"A knowledge of the commonplace, at least, of Oriental literature, philosophy, and religion is as necessary to the general reader of the present day as an acquaintance with the Latin and Greek classics was a generation or so ago. Immense strides have been made within the present century in these branches of learning; Sanskrit has been brought within the range of accurate philology, and its invaluable ancient literature thoroughly investigated; the language and sacred books of the Zoroastrians have been laid bare; Egyptian, Assyrian, and other records of the remote past have been deciphered, and a group of scholars speak of still more recondite Accadian and Hittite monuments; but the results of all the scholarship that has been devoted to these subjects have been almost inaccessible to the public because they were contained for the most part in learned or expensive works, or scattered throughout the numbers of scientific periodicals. Messrs. Trübner & Co., in a spirit of enterprise which does them infinite credit, have determined to supply the constantly-increasing want, and to give in a popular, or, at least, a comprehensive form, all this mass of knowledge to the world."—Times.

Second Edition, post 8vo, pp. xxxii.—748, with Map, cloth, price 21s.

THE INDIAN EMPIRE:
ITS PEOPLE, HISTORY, AND PRODUCTS.

By the Hon. Sir W. W. Hunter, K.C.S.I., C.S.I., C.I.E., LL.D.,
Member of the Viceroy’s Legislative Council,
Director-General of Statistics to the Government of India.

Being a Revised Edition, brought up to date, and incorporating the general results of the Census of 1881.

"It forms a volume of more than 700 pages, and is a marvellous combination of literary condensation and research. It gives a complete account of the Indian Empire, its history, peoples, and products, and forms the worthy outcome of seventeen years of labour with exceptional opportunities for rendering that labour fruitful. Nothing could be more lucid than Sir William Hunter’s expositions of the economic and political condition of India at the present time, or more interesting than his scholarly history of the India of the past."—The Times.
THE FOLLOWING WORKS HAVE ALREADY APPEARED:—

Third Edition, post 8vo, cloth, pp. xvi.—428, price 16s.

ESSAYS ON THE SACRED LANGUAGE, WRITINGS,
AND RELIGION OF THE PARSI.

By MARTIN HAUG, PH.D.,
Late of the Universities of Tübingen, Göttingen, and Bonn; Superintendent of Sanskrit Studies, and Professor of Sanskrit in the Poona College. Edited and Enlarged by Dr. E. W. WEST.

To which is added a Biographical Memoir of the late Dr. HAUG by Prof. E. P. EVANS.

I. History of the Researches into the Sacred Writings and Religion of the Parsis, from the Earliest Times down to the Present.

II. Languages of the Parsi Scriptures.

III. The Zend-Avesta, or the Scripture of the Parsis.

IV. The Zoroastrian Religion, as to its Origin and Development.

"Essays on the Sacred Language, Writings, and Religion of the Parsis," by the late Dr. Martin Haug, edited by Dr. E. W. West. The author intended, on his return from India, to expand the materials contained in this work into a comprehensive account of the Zoroastrian religion, but the design was frustrated by his untimely death. We have, however, in a concise and readable form, a history of the researches into the sacred writings and religion of the Parsis from the earliest times down to the present—a dissertation on the languages of the Parsi Scriptures, a translation of the Zend-Avesta, or the Scripture of the Parsis, and a dissertation on the Zoroastrian religion, with especial reference to its origin and development."—Times.

Post 8vo, cloth, pp. viii.—176, price 7s. 6d.

TEXTS FROM THE BUDDHIST CANON
COMMONLY KNOWN AS "DHAMMAPADA."

With Accompanying Narratives.

Translated from the Chinese by S. BEAL, B.A., Professor of Chinese, University College, London.

The Dhammapada, as hitherto known by the Pali Text Edition, as edited by Fausboll, by Max Müller's English, and Albrecht Weber's German translations, consists only of twenty-six chapters or sections, whilst the Chinese version, or rather recension, as now translated by Mr. Beal, consists of thirty-nine sections. The students of Pali who possess Fausboll's text, or either of the above-named translations, will therefore need want Mr. Beal's English rendering of the Chinese version; the thirteen above-named additional sections not being accessible to them in any other form; for, even if they understand Chinese, the Chinese original would be unobtainable by them.

"Mr. Beal's rendering of the Chinese translation is a most valuable aid to the critical study of the work. It contains authentic texts gathered from ancient canonical books, and generally connected with some incident in the history of Buddha. Their great interest, however, consists in the light which they throw upon everyday life in India at the remote period at which they were written, and upon the method of teaching adopted by the founder of the religion. The method employed was principally parable, and the simplicity of the tales and the excellence of the morals inculcated, as well as the strange hold which they have retained upon the minds of millions of people, make them a very remarkable study."—Academy.

"Mr. Beal, by making it accessible in an English dress, has added to the great services he has already rendered to the comparative study of religious history."—Academy.

"Valuable as exhibiting the doctrine of the Buddhists in its purest, least adulterated form, it brings the modern reader face to face with that simple creed and rule of conduct which won its way over the minds of myriads, and which is now nominally professed by 145 millions, who have overlaid its austere simplicity with innumerable ceremonies, forgotten its maxims, perverted its teaching, and so inverted its leading principle that a religion whose founder denied a God, now worships that founder as a god himself."—Scottsman.
Second Edition, post 8vo, cloth, pp. xxiv. — 360, price 10s. 6d.

THE HISTORY OF INDIAN LITERATURE.

By ALBRECHT WEBER.

Translated from the Second German Edition by JOHN MANN, M.A., and THEODOR ZACHARIAE, Ph.D., with the sanction of the Author.

Dr. Bühler, Inspector of Schools in India, writes:— "When I was Professor of Oriental Languages in Elphinstone College, I frequently felt the want of such a work to which I could refer the students."

Professor Cowell, of Cambridge, writes:— "It will be especially useful to the students in our Indian colleges and universities. I used to long for such a book when I was teaching in Calcutta. Hindu students are intensely interested in the history of Sanskrit literature, and this volume will supply them with all they want in the subject."

Professor Whitney, Yale College, New Haven, Conn., U.S.A., writes:— "I was one of the class to whom the work was originally given in the form of academic lectures. At their first appearance they were by far the most learned and able treatment of their subject; and with their recent additions they still maintain decidedly the same rank."

"Is perhaps the most comprehensive and lucid survey of Sanskrit literature extant. The essays contained in the volume were originally delivered as academic lectures, and at the time of their first publication were acknowledged to be by far the most learned and able treatment of the subject. They have now been brought up to date by the addition of all the most important results of recent research."
—Times.

Post 8vo, cloth, pp. xii.—198, accompanied by Two Language Maps, price 7s. 6d.

A SKETCH OF THE MODERN LANGUAGES OF THE EAST INDIES.

By ROBERT N. CUST.

The Author has attempted to fill up a vacuum, the inconvenience of which pressed itself on his notice. Much had been written about the languages of the East Indies, but the extent of our present knowledge had not even been brought to a focus. It occurred to him that it might be of use to others to publish in an arranged form the notes which he had collected for his own edification.

"Supplies a deficiency which has long been felt."—Times.

"The book before us is then a valuable contribution to philological science. It passes under review a vast number of languages, and it gives, or professes to give, in every case the sum and substance of the opinions and judgments of the best-informed writers."—Saturday Review.

THE BIRTH OF THE WAR-GOD.

A Poem. By KALIDASA.

Translated from the SANSKRIT into ENGLISH VERSE by RALPH T. H. GRIFFITH, M.A.

"A very spirited rendering of the Kumārasambhava, which was first published twenty-six years ago, and which we are glad to see made once more accessible."—Times.

"Mr. Griffith's very spirited rendering is well known to most who are at all interested in Indian literature, or enjoy the tenderness of feeling and rich creative imagination of its author."—Indian Antiquary.

"We are very glad to welcome a second edition of Professor Griffith's admirable translation. Few translations deserve a second edition better."—Athenæum.
A CLASSICAL DICTIONARY OF HINDU MYTHOLOGY AND RELIGION, GEOGRAPHY, HISTORY, AND LITERATURE.

By JOHN DOWSON, M.R.A.S.,
Late Professor of Hindustani, Staff College.

"This not only forms an indispensable book of reference to students of Indian literature, but is also of great general interest, as it gives in a concise and easily accessible form all that need be known about the personages of Hindu mythology whose names are so familiar, but of whom so little is known outside the limited circle of savants."—Times.

"It is no slight gain when such subjects are treated fairly and fully in a moderate space; and we need only add that the few wants which we may hope to see supplied in new editions detract but little from the general excellence of Mr. Dowson's work."
—Saturday Review.

SELECTIONS FROM THE KORAN.

By EDWARD WILLIAM LANE,
Translator of "The Thousand and One Nights;" &c., &c.

A New Edition, Revised and Enlarged, with an Introduction by STANLEY LANE POOLE.

"... Has been long esteemed in this country as the compilation of one of the greatest Arabic scholars of the time, the late Mr. Lane, the well-known translator of the 'Arabian Nights.' ... The present editor has enhanced the value of his relative's work by divvsting the text of a great deal of extraneous matter introduced by way of comment, and prefixing an introduction."—Times.

"Mr. Poole is both a generous and a learned biographer. ... Mr. Poole tells us these facts ... so far as it is possible for industry and criticism to ascertain them, and for literary skill to present them in a condensed and readable form."—Englishman, Calcutta.

MODERN INDIA AND THE INDIANS,
BEING A SERIES OF IMPRESSIONS, NOTES, AND ESSAYS.

By MONIER WILLIAMS, D.C.L.,
Hon. LL.D. of the University of Calcutta, Hon. Member of the Bombay Asiatic Society, Boden Professor of Sanskrit in the University of Oxford.

Third Edition, revised and augmented by considerable Additions, with Illustrations and a Map.

"In this volume we have the thoughtful impressions of a thoughtful man on some of the most important questions connected with our Indian Empire. ... An enlightened observer, travelling among an enlightened observer, people, Professor Monier Williams has brought before the public in a pleasant form more of the manners and customs of the Queen's Indian subjects than we ever remember to have seen in any one work. He not only deserves the thanks of every Englishman for his able contribution to the study of Modern India—a subject with which we should be specially familiar—but he deserves the thanks of every Indian, Parsee or Hindu, Buddhist and Moslem, for his clear exposition of their manners, their creeds, and their necessities."—Times.

METRICAL TRANSLATIONS FROM SANSKRIT WRITERS.

With an Introduction, many Prose Versions, and Parallel Passages from Classical Authors.

By J. MUIR, C.LE., D.C.L., LL.D., Ph.D.

"... An agreeable introduction to Hindu poetry."—Times.

"... A volume which may be taken as a fair illustration alike of the religious and moral sentiments and of the legendary lore of the best Sanskrit writers."—Edinburgh Daily Review.
THE GULISTAN;
Or, ROSE GARDEN OF SHEIKH MUSHLIU'D-DIN SADI OF SHIRAZ.
Translated for the First Time into Prose and Verse, with an Introductory
Preface, and a Life of the Author, from the Atish Kadah,

BY EDWARD B. EASTWICK, C.B., M.A., F.R.S., M.R.A.S.

"It is a very fair rendering of the original."—Times.

"The new edition has long been desired, and will be welcomed by all who take
any interest in Oriental poetry. The Gulistan is a typical Persian verse-book of the
highest order. Mr. Eastwick's rhymed translation ... has long established itself in
a secure position as the best version of Sadi's finest work."—Academy.

"It is both faithfully and gracefully executed."—Tablet.

In Two Volumes, post Svo, pp. viii.—408 and viii.—348, cloth, price 28s.

MISCELLANEOUS ESSAYS RELATING TO INDIAN SUBJECTS.

By BRIAN HOUGHTON HODGSON, Esq., F.R.S.,

Late of the Bengal Civil Service; Corresponding Member of the Institute; Chevalier
of the Legion of Honour; late British Minister at the Court of Nepal, &c., &c.

CONTENTS OF VOL. I.

SECTION I.—On the Koch, Bódó, and Dhimal Tribes.—Part I. Vocabulary.—
Part II. Grammar.—Part III. Their Origin, Location, Numbers, Creed, Customs,
Character, and Condition, with a General Description of the Climate they dwell in.
—Appendix.

SECTION II.—On Himalayan Ethnology.—I. Comparative Vocabulary of the
Languages of the Broken Tribes of Nepal.—II. Vocabulary of the Dialects of the Kiranti
Language.—III. Grammatical Analysis of the Váyu Language. The Váyu Grammar.
—IV. Analysis of the Bákling Dialect of the Kiranti Language. The Ídising Gram-
mar.—V. On the Váyu or Húyu Tribe of the Central Himalaya.—VI. On the Kiranti
Tribe of the Central Himalaya.

CONTENTS OF VOL. II.

SECTION III.—On the Aborigines of North-Eastern India. Comparative Vocabulary
of the Tibetan, Bódó, and Gáro Tongues.

SECTION IV.—Aborigines of the North-Eastern Frontier.

SECTION V.—Aborigines of the Eastern Frontier.

SECTION VI.—The Indo-Chinese Borderers, and their connection with the Himal-
ayans and Tibetans. Comparative Vocabulary of Indo-Chinese Borderers in Arakan.
Comparative Vocabulary of Indo-Chinese Borderers in Tenasserim.

SECTION VII.—The Mongolian Affinities of the Caucasians.—Comparison and Ana-
lysis of Caucasian and Mongolian Words.

SECTION VIII.—Physical Type of Tibetans.

SECTION IX.—The Aborigines of Central India.—Comparative Vocabulary of the
Aboriginal Languages of Central India.—Aborigines of the Eastern Ghats.—Vocabulary
of some of the Dialects of the Hill and Wandering Tribes in the Northern Sircars.
—Aborigines of the Nglirs, with Remarks on their Affinities.—Supplement to the
Nilgirian Vocabularies.—The Aborigines of Southern India and Ceylon.

SECTION X.—Route of Nepalese Mission to Pekin, with Remarks on the Water-
Shed and Plateau of Tibet.

SECTION XI.—Route from Káthmandú, the Capital of Nepal, to Darjeeling in
Sikim.—Memorandum relative to the Seven Coss of Nepal.

SECTION XII.—Some Accounts of the Systems of Law and Police as recognised in
the State of Nepal.

SECTION XIII.—The Native Method of making the Paper denominated Hindustan,
Népáloso.

SECTION XIV.—Pre-eminence of the Vernaculars; or, the Anglicists Answered;
Being Letters on the Education of the People of India.

"For the study of the less-known races of India Mr. Brian Hodgson's 'Miscellane-
ous Essays' will be found very valuable both to the philologist and the ethnologist."
TRÜBNER’S ORIENTAL SERIES.

THE LIFE OR LEGEND OF GAUDAMA.

THE BUDDHA OF THE BURMESE. With Annotations.
The Ways to Neibban, and Notice on the Phongyies or Burmese Monks.

BY THE RIGHT REV. P. BIGANDET,
Bishop of Ramatha, Vicar-Apostolic of Ava and Pegu.

"The work is furnished with copious notes, which not only illustrate the subject-matter, but form a perfect encyclopedia of Buddhist lore."—Times.

"A work which will furnish European students of Buddhism with a most valuable help in the prosecution of their investigations."—Edinburgh Daily Review.

"Bishop Bigandet’s invaluable work."—Indian Antiquary.

"Viewed in this light, its importance is sufficient to place students of the subject under a deep obligation to its author."—Calcutta Review.

"This work is one of the greatest authorities upon Buddhism."—Dublin Review.

Post 8vo, pp. xxiv.—420, cloth, price 18s.

CHINESE BUDDHISM.

A VOLUME OF SKETCHES, HISTORICAL AND CRITICAL.

BY J. EDKINS, D.D.

Author of "China’s Place in Philology," "Religion in China," &c., &c.

"It contains a vast deal of important information on the subject, such as is only to be gained by long-continued study on the spot."—Athenæum.

"Upon the whole, we know of no work comparable to it for the extent of its original research, and the simplicity with which this complicated system of philosophy, religion, literature, and ritual is set forth."—British Quarterly Review.

"The whole volume is replete with learning It deserves most careful study from all interested in the history of the religions of the world, and especially of those who are concerned in the propagation of Christianity. Dr. Edkins notices in terms of just commendation the exaggerated praise bestowed upon Buddhism by recent English writers."—Record.

Post 8vo, pp. 496, cloth, price 10s. 6d.

LINGUISTIC AND ORIENTAL ESSAYS.

WRITTEN FROM THE YEAR 1846 TO 1878.

BY ROBERT NEEDHAM CUST,
Late Member of Her Majesty’s Indian Civil Service; Hon. Secretary to the Royal Asiatic Society;
and Author of "The Modern Languages of the East Indies."

"We know none who has described Indian life, especially the life of the natives, with so much learning, sympathy, and literary talent."—Academy.

"They seem to us to be full of suggestive and original remarks."—St. James’s Gazette.

"His book contains a vast amount of information. The result of thirty-five years of inquiry, reflection, and speculation, and that on subjects as full of fascination as of food for thought."—Tablet.

" Exhibits such a thorough acquaintance with the history and antiquities of India as to entitle him to speak as one having authority."—Edinburgh Daily Review.

"The author speaks with the authority of personal experience It is this constant association with the country and the people which gives such a vividness to many of the pages."—Athenæum.
Post 8vo, pp. civ.—348, cloth, price 18s.

BUDDHIST BIRTH STORIES; or, Jataka Tales.
The Oldest Collection of Folk-lore Extant:
BEING THE JATAKATTHAVANNANA,
For the first time Edited in the original Pâli.

By V. FAUSBOLL;
And Translated by T. W. RHYS DAVIDS.

Translation. Volume I.

"These are tales supposed to have been told by the Buddha of what he had seen and heard in his previous births. They are probably the nearest representatives of the original Aryan stories from which sprang the folk-lore of Europe as well as India. The introduction contains a most interesting disquisition on the migrations of these fables, tracing their reappearance in the various groups of folk-lore legends. Among other old friends, we meet with a version of the Judgment of Solomon."—Times.

"It is now some years since Mr. Rhys Davids asserted his right to be heard on this subject by his able article on Buddhism in the new edition of the 'Encyclopaedia Britannica.'"—Leeds Mercury.

"All who are interested in Buddhist literature ought to feel deeply indebted to Mr. Rhys Davids. His well-established reputation as a Pali scholar is a sufficient guarantee for the fidelity of his version, and the style of his translations is deserving of high praise."—Academy.

"No more competent expositor of Buddhism could be found than Mr. Rhys Davids. In the Jataka book we have, then, a priceless record of the earliest imaginative literature of our race; and ... it presents to us a nearly complete picture of the social life and customs and popular beliefs of the common people of Aryan tribes, closely related to ourselves, just as they were passing through the first stages of civilisation."—St. James's Gazette.

Post 8vo, pp. xxviii.—362, cloth, price 14s.

A TALMUDIC MISCELLANY;
Or, A THOUSAND AND ONE EXTRACTS FROM THE TALMUD,
THE MIDRASHIM, AND THE KABBALAH.

Compiled and Translated by PAUL ISAAC HERSHON,
Author of "Genesis According to the Talmud," &c.

With Notes and Copious Indexes.

"To obtain in so concise and handy a form as this volume a general idea of the Talmud is a boon to Christians at least."—Times.

"Its peculiar and popular character will make it attractive to general readers. Mr. Hershon is a very competent scholar. ... Contains samples of the good, bad, and indifferent, and especially extracts that throw light upon the Scriptures."—British Quarterly Review.

"Will convey to English readers a more complete and truthful notion of the Talmud than any other work that has yet appeared."—Daily News.

"Without overlooking in the slightest the several attractions of the previous volumes of the 'Oriental Series,' we have no hesitation in saying that this surpasses them all in interest."—Edinburgh Daily Review.

"Mr. Hershon has ... thus given English readers what is, we believe, a fair set of specimens which they can test for themselves."—The Review.

"This book is by far the best fitted in the present state of knowledge to enable the general reader to gain a fair and unbiased conception of the multifarious contents of the wonderful miscellany which can only be truly understood—as Jewish pride asserts—by the life-long devotion of scholars of the Chosen People."—Inquirer.

"The value and importance of this volume consist in the fact that scarcely a single extract is given in its pages but throws some light, direct or refracted, upon those Scriptures which are the common heritage of Jew and Christian alike."—John Bull.

"It is a capital specimen of Hebrew scholarship; a monument of learned, loving, light-giving labour."—Jewish Herald.
THE CLASSICAL POETRY OF THE JAPANESE.

By BASIL HALL CHAMBERLAIN,
Author of "Yeigo Heikan Shira."

"A very curious volume. The author has manifestly devoted much labour to the task of studying the poetical literature of the Japanese, and rendering characteristic specimens into English verse."—Daily News.

"Mr. Chamberlain's volume is, so far as we are aware, the first attempt which has been made to interpret the literature of the Japanese to the Western world. It is to the classical poetry of Old Japan that we must turn for indigenous Japanese thought, and in the volume before us we have a selection from that poetry rendered into graceful English verse."—Tablet.

"It is undoubtedly one of the best translations of lyric literature which has appeared during the close of the last year."—Celestial Empire.

"Mr. Chamberlain set himself a difficult task when he undertook to reproduce Japanese poetry in an English form. But he has evidently laboured over amove, and his efforts are successful to a degree."—London and China Express.

THE HISTORY OF ESARHADDON (Son of Sennacherib), KING OF ASSYRIA, B.C. 681-683.

Translated from the Cuneiform Inscriptions upon Cylinders and Tablets in the British Museum Collection; together with a Grammatical Analysis of each Word, Explanations of the Ideographs by Extracts from the Bi-Lingual Syllabaries, and List of Eponyms, &c.

By ERNEST A. BUDGE, B.A., M.R.A.S.,
Assyrian Exhibitioner, Christ's College, Cambridge.

"Students of scriptural archaeology will also appreciate the 'History of Esarhaddon.'"—Times.

"There is much to attract the scholar in this volume. It does not pretend to popularise subjects which are yet in their infancy. Its primary object is to translate, but it does not assume to be more than tentative, and it offers both to the profession of Assyriologist and to the ordinary non-Assyriological Semitic scholar the means of controlling its results."—Academy.

"Mr. Budge's book is, of course, mainly addressed to Assyrian scholars and students. They are not, it is to be feared, a very numerous class. But the more thanks are due to him on that account for the way in which he has acquitted himself in his laborious task."—Tablet.

THE MESNEVI

(Usually known as The Mesneviyi Sherif, or Holy Mesnevi)

OF

MEVLANA (OUR LORD) JELALU D-DIN MUHAMMED ER-RUMI.

Book the First.

Together with some Account of the Life and Acts of the Author, of his Ancestors, and of his Descendants.

Illustrated by a Selection of Characteristic Anecdotes, as Collected by their Historian,

MEVLANA SHEMSU-'D-DIN AHMED, EL EFLAKI, EL 'ARIFL.

Translated, and the Poetry Versified, in English,

BY JAMES W. REDHOUSE, M.R.A.S., &c.

"A complete treasury of occult Oriental lore."—Saturday Review.

"This book will be a very valuable help to the reader ignorant of Persia, who is desirous of obtaining an insight into a very important department of the literature extant in that language."—Tablet.
TRÜBNER'S ORIENTAL SERIES.

Post 8vo, pp. xvi. — 286, cloth, price 6s.

EASTERN PROVERBS AND EMBLEMS
ILLUSTRATING OLD TRUTHS.

By REV. J. LONG,
Member of the Bengal Asiatic Society, F.R.G.S.

"We regard the book as valuable, and wish for it a wide circulation and attentive reading."—Record.
" Altogether, it is quite a feast of good things."—Globe.
"It is full of interesting matter."—Antiquary.

Post 8vo, pp. vii. — 270, cloth, price 7s. 6d.

INDIAN POETRY;

Containing a New Edition of the "Indian Song of Songs," from the Sanscrit of the "Gita Govinda" of Jayadeva; Two Books from "The Iliad of India" (Mahabharata), "Proverbial Wisdom" from the Shlokas of the Hitopadèsa, and other Oriental Poems.

By EDWIN ARNOLD, C.S.I., Author of "The Light of Asia."

"In this new volume of Messrs. Trübner's Oriental Series, Mr. Edwin Arnold does good service by illustrating, through the medium of his musical English melodies, the power of Indian poetry to stir European emotions. The 'Indian Song of Songs' is not unknown to scholars. Mr. Arnold will have introduced it among popular English poems. Nothing could be more graceful and delicate than the shades by which Krishna is portrayed in the gradual process of being wened by the love of 'Beautiful Radha, jasmine-bosomed Radha,' from the allurements of the forest nymphs, in whom the five senses are typified."—Times.

"No other English poet has ever thrown his genius and his art so thoroughly into the work of translating Eastern ideas as Mr. Arnold has done in his splendid paraphrases of language contained in these mighty epics."—Daily Telegraph.

"The poem abounds with imagery of Eastern luxuriousness and sensuousness; the air seems laden with the spicy odours of the tropics, and the verse has a richness and a melody sufficient to captivate the senses of the dullest."—Standard.

"The translator, while producing a very enjoyable poem, has adhered with tolerable fidelity to the original text."—Overland Mail.

"We certainly wish Mr. Arnold success in his attempt to popularise Indian classics, that being, as his preface tells us, the goal towards which he bends his efforts."—Allen's Indian Mail.

Post 8vo, pp. xvi. — 296, cloth, price 10s. 6d.

THE MIND OF MENCUS;
OR, POLITICAL ECONOMY FOUNDED UPON MORAL PHILOSOPHY.

A SYSTEMATIC DIGEST OF THE DOCTRINES OF THE CHINESE PHILOSOPHER MENCUS.

Transl. from the Original Text and Classified, with Comments and Explanations,

By the REV. ERNST FABER, Rhenish Mission Society.

Translated from the German, with Additional Notes,

By the REV. A. R. HUTCHINSON, C.M.S., Church Mission, Hong Kong.

"Mr. Faber is already well known in the field of Chinese studies by his digest of the doctrines of Confucius. The value of this work will be perceived when it is remembered that at no time since relations commenced between China and the West has the former been so powerful—we had almost said aggressive—as now. For those who will give it careful study, Mr. Faber's work is one of the most valuable of the excellent series to which it belongs."—Nature.
TRÜBNER'S ORIENTAL SERIES.

Post 8vo, pp. 336, cloth, price 16s.

THE RELIGIONS OF INDIA.

By A. BARTH.

Translated from the French with the authority and assistance of the Author.

The author has, at the request of the publishers, considerably enlarged the work for the translator, and has added the literature of the subject to date; the translation may, therefore, be looked upon as an equivalent of a new and improved edition of the original.

"Is not only a valuable manual of the religions of India, which marks a distinct step in the treatment of the subject, but also a useful work of reference."—Academy.

"This volume is a reproduction, with corrections and additions, of an article contributed by the learned author two years ago to the 'Encyclopédie des Sciences Religieuses.' It attracted much notice when it first appeared, and is generally admitted to present the best summary extant of the vast subject with which it deals."—Tablet.

"This is not only on the whole the best but the only manual of the religions of India, apart from Buddhism, which we have in English. The present work... shows not only great knowledge of the facts and power of clear exposition, but also great insight into the inner history and the deeper meaning of the great religion, for it is in reality only one, which it proposes to describe."—Modern Review.

"The merit of the work has been emphatically recognised by the most authoritative Orientalists, both in this country and on the continent of Europe. But probably there are few Indianists (if we may use the word) who would not derive a good deal of information from it, and especially from the extensive bibliography provided in the notes."—Dublin Review.

"Such a sketch M. Barth has drawn with a master-hand."—Critic (New York).

Post 8vo, pp. viii.—152, cloth, price 6s.

HINDU PHILOSOPHY.

THE SĀNKHYA KĀRIKA OF IS'WARA KRISHNA.

An Exposition of the System of Kapila, with an Appendix on the Nyāya and Vais'eshika Systems.

By JOHN DAVIES, M.A. (Cantab.), M.R.A.S.

The system of Kapila contains nearly all that India has produced in the department of pure philosophy.

"The non Orientalist... finds in Mr. Davies a patient and learned guide who leads him into the intricacies of the philosophy of India, and supplies him with a clue, that he may not be lost in them. In the preface he states that the system of Kapila is the 'earliest attempt on record to give an answer, from reason alone, to the mysterious questions which arise in every thoughtful mind about the origin of the world, the nature and relations of man and his future destiny,' and in his learned and able notes he exhibits 'the connection of the Sānkhya system with the philosophy of Spinoza,' and 'the connection of the system of Kapila with that of Schopenhauer and Von Hartmann.'"—Foreign Church Chronicle.

"Mr. Davies's volume on Hindu Philosophy is an undoubted gain to all students of the development of thought. The system of Kapila, which is here given in a translation from the Sānkhya Kārikā, is the only contribution of India to pure philosophy. ... Presents many points of deep interest to the student of comparative philosophy, and without Mr. Davies's lucid interpretation it would be difficult to appreciate these points in any adequate manner."—Saturday Review.

"We welcome Mr. Davies's book as a valuable addition to our philosophical library."—Notes and Queries.
TRÜBNER'S ORIENTAL SERIES.

Post 8vo, pp. x.—130, cloth, price 6s.

A MANUAL OF HINDU PANTHEISM. VEDÂNTASÂRA.

Translated, with copious Annotations,

BY MAJOR G. A. JACOB,

Bombay Staff Corps; Inspector of Army Schools.

The design of this little work is to provide for missionaries, and for others who, like them, have little leisure for original research, an accurate summary of the doctrines of the Vedânta.

"The modest title of Major Jacob's work conveys but an inadequate idea of the vast amount of research embodied in his notes to the text of the Vedântasâra. So copious, indeed, are these, and so much collateral matter do they bring to bear on the subject, that the diligent student will rise from their perusal with a fairly adequate view of Hindu philosophy generally. His work ... is one of the best of its kind that we have seen."—Calcutta Review.

Post 8vo, pp. xii.—154, cloth, price 7s. 6d.

TSUNI—GOAM:

THE SUPREME BEING OF THE KHOI-KHOI.

BY THEOPHILUS HAHN, Ph.D.,

Custodian of the Grey Collection, Cape Town; Corresponding Member of the Geogr. Society, Dresden; Corresponding Member of the Anthropological Society, Vienna, &c., &c.

"The first instalment of Dr. Hahn's labours will be of interest, not at the Cape only, but in every University of Europe. It is, in fact, a most valuable contribution to the comparative study of religion and mythology. Accounts of their religion and mythology were scattered about in various books; these have been carefully collected by Dr. Hahn and printed in his second chapter, enriched and improved by what he has been able to collect himself."—Prof. Max Müller in the Nineteenth Century.

"It is full of good things."—St. James's Gazette.

In Four Volumes. Post 8vo, Vol. I., pp. xii.—392, cloth, price 12s. 6d., Vol. II., pp. vi.—408, cloth, price 12s. 6d., Vol. III., pp. viii.—414, cloth, price 12s. 6d., Vol. IV., pp. viii.—340, cloth, price 12s. 6d.

A COMPREHENSIVE COMMENTARY TO THE QURAN.

TO WHICH IS PREFIXED SALE'S PRELIMINARY DISCOURSE, WITH ADDITIONAL NOTES AND EMENDATIONS.

Together with a Complete Index to the Text, Preliminary Discourse, and Notes.

BY REV. E. M. WHERRY, M.A., Lodiana.

"As Mr. Wherry's book is intended for missionaries in India, it is no doubt well that they should be prepared to meet, if they can, the ordinary arguments and interpretations, and for this purpose Mr. Wherry's additions will prove useful."—Saturday Review.
Second Edition. Post 8vo, pp. vi.—208, cloth, price 2a. 6d.

THE BHAGAVAD-GÎTÂ.
Translated, with Introduction and Notes.
By JOHN DAVIES, M.A. (Cantab.)

"Let me add that his translation of the Bhagavad Gîtâ is, as we judge, the best that has as yet appeared in English, and that his Philological Notes are of quite peculiar value."—Dublin Review.

Post 8vo, pp. 96, cloth, price 5a.

THE QUATRAINS OF OMAR KHAYYAM.
Translated by E. H. WHINFIELD, M.A.,
Barrister-at-Law, late H.M. Bengal Civil Service.

Post 8vo, pp. xxxii.—336, cloth, price 1os. 6d.

THE QUATRAINS OF OMAR KHAYYAM.
The Persian Text, with an English Verse Translation.
By E. H. WHINFIELD, late of the Bengal Civil Service.

"Mr. Whinfield has executed a difficult task with considerable success, and his version contains much that will be new to those who only know Mr. Fitzgerald's delightful selection."—Academy.

"The most prominent features in the Quatrains are their profound agnosticism, combined with a fatalism based more on philosophical than religious grounds; their Epicureanism and the spirit of universal toleration and charity which animates them."—Calcutta Review.

Post 8vo, pp. xxiv.—268, cloth, price 9s.

THE PHILOSOPHY OF THE UPANISHADS AND ANCIENT INDIAN METAPHYSICS.
As exhibited in a series of Articles contributed to the Calcutta Review.
By ARCHIBALD EDWARD GOUGH, M.A., Lincoln College, Oxford; Principal of the Calcutta Madrasa.

"For practical purposes this is perhaps the most important of the works that have thus far appeared in 'Trübner's Oriental Series.' . . . We cannot doubt that for all who may take it up the work must be one of profound interest."—Saturday Review.

In Two Volumes. Vol. I., post 8vo, pp. xxiv.—230, cloth, price 7a. 6d.

A COMPARATIVE HISTORY OF THE EGYPTIAN AND MESOPOTAMIAN RELIGIONS.
By Dr. C. P. TIELE.
Vol. I.—HISTORY OF THE EGYPTIAN RELIGION.
Translated from the Dutch with the Assistance of the Author.
By JAMES BALLINGAL.

"It places in the hands of the English readers a history of Egyptian Religion which is very complete, which is based on the best materials, and which has been illustrated by the latest results of research. In this volume there is a great deal of information, as well as independent investigation, for the trustworthiness of which Dr. Tiele's name is in itself a guarantee; and the description of the successive religions under the Old Kingdom, the Middle Kingdom, and the New Kingdom, is given in a manner which is scholarly and minute."—Scottish Review.
TRÜBNER'S ORIENTAL SERIES.

Post 8vo, pp. xii.—302, cloth, price 8s. 6d.

YUSUF AND ZULAIKHA.
A Poem by JAMI.
Translated from the Persian into English Verse.
By RALPH T. H. GRIFFITH.

"Mr. Griffith, who has done already good service as translator into verse from the Sanskrit, has done further good work in this translation from the Persian, and he has evidently shown not a little skill in his rendering the quaint and very oriental style of his author into our more prosaic, less figurative, language... The work, besides its intrinsic merits, is of importance as being one of the most popular and famous poems of Persia, and that which is read in all the independent native schools of India where Persian is taught."—Scotsman.

Linguistic Essays.
By CARL ABEL.

"An entirely novel method of dealing with philosophical questions and impart a real human interest to the otherwise dry technicalities of the science."—Standard.
"Dr. Abel is an opponent from whom it is pleasant to differ, for he writes with enthusiasm and temper, and his mastery over the English language fits him to be a champion of unpopular doctrines."—Athenaeum.

THE SARVA-DARSANA-SAMGRAHA;
Or, REVIEW OF THE DIFFERENT SYSTEMS OF HINDU PHILOSOPHY.
By MADHAVACHARYA.
Translated by E. B. COWELL, M.A., Professor of Sanskrit in the University of Cambridge, and A. E. GOUGH, M.A., Professor of Philosophy in the Presidency College, Calcutta.

This work is an interesting specimen of Hindu critical ability. The author successively passes in review the sixteen philosophical systems current in the fourteenth century in the South of India; and he gives what appears to him to be their most important tenets.

"The translation is trustworthy throughout. A protracted sojourn in India, where there is a living tradition, has familiarised the translators with Indian thought."—Athenaeum.

TIBETAN TALES DERIVED FROM INDIAN SOURCES.
Translated from the Tibetan of the KAH-GYUR.
By F. ANTON VON SCHIEFNER.
Done into English from the German, with an Introduction,
By W. R. S. RALSTON, M.A.

"Mr. Ralston, whose name is so familiar to all lovers of Russian folk-lore, has supplied some interesting Western analogies and parallels, drawn, for the most part, from Slavonic sources, to the Eastern folk-tales, culled from the Kahgyur, one of the divisions of the Tibetan sacred books."—Academy.
"The translation... could scarcely have fallen into better hands. An Introduction... gives the leading facts in the lives of those scholars who have given their attention to gaining a knowledge of the Tibetan literature and language."—Calcutta Review.
"Ought to interest all who care for the East, for amusing stories, or for comparative folk-lore."—Pall Mall Gazette.
TRÜBNER'S ORIENTAL SERIES.

Post 8vo, pp. xvi.—224, cloth, price 9s.

UDÁNAVARGA.
A COLLECTION OF VERSES FROM THE BUDDHIST CANON.
Compiled by DHARMAṬĀTA.

BEING THE NORTHERN BUDDHIST VERSION OF DHAMMAPADA.

Translated from the Tibetan of Bkah-hgyur, with Notes, and
Extracts from the Commentary of Pradžnavarman,

By W. WOODVILLE ROCKHILL.

"Mr. Rockhill's present work is the first from which assistance will be gained
for a more accurate understanding of the Pali text; it is, in fact, as yet the only
term of comparison available to us. The ‘Udānavarga,’ the Tibetan version, was
originally discovered by the late M. Schiefner, who published the Tibetan text, and
had intended adding a translation, an intention frustrated by his death, but which
has been carried out by Mr. Rockhill... Mr. Rockhill may be congratulated for
having well accomplished a difficult task.”—Saturday Review.

In Two Volumes, post 8vo, pp. xxiv.—566, cloth, accompanied by a
Language Map, price 18s.

A SKETCH OF THE MODERN LANGUAGES OF AFRICA.

By ROBERT NEEDHAM CUST,
Barrister-at-Law, and late of Her Majesty's Indian Civil Service.

"Any one at all interested in African languages cannot do better than get Mr.
Cust's book. It is encyclopaedic in its scope, and the reader gets a start clear away
in any particular language, and is left free to add to the initial sum of knowledge
there collected.”—Nestle Mercury.

"Mr. Cust has contrived to produce a work of value to linguistic students.”—
Nature.

Third Edition. Post 8vo, pp. xv.—250, cloth, price 7s. 6d.

OUTLINES OF THE HISTORY OF RELIGION TO THE
SPREAD OF THE UNIVERSAL RELIGIONS.

By C. P. TIELE,
Doctor of Theology, Professor of the History of Religions in the
University of Leyden.

Translated from the Dutch by J. ESTLIN CARPENTER, M.A.

"Few books of its size contain the result of so much wide thinking, able and labo-
rious study, or enable the reader to gain a better bird's-eye view of the latest results
of investigations into the religious history of nations. As Professor Tiele modestly
says, 'In this little book are outlines—pencil sketches, I might say—nothing more.'
But there are some men whose sketches from a thumb-nail are of far more worth
than an enormous canvas covered with the crude painting of others, and it is easy to
see that these pages, full of information, these sentences, cut and perhaps also dry,
short and clear, condense the fruits of long and thorough research.”—Scotsman.
TRÜBNER'S ORIENTAL SERIES.

Post 8vo, pp. xii.—312, with Maps and Plan, cloth, price 14s.

A HISTORY OF BURMA.
Including Burma Proper, Pegu, Taungu, Tenasserim, and Arakan. From the Earliest Time to the End of the First War with British India.

"Sir Arthur Phayre's contribution to Trübner's Oriental Series supplies a recognised want, and its appearance has been looked forward to for many years. . . . General Phayre deserves great credit for the patience and industry which has resulted in this History of Burma."—Saturday Review.

Third Edition. Post 8vo, pp. 276, cloth, price 7s. 6d.

RELIGION IN CHINA.
By Joseph Edkins, D.D., Peking.

Containing a Brief Account of the Three Religions of the Chinese, with Observations on the Prospects of Christian Conversion amongst that People.

"Dr. Edkins has been most careful in noting the varied and often complex phases of opinion, so as to give an account of considerable value of the subject."—Scottish Observer.

"As a missionary, it has been part of Dr. Edkins' duty to study the existing religions in China, and his long residence in the country has enabled him to acquire an intimate knowledge of them as they are present exist."—Saturday Review.

"Dr. Edkins' valuable work, of which this is a second and revised edition, has, from the time that it was published, been the standard authority upon the subject of which it treats."—Nonconformist.

"Dr. Edkins . . . may now be fairly regarded among the first authorities on Chinese religion and language."—British Quarterly Review.

Post 8vo, pp. x.—274, cloth, price 9s.

THE LIFE OF THE BUDDHA AND THE EARLY HISTORY OF HIS ORDER.

Derived from Tibetan Works in the Bkah-hgyur and Bstan-hgyur. Followed by notices on the Early History of Tibet and Khoten.
Translated by W. W. Rockhill, Second Secretary U.S. Legation in China.

"The volume bears testimony to the diligence and fulness with which the author has consulted and tested the ancient documents bearing upon his remarkable subject."—Times.

"Will be appreciated by those who devote themselves to those Buddhist studies which have of late years taken in these Western regions so remarkable a development. Its matter possesses a special interest as being derived from ancient Tibetan works, some portions of which, here analysed and translated, have not yet attracted the attention of scholars. The volume is rich in ancient stories bearing upon the world's renovation and the origin of castes, as recorded in these venerable authorities."—Daily News.

THE SANKHYA APHORISMS OF KAPILA,
With Illustrative Extracts from the Commentaries.
Translated by J. R. Ballantyne, LL.D., late Principal of the Benares College.
Edited by FitzEdward Hall.

The work displays a vast expenditure of labour and scholarship, for which students of Hindu philosophy have every reason to be grateful to Dr. Hall and the publishers."—Calcutta Review.
TRÜBNER'S ORIENTAL SERIES.

In Two Volumes, post 8vo, pp. cviii.−242, and viii.−370, cloth, price 24s.
Dedicated by permission to H.R.H. the Prince of Wales.

BUDDHIST RECORDS OF THE WESTERN WORLD,
Translated from the Chinese of Hiuen Tsiang (A.D. 629).

By SAMUEL BEAL, B.A.,
(Trin. Coll., Camb.); R.N. (Retired Chaplain and N.I.); Professor of Chinese,
University College, London; Rector of Wark, Northumberland, &c.

An eminent Indian authority writes respecting this work:—"Nothing
more can be done in elucidating the History of India until Mr. Beal's transla-
tion of the 'Si-yu-ki' appears."

"It is a strange freak of historical preservation that the best account of the con-
dition of India at that ancient period has come down to us in the books of travel
written by the Chinese pilgrims, of whom Hwen Thsang is the best known."—Times.

Post 8vo, pp. xlviii.−398, cloth, price 12s.

THE ORDINANCES OF MANU.
Translated from the Sanskrit, with an Introduction.

By the late A. C. BURNELL, Ph.D., C.I.E.
Completed and Edited by E. W. HOPKINS, Ph.D.,
of Columbia College, N.Y.

"This work is full of interest; while for the student of sociology and the science
of religion it is full of importance. It is a great boon to get so notable a work in so
accessible a form, admirably edited, and competently translated."—Scotsman.

"Few men were more competent than Burnell to give us a really good translation
of this well-known law book, first rendered into English by Sir William Jones.
Burnell was not only an independent Sanskrit scholar, but an experienced lawyer,
and he joined to these two important qualifications the rare faculty of being able to
express his thoughts in clear and trenchant English. . . . We ought to feel very
grateful to Dr. Hopkins for having given us all that could be published of the trans-
lation left by Burnell."—P. Max Müller in the Academy.

Post 8vo, pp. xii.−234, cloth, price 9s.

THE LIFE AND WORKS OF ALEXANDER
CSOMA DE KOROS,
Between 1819 and 1842. With a Short Notice of all his Published and Un-
published Works and Essays. From Original and for most part Unpub-
lished Documents.

By THEODORE DUKA, M.D., F.R.C.S. (Eng.), Surgeon-Major
H.M.'s Bengal Medical Service, Retired, &c.

"Not too soon have Messrs. Trübner added to their valuable Oriental Series a
history of the life and works of one of the most gifted and devoted of Oriental
students, Alexander Csoma de Koros. It is forty-three years since his death, and
though an account of his career was demanded soon after his decease, it has only
now appeared in the important memoir of his compatriot, Dr. Duka."—Bookseller.
TRÜBNER'S ORIENTAL SERIES.

In Two Volumes, post 8vo, pp. xii.-318 and vi.-312, cloth, price 21s.

MISCELLANEOUS PAPERS RELATING TO INDO-CHINA.

CONTENTS OF VOL. I.

II.—Report made to the Chief and Council of Balambangan, by Lieut. James Barton, of his several Surveys.
III.—Substance of a Letter to the Court of Directors from Mr. John Jesse, dated July 20, 1775, at Borneo Proper.
VII.—On the Traces of the Hindu Language and Literature extant amongst the Malays. By William Marden.
IX.—A Botanical Description of Urceola Elastica, or Caoutchouc Vine of Sumatra and Pulo-Pinang. By William Roxburgh, M.D.
X.—An Account of the Inhabitants of the Poggy, or Nassau Islands, lying off Sumatra. By John Crisp.
XI.—Remarks on the Species of Pepper which are found on Prince-Wales Island. By William Hunter, M.D.
XII.—On the Languages and Literature of the Indo-Chinese Nations. By J. Leyden, M.D.
XIII.—Some Account of an Orang-Outang of remarkable height found on the Island of Sumatra. By Clarke Abel, M.D.
XV.—Short Sketch of the Geology of Pulo-Pinang and the Neighbouring Islands. By T. Ware.
XVI.—Climate of Singapore.
XVII.—Inscription on the Jetty at Singapore.
XVIII.—Extract of a Letter from Colonel J. Low.
XIX.—Inscription at Singapore.
XX.—An Account of Several Inscriptions found in Province Wellesley. By Lieut.-Col. James Low.
XXII.—On an Inscription from Kedah. By Lieut.-Col. Low.
XXIII.—A Notice of the Alphabets of the Philippine Islands.
XXIV.—Succinct Review of the Observations of the Tides in the Indian Archipelago.
XXVII.—Paragraphs to be added to Capt. G. B. Tremenheere's Report.
XXIX.—Analysis of Iron Ores from Tavoy and Mergui, and of Limestone from Mergui. By Dr. A. Ure.
XXXI.—Report on a Route from the Mouth of the Pakehan to Krau, and thence across the Isthmus of Krau to the Gulf of Siam. By Capt. Al. Fraser and Capt. J. G. Forlong.
XXXIV.—Further Remarks. By E. Blyth.
TRÜBNER'S ORIENTAL SERIES.

MISCELLANEOUS PAPERS RELATING TO INDO-CHINA—continued.

CONTENTS OF VOL. II.

XXXV.—Catalogue of Mammals inhabiting the Malay Peninsula and Islands. By Theodore Cantor, M.D.

XXXVII.—Catalogue of Reptiles inhabiting the Malay Peninsula and Islands. By Theodore Cantor, M.D.

XXXVIII.—Some Account of the Botanical Collection brought from the Eastward, in 1841, by Dr. Cantor. By the late W. Griffith.

XL.—Note, by Major-General G. B. Tremenheere.

General Index.

Index of Vernacular Terms.

Index of Zoological Genera and Sub-Genera occurring in Vol. II.

"The papers treat of almost every aspect of Indo-China—its philology, economy, geography, geology—and constitute a very material and important contribution to our accessible information regarding that country and its people."—Contemporary Review.

Post 8vo, pp. xii.—72, cloth, price 5a.

THE SATAKAS OF BHARTRIHARI.

Translated from the Sanskrit

By the Rev. B. HALE WORTHAM, M.R.A.S.,

Rector of Egglesford, North Devon.

"A very interesting addition to Trübner's Oriental Series."—Saturday Review.

"Many of the Maxims in the book have a Biblical ring and beauty of expression."—St. James' Gazette.

Post 8vo, pp. xii.—180, cloth, price 6a.

ANCIENT PROVERBS AND MAXIMS FROM BURMESE SOURCES;

OR, THE NITI LITERATURE OF BURMA.

By JAMES GRAY,

The Sanscrit-Pāli word Niti is equivalent to "conduct" in its abstract, and "guide" in its concrete signification. As applied to books, it is a general term for a treatise which includes maxims, pithy sayings, and didactic stories, intended as a guide to such matters of every-day life as form the character of an individual and influence him in his relations to his fellow-men. Treatises of this kind have been popular in all ages, and have served as a most effective medium of instruction.

Post 8vo, pp. xxxii. and 330, cloth, price 7s. 6d.

MASNAVI I MA'NAVI:

THE SPIRITUAL COUPLETS OF MAULANA JALALU'D-DIN MUHAMMAD I RUMI.

Translated and Abridged by E. H. WHINFIELD, M.A.,

Late of H.M. Bengal Civil Service.
TRÜBNER'S ORIENTAL SERIES.

Post 8vo, pp. viii. and 345, cloth, price 10s. 6d.

MANAVA-DHARMA-CASTRA:
THE CODE OF MANU.

ORIGINAL Sanskrit TEXT, with CRITICAL NOTES.

By J. JOLLY, Ph.D.,
Professor of Sanskrit in the University of Wurzburg; late Tagore Professor of Law in the University of Calcutta.

The date assigned by Sir William Jones to this Code—the well-known Great Law Book of the Hindus—is 1250-500 B.C., although the rules and precepts contained in it had probably existed as tradition for countless ages before. There has been no reliable edition of the Text for Students for many years past, and it is believed, therefore, that Prof. Jolly's work will supply a want long felt.

Post 8vo, pp. 215, cloth, price 7s. 6d.

LEAVES FROM MY CHINESE SCRAP-BOOK.

By FREDERIC HENRY BALFOUR.

Post 8vo, pp. xvi.-548, with Six Maps, cloth, price 21s.

LINGUISTIC AND ORIENTAL ESSAYS.

WRITTEN FROM THE YEAR 1847 TO 1887. Second Series.

By ROBERT NEEDHAM CUST, LL.D.,
Barrister-at-Law; Honorary Secretary of the Royal Asiatic Society; Late Member of Her Majesty's Indian Civil Service.

In Two Volumes, post 8vo, pp. x.-308 and vi.-314, cloth, price 25s.

MISCELLANEOUS PAPERS RELATING TO INDO-CHINA.

Edited by R. ROST, Ph.D., &c. &c., Librarian to the India Office.

SECOND SERIES.

Post 8vo, pp. xii.-512, price 16s.

FOLK-TALES OF KASHMIR.

In Two Volumes, post 8vo, pp. xii.—336 and x.—352, cloth, price 21s.

MEDIEVAL RESEARCHES FROM EASTERN ASIATIC SOURCES.

FRAGMENTS TOWARDS THE KNOWLEDGE OF THE GEOGRAPHY AND HISTORY OF CENTRAL AND WESTERN ASIA FROM THE THIRTEENTH TO THE SEVENTEENTH CENTURY.

By E. BRETSCHNEIDER, M.D.,
Formerly Physician of the Russian Legation at Pekin.

In Two Volumes, post 8vo.

ALBERUNI'S INDIA:
AN ACCOUNT OF ITS RELIGION, PHILOSOPHY, LITERATURE, GEOGRAPHY, CHRONOLOGY, ASTRONOMY, CUSTOMS, LAW, AND ASTROLOGY (ABOUT A.D. 1031).

Translated into English.

With Notes and Indices by Prof. EDWARD SACHAU,
University of Berlin.

** The Arabic Original, with an Index of the Sanskrit Words, Edited by Professor SACHAU, is in the press.

Post 8vo.

THE LIFE OF HIUEN TSIANG.

By the SHAMANS HWUI LI AND YEN-TSUNG.

With a Preface containing an account of the Works of I-Tsing.

By SAMUEL BEAL, B.A.
(Trin. Coll., Camb.); Professor of Chinese, University College, London;
Rector of Wark, Northumberland, &c.

When the Pilgrim Huien Tsang returned from his travels in India, he took up his abode in the Temple of “Great Benevolence;” this convent had been constructed by the Emperor in honour of the Empress, Wen-te-hau. After Huien Tsang's death, his disciple, Hwui Li, composed a work which gave an account of his illustrious Master's travels; this work when he completed he buried, and refused to discover its place of concealment. But previous to his death he revealed its whereabouts to Yen-tsung, by whom it was finally revised and published. This is “The Life of Huen Tsiang.” It is a valuable sequel to the Si-yu-ki, correcting and illustrating it in many particulars.

IN PREPARATION:

Post 8vo.

A SKETCH OF THE MODERN LANGUAGES OF OCEANIA.

By R. N. CUST, LL.D.

Author of “Modern Languages of the East,” “Modern Languages of Africa,” &c.

LONDON: TRÜBNER & CO., 57 AND 59 LUDGATE HILL.
TRÜBNER'S
ORIENTAL SERIES.
ALBERUNI'S INDIA.

AN ACCOUNT OF THE RELIGION, PHILOSOPHY, LITERATURE, GEOGRAPHY, CHRONOLOGY, ASTRONOMY, CUSTOMS, LAWS AND ASTROLOGY OF INDIA

ABOUT A.D. 1030.

An English Edition, with Notes and Indices.

BY

DR. EDWARD C. SACHAU,

Professor in the Royal University of Berlin, and Principal of the Seminary for Oriental Languages; Member of the Royal Academy of Berlin, and Corresponding Member of the Imperial Academy of Vienna; Honorary Member of the Asiatic Society of Great Britain and Ireland, London, and of the American Oriental Society, Cambridge, U.S.A.

IN TWO VOLUMES.

VOL. II.

LONDON:

TRÜBNER & CO., LUDGATE HILL.

1888.

[All rights reserved.]
ALBERUNI'S INDIA.

CHAPTER XLIX.

A SUMMARY DESCRIPTION OF THE ERAS.

The eras serve to fix certain moments of time which are mentioned in some historical or astronomical connection. The Hindus do not consider it wearisome to reckon with huge numbers, but rather enjoy it. Still, in practical use, they are compelled to replace them by smaller (more handy) ones.

Of their eras we mention—

1. The beginning of the existence of Brahman.
2. The beginning of the day of the present nycthemeron of Brahman, i.e. the beginning of the kalpa.
3. The beginning of the seventh manvantara, in which we are now.
4. The beginning of the twenty-eighth caturyuga, in which we are now.
5. The beginning of the fourth yuga of the present caturyuga, called kalikāla, i.e. the time of Kali. The whole yuga is called after him, though, accurately speaking, his time falls only in the last part of the yuga. Notwithstanding, the Hindus mean by kalikāla the beginning of the kaliyuga.
6. Pāṇḍava-kāla, i.e. the time of the life and the wars of Bhārata.

All these eras vie with each other in antiquity, the
one going back to a still more remote beginning than the other, and the sums of years which they afford go beyond hundreds, thousands, and higher orders of numbers. Therefore not only astronomers, but also other people, think it wearisome and unpractical to use them.

In order to give an idea of these eras, we shall use as a first gauge or point of comparison that Hindu year the great bulk of which coincides with the **year 400 of Yazdajird**. This number consists only of hundreds, not of units and tens, and by this peculiarity it is distinguished from all other years that might possibly be chosen. Besides, it is a memorable time; for the breaking of the strongest pillar of the religion, the decease of the pattern of a prince, Maḥmūd, the lion of the world, the wonder of his time—may God have mercy upon him!—took place only a short time, less than a year, before it. The Hindu year precedes the Naurōz or new year's day of this year only by twelve days, and the death of the prince occurred precisely ten complete Persian months before it.

Now, presupposing this our gauge as known, we shall compute the years for this point of junction, which is the beginning of the corresponding Hindu year, for the end of all years which come into question coincides with it, and the Naurōz of the year 400 of Yazdajird falls only a little latter (viz. twelve days).

The book *Vishṇu-Dharma* says: "Vajra asked Mārkaṇḍeya how much of the life of Brahma had elapsed; whereupon the sage answered: 'That which has elapsed is 8 years, 5 months, 4 days, 6 manvantaras, 7 saṁdhi, 27 caturyugas, and 3 yugas of the twenty-eighth caturyuga, and 10 divya-years up to the time of the aśvamedha which thou hast offered.' He who knows the details of this statement and comprehends them duly is a sage man, and the sage is he who serves the only Lord and strives to reach the neighbourhood of his place, which is called Paramapada."
CHAPTER XLIX.

Presupposing this statement to be known, and referring the reader to our explanation of the various measures of time which we have given in former chapters, we offer the following analysis.

Of the life of Brahman there have elapsed before our gauge 26,215,732,948,132 of our years. Of the nyehThemeron of Brahman, i.e. of the kalpa of the day, there have elapsed 1,972,948,132, and of the seventh manvantara 120,532,132.

The latter is also the date of the imprisoning of the King Bali, for it happened in the first caturyuga of the seventh manvantara.

In all chronological dates which we have mentioned already and shall still mention, we only reckon with complete years, for the Hindus are in the habit of disregarding fractions of a year.

Further, the Vishnu-Dharma says: "Márkaṇḍeya says, in answer to a question of Vajra, 'I have already lived as long as 6 kalpas and 6 manvantaras of the seventh kalpa, 23 tretáyugas of the seventh manvantara. In the twenty-fourth tretáyuga Ráma killed Rávaña, and Lakshmana, the brother of Ráma, killed Kumbha-karna, the brother of Rávaña. The two subjugated all the Rákshasas. At that time Válmiki, the Rishi, composed the story of Ráma and Rámâyana and eternalised it in his books. It was I who told it to Yudhishthira, the son of Pándu, in the forest of Kámyakavana.'"

The author of the Vishnu-Dharma reckons here with tretáyugas, first, because the events which he mentions occurred in a certain tretáyuga, and secondly, because it is more convenient to reckon with a simple unit than with such a unit as requires to be explained by reference to its single quarters. Besides, the latter part of the tretáyuga is a more suitable time for the events mentioned than its beginning, because it is so much nearer to the age of evil-doing (v. i. pp. 379, 380). No doubt, the date of Ráma and Rámâyana is known among the
Hindus, but I for my part have not been able to ascertain it.

Twenty-three caturyugas are 99,360,000 years, and, together with the time from the beginning of a caturyuga till the end of the tretayuga, 102,384,000 years.

If we subtract this number of years from the number of years of the seventh manvantara that have elapsed before our gauge-year, viz. 120,532,132 (v. p. 3), we get the remainder of 18,148,132 years, i.e. so many years before our gauge-year as the conjectural date of Râma; and this may suffice, as long as it is not supported by a trustworthy tradition. The here-mentioned year corresponds to the 3,892,132d year of the 28th caturyuga.

All these computations rest on the measures adopted by Brahmagupta. He and Pulisa agree in this, that the number of kalpas which have elapsed of the life of Brahman before the present kalpa is 6068 (equal to 8 years, 5 months, 4 days of Brahman). But they differ from each other in converting this number into caturyugas. According to Pulisa, it is equal to 6,116,544; according to Brahmagupta, only to 6,068,000 caturyugas. Therefore, if we adopt the system of Pulisa, reckoning 1 manvantara as 72 caturyugas without sandhi, 1 kalpa as 1008 caturyugas, and each yuga as the fourth part of a caturyuga, that which has elapsed of the life of Brahman before our gauge-year is the sum of 26,425,456,204,132 (!) years, and of the kalpa there have elapsed 1,986,124,132 years, of the manvantara 119,884,132 years, and of the caturyuga 3,244,132 years.

Regarding the time which has elapsed since the beginning of the kaliyuga, there exists no difference amounting to whole years. According to both Brahmagupta and Pulisa, of the kaliyuga there have elapsed before our gauge-year 4132 years, and between the
CHAPTER XLIX.

wars of Bhârata and our gauge-year there have elapsed 3479 years. The year 4132 before the gauge-year is the epoch of the kalikâla, and the year 3479 before the gauge-year is the epoch of the Pândavakâla.

The Hindus have an era called Kâlayavana, regarding which I have not been able to obtain full information. They place its epoch in the end of the last dvâparayuga. The here-mentioned Yavana (JMN) severely oppressed both their country and their religion.

To date by the here-mentioned eras requires in any case vast numbers, since their epochs go back to a most remote antiquity. For this reason people have given up using them, and have adopted instead the eras of—

(1.) Śrî Harsha.
(2.) Vikramâditya.
(3.) Śaka.
(4.) Valabha, and
(5.) Gupta.

