning to end, is without any admixture of error, is the supreme canon, to which both legal rules and doctrinal principles refer back, the arbiter between the Supereminent and the subject creature, to which the tradition of the Blessed Prophet is the sequel; 2. the guided leaders and established doctors, set up in order to the dissipation of uncertainties and the removal of doubts, who are the vicars of the Prophet, and his substitutes, in every age and time, who protect the way of religion, and guide men into the paths of
God has made the side-members of man's body in pairs, and its middle members single; and He calls men to pursue the paths of felicity by the practice of justice, and adherence to uprightness, according to the divine words: "and do justly—verily, God loves them who do justly,"* and again: "as for them who say 'our Lord is God,' and are upright"†—wishing to do them good, and lavishing mercy upon them. God has even set up justice as the criterion of judgment between His creatures, being content with equity; so that no one will pass the bridge of salvation without a certificate of uprightness in action, nor repose in the paradise of felicity without a diploma of justice in knowledge.

Justice in knowledge is the verification of the object of knowledge in accordance with its scope, in the way appropriate to it, kept clear of the defect of doubt and uncertainty. Justice in action is two-fold: 1. self-government, which is the harmonizing of the natural endowments, the maintenance of equilibrium between the powers of the soul, and the bringing of them under beautiful control—agreeably to the saying: "the most just of men is he who lets his reason arbitrate for his desire;" and it is a part of the perfection of such a man that he dispenses justice among those inferior to himself, and wards off from others any injury which he has experienced, so that men are secure as to his doing evil; 2. control over others, which consists in the maintenance of moderation within one's self, together with a power of constraint, in respect to the performance of obligations to men, and the requiring of that performance on their part.

course of the world, consists of perfect knowledge and assured action; and justice brings the two [requisites] together. It is the confluence of the two perfections of that virtue, the means of reaching the limits of all greatness, and the cause of securing the prize* in all excellence. In order to place justice on the pinnacle of perfection, the Supreme Creator made Himself known to the Choicest of His servants under the name of the Just; and it was by the light of justice that the world became complete and perfected, and was brought to perfect order—to which there is allusion in the words of the Blessed: "by justice were the heavens and the earth established;" and, having appropriated to justice this elevated rank and lofty place, God has lavished upon it the robes of complacency and love, and made it an object of love to the hearts of all His servants; so that human nature is fond of it, and the souls of men yearn after it, and may be seen to covet the experience of it, using all diligence to secure it. If anything happens to divert men from it, or to incline them to its opposite, still they find within themselves a recognition of it and a confirmation of its real nature; so that the tyrant commends the justice of others. For this reason, also, one sees the souls of men pained at any composition of parts which is not symmetrical, and so abhorring lameness and blindness, and anguring ill therefrom. Moreover, in order to the preservation of the empire of justice, the Supreme

* قصب السيف i.e. reed of precedence. By this name is designated a lance planted in the middle of a plain, where horse-races are held, and which the leader in the race seizes in passing.
ARTICLE I.

ANALYSIS AND EXTRACTS

of

كتاب ميزان الحكم

BOOK OF THE BALANCE OF WISDOM,

AN ARABIC WORK ON THE WATER-BALANCE,

WRITTEN BY 'AL-KHAZINİ IN THE TWELFTH CENTURY.

BY THE CHEVALIER N. KHANIKOFF,

RUSSIAN CONSUL-GENERAL AT TABRIZ, PERSIA.

Presented to the Society October 29, 1857.

[Our correspondent having communicated his paper to us in the French language, accompanied with the extracts in the original Arabic, we have taken the liberty to put it into English, and have in fact retranslated the extracts rather than give them through the medium of the French version. M. Khanikoff's own notes are printed on the pages to which they refer. To these we have added others, relating to the original text and its contents, which are distinguished by letters and numerals, and will be found at the end of the article.—Comm. of Publ.]