The Hindus believe regarding Śrî Harsha that he used to examine the soil in order to see what of hidden treasures was in its interior, as far down as the seventh earth; that, in fact, he found such treasures; and that, in consequence, he could dispense with oppressing his subjects (by taxes, &c.) His era is used in Mathurâ and the country of Kanoj. Between Śrî Harsha and Vikramâditya there is an interval of 400 years, as I have been told by some of the inhabitants of that region. However, in the Kashmirian calendar I have read that Śrî Harsha was 664 years later than Vikramâditya. In face of this discrepancy I am in perfect uncertainty, which to the present moment has not yet been cleared up by any trustworthy information.

Those who use the era of Vikramâditya live in the southern and western parts of India. It is used in the following way: 342 are multiplied by 3, which gives
the product 1026. To this number you add the years which have elapsed of the current *shashtyabda* or sexagesimal *samvatsara*, and the sum is the corresponding year of the era of Vikramāditya. In the book *Srūdhava* by Mahādeva I find as his name *Candradīta*.

As regards this method of calculation, we must first say that it is rather awkward and unnatural, for if they began with 1026 as the basis of the calculation, as they begin—without any apparent necessity—with 342, this would serve the same purpose. And, secondly, admitting that the method is correct as long as there is only one *shashtyabda* in the date, how are we to reckon if there is a number of *shashtyabadas*?

The epoch of the era of Śaka or Śakakāla falls 135 years later than that of Vikramāditya. The here-mentioned Śaka tyrannised over their country between the river Sindh and the ocean, after he had made Áryavarta in the midst of this realm his dwelling-place. He interdicted the Hindus from considering and representing themselves as anything but Śakas. Some maintain that he was a Śûdra from the city of Almansûra; others maintain that he was not a Hindu at all, and that he had come to India from the west. The Hindus had much to suffer from him, till at last they received help from the east, when Vikramāditya marched against him, put him to flight and killed him in the region of Karûr, between Multân and the castle of Lōnl. Now this date became famous, as people rejoiced in the news of the death of the tyrant, and was used as the epoch of an era, especially by the astronomers. They honour the conqueror by adding Śrī to his name, so as to say Śrī Vikramāditya. Since there is a long interval between the era which is called the era of Vikramāditya (v. p. 5) and the killing of Śaka, we think that that Vikramāditya from whom the era has got its name is not identical with that one who killed Śaka, but only a namesake of his.
CHAPTER XLIX.

The era of Valabha is called so from Valabha, the ruler Era of Valabha.
of the town Valabht, nearly 30 yojanas south of Anhilvâra. The epoch of this era falls 241 years later than Page 206.
the epoch of the Śaka era. People use it in this way. They first put down the year of the Śakakâla, and then subtract from it the cube of 6 and the square of 5 \((216 + 25 = 241)\). The remainder is the year of the Valabha era. The history of Valabha is given in its proper place (cf. chap. xvii.)

As regards the Guptakâla, people say that the Guptas Guptakâla.
were wicked powerful people, and that when they ceased to exist this date was used as the epoch of an era. It seems that Valabha was the last of them, because the epoch of the era of the Guptas falls, like that of the Valabha era, 241 years later than the Śakakâla.

The era of the astronomers begins 587 years later than Era of the astronomers.
the Śakakâla. On this era is based the canon Khanda-khâdyaka by Brahmagupta, which among Muhammadans is known as Al-arkand.

Now, the year 400 of Yazdajird, which we have chosen as a gauge, corresponds to the following years of the Indian eras:—

(1) To the year 1488 of the era of Śri Harsha,
(2) To the year 1088 of the era of Vikramâditya,
(3) To the year 953 of the Śakakâla,
(4) To the year 712 of the Valabha era, which is identical with the Guptakâla,
(5) To the year 366 of the era of the canon Khanda-khâdyaka,
(6) To the year 526 of the era of the canon Pañcasiddhântikâ by Varâhamihira,
(7) To the year 132 of the era of the canon Kara-\(\tilde{\text{n}}\)asâra; and
(8) To the year 65 of the era of the canon Karana-\(\tilde{\text{t}}\)ilaka.
The eras of the here-mentioned canones are such as the authors of them considered the most suitable to be used as cardinal points in astronomical and other calculations, whence calculation may conveniently extend forward or backward. Perhaps the epochs of these eras fall within the time when the authors in question themselves lived, but it is also possible that they fall within a time anterior to their lifetime.

Common people in India date by the years of a centennium, which they call samvatsara. If a centennium is finished, they drop it, and simply begin to date by a new one. This era is called lokakāla, i.e. the era of the nation at large. But of this era people give such totally different accounts, that I have no means of making out the truth. In a similar manner they also differ among themselves regarding the beginning of the year. On the latter subject I shall communicate what I have heard myself, hoping meanwhile that one day we shall be able to discover a rule in this apparent confusion.

Those who use the Śaka era, the astronomers, begin the year with the month Caitra, whilst the inhabitants of Kanīr, which is conterminous with Kashmir, begin it with the month Bhādrapada. The same people count our gauge-year (400 Yazdajird) as the eighty-fourth year of an era of theirs.

All the people who inhabit the country between Bardari and Mārigala begin the year with the month Kārttika, and they count the gauge-year as the 110th year of an era of theirs. The author of the Kashmirian calendar maintains that the latter year corresponds to the sixth year of a new centennium, and this, indeed, is the usage of the people of Kashmir.

The people living in the country Nīrāhara, behind Mārigala, as far as the utmost frontiers of Tākeshar and Lohāvar, begin the year with the month Mārgāsīrsha, and reckon our gauge-year as the 108th year of their
era. The people of Lanbaga, i.e. Lamghân, follow their example. I have been told by people of Multân that this system is peculiar to the people of Sindh and Kanoj, and that they used to begin the year with the new moon of Mârgaśirsha, but that the people of Multân only a few years ago had given up this system, and had adopted the system of the people of Kashmir, and followed their example in beginning the year with the new moon of Caitra.

I have already before excused myself on account of the imperfection of the information given in this chapter. For we cannot offer a strictly scientific account of the eras to which it is devoted, simply because in them we have to reckon with periods of time far exceeding a centennium, (and because all tradition of events farther back than a hundred years is confused (v. p. 8).) So I have myself seen the roundabout way in which they compute the year of the destruction of Somanâth in the year of the Hijra 416, or 947 Šakakâla. First, they write down the number 242, then under it 606, then under this 99. The sum of these numbers is 947, or the year of the Šakakâla.

Now I am inclined to think that the 242 years have elapsed before the beginning of their centennial system, and that they have adopted the latter together with the Guptakâla; further, that the number 606 represents complete samvatsaras or centennials, each of which they must reckon as 101 years; lastly, that the 99 years represent that time which has elapsed of the current centennium.

That this, indeed, is the nature of the calculation is confirmed by a leaf of a canon composed by Durlabha of Multân, which I have found by chance. Here the author says: "First write 848 and add to it the laukikâkâla, i.e. the era of the people, and the sum is the Šakakâla."

If we write first the year of the Šakakâla correspond-
ing to our gauge-year, viz. 953, and subtract 848 from it, the remainder, 105, is the year of the laukika-kāla, whilst the destruction of Somanath falls in the ninety-eighth year of the centennium or laukika-kāla.

Durlabha says, besides, that the year begins with the month Mārgaśirsha, but that the astronomers of Multān begin it with Caitra.

The Hindus had kings residing in Kābul, Turks who were said to be of Tibetan origin. The first of them, Barhatakin, came into the country and entered a cave in Kābul, which none could enter except by creeping on hands and knees. The cave had water, and besides he deposited there victuals for a certain number of days. It is still known in our time, and is called Var. People who consider the name of Barhatakin as a good omen enter the cave and bring out some of its water with great trouble.

Certain troops of peasants were working before the door of the cave. Tricks of this kind can only be carried out and become notorious, if their author has made a secret arrangement with somebody else—in fact, with confederates. Now these had induced persons to work there continually day and night in turns, so that the place was never empty of people.

Some days after he had entered the cave, he began to creep out of it in the presence of the people, who looked on him as a new-born baby. He wore Turkish dress, a short tunic open in front, a high hat, boots and arms. Now people honoured him as a being of miraculous origin, who had been destined to be king, and in fact he brought those countries under his sway and ruled them under the title of a shāhiya of Kābul. The rule remained among his descendants for generations, the number of which is said to be about sixty.

Unfortunately the Hindus do not pay much attention to the historical order of things, they are very careless
in relating the chronological succession of their kings, and when they are pressed for information and are at a loss, not knowing what to say, they invariably take to tale-telling. But for this, we should communicate to the reader the traditions which we have received from some people among them. I have been told that the pedigree of this royal family, written on silk, exists in the fortress Nagarkot, and I much desired to make myself acquainted with it, but the thing was impossible for various reasons.

One of this series of kings was Kanik, the same who is said to have built the vihāra (Buddhistic monastery) of Purushāvar. It is called, after him, Kanik-caitya. People relate that the king of Kanoj had presented to him, among other gifts, a gorgeous and most singular piece of cloth. Now Kanik wanted to have dresses made out of it for himself, but his tailor had not the courage to make them, for he said, “There is (in the embroidery) the figure of a human foot, and whatever trouble I may take, the foot will always lie between the shoulders.” And that means the same as we have already mentioned in the story of Bali, the son of Virocana (i.e. a sign of subjugation, cf. i. p. 397). Now Kanik felt convinced that the ruler of Kanoj had thereby intended to vilify and disgrace him, and in hot haste he set out with his troops marching against him.

When the rāt heard this, he was greatly perplexed, for he had no power to resist Kanik. Therefore he consulted his Vazir, and the latter said, “You have roused a man who was quiet before, and have done unbecoming things. Now cut off my nose and lips, let me be mutilated, that I may find a cunning device; for there is no possibility of an open resistance.” The rāt did with him as he had proposed, and then he went off to the frontiers of the realm.
There he was found by the hostile army, was recognised and brought before Kanik, who asked what was the matter with him. The Vazir said, "I tried to dissuade him from opposing you, and sincerely advised him to be obedient to you. He, however, conceived a suspicion against me and ordered me to be mutilated. Since then he has gone, of his own accord, to a place which a man can only reach by a very long journey when he marches on the highroad, but which he may easily reach by undergoing the trouble of crossing an intervening desert, supposing that he can carry with himself water for so and so many days." Thereupon Kanik answered: "The latter is easily done." He ordered water to be carried along, and engaged the Vazir to show him the road. The Vazir marched before the king and led him into a boundless desert. After the number of days had elapsed and the road did not come to an end, the king asked the Vazir what was now to be done. Then the Vazir said, "No blame attaches to me that I tried to save my master and to destroy his enemy. The nearest road leading out of this desert is that on which you have come. Now do with me as you like, for none will leave this desert alive."

Then Kanik got on his horse and rode round a depression in the soil. In the centre of it he thrust his spear into the earth, and lo! water poured from it in sufficient quantity for the army to drink from and to draw from for the march back. Upon this the Vazir said, "I had not directed my cunning scheme against powerful angels, but against feeble men. As things stand thus, accept my intercession for the prince, my benefactor, and pardon him." Kanik answered, "I march back from this place. Thy wish is granted to thee. Thy master has already received what is due to him." Kanik returned out of the desert, and the Vazir went back to his master, the rāt of Kanoj. There he
CHAPTER XLIX.

found that on the same day when Kanik had thrust his spear into the earth, both the hands and feet had fallen off the body of the rādī.

The last king of this race was Lagatūrmān, and his Vazīr was Kallar, a Brahman. The latter had been fortunate, in so far as he had found by accident hidden treasures, which gave him much influence and power. In consequence, the last king of this Tibetan house, after it had held the royal power for so long a period, let it by degrees slip from his hands. Besides, Lagatūrmān had bad manners and a worse behaviour, on account of which people complained of him greatly to the Vazīr. Now the Vazīr put him in chains and imprisoned him for correction, but then he himself found ruling sweet, his riches enabled him to carry out his plans, and so he occupied the royal throne. After him ruled the Brahman kings Śāmand (Śāmanta), Kamalū, Bhīm (Bhima), Jaipāl (Jayapāla), Ānanda-pāla, Tarojanapāla (Triloca napāla). The latter was killed A.H. 412 (A.D. 1021), and his son Bhīmapāla five years later (A.D. 1026).

This Hindu Shāhiya dynasty is now extinct, and of the whole house there is no longer the slightest remnant in existence. We must say that, in all their grandeur, they never slackened in the ardent desire of doing that which is good and right, that they were men of noble sentiment and noble bearing. I admire the following passage in a letter of Ānandapāla, which he wrote to the prince Mahmūd, when the relations between them were already strained to the utmost: "I have learned that the Turks have rebelled against you and are spreading in Khurāsān. If you wish, I shall come to you with 5000 horsemen, 10,000 foot-soldiers, and 100 elephants, or, if you wish, I shall send you my son with double the number. In acting thus, I do not speculate on the impression which this will make on you. I have been conquered by you, and
therefore I do not wish that another man should conquer you."

The same prince cherished the bitterest hatred against the Muhammadans from the time when his son was made a prisoner, whilst his son Tarojanapâla (Trilocanapâla) was the very opposite of his father.
CHAPTER I.

HOW MANY STAR-CYCLES THERE ARE BOTH IN A "KALPA"
AND IN A "CATURYUGA."

It is one of the conditions of a kalpa that in it the planets, with their apsides and nodes, must unite in 0° of Aries, i.e. in the point of the vernal equinox. Therefore each planet makes within a kalpa a certain number of complete revolutions or cycles.

These star-cycles as known through the canon of Alfazârī and Ya‘kûb Ibn Ṭârîk, were derived from a Hindu who came to Bagdad as a member of the political mission which Sindh sent to the Khalif Almanṣûr, A.H. 154 (=A.D. 771). If we compare these secondary statements with the primary statements of the Hindus, we discover discrepancies, the cause of which is not known to me. Is their origin due to the translation of Alfazârī and Ya‘kûb? or to the dictation of that Hindu? or to the fact that afterwards these computations have been corrected by Brahmagupta, or some one else? For, certainly, any scholar who becomes aware of mistakes in astronomical computations and takes an interest in the subject, will endeavour to correct them, as, e.g. Muḥammad Ibn Isḥâk of Sarakhs has done. For he had discovered in the computation of Saturn a falling back behind real time (i.e., that Saturn, according to this computation, revolved slower than it did in reality). Now he assiduously studied the subject, till at last he was convinced that his fault did not originate
from the *equation* (i.e. from the correction of the places of the stars, the computation of their mean places). Then he added to the cycles of Saturn one cycle more, and compared his calculation with the actual motion of the planet, till at last he found the calculation of the cycles completely to agree with astronomical observation. In accordance with this correction he states the star-cycles in his *canon*.

Brahmagupta relates a different theory regarding the cycles of the apsides and nodes of the moon, on the authority of Āryabhaṭa. We quote this from Brahmagupta, for we could not read it in the original work of Āryabhaṭa, but only in a quotation in the work of Brahmagupta.

The following table contains all these traditions, which will facilitate the study of them, if God will!

<table>
<thead>
<tr>
<th>The planets</th>
<th>Number of their revolutions in a Kalpa</th>
<th>Number of the revolutions of their apsides</th>
<th>Number of the revolutions of their nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sun</td>
<td>4,320,000,000</td>
<td>480</td>
<td>Has no node.</td>
</tr>
<tr>
<td>Brahmagupta</td>
<td></td>
<td></td>
<td>232,311,168</td>
</tr>
<tr>
<td>Āryabhaṭa</td>
<td></td>
<td></td>
<td>232,312,138</td>
</tr>
<tr>
<td>The anomalistic revolution of the moon according to Brahmagupta</td>
<td>37,753,300,000</td>
<td></td>
<td>232,316,000</td>
</tr>
<tr>
<td>Mars</td>
<td>2,296,828,522</td>
<td>292</td>
<td></td>
</tr>
<tr>
<td>Mercury</td>
<td>17,936,998,984</td>
<td>332</td>
<td>267</td>
</tr>
<tr>
<td>Jupiter</td>
<td>304,226,455</td>
<td>855</td>
<td>521</td>
</tr>
<tr>
<td>Venus</td>
<td>7,022,389,492</td>
<td>653</td>
<td>63</td>
</tr>
<tr>
<td>Brahmagupta</td>
<td>146,567,298</td>
<td></td>
<td>893</td>
</tr>
<tr>
<td>The translation of Alfazārī</td>
<td>146,569,284.</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>Saturn</td>
<td>146,569,238</td>
<td></td>
<td>584</td>
</tr>
<tr>
<td>The fixed stars</td>
<td>120,000 according to the translation of Alfazārī</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The computation of these cycles rests on the mean motion of the planets. As a caturyuga is, according to Brahmagupta, the one-thousandth part of a kalpa, we have only to divide these cycles by 1000, and the quotient is the number of the star-cycles in one caturyuga.

Likewise, if we divide the cycles of the table by 10,000, the quotient is the number of the star-cycles in a kaliyuga, for this is one-tenth of a caturyuga. The fractions which may occur in those quotients are raised to wholes, to caturyugas or kaliyugas, by being multiplied by a number equal to the denominator of the fraction.

The following table represents the star-cycles specially in a caturyuga and kaliyuga, not those in a manvantara. Although the manvantaras are nothing but multiplications of whole caturyugas, still it is difficult to reckon with them on account of the saṃāhī which is attached both to the beginning and to the end of them.

<table>
<thead>
<tr>
<th>The names of the planets.</th>
<th>Their revolutions in a Caturyuga.</th>
<th>Their revolutions in a Kaliyuga.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sun</td>
<td>4,320,000</td>
<td>432,000</td>
</tr>
<tr>
<td>His apsis</td>
<td>0 0 0 0</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>Moon</td>
<td>57,753,300</td>
<td>57,753,300</td>
</tr>
<tr>
<td>Her apsis</td>
<td>Brahmagupta 488,105,151</td>
<td>488,105,151</td>
</tr>
<tr>
<td>ayabhaṣa</td>
<td>488,219</td>
<td>488,219</td>
</tr>
<tr>
<td>Her anomalistic revolution</td>
<td>Brahmagupta 57,265,194,111</td>
<td>57,265,194,111</td>
</tr>
<tr>
<td>The translation of</td>
<td>Aryabhaṣa 232,311,111</td>
<td>232,311,111</td>
</tr>
<tr>
<td>Ælftvārū</td>
<td>232,316</td>
<td>232,316</td>
</tr>
<tr>
<td>Mars</td>
<td>2,296,282,211</td>
<td>229,682,211</td>
</tr>
<tr>
<td>His apsis</td>
<td>0 0 0 0</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>His node</td>
<td>0 0 0 0</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>Mercury</td>
<td>17,936,998,911</td>
<td>1,793,699,911</td>
</tr>
<tr>
<td>His apsis</td>
<td>0 0 0 0</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>His node</td>
<td>0 0 0 0</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>Jupiter</td>
<td>364,220,211</td>
<td>364,220,211</td>
</tr>
<tr>
<td>His apsis</td>
<td>0 0 0 0</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>His node</td>
<td>0 0 0 0</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>Planets</td>
<td>Their revolutions in a Caturyuga</td>
<td>Their revolutions in a Kaliyuga</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>Venus</td>
<td>7,022,380</td>
<td>702,238</td>
</tr>
<tr>
<td>Her apsis</td>
<td>0,875</td>
<td>0,875</td>
</tr>
<tr>
<td>Her node</td>
<td>0,875</td>
<td>0,875</td>
</tr>
<tr>
<td>Saturn</td>
<td>146,567</td>
<td>14,656</td>
</tr>
<tr>
<td>His apsis</td>
<td>0,745</td>
<td>0,745</td>
</tr>
<tr>
<td>His node</td>
<td>0,745</td>
<td>0,745</td>
</tr>
<tr>
<td>The translation of Alfazâri</td>
<td>146,569,876</td>
<td>14,656,876</td>
</tr>
<tr>
<td>The correction of Alsarakhsi</td>
<td>146,569,876</td>
<td>14,656,876</td>
</tr>
<tr>
<td>The fixed stars</td>
<td>120</td>
<td>12</td>
</tr>
</tbody>
</table>

After we have stated how many of the star-cycles of a *kalpa* fall in a *caturyuga* and in a *kaliyuga*, according to Brahmagupta, we shall now derive from the number of star-cycles of a *caturyuga* according to Pulisa the number of star-cycles of a *kalpa*, first reckoning a *kalpa = 1000 caturyugas*, and, secondly, reckoning it as *1008 caturyugas*. These numbers are contained in the following table:

The Yugas according to Pulisa.

<table>
<thead>
<tr>
<th>Planets</th>
<th>Number of their revolutions in a Caturyuga</th>
<th>Number of their revolutions in a Kalpa of 1000 Caturyugas</th>
<th>Number of their revolutions in a Kalpa of 1008 Caturyugas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sun</td>
<td>4,320,000</td>
<td>4,320,000,000</td>
<td>4,354,560,000</td>
</tr>
<tr>
<td>Moon</td>
<td>57,753,336</td>
<td>57,753,336,000</td>
<td>58,215,362,688</td>
</tr>
<tr>
<td>Her apsis</td>
<td>488,219</td>
<td>488,219,000</td>
<td>492,124,752</td>
</tr>
<tr>
<td>Her node</td>
<td>232,226</td>
<td>232,226,000</td>
<td>234,083,808</td>
</tr>
<tr>
<td>Mars</td>
<td>2,296,824</td>
<td>2,296,824,000</td>
<td>2,315,199,592</td>
</tr>
<tr>
<td>Mercury</td>
<td>17,937,000</td>
<td>17,937,000,000</td>
<td>18,080,496,000</td>
</tr>
<tr>
<td>Jupiter</td>
<td>364,220</td>
<td>364,220,000</td>
<td>367,133,760</td>
</tr>
<tr>
<td>Venus</td>
<td>7,022,388</td>
<td>7,022,388,000</td>
<td>7,078,567,104</td>
</tr>
<tr>
<td>Saturn</td>
<td>146,564</td>
<td>146,564,000</td>
<td>147,736,112</td>
</tr>
</tbody>
</table>

We meet in this context with a curious circumstance. Evidently Alfazâri and Ya’kûb sometimes heard from their Hindu master expressions to this effect, that his calculation of the star-cycles was that of the *great Siddhânta*, whilst *Āryabhaṭa* reckoned with one-thousandth
part of it. They apparently did not understand him properly, and imagined that अर्याभट त (Arab. ārjabhad) meant a thousandth part. The Hindus pronounce the द of this word something between a d and an r. So the consonant became changed to an r, and people wrote ārjabhar. Afterwards it was still more mutilated, the first r being changed to a z, and so people wrote āra-
bhar. If the word in this garb wanders back to the Hindus, they will not recognise it.

Further, Abū-alḥasan of Al'ahwāz mentions the ro-
lutions of the planets in the years of al-ajabhar, i.e. in
caturyugas. I shall represent them in the table such
as I have found them, for I guess that they are directly
derived from the dictation of that Hindu. Possibly,
therefore, they give us the theory of Āryabhaṭa. Some
of these numbers agree with the star-cycles in a catur-
yuga, which we have mentioned on the authority of
Brahmagupta; others differ from them, and agree with
the theory of Pulisa; and a third class of numbers differs
from those of both Brahmagupta and Pulisa, as the
examination of the whole table will show.

<table>
<thead>
<tr>
<th>The names of the planets.</th>
<th>Their Yugas as parts of a Caturyuga according to Abū-alḥasan Al'ahwāz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sun</td>
<td>4,320,000</td>
</tr>
<tr>
<td>Moon</td>
<td>57,753,336</td>
</tr>
<tr>
<td>Her apsis</td>
<td>488,219</td>
</tr>
<tr>
<td>Her node</td>
<td>232,226</td>
</tr>
<tr>
<td>Mars</td>
<td>2,296,828</td>
</tr>
<tr>
<td>Mercury</td>
<td>17,937,020</td>
</tr>
<tr>
<td>Jupiter</td>
<td>304,224</td>
</tr>
<tr>
<td>Venus</td>
<td>7,022,388</td>
</tr>
<tr>
<td>Saturn</td>
<td>146,564</td>
</tr>
</tbody>
</table>

Page 212.

Star-cycles according to Abū-alḥasan of Al'ahwāz.
CHAPTER LI.

The months of the Hindus are lunar, their years solar; therefore their new year's day must in each solar year fall by so much earlier as the lunar year is shorter than the solar (roughly speaking, by eleven days). If this precession makes up one complete month, they act in the same way as the Jews, who make the year a leap year of thirteen months by reckoning the month Adar twice, and in a similar way to the heathen Arabs, who in a so-called annus procrastinationis postponed the new year's day, thereby extending the preceding year to the duration of thirteen months.

The Hindus call the year in which a month is repeated in the common language matamásá. Mala means the dirt that clings to the hand. As such dirt is thrown away, thus the leap month is thrown away out of the calculation, and the number of the months of a year remains twelve. However, in the literature the leap month is called adhimásá.

That month is repeated within which (it being considered as a solar month) two lunar months finish. If the end of the lunar month coincides with the beginning of the solar month, if, in fact, the former ends before any part of the latter has elapsed, this month is repeated, because the end of the lunar month, although
CHAPTER LI.

it has not yet run into the new solar month, still does no longer form part of the preceding month.

If a month is repeated, the first time it has its ordinary name, whilst the second time they add before the name the word ēdurā to distinguish between them. If, e.g. the month Āśādha is repeated, the first is called Āśādha, the second Durāśādha. The first month is that which is disregarded in the calculation. The Hindus consider it as unlucky, and do not celebrate any of the festivals in it which they celebrate in the other months. The most unlucky time in this month is that day on which the lunation reaches its end.

The author of the Vishnu-Dharma says: "Candra (māna) is smaller than sāvana, i.e. the lunar year is smaller than the civil year, by six days, i.e. ānarātra. Una means decrease, deficiency. Saura is greater than candra by eleven days, which gives in two years and seven months the supernumerary adhimāsa month. This whole month is unlucky, and nothing must be done in it."

This is a rough description of the matter. We shall now describe it accurately.

The lunar year has 360 lunar days, the solar year has 371\frac{3}{50} lunar days. This difference sums up to the thirty days of an adhimāsa in the course of 976\frac{4}{17}\frac{6}{99} lunar days, i.e. in 32 months, or in 2 years, 8 months, 16 days, plus the fraction: \frac{4}{17}\frac{6}{99} lunar day, which is nearly = 5 minutes, 15 seconds.

As the religious reason of this theory of intercalation the Hindus mention a passage of the Veda, which they have read to us, to the following tenor: "If the day of conjunction, i.e. the first lunar day of the month, passes without the sun's marching from one zodiacal sign to the other, and if this takes place on the following day, the preceding month falls out of the calculation."

The meaning of this passage is not correct, and the fault must have risen with the man who recited and
translated the passage to me. For a month has thirty lunar days, and a twelfth part of the solar year has \(\frac{30^{55}}{2} \) lunar days. This fraction, reckoned in days-
minutes, is equal to \(55^1 19^{22} 30^{34}\). If we now, for
example, suppose a conjunction or new moon to take
place at \(0^\circ\) of a zodiacal sign, we add this fraction to
the time of the conjunction, and thereby we find the
times of the sun's entering the signs successively. As
now the difference between a lunar and a solar month
is only a fraction of a day, the sun's entering a new
sign may naturally take place on any of the days of the
month. It may even happen that the sun enters two
consecutive signs on the same month-day (e.g. on the
second or third of two consecutive months). This is
the case if in one month the sun enters a sign before
\(4^1 40^{37} 30^{34}\) have elapsed of it; for the next follow-
ing entering a sign falls later by \(55^1 19^{23} 30^{34}\), and
both these fractions (i.e. less than \(4^1 40^{37} 30^{34}\) plus
the last-mentioned fraction) added together are not
sufficient to make up one complete day. Therefore
the quotation from the *Veda* is not correct.

I suppose, however, that it may have the following
correct meaning:—If a month elapses in which the sun
does not march from one sign to another, this month is
disregarded in the calculation. For if the sun enters
a sign on the 29th of a month, when at least \(4^1 40^{37} 30^{34}\)
have elapsed of it, this entering takes place before
the beginning of the succeeding month, and therefore
the latter month is without an entering of the sun into
a new sign, because the next following entering falls on
the first of the next but one or third month. If you
compute the consecutive enterings, beginning with a
conjunction taking place in \(0^\circ\) of a certain sign, you
find that in the thirty-third month the sun enters a new
sign at \(30^1 20^{22}\) of the twenty-ninth day, and that he
enters the next following sign at \(25^1 39^{22} 30^{34}\) of the
first day of the thirty-fifth month.
Hence also becomes evident why this month, which is disregarded in the calculation, is considered as unlucky. The reason is that the month misses just that moment which is particularly adapted to earn in it a heavenly reward, viz. the moment of the sun's entering a new sign.

As regards *adhimása*, the word means the first month, for AD means beginning (i.e. ádī). In the books of Ya’kūb Ibn Tārīk and of Alfazārī this name is written *padamása*. *Pada* (in the orig. *P–Dh*) means end, and it is possible that the Hindus call the leap month by both names; but the reader must be aware that these two authors frequently misspell or disfigure the Indian words, and that there is no reliance on their tradition. I only mention this because Pulisa explains the latter of the two months, which are called by the same name, as the supernumerary one.

The month, as the time from one conjunction to the following, is one revolution of the moon, which revolves through the ecliptic, but in a course distant from that of the sun. This is the difference between the motions of the two heavenly luminaries, whilst the direction in which they move is the same. If we subtract the revolutions of the sun, i.e. the solar cycles of a *kalpa*, from its lunar cycles, the remainder shows how many more lunar months a *kalpa* has than solar months. All months or days which we reckon as parts of whole *kalpas* we call here universal, and all months or days which we reckon as parts of a part of a *kalpa*, e.g. of a *caturyuga*, we call partial, for the purpose of simplifying the terminology.

The year has twelve solar months, and likewise twelve lunar months. The lunar year is complete with twelve months, whilst the solar year, in consequence of the difference of the two year kinds, has, with the addition of the *adhimása*, thirteen months. Now evidently the difference between the universal solar and
lunar months is represented by these supernumerary months, by which a single year is extended to thirteen months. These, therefore, are the universal adhimāsa months.

The universal solar months of a kalpa are 51,840,000,000; the universal lunar months of a kalpa are 53,433,300,000. The difference between them or the adhimāsa months is 1,593,300,000.

Multiplying each of these numbers by 30, we get days, viz. solar days of a kalpa, 1,555,200,000,000; lunar days, 1,602,999,000,000; the days of the adhimāsa months, 47,799,000,000.

In order to reduce these numbers to smaller ones we divide them by a common divisor, viz. 9,000,000. Thus we get as the sum of the days of the solar months 172,800; as the sum of the days of the lunar months, 178,111; and as the sum of the days of the adhimāsa months, 53⅓.

If we further divide the universal solar, civil, and lunar days of a kalpa, each kind of them separately, by the universal adhimāsa months, the quotient represents the number of days within which a whole adhimāsa month sums up, viz. in 976⅘ solar days, in 1006½ civil days.

This whole computation rests on the measures which Brahmagupta adopts regarding a kalpa and the star-cycles in a kalpa.

According to the theory of Pulisa regarding the caturyuga, a caturyuga has 51,840,000 solar months, 53,433,336 lunar months, 1,593,336 adhimāsa months. Accordingly a caturyuga has 1,555,200,000 solar days, 1,603,000,080 lunar days, 47,800,080 days of adhimāsa months.

If we reduce the numbers of the months by the common divisor of 24, we get 2,160,000 solar months, 2,226,389 lunar months, 66,389 adhimāsa months. If we divide the numbers of the day by the common
CHAPTER LI.

divisor of 720, we get 2,160,000 solar days, 2,226,389 lunar days, 66,389 days of the adhimāsa months. If we, lastly, divide the universal solar, lunar, and civil days of a caturyuga, each kind separately, by the universal adhimāsa months of a caturyuga, the quotient represents the numbers of days within which a whole adhimāsa month sums up, viz. in $976\frac{4}{5} \text{ solar days,}$ in $1006\frac{4}{5} \text{ lunar days,}$ and in $990\frac{1}{3} \text{ civil days}.$

These are the elements of the computation of the adhimāsa, which we have worked out for the benefit of the following investigations.

Regarding the cause which necessitates the ānarātra, lit. the days of the decrease, we have to consider the following.

If we have one year or a certain number of years, and reckon for each of them twelve months, we get the corresponding number of solar months, and by multiplying the latter by 30, the corresponding number of solar days. It is evident that the number of the lunar months or days of the same period is the same, plus an increase which forms one or several adhimāsa months. If we reduce this increase to adhimāsa months due to the period of time in question, according to the relation between the universal solar months and the universal adhimāsa months, and add this to the months or days of the years in question, the sum represents the partial lunar days, i.e. those which correspond to the given number of years.

This, however, is not what is wanted. What we want is the number of civil days of the given number of years which are less than the lunar days; for one civil day is greater than one lunar day. Therefore, in order to find that which is sought, we must subtract something from the number of lunar days, and this element which must be subtracted is called ānarātra.

The ānarātra of the partial lunar days stands in the same relation to the universal lunar days as the uni-
versal civil days are less than the universal lunar days. The universal lunardays of a kalpa are 1,602,999,000,000. This number is larger than the number of universal civil days by 25,082,550,000, which represents the universal ūnarâttra.

Both these numbers may be diminished by the common divisor of 450,000. Thus we get 3,562,220 universal lunar days, and 55,739 universal ūnarâttra days.

According to Pulisa, a caturyuga has 1,603,000,080 lunar days, and 25,082,280 ūnarâttra days. The common divisor by which both numbers may be reduced is 360. Thus we get 4,452,778 lunar days and 69,673 ūnarâttra days.

These are the rules for the computation of the ūnarâttra, which we shall hereafter want for the computation of the ahaṛgaṇa. The word means sum of days; for ḍh means day, and argaṇa, sum.

Ya'kūb Ibn Ṭairīk has made a mistake in the computation of the solar days; for he maintains that you get them by subtracting the solar cycles of a kalpa from the civil days of a kalpa, i.e. the universal civil days. But this is not the case. We get the solar days by multiplying the solar cycles of a kalpa by 12, in order to reduce them to months, and the product by 30, in order to reduce them to days, or by multiplying the number of cycles by 360.

In the computation of the lunar days he has first taken the right course, multiplying the lunar months of a kalpa by 30, but afterwards he again falls into a mistake in the computation of the days of the ūnarâttra. For he maintains that you get them by subtracting the solar days from the lunar days, whilst the correct thing is to subtract the civil days from the lunar days.
CHAPTER LII.

ON THE CALCULATION OF "AHARGAṆA" IN GENERAL, THAT IS, THE RESOLUTION OF YEARS AND MONTHS INTO DAYS, AND, VICE VERSĀ, THE COMPOSITION OF YEARS AND MONTHS OUT OF DAYS.

The general method of resolution is as follows:—The complete years are multiplied by 12; to the product are added the months which have elapsed of the current year, [and this sum is multiplied by 30:] to this product are added the days which have elapsed of the current month. The sum represents the saurāhargana, i.e. the sum of the partial solar days.

You write down the number in two places. In the one place you multiply it by 5311, i.e. the number which represents the universal adhimāsa months. The product you divide by 172,800, i.e. the number which represents the universal solar months. The quotient you get, as far as it contains complete days, is added to the number in the second place, and the sum represents the candrāhargana, i.e. the sum of the partial lunar days.

The latter number is again written down in two different places. In the one place you multiply it by 55,739, i.e. the number which represents the universal ṛunarātra days, and divide the product by 3,562,220, i.e. the number which represents the universal lunar days. The quotient you get, as far as it represents complete days, is subtracted from the number written in the second place, and the remainder is the sāvandhargana, i.e. the sum of civil days which we wanted to find.
However, the reader must know that this computation applies to dates in which there are only complete adhimāsa and unarātra days, without any fraction. If, therefore, a given number of years commences with the beginning of a kalpa, or a caturyuga, or a kaliyuga, this computation is correct. But if the given years begin with some other time, it may by chance happen that this computation is correct, but possibly, too, it may result in proving the existence of adhimāsa time, and in that case the computation would not be correct. Also the reverse of these two eventualities may take place. However, if it is known with what particular moment in the kalpa, caturyuga, or kaliyuga a given number of years commences, we use a special method of computation, which we shall hereafter illustrate by some examples.

We shall carry out this method for the beginning of the Indian year Śakakāla 953, the same year which we use as the gauge-year in all these computations.

First we compute the time from the beginning of the life of Brahma, according to the rules of Brahmagupta. We have already mentioned that 6068 kalpas have elapsed before the present one. Multiplying this by the well-known number of the days of a kalpa (1,577,916,450,000 civil days, vide i. p. 368), we get 9,574,797,018,600,000 as the sum of the days of 6068 kalpas.

Dividing this number by 7, we get 5 as a remainder, and reckoning five days backwards from the Saturday which is the last day of the preceding kalpa, we get Tuesday as the first day of the life of Brahma.

We have already mentioned the sum of the days of a caturyuga (1,577,916,450 days, v. i. p. 370), and have explained that a krita-yuga is equal to four-tenths of it, i.e. 631,166,580 days. A manvantara has seventy-one times as much, i.e. 112,032,067,950 days. The days of
six manvantaras and their saṃdhī, consisting of seven kṛdayuga, are 676,610,573,760. If we divide this number by 7, we get a remainder of 2. Therefore the six manvantaras end with a Monday, and the seventh begins with a Tuesday.

Of the seventh manvantara there have already elapsed twenty-seven caturyugas, i.e. 42,603,744,150 days. If we divide this number by 7, we get a remainder of 2. Therefore the twenty-eighth caturyuga begins with a Thursday.

The days of the yugas which have elapsed of the present caturyuga are 1,420,124,805. The division by 7 gives the remainder 1. Therefore the kaliyuga begins with a Friday.

Now, returning to our gauge-year, we remark that the years which have elapsed of the kalpa up to that year are 1,972,948,132. Multiplying them by 12, we get as the number of their months 23,675,377,584. In the date which we have adopted as gauge-year there is no month, but only complete years; therefore we have nothing to add to this number.

By multiplying this number by 30 we get days, viz. 710,261,327,520. As there are no days in the normal date, we have no days to add to this number. If, therefore, we had multiplied the number of years by 360, we should have got the same result, viz. the partial solar days.

Multiply this number by 5311 and divide the product by 172,800. The quotient is the number of the adhimāsa days, viz. 21,829,849,0181/39. If, in multiplying and dividing, we had used the months, we should have found the adhimāsa months, and, multiplied by 30, they would be equal to the here-mentioned number of adhimāsa days.

If we further add the adhimāsa days to the partial solar days, we get the sum of 732,091,176,538, i.e. the partial lunar days. Multiplying them by 55,739, and
dividing the product by 3,562,220, we get the partial ānarātra days, viz., 11,455,224,575.1.44.7.644.

This sum of days without the fraction is subtracted from the partial lunar days, and the remainder, 720,635,951,963, represents the number of the civil days of our gauge-date.

Dividing it by 7, we get as remainder 4, which means that the last of these days is a Wednesday. Therefore the Indian year commences with a Thursday.

If we further want to find the adhimāsa time, we divide the adhimāsa days by 30, and the quotient is the number of the adhimāsas which have elapsed, viz. 727,661,633, plus a remainder of 28 days, 51 minutes, 30 seconds, for the current year. This is the time which has already elapsed of the adhimāsa month of the current year. To become a complete month, it only wants 1 day, 8 minutes, 30 seconds more.

We have here used the solar and lunar days, the adhimāsa and ānarātra days, to find a certain past portion of a kalpa. We shall now do the same to find the past portion of a caturyuga, and we may use the same elements for the computation of a caturyuga which we have used for that of a kalpa, for both methods lead to the same result, as long as we adhere to one and the same theory (e.g. that of Brahmagupta), and do not mix up different chronological systems, and as long as each gunakāra and its bhāgabhāra, which we here mention together, correspond to each other in the two computations.

The former term means a multiplicator in all kinds of calculations. In our (Arabic) astronomical handbooks, as well as those of the Persians, the word occurs in the form guncār. The second term means each divisor. It occurs in the astronomical handbooks in the form bāhecār.

It would be useless if we were to exemplify this computation on a caturyuga according to the theory of Brah-
Chapter LII.

Magupta, as according to him a caturyuga is simply one-
thousandth of a kalpa. We should only have to shorten
the above-mentioned numbers by three ciphers, and in
every other respect get the same results. Therefore we
shall now give this computation according to the theory
of Pulisa, which, though applying to the caturyuga, is
similar to the method of computation used for a kalpa.

According to Pulisa, in the moment of the beginning
of the gauge-year, there have elapsed of the years of the
caturyuga 3,244,132, which are equal to 1,167,887,520
solar days. If we multiply the number of months
which corresponds to this number of days with the
number of the adhimāsa months of a caturyuga or a
Corresponding multiplicator, and divide the product by
the number of the solar months of a caturyuga, or a
Corresponding divisor, we get as the number of adhi-
māsa months 1,196,525,483,937.

Further, the past 3,244,132 years of the caturyuga
are 1,203,783,270 lunar days. Multiplying them by
the number of the śunarātra days of a caturyuga, and
dividing the product by the lunar days of a caturyuga, we
get as the number of śunarātra days 18,835,700,242,826,359.
Accordingly, the civil days which have elapsed since
the beginning of the caturyuga are 1,184,947,570, and
this it was which we wanted to find.

We shall here communicate a passage from the
Pulisa-siddhānta, describing a similar method of com-
putation, for the purpose of rendering the whole subject
clearer to the mind of the reader, and fixing it there
more thoroughly. Pulisa says: “We first mark the
kalpas which have elapsed of the life of Brahman
before the present kalpa, i.e. 6068. We multiply this
number by the number of the caturyugas of a kalpa,
i.e. 1008. Thus we get the product 6,116,544. This
number we multiply by the number of the yugas of a
caturyuga, i.e. 4, and get the product 24,466,176. This
number we multiply by the number of years of a yuga,
i.e. 1,080,000, and get the product 26,423,470,080,000. These are the years which have elapsed before the present kalpa.

We further multiply the latter number by 12, so as to get months, viz. 317,081,640,960,000. We write down this number in two different places.

In the one place, we multiply it by the number of the adhimása months of a caturyuga, i.e. 1,593,336, or a corresponding number which has been mentioned in the preceding, and we divide the product by the number of the solar months of a caturyuga, i.e. 51,840,000. The quotient is the number of adhimása months, viz. 9,745,709,750,784.

This number we add to the number written in the second place, and get the sum of 326,827,350,710,784. Multiplying this number by 30, we get the product 9,804,820,521,323,520, viz. lunar days.

This number is again written down in two different places. In the one place we multiply it by the ʿunarātra of a caturyuga, i.e. the difference between civil and lunar days, and divide the product by the lunar days of a caturyuga. Thus we get as quotient 153,416,869,240,320, i.e. ʿunarātra days.

We subtract this number from that one written in the second place, and we get as remainder 9,651,403,652,083,200, i.e. the days which have elapsed of the life of Brahman before the present kalpa, or the days of 6068 kalpas, each kalpa having 1,590,541,142,400 days. Dividing this sum of days by 7, we get no remainder. This period of time ends with a Saturday, and the present kalpa commences with a Sunday. This shows that the beginning of the life of Brahman too was a Sunday.

Of the current kalpa there have elapsed six manvantaras, each of 72 caturyugas, and each caturyuga of 4,320,000 years. Therefore six manvantaras have 1,866,240,000 years. This number we compute in the
same way as we have done in the preceding example. Thereby we find as the number of days of six complete manvantaras, 681,660,489,600. Dividing this number by 7, we get as remainder 6. Therefore the elapsed manvantaras end with a Friday, and the seventh manvantara begins with a Saturday.

Of the current manvantara there have elapsed 27 caturyugas, which, according to the preceding method of computation, represent the number of 42,603,780,600 days. The twenty-seventh caturyuga ends with a Monday, and the twenty-eighth begins with a Tuesday.

Of the current caturyuga there have elapsed three yugas, or 3,240,000 years. These represent, according to the preceding method of computation, the number of 1,183,438,350 days. Therefore these three yugas end with a Thursday, and kaliyuga commences with a Friday.

Accordingly, the sum of days which have elapsed of the kalpa is 725,447,708,550, and the sum of days which have elapsed between the beginning of the life of Brahman and the beginning of the present kaliyuga is 9,652,129,099,791,750.

To judge from the quotations from Āryabhaṭa, as we have not seen a book of his, he seems to reckon in the following manner:

The sum of days of a caturyuga is 1,577,917,500. The time between the beginning of the kalpa and the beginning of the kaliyuga is 725,447,570,625 days. The time between the beginning of the kalpa and our gauge-date is 725,449,079,845. The number of days which have elapsed of the life of Brahman before the present kalpa is 9,651,401,817,120,000.

This is the correct method for the resolution of years into days, and all other measures of time are to be treated in accordance with this.

We have already pointed out (on p. 25) a mistake
of Ya’kūb Ibn Ṭārik in the calculation of the universal solar and ānarātra days. As he translated from the Indian language a calculation the reasons of which he did not understand, it would have been his duty to examine it, and to check the various numbers of it one by the other. He mentions in his book also the method of ahargana, i.e. the resolution of years, but his description is not correct; for he says:—

"Multiply the months of the given number of years by the number of the adhimāsa months which have elapsed up to the time in question, according to the well-known rules of adhimāsa. Divide the product by the solar months. The quotient is the number of complete adhimāsa months plus its fractions which have elapsed up to the date in question."

The mistake is here so evident that even a copyist would notice it; how much more a mathematician who makes a computation according to this method; for he multiplies by the partial adhimāsa instead of the universal.

Besides, Ya’kūb mentions in his book another and perfectly correct method of resolution, which is this: "When you have found the number of months of the years, multiply them by the number of the lunar months, and divide the product by the solar months. The quotient is the number of adhimāsa months together with the number of the months of the years in question.

"This number you multiply by 30, and you add to the product the days which have elapsed of the current month. The sum represents the lunar days.

"If, instead of this, the first number of months were multiplied by 30, and the past portion of the month were added to the product, the sum would represent the partial solar days; and if this number were further computed according to the preceding method, we should get the adhimāsa days together with the solar days."
CHAPTER LII.

The rationale of this calculation is the following:—If we multiply, as we have done, by the number of the universal adhimása months, and divide the product by the universal solar months, the quotient represents the portion of adhimása time by which we have multiplied. As, now, the lunar months are the sum of solar and adhimása months, we multiply by them (the lunar months) and the division remains the same. The quotient is the sum of that number which is multiplied and that one which is sought for, i.e. the lunar days.

We have already mentioned in the preceding part that by multiplying the lunar days by the universal ánarátra days, and by dividing the product by the universal lunar days, we get the portion of ánarátra days which belongs to the number of lunar days in question. However, the civil days in a kalpa are less than the lunar days by the amount of the ánarátra days. Now the lunar days we have stand in the same relation to the lunar days minus their due portion of ánarátra days as the whole number of lunar days (of a kalpa) to the whole number of lunar days (of a kalpa) minus the complete number of ánarátra days (of a kalpa); and the latter number are the universal civil days. If we, therefore, multiply the number of lunar days we have by the universal civil days, and divide the product by the universal lunar days, we get as quotient the number of civil days of the date in question, and that it was which we wanted to find. Instead of multiplying by the whole sum of civil days (of a kalpa), we multiply by 3,506,481, and instead of dividing by the whole number of lunar days (of a kalpa), we divide by 3,562,220.

The Hindus have still another method of calculation. It is the following:—"They multiply the elapsed years of the kalpa by 12, and add to the product the complete months which have elapsed of the current year. The sum they write down above the number 69,120,
and the number they get is subtracted from the number written down in the middle place. The double of the remainder they divide by 65. Then the quotient represents the partial adhimāsa months. This number they add to that one which is written down in the uppermost place. They multiply the sum by 30, and add to the product the days which have elapsed of the current month. The sum represents the partial solar days. This number is written down in two different places, one under the other. They multiply the lower number by 11, and write the product under it. Then they divide it by 403,963, and add the quotient to the middle number. They divide the sum by 703, and the quotient represents the partial ānarātra days. This number they subtract from the number written in the uppermost place, and the remainder is the number of civil days which we want to find."

The rationale of this computation is the following:—
If we divide the universal solar months by the universal adhimāsa months, we get as the measure of one adhimāsa month \(\frac{32}{15} \) solar months. The double of this is \(\frac{1115}{180} \) solar months. If we divide by this number the double of the months of the given years, the quotient is the number of the partial adhimāsas. However, if we divide by wholes plus a fraction, and want to subtract from the number which is divided a certain portion, the remainder being divided by the wholes only, and the two subtracted portions being equal portions of the wholes to which they belong, the whole divisor stands in the same relation to its fraction as the divided number to the subtracted portion.

If we make this computation for our gauge-year, we get the fraction of \(\frac{1158}{1800} \) and dividing both numbers by 15, we get \(\frac{77}{120} \).

It would also be possible here to reckon by single adhimāsas instead of double ones, and in that case it
CHAPTER LII.

would not be necessary to double the remainder. But the inventor of this method seems to have preferred the reduplication in order to get smaller numbers; for if we reckon with single adhimásas, we get the fraction of $\frac{5}{1846}$, which may be reduced by 96 as a common divisor. Thereby we get 89 as the multiplicator, and 5400 as the divisor. In this the inventor of the method has shown his sagacity, for the reason for his computation is the intention of getting partial lunar days and smaller multiplicators.

His method (i.e. Brahmagupta's) for the computation of the ąnarātra days is the following:—

If we divide the universal lunar days by the universal ąnarātra days, we get as quotient 63 and a fraction, which may be reduced by the common divisor 450,000. Thus we get $63\frac{49}{490}$ lunar days as the period of time within which one ąnarātra day sums up. If we change this fraction into eleventh parts, we get $\frac{9}{11}$ and a remainder of $\frac{8}{5}$, which, if expressed in minutes, is equal to 0' $59''\ 54''$.

Since this fraction is very near to one whole, people have neglected it, and use, in a rough way, $\frac{1}{11}$ instead.

Therefore, according to the Hindus, one ąnarātra day sums up in $63\frac{1}{11}$ or $\frac{703}{11}$ lunar days.

If we now multiply the number of ąnarātra days, which corresponds to the number of lunar days by $63\frac{50}{51}$, the product is less than that which we get by multiplying by $63\frac{1}{11}$. If we, therefore, want to divide the lunar days by $\frac{703}{11}$, on the supposition that the quotient is equal to the first number, a certain portion must be added to the lunar days, and this portion he (the author of Pulisa-Siddhānta) had not computed accurately, but only approximatively. For if we multiply the universal ąnarātra days by 703, we get the product 17,533,032,650,000, which is more than eleven times the universal lunar days. And if we multiply the universal lunar days by 11, we get the product 17,632,989,000,000.
The difference between the two numbers is 43,650,000. If we divide by this number the product of eleven times the universal lunar days, we get as quotient 403,963. This is the number used by the inventor of the method. If there were not a small remainder beyond the last-mentioned quotient (403,963 + a fraction), his method would be perfectly correct. However, there remains a fraction of \(\frac{4}{4965} \) or \(\frac{9}{7} \), and this is the amount which is neglected. If he uses this divisor without the fraction, and divides by it the product of eleven times the partial lunar days, the quotient would be by so much larger as the dividendum has increased. The other details of the calculation do not require comment.

Because the majority of the Hindus, in reckoning their years, require the adhimāsa, they give the preference to this method, and are particularly painstaking in describing the methods for the computation of the adhimāsa, disregarding the methods for the computation of the ānarātra days and the sum of the days (ahargana). One of their methods of finding the adhimāsa for the years of a kalpa or caturyuga or kaliyuga is this:—

They write down the years in three different places. They multiply the upper number by 10, the middle by 2481, and the lower by 7739. Then they divide the middle and lower numbers by 9600, and the quotients are days for the middle number and avama for the lower number.

The sum of these two quotients is added to the number in the upper place. The sum represents the number of the complete adhimāsa days which have elapsed, and the sum of that which remains in the other two places is the fraction of the current adhimāsa. Dividing the days by 30, they get months.

Yaḥṣīb Ibn Ṭāriba states this method quite correctly. We shall, as an example, carry out this computation for our gauge-year. The years of the kalpa which have elapsed
CHAPTER LII.

39

till the moment of the gauge-date are 1,972,948,132. We write down this number in three different places. The upper number we multiply by ten, by which it gets a cipher more at the right side. The middle number we multiply by 2481 and get the product 4,894,884,315,492. The lower number we multiply by 7739, and get the product 15,268,645,593,548. The latter two numbers we divide by 9600; thereby we get for the middle number as quotient 509,883,782 and a remainder of 8292, and for the lower number a quotient of 1,590,483,915 and a remainder of 9548. The sum of these two remainders is 17,840. This fraction (i.e. \(\frac{17,840}{9600} \)) is reckoned as one whole. Thereby the sum of the numbers in all three places is raised to 21,829,849,018, i.e. adhimaśa days, plus \(\frac{17}{30} \) day of the current adhimaśa day (i.e. which is now in course of summing up).

Reducing these days to months, we get 727,661,633 months and a remainder of twenty-eight days, which is called Śh-D-D. This is the interval between the beginning of the month Caitra, which is not omitted in the series of months, and the moment of the vernal equinox.

Further, adding the quotient which we have got for the middle number to the years of the kalpa, we get the sum of 2,482,314,914. Dividing this number by 7, we get the remainder 3. Therefore the sun has, in the year in question, entered Aries on a Tuesday.

The two numbers which are used as multiplicators for the numbers in the middle and lower places are to be explained in the following manner:—

Dividing the civil days of a kalpa by the solar cycles of a kalpa, we get as quotient the number of days which compose a year, i.e. \(\frac{365,114,141,006,000}{365} \). Reducing this fraction by the common divisor of 450,000, we get \(\frac{365,348,1}{365} \). The fraction may be further reduced by being divided by 3, but people leave it as it is, in order
that this fraction and the other fractions which occur in the further course of this computation should have the same denominator.

Dividing the universal अनारात्रा days by the solar years of a kalpa, the quotient is the number of अनारात्रा days which belong to a solar year, viz. \(52,437,358,088\) days. Reducing this fraction by the common divisor of 450,000, we get \(52,720\) days. The fraction may further be reduced by being divided by 3.

The measures of solar and lunar years are about 360 days, as are also the civil years of sun and moon, the one being a little larger, the other a little shorter. The one of these measures, the lunar year, is used in this computation, whilst the other measure, the solar year, is sought for. The sum of the two quotients (of the middle and lower number) is the difference between the two kinds of years. The upper number is multiplied by the sum of the complete days, and the middle and lower numbers are multiplied by each of the two fractions.

If we want to abbreviate the computation, and do not, like the Hindus, wish to find the mean motions of sun and moon, we add the two multiplicators of the middle and lower numbers together. This gives the sum of 10,220.

To this sum we add, for the upper place, the product of the divisor \(\times 10 = 96,000\), and we get \(106,220\). Reducing this fraction by the half, we get \(53,111\). 180.

In this chapter (p. 27) we have already explained that by multiplying the days by 5311, and dividing the product by 172,800, we get the number of the adhinaśas. If we now multiply the number of years instead of the days, the product is \(\frac{1}{380}\) of the product which we should get when multiplying by the number of days. If we, therefore, want to have the same quotient which we get by the first division, we must divide by \(\frac{1}{380}\) of the divisor by which we divided in the first case, viz. 480 (for 360 \(\times 480 = 172,800\)).
CHAPTER LI.

Similar to this method is that one prescribed by Pulisa: "Write down the number of the partial months in two different places. In the one place multiply it by \(1111\), and divide the product by 67,500. Subtract the quotient from the number in the other place, and divide the remainder by 32. The quotient is the number of the \(adhim\text{\=a}sa\) months, and the fraction in the quotient, if there is one, represents that part of an \(adhim\text{\=a}sa\) month which is in course of formation. Multiplying this amount by 30, and dividing the product by 32, the quotient represents the days and day-fractions of the current \(adhim\text{\=a}sa\) month."

The rationale of this method is the following:

If you divide the solar months of a \(caturyuga\) by the \(adhim\text{\=a}sa\) months of a \(caturyuga\), in accordance with the theory of Pulisa, you get as quotient \(\frac{32\frac{3}{4}}{32}\). If you divide the months by this number, you get the complete \(adhim\text{\=a}sa\) months of the past portion of the \(caturyuga\) or \(kalpa\). Pulisa, however, wanted to divide by wholes alone, without any fractions. Therefore he had to subtract something from the dividendum, as has already been explained in a similar case (p. 36). We have found, in applying the computation to our gage-year, as the fraction of the divisor, \(\frac{3}{4}\), which may be reduced by being divided by 32. Thereby we get \(\frac{111}{500}\).

Pulisa has, in this calculation, reckoned by the solar days into which a date is resolved, instead of by months. For he says: "You write this number of days in two different places. In the one place you multiply it by 271 and divide the product by 4,050,000. The quotient you subtract from the number in the other place and divide the remainder by 976. The quotient is the number of \(adhim\text{\=a}sa\) months, days, and day-fractions."

Further he says: "The reason of this is, that by dividing the days of a \(caturyuga\) by the \(adhim\text{\=a}sa\)
months, you get as quotient 976 days and a remainder of 104,064. The common divisor for this number and for the divisor is 384. Reducing the fraction thereby, we get \(\frac{2}{384}\) days."

Here, however, I suspect either the copyist or the translator, for Pulisa was too good a scholar to commit similar blunders. The matter is this:—

Those days which are divided by the \textit{adhimāsa} months are of necessity \textit{solar} days. The quotient contains wholes and fractions, as has been stated. Both denominator and numerator have as common divisor the number 24. Reducing the fraction thereby, we get \(\frac{6}{28}\).

If we apply this rule to the months, and reduce the number of \textit{adhimāsa} months to fractions, we get 47,800,000 as denominator. A divisor common to both this denominator and its numerator is 16. Reducing the fraction thereby, we get \(\frac{3}{150,000}\).

If we now multiply the number which Pulisa adopts as divisor by the just-mentioned common divisor, i.e. 384, we get the product 1,555,200,000, viz. solar days in a \textit{caturyuga}. But it is quite impossible that this number should, in this part of the calculation, be used as a divisor. If we want to base this method on the rules of Brahmagupta, dividing the universal solar months by the \textit{adhimāsa} months, the result will be, according to the method employed by him, double the amount of the \textit{adhimāsa}.

Further, a similar method may be used for the computation of the \textit{ānarātra} days.

Write down the partial lunar days in two different places. In the one place, multiply the number by 50,663, and divide the product by 3,562,220. Subtract the quotient from the number in the other place, and divide the remainder by 63 without any fraction.

In the further very lengthy speculations of the
Hindus there is no use at all, especially as they require the *avama*, i.e. the remainder of the partial ástara, for the remainders which we get by the two divisions have two different denominators.

He who is perfectly acquainted with the preceding rules of resolution will also be able to carry out the opposite function, the composition, if a certain amount of past days of a *kalpa* or *caturyuga* be given. To make sure, however, we shall now repeat the necessary rules.

If we want to find the years, the days being given, the latter must necessarily be civil days, i.e. the difference between the lunar days and the ástara days. This difference (i.e. the civil days) stands in the same relation to their ástara as the difference between the universal lunar days and the universal ástara days, viz. 1,577,916,450,000, to the universal ástara days. The latter number (i.e. 1,577,916,450,000) is represented by 3,506,481. If we multiply the given days by 55,739, and divide the product by 3,506,481, the quotient represents the partial ástara days. Adding hereto the civil days, we get the number of lunar days, viz. the sum of the partial solar and the partial *adhimása* days. These lunar days stand in the same relation to the *adhimása* days which belong to them as the sum of the universal solar and *adhimása* days, viz. 160,299,900,000, to the universal *adhimása* days, which number (i.e. 160,299,900,000) is represented by the number 178,111.

If you, further, multiply the partial lunar days by 5311, and divide the product by 178,111, the quotient is the number of the partial *adhimása* days. Subtracting them from the lunar days, the remainder is the number of solar days. Thereupon you reduce the days to months by dividing them by 30, and the months to years by dividing them by 12. This is what we want to find.

E.g. the partial civil days which have elapsed up to
our gauge-year are 720,635,951,963. This number is given, and what we want to find is, how many Indian years and months are equal to this sum of days.

First, we multiply the number by 55,739, and divide the product by 3,506,481. The quotient is 11,455,224,575 ānarātra days.

We add this number to the civil days. The sum is 732,091,176,538 lunar days. We multiply them by 5311, and divide the product by 178,111. The quotient is the number of adhimāsa days, viz. 21,829,849,018.

We subtract them from the lunar days and get the remainder of 710,261,327,520, i.e. partial solar days. We divide these by 30 and get the quotient of 23,675,377,584, i.e. solar months. Dividing them by 12, we get Indian years, viz. 1,972,948,132, the same number of years of which our gauge-date consists, as we have already mentioned in a previous passage.

Ya'kūb Ibn Ṭārik has a note to the same effect: "Multiply the given civil days by the universal lunar days and divide the product by the universal civil days. Write down the quotient in two different places. In the one place multiply the number by the universal adhimāsa days and divide the product by the universal lunar days. The quotient gives the adhimāsa months. Multiply them by 30 and subtract the product from the number in the other place. The remainder is the number of partial solar days. You further reduce them to months and years."

The rationale of this calculation is the following:—

We have already mentioned that the given number of days are the difference between the lunar days and their ānarātra, as the universal civil days are the difference between the universal lunar days and their universal ānarātra. These two measures stand in a constant relation to each other. Therefore we get the partial lunar days which are marked in two different places. Now, these are equal to the sum of the solar
and *adhimāsa* days, as the general lunar days are equal to the sum of universal solar days and universal *adhimāsa* days. Therefore the partial and the universal *adhimāsa* days stand in the same relation to each other as the two numbers written in two different places, there being no difference, whether they both mean months or days.

The following rule of Ya'kūb for the computation of the partial *unarātra* days by means of the partial *adhimāsa* months is found in all the manuscripts of his book:

"The past *adhimāsa*, together with the fractions of the current *adhimāsa*, are multiplied by the universal *unarātra* days, and the product is divided by the universal solar months. The quotient is added to the *adhimāsa*. The sum is the number of the past *unarātras*."

This rule does not, as I think, show that its author knew the subject thoroughly, nor that he had much confidence either in analogy or experiment. For the *adhimāsa* months which have passed of the *caturyuga* up to our gauge-date are, according to the theory of Pulisa, \(1,196,525\frac{14}{15}\). Multiplying this number by the *unarātra* of the *caturyuga*, we get the product \(30,011,600,068,426\frac{2}{3}\). Dividing this number by the solar months, we get the quotient 578,927. Adding this to the *adhimāsa*, we get the sum 1,775,452. And this is not what we wanted to find. On the contrary, the number of *unarātra* days is 18,835,700. Nor is the product of the multiplication of this number by 30 that which we wanted to find. On the contrary, it is 53,263,560. Both numbers are far away from the truth.
CHAPTER LIII.

ON THE AHARGANA, OR THE RESOLUTION OF YEARS INTO MONTHS, ACCORDING TO SPECIAL RULES WHICH ARE ADOPTED IN THE CALENDARS FOR CERTAIN DATES OR MOMENTS OF TIME.

Not all the eras which in the calendars are resolved into days have epochs falling at such moments of time when just an adhimása or ānarātra happens to be complete. Therefore the authors of the calendars require for the calculation of adhimása and ānarātra certain numbers which either must be added or subtracted if the calculation is to proceed in good order. We shall communicate to the reader whatever of these rules we happened to learn by the study of their calendars or astronomical handbooks.

First, we mention the rule of the Khandaḥakhādyaka, because this calendar is the best known of all, and preferred by the astronomers to all others.

Brahmagupta says: "Take the year of the Śakakāla, subtract therefrom 587, multiply the remainder by 12, and add to the product the complete months which have elapsed of the year in question. Multiply the sum by 30, and add to the product the days which have elapsed of the current month. The sum represents the partial solar days.

"Write down this number in three different places. Add 5 both to the middle and lower numbers, and divide the lowest one by 14.945. Subtract the quotient
CHAPTER LIII.

from the middle number, and disregard the remainder which you have got by the division. Divide the middle number by 976. The quotient is the number of complete adhimāsa months, and the remainder is that which has elapsed of the current adhimāsa month.

"Multiply these months by 30, and add the product to the upper number. The sum is the number of the partial lunar days. Let them stand in the upper place, and write the same number in the middle place. Multiply it by 11, and add thereto 497. Write this sum in the lower place. Then divide the sum by 111,573. Subtract the quotient from the middle number, and disregard the remainder (which you get by the division). Further, divide the middle number by 703, and the quotient represents the ānarātra days, the remainder the avamas. Subtract the ānarātra days from the upper number. The remainder is the number of civil days."

This is the ahargana of the Khaṇḍakādyaka. Dividing the number by 7, the remainder indicates the weekday on which the date in question falls.

We exemplify this rule in the case of our gauge-year. The corresponding year of the Śakakāla is 953. We subtract therefrom 587, and get the remainder 366. We multiply it by the product of 12 x 30, since the date is without months and days. The product is 131,760, i.e. solar days.

We write down this number in three different places. We add 5 to the middle and lower numbers, whereby we get 131,765 in both places. We divide the lower number by 14,945. The quotient is 8, which we subtract from the middle number, and here we get the remainder 131,757. Then we disregard the remainder in which the division has resulted.

Further, we divide the middle number by 976. The quotient 134 represents the number of months. There is besides a remainder of \(\frac{8}{16} \). Multiplying the months by 30, we get the product 4020, which we add to the
solar days. Thereby we get lunar days, viz. 135,780. We write down this number below the three numbers, multiply it by 11, and add 497 to the product. Thus we get the sum 1,494,077. We write this number below the four numbers, and divide it by 111,573. The quotient is 13, and the remainder, i.e. 43,628, is disregarded. We subtract the quotient from the middle number. Thus we get the remainder, 1,494,064. We divide it by 703. The quotient is 2125, and the remainder, i.e. avama, is $\frac{180}{703}$. We subtract the quotient from the lunar days, and get the remainder 133,655. These are the civil days which we want to find. Dividing them by 7, we get 4 as remainder. Therefore the 1st of the month Caitra of the gauge-year falls on a Wednesday.

The epoch of the era of Yazdajird precedes the epoch of this era (v. era nr. 5, p. 7) by 11,968 days. Therefore the sum of the days of the era of Yazdajird up to our gauge-date is 145,623 days. Dividing them by the Persian year and months, we get as the corresponding Persian date the year of Yazdajird 399, the 18th Isfanndārmadh. Before the adhimāsa month becomes complete with 30 days, there must still elapse five ghātī, i.e. two hours. In consequence, the year is a leap year, and Caitra is the month which is reckoned twice in it.

The following is the method of the canon or calendar Al-arkand, according to a bad translation: "If you want to know the Arkand, i.e. ahargana, take 90, multiply it by 6, add to the product 8, and the years of the realm of Sindh, i.e. the time till the month Safar, A.H. 117, which corresponds to the Caitra of the year 109. Subtract therefrom 587, and the remainder represents the years of the Shakh.

An easier method is the following: "Take the complete years of the Aera Yazdagirdī, and subtract therefrom 33. The remainder represents the years of the Shakh. Or you may also begin with the original ninety
years of the Arkand. Multiply them by 6, and add 14 to the product. Add to the sum the years of the Aera Yazdajirdi, and subtract therefrom 587. The remainder represents the years of the Shakh."

I believe that the here-mentioned Shakh is identical with Saka. However, the result of this calculation does not lead us to the Saka era, but to the Gupta era, which here is resolved into days. If the author of the Arkand began with 90, multiplied them by 6, added thereto 8, which would give 548, and did not change this number by an increase of years, the matter would come to the same result, and would be more easy and simple.

The first of the month Safar, which the author of the latter method mentions, coincides with the eighth Daimāh of the year 103 of Yazdajird. Therefore he makes the month Caitra depend upon the new moon of Daimāh. However, the Persian months have since that time been in advance of real time, because the day-quarters (after the 365 complete days) have no longer been intercalated. According to the author, the era of the realm of Sindh which he mentions must precede the era of Yazdajird by six years. Accordingly, the years of this era for our gauge-year would be 465. These together with the years of the Arkand, with which the author begins, viz. 548, represent the sum of 953 years as the year of the Saka-kāla. By the subtraction of that amount which the author has mentioned, it is changed into the corresponding year of the Gupta-kāla.

The other details of this method of resolution or ahargana are identical with those of the method of the Khandakhādyaka, as we have described it. Sometimes you find in a manuscript such a reading as prescribes the division by 1000 instead of by 976, but this is simply a mistake of the manuscripts, as such a method is without any foundation.

Next follows the method of Vijayanandin in his
canon called *Karana\'tilaka*: "Take the years of the Šakakāla, subtract therefrom 888, multiply the remainder by 12, and add to the product the complete months of the current year which have elapsed. Write down the sum in two different places. Multiply the one number by 900, add 661 to the product, and divide the sum by 29,282. The quotient represents *adhimāsa* months. Add it to the number in the second place, multiply the sum by 30, and add to the product the days which have elapsed of the current month. The sum represents the lunar days. Write down this number in two different places. Multiply the one number by 3300, add to the product 64,106, divide the sum by 210,902. The quotient represents the *UNARĀTRA* days, and the remainder the *avāmas*. Subtract the *UNARĀTRA* days from the lunar days. The remainder is the *AHAΡA\'ANA*, being reckoned from midnight as the beginning."

We exemplify this method in the use of our gauge-year. We subtract from the corresponding year of the Šakakāla (953) 888, and there remains 65. This number of years is equal to 780 months. We write down this number in two different places. In the one place we multiply it by 900, add thereto 661, and divide the product by 29,282. The quotient gives 23\frac{2091}{29282} *adhimāsa* months.

The multiplicator is 30. By being multiplied by it, the months are changed into days. The product, however, is again multiplied by 30. The divisor is the product of the multiplication of 976 plus the following fraction by 30, the effect of which is that both numbers belong to the same kind (i.e. that both represent days). Further, we add the resulting number of months to those months which we have previously found. By multiplying the sum by 30, we get the product of 24,060 (read 24,090), i.e. lunar days.

We write them down in two different places. The one number we multiply by 3300 and get the product
CHAPTER LIII.

79,398,000 (read 79,497,000). Adding thereto 64,106 (read 69,601), we get the sum 79,462,104 (read 79,566,601). By dividing it by 210,902, we get the quotient 376 (read 307), i.e. ānarātra days, and a remainder of \(\frac{16}{25} \) (read \(\frac{46}{472} \)), i.e. the avamās. We subtract the ānarātra days from the lunar days, written in the second place, and the remainder is the civil āhāryama, i.e. the sum of the civil days, viz. 23,684 (read 23,713).

The method of the Paṇca-Siddhāntikā of Varāhamihira is the following: “Take the years of the Śakakāla, subtract therefrom 427. Change the remainder into months by multiplying it by 12. Write down that number in two different places. Multiply the one number by 7 and divide the product by 228. The quotient is the number of adhimāsa months. Add them to the number written down in the second place, multiply the sum by 30, and add to the product the days which have elapsed of the current month. Write down the sum in two different places. Multiply the lower number by 11, add to the product 514, and divide the sum by 703. Subtract the quotient from the number written in the upper place. The remainder you get is the number of the civil days.”

This, Varāhamihira says, is the method of the Siddhānta of the Greeks.

We exemplify this method in one of our gauge-years. From the years of the Śakakāla we subtract 427. The remainder, i.e. 526 years, is equal to 6312 months. The corresponding number of adhimāsa months is 193 and a remainder of \(\frac{16}{18} \). The sum of these months together with the other months is 6505, which are equal to 195,150 lunar days.

The additions which occur in this method are required on account of the fractions of time which adhere to the epoch of the era in question. The multiplication by 7 is for the purpose of reducing the number to seventh parts.
The divisor is the number of sevenths of the time of one adhimāsa, which he reckons as 32 months, 17 days, 8 ghatī, and about 34 cashaka.

Further, we write down the lunar days in two different places. The lower number we multiply by 11, and add to the product 514. The sum is 2,147,164. Dividing it by 703, we get the quotient 3054, i.e. the dinādātra days, and a remainder of $\frac{302}{703}$. We subtract the days from the number in the second place, and get the remainder 192,096, i.e. the civil days of the date on which we base the chronological computations of this book.

The theory of Varāhamihira comes very near that of Brahmagupta; for here the fraction at the end of the number of the adhimāsa days of the gauge-date is $\frac{1}{6}$, whilst in the calculations which we have made, starting from the beginning of the kalpa, we found it to be $\frac{103}{128}$, which is nearly equal to $\frac{1}{6}$ (cf. p. 29).

In a Muhammadan canon or calendar called the canon Al-harkan we find the same method of calculation, but applied to and starting from another era, the epoch of which must fall 40,081 (days) after that of the era of Yazdajird. According to this book, the beginning of the Indian year falls on Sunday the 21st of Daimāh of the year 110 of Yazdajird. The method may be tested in the following manner:—

"Take seventy-two years, change them into months by multiplying them by 12, which gives the product 864. Add thereto the months which have elapsed between the 1st of Sha'bān of the year 197, and the 1st of the month in which you happen to be. Write down the sum in two different places. Multiply the lower number by 7 and divide the product by 228. Add the quotient to the upper number and multiply the sum by 30. Add to the product the number of days which have elapsed of the month in which you are. Write down this number in two different places.
CHAPTER LIII.

Add 38 to the lower number and multiply the sum by 11. Divide the product by 703, and subtract the quotient from the upper number. The remainder in the upper place is the number of the civil days, and the remainder in the lower place is the number of the avamas. Add 1 to the number of days and divide the sum by 7. The remainder shows the day of the week on which the date in question falls."

This method would be correct if the months of the seventy-two years with which the calculation begins were lunar. However, they are solar months, in which nearly twenty-seven months must be intercalated, so that these seventy-two years are more than 864 months.

We shall again exemplify this method in the case of our gauge-date, i.e. the beginning of Rabi' I., A.H. 422. Between the above-mentioned 1st of Sha'bi' and the latter date there have elapsed 2695 months. Adding these to the number of months adopted by the author of the method (864), you get the sum of 3559 months. Write down this number in two places. Multiply the one by 7, and divide the product by 228. The quotient represents the adhindasa months, viz. 109. Page 299. Add them to the number in the other place, and you get the sum 3668. Multiply it by 30, and you get the product 110,040. Write down this number in two different places. Add to the lower number 38, and you get 110,078. Multiply it by 11 and divide the product by 703. The quotient is 1722 and a remainder of 292, i.e. the avamas. Subtract the quotient from the upper number, and the remainder, 108,318, represents the civil days.

This method is to be amended in the following way: Emendation of the method. You must know that between the epoch of the era here used and the first of Sha'bi', here adopted as a date, there have elapsed 25,958 days, i.e. 876 Arabic months, or seventy-three years and two months. If we further
add to this number the months which have elapsed between that 1st Sha'bân and the 1st Rabi' I. of the gauge-year, we get the sum of 3571, and, together with the adhimâsa months, 3680 months, i.e. 110,400 days. The corresponding number of ӯnarātra days is 1727, and a remainder of 319 avamas. Subtracting these days, we get the remainder 108,673. If we now subtract 1 and divide the remainder by 7, the computation is correct, for the remainder is 4, i.e. the day of the gauge-date is a Wednesday, as has above (p. 48) been stated.

The method of Durlabha, a native of Multân, is the following:—He takes 848 years and adds thereto the Laukika-kâla. The sum is the Šakakâla. He subtracts therefrom 354, and changes the remainder of years into months. He writes them down together with the past months of the current year in three different places. The lower number he multiplies by 77, and divides the product by 69,120. The quotient he subtracts from the middle number, doubles the remainder, and adds thereto 29. The sum he divides by 65, so as to get adhimâsa months. He adds them to the upper number and multiplies the sum by 30. He writes down the product together with the past days of the current month in two different places. He multiplies the lower number by 11 and adds to the product 686. The sum he writes underneath. He divides it by 403,963, and adds the quotient to the middle number. He divides the sum by 703. The quotient represents the ӯnarātra days. He subtracts them from the upper number. The remainder is the civil ahargana, i.e. the sum of the civil days of the date in question.

We have already in a former place mentioned the outlines of this method. After the author, Durlabha, had adopted it for a particular date, he made some additions, whilst the bulk of it is unchanged. However, the Karaṇasâra forbids introducing any innovations
which in the method of ahargana deviate to some other process. Unfortunately that which we possess of the book is badly translated. What we are able to quote from it is the following:—

He subtracts 821 from the years of the Šakakâla. The remainder is the basis. This would be the year 132 for our gauge-year. He writes down this number in three different places. He multiplies the first number by 132 degrees. The product gives the number 17,424 for our gauge-date. He multiplies the second number by 46 minutes, and gets the product 6072. He multiplies the third number by 34, and gets the product 4488. He divides it by 50, and the quotient represents minutes, seconds, &c., viz. 89' 46". Then he adds to the sum of degrees in the upper place 112, changing the seconds to minutes, the minutes to degrees, the degrees to circles. Thus he gets 48 circles 358° 41' 45". This is the mean place of the moon when the sun enters Aries.

Further, he divides the degrees of the mean place of the moon by 12. The quotient represents days. The remainder of the division he multiplies by 60, and adds thereto the minutes of the mean place of the moon. He divides the sum by 12, and the quotient represents ghaftis and minor portions of time. Thus we get 27° 23' 29", i.e. adhimâsa days. No doubt this number represents the past portion of the adhimâsa month, which is at present in the course of formation.

The author, in regard to the manner in which the measure of the adhimâsa month is found, makes the following remark:—

He divides the lunar number which we have mentioned, viz. 132° 46' 34", by 12. Thereby he gets as the portio anni 11° 3' 52" 50", and as the portio mensis 0° 55' 19" 24" 10". By means of the latter portio he computes the duration of the time in which 30 days sum up as 2 years, 8 months, 16 days, 4 ghaftis, 45
cashaka. Then he multiplies the basis by 29 and gets the product 3828. He adds thereto 20, and divides the sum by 36. The quotient represents the ānarātra days, viz. 106⅔.

However, as I have not been able to find the proper explanation of this method, I simply give it as I find it, but I must remark that the amount of ānarātra days which corresponds to a single adhimāsa month is 15108¾.
CHAPTER LIV.

ON THE COMPUTATION OF THE MEAN PLACES OF THE PLANETS.

If we know the number of cycles of the planets in a kalpa or caturyuga, and further know how many cycles have elapsed at a certain moment of time, we also know that the sum-total of the days of the kalpa or caturyuga stands in the same relation to the sum-total of the cycles as the past days of the kalpa or caturyuga to the corresponding amount of planetary cycles. The most generally used method is this:—

The past days of the kalpa or caturyuga are multiplied by the cycles of the planet, or of its apsis, or of its node which it describes in a kalpa or caturyuga. The product is divided by the sum-total of the days of the kalpa or caturyuga accordingly as you reckon by the one or the other. The quotient represents complete cycles. These, however, because not wanted, are disregarded.

The remainder which you get by the division is multiplied by 12, and the product is divided by the sum-total of the days of either kalpa or caturyuga by which we have already once divided. The quotient represents signs of the ecliptic. The remainder of this division is multiplied by 30, and the product divided by the same divisor. The quotient represents degrees. The remainder of this division is multiplied by 60, and is divided by the same divisor. The quotient represents minutes.
This kind of computation may be continued if we want to have seconds and minor values. The quotient represents the place of that planet according to its mean motion, or the place of that apsis or that node which we wanted to find.

The same is also mentioned by Pulisa, but his method differs, as follows:—"After having found the complete cycles which have elapsed at a certain moment of time, he divides the remainder by 131,493,150. The quotient represents the mean signs of the ecliptic.

"The remainder is divided by 4,383,105. The quotient represents degrees. The fourfold of the remainder is divided by 292,207. The quotient represents minutes. The remainder is multiplied by 60 and the product divided by the last-mentioned divisor. The quotient represents seconds.

"This calculation may be continued, so as to give third parts, fourth parts, and minor values. The quotient thus found is the mean place of the planet which we want to find."

The fact is that Pulisa was obliged to multiply the remainder of the cycles by 12, and to divide the product by the days of a caturyuga, because his whole computation is based on the caturyuga. But instead of doing this, he divided by the quotient which you get if you divide the number of days of a caturyuga by 12. This quotient is the first number he mentions, viz. 131,493,150.

Further, he was obliged to multiply the remainder of the signs of the ecliptic by 30, and to divide the product by the first divisor; but instead of doing this, he divided by the quotient which you get if you divide the first number by 30. This quotient is the second number, viz. 4,383,105.

According to the same analogy, he wanted to divide the remainder of the degrees by the quotient which
CHAPTER LIV.

you get if you divide the second number by 60. However, making this division, he got as quotient 73,051 and a remainder of \(\frac{3}{4} \). Therefore he multiplied the whole by 4, in order that the fractions should be raised to wholes. For the same reason he also multiplies the following remainder by 4; but when he did not get wholes, as has been indicated, he returned to multiplying by 60.

If we apply this method to a kalpa according to the theory of Brahmagupta, the first number, by which the remainder of the cycles is divided, is 131,493,037,500. The second number, by which the remainder of the signs of the ecliptic is divided, is 4,383,101,250. The third number, by which the remainder of the degrees is divided, is 73,051,687. In the remainder which we get by this division there is the fraction of \(\frac{3}{4} \). Therefore we take the double of the number, viz. 1,46,103,375, and we divide by it the double of the remainder of minutes.

Brahmagupta, however, does not reckon by the kalpa and caturyuga, on account of the enormous sums of their days, but prefers to them the kaliyuga, in order to facilitate the calculation. Applying the preceding method of ahargana to the precise date of the kaliyuga, we multiply its sum of days by the star-cycles of a kalpa. To the product we add the basis, i.e. the remaining cycles which the planet had at the beginning of the kaliyuga. We divide the sum by the civil days of the kaliyuga, viz. 157,791,645. The quotient represents the complete cycles of the planet, which are disregarded.

The remainder we compute in the above-described manner, and thereby we find the mean place of the planet.

The here-mentioned bases are the following for the single planets:
For Mars, 4,308,768,000.
For Mercury, 4,288,896,000.
For Jupiter, 4,313,520,000.
For Venus, 4,304,448,000.
For Saturn, 4,305,312,000.
For the Sun’s apsis, 933,120,000.
For the Moon’s apsis, 1,505,952,000.
For the ascending node, 1,838,592,000 (v. the notes).

At the same moment, i.e. at the beginning of the kaliyuga, sun and moon stood according to their mean motion in 0° of Aries, and there was neither a plus nor a minus consisting of an adhimāsa month or of unārātra days.

In the above-mentioned canonès or calendars we find the following method:—"The ahargāṇa, i.e. the sum of the days of the date, is, for each planet respectively, multiplied by a certain number, and the product is divided by another number. The quotient represents complete cycles and fractions of cycles, according to mean motion. Sometimes the computation becomes perfect simply by this multiplication and division. Sometimes, in order to get a perfect result, you are compelled once more to divide by a certain number the days of the date, either such as they are, or multiplied by some number. The quotient must then be combined with the result obtained in the first place.

Sometimes, too, certain numbers are adopted, as e.g. the basis, which must either be added or subtracted for this purpose, in order that the mean motion at the beginning of the era should be computed as beginning with 0° of Aries. This is the method of the books Khandakhādyaka and Karanatilaka. However, the author of the Karanasāra computes the mean places of the planets for the vernal equinox, and reckons the ahargāṇa from this moment. But these methods are very subtle, and are so numerous, that none of them has
obtained any particular authority. Therefore we refrain from reproducing them, as this would detain us too long and be of no use.

The other methods of the computation of the mean places of the planets and similar calculations have nothing to do with the subject of the present book.
CHAPTER LV.

ON THE ORDER OF THE PLANETS, THEIR DISTANCES AND SIZES.

When speaking of the lokas, we have already given a quotation from the Vishnu-Purāṇa and from the commentary of Patañjali, according to which the place of the sun is in the order of the planets below that of the moon. This is the traditional view of the Hindus. Compare in particular the following passage of the Matsya-Purāṇa:—

"The distance of heaven from the earth is equal to the radius of the earth. The sun is the lowest of all planets. Above him there is the moon, and above the moon are the lunar stations and their stars. Above them is Mercury, then follow Venus, Mars, Jupiter, Saturn, the Great Bear, and above it the pole. The pole is connected with the heaven. The stars cannot be counted by man. Those who impugn this view maintain that the moon at conjunction becomes hidden by the sun, as the light of the lamp becomes invisible in the light of the sun, and she becomes more visible the more she moves away from the sun."

We shall now give some quotations from the books of this school relating to the sun, the moon, and the stars, and we shall combine herewith the views of the astronomers, although of the latter we have only a very slender knowledge.

The Vāyu-Purāṇa says: "The sun has globular shape, fiery nature, and 1000 rays, by which he attracts
CHAPTER LV.

the water; 400 of these are for the rain, 300 for the snow, and 300 for the air.”

In another passage it says: “Some of them (i.e. the rays) are for this purpose, that the devas should live in bliss; others for the purpose that men should live in comfort, whilst others are destined for the fathers.”

In another passage the author of the Vāyu-Purāṇa divides the rays of the sun over the six seasons of the year, saying: “The sun illuminates the earth in that third of the year which commences with ♉ of Pisces by 300 rays; he causes rain in the following third by 400 rays, and he causes cold and snow in the remaining third by 300 rays.”

Another passage of the same book runs as follows: “The rays of the sun and the wind raise the water from the sea to the sun. Now, if the water dropped down from the sun, it would be hot. Therefore the sun hands the water over to the moon, that it should drop down from the moon cold, and thus refresh the world.”

Another passage: “The heat of the sun and his light are one-fourth of the heat and the light of the fire. In the north, the sun falls into the water during the night; therefore he becomes red.”

Another passage: “In the beginning there were the earth, water, wind, and heaven. Then Brahman perceived sparks under the earth. He brought them forth and divided them into three parts. One third of them is the common fire, which requires wood and is extinguished by water. Another third is the sun, and the last third is the lightning. In the animals, too, there is fire, which cannot be extinguished by water. The sun attracts the water, the lightning shines through the rain, but the fire in the animals is distributed over the moist substances by which they nourish themselves.”

The Hindus seem to believe that the heavenly bodies nourish themselves by the vapours, which also Aristotle mentions as the theory of certain people. Thus
the author of the *Vishṇu-Dharma* explains that "the sun nourishes the moon and the stars. If the sun did not exist, there would not be a star, nor angel, nor man."

The Hindus believe regarding the bodies of all the stars that they have a globular shape, a watery essence, and that they do not shine, whilst the sun alone is of fiery essence, self-shining, and *per accidens* illuminates other stars when they stand opposite to him. They reckon, according to eyesight, among the stars also such luminous bodies as in reality are not stars, but the lights into which those men have been metamorphosed who have received eternal reward from God, and reside in the height of heaven on thrones of crystal. The *Vishṇu-Dharma* says: "The stars are watery, and the rays of the sun illuminate them in the night. Those who by their pious deeds have obtained a place in the height sit there on their thrones, and, when shining, they are reckoned among the stars."

All the stars are called *tāra*, which word is derived from *taraṇa*, i.e. the passage. The idea is that those saints have *passed* through the wicked world and have reached bliss, and that the stars *pass* through heaven in a circular motion. The word *nakshatra* is limited to the stars of the lunar stations. As, however, all of these are called *fixed stars*, the word *nakshatra* also applies to all the fixed stars; for it means *not increasing and not decreasing*. I for my part am inclined to think that this increasing and decreasing refers to their number and to the distances of the one from the other, but the author of the last-mentioned book (*Vishṇu-Dharma*) combines it with their light. For he adds, "as the moon increases and decreases."

Further, there is a passage in the same book where Mārkandeya says: "The stars which do not perish before the end of the *kalpa* are equal to a *nikharva*, i.e. *100,000,000,000*. The number of those which fall down before the end of a *kalpa* is unknown. Only he can know it who dwells in the height during a *kalpa*."

CHAPTER LV.

Vajra spoke: "O Mārkaṇḍeya, thou hast lived during six kalpas. This is thy seventh kalpa. Therefore why dost thou not know them?"

He answered: "If they always remained in the same condition, not changing as long as they exist, I should not be ignorant of them. However, they perpetually raise some pious man and bring another down to the earth. Therefore I do not keep them in my memory."

Regarding the diameters of sun and moon and their shadows the Matsya-Purāṇa says: "The diameter of the body of the sun is 9000 yojanas; the diameter of the moon is the double of it, and the apsis is as much as the two together."

The same occurs in the Vāyu-Purāṇa, except that it says with regard to the apsis that it is equal to the sun when it is with the sun, and that it is equal to the moon when it is with the moon.

Another author says: "The apsis is 50,000 yojanas."

Regarding the diameters of the planets the Matsya-Purāṇa says: "The circumference of Venus is one-sixteenth of the circumference of the moon, that of Jupiter three-fourths of the circumference of Venus, that of Saturn or Mars three-fourths of that of Jupiter, that of Mercury three-fourths of that of Mars."

The same statement is also found in the Vāyu-Purāṇa.

The same two books fix the circumference of the great fixed stars as equal to that of Mercury. The next smaller class have a circumference of 500 yojanas, the following classes 400, 300, and 200. But there are no fixed stars with a smaller circumference than 150 yojanas.

Thus the Vāyu-Purāṇa. But the Matsya-Purāṇa says: "The next following classes have a circumference of 400, 300, 200, and 100 yojanas. But there is no fixed star with less circumference than a half yojana."

The latter statement, however, looks suspicious to me, and is perhaps a fault in the manuscript.

The author of Vishnu-Dharma says, relating the...
words of Mārkaṇḍeya: “Abhijit, the Falling Eagle; Ardrā, the Sirius Yemenicus; Rohini, or Aldabaran; Pushyasthama, i.e. the Two Heads of the Twins; Revati, Agastya or Canopus, the Great Bear, the master of Vīnu, the master of Ahirbudhnya, and the master of Vasishtha, each of these stars has a circumference of five yojanas. All the other stars have each only a circumference of four yojanas. I do not know those stars, the distance of which is not measurable. They have a circumference between four yojanas and two kuroh, i.e. two miles. Those which have less circumference than two kuroh are not seen by men, but only by the devas.”

The Hindus have the following theory regarding the magnitude of the stars, which is not traced back to any known authority: “The diameters of the sun and moon are each 67 yojanas; that of the apsis is 100; that of Venus 10, of Jupiter 9, of Saturn 8, of Mars 7, of Mercury 7.”

This is all we have been able to learn of the confused notions of the Hindus regarding these subjects. We shall now pass on to the views of the Hindu astronomers with whom we agree regarding the order of the planets and other topics, viz. that the sun is the middle of the planets, Saturn and the moon their two ends, and that the fixed stars are above the planets. Some of these things have already been mentioned in the preceding chapters.

Varāhamihira says in the book Sāmkhitā: “The moon is always below the sun, who throws his rays upon her, and lights up the one half of her body, whilst the other half remains dark and shadowy like a pot which you place in the sunshine. The one half which faces the sun is lit up, whilst the other half which does not face it remains dark. The moon is watery in her essence, therefore the rays which fall on her are reflected, as they are reflected from the water and the mirror towards
the wall. If the moon is in conjunction with the sun, the white part of her turns towards the sun, the black part towards us. Then the white part sinks downward towards us slowly, as the sun marches away from the moon."

Every educated man among the Hindu theologians, and much more so among their astronomers, believes indeed that the moon is below the sun, and even below all the planets.

The only Hindu traditions we have regarding the distances of the stars are those mentioned by Ya'kūb Ibn Tārik in his book, The Composition of the Spheres, and he had drawn his information from the well-known Hindu scholar who, A.H. 161, accompanied an embassy to Bagdād. First, he gives a metrological statement: "A finger is equal to six barleycorns which are put one by the side of the other. An arm (yard) is equal to twenty-four fingers. A farsakh is equal to 16,000 yards."

Here, however, we must observe that the Hindus do not know the farsakh, that it is, as we have already explained, equal to one half a yojana.

Further, Ya'kūb says: "The diameter of the earth is 2100 farsakh, its circumference 6596^{9}_{29} farsakh."

On this basis he has computed the distances of the planets as we exhibit them in the following table.

However, this statement regarding the size of the earth is by no means generally agreed to by all the Hindus. So, e.g. Pulisa reckons its diameter as 1600 yojanas, and its circumference as 5026^{14}_{12} yojanas, whilst Brahmagupta reckons the former as 1581 yojanas, and the latter as 5000 yojanas.

If we double these numbers, they ought to be equal to the numbers of Ya'kūb; but this is not the case. Now the yard and the mile are respectively identical according to the measurement both of us and of the Hindus. According to our computation the radius of the earth is 3184 miles. Reckoning, according to the custom of our
country, 1 farsakh = 3 miles, we get 6728 farsakh; and reckoning 1 farsakh = 16,000 yards, as is mentioned by Ya'kūb, we get 5046 farsakh. Reckoning 1 yojana = 32,000 yards, we get 2523 yojanas.

The following table is borrowed from the book of Ya'kūb Ibn Ṭārik:

<table>
<thead>
<tr>
<th>The planets</th>
<th>Their distances from the centre of the earth, and their diameters.</th>
<th>(The conventional measures of the distances, differing according to time and place, reckoned in farsakh, 1 farsakh = 16,000 yards.)</th>
<th>Their constant measures, based on the radius of the earth = 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moon</td>
<td>Radius of the earth 1,050</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>The smallest distance 37,500</td>
<td>35\frac{1}{2}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The middle distance 48,500</td>
<td>46\frac{1}{4}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The greatest distance 59,000</td>
<td>56\frac{1}{4}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diameter of the moon 5,000</td>
<td>41\frac{1}{2}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The smallest distance 64,000</td>
<td>60\frac{3}{4}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The middle distance 164,000</td>
<td>156\frac{1}{4}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The greatest distance 204,600</td>
<td>251\frac{1}{2}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diameter of Mercury 5,600</td>
<td>44\frac{1}{2}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The smallest distance 269,000</td>
<td>256\frac{1}{4}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The middle distance 709,500</td>
<td>675\frac{1}{4}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The greatest distance 1,150,000</td>
<td>1,095\frac{1}{4}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diameter of Venus 20,000</td>
<td>19\frac{3}{4}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The smallest distance 1,170,000</td>
<td>1,114\frac{3}{4}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The middle distance 1,690,000</td>
<td>1,609\frac{1}{4}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The greatest distance 2,210,000</td>
<td>2,104\frac{1}{4}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diameter of the Sun 20,000</td>
<td>19\frac{3}{4}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The smallest distance 2,230,000</td>
<td>2,123\frac{1}{4}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The middle distance 5,315,000</td>
<td>5,061\frac{1}{4}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The greatest distance 8,400,000</td>
<td>8,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diameter of Mars 20,000</td>
<td>19\frac{3}{4}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The smallest distance 8,420,000</td>
<td>8,019\frac{1}{4}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The middle distance 11,410,000</td>
<td>10,866\frac{1}{4}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The greatest distance 14,400,000</td>
<td>13,714\frac{3}{4}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diameter of Jupiter 20,000</td>
<td>19\frac{3}{4}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The smallest distance 14,420,000</td>
<td>13,733\frac{3}{4}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The middle distance 16,220,000</td>
<td>15,447\frac{1}{4}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The greatest distance 18,020,000</td>
<td>17,163\frac{3}{4}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diameter of Saturn 20,000</td>
<td>19\frac{3}{4}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The radius of the outside 20,000,000</td>
<td>19,047\frac{1}{4}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The radius of the inside 19,962,000</td>
<td>1,866\frac{1}{4} (sic)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Its circumference from the outside 125,664,000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Page 234.

Page 235.
CHAPTER LV.

This theory differs from that on which Ptolemy has based his computation of the distances of the planets in the *Kitāb-almanshūrāt*, and in which he has been followed both by the ancient and the modern astronomers. It is their principle that the greatest distance of a planet is equal to its smallest distance from the next higher planet, and that between the two globes there is not a space void of action.

According to this theory, there is between the two globes a space not occupied by either of them, in which there is something like an axis around which the rotation takes place. It seems that they attributed to the æther a certain gravity, in consequence of which they felt the necessity of adopting something which *keeps or holds* the inner globe (the planet) in the midst of the outer globe (the æther).

It is well known among all astronomers that there is no possibility of distinguishing between the higher and the lower one of two planets except by means of the *occultation* or the increase of the *parallax*. However, the occultation occurs only very seldom, and only the parallax of a single planet, viz. the moon, can be observed. Now the Hindus believe that the motions are equal, but the distances different. The reason why the higher planet moves more slowly than the lower is the greater extension of its sphere (or orbit); and the reason why the lower planet moves more rapidly is that its sphere or orbit is less extended. Thus, e.g. one minute in the sphere of Saturn is equal to 262 minutes in the sphere of the moon. Therefore the times in which Saturn and the moon traverse the same space are different, whilst their motions are equal.

I have never found a Hindu treatise on this subject, but only numbers relating thereto scattered in various books—numbers which are corrupt. Somebody objected to Pulisa that he reckoned the circumference of the sphere of each planet as 21,600, and its radius as 3438,
whilst Varahamihira reckoned the sun's distance from the earth as 2,598,900, and the distance of the fixed stars as 321,362,683. Thereupon Pulisa replied that the former numbers were minutes, the latter yojanas; whilst in another passage he says that the distance of the fixed stars from the earth is sixty times larger than the distance of the sun. Accordingly he ought to have reckoned the distance of the fixed stars as 155,934,000.

The Hindu method of the computation of the distances of the planets which we have above mentioned is based on a principle which is unknown to me in the present stage of my knowledge, and as long as I have no facility in translating the books of the Hindus. The principle is this, that the extension of a minute in the orbit of the moon is equal to fifteen yojanas. The nature of this principle is not cleared up by the commentaries of Balabhadrā, whatsoever trouble he takes. For he says: "People have tried to fix by observation the time of the moon's passing through the horizon, i.e. the time between the shining of the first part of her body and the rising of the whole, or the time between the beginning of her setting and the completion of the act of setting. People have found this process to last thirty-two minutes of the circumference of the sphere." However, if it is difficult to fix by observation the degrees, it is much more so to fix the minutes.

Further, the Hindus have tried to determine by observation the yojanas of the diameter of the moon, and have found them to be 480. If you divide them by the minutes of her body, the quotient is 15 yojanas, as corresponding to one minute. If you multiply it by the minutes of the circumference, you get the product 324,000. This is the measure of the sphere of the moon which she traverses in each rotation. If you multiply this number by the cycles of the moon in a kalpa or caturyuga, the product is the distance which
the moon traverses in either of them. According to Brahmagupta, this is in a *kalpa* 18,712,669,200,000,000 *yojanas*. Brahmagupta calls this number the *yojanas of the ecliptic*.

Evidently if you divide this number by the cycles of each planet in a *kalpa*, the quotient represents the *yojanas* of one rotation. However, the motion of the planets is, according to the Hindus, as we have already mentioned, in every distance one and the same. Therefore the quotient represents the measure of the path of the sphere of the planet in question.

As further, according to Brahmagupta, the relation of the diameter to the circumference is nearly equal to that of 12,959:40,980, you multiply the measure of the path of the sphere of the planet by 12,959, and divide the product by 81,960. The quotient is the radius, or the distance of the planet from the centre of the earth.

We have made this computation for all the planets according to the theory of Brahmagupta, and present the results to the reader in the following table:

<table>
<thead>
<tr>
<th>The planets</th>
<th>The circumference of the sphere of each planet, reckoned in yojanas.</th>
<th>Their radii, which are identical with their distances from the earth's centre, reckoned in yojanas.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moon</td>
<td>324,000</td>
<td>51,229</td>
</tr>
<tr>
<td>Mercury</td>
<td>1,043,210</td>
<td>164,947</td>
</tr>
<tr>
<td>Venus</td>
<td>2,664,629</td>
<td>421,315</td>
</tr>
<tr>
<td>Sun</td>
<td>4,334,497</td>
<td>684,869</td>
</tr>
<tr>
<td>Mars</td>
<td>8,146,916</td>
<td>1,288,139</td>
</tr>
<tr>
<td>Jupiter</td>
<td>51,374,821</td>
<td>8,123,064</td>
</tr>
<tr>
<td>Saturn</td>
<td>127,668,787</td>
<td>20,186,186</td>
</tr>
<tr>
<td>The Fixed Stars, their distance from the earth's centre being sixty times the distance of the sun from the same.</td>
<td>259,889,850</td>
<td>41,092,140</td>
</tr>
</tbody>
</table>
As Pulisa reckons by *caturyugas*, not by *kalpas*, he multiplies the distance of the path of the sphere of the moon by the lunar cycles of a *caturyuga*, and gets the product $18,712,080,864,000$ *yojanas*, which he calls the *yojanas of heaven*. It is the distance which the moon traverses in each *caturyuga*.

Pulisa reckons the relation of the diameter to the circumference as $1250 : 3927$. Now, if you multiply the circumference of each planetary sphere by 625 and divide the product by 3927, the quotient is the distance of the planet from the earth's centre. We have made the same computation as the last one according to the view of Pulisa, and present the results in the following table. In computing the radii we have disregarded the fractions smaller than $\frac{1}{3}$, and have reduced larger fractions to wholes. We have, however, not taken the same liberty in the calculation of the circumferences, but have calculated with the utmost accuracy, because they are required in the computations of the revolutions. For if you divide the *yojanas of heaven* in a *kalpa* or *caturyuga* by the civil days of the one or the other, you get the quotient 11,858 plus a remainder, which is $\frac{50}{22,117}$ according to Brahmagupta, and $\frac{50}{22,108}$ according to Pulisa. This is the distance which the moon every day traverses, and as the motion of all planets is the same, it is the distance which every planet in a day traverses. It stands in the same relation to the *yojanas* of the circumference of its sphere as its motion, which we want to find, to the circumference, the latter being divided into 360 equal parts. If you therefore multiply the path common to all the planets by 360 and divide the product by the *yojanas* of the circumference of the planet in question, the quotient represents its mean daily motion.
<table>
<thead>
<tr>
<th>The planets</th>
<th>The circumferences of the spheres of the planets, reckoned in yojanas.</th>
<th>The distances of the planets from the earth's centre, reckoned in yojanas.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moon</td>
<td>324,000</td>
<td>51,566</td>
</tr>
<tr>
<td>Mercury</td>
<td>1,043,211</td>
<td>166,033</td>
</tr>
<tr>
<td>Venus</td>
<td>2,664,632</td>
<td>424,089</td>
</tr>
<tr>
<td>Sun</td>
<td>4,331,500</td>
<td>690,295 (sic)</td>
</tr>
<tr>
<td>Mars</td>
<td>8,146,937</td>
<td>1,296,624 (l)</td>
</tr>
<tr>
<td>Jupiter</td>
<td>51,375,764</td>
<td>8,176,689 (l)</td>
</tr>
<tr>
<td>Saturn</td>
<td>127,671,739</td>
<td>20,319,542 (l)</td>
</tr>
<tr>
<td>The Fixed Stars, the sun's distance from the earth's centre being (\frac{1}{9})th of theirs</td>
<td>259,890,012</td>
<td>41,417,700 (sic)</td>
</tr>
</tbody>
</table>

As, now, the minutes of the diameter of the moon stand in the same relation to the minutes of her circumference, i.e. 21,600, as the number of yojanas of the diameter, i.e. 480, to the yojanas of the circumference of the whole sphere, exactly the same method of calculation has been applied to the minutes of the diameter of the sun, which we have found to be equal to 6522 yojanas according to Brahmagupta, and equal to 6480 according to Pulisa. Since Pulisa reckons the minutes of the body of the moon as 32, i.e. a power of 2, he divides this number in order to get the minutes of the bodies of the planets by 2, till he at last gets 1. Thus he attributes to the body of Venus \(\frac{1}{4}\) of 32 minutes, i.e. 16; to that of Jupiter \(\frac{1}{4}\) of 32 minutes, i.e. 8; to that of Mercury \(\frac{1}{4}\) of 32 minutes, i.e. 4; to that of Saturn \(\frac{1}{16}\) of 32 minutes, i.e. 2; to that of Mars \(\frac{1}{8}\) of 32 minutes, i.e. 1.

This precise order seems to have taken his fancy, or he would not have overlooked the fact that the diameter of Venus is, according to observation, not equal to the radius of the moon, nor Mars equal to \(\frac{1}{16}\)th of Venus.

The following is the method of the computation of the bodies of sun and moon at every time, based on their distances from the earth, i.e. the true diameter of the planets.
of its orbit, which is found in the computations of the corrections of sun and moon. AB is the diameter of the body of the sun, CD is the diameter of the earth, CDH is the cone of the shadow, HL is its elevation. Further, draw CR parallel to DB. Then is AR the difference between AB and CD, and the normal line CT is the middle distance of the sun, i.e. the radius of its orbit derived from the yojanas of heaven (v. p. 72). From this the true distance of the sun always differs, sometimes being larger, sometimes smaller. We draw CK, which is of course determined by the parts of the sine. It stands in the same relation to CT, this being the sinus totus (=radius), as the yojanas of CK to the yojanas of CT. Hereby the measure of the diameter is reduced to yojanas.

The yojanas of AB stand in the same relation to the yojanas of TC as the minutes of AB to the minutes of TC, the latter being the sinus totus. Thereby AB becomes known and determined by the minutes of the sphere, because the sinus totus is determined by the measure of the circumference. For this reason Pulisa says: "Multiply the yojanas of the radius of the sphere of the sun or the moon by the true distance, and divide the product by the sinus totus. By the quotient you get for the sun, divide 22,278,240, and by the quotient you get for the moon, divide 1,650,240. The quotient then represents the minutes of the diameter of the body of either sun or moon."

The last-mentioned two numbers are products of the multiplication of the yojanas of the diameters of sun and moon by 3438, which is the number of the minutes of the sinus totus.

Likewise Brahmagupta says: "Multiply the yojanas of sun or moon by 3416, i.e. the minutes of the sinus totus, and divide the product by the yojanas of the radius of the sphere of sun or moon." But the latter rule of division is not correct, because, according to it,
the measure of the body would not vary (v. p. 74). Therefore the commentator Balabhadra holds the same opinion as Pulisa, viz. that the divisor in this division should be the true distance reduced (to the measure of yojanas).

Brahmagupta gives the following rule for the computation of the diameter of the shadow, which in our canones is called the measure of the sphere of the dragon’s head and tail: “Subtract the yojanas of the diameter of the earth, i.e. 1581, from the yojanas of the diameter of the sun, i.e. 6522. There remains 4941, which is kept in memory to be used as divisor. It is represented in the figure by AR. Further multiply the diameter of the earth, which is the double sinus totus, by the yojanas of the true distance of the sun, which is found by the correction of the sun. Divide the product by the divisor kept in memory. The quotient is the true distance of the shadow’s end.

“Evidently the two triangles ARC and CDH are similar to each other. However, the normal line CT does not vary in size, whilst in consequence of the true distance the appearance of AB varies, though its size is constantly the same. Now let this distance be CK. Draw the lines AJ and RV parallel to each other, and JKV parallel to AB. Then the latter is equal to the divisor kept in memory.

“Draw the line JCM. Then M is the head of the cone of the shadow for that time. The relation of JV, the divisor kept in memory, to KC, the true distance, is the same as that of CD, the diameter of the earth, to ML, which he (Brahmagupta) calls a true distance (of the shadow’s end), and it is determined by the minutes of the sine (the earth’s radius being the sinus totus). For KC——”

Now, however, I suspect that in the following something has fallen out in the manuscript, for the author continues: “Then multiply it (i.e. the quotient of CK,
by the divisor kept in memory) by the diameter of the earth. The product is the distance between the earth's centre and the end of the shadow. Subtract therefrom the true distance of the moon and multiply the remainder by the diameter of the earth. Divide the product by the true distance of the shadow's end. The quotient is the diameter of the shadow in the sphere of the moon. Further, we suppose the true distance of the moon to be LS, and FN is a part of the lunar sphere, the radius of which is LS. Since we have found LM as determined by the minutes of the sine, it stands in the same relation to CD, this being the double sinus totus, as MS, measured in minutes of the sine, to XZ, measured in minutes of the sine."

Here I suppose Brahmagupta wished to reduce LM, the true distance of the shadow's end, to yojanas, which is done by multiplying it by the yojanas of the diameter of the earth, and by dividing the product by the double sinus totus. The mentioning of this division has fallen out in the manuscript; for without it the multiplication of the corrected distance of the shadow's end by the diameter of the earth is perfectly superfluous, and in no way required by the computation.

Further: "If the number of yojanas of LM is known, LS, which is the true distance, must also be reduced to yojanas, for the purpose that MS should be determined by the same measure. The measure of the diameter of the shadow which is thus found represents yojanas.

Further, Brahmagupta says: "Then multiply the shadow which has been found by the sinus totus, and divide the product by the true distance of the moon. The quotient represents the minutes of the shadow which we wanted to find."

However, if the shadow which he has found were determined by yojanas, he ought to have multiplied it by the double sinus totus, and to have divided the product by the yojanas of the diameter of the earth, in
order to find the minutes of the shadow. But as he has not done so, this shows that, in his computation, he limited himself to determining the true diameter in minutes, without reducing it to yojanas.

The author uses the true (sphuta) diameter without its having been reduced to yojanas. Thus he finds that the shadow in the circle, the radius of which is LS, is the true diameter, and this is required for the computation of the circle, the radius of which is the sinus totus. The relation of ZX, which he has already found, to SL, the true distance, is the same as the relation of ZX in the measure which is sought to SL, this being the sinus totus. On the basis of this equation the reduction (to yojanas) must be made.

In another passage Brahmagupta says: "The diameter of the earth is 1581, the diameter of the moon 480, the diameter of the sun 6522, the diameter of the shadow 1581. Subtract the yojanas of the earth from the yojanas of the sun, there remains 4941. Multiply this remainder by the yojanas of the true distance of the moon, and divide the product by the yojanas of the true distance of the sun. Subtract the quotient you get from 1581, and the remainder is the measure of the shadow in the sphere of the moon. Multiply it by 3416, and divide the product by the yojanas of the middle radius of the sphere of the moon. The quotient represents the minutes of the diameter of the shadow.

"Evidently if the yojanas of the diameter of the earth are subtracted from the yojanas of the diameter of the sun, the remainder is AR, i.e. JV. Draw the line VCF and let fall the normal line KC on O. Then the relation of the surplus JV to KC, the true distance of the sun, is the same as the relation of ZF to OC, the true distance of the moon. It is indifferent whether these two mean diameters are reduced (to yojanas) or not, for ZF is, in this case, found as determined by the measure of yojana.

"Draw XN as equal to OF. Then ON is necessarily
equal to the diameter of CD, and its sought-for part is ZX. The number which is thus found must be subtracted from the diameter of the earth, and the remainder will be ZX."

For such mistakes as occur in this computation, the author, Brahmagupta, is not to be held responsible, but we rather suspect that the fault lies with the manuscript. We, however, cannot go beyond the text we have at our disposal, as we do not know how it may be in a correct copy.

The measure of the shadow adopted by Brahmagupta, from which he orders the reader to subtract, cannot be a mean one, for a mean measure stands in the midst, between too little and too much. Further, we cannot imagine that this measure should be the greatest of the measures of the shadow, including the plus (?); for ZF, which is the minus, is the base of a triangle, of which the one side, FC, cuts SL in the direction of the sun, not in the direction of the end of the shadow. Therefore ZF has nothing whatsoever to do with the shadow (conjectural rendering.)
Lastly, there is the possibility that the minus belongs to the diameter of the moon. In that case the relation of ZX, which has been determined in yojanas, to SL, the yojanas of the true distance of the moon, is the same as the relation of ZX reckoned in minutes to SL, this being the sinus totus (conjectural rendering.)

By this method is found what Brahmagupta wants to find, quite correctly, without the division by the mean radius of the sphere of the moon, which is derived from the yojanas of the sphere of heaven (v. p. 72). (For the last three passages vide Notes.)

The methods of the computation of the diameters of sun and moon, as given by the Hindu canones, such as the Khandakhadyaka and Karanashra, are the same as are found in the canon of Alkhwârizmi. Also the computation of the diameter of the shadow in the Khandaka-

The computation of the diameters of sun and moon according to other sources.

The computation of the diameter of the moon by 4 and the bhukti of the sun by 13. Divide the difference between the two products by 30, and the quotient is the diameter of the shadow.

The Karanatilaka gives the following method for the computation of the diameter of the sun:—“Divide the bhukti of the sun by 2, and write down the half in two different places. In the one place divide it by 10, and add the quotient to the number in the second place. The sum is the number of minutes of the diameter of the sun.”

In the computation of the diameter of the moon, he first takes the bhukti of the moon, adds thereto \(\frac{1}{30} \)th of it, and divides the number by 25. The quotient is the number of the minutes of the moon’s diameter.

In the computation of the diameter of the shadow, he multiplies the bhukti of the sun by 3, and from the product he subtracts \(\frac{1}{4} \)th of it. The remainder he subtracts from the bhukti of the moon, and the double of
the remainder he divides by 15. The quotient is the number of the minutes of the dragon's head and tail.

If we would indulge in further quotations from the _canones_ of the Hindus, we should entirely get away from the subject of the present book. Therefore we restrict ourselves to quote from them only subjects more or less connected with the special subject of this book, which either are noteworthy for their strangeness, or which are unknown among our people (the Muslims) and in our (the Muslim) countries.
CHAPTER LVI.

ON THE STATIONS OF THE MOON.

The Hindus use the lunar stations exactly in the same way as the zodiacal signs. As the ecliptic is, by the zodiacal signs, divided into twelve equal parts, so, by the lunar stations, it is divided into twenty-seven equal parts. Each station occupies $13\frac{1}{3}$ degrees, or 800 minutes of the ecliptic. The planets enter into them and leave them again, and wander to and fro through their northern and southern latitudes. The astrologers attribute to each station a special nature, the quality of foreboding events, and other particular characteristic traits, in the same way as they attribute them to the zodiacal signs.

The number 27 rests on the fact that the moon passes through the whole ecliptic in 27\(\frac{1}{2}\) days, in which number the fraction of \(\frac{1}{2}\) may be disregarded. In a similar way, the Arabs determine their lunar stations as beginning with the moon's first becoming visible in the west till her ceasing to be visible in the east. Herein they use the following method:

Add to the circumference the amount of the revolution of the sun in a lunar month. Subtract from the sum the march of the moon for the two days called almiḥāk (i.e. the 28th and 29th days of a lunation). Divide the remainder by the march of the moon for one day. The quotient is 27 and a little more than \(\frac{3}{8}\), which fraction must be counted as a whole day.

However, the Arabs are illiterate people, who can neither write nor reckon. They only rely upon numbers and eyesight. They have no other medium of research than eyesight, and are not able to determine the lunar stations without the fixed stars in them. If the Hindus...
want to describe the single stations, they agree with
the Arabs regarding certain stars, whilst regarding
others they differ from them. On the whole, the Arabs
keep near to the moon's path, and use, in describing the
stations, only those fixed stars with which the moon
either stands in conjunction at certain times, or through
the immediate neighbourhood of which she passes.

The Hindus do not strictly follow the same line, but
also take into account the various positions of one star
with reference to the other, e.g. one star's standing in
opposition or in the zenith of another. Besides, they
reckon also the Falling Eagle among the stations, so as
to get 28.

It is this which has led our astronomers and the
authors of 'anuca books astray; for they say that the
Hindus have twenty-eight lunar stations, but that they
leave out one which is always covered by the rays of the
sun. Perhaps they may have heard that the Hindus call
that station in which the moon is, the burning one;
that station which it has just left, the left one after the
embrace; and that station in which she will enter next,
the smoking one. Some of our Muslim authors have main-
tained that the Hindus leave out the station Al-zuband,
and account for it by declaring that the moon's path is
burning in the end of Libra and the beginning of Scorpio.

All this is derived from one and the same source, viz.
their opinion that the Hindus have twenty-eight stations,
and that under certain circumstances they drop one.
Whilst just the very opposite is the case; they have
twenty-seven stations, and under certain circumstances
add one.

Brahmagupta says that in the book of the Veda there
is a tradition, derived from the inhabitants of Mount
Meru, to this effect, that they see two suns, two moons,
and fifty-four lunar stations, and that they have double
the amount of days of ours. Then he tries to refute this
theory by the argument that we do not see the fish (sic)
of the pole revolve twice in a day, but only once. I for
CHAPTER LVI.

my part have no means of arraying this erroneous sentence in a reasonable shape.

The proper method for the computation of the place of a star or of a certain degree of a lunar station is this:

Take its distance from 0° Aries in minutes, and divide them by 800. The quotient represents whole stations preceding that station in which the star in question stands.

Then remains to be found the particular place within the station in question. Now, either star or degree is simply determined according to the 800 parts of the station, and reduced by a common denominator, or the degrees are reduced to minutes, or they are multiplied by 60 and the product is divided by 800, in which case the quotient represents that part of the station which the moon has in that moment already traversed, if the station is reckoned as $\frac{1}{80}$.

These methods of computation suit as well the moon as the planets and other stars. The following, however, applies exclusively to the moon:—The product of the multiplication of the remainder (i.e. the portion of the incomplete lunar station) by 60 is divided by the bhukti of the moon. The quotient shows how much of the lunar nakshatra day has elapsed.

The Hindus are very little informed regarding the fixed stars. I never came across any one of them who knew the single stars of the lunar stations from eye-sight, and was able to point them out to me with his fingers. I have taken the greatest pains to investigate this subject, and to settle most of it by all sorts of comparisons, and have recorded the results of my research in a treatise on the determination of the lunar stations. Of their theories on this subject I shall mention as much as I think suitable in the present context. But before, that I shall give the positions of the stations in longitude and latitude and their numbers, according to the canon Khandakhâdyaka, facilitating the study of the subject by comprehending all details in the following table:
<table>
<thead>
<tr>
<th>The number of the lunar stations.</th>
<th>The names of the lunar stations.</th>
<th>The number of their stars.</th>
<th>Longitude.</th>
<th>Latitude.</th>
<th>Whether northern or southern latitude.</th>
<th>Notes on the stars of which the lunar stations consist.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ásvint</td>
<td>2</td>
<td>08° 00′</td>
<td>10° 00′</td>
<td>Northern</td>
<td>Alsharatán.</td>
</tr>
<tr>
<td>2</td>
<td>Bharań</td>
<td>3</td>
<td>00° 20′</td>
<td>12° 00′</td>
<td>Northern</td>
<td>Albutain.</td>
</tr>
<tr>
<td>3</td>
<td>Krittikā</td>
<td>6</td>
<td>01° 07′</td>
<td>05° 00′</td>
<td>Northern</td>
<td>Althirayyá.</td>
</tr>
<tr>
<td>4</td>
<td>Rohint</td>
<td>5</td>
<td>01° 19′</td>
<td>05° 00′</td>
<td>Southern</td>
<td>Aldabarán, together with the stars of the head of Taurus.</td>
</tr>
<tr>
<td>5</td>
<td>Mṛigaśātra</td>
<td>3</td>
<td>02° 03′</td>
<td>05° 00′</td>
<td>Southern</td>
<td>Albak’a.</td>
</tr>
<tr>
<td>6</td>
<td>Āndrá</td>
<td>1</td>
<td>02° 07′</td>
<td>11° 00′</td>
<td>Southern</td>
<td>Unknown. Most likely identical with Canis Minor.</td>
</tr>
<tr>
<td>7</td>
<td>Punarvasu</td>
<td>2</td>
<td>03° 03′</td>
<td>06° 00′</td>
<td>Northern</td>
<td>Aldhirá.</td>
</tr>
<tr>
<td>8</td>
<td>Pushya</td>
<td>1</td>
<td>03° 16′</td>
<td>00° 00′</td>
<td>Without any latitude</td>
<td>Anathara.</td>
</tr>
<tr>
<td>9</td>
<td>Áślesha</td>
<td>6</td>
<td>03° 18′</td>
<td>06° 00′</td>
<td>Southern</td>
<td>Unknown. Most likely identical with two stars of Cancer and four stars outside of it.</td>
</tr>
<tr>
<td>10</td>
<td>Maghā</td>
<td>6</td>
<td>04° 09′</td>
<td>00° 00′</td>
<td>Without any latitude</td>
<td>Aljabha, together with two other stars.</td>
</tr>
<tr>
<td>11</td>
<td>Purvapahlguns</td>
<td>2</td>
<td>04° 27′</td>
<td>12° 00′</td>
<td>Northern</td>
<td>Alzubra.</td>
</tr>
<tr>
<td>12</td>
<td>Uttarapahlguns</td>
<td>2</td>
<td>05° 05′</td>
<td>13° 00′</td>
<td>Northern</td>
<td>Alṣarfa, together with the third star of Alṣaffira.</td>
</tr>
<tr>
<td>13</td>
<td>Hasta</td>
<td>5</td>
<td>5</td>
<td>20</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>----</td>
<td>-----------</td>
<td>---</td>
<td>---</td>
<td>----</td>
<td>---</td>
<td>----</td>
</tr>
<tr>
<td>14</td>
<td>Citrā</td>
<td>1</td>
<td>6</td>
<td>3</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>Svātī</td>
<td>1</td>
<td>6</td>
<td>19</td>
<td>0</td>
<td>37</td>
</tr>
<tr>
<td>16</td>
<td>Viśākhā</td>
<td>2</td>
<td>7</td>
<td>2</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>Anurādhā</td>
<td>4</td>
<td>7</td>
<td>14</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>18</td>
<td>Jyeshṭhā</td>
<td>3</td>
<td>7</td>
<td>19</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>19</td>
<td>Mūla</td>
<td>2</td>
<td>8</td>
<td>1</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>20</td>
<td>Pūrvāśadhā</td>
<td>4</td>
<td>8</td>
<td>14</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>21</td>
<td>Uttarāśadhā</td>
<td>4</td>
<td>8</td>
<td>20</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>22</td>
<td>Abhijit</td>
<td>3</td>
<td>8</td>
<td>25</td>
<td>0</td>
<td>62</td>
</tr>
<tr>
<td>23</td>
<td>śravaṇa</td>
<td>3</td>
<td>9</td>
<td>8</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>24</td>
<td>Dhanishṭhā</td>
<td>5</td>
<td>9</td>
<td>20</td>
<td>0</td>
<td>36</td>
</tr>
<tr>
<td>25</td>
<td>śatabhishaj</td>
<td>1</td>
<td>10</td>
<td>20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>26</td>
<td>Pūrvabhadrapā</td>
<td>2</td>
<td>10</td>
<td>26</td>
<td>0</td>
<td>24</td>
</tr>
<tr>
<td>27</td>
<td>Uttarabhadrapā</td>
<td>2</td>
<td>11</td>
<td>6</td>
<td>0</td>
<td>26</td>
</tr>
<tr>
<td>28</td>
<td>Revati</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
The notions of the Hindus regarding the stars are not free from confusion. They are only little skilled in practical observation and calculation, and have no understanding of the motions of the fixed stars. So Varāhamihira says in his book *Samhitā*: "In six stations, beginning with Revati and ending with Mrīgaśīras, observation precedes calculation, so that the moon enters each one of them earlier according to eyesight than according to calculation.