The scantiness of the data which we possess for appreciating the results arrived at by the ancient civilizations which preceded that of Greece and Rome, renders it impossible for us to form any probable conjecture respecting the development which our present knowledge might have attained, if the tradition of the discoveries made by the past in the domain of science had been transmitted without interruption, from generation to generation, down to the present time. But the history of the sciences presents to us, in my opinion, an incontestable fact of deep significance: the rediscovery, namely, in modern times, of truths laboriously established of old; and this fact is of itself enough to indicate the necessity of searching carefully in the scientific heritage of the past after all that it may be able to furnish us for the increase of our actual knowledge; for a double discov-
Miscellanies:

II. On Dr. S. W. Williams's Chinese Dictionary. By Rev. William A. Macy, 566

III. On the Natural Limits of Ancient Oriental History. By Prof. James Moffat, D.D., 571

IV. Extracts from Correspondence:
 2. From a Letter of Prof. C. J. Turnberg, of the University of Lund, 574
 3. From a Letter of Raja Radhakanta Deva Bahadur, of Calcutta, 575
 4. From a Letter of John Muir, Esq., D.C.L., of Edinburgh (to F. E. Hall, Esq.), 576

American Oriental Society:

I. Select Minutes of Meetings of the Society, 577

II. Additions to the Library and Cabinet, October, 1856—May, 1860, 588

III. List of Members, May, 1860, 607
the obscurity of exposition, of matters which, thanks to the progress of science, have become for us elementary, and which, if presented in the little attractive form of the original text, would tend rather to conceal than to develop the interesting facts which it contains, I have decided to translate, in full, only the preface and introduction of the work, its exposition of the principles of centres of gravity, and its researches into the specific gravities of metals, precious stones, and liquids, and to limit myself, beyond this, to citing the words of the author as pièces justificatives, to show whether I have fully apprehended the sense of his reasonings.

I have had at my disposal only a single manuscript copy of this work, which moreover lacks a few leaves in the middle and at the end, so that it has been impossible to determine its age: to judge from the chirography, however, it is quite ancient, and the absence of diacritical points sufficiently indicates that it is a work of the scribes of Ispahan, who have the bad habit of omitting these points, so essential to the correct reading of oriental texts. The original of each extract, whether longer or shorter, will be found accompanying its translation. It only remains for me to say that I have been scrupulous to render as faithfully as possible the text of my author, wherever I have cited from him; in the cases where I have had to fill out the ellipses so common in Arabic, I have marked the words added by placing them in brackets.

The work commences thus:

بسم الله الرحمن الرحيم

الحمد لله الذي لا إله إلا هو القاسم لله العماد والصلوة على جميع الأنبياء ورسله الذين بعثهم إلى عباده للعمل وخصص نبينا محمد المصطفى صلى الله عليه وسلم بالشريعة والسجينة العدل وبعد أن أنزل نظام الفضل جميلة وملاء الخيرات جميع لأن الفضيلة الثامنة إلى الحكمة وثب في شقى العلم والعمل وشبه الدين والدين أعلم أعمل وفعل ملكحكم والعدل

In the name of God, the Compassionate, the Merciful.

Praise be to God, beside whom there is no deity, the Wise, the True, the Just! and may the blessing of God rest upon all His prophets and ambassadors, whom He has sent to His servants in order to justice, singling out our Prophet Muhammad, the Elect, to be the bearer of the law mild in righteousness!