"In twelve stations, beginning with Ārdrā and ending with Anurādhā, the precession is equal to half a station, so that the moon is in the midst of a station according to observation, whilst she is in its first part according to calculation.

"In the nine stations, beginning with Jyeshṭhā and ending with Uttarabhadrāpādā, observation falls back behind calculation, so that the moon enters each of them according to observation, when, according to calculation, she leaves it in order to enter the following."

My remark relating to the confused notions of the Hindus regarding the stars is confirmed, though this is perhaps not apparent to the Hindus themselves, e.g. by the note of Varāhamihira regarding *Alsharatān = Aśvini*, one of the first-mentioned six stations; for he says that in it observation precedes calculation. Now the two stars of Aśvini stand, in our time, in two-thirds of Aries (i.e. between 10°–20° Aries), and the time of Varāhamihira precedes our time by about 526 years. Therefore by whatever theory you may compute the motion of the fixed stars (or precession of the equinoxes), the Aśvini did, in his time, certainly not stand in less than one-third of Aries (i.e. they had not come in the precession of the equinoxes farther than to 1°–10° Aries).

Supposing that, in his time, Aśvini really stood in this part of Aries or near it, as is mentioned in the *Khaṇḍakāhādyaka*, which gives the computation of sun
and moon in a perfectly correct form, we must state that at that time there was not yet known what is now known, viz. the retrograde motion of the star by the distance of eight degrees. How, therefore, could, in his time, observation precede calculation, since the moon, when standing in conjunction with the two stars, had already traversed nearly two-thirds of the first station? According to the same analogy, also, the other statements of Varāhamihira may be examined.

The stations occupy a smaller or larger space according to their figures, i.e. their constellations, not they themselves, for all stations occupy the same space on the ecliptic. This fact does not seem to be known to the Hindus, although we have already related similar notions of theirs regarding the Great Bear. For Brahmagupta says in the Uttara-khandakhadyaka, i.e. the emendation of the Khandakhadyaka:

"The measure of some stations exceeds the measure of the mean daily motion of the moon by one half. Accordingly their measure is 19° 45' 52" 18''. There are six stations, viz. Rohini, Punarvasu, Uttaraphalguni, Visakha, Uttarashadha, Uttarakhadrapada. These together occupy the space of 118° 35' 13" 48''. Further six stations are short ones, each of them occupying less than the mean daily motion of the moon by one half. Accordingly their measure is 6° 35' 17" 26''. These are Bharani, Ardra, Ashlesh, Svati, Jyeshtha, Satabhishaj. They together occupy the space of 39° 31' 44" 36''. Of the remaining fifteen stations, each occupies as much as the mean daily motion. Accordingly it occupies the space of 13° 10' 34" 52''. They together occupy the space of 197° 38' 43''. These three groups of stations together occupy the space of 355° 45' 41" 24''. The remainder of the complete circle 4° 14' 18" 36'', and this is the space of Abhijit, i.e. the Falling Eagle, which is left out. I have tried to make the investigation of this subject acceptable to the
student in my above-mentioned special treatise on the lunar stations (v. p. 83).

The scantiness of the knowledge of the Hindus regarding the motion of the fixed stars is sufficiently illustrated by the following passage from the Sāṃhitā of Varāhamihira:—"It has been mentioned in the books of the ancients that the summer solstice took place in the midst of Āśleshā, and the winter solstice in Dhanishṭhā. And this is correct for that time. Nowadays the summer solstice takes place in the beginning of Cancer, and the winter solstice in the beginning of Capricornus. If any one doubts this, and maintains that it is as the ancients have said and not as we say, let him go out to some level country when he thinks that the summer solstice is near. Let him there draw a circle, and place in its centre some body which stands perpendicular on the plain. Let him mark the end of its shadow by some sign, and continue the line till it reaches the circumference of the circle either in east or west. Let him repeat the same at the same moment of the following day, and make the same observation. When he then finds that the end of the shadow deviates from the first sign towards the south, he must know that the sun has moved towards the north and has not yet reached its solstice. But if he finds that the end of the shadow deviates towards the north, he knows that the sun has already commenced to move southward and has already passed its solstice. If a man continues this kind of observations, and thereby finds the day of the solstice, he will find that our words are true."

This passage shows that Varāhamihira had no knowledge of the motion of the fixed stars towards the east. He considers them, in agreement with the name, as fixed, immovable stars, and represents the solstice as moving towards the west. In consequence of this fancy, he has, in the matter of the lunar stations, confounded
CHAPTER LVI.

two things, between which we shall now properly distinguish, in order to remove doubt and to give the matter in a critically emended form.

In the order of the zodiacal signs we begin with that twelfth part of the ecliptic which lies north of the point of intersection of the equator and the ecliptic according to the second motion, i.e. the precession of the equinoxes. In that case, the summer solstice always occurs at the beginning of the fourth sign, the winter solstice at the beginning of the tenth sign.

In the order of the lunar stations we begin with that twenty-seventh part of the ecliptic which belongs to the first of the first zodiacal sign. In that case the summer solstice falls always on three-fourths of the seventh station (i.e. on 600' of the station), and the winter solstice on one fourth of the twenty-first station (i.e. on 200' of the station). This order of things will remain the same as long as the world lasts.

If, now, the lunar stations are marked by certain constellations, and are called by names peculiar to these constellations, the stations wander round together with the constellations. The stars of the zodiacal signs and of the stations have, in bygone times, occupied earlier (i.e. more western) parts of the ecliptic. From them they have wandered into those which they occupy at present, and in future they will wander into other still more eastern parts of the ecliptic, so that in the course of time they will wander through the whole ecliptic.

According to the Hindus, the stars of the station Āśleṣhā stand in 18° of Cancer. Therefore, according to the rate of the precession of the equinoxes adopted by the ancient astronomers, they stood 1800 years before our time in the O° of the fourth sign, whilst the constellation of Cancer stood in the third sign, in which there was also the solstice. The solstice has kept its place, but the constellations have migrated, just the very opposite of what Varāhamihira has fancied.
CHAPTER LVII.

ON THE HELIACAL RISINGS OF THE STARS, AND ON THE CEREMONIES AND RITES WHICH THE HINDUS PRACTISE AT SUCH A MOMENT.

The Hindu method for the computation of the heliacal risings of the stars and the young moon is, as we think, the same as is explained in the canones called Sindhind. They call the degrees of a star’s distance from the sun which are thought necessary for its heliacal rising kālāṁśaka. They are, according to the author of the Ghurrat-alzijât, the following:—13° for Suhail, Alyamâniya, Alwâki, Al’ayyûk, Alsimâkân, Kalb-al’akrab; 20° for Albuţain, Alhak’a, Alnathra, Āśieshâ, Śatabhishaj, Revatî; 14° for the others.

Evidently the stars have, in this respect, been divided into three groups, the first of which seems to comprise the stars reckoned by the Greeks as stars of the first and second magnitude, the second the stars of the third and fourth magnitude, and the third the stars of the fifth and sixth magnitude.

Brahmagupta ought to have given this classification in his emendation of the Khandâkhâdyaka, but he has not done so. He expresses himself in general phrases, and simply mentions 14° distance from the sun as necessary for the heliacal risings of all lunar stations.

Vijayanandin says: “Some stars are not covered by the rays nor impaired in their shining by the sun, viz. Al’ayyûk, Alsimâk, Alrâmih, the two Eagles, Dhanishtâ, and Uttarabhâdrapadâ, because they have so much
northern latitude, and because also the country (of the observer) has so much latitude. For in the more northern regions they are seen both at the beginning and end of one and the same night, and never disappear."

They have particular methods for the computation of the heliacal rising of Agastya, i.e. Suhail or Canopus. They observe it first when the sun enters the station Hasta, and they lose it out of sight when he enters the station Rohint. Pulisa says: "Take double the apsis of the sun. If it is equalled by the corrected place of the sun, this is the time of the heliacal setting of Agastya."

The apsis of the sun is, according to Pulisa, $2\frac{3}{4}$ zodiacal signs. The double of it falls in 10° of Spica, which is the beginning of the station Hasta. Half the apsis falls on 10° of Taurus, which is the beginning of the station Rohint.

Brahmagupta maintains the following in the emendation of the Khandakhadyaka:—

"The position of Suhail is 27° Orion, its southern latitude 71 parts. The degrees of its distance from the sun necessary for its heliacal rising are 12.

"The position of Mrigavyadha, i.e. Sirius Yemenicus, is 26° Orion, its southern latitude 40 parts. The degrees of its distance from the sun necessary for its heliacal rising are 13. If you want to find the time of their risings, imagine the sun to be in the place of the star. That amount of the day which has already elapsed is the number of degrees of its distance from the sun necessary for its heliacal rising. Fix the ascendens on this particular place. When, then, the sun reaches the degree of this ascendens, the star first becomes visible.

"In order to find the time of the heliacal setting of a star, add to the degree of the star six complete zodiacal signs. Subtract from the sum the degrees of its distance from the sun necessary for its heliacal rising, and
fix the *ascendens* on the remainder. When, then, the
sun enters the degree of the *ascendens*, that is the time
of its setting."

The book *Sāmhitā* mentions certain sacrifices and
ceremonies which are practised at the heliacal risings
of various stars. We shall now record them, translat-
ing also that which is rather chaff than wheat, since we
have made it obligatory on ourselves to give the quota-
tions from the books of the Hindus complete and exactly
as they are.

Varāhamihira says: "When in the beginning the sun
had risen, and in his revolution had come to stand in the
zenith of the towering mountain Vindhya, the latter
would not recognise his exalted position, and, actuated
by haughtiness, moved towards him to hinder his
march and to prevent his chariot from passing above
it. The Vindhya rose even to the neighbourhood of
Paradise and the dwellings of the Vidyādharas, the
spiritual beings. Now the latter hastened to it because
it was pleasant and its gardens and meadows were
lovely, and dwelt there in joy; their wives going to
and fro, and their children playing with each other.
When the wind blew against the white garments of
their daughters, they flew like waving banners.

In its ravines the wild animals and the lions ap-
pear as dark black, in consequence of the multitude
of the animals called *bhramara*, which cling to them,
liking the dirt of their bodies when they rub each other
with the soiled claws. When they attack the rutting
elephants, the latter become raving. The monkeys and
bears are seen climbing up to the horns of Vindhya
and to its lofty peaks; as if by instinct, they took the
direction towards heaven. The anchorites are seen at
its water-places, satisfied with nourishing themselves
by its fruits. The further glorious things of the Vin-
dhya are innumerable.

When, now, Agastya, the son of Varuṇa (i.e. Suhai,
the son of the water), had observed all these proceedings of the Vindhya, he offered to be his companion in his aspirations, and asked him to remain in his place until he (Agastya) should return and should have freed him (Vindhya) from the darkness which was on him.

V. 1.—Then Agastya turned towards the ocean, devouring its water, so that it disappeared. There appeared the lower parts of the mountain Vindhya, whilst the makara and the water animals were clinging to it. They scratched the mountain till they pierced it and dug mines in it, in which there remained gems and pearls.

V. 2.—The ocean became adorned by them, further by trees which grew up, though it (the water) was feeble, and by serpents rushing to and fro in windings on its surface.

V. 3.—The mountain has, in exchange for the wrong done to it by Suhail, received the ornament which it has acquired, whence the angels got tiaras and crowns made for themselves.

V. 4.—Likewise the ocean has, in exchange for the sinking down of its water into the depth, received the sparkling of the fishes when they move about in it, the appearance of jewels at its bottom, and the rushing to and fro of the serpents and snakes in the remainder of its water. When the fishes rise over it, and the conch-shells and pearl-oysters, you would take the ocean for ponds, the surface of their water being covered with the white lotus in the season of sarad and the season of autumn.

V. 5.—You could scarcely distinguish between this water and heaven, because the ocean is adorned with jewels as the heaven is adorned with stars; with many-headed serpents, resembling threads of rays which come from the sun; with crystal in it, resembling the body of the moon, and with a white mist, above which rise the clouds of heaven.

V. 6.—How should I not praise him who did this
great deed, who pointed out to the angels the beauty of the crowns, and made the ocean and the mountain Vindhya a treasure-house for them!

V. 7.—That is Suhail, by whom the water becomes clean from earthly defilement, with which the purity of the heart of the pious man is commingled, clean, I say, from that which overpowers him in the intercourse with the wicked.

V. 8.—Whenever Agastya rises and the water increases in the rivers and valleys during his time, you see the rivers offering to the moon all that is on the surface of their water, the various kinds of white and red lotus and the papyrus; all that swims in them, the ducks and the geese (pelicans ?), as a sacrifice unto him, even as a young girl offers roses and presents when she enters them (the rivers).

V. 9.—We compare the standing of the pairs of red geese on the two shores, and the swimming to and fro of the white ducks in the midst while they sing, to the two lips of a beautiful woman, showing her teeth when she laughs for joy.

V. 10.—Nay, we compare the black lotus, standing between white lotus, and the dashing of the bees against it from desire of the fragrancy of its smell, with the black of her pupil within the white of the ring, moving coquettishly and amorously, being surrounded by the hair of the eyebrows.

V. 11.—When you then see the ponds, when the light of the moon has risen over them, when the moon illuminates their dim waters, and when the white lotus opens which was shut over the bees, you would think them the face of a beautiful woman, who looks with a black eye from a white eyeball.

V. 12.—When a stream of the torrents of Varshakāla has flown to them with serpents, poison, and the impurities, the rising of Suhail above them cleans them from defilement and saves them from injury.
CHAPTER LVII.

V. 13.—As one moment's thinking of Suhail before the door of a man blots out his sins deserving of punishment, how much more effective will be the fluency of the tongue praising him, when the task is to do away with sin and to acquire heavenly reward! The former Rishis have mentioned what sacrifice is necessary when Suhail rises. I shall make a present to the kings by relating it, and shall make this relation a sacrifice unto Him. So I say:

V. 14.—His rising takes place at the moment when some of the light of the sun appears from the east, and the darkness of night is gathered in the west. The beginning of his appearance is difficult to perceive, and not every one who looks at him understands it. Therefore ask the astronomer at that moment about the direction whence it rises.

V. 15, 16.—Towards this direction offer the sacrifice called argha, and spread on the earth what you happen to have, roses and fragrant flowers as they grow in the country. Put on them what you think fit, gold, garments, jewels of the sea, and offer incense, saffron, and sandalwood, musk and camphor, together with an ox and a cow, and many dishes and sweetmeats.

V. 17.—Know that he who does this during seven consecutive years with pious intention, strong belief, and confidence, possesses at the end of them the whole earth and the ocean which surrounds it on the four sides, if he is a Kshatriya.

V. 18.—If he is a Brahman, he obtains his wishes, learns the Veda, obtains a beautiful wife, and gets noble children from her. If he is a Vaishya, he obtains much landed property and acquires a glorious lordship. If he is a Sudra, he will obtain wealth. All of them obtain health and safety, the cessation of injuries, and the realisation of reward.”

This is Varāhamihira’s statement regarding the offering
to Suhail. In the same book he gives also the rules regarding Rohini:

"Garga, Vasishtha, Kasyapa, and Parasara told their pupils that Mount Meru is built of planks of gold. Out of them there have risen trees with numerous sweet-swelling flowers and blossoms. The bees already surround them with a humming pleasant to hear, and the nymphs of the Devas wander there to and fro with exhilarating melodies, with pleasant instruments and everlasting joy. This mountain lies in the plain Nandanavana, the park of paradise. So they say. Jupiter was there at a time, and then Narada the Rishi asked him regarding the prognostics of Rohini, upon which Jupiter explained them to him. I shall here relate them as far as necessary.

V. 4.—Let a man in the black days of the month Ashadhya observe if the moon reaches Rohini. Let him seek to the north or east of the town a high spot. To this spot the Brahman must go who has the charge of the houses of the kings. He is to light there a fire and to draw a diagram of the various planets and lunar stations round it. He is to recite what is necessary for each one of them, and to give each its share of the roses, barley, and oil, and to make each planet propitious by throwing these things into the fire. Round the fire on all four sides there must be as much as possible of jewels and jugs filled with the sweetest water, and whatever else there happens to be at hand at the moment, fruits, drugs, branches of trees, and roots of plants. Further, he is to spread there grass which is cut with a sickle for his night-quarters. Then he is to take the different kinds of seeds and corns, to wash them with water, to put gold in the midst of them, and to deposit them in a jug. He is to place it towards a certain direction, and to prepare Homa, i.e. throwing barley and oil into the fire, at the same time reciting certain passages from the Veda, which refer to
different directions, viz. Varuṇa-mantra, Vāyava-mantra, and Soma-mantra.

He raises a danda, i.e. a long and high spear, from the top of which hang down two straps, the one as long as the spear, the other thrice as long. He must do all this before the moon reaches Rohini, for this purpose, that when she reaches it, he should be ready to determine the times of the blowing of the wind as well as its directions. He learns this by means of the straps of the spear.

V. 10.—If the wind on that day blows from the centres of the four directions, it is considered propitious; if it blows from the directions between them, it is considered unlucky. If the wind remains steady in the same direction, powerful and without changing, this too is considered propitious. The time of its blowing is measured by the eight parts of the day, and each eighth part is considered as corresponding to the half of a month.

V. 11.—When the moon leaves the station Rohini, you look at the seeds placed in a certain direction. That of them which sprouts will grow plentifully in that year.

V. 12.—When the moon comes near Rohini, you must be on the look-out. If the sky is clear, not affected by any disturbance; if the wind is pure and does not cause a destructive commotion; if the melodies of the animals and birds are pleasant, this is considered propitious. We shall now consider the clouds.

V. 13, 14.—If they float like the branches of the valley (? baṭṇ ?), and out of them the flashes of lightning appear to the eye; if they open as opens the white lotus; if the lightning encircles the cloud like the rays of the sun; if the cloud has the colour of stibium, or of bees, or of saffron;

V. 15–19.—If the sky is covered with clouds, and out of them flashes the lightning like gold, if the rain-
bow shows its round form coloured with something like the red of evening twilight, and with colours like those of the garments of a bride; if the thunder roars like the screaming peacock, or the bird which cannot drink water except from falling rain, which then screams for joy, as the frogs enjoy the full water-places, so as to croak vehemently; if you see the sky raging like the raging of elephants and buffaloes in the thicket, in the various parts of which the fire is blazing; if the clouds move like the limbs of the elephants, if they shine like the shining of pearls, conch-shells, snow, and even as the moonbeams, as though the moon had lent the clouds her lustre and splendour;

V. 20.—All this indicates much rain and blessing by a rich growth.

V. 25.—At the time when the Brahman sits amidst the water-jugs, the falling of stars, the flashing of the lightning, thunderbolts, red glow in the sky, tornado, earthquake, the falling of hail, and the screaming of the wild animals, all these things are considered as unlucky.

V. 26.—If the water decreases in a jug on the north side, either by itself, or by a hole, or by dripping away, there will be no rain in the month Śrāvana. If it decreases in a jug on the east side, there will be no rain in Bhādrapada. If it decreases in a jug on the south side, there will be no rain in Āśvayuja; and if it decreases in a jug on the west side, there will be no rain in Kārttika. If there is no decrease of water in the jugs, the summer rain will be perfect.

V. 27.—From the jugs they also derive prognostics as to the different castes. The northern jug refers to the Brahman, the eastern to the Kshatriya, the southern to the Vaiśya, and the western to the Śūdra. If the names of people and certain circumstances are inscribed upon the jugs, all that happens to them if, e.g. they break or the water in them decreases, is considered as
prognosticating something which concerns those persons or circumstances."

"The rules relating to the stations Svâti and Śravaṇa are similar to those relating to Rohini. When you are in the white days of the month Ashâdha, when the moon stands in either of the two stations Ashâdha, i.e. Pûrva-ashâdha or Uttara-ashâdha, select a spot as you have selected it for Rohini, and take a balance of gold. That is the best. If it is of silver, it is middling. If it is not of silver, make it of wood called khayar, which seems to be the khadira tree (i.e. Acacia catechu), or of the head of an arrow with which already a man has been killed. The smallest measure for the length of its beam is a span. The longer it is, the better; the shorter it is, the less favourable.

V. 6.—A scale has four strings, each 10 digits long. Its two scales are of linen cloth of the size of 6 digits. Its two weights are of gold.

V. 7, 8.—Weigh by it equal quantities of each matter, water of the wells, of the ponds, and of the rivers, elephants' teeth, the hair of horses, pieces of gold with the names of kings written on them, and pieces of other metal over which the names of other people, or the names of animals, years, days, directions, or countries have been pronounced.

V. 1.—In weighing, turn towards the east; put the weight in the right scale, and the things which are to be weighed in the left. Recite over them and speak to the balance:

V. 2.—'Thou art correct; thou art Deva, and the wife of a Deva. Thou art Sarasvati, the daughter of Brahman. Thou revealest the right and the truth. Thou art more correct than the soul of correctness.

V. 3.—Thou art like the sun and the planets in their wandering from east to west on one and the same road.

V. 4.—Through thee stands upright the order of the
world, and in thee is united the truth and the correctness of all the angels and Brahmans.

V. 5.—Thou art the daughter of Brahman, and a man of thy house is Kaśyapa.'

V. 1.—This weighing must take place in the evening. Then put the things aside, and repeat their weighing the next morning. That which has increased in weight will flourish and thrive in that year; that which has decreased will be bad and go back.

This weighing, however, is not only to be done in Ashâdhâ, but also in Rohini and Svâti.

V. 11.—If the year is a leap-year, and the weighing happens to take place in the repeated month, the weighing is in that year twice done.

V. 12.—If the prognostics are identical, what they forebode will happen. If they were not identical, observe the prognostics of Rohini, for it is predominant."
CHAPTER LVIII.

HOW EBB AND FLOW FOLLOW EACH OTHER IN THE OCEAN.

With regard to the cause why the water of the ocean always remains as it is, we quote the following passage from the *Matsya-Purāṇa*:

"At the beginning there were sixteen mountains, which had wings and could fly and rise up into the air. However, the rays of Indra, the ruler, burned their wings, so that they fell down, deprived of them, somewhere about the ocean, four of them in each point of the compass—in the east, Rishabh, Balāhaka, Cakra, Maināka; in the north, Candra, Kanika, Drona, Suhma; in the west, Vakra, Vadha, Nara, Parvata; in the south, Jimūta, Draviṇa, Maināka, Mahāśaila (?). Between the third and the fourth of the eastern mountains there is the fire *Saivartaka*, which drinks the water of the ocean. But for this the ocean would fill up, since the rivers perpetually flow to it.

"This fire was the fire of one of their kings, called *Aurva*. He had inherited the realm from his father, who was killed while he was still an embryo. When he was born and grew up, and heard the history of his father, he became angry against the angels, and drew his sword to kill them, since they had neglected the guardianship of the world, notwithstanding mankind's worshipping them and notwithstanding their being in close contact with the world. Thereupon the angels humiliated themselves before him and tried to con-
ciliate him, so that he ceased from his wrath. Then he spoke to them: 'But what am I to do with the fire of my wrath?' and they advised him to throw it into the ocean. It is this fire which absorbs the waters of the ocean. Others say: 'The water of the streams does not increase the ocean, because Indra, the ruler, takes up the ocean in the shape of the cloud, and sends it down as rains.'"

Again the Matsya-Purāṇa says: "The black part in the moon which is called Śāsalakṣa, i.e. the hare's figure, is the image of the figures of the above-mentioned sixteen mountains reflected by the light of the moon on her body."

The Vishnu-Dharma says: "The moon is called Śāsalakṣa, for the globe of her body is watery, reflecting the figure of the earth as a mirror reflects. On the earth there are mountains and trees of different shapes, which are reflected in the moon as a hare's figure. It is also called Mrigalāṅcana, i.e. the figure of a gazelle, for certain people compare the black part on the moon's face to the figure of a gazelle."

The lunar stations they declare to be the daughters of Prajāpati, to whom the moon is married. He was especially attached to Rohini, and preferred her to the others. Now her sisters, urged by jealousy, complained of him to their father Prajāpati. The latter strove to keep peace among them, and admonished him, but without any success. Then he cursed the moon (Lunus), in consequence of which his face became leprous. Now the moon repented of his doing, and came penitent to Prajāpati, who spoke to him: "My word is one, and cannot be cancelled; however, I shall cover thy shame for the half of each month." Thereupon the moon spoke to Prajāpati: "But how shall the trace of the sin of the past be wiped off from me?" Prajāpati answered: "By erecting the shape of the linga of Mahādeva as an object of thy worship." This he did. The linga he
raised was the stone of Somanāth, for _soma_ means the moon and _nātha_ means _master_, so that the whole word means _master of the moon_. The image was destroyed by the Prince Mahmūd — may God be merciful to him! — A.H. 416. He ordered the upper part to be broken and the remainder to be transported to his residence, Ghaznīn, with all its coverings and trappings of gold, jewels, and embroidered garments. Part of it has been thrown into the hippodrome of the town, together with the _Cakrasvāmīn_, an idol of bronze, that had been brought from Tāneshar. Another part of the idol from Somanāth lies before the door of the mosque of Ghaznīn, on which people rub their feet to clean them from dirt and wet.

The _liṅga_ is an image of the penis of Mahādeva. I have heard the following story regarding it: — "A Rishi, on seeing Mahādeva with his wife, became suspicious of him, and cursed him that he should lose his penis. At once his penis dropped, and was as if wiped off. But afterwards the Rishi was in a position to establish the signs of his innocence and to confirm them by the necessary proofs. The suspicion which had troubled his mind was removed, and he spoke to him: 'Verily, I shall recompense thee by making the image of the limb which thou hast lost the object of worship for men, who thereby will find the road to God, and come near him.'"

Varāhamihira says about the construction of the _liṅga_: "After having chosen a faultless stone for it, take it as long as the image is intended to be. Divide it into three parts. The lowest part of it is quadrangular, as if it were a cube or quadrangular column. The middle part is octagonal, its surface being divided by four pilasters. The upper third is round, rounded off so as to resemble the gland of a penis.

V. 54.—In erecting the figure, place the quadrangular third within the earth, and for the octagonal third
make a cover, which is called *pinda*, quadrangular from without, but so as to fit also on the quadrangular third in the earth. The octagonal form of the inner side is to fit on to the middle third, which projects out of the earth. The round third alone remains without cover."

Further he says:—

V. 55.—"If you make the round part too small or too thin, it will hurt the country and bring about evil among the inhabitants of the regions who have constructed it. If it does not go deep enough down into the earth, or if it projects too little out of the earth, this causes people to fall ill. When it is in the course of construction, and is struck by a peg, the ruler and his family will perish. If on the transport it is hit, and the blow leaves a trace on it, the artist will perish, and destruction and diseases will spread in that country."

In the south-west of the Sindh country this idol is frequently met with in the houses destined for the worship of the Hindus, but Somanath was the most famous of these places. Every day they brought there a jug of Ganges water and a basket of flowers from Kashmir. They believed that the *viñya* of Somanath would cure persons of every inveterate illness and heal every desperate and incurable disease.

The reason why in particular Somanath has become so famous is that it was a harbour for seafaring people, and a station for those who went to and fro between Sufala in the country of the Zanj and China.

Now as regards ebb and flow in the Indian Ocean, of which the former is called *bharna* (?), the latter *vuhara* (?), we state that, according to the notions of the common Hindus, there is a fire called *Vadavānala* in the ocean, which is always blazing. The flow is caused by the fire’s drawing breath and its being blown up by the wind, and the ebb is caused by the fire’s exhaling
the breath and the cessation of its being blown up by the wind.

Māṇi has come to a belief like this, after he had heard from the Hindus that there is a demon in the sea whose drawing breath and exhaling breath causes the flow and the ebb.

The educated Hindus determine the daily phases of the tides by the rising and setting of the moon, the monthly phases by the increase and waning of the moon; but the physical cause of both phenomena is not understood by them.

It is flow and ebb to which Somanāth owes its name (i.e. master of the moon); for the stone (or līṅga) of Somanāth was originally erected on the coast, a little less than three miles west of the mouth of the river Sarsuti, east of the golden fortress Bārōi, which had appeared as a dwelling-place for Vāsudeva, not far from the place where he and his family were killed, and where they were burned. Each time when the moon rises and sets, the water of the ocean rises in the flood so as to cover the place in question. When, then, the moon reaches the meridian of noon and midnight, the water recedes in the ebb, and the place becomes again visible. Thus the moon was perpetually occupied in serving the idol and bathing it. Therefore the place was considered as sacred to the moon. The fortress which contained the idol and its treasures was not ancient, but was built only about a hundred years ago.

The *Vishnu-Purāṇa* says: "The greatest height of the water of the flow is 1500 digits." This statement seems rather exaggerated; for if the waves and the mean height of the ocean rose to between sixty to seventy yards, the shores and the bays would be more overflown than has ever been witnessed. Still this is not entirely improbable, as it is not in itself impossible on account of some law of nature.

The fact that the just-mentioned fortress is said to
have appeared out of the ocean is not astonishing for that particular part of the ocean; for the Dibajât islands (Maledives and Laccadives) originate in a similar manner, rising out of the ocean as sand-downs. They increase, and rise, and extend themselves, and remain in this condition for a certain time. Then they become decrepit as if from old age; the single parts become dissolved, no longer keep together, and disappear in the water as if melting away. The inhabitants of the islands quit that one which apparently dies away, and migrate to a young and fresh one which is about to rise above the ocean. They take their cocoanut palms along with them, colonise the new island, and dwell on it.

That the fortress in question is called golden may only be a conventional epithet. Possibly, however, this object is to be taken literally, for the islands of the Zâbaj are called the Gold Country (Suvarṇadvîpa), because you obtain much gold as deposit if you wash only a little of the earth of that country.
CHAPTER LIX.

ON THE SOLAR AND LUNAR ECLIPSES.

It is perfectly known to the Hindu astronomers that the moon is eclipsed by the shadow of the earth, and the sun is eclipsed by the moon. Hereon they have based their computations in the astronomical handbooks and other works.

Varāhamihira says in the Sādhītā:

V. 1.—"Some scholars maintain that the Head belonged to the Daityas, and that his mother was Simhikā. After the angels had fetched the amṛita out of the ocean, they asked Vishnu to distribute it among them. When he did so, the Head also came, resembling the angels in shape, and associated himself with them. When Vishnu handed him a portion of the amṛita, he took and drank it. But then Vishnu perceived who it was, hit him with his round cakra, and cut off his head. However, the head remained alive on account of the amṛita in its mouth, whilst the body died, since it had not yet partaken of the amṛita, and the force of the latter had not yet spread through it. Then the Head, humbling itself, spoke: 'For what sin has this been done?' Thereupon he was recompensed by being raised to heaven and by being made one of its inhabitants.

V. 2.—Others say that the Head has a body like sun and moon, but that it is black and dark, and cannot therefore be seen in heaven. Brahman, the first father,
ordered that he should never appear in heaven except at the time of an eclipse.

V. 3.—Others say that he has a head like that of a serpent, and a tail like that of a serpent, whilst others say that he has no other body besides the black colour which is seen."

After having finished the relation of these absurdities, Varâhamihira continues:—

V. 4.—"If the Head had a body, it would act by immediate contact, whilst we find that he eclipses from a distance, when between him and the moon there is an interval of six zodiacal signs. Besides, his motion does not increase nor decrease, so that we cannot imagine an eclipse to be caused by his body reaching the spot of the lunar eclipse.

V. 5.—And if a man commits himself to such a view, let him tell us for what purpose the cycles of the Head's rotation have been calculated, and what is the use of their being correct in consequence of the fact that his rotation is a regular one. If the Head is imagined to be a serpent with head and tail, why does it not eclipse from a distance less or more than six zodiacal signs?

V. 6.—His body is there present between head and tail; both hang together by means of the body. Still it does not eclipse sun nor moon nor the fixed stars of the lunar stations, there being an eclipse only if there are two heads opposed to each other.

V. 7.—If the latter were the case, and the moon rose, being eclipsed by one of the two, the sun would necessarily set, being eclipsed by the other. Likewise, if the moon should set eclipsed, the sun would rise eclipsed. And nothing of the kind ever occurs.

V. 8.—As has been mentioned by scholars who enjoy the help of God, an eclipse of the moon is her entering the shadow of the earth, and an eclipse of the sun consists in this that the moon covers and hides the sun
CHAPTER LXIX.

from us. Therefore the lunar eclipse will never revolve from the west nor the solar eclipse from the east.

V. 9.—A long shadow stretches away from the earth, in like manner as the shadow of a tree.

V. 10.—When the moon has only little latitude, standing in the seventh sign of its distance from the sun, and if it does not stand too far north or south, in that case the moon enters the shadow of the earth and is eclipsed thereby. The first contact takes place on the side of the east.

V. 11.—When the sun is reached by the moon from the west, the moon covers the sun, as if a portion of a cloud covered him. The amount of the covering differs in different regions.

V. 12.—Because that which covers the moon is large, her light wanes when one-half of it is eclipsed; and because that which covers the sun is not large, the rays are powerful notwithstanding the eclipse.

V. 13.—The nature of the Head has nothing whatever to do with the lunar and solar eclipses. On this subject the scholars in their books agree."

After having described the nature of the two eclipses, as he understands them, he complains of those who do not know this, and says: "However, common people are always very loud in proclaiming the Head to be the cause of an eclipse, and they say, ‘If the Head did not appear and did not bring about the eclipse, the Brahmans would not at that moment undergo an obligatory washing.’"

Varāhamihira says:—

V. 14.—"The reason of this is that the head humiliated itself after it had been cut off, and received from Brahman a portion of the offering which the Brahmans offer to the fire at the moment of an eclipse.

V. 15.—Therefore he is near the spot of the eclipse, searching for his portion. Therefore at that time people mention him frequently, and consider him as the cause
practise some act of worship or something else at the occurrence of an eclipse, the eclipse is only the date of these things, not their cause. Thus we Muslims are bound to say certain prayers, and prohibited from saying others, at certain times of the revolution of the sun and his light. These things are simply chronological dates for those acts, nothing more, for the sun has nothing whatever to do with our (Muslim) worship.

Brahmagupta says (ii. 110), "The generality thinks thus." If he thereby means the totality of the inhabitants of the inhabitable world, we can only say that he would be very little able to investigate their opinions either by exact research or by means of historical tradition. For India itself is, in comparison to the whole inhabitable world, only a small matter, and the number of those who differ from the Hindus, both in religion and law, is larger than the number of those who agree with them.

Or if Brahmagupta means the generality of the Hindus, we agree that the uneducated among them are much more numerous than the educated; but we also point out that in all our religious codes of divine revelation the uneducated crowd is blamed as being ignorant, always doubting, and ungrateful.

I, for my part, am inclined to the belief that that which made Brahmagupta speak the above-mentioned words (which involve a sin against conscience) was something of a calamitous fate, like that of Socrates, which had befallen him, notwithstanding the abundance of his knowledge and the sharpness of his intellect, and notwithstanding his extreme youth at the time. For he wrote the Brahmasūdhaṇṭa when he was only thirty years of age. If this indeed is his excuse, we accept it, and herewith drop the matter.

As for the above-mentioned people (the Hindu theologians), from whom you must take care not to differ, how should they be able to understand the astronomical
CHAPTER LIX.

theory regarding the moon’s eclipsing the sun, as they, in their Purānas, place the moon above the sun, and that which is higher cannot cover that which is lower in the sight of those who stand lower than both. Therefore they required some being which devours moon and sun, as the fish devours the bait, and causes them to appear in those shapes in which the eclipsed parts of them in reality appear. However, in each nation there are ignorant people, and leaders still more ignorant than they themselves, who (as the Koran, Sura xxix. 12, says) “bear their own burdens and other burdens besides them,” and who think they can increase the light of their minds; the fact being that the masters are as ignorant as the pupils.

Very odd is that which Varāhamihira relates of certain ancient writers, to whom we must pay no attention if we do not want to oppose them, viz. that they tried to prognosticate the occurrence of an eclipse by pouring a small amount of water together with the same amount of oil into a large vase with a flat bottom on the eighth of the lunar days. Then they examined the spots where the oil was united and dispersed. The united portion they considered as a prognostication for the beginning of the eclipse, the dispersed portion as a prognostication for its end.

Further, Varāhamihira says that somebody used to think that the conjunction of the planets is the cause of the eclipse (V. 16), whilst others tried to prognosticate an eclipse from unlucky phenomena, as, e.g. the falling of stars, comets, halo, darkness, hurricane, landslip, and earthquake. “These things,” so he says, “are not always contemporary with an eclipse, nor are they its cause; the nature of an unlucky event is the only thing which these occurrences have in common with an eclipse. A reasonable explanation is totally different from such absurdities.”

The same man, knowing only too well the character
of his countrymen, who like to mix up peas with wolf's beans, pearls with dung, says, without quoting any authority for his words (V. 63): "If at the time of an eclipse a violent wind blows, the next eclipse will be six months later. If a star falls down, the next eclipse will be twelve months later. If the air is dusty, it will be eighteen months later. If there is an earthquake, it will be twenty-four months later. If the air is dark, it will be thirty months later. If hail falls, it will be thirty-six months later."

To such things silence is the only proper answer.

I shall not omit to mention that the different kinds of eclipses described in the canon of Alkhwarizmi, though correctly represented, do not agree with the results of actual observation. More correct is a similar view of the Hindus, viz. that the eclipse has the colour of smoke if it covers less than half the body of the moon; that it is coal-black if it completely covers one half of her; that it has a colour between black and red if the eclipse covers more than half of her body; and, lastly, that it is yellow-brown if it covers the whole body of the moon.
CHAPTER IX.

ON THE PARVAN.

The intervals between which an eclipse may happen and the number of their lunations are sufficiently demonstrated in the sixth chapter of Almagest. The Hindus call a period of time at the beginning and end of which there occur lunar eclipses, parvan. The following information on the subject is taken from the Samhita. Its author, Varāhamihira, says: "Each six months form a parvan, in which an eclipse may happen. These eclipses form a cycle of seven, each of which has a particular dominant and prognostics, as exhibited in the following table:

<table>
<thead>
<tr>
<th>Number of the Parvans</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dominants of the Parvans</td>
<td>Brahman,</td>
<td>Śaṅkuna, i.e. the Moon.</td>
<td>Indra, the Ruler.</td>
<td>Kuber, the Protector of the North.</td>
<td>Varuṇa, the Protector of the Water.</td>
<td>Agni, the Fire, also called Mitra-khyā.</td>
<td>Yama, the Angel of Death.</td>
</tr>
<tr>
<td>Their prognostics.</td>
<td>Favourable to the Brahmanas; the cattle is thriving; the crops are flourishing; and there is general well-being and stability.</td>
<td>The same as in the first Parvan. But rich people have good fortune.</td>
<td>The kings become exalted. Rich people may easily obtain their wishes.</td>
<td>The crops are ruined.</td>
<td>Not favourable to kings, but advantageous to others. The crops are flourishing.</td>
<td>Rain is scarce, the crops perish, and this leads to famine.</td>
<td></td>
</tr>
</tbody>
</table>
The computation of the parvan in which you happen to be is the following, according to the Khandakhādyaka: "Write down the akargana, as computed according to this canon, in two places. Multiply the one by 50, and divide the product by 1296, reckoning a fraction, if it is not less than one-half, as a whole. Add to the quotient 1063. Add the sum to the number written in the second place, and divide the sum by 180. The quotient, as consisting of wholes, means the number of complete parvans. Divide it by 7, and the remainder under 7 which you get means the distance of the particular parvan from the first one, i.e. from that of Brahman. However, the remainder under 180 which you get by the division is the elapsed part of the parvan in which you are. You subtract it from 180. If the remainder is less than 15, a lunar eclipse is possible or necessary; if the remainder is larger, it is impossible. Therefore you must always by a similar method compute that time which has elapsed before the particular parvan in which you happen to be."

In another passage of the book we find the following rule: "Take the kalpa-ahargana, i.e. the past portion of the days of a kalpa. Subtract therefrom 96,031, and write down the remainder in two different places. Subtract from the lower number 84, and divide the sum by 561. Subtract the quotient from the upper number and divide the remainder by 173. The quotient you disregard, but the remainder you divide by 7. The quotient gives parvans, beginning with Brahmadii" (sic).

These two methods do not agree with each other. We are under the impression that in the second passage something has either fallen out or been changed by the copyists.

What Varāhamihira says of the astrological portents of the parvans does not well suit his deep learning. He says: "If in a certain parvan there is no eclipse, but there is one in the other cycle, there are no rains,
and there will be much hunger and killing." If in this passage the translator has not made a blunder, we can only say that this description applies to each parvan preceding such a one in which there occurs an eclipse.

Stranger still is the following remark of his (V. 24): "If an eclipse occurs earlier than has been calculated, there is little rain and the sword is drawn. If it occurs later than has been calculated, there will be pestilence, and death, and destruction in the corn, the fruit, and flowers. (V. 25.) This is part of what I have found in the books of the ancients and transferred to this place. If a man properly knows how to calculate, it will not happen to him in his calculations that an eclipse falls too early or too late. If the sun is eclipsed and darkened outside a parvan, you must know that an angel called Tvashṭrī has eclipsed him."

Similar to this is what he says in another passage: "If the turning to the north takes place before the sun enters the sign Capricornus, the south and the west will be ruined. If the turning to the south takes place before the sun enters Cancer, the east and the north will be ruined. If the turning coincides with the sun's entering the first degrees of these two signs, or takes place after it, happiness will be common to all four sides, and bliss in them will increase."

Such sentences, understood as they seem intended to be understood, sound like the ravings of a madman, but perhaps there is an esoteric meaning concealed behind them which we do not know.

After this we must continue to speak of the domini temporum, for these too are of a cyclical nature, adding such materials as are related to them.
CHAPTER LXI.

ON THE DOMINANTS OF THE DIFFERENT MEASURES OF TIME IN BOTH RELIGIOUS AND ASTRONOMICAL RELATIONS, AND ON CONNECTED SUBJECTS.

Which of the different measures of time have dominants and which not.

Duration, or time in general, only applies to the Creator as being his age, and not determinable by a beginning and an end. In fact, it is his eternity. They frequently call it the soul, i.e. purusha. But as regards common time, which is determinable by motion, the single parts of it apply to beings beside the Creator, and to natural phenomena beside the soul. Thus kalpa is always used in relation to Brahman, for it is his day and night, and his life is determined by it.

Each manvantara has a special dominant called Manu, who is described by special qualities, already mentioned in a former chapter. On the other hand, I have never heard anything of dominants of the catur-yugas or yugas.

Varāhamihira says in the Great Book of Nativities: “Abha, i.e. the year, belongs to Saturn; Ayana, half a year, to the sun; Ritu, the sixth part of a year, to Mercury; the month, to Jupiter; Paksha, half a month, to Venus; Vāsara, the day, to Mars; Muhūrta, to the moon.”

In the same book he defines the sixth parts of the year in the following manner: “The first, beginning with the winter solstice, belongs to Saturn; the second, to Venus; the third, to Mars; the fourth, to the Moon the fifth, to Mercury; the sixth, to Jupiter.”
CHAPTER LXI.

We have already, in former chapters, described the dominants of the hours, of the muhūrτas, of the halves of the lunar days, of the single days in the white and black halves of the month, of the parvans of the eclipses, and of the single manvantaras. What there is more of the same kind we shall give in this place.

In computing the dominant of the year, the Hindus use another method than the Western nations, who compute it, according to certain well-known rules, from the ascendens or horoscope of a year. The dominant of the year as well as the dominant of the month are the rulers of certain periodically recurring parts of time, and are by a certain calculation derived from the dominants of the hours and the dominants of the days.

If you want to find the dominant of the year, compute the sum of days of the date in question according to the rules of the canon Khandakhyaka, which is the most universally used among them. Subtract therefrom 2201, and divide the remainder by 360. Multiply the quotient by 3, and add to the product always 3. Divide the sum by 7. The remainder, a number under 7, you count off on the week-days, beginning with Sunday. The dominant of that day you come to is at the same time the dominant of the year. The remainders you get by the division are the days of his rule which have already elapsed. These, together with the days of his rule which have not yet elapsed, give the sum of 360.

It is the same whether we reckon as we have just explained, or add to the here-mentioned sum of days 319, instead of subtracting from it.

If you want to find the dominant of the month, subtract 71 from the sum of days of the date in question, and divide the remainder by 30. Double the quotient and add 1. The sum divide by 7, and the remainder count off on the week-days, beginning with Sunday. The dominant of the day you come to is at the same
time the dominant of the month. The remainder you get by the division is that part of his rule which has already elapsed. This, together with that part of his rule which has not yet elapsed, gives the sum of 30 days.

It is the same whether you reckon as we have just explained, or add 19 to the days of the date, instead of subtracting from them, and then add 2 instead of 1 to the double of the sum.

It is useless here to speak of the dominant of the day, for you find it by dividing the sum of the days of a date by 7; or to speak of the dominant of the hour, for you find it by dividing the revolving sphere by 15. Those, however, who use the ṉrau kartikāl divide by 15 the distance between the degree of the sun and the degree of the ascendens, it being measured by equal degrees.

The book Srūdhava of Mahādeva says: “Each of the thirds of the day and night has a dominant. The dominant of the first third of day and night is Brahman, that of the second Vishnu, and that of the third Rudra.” This division is based on the order of the three primeval forces (satva, rajas, tamas).

The Hindus have still another custom, viz. that of mentioning together with the dominant of the year one of the Nāgas or serpents, which have certain names as they are used in connection with one or other of the planets. We have united them in the following table:

<table>
<thead>
<tr>
<th>The dominant of the year</th>
<th>The names of the serpents which accompany the Dominus Amnis, given in two different forms.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sun.</td>
<td>Suka (? Vāsuki), Pushkara, Pindāraka, Bharma (?), Cabrāhasta (?), Ēlāpatra, Karkotaka, Cakṣubhadra (?), Nanda, Citrāgada, Takshaka, Karkota, Padma, Mahāpadma, Saakha,</td>
</tr>
<tr>
<td>Moon.</td>
<td></td>
</tr>
<tr>
<td>Mars.</td>
<td></td>
</tr>
<tr>
<td>Mercury.</td>
<td></td>
</tr>
<tr>
<td>Jupiter.</td>
<td></td>
</tr>
<tr>
<td>Venus.</td>
<td></td>
</tr>
<tr>
<td>Saturn.</td>
<td></td>
</tr>
</tbody>
</table>
The Hindus combine the planets with the sun because they depend upon the sun, and the fixed stars with the moon because the stars of her stations belong to them. It is known among Hindu as well as Muslim astrologers that the planets exercise the rule over the zodiacal signs. Therefore they assume certain angelic beings as the dominants of the planets, who are exhibited in the following table, taken from the Vishnu-dharma:

<table>
<thead>
<tr>
<th>The planets and the two nodes</th>
<th>Their dominants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sun.</td>
<td>Agni.</td>
</tr>
<tr>
<td>Moon.</td>
<td>Vyāna (?)</td>
</tr>
<tr>
<td>Mars.</td>
<td>Kalmāśa (?)</td>
</tr>
<tr>
<td>Mercury.</td>
<td>Vishnū.</td>
</tr>
<tr>
<td>Jupiter.</td>
<td>Śukra.</td>
</tr>
<tr>
<td>Venus.</td>
<td>Gaurī.</td>
</tr>
<tr>
<td>Saturn.</td>
<td>Prajāpati.</td>
</tr>
<tr>
<td>The Head.</td>
<td>Gaṇapati (?)</td>
</tr>
<tr>
<td>The Tail.</td>
<td>Viśvakarman.</td>
</tr>
</tbody>
</table>

The same book attributes also to the lunar stations as to the planets certain dominants, who are contained in the following table:

<table>
<thead>
<tr>
<th>The Lunar Stations</th>
<th>Their dominants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kṛttikā.</td>
<td>Agni.</td>
</tr>
<tr>
<td>Rohinī.</td>
<td>Kēśvara.</td>
</tr>
<tr>
<td>Mrigaśirsha.</td>
<td>Indu, i.e. the moon.</td>
</tr>
<tr>
<td>Ardā.</td>
<td>Rudra.</td>
</tr>
<tr>
<td>Punarvasu.</td>
<td>Aditi.</td>
</tr>
<tr>
<td>Pushya.</td>
<td>Guru, i.e. Jupiter.</td>
</tr>
<tr>
<td>Aśleshā.</td>
<td>Sarpās.</td>
</tr>
<tr>
<td>Maghā.</td>
<td>Pitaras.</td>
</tr>
<tr>
<td>Pārvapahlāgunt.</td>
<td>Bhaga.</td>
</tr>
<tr>
<td>Uttarapahlāgunt.</td>
<td>Aryaman.</td>
</tr>
<tr>
<td>Hastā.</td>
<td>Savitri, i.e. Savitā.</td>
</tr>
<tr>
<td>Citrā.</td>
<td>Tvāshthri.</td>
</tr>
<tr>
<td>Svātt.</td>
<td>Vāyu.</td>
</tr>
<tr>
<td>Viśākhā.</td>
<td>Indrāgni.</td>
</tr>
<tr>
<td>The Lunar Stations</td>
<td>Their dominants</td>
</tr>
<tr>
<td>---------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Anurâdhâ.</td>
<td>Mitra.</td>
</tr>
<tr>
<td>Jyeshtâ.</td>
<td>Sakra.</td>
</tr>
<tr>
<td>Mûla.</td>
<td>Nirûti.</td>
</tr>
<tr>
<td>Pûrvâshâdhâ.</td>
<td>Apas.</td>
</tr>
<tr>
<td>Uttarâshâdhâ.</td>
<td>Viávë[devås].</td>
</tr>
<tr>
<td>Abhijit.</td>
<td>Brahman.</td>
</tr>
<tr>
<td>Sravana.</td>
<td>Vishnu.</td>
</tr>
<tr>
<td>Dhanishtâ.</td>
<td>Vasavas.</td>
</tr>
<tr>
<td>Šatabhishaj.</td>
<td>Varuṇa.</td>
</tr>
<tr>
<td>Pûrvabhâdrapadâ.</td>
<td>[Aja ēkapåd].</td>
</tr>
<tr>
<td>Uttarabhâdrapadâ.</td>
<td>Ahir budhnya.</td>
</tr>
<tr>
<td>Revati.</td>
<td>Pûshan.</td>
</tr>
<tr>
<td>Aśvinì.</td>
<td>Aśvin (?).</td>
</tr>
<tr>
<td>Bharaṇî.</td>
<td>Yama.</td>
</tr>
</tbody>
</table>
CHAPTER LXII.

ON THE SIXTY YEARS-SAMVATSARA, ALSO CALLED
"SHASHIYABDA."

The word samvatsara, which means the years, is a technical term for cycles of years constructed on the basis of the revolutions of Jupiter and the sun, the heliacal rising of the former being reckoned as the beginning. It revolves in sixty years, and is therefore called shashiyabda, i.e. sixty years.

We have already mentioned that the names of the lunar stations are, by the names of the months, divided into groups, each month having a namesake in the corresponding group of stations. We have represented these things in a table, in order to facilitate the subject (v. i. 218). Knowing the station in which the heliacal rising of Jupiter occurs, and looking up this station in the just-mentioned table, you find at the left of it the name of the month which rules over the year in question. You bring the year in connection with the month, and say, e.g. the year of Cāitra, the year of Vaiśākha, &c. For each of these years there exist astrological rules which are well known in their literature.

For the computation of the lunar station in which the heliacal rising of Jupiter occurs, Varāhamihira gives the following rule in his Śamhita:—

"Take the Śakakāla, multiply it by 11, and multiply the product by 4. You may do this, or you may also multiply the Śakakāla by 44. Add 8589 to the product
and divide the sum by 3750. The quotient represents
years, months, days, &c.

"Add them to the Śakakâla, and divide the sum by
60. The quotient represents great sexagenarian yugas,
i.e. complete shashtiyabdas, which, as not being necessary,
are disregarded. Divide the remainder by 5, and the
quotient represents small, complete five-year yugas.
That which remains being less than one yuga, is called
samvatsara, i.e. the year.

"V. 22.—Write down the latter number in two diffe-
rent places. Multiply the one by 9, and add to the pro-
duct 1\(\frac{1}{3}\) of the number in the other place. Take of the
sum the fourth part, and this number represents com-
plete lunar stations, its fractions representing part of
the next following current station. Count off this
number of the stations, beginning with Dhanishṭhā.
The station you arrive at is that one in which the
heliacal rising of Jupiter takes place." Thereby you
know the month of the years, as has above been ex-
plained.

The great yugas begin with the heliacal rising of
Jupiter in the beginning of the station Dhanishṭhā and
the beginning of the month Mâgha. The small yugas
have within the great ones a certain order, being
divided into groups which comprehend certain numbers
of years, and each of which has a special dominant.
This division is represented by the following table.

If you know what number in the great yuga the year
in question occupies, and you look up this number
among the numbers of the years in the upper part
of the table, you find under it, in the corresponding
columns, both the name of the year and the name of
its dominant.
Chapter LXII

<table>
<thead>
<tr>
<th>Numbers with the unit</th>
<th>Numbers with the unit 9</th>
<th>Numbers with the unit 8</th>
<th>Numbers with the unit 6</th>
<th>Numbers with the unit 5</th>
<th>Numbers with the unit 4</th>
<th>Numbers with the unit 3</th>
<th>Numbers with the unit 2</th>
<th>Numbers with the unit 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>70</td>
<td>80</td>
<td>90</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>70</td>
<td>80</td>
<td>90</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>70</td>
<td>80</td>
<td>90</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>70</td>
<td>80</td>
<td>90</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>70</td>
<td>80</td>
<td>90</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>70</td>
<td>80</td>
<td>90</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>70</td>
<td>80</td>
<td>90</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>70</td>
<td>80</td>
<td>90</td>
</tr>
</tbody>
</table>

Cycle of sixty-years each year of the number of their dominants.

The names which each dozen of years has in common.

- Udvasara
- Anuvasara
- Idivasara
- Parivasara
- Samyasara
- Agya, i.e., the fire.

- Śīnāyakhaṁkāra, i.e., having a gold ray, viz. the moon.
- Prajapati, the husband of the daughter of the mountain Mahadeva.
- Arka, i.e., the sun.
Further, every single one of the sixty years has a name of its own, and the *yugas*, too, have names which are the names of their dominants. All these names are exhibited in the following table.

This table is to be used in the same way as the preceding one, as you find the name of each year of the whole cycle (of sixty years) under the corresponding number. It would be a lengthy affair if we were to explain the meanings of the single names and their prognostics. All this is found in the book *Samhitā*.
<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Vīhāra.</td>
<td>Favourable.</td>
<td>lord of Śrīmad, i.e., Śrīmad.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Vīhāra.</td>
<td>Favourable.</td>
<td>lord of Śrīmad, i.e. Jupifer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Śrīmad.</td>
<td>Favourable.</td>
<td>lord of Śrīmad, i.e., Śrīmad.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Pranadā.</td>
<td>Favourable.</td>
<td>lord of Śrīmad, i.e., Śrīmad.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Pradā.</td>
<td>Favourable.</td>
<td>lord of Śrīmad, i.e., Śrīmad.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Bhrā.</td>
<td>Favourable.</td>
<td>lord of Śrīmad, i.e., Śrīmad.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Bhrā.</td>
<td>Favourable.</td>
<td>lord of Śrīmad, i.e., Śrīmad.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Bhrā.</td>
<td>Favourable.</td>
<td>lord of Śrīmad, i.e., Śrīmad.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Bhrā.</td>
<td>Favourable.</td>
<td>lord of Śrīmad, i.e., Śrīmad.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Viḍṭh.</td>
<td>Favourable.</td>
<td>lord of Śrīmad, i.e., Śrīmad.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>Viḍṭh.</td>
<td>Favourable.</td>
<td>lord of Śrīmad, i.e., Śrīmad.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>Viḍṭh.</td>
<td>Favourable.</td>
<td>lord of Śrīmad, i.e., Śrīmad.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>Viḍṭh.</td>
<td>Favourable.</td>
<td>lord of Śrīmad, i.e., Śrīmad.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td>Viḍṭh.</td>
<td>Favourable.</td>
<td>lord of Śrīmad, i.e., Śrīmad.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>Viḍṭh.</td>
<td>Favourable.</td>
<td>lord of Śrīmad, i.e., Śrīmad.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.</td>
<td>Viḍṭh.</td>
<td>Favourable.</td>
<td>lord of Śrīmad, i.e., Śrīmad.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td>Viḍṭh.</td>
<td>Favourable.</td>
<td>lord of Śrīmad, i.e., Śrīmad.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.</td>
<td>Viḍṭh.</td>
<td>Favourable.</td>
<td>lord of Śrīmad, i.e., Śrīmad.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.</td>
<td>Viḍṭh.</td>
<td>Favourable.</td>
<td>lord of Śrīmad, i.e., Śrīmad.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.</td>
<td>Viḍṭh.</td>
<td>Favourable.</td>
<td>lord of Śrīmad, i.e., Śrīmad.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.</td>
<td>Viḍṭh.</td>
<td>Favourable.</td>
<td>lord of Śrīmad, i.e., Śrīmad.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.</td>
<td>Viḍṭh.</td>
<td>Favourable.</td>
<td>lord of Śrīmad, i.e., Śrīmad.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.</td>
<td>Viḍṭh.</td>
<td>Favourable.</td>
<td>lord of Śrīmad, i.e., Śrīmad.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.</td>
<td>Viḍṭh.</td>
<td>Favourable.</td>
<td>lord of Śrīmad, i.e., Śrīmad.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.</td>
<td>Viḍṭh.</td>
<td>Favourable.</td>
<td>lord of Śrīmad, i.e., Śrīmad.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26.</td>
<td>Viḍṭh.</td>
<td>Favourable.</td>
<td>lord of Śrīmad, i.e., Śrīmad.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.</td>
<td>Viḍṭh.</td>
<td>Favourable.</td>
<td>lord of Śrīmad, i.e., Śrīmad.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28.</td>
<td>Viḍṭh.</td>
<td>Favourable.</td>
<td>lord of Śrīmad, i.e., Śrīmad.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29.</td>
<td>Viḍṭh.</td>
<td>Favourable.</td>
<td>lord of Śrīmad, i.e., Śrīmad.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30.</td>
<td>Viḍṭh.</td>
<td>Favourable.</td>
<td>lord of Śrīmad, i.e., Śrīmad.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Page 225
| Page | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 |
|------|
CHAPTER LXII.

This is the method for the determination of the years of the \textit{shashtyabda}, as recorded in their books. However, I have seen Hindus who subtract 3 from the era of Vikramaditya, and divide the remainder by 60. The remainder they count off from the beginning of the great \textit{yuga}. This method is not worth anything. By-the-bye, it is the same whether you reckon in the manner mentioned, or add 12 to the Śakakāla.

I have come across some people from the country of Kanoj who told me that, with them, the cycle of \textit{samvatsaras} has 1248 years, each single one of the twelve \textit{samvatsaras} having 104 years. According to this statement we must subtract 554 from the Śakakāla, and with the remainder compare the following diagram. In the corresponding column you see in which \textit{samvatsara} the year in question lies, and how many years of the \textit{samvatsara} have already elapsed:

<table>
<thead>
<tr>
<th>The years</th>
<th>1.</th>
<th>105.</th>
<th>209.</th>
<th>313.</th>
<th>417.</th>
<th>521.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(?)</td>
<td>(?)</td>
<td>(?)</td>
<td>(?)</td>
<td>(?)</td>
<td>(?)</td>
<td>(?)</td>
</tr>
<tr>
<td>The years</td>
<td>625.</td>
<td>729.</td>
<td>833.</td>
<td>937.</td>
<td>1041.</td>
<td>1145.</td>
</tr>
</tbody>
</table>

When I heard, among these pretended names of \textit{samvatsaras}, names of nations, trees, and mountains, I conceived a suspicion of my reporters, more particularly as their chief business was indeed to practise hocus-pocus and deception (as jugglers?); and a dyed beard proves its bearer to be a liar. I used great care in examining every single one of them, in repeating the same questions at different times, in a different order and context. But lo! what different answers did I get! God is all-wise!

VOL. II.
CHAPTER LXIII.

ON THAT WHICH ESPECIALLY CONCERNS THE BRAHMANS, AND WHAT THEY ARE OBLIGED TO DO DURING THEIR WHOLE LIFE.

The life of the Brahman, after seven years of it have passed, is divided into four parts. The first part begins with the eighth year, when the Brahmans come to him to instruct him, to teach him his duties, and to enjoin him to adhere to them and to embrace them as long as he lives. Then they bind a girdle round his waist and invest him with a pair of yajnopavittas, i.e. one strong cord consisting of nine single cords which are twisted together, and with a third yajnopavita, a single one made from cloth. This girdle runs from the left shoulder to the right hip. Further, he is presented with a stick which he has to wear, and with a seal-ring of a certain grass, called darbha, which he wears on the ring-finger of the right hand. This seal-ring is also called pavitra. The object of his wearing the ring on the ring-finger of his right hand is this, that it should be a good omen and a blessing for all those who receive gifts from that hand. The obligation of wearing the ring is not quite so stringent as that of wearing the yajnopavita, for from the latter he is not to separate himself under any circumstances whatever. If he takes it off while eating or fulfilling some want of nature, he thereby commits a sin which cannot be wiped off save by some work of expiation, fasting, or almsgiving.
CHAPTER LXIII.

This first period of the Brahman's life extends till the twenty-fifth year of his age, or, according to the Vishnu-
Purâna, till his forty-eighth year. His duty is to prac-
tise abstinence, to make the earth his bed, to begin with
the learning of the Veda and of its explanation, of the
science of theology and law, all this being taught to him
by a master whom he serves day and night. He washes
himself thrice a day, and performs a sacrifice to the fire
both at the beginning and end of the day. After the sacri-
fice he worships his master. He fasts a day and he breaks
fast a day, but he is never allowed to eat meat. He
dwells in the house of the master, which he only leaves
in order to ask for a gift and to beg in not more than
five houses once a day, either at noon or in the evening.
Whatever alms he receives he places before his master
to choose from it what he likes. Then the master
allows him to take the remainder. Thus the pupil
nourishes himself from the remains of the dishes of
his master. Further, he fetches the wood for the fire,
wood of two kinds of trees, pâlda (Butea frondosa)
and darbha, in order to perform the sacrifice; for the
Hindus highly venerate the fire, and offer flowers to it.
It is the same case with all other nations. They
always thought that the sacrifice was accepted by the
deity if the fire came down upon it, and no other
worship has been able to draw them away from it,
nor the worship of idols nor that of stars, cows,
asses, or images. Therefore Bashshâr Ibn Burd says:
"Since there is fire, it is worshipped."

The second period of their life extends from the twenty-
fifth year till the fiftieth, or, according to the Vishnu-
Purâna, till the seventieth. The master allows him to marry.
He marries, establishes a household, and intends to have
descendants, but he cohabits with his wife only once in
a month after she has become clean of the menstruation.
He is not allowed to marry a woman above twelve years
of age. He gains his sustenance either by the fee he
obtains for teaching Brahmans and Kshatriyas, not as a payment, but as a present, or by presents which he receives from some one because he performs for him the sacrifices to the fire, or by asking a gift from the kings and nobles, there being no importunate pressing on his part, and no unwillingness on the part of the giver. There is always a Brahman in the houses of those people, who there administers the affairs of religion and the works of piety. He is called purohita.

Lastly, the Brahman lives from what he gathers on the earth or from the trees. He may try his fortune in the trade of clothes and betel-nuts, but it is preferable that he should not trade himself, and that a Vaiśya should do the business for him, because originally trade is forbidden on account of the deceiving and lying which are mixed up with it. Trading is permitted to him only in case of dire necessity, when he has no other means of sustenance. The Brahmans are not, like the other castes, bound to pay taxes and to perform services to the kings. Further, he is not allowed continually to busy himself with horses and cows, with the care for the cattle, nor with gaining by usury. The blue colour is impure for him, so that if it touches his body, he is obliged to wash himself. Lastly, he must always beat the drum before the fire, and recite for it the prescribed holy texts.

The third period of the life of the Brahman extends from the fiftieth year to the seventy-fifth, or, according to the Vishnu-Purāṇa, till the ninetieth. He practises abstinence, leaves his household, and hands it as well as his wife over to his children, if the latter does not prefer to accompany him into the life in the wilderness. He dwells outside civilisation, and leads the same life again which he led in the first period. He does not take shelter under a roof, nor wear any other dress but some bark of a tree, simply sufficient to cover his loins. He sleeps on the earth without any bed, and only
nourishes himself by fruit, vegetables, and roots. He lets the hair grow long, and does not anoint himself with oil.

The fourth period extends till the end of life. He wears a red garment and holds a stick in his hand. He is always given to meditation; he strips the mind of friendship and enmity, and roots out desire, and lust, and wrath. He does not converse with anybody at all. When walking to a place of a particular merit, in order to gain a heavenly reward, he does not stop on the road in a village longer than a day, nor in a city longer than five days. If any one gives him something, he does not leave a remainder of it for the following day. He has no other business but that of caring for the path which leads to salvation, and for reaching moksha, whence there is no return to this world.

The universal duties of the Brahman throughout his whole life are works of piety, giving alms and receiving them. For that which the Brahmans give reverts to the pitaras (is in reality a benefit to the Fathers). He must continually read, perform the sacrifices, take care of the fire which he lights, offer before it, worship it, and preserve it from being extinguished, that he may be burned by it after his death. It is called homa.

Every day he must wash himself thrice: at the samdhi of rising, i.e. morning dawn, at the samdhi of setting, i.e. evening twilight, and between them in the middle of the day. The first washing is on account of sleep, because the openings of the body have become lax during it. Washing is a cleansing from accidental impurity and a preparation for prayer.

Their prayer consists of praise, glorification, and prostration according to their peculiar manner, viz. prostrating themselves on the two thumbs, whilst the two palms of the hands are joined, and they turn their faces towards the sun. For the sun is their kibla, wherever he may be, except when in the south. For they do not
perform any work of piety with the face turned southward; only when occupied with something evil and unlucky they turn themselves towards the south.

The time when the sun declines from the meridian (the afternoon) is well suited for acquiring in it a heavenly reward. Therefore at this time the Brahman must be clean.

The evening is the time of supper and of prayer. The Brahman may take his supper and pray without having previously washed himself. Therefore, evidently, the rule as to the third washing is not as stringent as that relating to the first and second washings.

A nightly washing is obligatory for the Brahman only at the times of eclipses, that he should be prepared to perform the rules and sacrifices prescribed for that occasion.

The Brahman, as long as he lives, eats only twice a day, at noon and at nightfall; and when he wants to take his meal, he begins by putting aside as much as is sufficient for one or two men as alms, especially for strange Brahmans who happen to come at evening-time asking for something. To neglect their maintenance would be a great sin. Further, he puts something aside for the cattle, the birds, and the fire. Over the remainder he says prayers and eats it. The remainder of his dish he places outside his house, and does not any more come near it, as it is no longer allowable for him, being destined for the chance passer-by who wants it, be he a man, bird, dog, or something else.

The Brahman must have a water-vessel for himself. If another one uses it, it is broken. The same remark applies to his eating-instruments. I have seen Brahmans who allowed their relatives to eat with them from the same plate, but most of them disapprove of this.

He is obliged to dwell between the river Sindh in the north and the river Carmanvati in the south. He is not allowed to cross either of these frontiers so as
to enter the country of the Turks or of the Karnāṭa.
Further, he must live between the ocean in the east
and west. People say that he is not allowed to stay
in a country in which the grass which he wears on
the ring-finger does not grow, nor the black-haired
gazelles graze. This is a description for the whole
country within the just-mentioned boundaries. If he
passes beyond them he commits a sin.

In a country where not the whole spot in the house
which is prepared for people to eat upon it is plastered
with clay, where they, on the contrary, prepare a sepa-
rate tablecloth for each person eating by pouring water
over a spot and plastering it with the dung of cows,
the shape of the Brahman's tablecloth must be square.
Those who have the custom of preparing such table-
cloths give the following as the cause of this custom:
—The spot of eating is soiled by the eating. If the
eating is finished, the spot is washed and plastered to
become clean again. If, now, the soiled spot is not
distinguished by a separate mark, you would suppose
also the other spots to be soiled, since they are similar
to and cannot be distinguished from each other.

Five vegetables are forbidden to them by the reli-
gious code:—Onions, garlic, a kind of gourd, the root of
a plant like the carrots called krncn (?), and another
vegetable which grows round their tanks called nālt.
CHAPTER LXIV.

ON THE RITES AND CUSTOMS WHICH THE OTHER CASTES,
BESIDES THE BRAHMANS, PRACTISE DURING THEIR
LIFETIME.

The Kshatriya reads the Veda and learns it, but does
not teach it. He offers to the fire and acts according
to the rules of the Purāṇas. In places where, as we
have mentioned (v. p. 135), a tablecloth is prepared
for eating, he makes it angular. He rules the people
and defends them, for he is created for this task. He
girds himself with a single cord of the threefold yajnopavīta, and a single other cord of cotton. This takes
place after he has finished the twelfth year of his life.

It is the duty of the Vaiśya to practise agriculture
and to cultivate the land, to tend the cattle and to
remove the needs of the Brahmans. He is only allowed
to gird himself with a single yajnopavīta, which is made
of two cords.

The Śūdra is like a servant to the Brahman, taking
care of his affairs and serving him. If, though being
poor in the extreme, he still desires not to be without a yajnopavīta, he girds himself only with the linen one.

Every action which is considered as the privilege of a
Brahman, such as saying prayers, the recitation of the
Veda, and offering sacrifices to the fire, is forbidden to
him, to such a degree that when, e.g. a Śūdra or a Vaiśya
is proved to have recited the Veda, he is accused by the
Brahmans before the ruler, and the latter will order his
tongue to be cut off. However, the meditation on God,
works of piety, and almsgiving are not forbidden to him.

Every man who takes to some occupation which is not allowed to his caste, as, e.g. a Brahman to trade, a Śūdra to agriculture, commits a sin or crime, which they consider only a little less than the crime of theft.

The following is one of the traditions of the Hindus:—In the days of King Rāma human life was very long, always of a well-defined and well-known length. Thus a child never died before its father. Then, however, it happened that the son of a Brahman died while the father was still alive. Now the Brahman brought his child to the door of the king and spoke to him: “This innovation has sprung up in thy days for no other reason but this, that there is something rotten in the state of the country, and because a certain Vazir commits in thy realm what he commits.” Then Rāma began to inquire into the cause of this, and finally they pointed out to him a Caṇḍāla who took the greatest pains in performing worship and in self-torment. The king rode to him and found him on the banks of the Ganges, hanging on something with his head downward. The king bent his bow, shot at him, and pierced his bowels. Then he spoke: “That is it! I kill thee on account of a good action which thou art not allowed to do.” When he returned home, he found the son of the Brahman, who had been deposited before his door, alive.

All other men except the Caṇḍāla, as far as they are not Hindus, are called mleccha, i.e. unclean, all those who kill men and slaughter animals and eat the flesh of cows.

All these things originate in the difference of the classes or castes, one set of people treating the others as fools. This apart, all men are equal to each other, as Vāsudeva says regarding him who seeks salvation: “In the judgment of the intelligent man, the Brahman
and the Cāṇḍāla are equal, the friend and the foe, the faithful and the deceitful, nay, even the serpent and the weasel. If to the eyes of intelligence all things are equal, to ignorance they appear as separated and different."

Vāsudeva speaks to Arjuna: "If the civilisation of the world is that which is intended, and if the direction of it cannot proceed without our fighting for the purpose of suppressing evil, it is the duty of us who are the intelligent to act and to fight, not in order to bring to an end that which is deficient within us, but because it is necessary for the purpose of healing what is ill and banishing destructive elements. Then the ignorant imitate us in acting, as the children imitate their elders, without their knowing the real aim and purport of actions. For their nature has an aversion to intellectual methods, and they use force only in order to act in accordance with the influences of lust and passion on their senses. In all this, the intelligent and educated man is directly the contrary of them."
CHAPTER LXV.

ON THE SACRIFICES.

Most of the Veda treats of the sacrifices to the fire, and describes each one of them. They are different in extent, so that certain of them can only be performed by the greatest of their kings. So, e.g. the *asvamedha.* A mare is let freely to wander about in the country grazing, without anybody's hindering her. Soldiers follow her, drive her, and cry out before her: "She is the king of the world. He who does not agree, let him come forward." The Brahmans walk behind her and perform sacrifices to the fire where she casts dung. When she thus has wandered about through all parts of the world, she becomes food for the Brahmans and for him whose property she is.

Further, the sacrifices differ in duration, so that only he could perform certain of them who lives a very long life; and such long lives do no longer occur in this our age. Therefore most of them have been abolished, and only few of them remain and are practised nowadays.

According to the Hindus, the fire eats everything. Therefore it becomes defiled, if anything unclean is mixed up with it, as, e.g. water. Accordingly they are very punctilious regarding fire and water if they are in the hands of non-Hindus, because they are defiled by being touched by them.

That which the fire eats for its share, reverts to the Devas, because the fire comes out of their mouths.
What the Brahmans present to the fire to eat is oil and different cereals—wheat, barley, and rice—which they throw into the fire. Further, they recite the prescribed texts of the Veda in case they offer on their own behalf. However, if they offer in the name of somebody else, they do not recite anything.

The *Vishnu-Dharma* mentions the following tradition:—Once upon a time there was a man of the class of the Daityas, powerful and brave, the ruler of a wide realm called Hiranyâksha. He had a daughter of the name of Dkhîsh (?), who was always bent upon worship and trying herself by fasting and abstinence. Thereby she had earned as reward a place in heaven. She was married to Mahâdeva. When he, then, was alone with her and did with her according to the custom of the Devas, *i.e.* cohabiting very long and transferring the *semen* very slowly, the fire became aware of it and became jealous, fearing lest the two might procreate a fire similar to themselves. Therefore it determined to defile and to ruin them.

When Mahâdeva saw the fire, his forehead became covered with sweat from the violence of his wrath, so that some of it dropped down to the earth. The earth drank it, and became in consequence pregnant with Mars, *i.e.* Skanda, the commander of the army of the Devas.

Rudra, the destroyer, seized a drop of the *semen* of Mahâdeva and threw it away. It was scattered in the interior of the earth, and represents all atom-like substances (?).

The fire, however, became leprous, and felt so much ashamed and confounded that it plunged down into *pâtâla*, *i.e.* the lowest earth. As, now, the Devas missed the fire, they went out to search for it.

First, the frogs pointed it out to them. The fire, on seeing the Devas, left its place and concealed itself in the tree *aśvattha*, laying a curse on the frogs, that they
should have a horrid croaking and be odious to all others.

Next, the parrots betrayed to the Devas the hiding-place of the fire. Thereupon the fire cursed them, that their tongues should be turned topsy-turvy, that their root should be where its tip ought to be. But the Devas spoke to them: "If your tongue is turned topsy-turvy, you shall speak in human dwellings and eat delicate things."

The fire fled from the Ṙvettha tree to the tree śami. Thereupon the elephant gave a hint to the Devas regarding its hiding-place. Now it cursed the elephant that his tongue should be turned topsy-turvy. But then the Devas spoke to him: "If your tongue is turned topsy-turvy, you shall participate with man in his victuals and understand his speech."

At last they hit upon the fire, but the fire refused to stay with them because it was leprous. Now the Devas restored it to health, and freed it from the leprosy. The Devas brought back to them the fire with all honour and made it a mediator between themselves and mankind, receiving from the latter the shares which they offer to the Devas, and making these shares reach them.
CHAPTER LXVI.

ON PILGRIMAGE AND THE VISITING OF SACRED PLACES.

Pilgrimages are not obligatory to the Hindus, but facultative and meritorious. A man sets off to wander to some holy region, to some much venerated idol or to some of the holy rivers. He worships in them, worships the idol, makes presents to it, recites many hymns and prayers, fasts, and gives alms to the Brahmans, the priests, and others. He shaves the hair of his head and beard, and returns home.

The holy much venerated ponds are in the cold mountains round Meru. The following information regarding them is found in both the Vāyu and the Matsya Purāṇas:—

"At the foot of Meru there is Arhata (?), a very great pond, described as shining like the moon. In it originates the river Zanba (? Jambu), which is very pure, flowing over the purest gold.

"Near the mountain Śveta there is the pond Uttaramānasa, and around it twelve other ponds, each of them like a lake. Thence come the two rivers Sāndī (?) and Maddhyandā (?), which flow to Kimpurusha.

"Near the mountain Nila there is the pond pynd (pitanda ?) adorned with lotuses.

"Near the mountain Nishadha there is the pond Vishnupada, whence comes the river Sarasvati, i.e., Sarsuti. Besides, the river Gandharvi comes from there.

"In the mountain Kailāsa there is the pond Manda, as large as a sea, whence comes the river Mandākini."
CHAPTER LXVI.

"North-east of Kailâsa there is the mountain Candraparvata, and at its foot the pond Ācûd (?), whence comes the river Ācûd.

"South-east of Kailâsa there is the mountain Lohita, and at its foot a pond called Lohita. Thence comes the river Lohitanadi.

"South of Kailâsa there is the mountain Sarayuśati (?), and at its foot the pond Mânasa. Thence comes the river Sarayû.

"West of Kailâsa there is the mountain Aruṇa, always covered with snow, which cannot be ascended. At its foot is the pond Śailôdâ, whence comes the river Śailôdâ.

"North of Kailâsa there is the mountain Gaura (?), and at its foot the pond C-n-d-sara (?), i.e. having golden sand. Near this pond the King Bhagîratha led his anchorite life.

"His story is as follows:—A king of the Hindus called Sagara had 60,000 sons, all of them bad, mean fellows. Once they happened to lose a horse. They at once searched for it, and in searching they continually ran about so violently that in consequence the surface of the earth broke in. They found the horse in the interior of the earth standing before a man who was looking down with deep-sunken eyes. When they came near him he smote them with his look, in consequence of which they were burned on the spot and went to hell on account of their wicked actions.

"The collapsed part of the earth became a sea, the great ocean. A king of the descendants of that king, called Bhagîratha, on hearing the history of his ancestors, was much affected thereby. He went to the above-mentioned pond, the bottom of which was polished gold, and stayed there, fasting all day and worshipping during the nights. Finally, Mahâdeva asked him what he wanted; upon which he answered,
I want the river Ganges which flows in Paradise, knowing that to any one over whom its water flows all his sins are pardoned. Mahâdeva granted him his desire. However, the Milky Way was the bed of the Ganges, and the Ganges was very haughty, for nobody had ever been able to stand against it. Now Mahâdeva took the Ganges and put it on his head. When the Ganges could not move away, he became very angry and made a great uproar. However, Mahâdeva held him firmly, so that it was not possible for anybody to plunge into it. Then he took part of the Ganges and gave it to Bhagiratha, and this king made the middle one of its seven branches flow over the bones of his ancestors, whereby they became liberated from punishment. Therefore the Hindus throw the burned bones of their dead into the Ganges. The Ganges was also called by the name of that king who brought him to earth, i.e. Bhagiratha.

We have already quoted Hindu traditions to the effect that in the Dvipas there are rivers as holy as the Ganges. In every place to which some particular holiness is ascribed, the Hindus construct ponds intended for the ablutions. In this they have attained to a very high degree of art, so that our people (the Muslims), when they see them, wonder at them, and are unable to describe them, much less to construct anything like them. They build them of great stones of an enormous bulk, joined to each other by sharp and strong cramp-irons, in the form of steps (or terraces) like so many ledges; and these terraces run all around the pond, reaching to a height of more than a man’s stature. On the surface of the stones between two terraces they construct staircases rising like pinnacles. Thus the first steps or terraces are like roads (leading round the pond), and the pinnacles are steps (leading up and down). If ever so many people descend to the pond whilst others ascend, they do not meet each other, and
the road is never blocked up, because there are so many terraces, and the ascending person can always turn aside to another terrace than that on which the descending people go. By this arrangement all troublesome thronging is avoided.

In Multān there is a pond in which the Hindus worship by bathing themselves, if they are not prevented.

The Śāṁhitā of Varāhamihira relates that in Tāne-shar there is a pond which the Hindus visit from afar to bathe in its water. Regarding the cause of this custom they relate the following:—The waters of all the other holy ponds visit this particular pond at the time of an eclipse. Therefore, if a man washes in it, it is as if he had washed in every single one of all of them. Then Varāhamihira continues: “People say, if it were not the head (apsis) which causes the eclipse of sun and moon, the other ponds would not visit this pond.”

The ponds become particularly famous for holiness either because some important event has happened at them, or because there is some passage in the holy text or tradition which refers to them. We have already quoted words spoken by Śaunaka. Venus had related them to him on the authority of Brahman, to whom they had originally been addressed. In this text King Bali also is mentioned, and what he would do till the time when Nārāyana would plunge him down to the lowest earth. In the same text occurs the following passage:—“I do that to him only for this purpose that the equality between men, which he desires to realise, shall be done away with, that men shall be different in their conditions of life, and that on this difference the order of the world is to be based; further that people shall turn away from his worship and worship me and believe in me. The mutual assistance of civilised people presupposes a certain difference...
among them, in consequence of which the one requires the other. According to the same principle, God has created the world as containing many differences in itself. So the single countries differ from each other, one being cold, the other warm; one having good soil, water, and air, the other having bitter salt soil, dirty and bad smelling water, and unhealthy air. There are still more differences of this kind; in some cases advantages of all kinds being numerous, in others few. In some parts there are periodically returning physical disasters; in others they are entirely unknown. All these things induce civilised people carefully to select the places where they want to build towns.

That which makes people do these things is usage and custom. However, religious commands are much more powerful, and influence much more the nature of man than usages and customs. The bases of the latter are investigated, explored, and accordingly either kept or abandoned, whilst the bases of the religious commands are left as they are, not inquired into, adhered to by the majority simply on trust. They do not argue over them, as the inhabitants of some sterile region do not argue over it, since they are born in it and do not know anything else, for they love the country as their fatherland, and find it difficult to leave it. If, now, besides physical differences, the countries differ from each other also in law and religion, there is so much attachment to it in the hearts of those who live in them that it can never be rooted out."

The Hindus have some places which are venerated for reasons connected with their law and religion, e.g. Benares (Bárânasí). For their anchorites wander to it and stay there for ever, as the dwellers of the Ka'ba stay for ever in Mekka. They want to live there to the end of their lives, that their reward after death should be the better for it. They say that a murderer
is held responsible for his crime and punished with a punishment due to his guilt, except in case he enters the city of Benares, where he obtains pardon. Regarding the cause of the holiness of this asylum they relate the following story:

"Brahman was in shape four-headed. Now there happened some quarrel between him and Śaṅkara, i.e. Mahādeva, and the succeeding fight had this result, that one of the heads of Brahman was torn off. At that time it was the custom that the victor took the head of the slain adversary in his hand and let it hang down from his hand as an act of ignominy to the dead and as a sign of his own bravery. Further, a bridle was put into the mouth (?). Thus the head of Brahman was dishonoured by the hand of Mahādeva, who took it always with him wherever he went and whatever he did. He never once separated himself from it when he entered the towns, till at last he came to Benares. After he had entered Benares the head dropped from his hand and disappeared."

A similar place is Pūkara, the story of which is this: Brahman once was occupied in offering there to the fire, when a pig came out of the fire. Therefore they represent his image there as that of a pig. Outside the town, in three places, they have constructed ponds which stand in high veneration, and are places of worship.

Another place of the kind is Tāneshar, also called Kurukshetra, i.e. the land of Kuru, who was a peasant, a pious, holy man, who worked miracles by divine power. Therefore the country was called after him, and venerated for his sake. Besides, Tāneshar is the theatre of the exploits of Vāsudeva in the wars of Bhārata and of the destruction of the evil-doers. It is for this reason that people visit the place.

Māhūra, too, is a holy place, crowded with Brahmans.
It is venerated because Vâsudeva was there born and brought up, in a place in the neighbourhood called Nandagola.

Nowadays the Hindus also visit Kashmir. Lastly, they used to visit Mûltân before its idol-temple was destroyed.
CHAPTER LXVII.

ON ALMS, AND HOW A MAN MUST SPEND WHAT HE EARNED.

It is obligatory with them every day to give alms as much as possible. They do not let money become a year or even a month old, for this would be a draft on an unknown future, of which a man does not know whether he reaches it or not.

With regard to that which he earns by the crops or from the cattle, he is bound first to pay to the ruler of the country the tax which attaches to the soil or the pasture-ground. Further, he pays him one-sixth of the income in recognition of the protection which he affords to the subjects, their property, and their families. The same obligation rests also on the common people, but they will always lie and cheat in the declarations about their property. Further, trading businesses, too, pay a tribute for the same reason. Only the Brahmans are exempt from all these taxes.

As to the way in which the remainder of the income, after the taxes have been deducted, is to be employed, there are different opinions. Some destine one-ninth of it for alms. For they divide it into three parts. One of them is kept in reserve to guarantee the heart against anxiety. The second is spent on trade to bring profit, and one-third of the third portion (i.e. one-ninth of the whole) is spent on alms, whilst the two other thirds are spent according to the same rule.

Others divide this income into four portions. One-
fourth is destined for common expenses, the second for liberal works of a noble mind, the third for alms, and the fourth for being kept in reserve, i.e. not more of it than the common expenses for three years. If the quarter which is to be reserved exceeds this amount, only this amount is reserved, whilst the remainder is spent as alms.

Usury or taking percentages is forbidden. The sin which a man commits thereby corresponds to the amount by which the percentages have increased the capital stock. Only to the Śúdra is it allowed to take percentages, as long as his profit is not more than one-fiftieth of the capital (i.e. he is not to take more than two per cent.).
CHAPTER LXVIII.

ON WHAT IS ALLOWED AND FORBIDDEN IN EATING AND DRINKING.

Originally killing in general was forbidden to them, as it is to the Christians and Manichæans. People, however, have the desire for meat, and will always fling aside every order to the contrary. Therefore the here-mentioned law applies in particular only to the Brahmans, because they are the guardians of the religion, and because it forbids them to give way to their lusts. The same rule applies to those members of the Christian clergy who are in rank above the bishops, viz. the metropolitans, the *catholic*æ, and the patriarchs, not to the lower grades, such as presbyter and deacon, except in the case that a man who holds one of these degrees is at the same time a monk.

As matters stand thus, it is allowed to kill animals by means of strangulation, but only certain animals, others being excluded. The meat of such animals, the killing of which is allowed, is forbidden in case they die a sudden death. Animals the killing of which is allowed are sheep, goats, gazelles, hares, rhinoceroses (*gandha*), the buffaloes, fish, water and land birds, as sparrows, ring-doves, francolins, doves, peacocks, and other animals which are not loathsome to man nor noxious.

That which is forbidden are cows, horses, mules, asses, camels, elephants, tame poultry, crows, parrots, nightingales, all kinds of eggs and wine. The latter is
allowed to the Śūdra. He may drink it, but dare not sell it, as he is not allowed to sell meat.

Some Hindus say that in the time before Bhārata it was allowed to eat the meat of cows, and that there then existed sacrifices part of which was the killing of cows. After that time, however, it had been forbidden on account of the weakness of men, who were too weak to fulfil their duties, as also the Veda, which originally was only one, was afterwards divided into four parts, simply for the purpose of facilitating the study of it to men. This theory, however, is very little substantiated, as the prohibition of the meat of cows is not an alleviating and less strict measure, but, on the contrary, one which is more severe and more restrictive than the former law.

Other Hindus told me that the Brahmans used to suffer from the eating of cows' meat. For their country is hot, the inner parts of the bodies are cold, the natural warmth becomes feeble in them, and the power of digestion is so weak that they must strengthen it by eating the leaves of betel after dinner, and by chewing the betel-nut. The hot betel inflames the heat of the body, the chalk on the betel-leaves dries up everything wet, and the betel-nut acts as an astringent on the teeth, the gums, and the stomach. As this is the case, they forbade eating cows' meat, because it is essentially thick and cold.

I, for my part, am uncertain, and hesitate in the question of the origin of this custom between two different views.

(Lacuna in the manuscript.)

As for the economical reason, we must keep in mind that the cow is the animal which serves man in travelling by carrying his loads, in agriculture in the works of ploughing and sowing, in the household by the milk and the product made thereof. Further, man makes use of its dung, and in winter-time even of its breath.
Therefore it was forbidden to eat cows' meat; as also Alhajjâj forbade it, when people complained to him that Babylonia became more and more desert.

I have been told the following passage is from an Indian book: "All things are one, and whether allowed or forbidden, equal. They differ only in weakness and power. The wolf has the power to tear the sheep; therefore the sheep is the wolf's food, for the former cannot oppose the latter, and is his prey." I have found in Hindu books passages to the same effect. However, such views come to the intelligent man only by knowledge, when in it he has attained to such a degree that a Brahman and a Candâla are equal to him. If he is in this state, all other things also are equal to him, in so far as he abstains from them. It is the same if they are all allowed to him, for he can dispense with them, or if they are forbidden to him, for he does not desire them. As to those, however, who require these things, being in the yoke of ignorance, something is allowed to them, something forbidden, and thereby a wall is erected between the two kinds of things.
CHAPTER LXIX.

ON MATRIMONY, THE MENSTRUAL COURSES, EMBRYOS, AND CHILDBED.

Necessity of matrimony.

No nation can exist without a regular married life, for it prevents the uproar of passions abhorred by the cultivated mind, and it removes all those causes which excite the animal to a fury always leading to harm. Considering the life of the animals by pairs, how the one member of the pair helps the other, and how the lust of other animals of the same species is kept aloof from them, you cannot help declaring matrimony to be a necessary institution; whilst disorderly cohabitation or harlotry on the part of man is a shameful proceeding, that does not even attain to the standing of the development of animals, which in every other respect stand far below him.

Law of marriage.

Every nation has particular customs of marriage, and especially those who claim to have a religion and law of divine origin. The Hindus marry at a very young age; therefore the parents arrange the marriage for their sons. On that occasion the Brahmans perform the rites of the sacrifices, and they as well as others receive alms. The implements of the wedding rejoicings are brought forward. No gift is settled between them. The man gives only a present to the wife, as he thinks fit, and a marriage gift in advance, which he has no right to claim back; but the wife may give it back to him of her own will. Husband and wife can only be separated by death, as they have no divorce.
CHAPTER LXIX.

A man may marry one to four wives. He is not allowed to take more than four; but if one of his wives die, he may take another one to complete the legitimate number. However, he must not go beyond it.

If a wife loses her husband by death, she cannot marry another man. She has only to chose between two things—either to remain a widow as long as she lives or to burn herself; and the latter eventuality is considered the preferable, because as a widow she is ill-treated as long as she lives. As regards the wives of the kings, they are in the habit of burning them, whether they wish it or not, by which they desire to prevent any of them by chance committing something unworthy of the illustrious husband. They make an exception only for women of advanced years and for those who have children; for the son is the responsible protector of his mother.

According to their marriage law it is better to marry a stranger than a relative. The more distant the relationship of a woman with regard to her husband the better. It is absolutely forbidden to marry related women both of the direct descending line, viz. a granddaughter or great-granddaughter, and of the direct ascending line, viz. a mother, grandmother, or great-grandmother. It is also forbidden to marry collateral relations, viz. a sister, a niece, a maternal or paternal aunt and their daughters, except in case the couple of relations who want to marry each other be removed from each other by five consecutive generations. In that case the prohibition is waived, but, notwithstanding, such a marriage is an object of dislike to them.

Some Hindus think that the number of the wives depends upon the caste; that, accordingly, a Brahman may take four, a Kshatriya three, a Vaisya two wives, and a Sudra one. Every man of a caste may marry a woman of his own caste or one of the castes or caste
below his; but nobody is allowed to marry a woman of a caste superior to his own.

The child belongs to the caste of the mother, not to that of the father. Thus, e.g. if the wife of a Brahman is a Brahman, her child also is a Brahman; if she is a Śūdra, her child is a Śūdra. In our time, however, the Brahmans, although it is allowed to them, never marry any woman except one of their own caste.

The longest duration of the menstrual courses which has been observed is sixteen days, but in reality they last only during the first four days, and then the husband is not allowed to cohabit with his wife, nor even to come near her in the house, because during this time she is impure. After the four days have elapsed and she has washed, she is pure again, and the husband may cohabit with her, even if the blood has not yet entirely disappeared; for this blood is not considered as that of the menstrual courses, but as the same substance-matter of which the embryos consist.

It is the duty (of the Brahman), if he wants to cohabit with a wife to get a child, to perform a sacrifice to the fire called garbhadhāna; but he does not perform it, because it requires the presence of the woman, and therefore he feels ashamed to do so. In consequence he postpones the sacrifice and unites it with the next following one, which is due in the fourth month of the pregnancy, called simamtonnayanam. After the wife has given birth to the child, a third sacrifice is performed between the birth and the moment when the mother begins to nourish the child. It is called jāta-karman.

The child receives a name after the days of the childbirth have elapsed. The sacrifice for the occasion of the name-giving is called nāmakarman.

As long as the woman is in childbed, she does not touch any vessel, and nothing is eaten in her house, nor does the Brahman light there a fire. These days are
eight for the Brahman, twelve for the Kshatriya, fifteen for the Vaiśya, and thirty for the Śūdra. For the low-caste people which are not reckoned among any caste, no term is fixed.

The longest duration of the suckling of the child is three years, but there is no obligation in this matter. The sacrifice on the occasion of the first cutting of the child's hair is offered in the third, the perforation of the ear takes place in the seventh and eighth years.

People think with regard to harlotry that it is allowed with them. Thus, when Kâbul was conquered by the Muslims and the Ispahbad of Kâbul adopted Islâm, he stipulated that he should not be bound to eat cows' meat nor to commit sodomy (which proves that he abhorred the one as much as the other). In reality, the matter is not as people think, but it is rather this, that the Hindus are not very severe in punishing whoredom. The fault, however, in this lies with the kings, not with the nation. But for this, no Brahman or priest would suffer in their idol-temples the women who sing, dance, and play. The kings make them an attraction for their cities, a bait of pleasure for their subjects, for no other but financial reasons. By the revenues which they derive from the business both as fines and taxes, they want to recover the expenses which their treasury has to spend on the army.

In a similar way the Buyide prince 'Aḍud-aldaula acted, who besides also had a second aim in view, viz. that of protecting his subjects against the passions of his unmarried soldiers.
CHAPTER LXX.

ON LAWSUITS.

The judge demands from the suitor a document written against the accused person in a well-known writing which is thought suitable for writs of the kind, and in the document the well-established proof of the justice of his suit. In case there is no written document, the contest is settled by means of witnesses without a written document.

The witnesses must not be less than four, but there may be more. Only in case the justice of the deposition of a witness is perfectly established and certain before the judge, he may admit it, and decide the question alone on the basis of the deposition of this sole witness. However, he does not admit prying about in secret, deriving arguments from mere signs or indications in public, concluding by analogy from one thing which seems established about another, and using all sorts of tricks to elicit the truth, as 'Iyâs Ibn Mu'â- wiya used to do.

If the suitor is not able to prove his claim, the defendant must swear, but he may also tender the oath to the suitor by saying, "Swear thou that thy claim is true, and I will give thee what thou claimest."

There are many kinds of the oath, in accordance with the value of the object of the claim. If the object is of no great importance, and the suitor agrees that the accused person shall swear, the latter simply swears before five learned Brahmans in the following words:
"If I lie, he shall have as recompense as much of my goods as is equal to the eightfold of the amount of his claim."

A higher sort of oath is this: The accused person is invited to drink the *bīsh* (*visha*?) called *brahmaṇa* (?). It is one of the worst kinds; but if he speaks the truth, the drink does not do him any harm.

A still higher sort of ordeal is this: They bring the man to a deep and rapidly flowing river, or to a deep well with much water. Then he speaks to the water: "Since thou belongest to the pure angels, and knowest both what is secret and public, kill me if I lie, and preserve me if I speak the truth." Then five men take him between them and throw him into the water. If he has spoken the truth, he will not drown and die.

A still higher sort is the following: The judge sends both claimant and defendant to the temple of the most venerated idol of the town or realm. There the defendant has to fast during that day. On the following day he dresses in new garments, and posts himself together with the claimant in that temple. Then the priests pour water over the idol and give it him to drink. If he, then, has not spoken the truth, he at once vomits blood.

A still higher sort is the following: The defendant is placed on the scale of a balance, and is weighed; whereupon he is taken off the scale, and the scale is left as it is. Then he invokes as witnesses for the truth of his deposition the spiritual beings, the angels, the heavenly beings, one after the other, and all which he speaks he writes down on a piece of paper, and fastens it to his head. He is a second time placed in the scale of the balance. In case he has spoken the truth, he now weighs more than the first time.

There is also a still higher sort. It is the following: They take butter and sesame-oil in equal quantities, and
boil them in a kettle. Then they throw a leaf into it, which by getting flaccid and burned is to them a sign of the boiling of the mixture. When the boiling is at its height, they throw a piece of gold into the kettle and order the defendant to fetch it out with his hand. If he has spoken the truth, he fetches it out.

The highest kind of ordeal is the following: They make a piece of iron so hot that it is near melting, and put it with a pair of tongs on the hand of the defendant, there being nothing between his hand and the iron save a broad leaf of some plant, and under it some few and scattered corns of rice in the husks. They order him to carry it seven paces, and then he may throw it to the ground.
CHAPTER LXXI.

ON PUNISHMENTS AND EXPIATIONS.

In this regard the manners and customs of the Hindus resemble those of the Christians, for they are, like those of the latter, based on the principles of virtue and abstinence from wickedness, such as never to kill under any circumstance whatsoever, to give to him who has stripped you of your coat also your shirt, to offer to him who has beaten your cheek the other cheek also, to bless your enemy and to pray for him. Upon my life, this is a noble philosophy; but the people of this world are not all philosophers. Most of them are ignorant and erring, who cannot be kept on the straight road save by the sword and the whip. And, indeed, ever since Constantine the Victorious became a Christian, both sword and whip have ever been employed, for without them it would be impossible to rule.

India has developed in a similar way. For the Hindus relate that originally the affairs of government and war were in the hands of the Brahmans, but the country became disorganised, since they ruled according to the philosophic principles of their religious codes, which proved impossible when opposed to the mischievous and perverse elements of the populace. They were even near losing also the administration of their religious affairs. Therefore they humiliated themselves before the lord of their religion. Whereupon Brahman intrusted them exclusively with the functions which they now have, whilst he intrusted the Kshatriyas with the
duties of ruling and fighting. Ever since the Brahmans live by asking and begging, and the penal code is exercised under the control of the kings, not under that of the scholars.

The law about murder is this: If the murderer is a Brahman, and the murdered person a member of another caste, he is only bound to do expiation consisting of fasting, prayers, and almsgiving.

If the murdered person is a Brahman, the Brahman murderer has to answer for it in a future life; for he is not allowed to do expiation, because expiation wipes off the sin from the sinner, whilst nothing can wipe off any of the mortal crimes from a Brahman, of which the greatest are: the murder of a Brahman, called vajrabrahmahatyā; further, the killing of a cow, the drinking of wine, whoredom, especially with the wife of one's own father and teacher. However, the kings do not for any of these crimes kill a Brahman or Kshatriya, but they confiscate his property and banish him from their country.

If a man of a caste under those of the Brahman and Kshatriya kills a man of the same caste, he has to do expiation, but besides the kings inflict upon him a punishment in order to establish an example.

The law of theft directs that the punishment of the thief should be in accordance with the value of the stolen object. Accordingly, sometimes a punishment of extreme or of middling severity is necessary, sometimes a course of correction and imposing a payment, sometimes only exposing to public shame and ridicule. If the object is very great, the kings blind a Brahman and mutilate him, cutting off his left hand and right foot, or the right hand and left foot, whilst they mutilate a Kshatriya without blinding him, and kill thieves of the other castes.

An adulteress is driven out of the house of the husband and banished.

I have repeatedly been told that when Hindu slaves
(in Muslim countries) escape and return to their country and religion, the Hindus order that they should fast by way of expiation, then they bury them in the dung, stale, and milk of cows for a certain number of days, till they get into a state of fermentation. Then they drag them out of the dirt and give them similar dirt to eat, and more of the like.

I have asked the Brahmans if this is true, but they deny it, and maintain that there is no expiation possible for such an individual, and that he is never allowed to return into those conditions of life in which he was before he was carried off as a prisoner. And how should that be possible? If a Brahman eats in the house of a Šûdra for sundry days, he is expelled from his caste and can never regain it.
CHAPTER LXXII.

ON INHERITANCE, AND WHAT CLAIM THE DECEASED PERSON HAS ON IT.

The chief rule of their law of inheritance is this, that the women do not inherit, except the daughter. She gets the fourth part of the share of a son, according to a passage in the book Manu. If she is not married, the money is spent on her till the time of her marriage, and her dowry is bought by means of her share. Afterwards she has no more income from the house of her father.

If a widow does not burn herself, but prefers to remain alive, the heir of her deceased husband has to provide her with nourishment and clothing as long as she lives.

The debts of the deceased must be paid by his heir, either out of his share or of the stock of his own property, no regard being had whether the deceased has left any property or not. Likewise he must bear the just-mentioned expenses for the widow in any case whatsoever.

As regards the rule about the male heirs, evidently the descendants, i.e. the son and grandson, have a nearer claim to the inheritance than the ascendants, i.e. the father and grandfather. Further, as regards the single relatives among the descendants as well as the ascendants, the nearer a man is related, the more claim he has on inheriting. Thus a son has a nearer claim than a grandson, a father than a grandfather.

The collateral relations, as, e.g. the brothers, have less
claim, and inherit only in case there is nobody who has a better claim. Hence it is evident that the son of a daughter has more claim than the son of a sister, and that the son of a brother has more claim than either of them.

If there are several claimants of the same degree of relationship, as, e.g., sons or brothers, they all get equal shares. A hermaphrodite is reckoned as a male being.

If the deceased leaves no heir, the inheritance falls to the treasury of the king, except in the case that the deceased person was a Brahman. In that case the king has no right to meddle with the inheritance, but it is exclusively spent on almsgiving.

The duty of the heir towards the deceased in the first year consists in his giving sixteen banquets, where every guest in addition to his food receives alms also, viz. on the fifteenth and sixteenth days after death; further, once a month during the whole year. The banquet in the sixth month must be more rich and more liberal than the others. Further, on the last but one day of the year, which banquet is devoted to the deceased and his ancestors; and finally, on the last day of the year. With the end of the year the duties towards the deceased have been fulfilled.

If the heir is a son, he must during the whole year wear mourning dress; he must mourn and have no intercourse with women, if he is a legitimate child and of a good stock. Besides, you must know that nourishment is forbidden to the heirs for one single day in the first part of the mourning-year.

Besides the almsgiving at the just-mentioned sixteen banquets, the heirs must make, above the door of the house, something like a shelf projecting from the wall in the open air, on which they have every day to place a dish of something cooked and a vessel of water, till the end of ten days after the death. For possibly the spirit of the deceased has not yet found its rest, but
moves still to and fro around the house, hungry and thirsty.

A similar view is indicated by Plato in *Phaedo*, where he speaks of the soul circling round the graves, because possibly it still retains some vestiges of the love for the body. Further he says: "People have said regarding the soul that it is its habit to combine something coherent out of the single limbs of the body, which is its dwelling in this as well as in the future world, when it leaves the body, and is by the death of the body separated from it."

On the tenth of the last-mentioned days, the heir spends, in the name of the deceased, much food and cold water. After the eleventh day, the heir sends every day sufficient food for a single person and a *dirham* to the house of the Brahman, and continues doing this during all the days of the mourning-year without any interruption until its end.
CHAPTER LXXIII.

ABOUT WHAT IS DUE TO THE BODIES OF THE DEAD AND OF THE LIVING (i.e. ABOUT BURYING AND SUICIDE).

In the most ancient times the bodies of the dead were exposed to the air by being thrown on the fields without any covering; also sick people were exposed on the fields and in the mountains, and were left there. If they died there, they had the fate just mentioned; but if they recovered, they returned to their dwellings.

Thereupon there appeared a legislator who ordered people to expose their dead to the wind. In consequence they constructed roofed buildings with walls of rails, through which the wind blew, passing over the dead, as something similar is the case in the grave-towers of the Zoroastrians.

After they had practised this custom for a long time, Nārāyaṇa prescribed to them to hand the dead over to the fire, and ever since they are in the habit of burning them, so that nothing remains of them, and every defilement, dirt, and smell is annihilated at once, so as scarcely to leave any trace behind.

Nowadays the Slavonians, too, burn their dead, whilst the ancient Greeks seem to have had both customs, that of burning and that of burying. Socrates speaks in the book *Phaedo*, after Crito had asked him in what manner he wanted to be buried: "As you wish, when you make arrangements for me. I shall not flee from you." Then he spoke to those around him: "Give to Crito regarding myself the opposite guarantee of that
which he has given to the judges regarding myself; for he guaranteed to them that I should stay, whilst you now must guarantee that I shall not stay after death. I shall go away, that the look of my body may be tolerable to Crito when it is burned or buried, that he may not be in agony, and not say: 'Socrates is carried away, or is burned or buried.' Thou, O Crito, be at ease about the burial of my body. Do as thou likest, and specially in accordance with the laws."

Galenus says in his commentary to the apothegms of Hippocrates: "It is generally known that Asclepius was raised to the angels in a column of fire, the like of which is also related with regard to Dionysos, Heracles, and others, who laboured for the benefit of mankind. People say that God did thus with them in order to destroy the mortal and earthly part of them by the fire, and afterwards to attract to himself the immortal part of them, and to raise their souls to heaven."

In these words, too, there is a reference to the burning as a Greek custom, but it seems to have been in use only for the great men among them.

In a similar way the Hindus express themselves. There is a point in man by which he is what he is. This point becomes free when the mixed elements of the body are dissolved and scattered by combustion.

Regarding this return (of the immortal soul to God), the Hindus think that partly it is effected by the rays of the sun, the soul attaching itself to them and ascending with them, partly by the flame of the fire, which raises it (to God). Some Hindu used to pray that God would make his road to himself as a straight line, because this is the nearest road, and that there is no other road upwards save the fire or the ray.

Similar to this is the practice of the Ghuzz Turks with reference to a drowned person; for they place the body on a bier in the river, and make a cord hang down
from his foot, throwing the end of the cord into the water. By means of this cord the spirit of the deceased is to raise himself for resurrection.

The belief of the Hindus on this head was confirmed by the words of Vâsudeva, which he spoke regarding the sign of him who is liberated from the fetters (of bodily existence). "His death takes place during uttarāyana (i.e. the northern revolution of the sun from the winter solstice to the summer solstice), during the white half of the month, between lighted lamps, i.e. between conjunction and opposition (new moon and full moon), in the seasons of winter and spring."

A similar view is recognised in the following words of Mânî: "The other religious bodies blame us because we worship sun and moon, and represent them as an image. But they do not know their real natures; they do not know that sun and moon are our path, the door whence we march forth into the world of our existence (into heaven), as this has been declared by Jesus." So he maintains.

People relate that Buddha had ordered the bodies of the dead to be thrown into flowing water. Therefore his followers, the Shamanians, throw their dead into the rivers.

According to the Hindus, the body of the dead has the claim upon his heirs that they are to wash, embalm, wrap it in a shroud, and then to burn it with as much sandal and other wood as they can get. Part of his burned bones are brought to the Ganges and thrown into it, that the Ganges should flow over them, as it has flowed over the burned bones of the children of Sagara, thereby forcing them from hell and bringing them into paradise. The remainder of the ashes is thrown into some brook of running water. On the spot where the body has been burned they raise a monument similar to a milestone, plastered with gypsum.
The bodies of children under three years are not burned.

Those who fulfil these duties towards the dead afterwards wash themselves as well as their dresses during two days, because they have become unclean by touching the dead.

Those who cannot afford to burn their dead will either throw them somewhere on the open field or into running water.

Now as regards the right of the body of the living, the Hindus would not think of burning it save in the case of a widow who chooses to follow her husband, or in the case of those who are tired of their life, who are distressed over some incurable disease of their body, some irremovable bodily defect, or old age and infirmity. This, however, no man of distinction does, but only Vaiśyas and Śūdras, especially at those times which are prized as the most suitable for a man to acquire in them, for a future repetition of life, a better form and condition than that in which he happens to have been born and to live. Burning oneself is forbidden to Brahmans and Kshatriyas by a special law. Therefore these, if they want to kill themselves, do so at the time of an eclipse in some other manner, or they hire somebody to drown them in the Ganges, keeping them under water till they are dead.

At the junction of the two rivers, Yamunā and Ganges, there is a great tree called Prayāga, a tree of the species called vaṭa. It is peculiar to this kind of tree that its branches send forth two species of twigs, some directed upward, as is the case with all other trees, and others directed downward like roots, but without leaves. If such a twig enters into the soil, it is like a supporting column to the branch whence it has grown. Nature has arranged this on purpose, since the branches of this tree are of an enormous extent (and require to be supported). Here the Brahmans and Kshatriyas are in
the habit of committing suicide by climbing up the tree and throwing themselves into the Ganges. ∏

Johannes Grammaticus relates that certain people in ancient Greek heathendom, "whom I call the worshippers of the devil"—so he says—used to beat their limbs with swords, and to throw themselves into the fire, without feeling any pain therefrom.

As we have related this as a view of the Hindus not to commit suicide, so also Socrates speaks: "Likewise it does not become a man to kill himself before the gods give him a cause in the shape of some compulsion or dire necessity, like that in which we now are."

Further he says: "We human beings are, as it were, in a prison. It does not behave us to flee nor to free ourselves from it, because the gods take notice of us, since we, the human beings, are servants to them."
CHAPTER LXXIV.

ON FASTING, AND THE VARIOUS KINDS OF IT.

Fasting is with the Hindus voluntary and supererogatory. Fasting is abstaining from food for a certain length of time, which may be different in duration and in the manner in which it is carried out.

The ordinary middle process, by which all the conditions of fasting are realised, is this: A man determines the day on which he will fast, and keeps in mind the name of that being whose benevolence he wishes to gain thereby and for whose sake he will fast, be it a god, or an angel, or some other being. Then he proceeds, prepares (and takes) his food on the day before the fast-day at noon, cleans his teeth by rubbing, and fixes his thoughts on the fasting of the following day. From that moment he abstains from food. On the morning of the fast-day he again rubs his teeth, washes himself, and performs the duties of the day. He takes water in his hand, and sprinkles it into all four directions, he pronounces with his tongue the name of the deity for whom he fasts, and remains in this condition till the day after the fast-day. After the sun has risen, he is at liberty to break the fast at that moment if he likes, or, if he prefers, he may postpone it till noon.

This kind is called *upavāsa*, i.e. the fasting; for the not-eating from one noon to the following is called *ekanakta*, not fasting.

Another kind, called *kricchra*, is this: A man takes his food on some day at noon, and on the following day
in the evening. On the third day he eats nothing except what by chance is given him without his asking for it. On the fourth day he fasts.

Another kind, called *parāka*, is this: A man takes his food at noon on three consecutive days. Then he transfers his eating-hour to the evening during three further consecutive days. Then he fasts uninterruptedly during three consecutive days without breaking fast.

Another kind, called *candrāyana*, is this: A man fasts on the day of full moon; on the following day he takes only a mouthful, on the third day he takes double this amount, on the fourth day the threefold of it, &c., &c., going on thus till the day of new moon. On that day he fasts; on the following days he again diminishes his food by one mouthful a day, till he again fasts on the day of full moon.

Another kind, called *māsavāsa* (*māsopavāsa*), is this: A man uninterruptedly fasts all the days of a month without ever breaking fast.

The Hindus explain accurately what reward the latter fasting in every single month will bring to a man for a new life of his after he has died. They say:

If a man fasts all the days of Caitra, he obtains wealth and joy over the nobility of his children.

If he fasts Vaisākha, he will be a lord over his tribe and great in his army.

If he fasts Jyaishṭha, he will be a favourite of the women.

If he fasts Åshādha, he will obtain wealth.

If he fasts Śrāvana, he obtains wisdom.

If he fasts Bhādrapada, he obtains health and valour, riches and cattle.

If he fasts Åsvayuja, he will always be victorious over his enemies.

If he fasts Kārttika, he will be grand in the eyes of people and will obtain his wishes.
If he fasts Mārgaśīrśha, he will be born in the most beautiful and fertile country.
If he fasts Pausha, he obtains a high reputation.
If he fasts Māgha, he obtains innumerable wealth.
If he fasts Phālguna, he will be beloved.
He, however, who fasts during all the months of the year, only twelve times breaking the fast, will reside in paradise 10,000 years, and will thence return to life as the member of a noble, high, and respected family.

The book Vishnu-Dharma relates that Maitreyī, the wife of Yājñavalkya, asked her husband what man is to do in order to save his children from calamities and bodily defects, upon which he answered: “If a man begins on the day Duvē, in the month Pausha, i.e. the second day of each of the two halves of the month, and fasts four consecutive days, washing himself on the first with water, on the second with sesame oil, on the third with galangale, and on the fourth with a mixture of various balms; if he further on each day gives alms and recites praises over the names of the angels; if he continue to do all this during each month till the end of the year, his children will in the following life be free from calamities and defects, and he will obtain what he wishes; for also Dilīpa, Dushyanta, and Yayāti obtained their wishes for having acted thus.”
CHAPTER LXXV.

ON THE DETERMINATION OF THE FAST-DAYS.

The reader must know in general that the eighth and eleventh days of the white half of every month are fast-days, except in the case of the leap month, for it is disregarded, being considered unlucky.

The eleventh is specially holy to Vâsudeva, because on having taken possession of Mâhûra, the inhabitants of which formerly used to worship Indra one day in each month, he induced them to transfer this worship to the eleventh, that it should be performed in his name. As the people did so, Indra became angry and poured rains over them like deluges, in order to destroy both them and their cattle. Vâsudeva, however, raised a mountain by his hand and protected them thereby. The water collected round them, but not above them, and the image of Indra fled. The people commemorated this event by a monument on a mountain in the neighbourhood of Mâhûra. Therefore they fast on this day in the state of the most punctilious cleanness, and they stay awake all the night, considering this as an obligatory performance, though in reality it is not obligatory.

The book Vishnu-Dharma says: "When the moon is in Rohini, the fourth of her stations, on the eighth day of the black half, it is a fast-day called Jayanti. Giving alms on this day is an expiation for all sins."

Evidently this condition of the fast-day does not in general apply to all months, but in particular only to Bhâdrapada, since Vâsudeva was born in this month
and on this day, whilst the moon stood in the station Rohini. The two conditions, viz. the moon’s standing in Rohini and that the day is the eighth of the black half, can happen only once in so and so many years, for various reasons, e.g. the intercalation of the year, and because the civil years do not keep pace with lunar time, either getting in advance of it or falling behind.

The same book says: “When the moon stands in Punarvasu, the seventh of her stations, on the eleventh day of the white half of the month, this is a fast-day, called Atj (?Attātaño). If a man does works of piety on this day, he will be enabled to obtain whatever he wishes, as has been the case with Sagara, Kakusṭha, and Dandahamār (?), who obtained royalty because they had done so.

The sixth day of Caitra is a fast-day holy to the sun.

In the month Āśādha, when the moon stands in Anurādhā, the seventeenth of her signs, there is a fast-day holy to Vasudeva called Devasinī (?), i.e. Deva is sleeping, because it is the beginning of the four months during which Vasudeva slept. Others add this condition, that the day must be the eleventh of the month.

It is evident that such a day does not occur in every year. The followers of Vasudeva abstain on this day from meat, fish, sweetmeats, and cohabitation with the women, and take food only once a day. They make the earth their bed without any covering, and do not use a bedstead raised above the earth.

People say that these four months are the night of the angels, to which must be added a month at the beginning as evening twilight, and a month at the end as morning dawn. However, the sun stands then near 0° of Cancer, which is noon in the day of the angels, and I do not see in what way this moon is connected with the two Sāṁdhis.

The day of full moon in the month Śrāvāna is a fast-day holy to Somanātha.
CHAPTER LXXV.

When in the month Áśvayuja the moon stands in Alsharaṭān (the lunar station) and the sun is in Virgo, it is a fast-day.

The eighth of the same month is a fast-day holy to Bhagavātī. Fasting is broken when the moon rises.

The fifth day of Bhádrapada is a fast-day holy to the sun, called šaṭ. They anoint the solar rays, and in particular those rays which enter through the windows, with various kinds of balsamic ointments, and place upon them odoriferous plants and flowers.

When in this month the moon stands in Rohini, it is a fast-day for the birth of Vāsudeva. Others add, besides, the condition that the day must be the eighth of the black half. We have already pointed out that such a day does not occur in every year, but only in certain ones of a larger number of years.

When in the month Kārttika the moon stands in Revati, the last of her stations, it is a fast-day in commemoration of the waking up of Vāsudeva. It is called deōthāṇī, i.e. the rising of the Deva. Others add, besides, the condition that it must be the eleventh of the white half. On that day they soil themselves with the dung of cows, and break fasting by feeding upon a mixture of cow’s milk, urine, and dung. This day is the first of the five days which are called Bhishma pañca-rātrī. They fast during them in honour of Vāsudeva. On the second of them the Brahmans break fasting, after them the others.

On the sixth day of Pausha is a fasting in honour of the sun.

On the third day of Māgha there is a fasting for the women, not for the men. It is called Gaur-t-r (gauri-tritiya t), and lasts the whole day and night. On the following morning they make presents to the nearest relatives of their husbands.
CHAPTER LXXVI.

ON THE FESTIVALS AND FESTIVE DAYS.

Yātrā means travelling under auspicious circumstances. Therefore a feast is called yātrā. Most of the Hindu festivals are celebrated by women and children only.

The 2nd of the month Caitra is a festival to the people of Kashmir, called Agūs (?), and celebrated on account of a victory gained by their king, Muttai, over the Turks. According to their account he ruled over the whole world. But this is exactly what they say of most of their kings. However, they are incautious enough to assign him to a time not much anterior to our time, which leads to their lie being found out. It is, of course, not impossible that a Hindu should rule (over a huge empire), as Greeks, Romans, Babylonians, and Persians have done, but all the times not much anterior to our own are well known. (If, therefore, such had been the case, we should know it.) Perhaps the here mentioned king ruled over the whole of India, and they know of no other country but India and of no other nations but themselves.

On the 11th there is a festival called Hindolaiutra, when they meet in the devagriha, or temple of Vāsudeva, and swing his image to and fro, as had been done with him when he was an infant in the cradle. They perform the same in their houses during the whole day and make merry.

On the full moon’s day of Caitra there is a feast called Bahand (vasanta?), a festival for the women,
when they put on their ornaments and demand presents from their husbands.

The 22nd is a festival called caitra-cashati, a day of merriment holy to Bhagavati, when people use to wash and to give alms.

The 3rd Vaisākha is a festival for the women called Gaur-t-r (gaurī-trītīyā ?), holy to Gaurī, the daughter of the mountain Himavant, the wife of Mahādeva. They wash and dress gaily, they worship the image of Gaurī and light lamps before it, they offer perfumes, abstain from eating, and play with swings. On the following day they give alms and eat.