Now, then, to our subject. Justice is the stay of all virtues, and the support of all excellencies. For perfect virtue, which is wisdom in its two parts, knowledge and action, and in its two aspects, religion and the
ery, necessarily requiring a double effort of human intellect, is
an evident waste of that creative force which causes the advance
of humanity in the glorious path of civilization. Modern orient-
alists are beginning to feel deeply the justice and the importance
of the counsel given them by the author of the Mécanique Cé-
leste, who, in his Compendium of the History of Astronomy,
while persuading them to extract from the numerous oriental
manuscripts preserved in our libraries whatever they contain
that is of value to this science, remarks that "the grand varia-
tions in the theory of the system of the world are not less inter-
esting than the revolutions of empires;" and the labors of MM.
Chézy, Stanislas Julien, Am. Sédillot, Woepcke, Bochart, Spren-
gel, Moreley, Dorn, Clément-Mullet, and others, have enriched
with a mass of new and instructive facts our knowledge re-
specting the state of the sciences in the Orient. Notwithstanding
this, however, it must be granted that M. Clément-Mullet
was perfectly justified in saying, as he has done in an article on
the Arachnids, published in the Journal Asiatique,* that re-
searches into the physical sciences of the Orientals have been
entirely, or almost entirely, neglected; and it is only necessary
to read the eloquent pages in which the author of the Cosmos
estimates the influence of the Arab element upon European civi-
лизация, to be convinced of the scantiness of our information
as to the condition of physical science among the Arabs; for
that illustrious representative of modern civilization, after hav-
ing shown that the Arabs had raised themselves to the third step
in the progressive knowledge of physical facts, a step entirely
unknown to the ancients, that, namely, of experimentation, con-
cludes that,† "as instances of the progress which physical sci-
ence owes to the Arabs, one can only mention the labors of
Alhazen respecting the refraction of light, derived perhaps in
part from the Optics of Ptolemy, and the discovery and first
application of the pendulum as a measure of time, by the great
astronomer Ebn-Yunis."

All this leads me to suppose that men of science will be inter-
ested to have their attention called to a work of the twelfth cen-
tury, written in Arabic, which treats exclusively of the balance,
and of the results arrived at by the help of that instrument,
which has given to modern science so many beautiful discoveries.
I hesitated for some time whether to offer a pure and simple
translation of this work, or a detailed analysis of its contents,
presenting in full only those passages which contain remarkable
matter, worthy of being cited. Finally, taking into considera-
tion the numerous repetitions, the superfluity of detail, and even

* Number for Aug.—Sept., 1864, 5ème Série, iv. 214, etc.
† Kosmos, ii. 258 (original edition).
CONTENTS

OF

SIXTH VOLUME.

ART. I.—Analysis and Extracts of كتاب ميزان المكانيه, Book of the Balance of Wisdom, an Arabic Work on the Water-Balance, written by ‘Al-Khāzīnī in the Twelfth Century. By the Chevalier N. Khanikoff, Russian Consul-General at Tabriz, Persia, ... 1

ART. III.—Translation of the Sūrya-Siddhānta, a Text-Book of Hindu Astronomy; with Notes, and an Appendix. By Rev. Ebenezer Burgess, formerly Missionary of the A. B. C. F. M. in India, assisted by the Committee of Publication, ... 141

ART. IV.—Two Sanskrit Inscriptions, Engraved on Stone: the Original Texts, with Translations and Comments. By Fitz-Edward Hall, Esq., M. A., ... 499

ART. VI.—A Greek Inscription from Daphne, near Antioch, in Syria. By James Hadley, Professor of Greek in Yale College, 550

ART. VII.—On the Ārya-Siddhānta. By Fitz-Edward Hall, Esq., M. A. [with an Additional Note on Āryabhaṭṭa and his Writings, by the Committee of Publication], ... 556
COMMITTEE OF PUBLICATION
OF THE
AMERICAN ORIENTAL SOCIETY,
FOR THE YEARS 1858-60.

Edward E. Salisbury, New Haven.
William D. Whitney, "
James Hadley, "
Ezra Abbot, Cambridge.

Entered according to Act of Congress, in the year 1860, by the
AMERICAN ORIENTAL SOCIETY,
in the Clerk's Office of the District Court of Connecticut.
JOURNAL

OF THE

AMERICAN ORIENTAL SOCIETY.

24506

SIXTH VOLUME.

NEW HAVEN:
FOR THE AMERICAN ORIENTAL SOCIETY,
Printed by E. Hayes, Printer to Yale College.

MDCCLX. — 1860

SOLD BY THE SOCIETY'S AGENTS:
NEW YORK: JOHN WILEY & WALKER ST.;
LONDON: TRUBNER & CO.; PARIS: BENJ. DUPRAT;
LEIPZIG: F. A. BROCKHAUS.