On the 10th Vaisākha all the Brahmans whom the kings have invited proceed forth to the open fields, and there they light great fires for the sacrifices during five days till full moon. They make the fires in sixteen different spots and in four different groups. In each group a Brahman performs the sacrifice, so that there are four performing priests as there are four Vedas. On the 16th they return home.

In this month occurs the vernal equinox, called vasanta. They determine the day by calculation and make it a festival, when people invite the Brahmans.

On the 1st Jyaishtha, or new moon's day, they celebrate a festival and throw the firstfruits of all seeds into the water in order to gain thereby a favourable prognostic.

The full moon's day of this month is a festival to the women, called rūpa-panca (?).

All the days of the month Āshādha are devoted to Āshādha. Alms-giving. It is also called āhārī. During this time the household is provided with new vessels.

On the full moon's day of Srāvana they give banquets to the Brahmans.

On the 8th Āsvayuja, when the moon stands in the 24th Āsvayu-nineteenth station, Mūla, begins the sucking of the sugar cane. It is a festival holy to Mahānavami, the
sister of Mahâdeva, when they offer the first fruits of sugar and all other things to her image which is called Bhagavati. They give much alms before it and kill kids. He who does not possess anything to offer, stands upright by the side of the idol, without ever sitting down, and will sometimes pounce upon whomsoever he meets and kill him.

On the 15th, when the moon stands in the last of her stations, Revati, there is the festival Puhât (?), when they wrangle with each other and play with the animals. It is holy to Vâsudeva, because his uncle Kamsa had ordered him into his presence for the purpose of wrangling.

On the 16th there is a festival, when they give alms to the Brahmans.

On the 23rd is the festival Asoka, also called āhok, when the moon stands in the seventh station, Punarvasu. It is a day of merriment and of wrangling.

In the month Bhâdrapadâ, when the moon stands in the tenth station, Maghâ, they celebrate a festival which they call pitripaksha, i.e. the half of the month of the Fathers, because the moon’s entering this station falls near the time of new moon. They distribute alms during fifteen days in the name of the Fathers.

On the 3rd Bhâdrapadâ is the festival Harbâlî (?), for the women. It is their custom that a number of days before they sow all kinds of seeds in baskets, and they bring the baskets forward on this day after they have commenced growing. They throw roses and perfumes on them and play with each other during the whole night. On the following morning they bring them to the ponds, wash them, wash themselves, and give alms.

On the 6th of this month, which is called Gâihat (?), when people give food to those who are in prison.

On the 8th, when the moonlight has reached half of its development, they have a festival called dhruva-
CHAPTER LXXVI.

grīha (?); they wash themselves and eat well growing grain-fruit that their children should be healthy. The women celebrate this festival when they are pregnant and desire to have children.

The 11th Bhādrapadā is called *Parvata (?)*. This is the name of a thread which the priest makes from materials presented to him for the purpose. One part of it he dyes with crocus, the other he leaves as it is. He gives the thread the same length as the statue of Vāsudeva is high. Then he throws it over his neck, so that it hangs down to his feet. It is a much venerated festival.

The 16th, the first day of the black half, is the first of seven days which are called *kārāra (?)*, when they adorn the children nicely and give a treat to them. They play with various animals. On the seventh day the men adorn themselves and celebrate a festival. And during the rest of the month they always adorn the children towards the end of the day, give alms to the Brahmans, and do works of piety.

When the moon stands in her fourth station, Rohini, they call this time *Gândlahāḍ (?)*, celebrating a festival during three days and making merry by playing with each other, from joy over the birth of Vāsudeva.

Jīvaśarmān relates that the people of Kashmir celebrate a festival on the 26th and 27th of this month, on account of certain pieces of wood called *gana (?)*, which the water of the river Vitastā (Jailam) carries, in those two days, through the capital, *Adhīshtadhāna*. People maintain that it is Mahādeva who sends them. It is peculiar to these pieces of wood, so they say, that nobody is able to seize them, however much he may desire it, that they always evade his grasp and move away.

However, the people of Kashmir, with whom I have conversed on the subject, give a different statement as to the place and the time, and maintain that the thing occurs in a pond called *Kūdaishahr (?)*, to the left of the
source of the just-mentioned river (Vitastâ-Jailam), in
the middle of the month Vaisåkha. The latter version
is the more likely, as about this time the waters begin
to increase. The matter reminds one of the wood in
the river of Jurjân, which appears at the time when the
water swells in its source.

The same Jivaåarman relates that in the country of
Svåt, opposite the district of Kårt (?), there is a valley
in which fifty-three streams unite. It is called Tranjâi
(cf. Sindhi trâcanjâha). In those two days the water
of this valley becomes white, in consequence of Mahå-
deva’s washing in it, as people believe.

The 1st Kårttika, or new moon’s day, when the
sun marches in Libra, is called Dibálk. Then people
bathe, dress festively, make presents to each other of
betel-leaves and areca-nuts; they ride to the temples
to give alms and play merrily with each other till noon.
In the night they light a great number of lamps in
every place so that the air is perfectly clear. The
cause of this festival is that Lakshmi, the wife of Våsu-
deva, once a year on this day liberates Bali, the son of
Virocana, who is a prisoner in the seventh earth, and
allows him to go out into the world. Therefore the
festival is called Baliråjya, i.e. the principality of Bali.
The Hindus maintain that this time was a time of
luck in the Kràtyuga, and they are happy because
the feast-day in question resembles that time in the
Kràtyuga.

In the same month, when full moon is perfect, they
give banquets and adorn their women during all the
days of the black half.

The 3rd Mårgaårsha, called Guvåna-båtrîj (— tri-
tiyâ !), is a feast of the women, sacred to Gaurî. They
meet in the houses of the rich among them; they put
several silver statues of the goddess on a throne, and
perfume it and play with each other the whole day.
On the following morning they give alms.
CHAPTER LXXVI.

On full moon's day of the same month there is another festival of the women.

On most of the days of the month Pausha they prepare great quantities of pūhaval (?), i.e. a sweet dish which they eat.

On the eighth day of the white half of Pausha, which is called Ashtaka, they make gatherings of the Brahmanas, present them with dishes prepared from the plant *Atriplex hortensis*, i.e. sarmāk in Arabic (= orache), and show attentions to them.

On the eighth day of the black half, which is called Sākārtam, they eat turnips.

The 3rd Māgha, called Māhatṛṭī (Māgha-ṭṛṭīyā ?), is a feast for the women, and sacred to Gauri. They meet in the houses of the most prominent among them before the image of Gauri, place before it various sorts of costly dresses, pleasant perfumes, and nice dishes. In each meeting-place they put 108 jugs full of water, and after the water has become cool, they wash with it four times at the four quarters of that night. On the following day they give alms, they give banquets and receive guests. The women's washing with cold water is common to all the days of this month.

On the last day of this month, i.e. the 29th, when there is only a remainder of 3 day-minutes, i.e. 1½ hour, all the Hindus enter the water and duck under in it seven times.

On the full moon's day of this month, called cāmāha, they light lamps on all high places.

On the 23rd, which is called mānsartaku, and also māhātan, they receive guests and feed them on meat and large black peas.

On the 8th Phālguṇa, called pārārtaku, they prepare for the Brahmanas various dishes from flour and butter.

The full moon's day of Phālguṇa is a feast to the women, called Oddā (?), or also dhola (i.e. dola), when
they make fire on places lower than those on which they make it on the festival cámaña, and they throw the fire out of the village.

On the following night, i.e. that of the 16th, called Šivarātri, they worship Mahādeva during the whole night; they remain awake, and do not lie down to sleep, and offer to him perfumes and flowers.

On the 23rd, which is called pâyattan (?) they eat rice with butter and sugar.

The Hindus of Múltān have a festival which is called Sambapurayatrā; they celebrate it in honour of the sun, and worship him. It is determined in this way: They first take the ahargāna, according to the rules of Khandakhādyaka, and subtract 98,040 therefrom. They divide the remainder by 365, and disregard the quotient. If the division does not give a remainder, the quotient is the date of the festival in question. If there is a remainder, it represents the days which have elapsed since the festival, and by subtracting these days from 365 you find the date of the same festival in the next following year.
CHAPTER LXXVII.

ON DAYS WHICH ARE HELD IN SPECIAL VENERATION, ON LUCKY AND UNLUCKY TIMES, AND ON SUCH TIMES AS ARE PARTICULARLY FAVOURABLE FOR ACQUIRING IN THEM BLISS IN HEAVEN.

The single days enjoy different degrees of veneration according to certain qualities which they attribute to them. They distinguish, e.g., the Sunday, because it is the day of the sun and the beginning of the week, as the Friday is distinguished in Islam.

To the distinguished days further belong *amāvāśya* and *pūrṇimā*, i.e. the days of conjunction (new moon) and opposition (full moon), because they are the limits of the wane and the increase of the moonlight. In accordance with the belief of the Hindus regarding this increase and wane, the Brahmins sacrifice continually to the fire in order to earn heavenly reward. They let the portions of the angels accumulate, which are the offerings thrown into the fire at moonlight during the whole time from new moon to full moon. Then they begin distributing these portions over the angels in the time from full moon to new moon, till at the time of new moon nothing any more remains of them. We have already mentioned that new moon and full moon are noon and midnight of the nychthemerion of the Fathers. Therefore the uninterrupted almsgiving on these two days is always done in honour of the Fathers.
Four other days are held in special veneration, because, according to the Hindus, with them the single yugas of the present caturyuga have commenced, viz.:

The 3rd Vaisākha, called kṣaṇīrūḍā (?), on which the Kṛitayuga is believed to have commenced.

The 9th Kārttika, the beginning of the Tretāyuga.

The 15th Māgha, the beginning of the Dvāpara-yuga.

The 13th of Āsvayuja, the beginning of the Kali-yuga.

According to my opinion, these days are festivals, sacred to the yugas, instituted for the purpose of almsgiving or for the performance of some rites and ceremonies, as, e.g., the commemoration-days in the year of the Christians. However, we must deny that the four yugas could really have commenced on the days here mentioned.

With regard to the Kṛitayuga, the matter is perfectly clear, because its beginning is the beginning of the solar and lunar cycles, there being no fraction in the date, since it is, at the same time, the beginning of the caturyuga. It is the first of the month Caitra, at the same time the date of the vernal equinox, and on the same day also the other yugas commence. For, according to Brahmagupta, a caturyuga contains:

Civil days	1,577,916,450
Solar months	51,840,000
Leap months	1,593,300
Lunar days	1,602,999,000
Īnutrātra days	25,082,550

These are the elements on which the resolution of chronological dates into days, or the composition of them out of days, is based. All these numbers may be divided by 10, and the divisors are wholes without any fraction. Now the beginnings of the single yugas depend upon the beginning of the caturyuga.
According to Pulisa the *caturyuga* contains:

Civil days	1,577,917,800
Solar months	51,840,000
Leap months	1,593,336
Lunar days	1,603,000,010
Ūnarātra days	25,082,280

All these numbers may be divided by 4, and the divisors are wholly without any fraction. According to this computation, also, the beginnings of the single *yugas* are the same as the beginning of the *caturyuga*, i.e. the first of the month Caitra and the day of the vernal equinox. However, this day falls on different week days.

Hence it is evident that their theory about the above-mentioned four days being the beginnings of the four *yugas*, is without any foundation at all; that they could never arrive at such a result unless by resorting to very artificial ways of interpretation.

The times which are specially favourable to earn a heavenly reward in them are called *punyakāla*. Balabhadra says in his commentary to the *Khaṇḍakhādya*:—"If the *yogī*, i.e. the ascetic who understands the creator, who chooses the good and eschews the bad, continued his manner of life during one thousand years, his reward would not be equal to that of a man who gives alms on *punyakāla* and fulfils the duties of the day, i.e. washing and anointing himself, saying prayers and praises."

No doubt, most of the feast-days enumerated in the preceding belong to this kind of days, for they are devoted to almsgiving and banqueting. If people did not expect to gain thereby a reward in heaven, they would not approve of the rejoicings and merriments which are characteristic of these days.

Notwithstanding the nature of the *punyakāla* is such as here explained, some of them are considered as lucky, others as unlucky days.
Those days are lucky when the planets migrate from one sign into the other, especially the sun. These times are called *samkrânti*. The most propitious of them are the days of the equinoxes and solstices, and of these the most propitious is the day of the vernal equinox. It is called *bikhit* or *shibh* (*vishuva*), as the two sounds *sh* and *kh* may be exchanged for each other, and may also, by a metathesis, change their place.

As, however, a planet’s entering a new sign does not require more than a moment of time, and, during it, people must offer to the fire the offering *sânta* (?) with oil and corn, the Hindus have given a greater extent to these times, making them begin with the moment when the eastern edge of the body of the sun touches the first part of the sign; reckoning as their middle the moment when the sun’s centre reaches the first part of the sign, which is in astronomy considered as the time of the migration (of the planet from one sign to the other), and reckoning as the end that moment when the western edge of the sun’s body touches the first part of the sign. This process lasts, in the case of the sun, nearly two hours.

For the purpose of finding the times in the week when the sun migrates from one sign to another, they have several methods, one of which was dictated to me by Samaya (?). It is this:

Subtract from the Śakakāla 847, multiply the remainder by 180, and divide the product by 143. The quotient you get represents days, minutes, and seconds. This number is the basis.

If you want to know at what time in the year in question the sun enters any one of the twelve signs, you look out the sign in the following table. Take the number which you find side by side with the sign in question, and add it to the basis, days to days, minutes to minutes, seconds to seconds. If the wholes amount to 7 or more, disregard them, and with the remainder
count off the week-days, beginning with the beginning of Sunday. That time you arrive at is the moment of *samkrānti*.

<table>
<thead>
<tr>
<th>The Zodiacal Signs</th>
<th>What must be added to the Basis.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Days</td>
</tr>
<tr>
<td>Aries</td>
<td>3</td>
</tr>
<tr>
<td>Taurus</td>
<td>6</td>
</tr>
<tr>
<td>Gemini</td>
<td>2</td>
</tr>
<tr>
<td>Cancer</td>
<td>6</td>
</tr>
<tr>
<td>Leo</td>
<td>2</td>
</tr>
<tr>
<td>Virgo</td>
<td>5</td>
</tr>
<tr>
<td>Libra</td>
<td>1</td>
</tr>
<tr>
<td>Scorpio</td>
<td>3</td>
</tr>
<tr>
<td>Scorpion</td>
<td>4</td>
</tr>
<tr>
<td>Capricornus</td>
<td>5</td>
</tr>
<tr>
<td>Amphora</td>
<td>0</td>
</tr>
<tr>
<td>Pisces</td>
<td>2</td>
</tr>
</tbody>
</table>

The beginning of consecutive solar years in the week differs by 1 day and the fraction at the end of the year. This amount, reduced to fractions of one kind, is the multiplicator (180), used in the preceding computation in order to find the *surplus* of each year (i.e. the amount by which its beginning wanders onward through the week).

The divisor (143) is the denominator of the fraction (which is accordingly \(\frac{143}{143}\)).

Accordingly the fraction at the end of the solar year is, in this computation, reckoned as \(\frac{27}{143}\), which implies as the length of the solar year, 365 days 15' 31" 28" 6iv. To raise this fraction of a day to one whole day, \(\frac{143}{143}\) of a day are required. I do not know whose theory this is.

If we divide the days of a *caturyuga* by the number of its solar years, according to the theory of Brahmagupta, we get as the length of the solar year, 365 days 30' 22" 30" 6iv. In this case the multiplicator or *guṇakāra* is 4027, and the divisor or *bhāyaghāra* is 3200 (i.e. 1 day 30' 22" 30" 6iv are equal to \(\frac{4027}{3200}\)).
Reckoning according to the theory of Pulisa, we find as the length of the solar year 365 days 15" 31" 30" " I". Accordingly, the gunakāra would be 1007, the bhāgahāra 800 (i.e. 1 day 15" 31" 30" " I" are equal to \(\frac{1007}{500} \)).

According to Āryabhāṭa, the length of the solar year is 365 days 15" 31" 15". In that case, the gunakāra is 725 and the bhāgahāra is 572 (i.e. 1 day 15" 31" 15"" are equal to \(\frac{725}{872} \)).

Another method for finding the moment of samākrānti has been dictated to me by Auliatta (?), the son of Śāhāvi (?), and is based on the system of Pulisa. It is this:

Subtract from the Śakakāla 918, multiply the remainder by 1007, add to the product 79, and divide the sum by 800. Divide the quotient by 7. The remainder you get is the basis. What now must for each sign be added to the basis, as has already been mentioned (ii. 188), is indicated by the following table opposite to each sign:

<table>
<thead>
<tr>
<th>The Zodiacal Signs</th>
<th>What must be added to the Basis</th>
<th>The Zodiacal Signs</th>
<th>What must be added to the Basis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aries</td>
<td>1</td>
<td>35</td>
<td>Libra</td>
</tr>
<tr>
<td>Taurus</td>
<td>4</td>
<td>33</td>
<td>Scorpio</td>
</tr>
<tr>
<td>Gemini</td>
<td>0</td>
<td>39</td>
<td>Arcitenens</td>
</tr>
<tr>
<td>Cancer</td>
<td>4</td>
<td>34</td>
<td>Capricornus</td>
</tr>
<tr>
<td>Leo</td>
<td>1</td>
<td>6</td>
<td>Amphiornia</td>
</tr>
<tr>
<td>Virgo</td>
<td>4</td>
<td>6</td>
<td>Pisces</td>
</tr>
</tbody>
</table>

Varāhamihira maintains in the Pañcasisiddhāntikā that the shadāśṭṭtimukha is in the same degree propitious as the time of samākrānti for acquiring in it infinite heavenly reward. This is the moment of the sun's entering:—The 18th degree of Gemini; the 14th degree of Virgo; the 26th degree of Arcitenens; and the 28th degree of Pisces.

The moment of the sun's entering the fixed signs
is four times as propitious as the moment of his entering the other signs. For each of these times they compute the beginning and the end by means of the radius of the sun in the same way as they compute the minutes of the sun's or moon's entering and leaving the shadow at an eclipse. This method is well known in their canones. We, however, communicate here only those of their methods of calculation which we think remarkable, or which, as far as we know, have not yet been explained before Muslim ears, as Muslims know of the methods of the Hindus only those which are found in the Sind-hind.

Most propitious times are, further, the times of solar and lunar eclipses. At that time, according to their belief, all the waters of the earth become as pure as that of the Ganges. They exaggerate the veneration of these times to such a degree that many of them commit suicide, wishing to die at such a time as promises them heavenly bliss. However, this is only done by Vaiśyas and Śûdras, whilst it is forbidden to Brahmins and Kshatriiyas, who in consequence do not commit suicide (vide, however, ii. 170).

Further, the times of Parvan are propitious, i.e. those times in which an eclipse may take place. And even if there is no eclipse at such a time, it is considered quite as propitious as the time of an eclipse itself.

The times of the yogas are as propitious as those of the eclipses. We have devoted a special chapter to them (chap. Ixxix.).

If it happens within the course of one civil day that the moon revolves in the latter part of some station, then enters the following station, proceeds through the whole of it and enters a third station, so that in one single day she stands in three consecutive stations, such a day is called trihaspaka (?), and also triharkasha (?). It is an unlucky day, boding evil, and it is counted among the punyakāla. (See ii. 187.)
The same applies to that civil day which comprehends a complete lunar day, whose beginning, besides, falls in the latter part of the preceding lunar day, and whose end falls in the beginning of the following lunar day. Such a day is called trahagattata (?). It is unlucky, but favourable to earn in it a heavenly reward.

When the days of unnadatra, i.e. the days of the decrease (see ii. 25), sum up so as to form one complete day, it is unlucky and reckoned among the punyakâla. This takes place according to Brahmagupta in $62^{59.6}_{52.78} \text{ civil days, } 62^{10.6}_{3.7} \text{ solar days, } 63^{59.6}_{52.78} \text{ lunar days.}$

According to Pulisa, it takes place in $62^{88.3}_{89.87} \text{ civil days, } 63^{58.3}_{59.87} \text{ lunar days, } 62^{27.4}_{27.4} \text{ solar days.}$

The moment when a complete leap-month without any fraction is summed up, is unlucky, and is not reckoned among the punyakâla. According to Brahmagupta, this takes place in $990^{3.6}_{10.52} \text{ civil days, } 976^{4.64}_{23.11} \text{ solar days, } 1006^{4.64}_{23.11} \text{ lunar days.}$

Times which are considered as unlucky, to which no merit whatsoever is attributed, are, e.g., the times of earthquakes. Then the Hindus beat with the pots of their households against the earth and break them, in order to get a good omen and to banish the mishap. As times of a similar ill nature, the book Samhítd further enumerates the moments of landslips, the falling of stars, red glow in the sky, the combustion of the earth by lightning, the appearance of comets, the occurrence of events contrary both to nature and custom, the entering of the wild beasts into the villages, rainfall when it is not the season for it, the trees putting forth leaves when it is not the season for it, when the nature of one season of the year seems transferred to another, and more of the like.

The book Srúdhava, attributed to Mahâdeva, says the following:
"The burning days, i.e. the unlucky ones—for thus they call them—are:

"The second days of the white and black halves of the months Caitra and Pausha;

"The fourth days of the two halves of the months Jyaishtha and Phalgun;

"The sixth days of the two halves of the months Sravana and Vaisakha;

"The eighth days of the two halves of the months Ashada and Avasiya;

"The tenth days of the two halves of the months Margasirsha and Bhadrapada;

"The twelfth days of the two halves of the month Karttika."
CHAPTER LXXVIII

ON THE KARANAS.

We have already spoken of the lunar days called *tithi*, and have explained that each lunar day is shorter than a civil day, because the lunar month has thirty lunar days, but only a little more than twenty-nine and a half civil days.

As the Hindus call these *tithis* nychthemera, they also call the former half of a *tithi* day, the latter half night. Each of these halves has a separate name, and they all of them (*i.e.* all the halves of the lunar days of the lunar month) are called *karanas*.

Some of the names of the *karanas* occur only once in a month and are not repeated, *viz.* four of them about the time of new moon, which are called the *fixed ones*, because they occur only once in the month, and because they always fall on the same day and night of the month.

Others of them revolve and occur eight times in a month. They are called the *movable ones*, because of their revolving, and because each one of them may as well fall on a day as on a night. They are seven in number, and the seventh or last of them is an unlucky day, by which they frighten their children, the simple mention of which makes the hairs on the head of their boys stand on end. We have given an exhaustive description of the *karanas* in another book of ours. They are mentioned in every Indian book on astronomy and mathematics.
CHAPTER LXXVIII.

If you want to know the karana, first determine the lunar days, and find out in what part of them the date in question falls, which is done in this way:

Subtract the corrected place of the sun from the corrected place of the moon. The remainder is the distance between them. If it is less than six zodiacal signs, the date falls in the white half of the month; if it is more, it falls in the black half.

Reduce this number to minutes, and divide the product by 720. The quotient represents tithis, i.e. complete lunar days. If you get by the division a remainder, multiply it by 60 and divide the product by the mean bhukti. The quotient represents ghatis and minor fractions, i.e. that portion of the current day which has already elapsed.

This is the method of the canones of the Hindus. The distance between the corrected places of sun and moon must be divided by the mean bhukti. This, however, is impossible for many of the days. Therefore they divide this distance by the difference between the daily revolutions of sun and moon, which they reckon for the moon as 13 degrees, for the sun as 1 degree.

It is a favourite method in rules of this kind, especially in Indian ones, to reckon by the mean motion of sun and moon. The mean motion of the sun is subtracted from the mean motion of the moon, and the remainder is divided by 732, which is the difference between their two middle bhuktis. The quotient then represents days and ghatis.

The word bukt is of Indian origin. In the Indian language it is bhukti (= the daily motion of a planet). If the corrected motion is meant, it is called bhukti sphuta. If the mean motion is meant, it is called bhukti madhyama, and if the bukt which renders equal is meant, it is called bhuktyantara, i.e. the difference between the two bhuktis.
The lunar days of the month have special names, which we exhibit in the following diagram. If you know the lunar day in which you are, you find, by the side of the number of the day, its name, and opposite it the karana in which you are. If that which has elapsed of the current day is less than half a day, the karana is a diurnal one; if that which has elapsed of it is more than half a day, it is a nocturnal one. This is the diagram:
<table>
<thead>
<tr>
<th>CHAPTER LXXVIII.</th>
<th>197</th>
</tr>
</thead>
<tbody>
<tr>
<td>The kargas are common to both halves.</td>
<td>In the night.</td>
</tr>
<tr>
<td>The black half.</td>
<td>Their names.</td>
</tr>
<tr>
<td>In daytime.</td>
<td>In the date.</td>
</tr>
<tr>
<td>The white half.</td>
<td>Their names.</td>
</tr>
<tr>
<td>The number.</td>
<td>In the date.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Their names.</th>
<th>Their names.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 o Atin. 17 Bārkhā. 18 Bīya. 19 Triya. 20 Caut. 21 Panel. 22 Sat. 23 Satn. 24 Panel. {Pālining} 25 Panel.</td>
<td></td>
</tr>
<tr>
<td>0 o Amāsaya. 3 Bārkhā. 4 Bīya. 5 Caut. 6 Panel. 7 Sat. 8 Satn. 9 Atin. 0</td>
<td></td>
</tr>
<tr>
<td>1 2 3 4 5 6 7 8 9 0</td>
<td></td>
</tr>
</tbody>
</table>
The Hindus attribute to some of the *karaṇas* dominants, as is their custom. Further they give rules showing what during each *karaṇa* must be done or not, rules which are similar to collections of astrological prognostics (as to lucky or unlucky days, &c.). If we give here a second diagram of the *karaṇas*, we thereby simply mean to confirm what we have said already, and to repeat a subject which is unknown among us. Thus it is rendered easy to learn the subject, because learning is the fruit of repetition.

The Four Fixed *Karaṇas*

<table>
<thead>
<tr>
<th>In the black half.</th>
<th>Their name.</th>
<th>Their dominants</th>
<th>The prognostics of the karaṇas, and for what thing each of them is favourable.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Śekuni.</td>
<td>Kali.</td>
<td></td>
<td>Favourable for the action of medicines, of drugs against the bite of serpents, of incantations, of learning, of council-holding, and of reciting holy texts before the idols.</td>
</tr>
<tr>
<td>Cānakṣpaḍa.</td>
<td>The zodiacal sign Taurus.</td>
<td></td>
<td>Favourable for placing a king on a throne, giving alms in the name of the Fathers, for making use of four-footed animals in agriculture.</td>
</tr>
<tr>
<td>Nāga.</td>
<td>The snake.</td>
<td></td>
<td>Favourable for weddings, laying a foundation-stone, examining the state of snake-bitten persons, for frightening people and seizing them.</td>
</tr>
<tr>
<td>Kinstugna.</td>
<td>The wind.</td>
<td></td>
<td>Ruins all actions and is favourable only for things connected with marriage, for the construction of parasols, the piercing of the ears, and for works of piety.</td>
</tr>
</tbody>
</table>
Chapter LXXVIII.

The Seven Movable Karāṇas.

<table>
<thead>
<tr>
<th>In which half of the month they fall.</th>
<th>Their names</th>
<th>Their dominants</th>
<th>The pronostics of the karāṇas, and for what thing each of them is favourable.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Both in the white and the black halves.</td>
<td>Bava.</td>
<td>Śukra.</td>
<td>When there is a samskrānti in this karāṇa, it is sitting, and the fruits will, during it, suffer some mishap. It is favourable for travelling, for beginning with things which are intended to last long, for cleaning oneself, for compounding the drugs which make the women fat, and for the sacrifices which the Brahmans offer to the fire.</td>
</tr>
<tr>
<td></td>
<td>Bala.</td>
<td>Brahman.</td>
<td>When there is a samskrānti in it, it is sitting, not good for the fruits. It is favourable for the affairs of future life, and for acquiring a heavenly reward.</td>
</tr>
<tr>
<td></td>
<td>Kaula.</td>
<td>Mitra.</td>
<td>When there is a samskrānti in it, it is standing. All that is sown in it will prosper and drop with succulence. It is favourable for making friendships with people.</td>
</tr>
<tr>
<td></td>
<td>Taitila.</td>
<td>Aryaman.</td>
<td>When there is a samskrānti in it, it is stretched on the ground. It indicates that the prices will sink, and is favourable for the kneading of aromatic unguents and the compounding of perfumes.</td>
</tr>
<tr>
<td></td>
<td>Gana.</td>
<td>Parvan.</td>
<td>When there is a samskrānti in it, it is stretched on the ground. It indicates that the prices will be depressed, and is favourable for sowing and laying the foundation-stone of a building.</td>
</tr>
<tr>
<td></td>
<td>Baniṣṭ.</td>
<td>Śī.</td>
<td>When there is a samskrānti in it, it is standing. All corn will prosper (lacuna), and is favourable for commerce.</td>
</tr>
<tr>
<td></td>
<td>Vāsiṣṭ.</td>
<td>Marut.</td>
<td>When there is a samskrānti in it, it is stretched on the ground. It indicates that the prices will be insufficient. It is not favourable for anything save the crushing of the sugar-cane. It is considered as unlucky and is not good for travelling.</td>
</tr>
</tbody>
</table>
If you want to find the karaṇas by computation, subtract the corrected place of the sun from that of the moon, reduce the remainder to minutes and divide the number of them by 360. The quotient represents complete karaṇas.

What remains after the division is multiplied by 60, and divided by the bhuktyantara. The quotient represents how much has elapsed of the current karaṇa. Every unit of the number is equal to half a ghaṭi.

We now return to the complete karaṇas. If they are two or less, you are in the second karaṇa. In that case you add one to the number and count the sum off, beginning with catuṣṭhāpaṇa.

If the number of karaṇas is 59, you are in śakuni.

If it is less than 59 and more than two, add one to them and divide the sum by seven. The remainder, if it is not more than seven, count off, beginning with the beginning of the cycle of the movable karaṇas, i.e. with bāva. Thereby you will arrive at the name of the current karaṇa in which you happen to be.

Wishing to remind the reader of something relating to the karaṇas which he perhaps has forgotten, we must tell him that Alkindi and others like him have hit upon the system of the karaṇas, but one which was not sufficiently explained. They did not comprehend the method of those who use the karaṇas. At one time they trace them back to Indian, another time to Babylonian origin, declaring all the time that they are altered on purpose and corrupted by the inadverience of the copyists. They have invented a calculation for them which proceeds in a better order than even the original method itself. But thereby the thing has become something totally different from what it originally was. Their method is this: they count half days, beginning with new moon. The first twelve hours they regard as belonging to the sun, as burning, i.e. unlucky, the next twelve hours as belonging to Venus, the
following twelve hours as belonging to Mercury, and so on according to the order of the planets. Whenever the order returns to the sun, they call his twelve hours the hours of Albist, i.e. vishṭi.

However, the Hindus do not measure the karaṇas by civil, but by lunar days, nor do they begin with those burning hours following upon new moon. According to the calculation of Alkindi, people begin, after new moon, with Jupiter; in that case the periods of the sun are not burning. On the other hand, if they begin, according to the method of the Hindus, after new moon with the sun, the hours of vishṭi belong to Mercury. Therefore, each method, that of the Hindus and that of Alkindi, must be treated separately.

Because vishṭi recurs eight times in a month, and because the points of the compass are eight, we shall exhibit in the eight fields of the following table their ἀστρολογούμενα regarding the karaṇas, observations the like of which are made by all astrologers regarding the shapes of the planets and regarding those stars which rise in the single third parts of the zodiacal signs.

<table>
<thead>
<tr>
<th>Their numbers</th>
<th>In what part of the month they fall.</th>
<th>Names of the vishṭi.</th>
<th>The directions in which they rise.</th>
<th>Description of the Single "Vishṭi."</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>In the night of the 5th śhākṣ.</td>
<td>...</td>
<td>East</td>
<td>It has three eyes. The hair on its head is like growing sugar-cane. In one hand it has an iron hook, in the other a black serpent. It is strong and violent like running water. It has a long tongue. Its day is only good for war, and those actions in which there is deception and falsification.</td>
</tr>
</tbody>
</table>

Vajayūnākha.
<table>
<thead>
<tr>
<th>Their numbers.</th>
<th>In what part of the month they fall.</th>
<th>Names of the people.</th>
<th>The direction in which they rise.</th>
<th>Description of the single "Vishti."</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td>In the day of the 9th tithi.</td>
<td>...</td>
<td>Aâdana.</td>
<td>It is green, and has a sword in its hand. Its place is in the lightning, thundering, stormy, and cold cloud. Its time is favourable for tearing out fattening herbs, for drinking medicine, for commerce, and for casting gold in a mould.</td>
</tr>
<tr>
<td>III</td>
<td>In the night of the 12th tithi.</td>
<td>Ghorna.</td>
<td>North.</td>
<td>It has a black face, thick lips, bushy eyebrows, long hair of the head. It is long, and rides during its day. In the hand it has a sword, it is intent upon devouring men, it emits fire from its mouth, and says bâ bâ bâ. Its time is only good for fighting, for killing miscreants, for curing ill people, and forfetching serpents out of their holes.</td>
</tr>
<tr>
<td>IV</td>
<td>In the day of the 16th tithi.</td>
<td>...</td>
<td>Vâyava.</td>
<td>It has five faces and ten eyes. Its time is favourable for punishing rebels, for dividing the army into single corps. During it a man must not turn with his face towards the direction where it rises.</td>
</tr>
<tr>
<td>V</td>
<td>In the night of the 19th tithi.</td>
<td>...</td>
<td>West.</td>
<td>It is like a smoky flame. It has three heads, in each three eyes turned upside down. Its hair is standing on end. It sits on the head of a human being, it screams like thunder. It is angry, devours men. It holds in one hand a knife, in the other an axe.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Their names according to the book Śrīdhara.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bhv (Ch).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ghorna.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Krâha (Ch).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Jwâla (Ch).</td>
</tr>
<tr>
<td>Chapter LXXVIII.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>----------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Their Numbers.</td>
<td>Description of the Single "Vishṇī."</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In what part of the month they fall.</td>
<td>In the day of the 23rd tithi.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Names of the vishṇīs.</td>
<td>Nairītī.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The directions in which they rise.</td>
<td>It is white, has three eyes, and rides on an elephant, which always remains the same. In the one hand he has a huge rock, in the other a vajra of iron, which it throws. It destroys the cattle over which it rises. He who makes war coming from the direction whence it rises will be victorious. A man must not turn with his face towards it when tearing out fattening herbs, digging out treasures, and trying to satisfy the wants of life.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>It has the colour of crystal. In one hand it holds a three-fold paraśvadhva, and in the other a rosary. It looks towards heaven, and says ha ha ha. It rides on an ox. Its time is favourable for handing over the children to the schools, for concluding peace, giving alms, and works of piety.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>It is pistachio-coloured like a parrot. It looks like something globular, and has three eyes. In one hand it has a mace with an iron hook, in the other a sharp discus. It sits on its throne, frightening people, and saying sa sa sa. Its time is not favourable for beginning anything. It is only good for doing service to relations and for house-work.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER LXXIX.

ON THE YOGAS.

These are times which the Hindus think to be most unlucky and during which they abstain from all action. They are numerous. We shall here mention them.

There are two yogas regarding which all Hindus agree, viz.:

(1.) The moment when sun and moon together stand on two circles, which are, as it were, seizing each other, i.e. each pair of circles, the declinations of which, on one and the same side (of either solstice), are equal. This yoga is called vyattpata.

(2.) The moment when sun and moon stand together on two equal circles, i.e. each pair of circles, the declinations of which, on different sides (of either solstice), are equal. This is called vaidhrīta.

It is the signum of the former that in it the sum of the corrected places of sun and moon represents in any case the distance of six zodiacal signs from O^0 of Aries, while it is the signum for the latter that the same sum represents the distance of twelve signs. If you compute the corrected places of sun and moon for a certain time and add them together, the sum is either of these signa, i.e. either of these two yogas.

If, however, the sum is less than the amount of the signum or larger, in that case the time of equality (i.e. the time when the sum is equal to either of the signa) is computed by means of the difference between this sum and the term in question, and by means of the
sum of the two bhukti of sun and moon instead of the bhuktyantara, in the same manner as in the canones the time of full moon and opposition is computed.

If you know the distance of the moment from noon or midnight, whether you correct the places of sun and moon according to the one or the other, its time is called the middle one. For if the moon followed the ecliptic as accurately as the sun, this time would be that which we want to find. However, the moon deviates from the ecliptic. Therefore, she does not at that time stand on the circle of the sun or on the circle which, as far as observation goes, is equal to it. For this reason the places of sun and moon and the dragon’s head and tail are computed for the middle time.

According to this time they compute the declinations of sun and moon. If they are equal, this is the time which is sought for. If not, you consider the declination of the moon.

If, in computing it, you have added her latitude to the declination of the degree which she occupies, you subtract the latitude of the moon from the declination of the sun. However, if, in computing it, you have subtracted her latitude from the degree which the moon occupies, you add her latitude to the declination of the sun. The result is reduced to arcs by the tables of the kardajāt of declination, and these arcs are kept in memory. They are the same which are used in the canon Karanatilaka.

Further, you observe the moon at the middle time. If she stands in some of the odd quarters of the ecliptic, i.e. the vernal and autumnal ones, whilst her declination is less than the declination of the sun, in that case the time of the two declinations equalling each other—and that is what we want to find—falls after the middle, i.e. the future one; but if the declination of the moon is larger than that of the sun, it falls before the middle, i.e. the past one.
If the moon stands in the even quarters of the ecliptic (i.e. the summer and winter quarters), just the reverse takes place.

Pulisa adds together the declinations of sun and moon in *vyatipāta*, if they stand on different sides of the solstice, and in *vaidhrīta*, if they stand on the same side of the solstice. Further, he takes the difference between the declinations of sun and moon in *vyatipāta*, if they stand on the same side, and in *vaidhrīta*, if they stand on different sides. This is the first value which is kept in memory, i.e. the *middle* time.

Further, he reduces the minutes of the days to *māshas*, supposing that they are less than one-fourth of a day. Then he computes their motions by means of the *bhukti* of sun and moon and the dragon’s head and tail, and he computes their places according to the amount of *middle* time, which they occupy, in the past and the future. This is the second value which is kept in memory.

By this method he manages to find out the condition of the past and the future, and compares it with the *middle* time. If the time of the two declinations equalling each other for both sun and moon is past or future, in that case the *difference* between the two values kept in memory is the *portio divisionis* (divisor); but if it is past for the one and future for the other, the *sum* of the two values kept in memory is the *portio divisionis*.

Further, he multiplies the minutes of the days, which have been found, by the first value kept in memory, and divides the product by the *portio divisionis*. The quotient represents the minutes of the distance from the *middle* time which minutes may either be past or future. Thus the time of the two declinations equalling each other becomes known.

The author of the canon *Karaṇatilaka* makes us return to the arc of the declination which has been
kept in memory. If the corrected place of the moon is less than three zodiacal signs, it is that which we want; if it is between three and six signs, he subtracts it from six signs, and if it is between six and nine signs, he adds six signs thereto; if it is more than nine signs, he subtracts it from twelve signs. Thereby he gets the second place of the moon, and this he compares with the moon's place at the time of the correction. If the second place of the moon is less than the first, the time of the two declinations equalling each other is future; if it is more than the first, the time of their equalling each other is past.

Further, he multiplies the difference between the two places of the moon by the bhukti of the sun, and divides the product by the bhukti of the moon. The quotient he adds to the place of the sun at the time of the correction, if the second place of the moon is larger than the first; but he subtracts it from the sun's place, if the second place of the moon is less than the first. Thereby he finds the place of the sun for the time when the two declinations are equal to each other.

For the purpose of finding it, he divides the difference between the two places of the moon by the bhukti of the moon. The quotient gives minutes of days, indicative of the distance. By means of them he computes the places of sun and moon, of the dragon's head and tail, and of the two declinations. If the latter are equal, it is that which we want to find. If they are not equal, the author repeats the calculation so long till they are equal and till the correct time has been found.

Thereupon he computes the measure of sun and moon. However, he disregards half of the sum of them, so that in the further calculation he uses only the one half of their measures. He multiplies it by 60 and divides the product by the bhuktyantara. The quotient represents the minutes of the falling (pāta?)
The correct time, which has been found, is marked in three different places. From the first number he subtracts the minutes of the $falling$, and to the last number he adds them. Then the first number is the time of the beginning of $vyātīpāta$ or $vaīdhrita$, whichever of the two you want to compute. The second number is the time of its middle, and the third number the time of its end.

We have given a detailed account of the bases on which these methods rest in a special book of ours, called $Khayāl-alkustāsfaini$ (i.e. the image of the two eclipses), and have given an accurate description of them in the canon which we have composed for $Syāvabala$ (?), the Kashmirian, and to which we have given the title The Arabic $Khandakhādyaka$.

Bhaṭṭila (?) thinks the whole day of either of these two $yogas$ to be unlucky, whilst Varāhamihira thinks only that duration of them to be unlucky which is found by the computation. He compares the unlucky portion of the day to the wound of a gazelle shot with a poisoned arrow. The disease does not go beyond the environs of the poisoned shot; if it is cut out, the injury is removed.

According to what Pulisa mentions of Parāśara, the Hindus assume a number of $vyātīpātas$ in the lunar stations, but all of them are computed by the same method which he has given. For the calculation does not increase in its kind; only the single specimens of it become more numerous.

The Brahman Bhaṭṭila (?) says in his canon:

"Here there are 8 times, which have certain gauge-measures. If the sum of the corrected places of sun and moon is equal to them, they are unlucky. They are:

1. $Bak-shvata$ (?). Its gauge-measure is 4 zodiacal signs.

2. $Gandānta$. Its gauge-measure is 4 signs and $13\frac{1}{2}$ degrees."
CHAPTER LXXIX.

"3. Lāṭa (?) or the general vyatipāta. Its gauge-measure is 6 signs.

"4. Cāsa (?). Its gauge-measure is 6 signs and 6½ degrees.

"5. Barh (?), also called barhvyatipāta. Its gauge-measure is 7 signs and 16½ degrees.

"6. Kāladaṇḍa. Its gauge-measure is 8 signs and 13½ degrees.

"7. Vyākshāṭa (?). Its gauge-measure is 9 signs and 23½ degrees.

"8. Vaidhrita. Its gauge-measure is 12 signs."

These yogas are well known, but they cannot all be traced back to a rule in the same way as the 3d and 8th ones. Therefore they have no certain duration determined by minutes of the falling, but only by general estimates. Thus the duration of vyākshāṭa (?) and of bakshāṭa (?) is one mukhārta, according to the statement of Varāhamihira, the duration of Gandānta and of Barh (?) two mukhārtas.

The Hindus propound this subject at great length and with much detail, but to no purpose. We have given an account of it in the above-mentioned book.

(See ii. 208.)

The canon Karanatilaka mentions twenty-seven yogas, which are computed in the following manner:

Add the corrected place of the sun to that of the moon, reduce the whole sum to minutes, and divide the number by 800. The quotient represents complete yogas. Multiply the remainder by 60, and divide the product by the sum of the bhuktis of sun and moon. The quotient represents the minutes of days and minor fractions, viz. that time which has elapsed of the current yoga.

We have copied the names and qualities of the yogas from Śripāla, and exhibit them in the following table:
<table>
<thead>
<tr>
<th>The number</th>
<th>Their names.</th>
<th>Whether good or bad.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Viśvakarmha</td>
<td>Good.</td>
</tr>
<tr>
<td>2</td>
<td>Pratli.</td>
<td>Good.</td>
</tr>
<tr>
<td>3</td>
<td>Rajakarn.</td>
<td>Bad.</td>
</tr>
<tr>
<td>4</td>
<td>Saubhāgya.</td>
<td>Good.</td>
</tr>
<tr>
<td>5</td>
<td>Sohanna.</td>
<td>Good.</td>
</tr>
<tr>
<td>6</td>
<td>Atigujja.</td>
<td>Good.</td>
</tr>
<tr>
<td>7</td>
<td>Sukarmana.</td>
<td>Good.</td>
</tr>
<tr>
<td>8</td>
<td>Dīrīti.</td>
<td>Good.</td>
</tr>
<tr>
<td>9</td>
<td>Śāla.</td>
<td>Good.</td>
</tr>
<tr>
<td>10</td>
<td>Gaṇga.</td>
<td>Good.</td>
</tr>
<tr>
<td>11</td>
<td>Vṛddhi.</td>
<td>Good.</td>
</tr>
<tr>
<td>12</td>
<td>Dhāra.</td>
<td>Bad.</td>
</tr>
<tr>
<td>13</td>
<td>Vyāghāta (?)</td>
<td>Good.</td>
</tr>
<tr>
<td>14</td>
<td>Harshana.</td>
<td>Good.</td>
</tr>
<tr>
<td>15</td>
<td>Vajra.</td>
<td>Bad.</td>
</tr>
<tr>
<td>16</td>
<td>Sīdhi.</td>
<td>Good.</td>
</tr>
<tr>
<td>17</td>
<td>K.n.n.ātā (?)</td>
<td>Good.</td>
</tr>
<tr>
<td>18</td>
<td>Vaiśārī.</td>
<td>Bad.</td>
</tr>
<tr>
<td>19</td>
<td>Parigha.</td>
<td>Good.</td>
</tr>
<tr>
<td>20</td>
<td>Śiva.</td>
<td>Good.</td>
</tr>
<tr>
<td>21</td>
<td>Sīdha.</td>
<td>Good.</td>
</tr>
<tr>
<td>22</td>
<td>Śahīna.</td>
<td>Good.</td>
</tr>
<tr>
<td>23</td>
<td>Śīh.</td>
<td>Good.</td>
</tr>
<tr>
<td>24</td>
<td>Śakra.</td>
<td>Good.</td>
</tr>
<tr>
<td>25</td>
<td>Brahma.</td>
<td>Good.</td>
</tr>
<tr>
<td>26</td>
<td>Intra.</td>
<td>Good.</td>
</tr>
<tr>
<td>27</td>
<td>Vaiśārī.</td>
<td>Bad.</td>
</tr>
</tbody>
</table>
CHAPTER LXXX.

ON THE INTRODUCTORY PRINCIPLES OF HINDU ASTROLOGY, WITH A SHORT DESCRIPTION OF THEIR METHODS OF ASTROLOGICAL CALCULATIONS.

Our fellow-believers in these (Muslim) countries are not acquainted with the Hindu methods of astrology, and have never had an opportunity of studying an Indian book on the subject. In consequence, they imagine that Hindu astrology is the same as theirs and relate all sorts of things as being of Indian origin, of which we have not found a single trace with the Hindus themselves. As in the preceding part of this our book we have given something of everything, we shall also give as much of their astrological doctrine as will enable the reader to discuss questions of a similar nature with them. If we were to give an exhaustive representation of the subject, this task would detain us very long, even if we limited ourselves to delineate only the leading principles and avoided all details.

First, the reader must know that in most of their prognostics they simply rely on means like auguring from the flight of birds and physiognomy, that they do not—as they ought to do—draw conclusions, regarding the affairs of the sublunar world, from the seconds (sic) of the stars, which are the events of the celestial sphere.

Regarding the number seven as that of the planets, there is no difference between us and them. They call them graha. Some of them are throughout lucky, viz.
Jupiter, Venus and the Moon, which are called saum-yagraha. Other three are throughout unlucky, viz. Saturn, Mars, and the Sun, which are called krüdragraha. Among the latter, they also count the dragon’s head, though in reality it is not a star. The nature of one planet is variable and depends upon the nature of that planet with which it is combined, whether it be lucky or unlucky. This is Mercury. However, alone by itself, it is lucky.

The following table represents the natures of the seven planets and everything else concerning them:
<table>
<thead>
<tr>
<th>Names of the planets</th>
<th>Whether they are lucky or unlucky</th>
<th>What elements they indicate</th>
<th>Whether they indicate male or female beings</th>
<th>Whether they indicate day or night</th>
<th>What point of the compass they indicate</th>
<th>What colour they indicate</th>
<th>What time they indicate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sun.</td>
<td>Unlucky</td>
<td>Fire</td>
<td>Male</td>
<td>Night</td>
<td>North-west</td>
<td>White</td>
<td>Mahurta</td>
</tr>
<tr>
<td>Moon.</td>
<td>Unlucky</td>
<td>...</td>
<td>Female</td>
<td>Night</td>
<td>South</td>
<td>Fishtachigreen</td>
<td>Day.</td>
</tr>
<tr>
<td>Mercury.</td>
<td>Lucky, but depending upon the planet near her, and when middle,</td>
<td>Earth</td>
<td>Male</td>
<td>Day and night together</td>
<td>North</td>
<td>Light red</td>
<td>Day.</td>
</tr>
<tr>
<td>Mars.</td>
<td>Lucky, but depending upon the planet near her, and falling in the first,</td>
<td>Male</td>
<td>Female</td>
<td>Day</td>
<td>North-east</td>
<td>Gold-colour</td>
<td>Pahada, i.e., half a month</td>
</tr>
<tr>
<td>Jupiter.</td>
<td>Lucky</td>
<td>Water</td>
<td>Female</td>
<td>Day</td>
<td>Between east and west</td>
<td>Black</td>
<td>Year.</td>
</tr>
<tr>
<td>Venus.</td>
<td>Unlucky</td>
<td>Wind</td>
<td>Neither male nor female.</td>
<td>Night</td>
<td>West</td>
<td>Many colours</td>
<td>Ruha, i.e., a sixth part of the year</td>
</tr>
<tr>
<td>----------------------</td>
<td>------</td>
<td>-------</td>
<td>-------</td>
<td>----------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>What season they indicate.</td>
<td>o</td>
<td>Varaha.</td>
<td>Grishma.</td>
<td>Śarad.</td>
<td>Hemanta.</td>
<td>Vasanta.</td>
<td>Śīśira.</td>
</tr>
<tr>
<td>What taste they indicate.</td>
<td>Bitter.</td>
<td>Saltish.</td>
<td>...</td>
<td>A mixture of all tastes.</td>
<td>Sweet.</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>What angel they indicate.</td>
<td>Nema (?)</td>
<td>Ambu, the water.</td>
<td>Agni, the fire.</td>
<td>Brahman.</td>
<td>Mahādeva.</td>
<td>Indra.</td>
<td>...</td>
</tr>
<tr>
<td>What caste they indicate.</td>
<td>Kshatriyas and commanders.</td>
<td>Vaiśyas and commanders.</td>
<td>Kshatriyas and generals.</td>
<td>Śūdras and princes.</td>
<td>Brahman and ministers.</td>
<td>Brahman and ministers.</td>
<td>...</td>
</tr>
<tr>
<td>Which Veda they indicate.</td>
<td>o</td>
<td>o</td>
<td>Sāmaveda.</td>
<td>Atharvaveda.</td>
<td>Rigveda.</td>
<td>Yajurveda.</td>
<td>o</td>
</tr>
<tr>
<td>The months of pregnancy.</td>
<td>The fourth month, in which the bones become hard.</td>
<td>The fifth month, in which the skin appears.</td>
<td>The second month, in which the embryo attains consistency.</td>
<td>The seventh month, in which the child becomes complete, and receives the memory.</td>
<td>The third month, in which the limbs begin to branch off.</td>
<td>The first month, in which the semen and the menstrual blood become mixed.</td>
<td>The sixth month, when the hair grows.</td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>The scale of their magnitude.</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>25 (1)</td>
<td>7</td>
</tr>
<tr>
<td>Years of śaśāṇa.</td>
<td>19</td>
<td>25</td>
<td>15</td>
<td>12</td>
<td>15</td>
<td>21</td>
<td>20</td>
</tr>
<tr>
<td>Years of naiśa śarvaka.</td>
<td>20</td>
<td>1</td>
<td>2</td>
<td>9</td>
<td>18</td>
<td>20</td>
<td>50</td>
</tr>
</tbody>
</table>
The column of this table which indicates the order of the size and power of the planets, serves for the following purpose:—Sometimes two planets indicate exactly the same thing, exercise the same influence, and stand in the same relation to the event in question. In this case, the preference is given to that planet which, in the column in question, is described as the larger or the more powerful of the two.

The column relating to the months of pregnancy is to be completed by the remark that they consider the eighth month as standing under the influence of a horoscope which causes abortion. According to them, the embryo takes, in this month, the fine substances of the food. If it takes all of them and is then born, it will remain alive; but if it is born before that, it will die from some deficiency in its formation. The ninth month stands under the influence of the moon, the tenth under that of the sun. They do not speak of a longer duration of pregnancy, but if it happens to last longer, they believe that, during this time, some injury is brought about by the wind. At the time of the horoscope of abortion, which they determine by tradition, not by calculation, they observe the conditions and influences of the planets and give their decision accordingly as this or that planet happens to preside over the month in question.

The question as to the friendship and enmity of the planets among each other, as well as the influence of the dominus domus, is of great importance in their astrology. Sometimes it may happen that, at a particular moment of time, this dominium entirely loses its original character. Further on we shall give a rule as to the computation of the dominium and its single years.

There is no difference between us and the Hindus regarding the number twelve as the number of the signs of the ecliptic, nor regarding the manner in which the dominium of the planets is distributed over them.

The following table shows what qualities are peculiar to each zodiacal sign as a whole:
<table>
<thead>
<tr>
<th>The Zodiacal Signs</th>
<th>Aries</th>
<th>Taurus</th>
<th>Gemini</th>
<th>Cancer</th>
<th>Leo</th>
<th>Virgo</th>
<th>Libra</th>
<th>Scorpio</th>
<th>Arcitenens</th>
<th>Capricornus</th>
<th>Amphiophora</th>
<th>Pisces</th>
</tr>
</thead>
<tbody>
<tr>
<td>Their dominants</td>
<td>Mars</td>
<td>Venus</td>
<td>Mercury</td>
<td>Moon</td>
<td>Sun</td>
<td>Mercury</td>
<td>Venus</td>
<td>Mars</td>
<td>Jupiter</td>
<td>Saturn</td>
<td>Saturn</td>
<td>Jupiter</td>
</tr>
</tbody>
</table>
| Altitudes | 10 | 3 | 0 | 0 | 15 | 20 | 0 | 0 | 28 | 0 | Saturn | 27
<p>| Altitude (Degrees) | Sun | Moon | 0 | 0 | 0 | Sun | Mercury | Saturn | 0 | Jupiter | 0 | Saturn | 0 |
| Dominants of the mulatrikoṇa | Mars | Mars | Male | Female | Male | | | | | | | |
| Whether male or female | Male | Female | Male |
| Whether lucky or unlucky | Unlucky | Lucky |
| The colours | Reddish | White | Green | Yellowish | Gray | Many coloured | Black | Golden | ... | Striped white and black | Brown | Dust-coloured |
| The directions | Due east | S.S.E | W.S.W | N.N.W | E.N.E | Due south | Due west | Due north | E.S.E | S.S.W | W.N.W | N.N.E |
| In what manner they rise | Stretched on the ground | Stretched on the ground | Lying on the side | Stretched on the ground | Standing erect | Standing erect | Standing erect | Standing erect | Stretched on the ground | Standing erect | Standing erect | Standing erect |</p>
<table>
<thead>
<tr>
<th>The Zodiacal Signs</th>
<th>Plura.</th>
<th>Moving and resting together.</th>
<th>During day.</th>
<th>At night.</th>
<th>Under the navel.</th>
<th>Face.</th>
<th>Indicating the parts of the body they indicate.</th>
<th>Seasons.</th>
<th>Their figures.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cancer.</td>
<td>Resting</td>
<td>During day.</td>
<td>Under the navel.</td>
<td>Throat</td>
<td>Throat.</td>
<td>Throat</td>
<td>With a lyre and a club in his hand.</td>
<td>Yashna</td>
<td>An ox.</td>
</tr>
<tr>
<td>What kinds of beings they are.</td>
<td>The times of their strongest influence according to the different kinds.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphibious</td>
<td>At night.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biped</td>
<td>At the sandhi.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quadruped</td>
<td>At the sandhi.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human biped</td>
<td>During the day.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The first half of the biped.</td>
<td>During the sandhi.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The first half of the biped.</td>
<td>During the sandhi.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The upper half of the biped.</td>
<td>During the sandhi.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The lower half of the biped.</td>
<td>During the sandhi.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The whole human being.</td>
<td>During the sandhi.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The whole human being.</td>
<td>During the sandhi.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The human part in the daytime,</td>
<td>During the sandhi.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The human part in the daytime,</td>
<td>During the sandhi.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>At night.</td>
<td>During the sandhi.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>During the day.</td>
<td>During the sandhi.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>During the day.</td>
<td>During the sandhi.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>During the sandhi.</td>
<td>During the sandhi.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>During the sandhi.</td>
<td>During the sandhi.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>During the sandhi.</td>
<td>During the sandhi.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>During the sandhi.</td>
<td>During the sandhi.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The height or altitude of a planet is called, in the Indian language, uccastha, its particular degree paramoccastha. The depth or dejectio of a planet is called nicaestha, its particular degree paramanicastha. Mūlatrikona is a powerful influence, attributed to a planet, when it is in the gaudium in one of its two houses (cf. ii. 225).

They do not refer the aspectus trigoni to the elements and the elementary natures, as it is our custom to do, but refer them to the points of the compass in general, as has been specified in the table.

They call the turning zodiacal sign (τροπικόν) cararāśi, i.e. moving, the fixed one (στερεόν) sthirarāśī, i.e. the resting one, and the double-bodied one (δίσωμα) dviva-bhāva, i.e. both together.

The houses.

As we have given a table of the zodiacal signs, we next give a table of the houses (domus), showing the qualities of each of them. The one half of them above the earth they call chatra, i.e. parasol, and the half under the earth they call nau, i.e. ship. Further, they call the half ascending to the midst of heaven and the other half descending to the cardo of the earth, dhanu, i.e. the bow. The cardines they call kendra (κέντρον), the next following houses pānaphara (ἐπαναφορά), and the inclining houses ἄροκλίμα (ἄποκλιμα):—
<table>
<thead>
<tr>
<th>The Houses</th>
<th>What they indicate</th>
<th>On the ascends, the ascends being taken as basis</th>
<th>Which planets exercise the greatest influence in them</th>
<th>Which planets exercise the greatest influence in them</th>
<th>How much is to be subtracted from the unlucky years of the House.</th>
<th>How much is to be subtracted from the lucky years of the House.</th>
<th>How they are divided accordingly to the shadow of moon.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascendant</td>
<td>Head and soul</td>
<td>Basis for the calculation</td>
<td>The human signs</td>
<td>Mercury and Jupiter</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>II</td>
<td>Face and property</td>
<td>Two stand in aspect with the ascends</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>III</td>
<td>The two arms and brothers</td>
<td>The ascends looks towards it, but it does not look towards the ascends</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IV</td>
<td>Heart, parents, friends, house, and joy</td>
<td>Two stand in aspect with the ascends</td>
<td>The watery signs</td>
<td>Venus and Moon</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>V</td>
<td>Belly, child, and cleverness</td>
<td>Two stand in aspect with the ascends</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>VI</td>
<td>The two sides, the enemy and riding animals</td>
<td>It looks towards the ascends, but the ascends does not look towards it</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>VII</td>
<td>Under the navel and women</td>
<td>Two stand in aspect with the ascends</td>
<td>…</td>
<td>Saturn. ½ of them. ½ of them.</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>VIII</td>
<td>Return and death</td>
<td>The ascends looks towards it, but it does not look towards the ascends</td>
<td>…</td>
<td>0</td>
<td>½</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IX</td>
<td>The two loins, journey and debt</td>
<td>Two stand in aspect with the ascends</td>
<td>0</td>
<td>0</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
</tbody>
</table>
The hitherto mentioned details are in reality the cardinal-points of Hindu astrology, viz. the planets, zodiacal signs, and houses. He who knows how to find out what each of them means or portends deserves the title of a clever adept and of a master in this art.

Next follows the division of the zodiacal signs in minor portions, first that in nimbaḥras, which are called hord, i.e. hour, because half a sign rises in about an hour's time. The first half of each male sign is unlucky as standing under the influence of the sun, because he produces male beings, whilst the second half is lucky as standing under the influence of the moon, because she produces female beings. On the contrary, in the female signs the first half is lucky, and the second unlucky.

Further, there are the triangles, called drekkāna. There is no use in enlarging on them, as they are simply identical with the so-called drajānāt of our system.

Further, the nuhbaḥrāt (Persian, "the nine parts"),

<table>
<thead>
<tr>
<th>The House</th>
<th>What they indicate</th>
<th>On the aspects, the ascendants being taken as basis</th>
<th>Which zodiacal signs exercise the greatest influence in them</th>
<th>Which planets exercise the greatest influence in them</th>
<th>How much is to be subtracted from the unlucky years of the House</th>
<th>How much is to be subtracted from the lucky years of the House</th>
<th>How they are divided according to the horizon</th>
<th>Info what clauses they are divided according to the shadow of moon</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>The two knees and action</td>
<td>Two stand in aspect with the ascendants</td>
<td>The quadrupeds</td>
<td>Mars</td>
<td>½</td>
<td>½</td>
<td>Paradox</td>
<td>Ascending bow</td>
</tr>
<tr>
<td>XI</td>
<td>The two calves and income</td>
<td>It looks towards the ascendants, but the ascendants does not look towards it</td>
<td>0</td>
<td>0</td>
<td>½</td>
<td>½</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XII</td>
<td>The two feet and expenses</td>
<td>Two do not stand in aspect with the ascendants</td>
<td>0</td>
<td>0</td>
<td>The whole</td>
<td>½</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER LXXX.

called navāṁśaka. As our books of introduction to the art of astrology mention two kinds of them, we shall here explain the Hindu theory regarding them, for the information of Indophiles. You reduce the distance between O° of the sign and that minute, the nūhbahr of which you want to find, to minutes, and divide the number by 200. The quotient represents complete nūhbahras or ninth-parts, beginning with the turning sign, which is in the triangle of the sign in question; you count the number off on the consecutive signs, so that one sign corresponds to one nūhbahr. That sign which corresponds to the last of the ninth-parts which you have is the dominant of the nūhbahr we want to find.

The first nūhbahr of each turning sign, the fifth of each fixed sign, and the ninth of each double-bodied sign is called varyottama, i.e. the greatest portion.

Further, the twelfth-parts, called the twelve rulers. For a certain place within a sign they are found in the following manner:—Reduce the distance between O° of the sign and the place in question to minutes, and divide the number by 150. The quotient represents complete twelfth-parts, which you count off on the following signs, beginning with the sign in question, so that one twelfth-part corresponds to one sign. The dominant of the sign, to which the last twelfth-part corresponds, is at the same time the dominant of the twelfth-part of the place in question.

Further, the degrees called triṁśāṁśaka, i.e. the thirty degrees, which correspond to our limits (or ὑπα). Their order is this: The first five degrees of each male sign belong to Mars, the next following five to Saturn, the next eight to Jupiter, the next seven to Mercury, and the last five to Venus. Just the reverse order takes place in the female signs, viz. the first five degrees belong to Venus, the next seven to Mercury, the next eight to Jupiter, the next five to Saturn, and the last five to Mercury.
These are the elements on which every astrological calculation is based.

The nature of the aspect of every sign depends upon the nature of the ascendens which at a given moment rises above the horizon. Regarding the aspects they have the following rule:

A sign does not look at, i.e. does not stand in aspect with the two signs immediately before and after it. On the contrary, each pair of signs, the beginnings of which are distant from each other by one-fourth or one-third or one-half of the circle, stand in aspect with each other. If the distance between two signs is one-sixth of the circle, the signs forming this aspect are counted in their original order; but if the distance is five-twelfths of the circle, the signs forming the aspect are counted in the inverse order.

There are various degrees of aspects, viz.:

The aspect between one sign and the fourth or eleventh following one is a fourth-part of an aspect;

The aspect between one sign and the fifth or ninth following one is half an aspect;

The aspect between a sign and the sixth or tenth following one is three-quarters of an aspect;

The aspect between a sign and the seventh following one is a whole aspect.

The Hindus do not speak of an aspect between two planets which stand in one and the same sign.

With reference to the change between the friendship and enmity of single planets with regard to each other, the Hindus have the following rule:

If a planet comes to stand in signs which, in relation to its rising, are the tenth, eleventh, twelfth, first, second, third, and fourth signs, its nature undergoes a change for the better. If it is most inimical, it becomes moderated; if it is moderated, it becomes friendly; if it is friendly, it becomes most friendly. If the planet comes to stand in all the other signs, its nature undergoes a
change for the worse. If originally it is friendly, it becomes moderate; if it is moderate, it becomes inimical; if it is inimical, it becomes even worse. Under such circumstances, the nature of a planet is an accidental one for the time being, associating itself with its original nature.

After having explained these things, we now proceed to mention the four forces which are peculiar to each planet:

I. The habitual force, called sthānabala, which the planet exercises, when it stands in its altitudo, its house, or the house of its friend, or in the nubahr of its house, or its altitudo, or its mūlatrikona, i.e. its gaudium in the line of the lucky planets. This force is peculiar to sun and moon when they are in the lucky signs, as it is peculiar to the other planets when they are in the unlucky signs. Especially this force is peculiar to the moon in the first third of her lunation, when it helps every planet which stands in aspect with her to acquire the same force. Lastly, it is peculiar to the ascendens if it is a sign representing a biped.

II. The force called drishtibala, i.e. the lateral one, also called drigbala, which the planet exercises when standing in the cardo in which it is strong, and, according to some people, also when standing in the two houses immediately before and after the cardo. It is peculiar to the ascendens in the day, if it is a sign representing a biped, and in the night, if it is a four-footed sign, and in both the samdhis (periods of twilight at the beginning and end) of the other signs. This in particular refers to the astrology of nativities. In the other parts of astrology this force is peculiar, as they maintain, to the tenth sign if it represents a quadruped, to the seventh sign if it is Scorpio and Cancer, and to the fourth sign if it is Amphora and Cancer.

III. The conquering force, called ceshṭābala, which a planet exercises, when it is in retrograde motion,
when it emerges from concealment, marching as a visible star till the end of four signs, and when in the north it meets one of the planets except Venus. For to Venus the south is the same as the north is to the other planets. If the two (———? illegible) stand in it (the south), it is peculiar to them that they stand in the ascending half (of the sun’s annual rotation), proceeding towards the summer solstice, and that the moon in particular stands near the other planets—except the sun—which afford her something of this force.

The force is, further, peculiar to the ascendens, if its dominant is in it, if the two stand in aspect with Jupiter and Mercury, if the ascendens is free from an aspect of the unlucky planets, and none of them—except the dominant—is in the ascendens. For if an unlucky planet is in it, this weakens the aspect of Jupiter and Mercury, so that their dwelling in this force loses its effect.

IV. The fourth force is called kālabala, i.e. the temporal one, which the daily planets exercise in the day, the nightly planets during the night. It is peculiar to Mercury in the saṃdhī of its rotation, whilst others maintain that Mercury always has this force, because he stands in the same relation to both day and night.

Further, this force is peculiar to the lucky planets in the white half of the month, and to the unlucky stars in the black half. It is always peculiar to the ascendens.

Other astrologers also mention years, months, days, and hours among the conditions, under which the one or other of the four forces is peculiar to a planet.

These, now, are the forces which are calculated for the planets and for the ascendens.

If several planets own, each of them, several forces, that one is preponderant which has the most of them. If two planets have the same number of balas or forces, that one has the preponderance the magnitude of which is the larger. This kind of magnitude is in the table of
ii. 215, called *naisargikabala*. This is the order of the Lagh. ii. 7 planets in magnitude or force.

The middle years which are computed for the planets are of three different species, two of which are computed according to the distance from the *altitudo*. The measures of the first and second species we exhibit in the table (ii. 215).

The *shaddya* and *naisargika* are reckoned as the degree of *altitudo*. The first species is computed when the above-mentioned forces of the sun are preponderating over the forces of the moon and the *ascendens* separately.

The second species is computed if the forces of the moon are preponderating over those of the sun and those of the *ascendens*.

The third species is called *aṁśāya*, and is computed if the forces of the *ascendens* are preponderating over those of sun and moon.

The computation of the years of the first species for each planet, if it does not stand in the degree of its *altitudo*, is the following:—

You take the distance of the star from the degree of its *altitudo* if this distance is more than six signs, or the difference between this distance and twelve signs, in case it is less than six signs. This number is multiplied by the number of the years, indicated by the table on page 812. Thus the signs sum up to months, the degrees to days, the minutes to day-minutes, and these values are reduced, each sixty minutes to one day, each thirty days to one month, and each twelve months to one year.

The computation of these years for the *ascendens* is this:—

Take the distance of the degree of the star from 0° of Aries, one year for each sign, one month for each 2°30' degrees, one day for each five minutes, one day-minute for each five seconds.
The computation of the years of the second species for the planets is the following:—

Take the distance of the star from the degree of its altitudo according to the just-mentioned rule (ii. 227). This number is multiplied by the corresponding number of years which is indicated by the table, and the remainder of the computation proceeds in the same way as in the case of the first species.

The computation of this species of years for the ascendens is this:—

Take the distance of its degree from 0° of Aries, a year for each nuhbahr; months and days, &c., in the same way as in the preceding computation. The number you get is divided by 12, and the remainder being less than 12, represents the number of years of the ascendens.

The computation of the years of the third species is the same for the planets as for the ascendens, and is similar to the computation of the years of the ascendens of the second species. It is this:—

Take the distance of the star from 0° of Aries, one year for each nuhbahr, multiplying the whole distance by 108. Then the signs sum up to months, the degrees to days, the minutes to day-minutes, the smaller measure being reduced to the larger one. The years are divided by 12, and the remainder which you get by this division is the number of years which you want to find.

All the years of this kind are called by the common name āyurdāya. Before they undergo the equation they are called madhyamāya, and after they have passed it they are called sphutāya, i.e. the corrected ones.

The years of the ascendens in all three species are corrected ones, which do not require an equation by means of two kinds of subtraction, one according to the position of the ascendens in the æther, and a
second according to its position in relation to the horizon.

To the third kind of years is peculiar an equation by means of an addition, which always proceeds in the same manner. It is this:—

If a planet stands in its largest portion or in its house, the drekkāna of its house or the drekkāna of its altitudo, in the nuhbahr of its house or the nuhbahr of its altitudo, or, at the same time, in most of these positions together, its years will be the double of the middle number of years. But if the planet is in retrograde motion or in its altitudo, or in both together, its years are the threefold of the middle number of years.

Regarding the equation by means of the subtraction (vide ii. 228) according to the first method, we observe that the years of the planet, which is in its dejectio, are reduced to two-thirds of them if they are of the first or second species, and to one-half if they belong to the third species. The standing of a planet in the house of its opponent does not impair the number of its years.

The years of a planet which is concealed by the rays of the sun, and thus prevented from exercising an influence, are reduced to one-half in the case of all three species of years. Only Venus and Saturn are excepted, for the fact of their being concealed by the rays of the sun does not in any way decrease the numbers of their years.

As regards the equation by means of subtraction according to the second method, we have already stated in the table (ii. 221, 222) how much is subtracted from the unlucky and lucky stars, when they stand in the houses above the earth. If two or more planets come together in one house, you examine which of them is the larger and stronger one. The subtraction is added to the years of the stronger planet and the remainder is left as it is.

If to the years of a single planet, years of the third
species, two additions from different sides are to be
made, only one addition, viz., the longer one, is taken
into account. The same is the case when two subtrac-
tions are to be made. However, if an addition as well
as a subtraction is to be made, you do the one first and
then the other, because in this case the sequence is
different.

By these methods the years become adjusted, and the
sum of them is the duration of the life of that man who
is born at the moment in question.

It now remains for us to explain the method of the
Hindus regarding the periods (sic). Life is divided
in the above-mentioned three species of years, and
immediately after the birth, into years of sun and
moon. That one is preponderating which has the most
forces and balas (vide ii. 225); if they equal each other,
that one is preponderating which has the greatest
portio (sic) in its place, then the next one, &c. The
companion of these years is either the ascendens or that
planet which stands in the cardines with many forces
and portiones. The several planets come together in the
cardines, their influence and sequence are determined by
their forces and shares. After them follow those planets
which stand near the cardines, then those which stand
in the inclined signs, their order being determined in the
same way as in the preceding case. Thus becomes
known in what part of the whole human life the years
of every single planet fall.

However, the single parts of life are not computed
exclusively in the years of the one planet, but accord-
ing to the influences which companion-stars exercise
upon it, i.e. the planets which stand in aspect with it.
For they make it partake in their rule and make it
share in their division of the years. A planet which
stands in the same sign with the planet ruling over the
part of life in question, shares with it one-half. That
which stands in the fifth and ninth signs, shares with
it one-third. That which stands in the fourth and eighth signs, shares with it one-fourth. That which stands in the seventh sign, shares with it one-seventh. If, therefore, several planets come together in one position, all of them have in common that share which is necessitated by the position in question.

The method for the computation of the years of such a companionship (if the ruling planet stands in aspect with other planets) is the following:—

Take for the master of the years (i.e. that planet which rules over a certain part of the life of a man) one as numerator and one as denominator, i.e. \(\frac{1}{2} \), one whole, because it rules over the whole. Further, take for each companion (i.e. each planet which stands in aspect with the former) only the numerator of its denominator (not the entire fraction). You multiply each denominator by all the numerators and their sum, in which operation the original planet and its fraction are disregarded. Thereby all the fractions are reduced to one and the same denominator. The equal denominator is disregarded. Each numerator is multiplied by the sum of the year and the product divided by the sum of the numerators. The quotient represents the years \(\text{kālambāka (kālabhāga ?)} \) of a planet.

As regards the order of the planets, after the question as to the preponderance of their influence has been decided (? text in disorder), in so far as each of them exercises its individual influence. In the same way as has already been explained (vide ii. 230), the preponderating planets are those standing in the cardines, first the strongest, then the less strong, &c., then those standing near the cardines, and lastly those standing in the inclined signs.

From the description given in the preceding pages, the reader learns how the Hindus compute the duration of human life. He learns from the positions of the planets, which they occupy on the origin (i.e. at
the moment of birth) and at every given moment of life in what way the years of the different planets are distributed over it. To these things Hindu astrologers join certain methods of the astrology of nativities, which other nations do not take into account. They try, e.g., to find out if, at the birth of a human being, its father was present, and conclude that he was absent, if the moon does not stand in aspect with the ascendens, or if the sign in which the moon stands is enclosed between the signs of Venus and Mercury, or if Saturn is in the ascendens, or if Mars stands in the seventh sign.

Chap. iii. 4 (?)—Further, they try to find out if the child will attain full age by examining sun and moon. If sun and moon stand in the same sign, and with them an unlucky planet, or if the moon and Jupiter just omit the aspect with the ascendens, or if Jupiter just quits the aspect with the united sun and moon, the child will not live to full age.

Further, they examine the station in which the sun stands, in a certain connection with the circumstances of a lamp. If the sign is a turning one, the light of the lamp, when it is transferred from one place to the other, moves. If the sign is a fixed one, the light of the lamp is motionless; and if the sign is a double-bodied one, it moves one time and is motionless another.

Further, they examine in what relation the degrees of the ascendens stand to 30. Corresponding to it is the amount of the wick of the lamp which is consumed by burning. If the moon is full moon, the lamp is full of oil; at other times the decrease or increase of the oil corresponds to the wane and increase of the moonlight.

Chap. iv. 5.—From the strongest planet in the cardines they draw a conclusion relating to the door of the house, for its direction is identical with the direction of this planet or with the direction of the sign of the ascendens, in case there is no planet in the cardines.

Chap. iv. 6.—Further, they consider which is the
light-giving body, the sun or moon. If it is the sun, the house will be destroyed. The moon is beneficent, Mars burning, Mercury bow-shaped, Jupiter constant, and Saturn old.

Chap. iv. 7.—If Jupiter stands in its altitude in the tenth sign, the house will consist of two wings or three. If its indicium is strong in Arcitenens, the house will have three wings; if it is in the other double-bodied signs, the house will have two wings.

Chap. iv. 8.—In order to find prognostics for the throne and its feet they examine the third sign, its squares and its length from the twelfth till the third signs. If there are unlucky planets in it, either the foot or the side will perish in the way that the unlucky planet prognosticates. If it is Mars, it will be turned; if it is the sun, it will be broken; and if it is Saturn, it will be destroyed by old age.

Chap. iv. 10.—The number of women who will be present in a house corresponds to the number of stars which are in the signs of the ascendent and of the moon. Their qualities correspond to the images of these constellations.

Those stars of these constellations which stand above the earth refer to those women who go away from the house, and those which stand under the earth prognosticate the women who will come to the house and enter it.

Further, they inquire into the coming of the spirit of life in man from the dominant of the drekkâna of the stronger planet of either sun or moon. If Jupiter is the drekkâna, it comes from Devaloka; if it is Venus or the moon, the spirit comes from Pitâlaloka; if it is Mars or the sun, the spirit comes from Vriśikaloka; and if it is Saturn or Mercury, the spirit comes from Bhriguloka.

Likewise they inquire into the departing of the soul after the death of the body, when it departs to that planet which is stronger than the dominant of the
drekkâna of the sixth or eighth houses, according to a similar rule to that which has just been laid down. However, if Jupiter stands in its *altitudo*, in the sixth house, or in the eighth, or in one of the *cardines*, or if the *ascendens* is Pisces, and Jupiter is the strongest of the planets, and if the constellation of the moment of death is the same as that of the moment of birth, in that case the spirit (or soul) is liberated and no longer wanders about.

I mention these things in order to show the reader the difference between the astrological methods of our people and those of the Hindus. Their theories and methods regarding aerial and cosmic phenomena are very lengthy and very subtle at the same time. As we have limited ourselves to mentioning, in their astrology of nativities, only the theory of the determination of the length of life, we shall in this department of science limit ourselves to the species of the comets, according to the statements of those among them who are supposed to know the subject thoroughly. The analogy of the comets shall afterwards be extended to other more remote subjects.

The head of the Dragon is called *râhu*, the tail *ketu*. The Hindus seldom speak of the tail, they only use the head. In general, all comets which appear on heaven are also called *ketu*.

Varāhamihira says (chap. iii. 7–12):—

"The Head has thirty-three sons who are called *tâmasakâlaka*. They are the different kinds of the comets, there being no difference whether the head extends away from them or not. Their prognostics correspond to their shapes, colours, sizes, and positions. V. 8.—The worst are those which have the shape of a crow or the shape of a beheaded man, those which have the shape of a sword, dagger, bow and arrow. V. 9, 10.—They are always in the neighbourhood of sun and moon, exciting the waters so that they become
thick, and exciting the air that it becomes glowing red. They bring the air into such an uproar that the tornadoes tear out the largest trees, that flying pebbles beat against the calves and knees of the people. They change the nature of the time, so that the seasons seem to have changed their places. When unlucky and calamitous events become numerous, such as earthquakes, landslips, burning heat, red glow of heaven, uninterrupted howling of the wild beasts and screaming of the birds, then know that all this comes from the children of the Head. V. 11.—And if these occurrences take place together with an eclipse or the effulgence of a comet, then recognise in this what thou hast predicted, and do not try to gain prognostics from other beings but the Sons of the Head. V. 12.—In the place of the calamity, point towards their (the comets) region, to all eight sides with relation to the body of the sun.”

Varāhamihira says in the Samhitā (chap. xi. 1–7):

“I have spoken of the comets not before having exhausted what is in the books of Garga, Parāśara, Asita and Devala, and in the other books, however numerous they may be.

"It is impossible to comprehend their computation, if the reader does not previously acquire the knowledge of their appearing and disappearing, because they are not of one kind, but of many kinds.

“Some are high and distant from the earth, appearing between the stars of the lunar stations. They are called divya.

“Others have a middle distance from the earth, appearing between heaven and earth. They are called antarikshya.

“Others are near to the earth, falling down upon the earth, on the mountains, houses and trees.

“Sometimes you see a light falling down to the earth, which people think to be a fire. If it is not fire, it is keturūpa, i.e. having the shape of a comet.

“Those animals which, when flying in the air, look
like sparks or like fires which remain in the houses of the pisācas, the devils, and of the demons, efflorescent substances and others do not belong to the genus of the comets.

"Therefore, ere you can tell the prognostics of the comets, you must know their nature, for the prognostics are in agreement with it. That category of lights which is in the air, falling on the banners, weapons, houses, trees, on horses and elephants, and that category coming from a Lord which is observed among the stars of the lunar stations—if a phenomenon does not belong to either of these two categories nor to the above-mentioned phantoms, it is a telluric ketu.

V. 5.—"Scholars differ among each other regarding the number of the comets. According to some there are 101, according to others 1000. According to Nārada, the sage, they are only one, which appears in a multitude of different forms, always divesting itself of one form and arraying itself in another.

V. 7.—"Their influence lasts for as many months as their appearance lasts days. If the appearance of a comet lasts longer than one and a half month, subtract from it forty-five days. The remainder represents the months of its influence. If the appearance lasts longer than two months, in that case state the years of its influence to be equal to the number of the months of its appearance. The number of comets does not exceed the number 1000."

We give the contents of the following table in order to facilitate the study of the subject, although we have not been able to fill out all the single fields of the diagram, because the manuscript tradition of the single paragraphs of the book either in the original or in the copy which we have at our disposal is corrupt. The author intends by his explanations to confirm the theory of the ancient scholars regarding the two numbers of comets which he mentions on their authority, and he endeavours to complete the number 1000.
<table>
<thead>
<tr>
<th>Their names</th>
<th>Their qualities</th>
<th>Sum total</th>
<th>How many stars each has</th>
<th>From what direction they appear</th>
<th>Their signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>The children of Kimya</td>
<td>...</td>
<td>25</td>
<td>25</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>The children of the Fire (4)</td>
<td>...</td>
<td>50</td>
<td>50</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>The children of Death</td>
<td>...</td>
<td>75</td>
<td>75</td>
<td>S E</td>
<td>It bodes the fighting of the kings with each other.</td>
</tr>
<tr>
<td>The children of the Earth</td>
<td>...</td>
<td>97</td>
<td>97</td>
<td>S E</td>
<td>It bodes pestilence.</td>
</tr>
<tr>
<td>The children of the Moon</td>
<td>...</td>
<td>100</td>
<td>100</td>
<td>S E</td>
<td>It bodes hunger and pestilence.</td>
</tr>
<tr>
<td>The children of Venus</td>
<td>...</td>
<td>185</td>
<td>185</td>
<td>...</td>
<td>It bodes evil, in consequence of which the world will be turned topsy-turvy. It bodes wickedness and destruction.</td>
</tr>
<tr>
<td>Brahmadaunga</td>
<td>...</td>
<td>65</td>
<td>65</td>
<td>...</td>
<td>It bodes evil and fear.</td>
</tr>
<tr>
<td>Kanaka</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>S E</td>
<td>It bodes misfortune and destruction.</td>
</tr>
<tr>
<td>Vakanca</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Their names.</td>
<td>Their descent.</td>
<td>How many stars each comet has.</td>
<td>Sum total.</td>
<td>Their qualities.</td>
<td>From what direction they appear.</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------------------</td>
<td>--------------------------------</td>
<td>------------</td>
<td>---</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Taskara, i.e. the thief.</td>
<td>The children of Mercury.</td>
<td>51</td>
<td>...</td>
<td>White, thin, long. The eye is dazzled by them.</td>
<td>In all directions.</td>
</tr>
<tr>
<td>Kauākuma.</td>
<td>The children of Mars.</td>
<td>60</td>
<td>...</td>
<td>It has three tails, and the colour of the flame.</td>
<td>N.</td>
</tr>
<tr>
<td>Tāmasa-kīlaka.</td>
<td>The children of the Head.</td>
<td>36</td>
<td>...</td>
<td>Of different shapes.</td>
<td>About the sun and moon.</td>
</tr>
<tr>
<td>Viśvarūpa.</td>
<td>The children of the Fire.</td>
<td>120</td>
<td>...</td>
<td>Of a blazing light like the flame.</td>
<td>...</td>
</tr>
<tr>
<td>Aruṇa.</td>
<td>The children of the Wind.</td>
<td>77</td>
<td>...</td>
<td>They have no body, that you could see a star in them. Only their rays are united, so that these appear as rivulets. Their colour is reddish or greenish.</td>
<td>...</td>
</tr>
<tr>
<td>Gaṇaka.</td>
<td>The children of Prajāpati.</td>
<td>204</td>
<td>...</td>
<td>Square comets, eight in appearance, and 304 in number.</td>
<td>...</td>
</tr>
<tr>
<td>Kaṅka.</td>
<td>The children of the Water.</td>
<td>32</td>
<td>...</td>
<td>Its (?) are united, and it is shining like the moon.</td>
<td>...</td>
</tr>
<tr>
<td>Kabandha.</td>
<td>The children of the Time.</td>
<td>...</td>
<td>...</td>
<td>Like the cut-off head of a man.</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>9</td>
<td>...</td>
<td>One in appearance, nine in number. White, large.</td>
<td>In all directions.</td>
</tr>
</tbody>
</table>
CHAPTER LXXX.

The author (Varāhamihira) had divided the comets into three classes: the high ones near the stars; the flowing ones near the earth; the middle ones in the air, and he mentions each one of the high and middle classes of them in our table separately.

He further says (chap. xi. 42):—

"If the light of the middle class of comets shines on the instruments of the kings, the banners, parasols, fans, and fly-flaps, this bodes destruction to the rulers. If it shines on a house, or tree, or mountain, this bodes destruction to the empire. If it shines on the furniture of the house, its inhabitants will perish. If it shines on the sweepings of the house, its owner will perish."

Further Varāhamihira says (chap. xi. 6):—

"If a shooting-star falls down opposite to the tail of a comet, health and wellbeing cease, the rains lose their beneficial effects, and likewise the trees which are holy to Mahādeva—there is no use in enumerating them, since their names and their essences are unknown among us Muslims—and the conditions in the realm of Cola, Sita, the Huns and Chinese are troubled."

Further he says (chap. xi. 62):—

"Examine the direction of the tail of the comet, it being indifferent whether the tail hangs down or stands erect or is inclined, and examine the lunar station, the edge of which is touched by it. In that case predict destruction to the place and that its inhabitants will be attacked by armies which will devour them as the peacock devours the snakes.

"From these comets you must except those which bode something good.

"As regards the other comets, you must investigate in what lunar stations they appear, or in what station their tails lie or to what station their tails reach. In that case you must predict destruction to the princes of those countries which are indicated by the lunar
stations in question, and other events which are indicated by those stations."

The Jews hold the same opinion regarding the comets as we hold regarding the stone of the Ka'ba (viz. that they all are stones which have fallen down from heaven). According to the same book of Varāhamihira, comets are such beings as have been on account of their merits raised to heaven, whose period of dwelling in heaven has elapsed and who are then redescending to the earth.

The following two tables embody the Hindu theories of the comets:
<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Direction</th>
<th>Description</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vasá</td>
<td>West</td>
<td>It is flashing and thick, and extends itself from the north.</td>
<td>It bodes death and excessive wealth and fertility.</td>
</tr>
<tr>
<td>2</td>
<td>Asthi</td>
<td>West</td>
<td>Less bright than the first.</td>
<td>It bodes hunger and pestilence.</td>
</tr>
<tr>
<td>3</td>
<td>Śastra</td>
<td>West</td>
<td>Similar to the first.</td>
<td>It bodes the fighting of the kings with each other.</td>
</tr>
<tr>
<td>4</td>
<td>Kapálačetu</td>
<td>East</td>
<td>Its tail extends till nearly the midst of heaven. It has a smoke-colour and</td>
<td>It bodes the abundance of rain, much hunger, illness and death.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>appears on the day of new-moon.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Raudra</td>
<td>From the east in Púrváshádha, Púrvabhádrapádá, and Revati.</td>
<td>With a sharp edge, surrounded by rays. Bronze-coloured. It occupies one-third of heaven.</td>
<td>It bodes the fighting of the kings with each other.</td>
</tr>
<tr>
<td>6</td>
<td>Calaketu</td>
<td>West</td>
<td>During the first time of its appearance it has a tail as long as a finger towards the south. Then it turns towards the north, till it becomes as long as to the south, the Great Bear and the Pole, then the Falling Eagle. Rising higher and higher it passes round to the south and disappears there.</td>
<td>It ruins the country from the tree Prayága till Ujjayinti. It ruins the Middle Country, whilst the other regions fare differently. In some places there is pestilence, in others drought, in others war. It is visible between 10-12 months.</td>
</tr>
<tr>
<td>Table of Comets of the Greatest Height in the Ether—Continued.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Svetaeketu.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>South.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>It appears at the beginning of night and is visible during seven days. Its tail extends over one-third of heaven. It is green and passes from the right side to the left.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kā.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>West.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>It appears in the first half of night. Its flame is like scattered peas and remains visible during seven days.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radnīketa (?).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Pleiades.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>It has the colour of smoke.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dihraketa (?).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Appears between heaven and earth and wherever it likes.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

When these two comets shine and lighten, they bode health and wealth. If the time of their appearance exceeds seven days, two-thirds of the affairs of men and of their lives are ruined. The sword is drawn, revolutions prevail, and there will be misfortune during ten years. It ruins all human affairs and creates numerous revolutions. It bodes health and peace.
<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Their progesstion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kumuda</td>
<td>Hinges on the lotus which is compared with it. It remains one night and is directed towards the south.</td>
<td>It bodes lasting fertility and wealth for ten years.</td>
</tr>
<tr>
<td>Marikutu</td>
<td>Its tail is straight like a milk spurts out of the breast when it is milked.</td>
<td>It bodes a great number of wild animals and perpetual fertility during four months.</td>
</tr>
<tr>
<td>Jahaketu</td>
<td>Its tail has a curve from the west side.</td>
<td>It bodes fertility and well-being of the subjects during nine months.</td>
</tr>
<tr>
<td>Bhavaketu</td>
<td>It has a tail like that of a lion towards the south.</td>
<td>It is visible only one night. It bodes perpetual fertility and well-being during as many months as its appearance lasts. If its color becomes less bright, it bodes pestilence and death.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>From what direction they appear</th>
<th>West</th>
<th>East</th>
</tr>
</thead>
<tbody>
<tr>
<td>Their names.</td>
<td>Kumuda</td>
<td>Marikutu</td>
</tr>
<tr>
<td>Number</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Their names</td>
<td>Description</td>
<td>Their prognostics</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Paumaketau</td>
<td>It is as white as the white lotus. It lasts one night.</td>
<td>It bodes fertility, joy, and happiness for seven years.</td>
</tr>
<tr>
<td>Avara.</td>
<td>It appears at midnight, bright shining and light gray. Its tail extends from the left to the right.</td>
<td>It bodes wealth during as many months as its appearance lasts.</td>
</tr>
<tr>
<td>Sauvarta.</td>
<td>With a tail with a sharp edge. It has the colour of smoke or bronze. It extends over one-third of heaven, and appears during the scandra.</td>
<td>It bodes wealth during as many months as its appearance lasts.</td>
</tr>
</tbody>
</table>
This is the doctrine of the Hindus regarding the comets and their presages.

Only few Hindus occupy themselves in the same way as physical scholars among the ancient Greeks did, with exact scientific researches on the comets and on the nature of the other phenomena of heaven (τὰ μετέωρα), for also in these things they are not able to rid themselves of the doctrines of their theologians. Thus the Matsya-Purāṇa says:

"There are four rains and four mountains, and their basis is the water. The earth is placed on four elephants, standing in the four cardinal directions, which raise the water by their trunks to make the seeds grow. They sprinkle water in summer and snow in winter. The fog is the servant of the rain, raising itself up to it, and adorning the clouds with the black color."

With regard to these four elephants the Book of the Medicine of Elephants says:

"Some male elephants excel man in cunning. Therefore it is considered a bad omen if they stand at the head of a herd of them. They are called mangunihā (?). Some of them develop only one tooth, others three and four; those which belong to the race of the elephants bearing the earth. Men do not oppose them; and if they fall into a trap, they are left to their fate."

The Vāyu-Purāṇa says:

"The wind and the sun's ray raise the water from the ocean to the sun. If the water were to drop down from the sun, rain would be hot. Therefore the sun hands the water over to the moon, that it should drop down from it as cold water and refresh the world."

As regards the phenomena of the sky, they say, for instance, that the thunder is the roaring of Airāvata, i.e., the riding-elephant of Indra the ruler, when it drinks from the pond Mānasa, rutting and roaring with a hoarse voice.
The rainbow (lit. bow of Kuzah) is the bow of Indra, as our common people consider it as the bow of Rustam.

We think now that what we have related in this book will be sufficient for any one who wants to converse with the Hindus, and to discuss with them questions of religion, science, or literature, on the very basis of their own civilisation. Therefore we shall finish this treatise, which has already, both by its length and breadth, wearied the reader. We ask God to pardon us for every statement of ours which is not true. We ask Him to help us that we may adhere to that which yields Him satisfaction. We ask Him to lead us to a proper insight into the nature of that which is false and idle, that we may sift it so as to distinguish the chaff from the wheat. All good comes from Him, and it is He who is clement towards His slaves. Praise be to God, the Lord of the worlds, and His blessings be upon the prophet Muhammad and his whole family!
ANNOTATIONS.

VOL. I.
ANOTATIONS.

VOL. I.

P. i. Title.—The author proposes to investigate the reality (= ḥaṣīka) of Hindu modes of thought in the entire extent of the subject. He describes the religious, literary, and scientific traditions of India, not the country and its inhabitants. However, in some chapters he gives more than the title promises; cf. his notes on the roads and on the courses of the rivers.

The contents of the eighty chapters of the book may be arranged under the following heads:—

Chap. i. General Introduction.
Chap. 2–11. On Religious, Philosophical, and cognate subjects.
Chap. 12–17. On Literature and Metrology, Strange Customs and Superstitions.
Chap. 18–31. On Geography, Descriptive, Mathematical, and Traditional, i.e. Pauranic.
Chap. 32–62. On Chronology and Astronomy, interspersed with chapters of Religious Tradition, e.g. on Nārāyana, Vāsudeva, &c.

The word makūla, translated by category, is a technical term of Arabian philosophy. It was coined by the first Arabian translators of Aristotle for the purpose of rendering κατηγορία, and has since become current in the school language of Islam (cf. the Arabic title of Aristotelis Catalogiae Graece cum versione Arabica, &c., edid. J. Th. Zenker, Lipsiae, 1846). The Syrian predecessors of those Arabian translators had simply transferred the Greek word just as
it is into their own language; cf. e.g. Jacob of Edessa in G. Hoffmann’s De Hermeneuticis apud Syros Aristotelis, Lipsiae, 1869, p. 17.

That a Muslim author should investigate the ideas of idolaters, and not only such as Muslims may adopt, but also such as they must reject and condemn, that he quotes the Koran and the Gospel side by side (p. 4–5), is a proof of a broadness of view and liberality of mind more frequently met with in the ancient times of Islam, in the centuries before the establishment of Muhammadan orthodoxy by Alghazzâli (died A.D. 1111), than later. There was more field for utterances of mental individuality before the ideas of all the nations of Islam were moulded into a unity which makes it difficult to recognise the individual influences of every single nation on the general development of the Muhammadan mind, before all Islam had become one huge religious community, in which local and national differences seem to have lost most of their original importance for the spiritual life of man. The work of Alberuni is unique in Muslim literature, as an earnest attempt to study an idolatrous world of thought, not proceeding from the intention of attacking and refuting it, but uniformly showing the desire to be just and impartial, even when the opponent’s views are declared to be inadmissible. There can be hardly a doubt that under other circumstances, in other periods of Muslim history and other countries, the present work might have proved fatal to its author; and it shows that the religious policy of King Mahmûd, the great destroyer of Hindu temples and idols, under whom Alberuni wrote, must have been so liberal as to be rarely met with in the annals of Islam (cf. pp. 268, 269).

P. 5. The master Abû-Sahl, &c.—Al-tiflisî, i.e. a native of Tiflis in the Caucasus, is not known from other sources. I suppose he was one of the high civil functionaries of the realm or court of Mahmûd. The name Sahl occurs very frequently among men of Persian descent of those times, and the title Ustâdî = master, is in the Ta’tîrkh-i-Baihaqi always prefixed, if not precisely as an official title, at all events as a title expressive of profound respect on the part of the speaker, to the names of the ministers and
highest civil officials of Maḥmūd and Maṣʿūd, such as Bû Sahl Zauzānī, Bû Sahl Ḥamdūnī, Bû Naṣr Mushḵān, the minister of state, whose secretary Al-baihāki was, as well as to the name of Alberuni (Arabic, 16), but never to the names of the great military men (cf. on titles in the Ghaznavi empire, A. de Biberstein Kazimirski, Menoutchehrit, Paris, 1887, p. 308). Administrative skill was a legacy left by the organisation of the Sasanian empire to the Persians of later centuries, whilst military qualities seem entirely to have disappeared among the descendants of Rustam. For all the generals and officers of Maḥmūd and Maṣʿūd were Turks, as Altuntash, Aṛslān Jādhīb, Aṛiyarok, Bagtagin, Bilkātagin, Niyāltāgin, Noshtāgin, &c. The Ghazna princes spoke Persian with their civil functionaries, Turkish with their generals and soldiers (cf. Elliot, History of India, ii. 81, 102).

P. 5. The Muʿtazila sect.—The dogma, God has no knowledge, is part of their doctrine on the qualities of God, maintained especially by Māmar Ibn ʿAbdūd Al-Sulami. (Cf. on this and related subjects the treatise of H. Steiner, Die Mutaziliten oder die Freidenker im Islam, Leipzig, 1865, pp. 50, 52, 59, and Al-Shahrastānī’s “Book of Religious and Philosophical Sects,” edited by Cureton, London, 1846, p. 30, ii. 7–9). Proceeding from the study of Greek philosophy, the doctors of this school tried to save the free will of man as against predestination. There was once in Arabic a large literature composed by them and by their opponents, most of which is unknown, at all events not yet brought to light. Most of these books were of a polemical nature, and it is against their polemical bias that the criticism of Alberuni is directed. With regard to his own work, he expressly declares (p. 7) that it is not a polemical one. The book which Abû-Sahl had before him, and which gave rise to the discussion between him and our author, was probably one like that of Abū-Ḥasan Al-ʾashʿari (died A.D. 935), the great predecessor of Alghazzālī. “On the Qualities of God,” in which he attacks the Muʿtazila doctrine of the negation of God’s omni-science. (Cf. W. Spitta, Zur Geschichte Abūḥasan AlʾAshʿari’s, Leipzig, 1876, p. 64.) The same author has also written an extensive work against the antagonists of
the orthodox faith, against Brahmins, Christians, Jews, and Magians (v. ib. p. 68).

Our information regarding the ancient literature on the history of religion and philosophy (the latter proceeding from a work of the Neoplatonist Porphyrius) is very scanty, and mostly limited to titles of books. The work of Shahrastānī (died A.D. 1153) is a late compendium or مختصر (v. his pref., i, 8). His editor, Cureton, intended to give "Observations respecting the sources from which this author has probably derived his information" (English pref., p. iv.), but, as far as I am aware, he has not carried out his intention. There is an excellent treatise on the history of religions in the Fihrist of Al-nadim (composed about A.D. 987) on p. 111-112. The same author mentions (p. 114) an older work on doctrines and religions by Alhasan Ibn Mūsā Alnaubakhtī (mentioned by Mas'ūdī), who also wrote against metempsychosis. Parts of a similar work of Ibn Ḥazm, an Arab of Spain (died A.D. 1064), are extant in the libraries of Vienna and Leyden. Mr. C. Schefer has recently published in his Chrestomathie Persane, Paris, 1883, a useful little book in Persian called كتاب بيان الآدیان, composed by Abul-Ma‘ālī Muhammad Ibn ‘Ukail, who wrote in Ghazna, under the king Masʿūd Ibn Ibrāhīm (A.D. 1089-1099), half a century after Alberuni, whose Indica he quotes in his book. He calls it "The Doctrines of the Hindus" (p. 114). Two more treatises in Persian on the history of religions are mentioned by C. Schefer, Chrestomathie Persane, pp. 136, 137.

An author who seems to have written on subjects connected with the history of religions is one Abū-Ya’kūb of Sijistān, as Alberuni (i. 64-65) quotes his theory on the metempsychosis from a book of his, called ʿIlāb-kashf-almahjūb.

Pp. 6-7. Alérānshahṛ and Zurkân.—Our author has not made any use of the Muhammadan literature on the belief of the Hindus, as far as such existed before his time; evidently he did not give it the credit of a bond fide source of historical information. Throughout his book he derives his statements exclusively either from Indian books or from what he had heard himself. He makes an exception of this rule only in favour of Alérānshahṛ, the

The word Érânshahr was known to the Arabs as the name of the whole Sasanian empire, from the Oxus to the Euphrates. So it is used, e.g. by Abû-'Ali 'Aḫmad Ibn 'Umar Ibn Dusta in his geographical work (British Museum, add. 23.378 on fol. 120b), where he describes the whole extent of it. If, however, Érânshahr here means the place where the author Abûl'abbâs was born, we must take the word in the more restricted meaning, which is mentioned by Albalâdhuri. For it is also the name of a part of the Sasanian empire, viz. one of the four provinces of Khurâsân, the country between Nishâpur, Tûs, and Herât. Accordingly, we suppose that Alêrânschari means a native of this particular province. Cf. Almukaddasi, p. 284, Yâkût, i. 23n. According to another tradition, the name Érânshahr also applied to Nishâpur, i.e. the name of the province was used to denote its capital. Cf. Almukaddasi, p. 284.

Alêrânschari, a sort of freethinker according to Alberuni, is only once quoted (i. 326, a Buddhistic tradition on the destruction and renovation of the world). But as Alberuni praises his description of Judaism, Christianity, and Manichæism, we may suppose that the information of the Indica on these subjects, e.g. the quotation from the Gospel (p. 4-5), was taken from Érânshahr.

Incorporated in the work of Érânshahr was a treatise on Buddhism by an author, Zurkân, who is entirely unknown. Although Alberuni speaks very slightly of this author, and although he does not mention him anywhere save in the preface, he seems to have borrowed from him those notes on Buddhistic subjects which are scattered through his work (v. Index Rerum, s.v. Buddhists). This sort of information is not of a very high standard, but other sources on Buddhism, literary or oral, do not seem to have been at the command of Alberuni. The Hindus with whom he mixed were of the Brahminical
creed, not Buddhists. In the countries where he had lived, in Khwârizm, Jurjân, the country round Ghazna (Zâbulistân), and the Paujâb, there had been no opportunity for studying Buddhism; and also among the numerous soldiers, officers, artisans, and other Indians in the service of Mahmûd in Ghazna and other places, there do not seem to have been Buddhists, or else Alberuni would have used such occasions for filling out this blank in his knowledge.

In the Fihrist (ed. G. Flügel, Leipzig 1871), on p. 79, there is an extensive report on India and China, which is derived from the following sources:

1. The account of Abû-Dulaf of Yanbû'î, who had travelled to India and China about A.D. 941.

2. That of a Christian monk from Najrân, who by order of the Nestorian Katholikos had also travelled to India and China in the years A.D. 980–987.

3. From a book dated A.D. 863, of an unknown author, a book which had passed through the hands of the famous Al-Khândî. Was this perhaps the work of Al-Fârâbîshâbî, and the note on Buddha on p. 79 by Zurkân?

The origin of the chapter on Indian subjects in Shah-Rastânî (ed. Cureton, London, 1846), on p. 79 seq. is not known. At all events, this author has not made use of Alberuni's work.

Pp. 7–8. Greeks, Sûfís, Christians.—In order to illustrate the ideas of the Hindus, and to bring them nearer to the understanding of his Muslim readers, Alberuni quotes related ideas—

1. Of the Greeks (cf. i. 24).

2. The Christians.

3. The Jews.

4. The Manichaeans; and

5. The Sûfís.

Pantheism in Islam, the doctrine of the Sûfís, is as near akin to the Neoplatonic and Neopythagorean schools of Greek philosophy as to the Vedânta school of Hindu philosophers. It was in our author's time already represented by a very large literature. He quotes some Sûfi sentences, e.g. of Abû Bakr Al-shiblî, and Abû Yazîd Albîstâmi, who are known from other sources (i. 87, 88),
and a Ṣūfī interpretation of a Koranic passage (i. 88). Cf. besides, the *Index Rerum* s.v. Ṣūfīsm. He gives i. 33, 34, several etymologies of the word Ṣūfī, which he himself identifies with Σοφία.

The notes relating to Mānī and the Manichæans (v. *Index Rerum*), and the quotations from their books, are probably mostly taken from Alérānshahri (v. p. 18). However, it must be kept in mind that, at the time of our author, the works of Mānī still existed, and he himself found the "Book of Mysteries" and others in his native country, though perhaps at a time subsequent to the date of the composition of the *Indica*. Cf. *Chronologie Orientalischer Völker*, herausgegeben von Ed. Sachau, Leipzig, 1878, Vorwort, pp. xi. and xxxvi. The following works of Mānī are quoted: "Book of Mysteries," کتاب كتاب الإدراك Thesaurus vivificationis, i. 39. Cf. *Mani, seine Lehre und seine Schriften*, by G. Flügel, Leipzig, 1862.

As regards the Jews, I am not informed to what degree Jewish colonies were in those times spread over Central Asia. Alberuni derived probably his knowledge of Judaism also from Alérānshahri (p. 253). That in earlier years, during his stay in Jurjān, he was acquainted with a Jewish scholar is apparent from his chronological work ("Chronology of Ancient Nations," p. 269).

Alberuni's knowledge of Christianity may have been communicated by various channels besides the book of his predecessor Alérānshahri, as during his time it was far spread in Central Asia, and even at the court of Maḥmūd in Ghazna (e.g. *Abulkhair Alkhammar*, p. 256), there lived Christians. It has not yet been investigated in detail how far Nestorian Christianity had been carried eastward across Central Asia towards and into China. Cf. Assemani's *Notitia Ecclesiarum Metropolitanarum et Episcopaliwm quaer sunt Patriarchæ Nestorianæ Subjectæ* (Bibliotheca Orientalis, vol. iv. p. DCCV. seq.). Barhebræus speaks of Uigūr monks لانجا (ib. ii. 256), and from the same time date some of the Syriac inscriptions on Christian tombstones recently found in Russian Central Asia and published in Petersburg, 1886. Alberuni mentions Christians in his native country Khwārizm (Khuva), and in Khurāsān, and not only Nestorians, but also Mel-
kites, whilst he expressly states that he does not know the Jacobites. Cf. "Chronology of Ancient Nations," pp. 283, 4; 292, 12; 295, 22; 312, 16.

Where Alberuni learned Greek philosophy, and who introduced him to the study of Plato’s Dialogues and Leges, he does not state himself. The Arabic translations which he used, and which are tolerably correct, had passed through Syriac versions which are now no longer extant (e.g. those of Plato). Alberuni was personally acquainted and had literary connections with a man who was one of the first representatives of Greek learning in the Muslim world in that age, Abulkhair Alkhammar, and it was perhaps to him that Alberuni owed part of his classical education. Abulkhair was born a Christian in Bagdad, A.H. 942. He lived some time in Khwârzam, and migrated thence, together with Alberuni and others, to Ghazna, A.D. 1017, after Mahmud had annexed that country to his empire. He died in Ghazna during Mahmud’s reign, i.e. before A.D. 1030, and is said to have become a Muslim towards the end of his life. He was a famous physician, and wrote on medical subjects and on Greek philosophy; besides he translated the works of Greek philosophers (e.g. Theophrast) from Syriac into Arabic. Of his writings we may mention a “Book of Comparison of the Theory of the (Greek) Philosophers and of the Christians,” “Explanation of the Theory of the Ancients (i.e. Greek philosophers) regarding the Creator and regarding Laws,” “The Life of the Philosopher,” “On the θ禄η,” “On Meteorology,” &c. His pedigree points to a Persian descent. Cf. Chronologische Orientalischer Völker, Einleitung, p. xxxii., Führst, p. 111, and the work of Shahrazuri (manuscript of the Royal Library of Berlin, MSS. Orient. oct. 217, fol. 144b–146a); C. Schefer, Chrismathie Persane, p. 141.

It must be observed that Alberuni, in comparing Hindu doctrines with those of Plato, follows in the wake of Megasthenes, who says: Παραπληκουσὶ δὲ καὶ μύθους, ἄσπερ καὶ Πλάτων, περὶ τε ἀφθαρσίας ψυχῆς καὶ τῶν καθ’ ἄδου κρίσεων καὶ ἄλλα τοιαύτα (Schwanbeck, Bonn, 1846, p. 138).

P. 8. Sāṅkhya (or Sāṃkhya) and Patañjala.—The
former word is here written sāṅgu. It may be
doubtful whether the second is to be read Pāṭaṅjala or
Pāṭaṅjali. Alberuni generally says كتاب باتنجل, which
may be translated the book of (the author) Pāṭaṅjali, or
the book (which is called) Pāṭaṅjali or Pāṭaṅjala. Only
in one place, i. 68 (१०३, ५), he says صاحب كتاب باتنجل, the
author of the book of Pāṭaṅjali, where apparently
means the title of the book, not the name of the author.
The long ʼa in the Arabic writing would rather indicate the
pronunciation Pāṭaṅjala than Pāṭaṅjali, but in this respect
the transliteration is not always uniform, as sometimes
a short Indian ʼa has been rendered by a long ʼa in Arabic,
e.g. تالā tala, براهم brahman, کاندهرب gandharva,
madhya-loka, سوتالā sūtala, پارا para, پیجیانندین vijayanandin,
vasu, مهاتالā mahātala. Only in two places
the word باتنجل evidently means the author, i. 70 (१०३, २०),
and 87 (१०३, ३). The name of the author seems to have
been current also as meaning his book. Therefore, and be
cause in Sanskrit generally the name Pāṭaṅjali is quoted, I
have given the preference to the latter form of the name.

Alberuni has transferred large portions of his transla
tions of the books Śāṅkhya and Pāṭaṅjali, which he had
published at an earlier date, into the Indica.

Pp. 17–19.—In a similar way to Alberuni, the poet Mir
Khusrau discourses on classical and vernacular in his
Nūh-stipîhr. He mentions the word Sanskrit, whilst Albe
runi only speaks of Hindi (v. Elliot, “History of India,”
iii. 562, 556; also v. 570, “On the Knowledge of Sanskrit
by Muḥammadans”).

There were Hindu dragomans in the service of Maḥmūd,
both in the civil administration and in the army, large
portions of which were Hindus under Hindu officers
(Elliot, ii. 109; some fought in Karmān, Khwārizm, and
before Merw for their Muslim master, ib. ii. 130, 131).
Part of these troops were Kannara, i.e. natives of Karnā
tadesa (here i. 173).

A specimen of these interpreters is Tilak, the son of
Jai Sen (i.e. Tilaka the son of Jayasena). After having
pursued his studies in Kashmir, he became interpreter first
to Kādī Shīrāzî Bulḥasan ‘Ali, a high civil official under
Maḥmūd and Maṣʿūd (Elliot, ii. 117, 123), then to Aḥmad Ibn Ḥasan of Maimand, who was grand vizir, A.D. 1007–1025, under Maḥmūd, and a second time, 1030–1033, under Maṣʿūd, and rose afterwards to be a commanding officer in the army (Elliot, ii. 125–127). This class of men spoke and wrote Hindi (of course with Arabic characters) and Persian (perhaps also Turkish, as this language prevailed in the army), and it is probably in these circles that we must look for the origin of Urdu or Hindustāni. The first author who wrote in this language, the Dante of Muhammadan India, is one Maṣʿūd, who died a little more than a century after the death of King Maḥmūd (A.H. 525 = A.D. 1131). Cf. A. Sprenger, “Catalogue of the Arabic, Persian, and Hindustany Manuscripts of the Libraries of the King of Oudh,” Calcutta, 1854, pp. 407, 485. If we had any of the Hindi writings of those times, they would probably exhibit the same kind of Indian speech as that which is found in Alberuni’s book.

P. 18.—The bearing of the words وَسَلَّمَهُمَا بَعْرَابَ آَلِّغ (9, 14, 15), which I have translated “and must pronounce the case-endings either,” &c., is doubtful. The word ḫrdb means the process or mode of Arabising a foreign word, and refers both to consonants and vowels. An ḫrdb mashhūr would be a generally known Arabic mode of pronunciation of a word of Indian origin, an ḫrdb maʿmūl such a pronunciation of an Indian word in Arabic as is not yet known, but invented for the purpose. E.g. the Sanskrit word dvipa appears in two different forms, as dīb, ديب, which must be classed under the first head, and as dībīp, ديب، which belongs to the second class. If it is this the author means, we must observe that the former class, i.e. the class of words which had already general currency in Arabic before he wrote his Indica, is insignificantly small in comparison with the large number of words which by Alberuni were for the first time presented to a reader of Arabic (v. preface of the edition of the Arabic original, p. xxvii.).

Another meaning of the word ḫrdb is the vowel-pronunciation at the end of the words, chiefly the nouns; in fact, the case-endings. Accordingly, ḫrdb mashhūr may mean case-ending (in German, vocalischer Auslaut), as it is gene-
rally used in Hindi, e.g. किंता gilā, रुवटी revati, and 'i’rāb ma’mūl, a case-ending added to a word purposely in order to make it amenable to the rules of Arabic declension (dip-toton and triptoton), e.g. لانکى lanku = Skr. lankha, कूर gauru = Skr. Gaurī, बिंदु bindu = Skr. Vindhya. The vocalisation of these words is liable to lead us into an error. Is बिंदु an Arabic diptoton, or is its final vocal the termination of the noun in Hindi? If the former were the case, we ought also to have बिंदु in genitive and accusative, and we ought to read a caste (varna), an impure one (mleccha), a measure (māna), &c. But these forms do not occur in the manuscript, and therefore I hold the termination u to be the Indian nominative, developed out of the o of Prakrit, and still extant in Sindhi. (Cf. E. Trumpp, Die Stammbil-dung des Sindhi, "Journal of the German Oriental Society," xvi. p. 129; his "Grammar of the Sindhi Language," p. 32). The Arabic manuscript is not sufficiently accurate to enable us to form an opinion to what extent names in Alberuni’s Hindi terminated in u, but we must certainly say that this is the case in the vast majority of nouns. If we are correct in this, the term ’i’rāb ma’mūl cannot mean an artificial case-ending or one invented or added for the pur-pose, because it existed already in the Indian dialect whence Alberuni took the word.

Of the words الاحتبال لسبيتها بتغيير النطق والعلامات وتميمتها بإعراب ام ام مم وام معمل, the former half refers to the writing of the consonants (and perhaps of the Leszeichen). Accordingly the latter half ought to refer to the vowels; but ’i’rāb does not mean vowels or vocalisation; it only means the vocalisation of the final consonant of the word. Therefore I am inclined to prefer the first of the two interpretations here proposed, and to translate for in order to fix the pronunciation we must change the points (i.e. the dia-critical points of the consonants, ك, ف, &c.) and the signs (perhaps he means the Hamza, which cannot be applied to Indian sounds), and must secure its correct pronun-ciation by such a process of Arabizing as is either already in, general use or is carried out (or invented) for the pur-pose. This is an example (and there are hundreds more) of the concise style of the author, so sorely fraught with
ambiguity. Every single word is perfectly clear and certain, and still the sentence may be understood in entirely different ways.

P. 19. 3. Which in our Persian grammatical system are considered as, &c.—Literally, “Which our companions call having,” &c. Speaking of his fellow-Muslims in opposition to the Hindus, the author always says our companions, our people, not meaning national differences, Arab, Persian, or Turk, but exclusively the difference of creed.

In Sanskrit a word (a syllable) may commence with one, two, or three consonants, e.g. dvi, jyā, stri, kshveda, which is impossible in Arabic, where each syllable begins and ends with one consonant only. Alberuni’s comparison cannot, therefore, refer to Arabic.

In Persian, the rules for the beginning and end of the syllable are different. Whilst in the ancient forms of Eranian speech a syllable could commence with two consonants, as, e.g. fratama, khsapa, Neo-Persian permits only one consonant at the beginning of a syllable, fardum, shab. However, the end of a syllable may consist of two consecutive consonants, as in yāft, baksh, khushk, mard, &c. Alberuni seems to hint at these examples, and at a doctrine of certain grammarians, who are not known, to this effect, that the first of these two consonants is to be considered as having not a complete or clear vowel, but an indistinct hidden one, something like a schwa mobile of Hebrew grammar.

There is a small number of words (or syllables) in Neo-Persian which indeed commence with the two consonants خو, as, e.g. خواستن, خواهر, استخوان, خواب, خور, but they were at the author’s time pronounced as a single one, if we may judge from the metrical system of the Shāhnāma of his contemporary Firdausi, who was only a little older than himself. (Cf. similar remarks of the author, i. 138, 139.)

P. 20. Sagara.—The story of Sagara is related in Vishnu-Purāṇa, translated by Wilson-Hall, vol. iii. p. 289–295. The words فشکرت فعال آلغ وکیست بعدهم might make us think that these events happened within the recollection of the author; but this is not necessarily the case. The former words may be interpreted, “I recollect the story
of a Hindu who,” &c., i.e. “I recollect having heard the story,” &c.; and the words with which he winds up the story may mean, “I feel thankful to my fate that it was not I and my contemporaries whom he treated thus, but former generations.”

P. 21. Shamaniyya.—The Buddhists are in Arabic called by this name, which is derived from a Prakritic form of Sanskrit śramaṇa (Strabo Σαρμανά, Hieronymus Sam-anaei), and by the word المکأسة, i.e. the red-robed people (= rakṣapāta), which refers to the red-brown (= kāshāya) cloaks of the Buddhist monks. Cf. Kern, Der Buddhismus und seine Geschichte in Indien, übersetzt von H. Jacobi, Leipzig, 1882, ii. 45. See another note of our author’s on Buddhism in his “Chronology of Ancient Nations,” pp. 188, 189. It is extremely difficult, from the utter lack of historic tradition, to check the author’s statements as to the western extension of Buddhism, which certainly never reached Mosul. Before all, it will be necessary to examine how far Alberuni, when speaking of the ancient history and institutions of Eran, was under the influence of the poets of his time, Dakiki, Asadl, and Firdausi, who versified Eranian folklore for the edification of the statesmen of the Samanian and Ghaznavi empires, all of them of Eranian descent. Hearing the songs of the heroic exploits of their ancestors consoled them to a certain degree for the only too palpable fact that their nation was no longer the ruling one, but subject to another; that Arabs and Turks had successively stepped into the heritage of their ancestors.

It must be observed that the negotiators of the cities of Sindh, whom they sent to the Muslim conquerors when first attacked by them, were invariably śramaṇas (v. Albaladhuri), which seems to indicate that Sindh in those times, i.e. about A.D. 710, was Buddhistic. Cf. H. Kern, Der Buddhismus und seine Geschichte in Indien, ii. 543.

P. 21. Muḥammad Ibn Alkāsim.—The brilliant career of the conqueror of Sindh falls into the years A.D. 707–714. By Albaladhuri (p. 251), Ibn-Al’athir, and others he is called Muḥ. Ibn Alkāsim Ibn Muḥammad, not Ibn Almunabbih, as here and p. 116. When Alberuni wrote,
Islam was known in Sindh already 350 years (since A.D. 680), and was established there 320 years (since about A.D. 710). On the history of the conquest of Sindh, cf. Albaladhi's *Kitab-alfutuh*, p. r7, translated by Reinaud, "Fragments," p. 182; Elliot, History of India, i. 113.

Instead of Bahmanâ read *Bamhanâ = Brahmavanâ*.

P. 23. The words of Varahamihira are found in his *Brihat-Samhita*, translated by Kern in the "Journal of the Royal Asiatic Society," 1870, p. 441 (ii. 15): "The Greeks, indeed, are foreigners, but with them this science is in a flourishing state. Hence they are honoured as though they were Rishis; how much more then a twice-born man, if he be versed in astrology."

P. 25. Think of Socrates, &c.—The author speaks of a Socratic fate or calamity, meaning a fate like that which befell Socrates. I do not know from what particular source Alberuni and his contemporaries derived their information about the history of Greek philosophy. There is a broad stream of literary tradition on this subject in Arabic literature, but it has not yet been investigated what was its origin, whether it proceeded from one source or from several. Those men, mostly Greek heathens from Harran or Syrian Christians, who had enjoyed the Greek education of the time, not only translated Greek literature into Syriac and Arabic for the benefit of their Arab masters, but wrote also general works on the history of Greek learning and literature, probably translating and adopting for their purpose some one of the most current schoolbooks on this subject, used in the schools of Alexandria, Athens, Antioch, &c. Among authors who wrote such books, some being mere compilations of the famous sentences of Greek sages (doxographic), others having a more historic character, are Humain Ibn 'Ishâk, his son 'Ishâk Ibn Hunain, and Kustâ Ibn Lûkâ (i.e. Constans the son of Lucas). But what were the Greek works from which they took their information, and which they probably communicated to the Arabs exactly as they were? I am inclined to think that they used works of Porphyrius and Ammonius, the Greek originals of which are no longer extant.
P. 25. Jurare in verba, &c.—The Hindus consider, e.g. the sciences of astronomy and astrology as founded upon tradition, and their authors produce in their books side by side their own perhaps more advanced ideas and some silly notions of any predecessors of theirs, although they are fully aware that both are totally irreconcilable with each other. Cf. the words of Varāhamihira to this effect in Brihat Samhitā, ix. 7, and the note of his commentator Utpala to v. 32. Alberuni pronounces most energetically against this kind of scientific composition when speaking of Brahmagupta in chapter lix. on eclipses.

P. 27. Beyond all likeness and unlikeness, an expression frequent in the description of the Deity. Literally translated: things that are opposite to each other and things that are like each other. Perhaps the rhyme dīd and nīd, 'addād and 'andād, has contributed to the coining of this term. As for the idea, it may be compared with the term dvandvās in Hindu philosophy = pairs of opposites, as pleasure and pain, health and sickness. Bhagavad-Gītā, ii. 45, vii. 27; “Yoga Aphorisms of Patañjali” (edited by Rajendra Lal Mitra), ii. 48, p. 111.

P. 27. Who is the worshipped one? &c.—The greater part of this extract from Patañjali has been translated into Persian by Abulma'āli Muḥammad Ibn 'Ubaid-Allāh in his Kitāb-bayān-al-'adāyān; v. C. Schefer, Christomathie Persane, i. 138-139. يابند بعبادت او جوآن آنکه هم امیدها بدوست وهمه بیمها آلف

P. 27. Patañjali.—The book of this name used and translated by the author had the form of a conversation between two persons, simply called “the asking one,” and “the answering one,” and its subject was the search for liberation and for the union of the soul with the object of its meditation (i. 132), the emancipation of the soul from the fetters of the body (i. 8). It was a popular book of theosophy, propounding in questions and answers the doctrine of the Yoga, a theistic philosophy developed by Patañjali out of the atheistic Sāṅkhya philosophy of Kapila. Cf. J. Davies, “Hindu Philosophy,” Sāṅkhya Kārikā of Īśvara Krishna, London, 1881, p. 116. The latter is called nirīṣvāra=
not having a lord, the former sebvara—having a lord. It mostly treats of moksha (salvation) and metempsychosis. It contained not only theory, but also tales (i. 93), Haggadic elements by way of illustration.

Alberuni’s Patañjali is totally different from “The Yoga Aphorisms of Patañjali” (with the commentary of Bhoja Rājā, and an English translation by Rajendralāla Mitra, Calcutta, 1883), and, as far as I may judge, the philosophic system of the former differs in many points essentially from that of the Sūtras.

Moreover, the extracts given in the Indica stand in no relation with the commentary of Bhoja Rājā, although the commentator here and there mentions ideas which in a like or similar form occur in Alberuni’s work, both works being intended to explain the principles of the same school of philosophy.

Besides the text of Patañjali, a commentary also is mentioned and quoted (i. 232, 234, 236, 238, 248), مفسر باتينجل or مفسر باتينجل كتاب باتينجل. It is most remarkable that the extracts from this commentary are all of them not of a philosophic, but of a plainly Paurānic character, treating of cosmographic subjects, the lokes, Mount Meru, the different spheres, &c. The name of the commentator is not mentioned. If the quotations on i. 273 seq. may be considered as derived from this commentary, the author was Balabhadra. V. index i. s.v. Patañjali.

P. 29. Gītā.—The book Gītā is, according to Alberuni, a part of the book Bhārata (i.e. Mahābhārata, which term does not occur in the Indica 1), and a conversation between Vāsudeva and Arjuna (قال باسديرو لورجن). It is largely quoted in chapters relating to religion and philosophy. We have now to examine in what relation Alberuni’s Gītā stands to the well-known Bhagavad-Gītā as we have it in our time. Cf. “Hindu Philosophy,” “The Bhagavad-Gītā, or the Sacred Lay,” translated by J. Davies, London, 1882. The latter is described as a skilful union of the systems of Kapila and Patañjali with a large admixture of the prevailing Brāhmānic doctrines. Although the opinions regarding its origin differ widely, it can scarcely be denied that it is not free from having been influenced to a certain degree by

1 Cf. Alberuni on the Mahābhārata, i. 132, 133.
Christianity, and that it could not have been composed before the third Christian century. Chapter xi. gives the impression of having been modelled after a Christian apocalypse.

The quotations from the Gītā (or Song) may be divided into three classes:

(1.) Such as exhibit a close relationship with certain passages in the Bhagavad-Gītā. Parts of sentences are here and there almost identical, but nowhere whole sentences; v. i. 40, 52, 73, 74, 86, 87, 103, 104, 218 (v. note), 352; ii. 169.

(2.) Such as show a certain similarity, more in the ideas expressed than in the wording, with passages in the Bhagavad-Gītā; v. i. 29, 70, 71, 78, 79, 103, 104, 122.

(3.) Such as cannot be compared, either in idea or in wording, with any passage in the Bhagavad-Gītā; v. i. 52, 53, 54, 70, 71, 73, 74, 75, 76, 78, 79, 80, 92, 122; ii. 137, 138.

The single texts will be discussed in the notes to the places in question.

The quotations given by Alberuni cannot have been translated from the Bhagavad-Gītā in its present form. Admitting even that the translator translated as little literally and accurately as possible (and the texts of Alberuni do not give this impression), there remains a great number of passages which on no account could be derived from the present Sanskrit text, simply because they do not exist there. Or has Alberuni translated a commentary of the Bhagavad-Gītā instead of the original? The text of the extracts, as given in the Indica, is remarkably short and precise, extremely well worded, without any repetition and verbosity, and these are qualities of style which hardly point to a commentary.

Alberuni seems to have used an edition of the Bhagavad-Gītā totally different from the one which we know, and which also in India seems to be the only one known. It must have been more ancient, because the notorious Yoga elements are not found in it, and these have been recognised by the modern interpreters as interpolations of a later time. Secondly, it must have been more complete, because it exhibits a number of sentences which are not found in the Bhagavad-Gītā.
Various generations of Hindu scholars have modelled and remodelled this book, one of the most precious gems of their literature, and it seems astonishing that an edition of it which existed as late as the time of Alberuni should not have reached the nineteenth century.

As regards the quotation on this page (29), it exhibits only in the substance a distant relationship with Bhagavad-Gîtâ, x. 3: "He who knows Me as unborn and without beginning, the mighty Lord of the world, he of mortals is free from delusion, he is free from all sin."

P. 30. Sämkhya.—The book Sämkhya, as used and translated by Alberuni, had the form of a conversation between an anchorite and a sage, and it contained a treatise on the origines and a description of all created beings (i. 8), a book on divine subjects (i. 132). It was composed by Kapila. The author quotes it largely on questions of religion and philosophy. The Sämkhya philosophy of Kapila is the most ancient system of thought among the Hindus, the source of the Yoga doctrine of Patanjali. Cf. Colebrooke, "Essays," i. 239–279; J. Davies, "Hindu Philosophy," &c., p. 101 seq.

The relation between Alberuni's Sâmkhya and the so-called Sâmkhyaaparavacanam ("The Sâmkhya Aphorisms of Kapila," translated by Ballantyne, London, 1885) is a very distant one, and is limited to this, that there occurs a small number of passages which show a similarity of matter, not of form. The latter book (the Sûtras) seems to be a late secondary production; v. A. Weber, Vorlesungen über Indische Literaturgeschichte, p. 254, note 250. Besides, the philosophic system propounded by Alberuni under the name of Sâmkhya seems in various and essential points to differ from that of the Sûtras; it seems altogether to have had a totally different tendency. The Sûtras treat of the complete cessation of pain; the first one runs thus: "Well, the complete cessation of pain, (which is) of three kinds, is the complete end of man;" whilst the Sâmkhya of Alberuni teaches moksha by means of knowledge.

Next we have to compare Alberuni's Sâmkhya with the Sâmkhya Kârikâ of Ísvara Krishna (v. Colebrooke, "Essays," i. 272; J. Davies, "Hindu Philosophy," London,
1881). Both works teach moksha by means of knowledge, and contain here and there the same subject-matter. It must be observed that of those illustrative tales which Alberuni’s Sāṁkhyā gives in full length, short indications are found in the Sāṁkhyā Kārikā. Its author, Īśvara Krishna, says at the end of his book that he has written his seventy Sūtras, excluding illustrative tales. This is not quite correct, as sometimes, though he has not told them, he has at all events indicated them. His words show that he has copied from a book like the Sāṁkhyā of Alberuni, in which the tales were not only indicated, but related at full length. Cf. A. Weber, Vorlesungen über Indische Literaturgeschichte, Berlin, 1876, p. 254, note 250. Hall considers the S. Pravacanam to be younger than the S. Kārikā.

If, in the third place, we examine the Bhāshya of Gaṇḍapāda, we find that it is not identical with Alberuni’s Sāṁkhyā, but a near relative of it. Cf. the Sāṁkhyā Kārikā, &c., translated by Colebrooke, also the Bhāshya of Gaṇḍapāda, translated by H. H. Wilson, Oxford, 1837; Colebrooke, “Essays,” i. 245. Most of the quotations given by Alberuni are found only slightly differing in Gaṇḍapāda, and some agree literally, as I shall point out in the notes to the single passages. Almost all the illustrative tales mentioned by Alberuni are found in Gaṇḍapāda, being, as a rule, more extensive in Alberuni than in Gaṇḍapāda. The latter seems to have taken his information from a work near akin to, or identical with, that Sāṁkhyā book which was used by Alberuni.

According to Colebrooke (in the preface of the work just mentioned, on p. xiii.), Gaṇḍapāda was the teacher of Śāmkara Ācārya, who is said to have lived in the eighth Christian century. Cf. also A. Weber, Vorlesungen, pp. 179, 254, and 260. Alberuni does not mention Gaṇḍapāda, as far as I can see. Or is he perhaps identical with Gaṇḍa the anchorite, whom Alberuni mentions even before Kapila? Cf. the passage, i. 131–132: “Besides, the Hindus have books, &c., on the process of becoming God and seeking liberation from the world, as, e.g. the book composed by Gaṇḍa the anchorite, which goes by his name.”

Kapila, the father of the Sāṁkhyā philosophy, is mentioned by Alberuni also as the author of a book called
Nyāya-bhāṣā, "on the Veda and its interpretation, also showing that it has been created, and distinguishing within the Veda between such injunctions as are obligatory only in certain cases and those which are obligatory in general" (i. 132). The subject of this book is evidently not related to the Nyāya philosophy, but to the tenets of the Mīmāṃsā philosophy, i.e. the Purvamīmāṃsā, (Colebrooke, "Essays," i. p. 319–349; J. Davies, "Hindu Philosophy," p. 2; Thibaut, Arthasastra, Benares, 1882), a system of rules which are applied to the text of the Veda and its sacrificial prescriptions.

P. 31. The anthropomorphic doctrines, the teachings of the Jabriyya sect, &c.—The sect called Jabriyya, Jabariyya, and Mujbara teaches that the actions of man proceed from God. They are the followers of Al-najjar. Cf. Fihrist, p. 179 seq.

I understand the passage (10, 11, 12) as meaning the prohibition of the study (not discussion, as I have translated, which would be the manaṭa) of a subject, i.e. a question of a religious bearing; but I am not aware what particular event the author hints at by these words. At the intolerant religious policy of the Khalif Alkādir? King Mahmūd was a great Ketzerrichter. Probably a stout adherent of the theory of the harmony of throne and altar, which his contemporaries Al-ʿUtbī (in his preface) and Alberuni (i. 99) call twins, he tried to cover the illegitimate, revolutionary origin of his dynasty, which was still fresh in the memory of the men of the time; he maintained the most loyal relations with the spiritual head of Islam, the Khalif of Bagdad, Alkādir (A.H. 381–422), who had clad the usurpation of his family with the mantle of legitimacy; and in order to please him, he hunted down the heretics in his realm in Khurasan as in Multān (cf. Reynolds, I. I., p. 438 seq.), impaling or stoning them. He tried to rid
the Khalif of the real or suspected votaries of his opponent, the Anti-Khalif in Egypt, the famous Ḥākim, famous by his madness and by being considered by the Druzes as the originator of their creed. The religious policy of Mahmūd may be retraced to the following principles:

(1.) Perfect toleration for the Hindus at his court and in his army.

(2.) Persecution of certain Muslim sectarians in the interest of the Khalif, of the Karmatians and other sects of Shiitie tendencies. *Cf.* A. von Kremer, *Geschichte der herschenden Ideen des Islam*, Leipzig, 1868, p. 127.)

(3.) Predilection for a Muslim sectarian from Sijistān by the name of Abū-ʿAbdillāh Ibn Alkīrām, by whose influence both Sunnites and Shiites had to suffer (*cf.* Alshahrastānī, p. ʾ). How long the influence of this man had lasted, and how far his doctrines had been carried into practice, does not appear from Alshahrastānī’s account.

That, notwithstanding all this, there was a large margin for liberty of religious thought under the rule of Mahmūd and his immediate successor, is sufficiently illustrated by the tenor of Alberuni’s work. Altogether, it must be kept in mind that before Alghazzâli the Muslim Church was not that concentrated organisation nor that all-overwhelming force which it has been ever since and keeps up in our days. To those who only know the centuries of Muslim history after the establishment of the orthodox Church, it sounds next to incredible that the military chief of a Khalif should have been an infidel (a Zoroastrian?) *Cf.* the story of Afshin, the general of the Khalif Almu’tasim, in *Menoutchetri, Poëte Persan*, par A. de Biberstein. Kazimirski, p. 149.

P. 33. τὸ καρδίαν.—The word *kardía*, which I have thus rendered, means *to be hidden*. Not knowing to what school of Greek philosophers the author refers, I can only give the note of Reiske, “*Αἱς καρδίας*, Philosophi qui omnes animas simul et semel creatas et recessitas in Adamo putant” (*Freytag, Lexicon Arabicum*, s.h.v.).

P. 33. Παλαισόπα, &c.—As Syrian scholars were the author’s teachers in Greek philosophy, he knows the Greek word *φιλόσοφος* only in its Syrian garb *ΦΙΛΟΣΟΦΟΣ*.
The *Ahl-asṣufla* were certain persons, poor refugees and houseless men, who during the first years of Muhammad's stay in Medina passed the night in the *ṣufla* of the mosque of the Prophet in Medina, which was a covered place, an appurtenance of the mosque, roofed over with palm-sticks (Lane).

Aḥsāf al Albustī was a famous poet of the time. A native of Bust in Northern Afghanistan, he was in the service of the governor, who held the place under the Sāmānī dynasty, and after the conquest of Bust by Sabuktagin he entered the service of this prince and of his son Maḥmūd. Under Maṣūd he lived still in Ghazna, for Baihaki mentions that he had fallen into disgrace and had to carry water for the royal stables. By the intervention of Baihaki, he was restored into the good graces of the prime minister, Aḥmad Ibn Ḥasan of Maimand. Cf. Elliot, "History of India, ii. 82, 84, iv. 161; Ethé, *Rüdayn’s Vorläufer und Zeitgenossen*, p. 55. According to Ḥāji Khalīfa (iii. 257, iv. 533), he died A.H. 430 (A.D. 1039). For further information see Shahrazūrī, *Nuṣhat-āl’arwāh*, fol. 182b (MS. of the Royal Library, Berlin, MSS. Orient. octav. 217); Al-Baihaki, *Tatimmat-ṣuwān-alḥikma*, fol. 22b (MS. of the same library, Petermann, ii. 737); also *Mirchondi Historia Gasnevidarum Persica*, by F. Wilken, Berlin, 1832, p. 144. Towards the end of his life he is said to have travelled with an embassy of the Khākān of Transoxiana to that country, and to have died there.

P. 34. *Galenus.*—The author quotes the following works of Galenus:—

1.) λόγος προτρεπτικός.

2.) A commentary to the aphorisms of Hippokrates, a book which I do not know the Greek original (cf. i. 35, ii. 168).

3.) كتاب المياهم (from the Syriac ܐܪܡܝܐ)=*περὶ συνθέσεως φαρμάκων τῶν κατὰ τόπους*.

4.) كتاب البرهان = *the book of the proof*, of which I do not know the Greek original; cf. i. 97.

5.) اَلَعِيَانِ النِّفَسِ = *de inolde animae (περὶ ἤθων ?)*, of which the Greek original likewise is not known to me; cf. i. 123, 124.

6.) كتاب قالماجانيس = *περὶ συνθέσεως φαρμάκων κατὰ γείη*.
Besides, the author gives some quotations from Galenus without mentioning from what particular book they were taken; cf. i. 222, 320. Cf. on Galen's works in Arabic Dr. Klamroth, "Journal of the German Oriental Society," vol. xl. 189 seq.

The passage here given is found in Προτρεπτικός ἐπὶ τὰς τέχνας, ed. Abrah. Willet, Lugduni Bat., 1812, chap. ix. pp. 29, 30:—ός καὶ τῶν ἀνθρώπων τοὺς ἀρίστους θεῖας ἀξιωθήναι τιμῆς, οὐχ ὅτι καλῶς ἔδραμον ἐν τοῖς ἁγώνιν ἢ δίσκοιν ἔρριψαν ἢ διεπάλαισαν· ἀλλὰ διὰ τὴν ἀπὸ τῶν τεχνῶν ἐπορευσίαν. Ἀσκληπίως γέ τοι καὶ Διόνυσος εἴτε ἀνθρώποι πρότερον ἤστην εἴτε ἄρχηθεν, τιμῶν οὐξιουσίας μεγίστων, ὅ μὲν διὰ τὴν ιατρικὴν, ὁ δὲ διὰ τὴν περὶ τῶν ἀμπέλους ἡμᾶς τέχνην ἐδίδαξεν.

The two passages on p. 36 are probably taken from the Protrepticus too. With the former compare the words in chap. ix. (on p. 22 editio Kühn, vol. i.): Ἐι δ’ οὐκ ἐθέλεις ἐμοὶ πείθεσθαι, τῶν γε θέων αἰδεύσῃ τὸν Πύθιον.

Shortly afterwards follows the second quotation, verses quoted by Galen from Herodotus, i. 65:

"Ἡκεῖς, ὁ Λυκόεργε, ἐμὸν ποτὲ πίονα νην.
Δίξο ἡ σε θεόν μαντεύσομαι ἢ ἀνθρώπων,
ἀλλ’ ἐτὶ καὶ μᾶλλον θεόν ἐλπομαι, ὁ Λυκόεργε.

P. 35. Plato.—The author quotes the following works of Plato:—

1. Phædo.
2. Timæus (cf. also Proclus).
3. Leges.

Of the three quotations on this passage, the middle one is found in Timæus, 41Λ:—'Επει δ’ οὐν πάντες κ. τ. λ., λέγει πρὸς αὐτούς ὅ τὸ δέ το πάν γενήσαι τάδε: θεοὶ θεῶν κ. τ. λ., ἀδάνατοι μὲν οὐκ ἔστε οὐδ’ ἀληθεῖα τὸ πάμπαν οὔτε μὲν δὴ λυθήσεσθε γε οὐδ’ τεῦξεσθε βανᾶτον μοῖρας, τῆς ἐμῆς βουλήσεως μείζονος ἐτί δεισμὸν καὶ κυριωτέρου λαχὼντες ἑκείνων οἶς ὅτ’ ἐγγυνόμεθα ἐξεδείσχον.

The first and third quotations are not found in the Greek text, and Ed. Zeller, to whom I applied for help, thinks that both are taken from a commentary on Timæus by some Christian author, as e.g. Johannes Philoponus, the former having been derived from 40Ω (περὶ δὲ τῶν ἀλλων.
The index of the works of Johannes Philoponus or Scholasticus (Steinschneider, Al-Fārābī, p. 152 seq.) does not mention a commentary on Timæus, if it is not concealed under the title of one of his books, i.e. on existing and perishing. As he was a literary opponent of Nestorius, he seems to have been a strict Monophysite, which would be in keeping with the third quotation, “God is in the single number,” &c. Cf. the note to pp. 56, 57.

P. 36. Johannes Grammaticus (identical with J. Philoponus and Scholasticus) is five times quoted. There are three extracts from his Refutatio Procli, and two more, the origin of which is not mentioned, but probably taken from the same book. The passage here mentioned is found in Ioannis Grammatici Philoponi Alexandrini contra Proclum de Mundi aeternitate, libri xviii., Venetis, 1551, Greek and Latin, in the 18th λόγος, chap. ix. (there is no pagination; cf. the Latin translation, p. 95):

μὴ δὲ γὰρ εἰδέναι πώς ἐκεῖνος ἄλλο τι θεόν πλήν τῶν φανομένων σωμάτων ἥλιον καὶ σελήνης καὶ τῶν λυπῶν, ὅσπερ καὶ μέχρι νῦν τῶν βαρβάρων ύπολαμβάνειν τοὺς πλείστους. ὕστερον δὲ φησίν εἰς εὐνοιαν καὶ τῶν ἄλλων θεῶν τῶν ἀσωμάτων ἐλληνας ἐλθόνται, τῶ αὐτῷ κάκεινος προσαγορεύεται οὖν μάτι.

I have not succeeded in identifying the other four quotations, i. 65, 226, 231, 284. Cf. on this author, Fihrist, p. 254, and Dr. Steinschneider, Al-Fārābī, pp. 152, 162.

P. 37. Baal.—The form of the word בָאָל (Syriac בָאָל) shows that the Arabic Bible-text which Alberuni used had been translated from Syriac.

P. 40. Gillā.—Cf. with these words the Bhagavad-Gītā (of J. Davies), xv. 14, 15:

“Entering into the earth, I sustain all things by my vital force, and becoming a savoury juice, I nourish all herbs (v. 14).

“I become fire, and enter into the bodies of all that breathe, &c. And I am seated in the hearts of all: from
Me come memory, knowledge, and the power of reason,” &c. (v. 15).
Davies supposes the whole of verse 15 to be an interpolation, but this remark must, as it seems, be limited to the final sentence of verse 15 only, i.e. to the words: “I form the Vedânta, and I am one who knows the Vedas.”

P. 40. Apollonius.—A Greek book of Apollonius of Tyana of this title is not known to me, but it exists in Arabic, كتاب في العلل (Liber de Causis), in the library of Leyden, cf. Wenrich, De Auctorum Graecorum Versionibus et Commentariis Syriacus, Arabice, &c., p. 239.

Pp. 40–44.—The Sâmkhya doctrine of the twenty-five tattvas is found in the commentary of Gaudapâda to the Sâmkhya Kârikâ of Îsvara Krishña, where also the saying of Vyâsa (here i. 44 and 104) is found. Cf. the translation of H. H. Wilson, p. 79, i. 14.

P. 40. Buddha, dharma, svâgha.—This note on the Buddhistic trinity probably rests on the authority of Zurkân, as he was quoted in the book of Erânshahri: cf. note to pp. 6, 7. It shows that Alberuni had no original information regarding Buddhism, and it justifies his harsh judgment on the worth of the tradition of Zurkân, v. i. 7.
The name Buddhodana is nothing, and by mistake derived from Sudhodana, the name of Buddha’s father. Perhaps Zurkân had read not سرهودن but بهودن, which would be Saudhodani, i.e. the son of Sudhodana or Buddha.

P. 41. Váyu Purâṇa.—Of the Purânas the author had the Aditya, Matsya, and Váyu Purânas, i.e. only portions of them (i. 130), and probably the whole of Vishnu-Purâna. Most of his Pauranic quotations are taken from Váyu, Vishnu, and Matsya Purânas. Cf. on the Purânas, A. Weber, Vorlesungen, p. 206, and note 206 on p. 208.

P. 42.—The five mothers are a blunder of the author’s instead of the five measures, i.e. pañcamâtrâni (pañcatan-mâtrâni).
The combination between the senses and the elements, as it is given here and on p. 43, also occurs in the Vaiśe-
shika—philosophy of Kañāda: cf. Colebrooke, "Essays," i. 293 seq. Compare also Vishnu-Purāṇa, i. 2, p. 35, and Hall’s note i. There are similar elements in the philosophy of the Baudhāyas or Saugatas: v. Colebrooke, l.c. i. 416, 417.

P. 42. The quotation from Homer is not found in the Greek text, nor do I know the Greek original of the second verse. Were they taken from some Neo-Pythagorean book?

P. 43. Porphyry.—This is the only quotation from Porphyry, from a book of his which is not extant in the Greek original. According to Wenrich, l.c. p. 287, there has once been in Syriac a translation of the fourth book of a Liber Historiarum Philosophorum, probably identical with the work here mentioned. The note on the Milky Way (i. 281) is perhaps taken from this same source.

P. 43. Lacuna.—In the Arabic text (r, 15) is missing the relation between the hearing and the air, the complement to the words hearing airy in l. 14.

P. 43. Plato.—As the author does not mention the source whence he took these words, I conjecture that they were derived from Timæus, 77, A, B, or from some commentary on this passage: cf. note to p. 35.

P. 45. Matres simplices.—Cf. note to p. 42. On the Sāṁkhya theory regarding the union of soul and matter, cf. Sāṁkhya Kārikā, vv. 20, 21, 42, and Gauḍapāda’s Bhāṣṭya.

P. 47. Dancing-girl.—This example is likewise found in Gaudapāda, p. 170 (Bhāṣṭya to v. 59 of the Sāṁkhya Kārikā); that of the blind and the lame on p. 76 (to v. 21).

P. 48. Māṇi.—Vide note to pp. 7, 8.

P. 48. The book of Sāṁkhya, &c.—The theory of predominance among the three primary forces (guna), v. in Gaudapāda, pp. 92, 93, to v. 25, p. 49 to v. 12; the com-
parison of the soul with a spectator on p. 72 to v. 19 (also Bhagavad-Gītā, xiv. 23); the story of the innocent among the robbers on p. 74 to v. 20.

P. 49. The soul is in matter, &c.—The soul compared to a charioteer, v. in Gaudapāda, p. 66 to v. 17.

Pp. 52–54. Vāsudeva speaks to Arjuna, &c.—Of these quotations from Gītā, compare the passage, “Eternity is common to both of us, &c., whilst they were concealed from you,” with Bhagavad-Gītā, iv. 5: “Many have been in past time the births of me, and of thee also, Arjuna. All these I know, but thou knowest them not, O slayer of foes!”

Of the other quotations on these two pages, I do not see how they could be compared with any passage in Bhagavad-Gītā, except for the general tenor of the ideas. With the phrase, “For he loves God and God loves him,” cf. Bhagavad-Gītā, xii. 14–20, “Who worships me is dear to me.”

P. 54. Vishnu-Dharma.—Alberuni gives large quotations from this book. He speaks of it i. 132, and translates the title as the religion of God.

I do not know the Sanskrit original of the book, for it is totally different from the Vishnu-Smṛiti, or Vishnu-Sūtra, or Vaishnavā Dharmaśāstra, translated by J. Jolly ("The Institutes of Vishnu," Oxford, 1880), a law-book in a hundred chapters, similar to those of Āpastamba, Yājnavalkya, Vasishtha, the Grihyasūtras, &c. Our Vishnu-Dharma is a sort of Purāṇa, full of those legends and notions characteristic of the literature of Purāṇas; but the author does not assign it to them. Most of the extracts here given are conversations between the sage Mārkaṇḍeya and Vajra, others a conversation between the king Parikṣha and the sage Śatānika. The extracts treat of mythological subjects (i. 54); the twelve suns (i. 216, 217); the pole (i. 241); the planets and fixed stars (i. 287, 288); star-legends (i. 291); the story of Hiranyākṣa (ii. 140); the names of the Manvantaras (i. 387); the dominants of the planets (ii. 121); in particular, of chronological and astronomical subjects. The author has taken several series of names from the Vishnu-Dharma. He
seems to quote it sometimes without mentioning its title. So, e.g. I am inclined to attribute the traditions of Śaunaka (i. 113, 126) to this book. The quotation (ii. 398) on Vāsudeva, Saṁkarṣaṇa, Pradyumna, and Aniruddha, as the names of Hari in the four Yogas, is found likewise among the doctrines of the Vaishñava sect, the Pāñcarātras, or Bhāgavatas: cf. Colebrooke, "Essays," i. 439, 440. Viśiñu is the chief god of those Hindus with whom Alberuni held relation. Were they Vaishñava sects, and was the Viśiñu-Dharma a special code of theirs? On the heterodox sect of Viṣṇu or Vāsudeva worshippers just mentioned, cf. Colebrooke, i.e. pp. 437-443.

Colebrooke mentions a book, Viṣṇu-Dharmottara-Purāṇa, which is said to have comprehended the Brahma-siddhānta of Brahmagupta: cf. "Essays," ii. 348. This work is perhaps identical with the Viṣṇu-Dharma used by Alberuni. As he had a copy of the Brahma-siddhānta, he had it perhaps as a portion of this larger work.

P. 54. Lakshmi, who produced the Amrita.—For the legend of Lakṣmi v. Viṣṇu-Purāṇa, i. 9, where it is Dhanvantari who brings the Amrita-cup, not Lakshmi. Apparently this goddess is meant here, and not Lakṣmanā, as the manuscript has it, the brother of Rāma. When Alberuni wrote this, he seems to have mistaken Lakshmi for a masculine being, or else we must write &lt;\&gt; in the text rv, 3, instead of &lt;\&gt;.

The Arabic hand’a (=aisance, félicité) is an attempt of Alberuni’s to translate the Sanskrit amrita=ambrosia, which scarcely any one of his readers will have understood. Cf. the Arabic text, i, 6 (here i. 253).

P. 54. Daksha, who was beaten by Mahādeva.—Cf. the story of the destruction of Daksha’s sacrifice by order of Śiva, as communicated by Hall in his edition of Wilson’s Viṣṇu-Purāṇa as appendix to i. viii. p. 120 seq. (Sacrifice of Daksha, from the Vāyu-Purāṇa).

P. 54. Varāhamihira.—Of this author Alberuni quotes the following works:
(1) Brihatsamhitā.
(2) Brihajjātakam, i. 158, 219, 220, ii. 118.
ANNOTATIONS. 277

(3.) Laghujātakam, i. 158.
(4.) Pañcasiddhāntikā, i. 153, ii. 7, 190.

Books of the same author, which Alberuni mentions without giving extracts from them, are Shatpañcāsikā and गृह व्यवस्था (?), both with astrological contents (i. 158). Perhaps the two books called Yogayāstrā and Tikani (?)-yāstrā (i. 158) are also to be attributed to Varāhamihira. Besides there are mentioned several commentaries, one of the Brīhatsaṁhitā by Utpala, from Kashmir (i. 298), and one of the Brīhajjātakam by Balabhadra.

One of the sources whence Alberuni has drawn most copiously is the Brīhatsaṁhitā, or, as he calls it, the Saṁhitā: v. the edition of the Sanskrit original by Dr. Kern, Calcutta, 1865, and his translation in the "Journal of the Royal Asiatic Society" for the years 1870, 1871, 1873, 1875. Alberuni praises Varāhamihira as an honest man of science (i. 366), and maintains that he lived 526 years before his own time, which is A.D. 1030. Accordingly, the date of Varāhamihira would be A.D. 504. Cf. ii. 86.

In the preface to the edition, p. 61, Kern mentions the Shatpañcāsikā and the Yogayāstrā. Both the Brīhatsaṁhitā and Laghujātakam had been translated into Arabic by Alberuni.

The passage here (p. 54) quoted is found in chap. iii. v. 13-15 ("Journal of the Royal Asiatic Society," 1870, p. 446).

P. 54. Mānī.—Vide note to pp. 7, 8.

P. 55. Patānjali.—Vide note to p. 27.

Pp. 56, 57. Phaedo.—The two quotations from Phaedo are the following:—

70C. παλαιός μὲν οὖν ἐστὶ λόγος, οὐ μεμνήμεθα, ὡς εἰσὶν ἐνθένδε ἀφικόμεναι ἐκεῖ, καὶ πάλιν γε δεύτερο ἀφικνοῦνται καὶ γίγνονται ἐκ τῶν πεθνευτῶν, καὶ εἰ τούθ᾽ οὕτως ἔχει, πάλιν γίγνεσθαι ἐκ τῶν ἀποθανόντων τοῦ ξώντας, ἀλλά τι ἡ ἔξεν ἂν αἱ ψυχαὶ ἡμῶν ἐκεῖ, κ.τ.λ.

ἀρ᾽ οὔτωσι γίγνεται πάντα, οὐκ ἀλλοθεν ἡ ἐκ τῶν ἐναντίων τὰ ἐναντία, κ.τ.λ.

The sentences which in the Arabic follow after these
words ("Our souls lead an existence of their own," &c.)
cannot be combined with the Greek text, and I suppose
they were taken from some commentary.

The second quotation is found

72E. ὅτι ἡ μάθησις οὐκ ἄλλο τι ἢ ἀνάμνησις τύγχανεν
οὔσα, καὶ κατὰ τοῦτοι ἀνάγκη ποιοῦ ἡμᾶς ἐν προτέρῳ τινὶ
χρόνῳ μεμαθηκέναι ἃ νῦν ἀναμμηνεύομεθα. τοῦτο δὲ ἄδονα-
tον, εἰ μὴ ἢν ποὺ ἡμῶν ἢ ψυχῇ, πρὶν ἐν τῷ ἄνθρω-
πίνῳ εἶδει εἶναι, κ.τ.λ.

73D. οὐκοῦν οἰσθα ὅτι οἱ ἔρασται, ὅταν ἔδωκεν λύραν ἢ
ἰματιόν ἢ ἄλλο τι, οἷς τὰ παιδικὰ αὐτῶν ἐκωθε χρήσθαι,
pάγοντο τοῦτο. ἐγγοναί τε τὴν λύραν καὶ ἐν τῇ διανοίᾳ
ἐλαβον τὸ εἴδος τοῦ παιδός, οὐ ἢν ἢ λύρα; τοῦτο δὲ ἐστὶν
ἀνάμνησις.

In some sentences the Arabic and Greek texts agree
literally; in others they differ to such an extent that this
extract, too, does not seem to be taken from a simple trans-
lation of the text of Phædo, but rather from a work in
which text and commentary were mixed together, and the
original form of a dialogue was changed into that of a
simple relation. Alberuni erroneously held this to be the
original form of the book. We have arrived at a similar
result in the case of Plato’s Timæus.

Proclus has composed a commentary on the saying of
Plato that the soul is immortal, in three sections: v. Wen-
rich, De Auctorum Graecorum Versionibus, &c., p. 288; and
Zeller, Philosophie der Griechen, iii. 6, 780, i. This was
probably an Arabic edition of Phædo, and possibly that
one which Alberuni used. Cf. note to p. 35.

The quotations from Phædo given farther on (pp. 65–67)
agree more accurately with the Greek original, but in
them, too, the dialogistic form has disappeared.

P. 57. Proclus is twice quoted, here and i. 86. Both
extracts seem to be derived from some commentary on
Timæus, which was different from that commentary known
in our time and edited by Schneider, Breslau, 1887. The
words here mentioned probably refer to Timæus, 44.αβ.:—
cαὶ διὰ ἐκ ταύτα πάντα τὰ παθήματα νῦν κατ’ ἀρχὰς τε
ὕπος ψυχῆ γύρευται τὸ πρῶτον, ὅταν εἰς σώμα εἰνεδήθη θυν-
tον κ.τ.λ. χωλὴν τοῦ βίου διαπορεύεσθαι ςωῆν, ἀτελῆς καὶ
ἀνόητος εἰς Αἰδοῦ πάλιν ἐρχεται.
The commentary of Proclus referring to these words (pp. 842, 843, ed. Schneider) is entirely different from the Arabic words.

The other quotation (i. 86) is derived from the same book, and refers to *Timeus*, 44D:—εἰς σφαιροειδὲς σῶμα ἐνέδησαν, τούτῳ δὲ νῦν κεφαλὴν ἐπονομάζομεν, διειστάνει τ' ἵστι καὶ τῶν ἐν ἡμῖν πάντων δεσποτῶν, κτλ.

The commentary of Proclus (ed. Schneider) breaks off a little before this passage, at the beginning of 44D.

I am inclined to believe that the work, simply introduced by "Proclus says," is identical with that one which he calls *Timeus* (cf. note to page 35), a work which was—

1. Not a simple translation of the book, but a translation and a commentary together, the one running into the other; and which

2. Was different from the now extant commentary of *Timeus* by Proclus. Therefore Proclus must either have made two editions of *Timeus*, or he is not really the author of the book used by Alberuni. In the one place the name is written بروتلس, in the other بروتلس.

? 57.—The seat (الكرسي) and the throne (العرش) of God. By these two words Muḥammad calls the throne of God in the Koran, Allah's sitting on his throne, as mentioned in the Koran, has been a subject of deep speculation among Muslim theologians. *Cf. Zur Geschichte Abulhasan Al-Asari's*, von W. Spitta, Leipzig, 1876, pp. 106, 107, and the note on p. 144.

P. 60. *Vishnu-Purāṇa.*—The passage is found in Book II chap. vi. (Wilson-Hall, ii. p. 216). The order in which the hells are enumerated and their names differ to some extent:

<table>
<thead>
<tr>
<th>Alberuni</th>
<th>Sanskrit original</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raurava</td>
<td>Raurava</td>
</tr>
<tr>
<td>Rodha</td>
<td>Rodha</td>
</tr>
<tr>
<td>Taptakumbha</td>
<td>Taptakumbha</td>
</tr>
<tr>
<td>Mahájávala</td>
<td>Mahájávala</td>
</tr>
<tr>
<td>5. Savala</td>
<td>Taptaloha</td>
</tr>
<tr>
<td>Krimśāa</td>
<td>Mahájávala</td>
</tr>
<tr>
<td>Lálabhaksha</td>
<td>Lavanya</td>
</tr>
<tr>
<td>Viśasana</td>
<td>Vimohāa</td>
</tr>
<tr>
<td>Adhomukha</td>
<td>10. Krimśībhaksha</td>
</tr>
<tr>
<td>10. Rudhirāndha</td>
<td></td>
</tr>
</tbody>
</table>

P. 63. Ātivāhika.—On the ātivāhika = that which is swifter than the wind in passing from body to body, cf. Sāṁkhyā Kārikā, ed. Colebrooke-Wilson, p. 133.

The Barzakh is mentioned in the Koran, 23, 102; 15, 55; 55, 20.

P. 63. Vishnu-Purāṇa.—This quotation is related in substance to Book II, chap. vi, pp. 221–224: cf. the uninterrupted thinking (sāṁsmarāna) with the remembrance of Hari, the meditation on Vāsudeva. Are the words of Alberuni an extract from this passage?

P. 64. Sāṁkhyā.—The S. Kārikā and Gauḍapāda do not seem to offer anything analogous to this passage.

P. 64.—A theosoph, &c.—The passage relating to the four degrees of metempsychosis has been translated into Persian by Abūlma’ālī Muḥammad Ibn ‘Ubaid-Allāh in his Bayān al’adyān: v. C. Schefter, Chrestomathie Persane, i. 28, l. 3–8.

Abū-Ya’kūb and his work are not known to me from other sources.

P. 65. Johannes Grammaticus.—Vide note to p. 36.

Phædo.—The quotations on pp. 65–67 agree pretty accurately with the Greek text.
The body is earthy, &c., 81 c, d:—

Ἐμβριθὲς δὲ γε, ὁ φίλε, τοῦτο οἴεσθαι χρῆ εἶναι καὶ βαρὺ καὶ γεώδες καὶ ὀρατὸν: ὡδὴ καὶ ἔχουσα ἡ τοιαύτη ψυχὴ βαρύνεται τε καὶ ἐλκεται πάλιν εἰς τὸν ὀρατὸν τόπον φόβῳ τοῦ αἰῶνος τε καὶ "Δίδου, ὡσπερ λέγεται, περὶ τὰ μνήματα τε καὶ τοὺς τάφους κυλινδομένη, περὶ ὧν καὶ ὀφθη ἀπ’ ῥαγχής σκιωπείδης φαντάσματα, οἷα παρέχονται αἱ τοιαῦται ψυχαὶ εἰδώλα αἱ μὴ καθαρὰς ἀπολυθεῖσαι, ἀλλὰ καὶ τοῦ ὀρατοῦ μετέχουσαι, διὸ καὶ ὀρῶνται.

It appears that these are not the souls, &c., 81d–82a:—

Εἰκὸς μέντοι, ὁ Κέβης· καὶ ὃς τί γε τᾶς τῶν ἀγαθῶν παύτας εἶναι, ἀλλὰ τὰς τῶν φαύλως, αἱ περὶ τὰ τοιαῦτα ἀναγκαῖονται πλακαδόησαι δύσην τίνουσι τῆς προτέρας τροφῆς καὶ ὡς οὔσης καὶ μέχρι γε τοῦτο πλακαδόνται, εἰς ἀν τῇ ξυνεπαξιολοθοῦντος τοῦ σωματοειδοῦς ἐπιθυμία πάλιν ἐνέδρασιν εἰς σῶμα.

Ἐνδοῦνται δὲ, ὡσπερ εἰκὸς, εἰς τοιαῦτα ἢθη ὑπὸ άττ’ ἀν καὶ μεμελητκύαι τύχωσιν εἴν τῷ βίῳ. Τὰ ποιὰ ὑδατα λέγεις, ὁ Σώκρατες; Οἶδον τοὺς μὲν γαστριμαργίας τε καὶ ὑβρεῖς καὶ φιλοτοσίας μεμελητκότας καὶ μὴ διευλαβημένους εἰς τὰ τῶν ὄνων γένε καὶ τῶν τοιούτων θηρίων εἰκὸς εὐνυθεῖς· ἦν οὐκ οὐίς; πάνι μὲν οὖν εἰκὸς λέγεις. Τοὺς δὲ γε ἀδικίας τε καὶ τυραννίδας καὶ ἄρπαγάς προτετιμηκότας εἰς τὰ τῶν λύκων τε καὶ ἱεράκων καὶ ἱκτίνων γένε.

If I did not think that I am going, &c., 63b:—

eἰ μὲν μὴ φημὴν ἦξειν πρῶτον μὲν παρὰ θεοῦς ἄλλους σοφοὺς τε καὶ ἀγαθοὺς, ἕπειτα καὶ παρ’ ἄνθρωπος τετελευτηκότας ἀμείνους τῶν εἴθαδε, ἥκουν ἐν οὐκ ἀγανακτῶν τῷ θανάτῳ.

P. 66. When a man dies, a daimon, &c., 107d, 108c:—

λέγεται δὲ οὕτως, ὡς ἄρα τελευτήσαντα ἐκατον ὁ ἐκαστὸν δαίμων, ὡσπερ Ὑμώνα τοιαύτα εἰλήξας, οὕτως ἀγεν ἐπιχειρεῖ εἰς ὁ τοια τόπον, οἱ δὲ τοὺς συλλεγέντας διαδυκασάμενους εἰς "Δίδου πορεύεσθαι μετὰ ἡγεμόνος ἐκείνου, ὁ δὲ προστε-
τάκται τοὺς ἑνθένδε ἐκείστε πορεύεσθαι. τυχόντας δ’ ἐκεῖ, ὁπεὶ τυχεῖν, καὶ μεινάντας ὅν χρῆ χρόνον, ἄλλος ὑδρο χάλιν ἡγεμών κομίζει ἐν πολλαῖς χρόνοι καὶ μακραῖς περιόδοις. ἔστι δὲ ἄρα ἡ πορεία ὑπὸ ὧς ὁ Ἁἰσχύλος Τῆλεφος λέγει ἐκείνος μὲν γὰρ ἀπλὴν οἰμὸν φήσιν εἰς Ἁρών φέρειν, ὅ δ’ οὔτε ἀπλὴ οὔτε μιᾷ φαίνεσθαι μοι ἢνω. οὐδὲ γὰρ ἂν ἡγεμόνων ἐδεί, οὐ γὰρ ποὺ τις ἄν διαμάρτητι αὐτοῖσι μιᾶς οὐδοῦ οὐσίας. ὃν δὲ ἐστικε σχέσεις δὲ καὶ περιόδους πολλὰς ἔχειν· ἀπὸ τῶν ὄσιόν τε καὶ νομίμων τῶν ἑνθάδε τεκμιρομένους λέγω. ἡ μὲν κοσμία τε καὶ φρόνιμος ψυχή ἔσται τε καὶ οὐκ ἀγνοεῖ τὰ παρόντα· ἢ δ’ ἐπιθυμητικῶς τοῦ σώματος ἐχοὺσα, ὁπερ εἰς τὸ ἐμπροσθὲν ἐηπον, περὶ ἐκείνο πολὺν χρόνον ἐπτομένη καὶ περὶ τὸν ὀρατὸν τότον πολλὰ ἀντιτίθενται καὶ πολλὰ παθοῦσα βία καὶ μόγις υπὸ τοῦ προστεταγμένου δαιμόνιον ὅχθεται ἄγο- μενη. ἀφυκωμένη δὲ οὖθεν καὶ ἅλλα, τὴν μὲν ἀκαθαρτὸν καὶ τι πεποιηκιναί τοιοῦτον, ἡ φόνων ἀδίκων ἡμένην ἡ ἄλλ’ ἀττα τοιαύτα εἰργασμένη, ἡ τούτων ἀδελφὰ τε καὶ ἀδελφὸν ψυχὸν ἔγγα τόγχανε ὅντα, ταύτην μὲν ἄπασ φεύγει τε καὶ ὑπεκτέεται καὶ οὔτε ἐνεμπόροις οὔτε ἡγεμών ἔθελε γίγνεσθαι. αὐτὴ δὲ πλανᾶται εἰς πάση ἐκχομενή ἀπορία, ἣν δὴ τινες χρόνοι γένονται, ὅν ἔλθοντων ὑπ’ ἀνάγκης φέρεται εἰς τὴν αὐτὴν πρέπουσαν οἰκίσσαν· ὡς δὲ καθαρῶς τε καὶ μετρίως τὸν βίον διεξάγοντα καὶ ἐνεμπόροις καὶ ἡγεμόνων θεὸν τυχοῦσα ἠκριβεῖ τὸν αὐτὴ ἐκάστη τότον προσήκοντα.

Those of the dead who led a middle sort of life, &c., and Those who repented of their sins, &c., 113D-114C:—

καὶ οἱ μὲν ἃν δοξῆσθαι μέσος βεβιωκέναι, πορευθόντες ἐπὶ τὸν Ἀχέροντα, ἀναβάσται ὡς ἄντως ὁχήματι ἐστίν, ἐπὶ τούτων ἀφικνοῦνται εἰς τὴν λίμνην, καὶ ἐκεῖ οἰκούσι τε καὶ καθαρόμενοι τῶν τε ἀδικημάτων ὄδιστος ὄικας ἀπολύσονται, εἰ τίς τι ἠδίκησεν, τῶν τε ἐνεργεσιῶν τιμᾶ φέρονται κατὰ τὴν ἀζίαν ἐκάστως. οἱ δ’ ἃν δοξῆσθαν ἀνάστος ἔχειν διὰ τὰ μεγέθη τῶν ἀμαρτήματων, ἱεροσυλίας πολλὰς καὶ μεγάλας ἡ φόνως ἀδίκους καὶ παρανόμους
ANNOTATIONS.

πολλοὺς ἐξειργασμένοι ἡ ἀλλα ὡσα τοιώτα τυγχάνει διντα, τούτοις δὲ ἡ προσήκουσα μοῖρα ρίπτει εἰς τὸν Τάρταρον, ὅθεν ὅποτε ἐκβαινοῦσιν. οἱ δ' ἂν ἰάσεια μέν, μεγάλα δὲ ὀξυστὶ ἡμαρτηκέναι ἁμαρτήματα, ὅτι πρὸς πατέρα ἡ μητέρα ὑπ' ὀργῆς βιαίω τι πράξαντες, καὶ μεταμελοῦν ἀυτοῖς τὸν ἄλλον βίον βιώσιν, ἡ ἀνδροφόνοι τοιούτῳ τινι ἄλλῳ τρόπῳ γένεσται, τοιούτοις δὲ ἐμπεσεῖν μὲν εἰς τὸν Τάρταρον ἀνάγκη, ἐμπεσοῦται δὲ αὐτοῖς καὶ ἐναιτὸν ἕκα

gενομένους ἐκβάλλει τὸ κύμα, τοὺς μὲν ἀνδροφόνους κατὰ τὸν Κρικτὸν, τοὺς δὲ πατραλοίας καὶ μητραλοίας κατὰ τὸν Πυρβήλεγθοντα, ἐπειδὰν δὲ φερομένου γένεσται κατὰ τὴν

λίμνην τὴν Ἀχρονιάδα, ἐκτάθη βοῶσι τε καὶ καλοῦσιν, οἱ μὲν οὐς ἀπεκτείναν, δὲ δὲ οὐς ὑψισταν, καλέσαντες δὲ ἱκτεόντες καὶ δέοντας ἔσται σφῶς ἐκβήσαι εἰς τὴν λίμνην καὶ ἐξάσθαι, καὶ ἕαν μὲν πείσωσιν, ἐκβάλονται τε καὶ

λήγουσι τῶν κακῶν, εἰ δὲ μὴ, φέρονται ἄθις εἰς τὸν Τάρταρον καὶ ἐκεῖθεν πάλιν εἰς τοὺς ποταμοὺς, καὶ ταῦτα πάγιοντες οὐ προτερον παιονται, πρὶν ἄν πείσωσιν οὐς ἡδικοῦσιν αὐτὴ γὰρ ἡ δίκη ὑπὸ τῶν δικαστῶν αὐτοὺς

ἐτάχθη, οἱ δὲ ἄν δόξωτι διαφερόντως πρὸς τὸ ὅσις βιώναι, οὐτοὶ εἰσιν οἱ τούτες μὲν τῶν τόπων τῶν ἐν τῇ γῇ ἔλευθερούμενοι τε καὶ ἀπαλλαττόμενοι ὡσπερ δεσμωτηρίων, ἀνω δὲ εἰς τὴν καθαρὰν ῥητην ἀφικνοῦμενοι καὶ ἐπὶ τῆς

γῆς ὁικήζουμενοι.

P. 68. Ignorance, knowledge.—Cf. Sāṁkhya Kārikā, v. 44, “By knowledge is deliverance; by the reverse, bondage.”

P. 69. These eight things, &c.—Cf. the Commentary of Bhojarājā to “The Yoga Aphorisms of Patañjali,” &c., v. xliv., also Gauḍapāda’s Bhāṣya to the Sāṁkhya Kārikā, v. xxiii. (pp. 83, 84), where he quotes the work of Patañjali (Pātañjala).

P. 69. Passing through several stages.—Cf. with these four stages of knowledge the “seven kinds of enlightenment” in “The Yoga Aphorisms,” ii. v. xxvii., and Commentary.

P. 75. The book *Saṁkhya* says.—It is difficult to say whether the Arabic manuscript has शारव्य or अव, and not knowing a Sanskrit parallel to this saying, I am thrown upon conjecture. Preferring the latter reading, I translate: “Everything which man opines (i.e. on which he forms an opinion) is a terminus to him, for he does not go beyond it,” which may mean that as long as the thinking faculty of soul has not ceased, it is not liberated, has not attained moksha. Cf. *Saṁkhya Kārikā*, v. lxviii.: “When separation of the informed soul from its corporeal frame at length takes place, and nature in respect of it ceases, then is absolute and final deliverance accomplished.”

Pp. 75, 76. *Gītā*.—The three quotations from this book are not found in the *Bhagavad-Gītā*.

P. 76. Socrates.—The quotations given here are found in *Phædo*, 84E–85B:—

καὶ ὡς ἔοικε, τὸν κύκλον δοκῶ ψαυλότερον υμῖν εἶναι τὴν μαντικήν, οἱ ἐπειδὰν αἴσθωνται ὅτι δὲι αὐτῶν ἀποθανείν, ἀδοντες καὶ ἐν τῷ πρόθεν χρόνῳ, τὸτε ὃ ὀπλείστα καὶ μάλωτα ἄδουσι, γεγονότες ὅτι μελλοντι παρὰ τὸν θεὸν ἀπειναι ὄστερ εἰσὶ θεράποντες, κ. ὑ. ἀλλ’ ἀτε, οἷμαι, τοῦ Ἀπόλλωνος ὅντες μαντικοί τέ εἰσι καὶ προειδοῦσες τὰ ἐν ὁμοία ἀγαθὰ ἄδους καὶ τέρπονται ἐκεῖνην τὴν ἡμέραν διαφερόντως ἢ ἐν τῷ ἐμπρόσθεν χρόνῳ. ἕγω δὲ καὶ αὐτὸς ἠγούμαι ὁμοίως τε εἶναι τῶν κύκλων καὶ ἱερὸς τοῦ αὐτοῦ θεοῦ, καὶ οὐ χειρὸν ἐκεῖνον τὴν μαντικὴν ἔχειν παρὰ τοῦ δεσπότου, οὔδε δυσθυμότερον αὐτῶν τῷ βίοι ἀπαλλαγμένοι.

In the middle a passage has been left out by Alberuni, or by the author of that edition of *Phædo* which he used.

P. 76. In the book of *Patañjali*.—To the explanation of
the four parts of the path of liberation on pp. 76–80 I do not know a parallel from a Sanskrit source.

P. 77. In the book Vishṇu-Dharma.—Cf. on this the note to p. 54. The Arabic text has not Parikṣita, but Parikṣha, which name is mentioned by Hall in a note to Vishṇu-Purāṇa, iv., chap. xx. p. 154.

Pp. 78, 79. The book Gītā.—These three extracts are not found in the Bhagavad-Gītā. The words, “He who mortifies his lust,” &c., compare with Bhagavad-Gītā, iv. 21, “Void of hope, self-restrained in thought, performing merely bodily work, he contracts no sin.” Regarding the passage, “Pleasures of a kind which, in reality, are disguised pains,” v. note to p. 70.

The expression, the nine doors of thy body (p. 79, 8), is also found in Bhagavad-Gītā, v. 13: “in the city of nine gates,” i.e. in the body. Cf. also Sāṁkhya Kārikā, v. xxxv.

Pp. 79, 80. The book Gītā.—These quotations cannot be compared with anything in the Bhagavad-Gītā.

P. 81. Patañjali.—There is a certain resemblance between these words and the last of “The Yoga Aphorisms” (iv. xxxviii.): “Isolation is the regression of the qualities devoid of the purpose of soul, or it is the abiding of the thinking power in its own nature.”

Pp. 81, 82. Sāṁkhya.—The comparison with the wheel of the potter (not the silk-weaver) is also found in Sāṁkhya Kārikā, v. lxvii.

P. 82. In the book of Patañjali.—I have not found these two passages anywhere else. As to the faculties of the perfect Yogan, cf. “Yoga Aphorisms,” iii. 42, 44, 45.

P. 83. The Śūfī explain the Koranic verse, &c.—Being asked about the story of Dhulkarnain (Bicornutus, i.e. Alexander), Muhammad says, “We (i.e. Allah) have made room for him on earth;” or, as Sale translates, “We established for him on earth,” which means, We have given him
a position of well-established authority or power on earth, and this authority or power is interpreted by Sufi commentators in accordance with their tenets, perfectly harmonising with those of the Yoga philosophy.

Pp. 83, 84. Sāṁkhya.—With the tale of the man travelling in the night with his pupils compare a similar one in Gaudapāda’s Bhāṣya to Sāṁkhya Karikā, v. xxx. (on p. 106).

P. 85.—Ammonius, a philosopher of the Neoplatonic school, v. Zeller, Philosophie der Griechen, iii.e. 829 seq. A Greek book of his which contains these extracts from Pythagoras and Empedocles is not known. He has been known to the Arabs as commentator of Aristotle: v. Wenrich, De Auctorum Graecorum Versionibus, p. 289; Fihrist, p. 197.

By Heracles in the passage, “Empedocles and his successors as far as Heracles,” is probably meant Heraclides Ponticus.

Pp. 85, 86. Socrates says.—The first extract is identical with Phædo, 79D, the second is composed of 80B, 80A, 81A B, the order of the Greek text having been abandoned.

Phædo, 79D. “Otan dé ge αὐτή καθ’ αὐτὴν σκοπή, ἐκεῖσε οὐχέται εἰς τὸ καθαρὸν τε καὶ ἀεὶ ὄν καὶ ἀδανάτον καὶ ὁσαυτῶς ἔχον, καὶ ὡς συνγενής ὀδὸν αὐτοῦ ἀεὶ μετ’ ἐκείνου τε γίγνεται, ὅτανπερ αὐτή καθ’ αὐτὴν γέννηται καὶ εξὶ αὐτῆ, καὶ πέπανται τε τοῦ πλάνου καὶ περὶ ἐκείνα ἀεὶ κατὰ ταῦτα ὁσαυτῶς ἔχει ἀτε τοιοῦτων ἐφαπτομένη· καὶ τούτῳ αὐτῆς τὸ παθημα φρόνησις κέκληται.

80B. Σκόπει δὴ, ἐφη, ὡς Κέβης, εἰ ἐκ πάντων τῶν εἰρήμενων τάδε ἦμιν ξυμβαινει, τῶ μὲν θεῷ καὶ ἀδανάτῳ καὶ νοητῷ καὶ μονοειδεὶ καὶ ἀδιαλυτῷ καὶ ἀεὶ ὁσαυτῶς καὶ κατὰ ταῦτα ἔχουτε ἐαυτῷ ὁμοιότατον εἶναι ψυχήν, τῷ δ’ ἀνθρωπινῷ καὶ θνητῷ καὶ ἀνοητῷ καὶ πολυειδεὶ καὶ διαλυτῷ καὶ
μηδέποτε κατά ταυτά ἐχοντι εαυτῷ ὁμοιότατον αὐτί εἶναι σῶμα.

8α. ἐπειδὴν ἐν τῷ αὐτῷ ὄντι ψυχῇ καὶ σῶμα, τῷ μὲν δουλεύειν καὶ ἀρχεσθαι ἡ φύσις προστάττει, τῷ δὲ ἀρχεῖν καὶ ἐστάσεις.

81 A and B. Οὐκοῦν οὗτοι μὲν ἔχουσα εἰς τὸ ὁμοιον αὐτῷ, τὸ αἰείδες, ἀπέρχεται, τὸ θείον τε καὶ ἀθάνατον καὶ φρονίμου, οὐ ἀφικομένη ὑπάρχει αὐτῇ ευδαιμονία, πλάνης καὶ ἀνοίας καὶ φῶς καὶ ἀγάμων ἐρώτων καὶ τῶν ἀλλῶν κακῶν τῶν ἀνθρωπών ἀπηλλαγμένη, ὡσπερ δὲ λέγεται κατὰ τῶν μεμνημένων, ὡς ἀληθῶς τὸν λοιπὸν χρόνον μετὰ τῶν θεῶν διάγοινα; οὗτοι φώμεν, ὁ Κέβης, ἡ ἀλλο; οὗτοι νῦν Δὴ, ἐφι ὁ Κέβης Ἡ Ἐαν ὅτε γε, οἶμαι, μεμπαρμένη καὶ ἀκάθαρτος τῶν σώματος ἀπαλλαγμένη; ἀτε τῶν σώματι ἀεὶ ξυνοῦσα καὶ τοῦτο θεραπεύουσα καὶ ἑρώτα καὶ γεγογ- τεμένη ὑπ’ αὐτοῦ, ὑπὸ τὲ τῶν ἐπιθυμιῶν καὶ ἡδονῶν, ὡστε μηδὲν ἄλλο δοκεῖν εἶναι ἀληθὲς ἄλλῃ ἢ τὸ σώματος ὑπ’ τῆς ἀν ἀψιατο, κ.τ.λ.

Pp. 86, 87. Arjuna says.—The comparison of Brahman with an asvattha tree is found in Bhagavad-Gītā, xv. 1–6, and x. 26.

The doctrine of Patañjali.—Ideas similar to these Sūfī sentences are found in Bhagavad-Gītā, vi. 28–31, describing the union of the soul with Brahman.

Pp. 87, 88.—On Abū-Bakr Ash-shiblí cf. Ibn Khallikān, translated by De Slane, i. 511–513; Abulmaḥásin, Annales, ii. 313. He lived in Bagdad, was a pupil of Junaid, died A.H. 334 = A.D. 946, in Bagdad, and was buried there. On Abū-Yazīd Albištāmī cf. Ibn Khallikān, nr. 311. He died A.H. 261 = A.D. 875. Jāmī has articles on these two mystics with many quotations from them in his Naṣfahāt-al’uns (Lee’s “Persian Series,” the Naṣfahāt-alons, &c., or the Lives of the Soofis, by Jāmī, Calcutta, 1859, pp. 201 and 62).

P. 88. The Sūfī explain the Koranic passage (Sura 2, 68), &c.—“And when you had killed a person and were dis- vol. ii.
puting among yourselves (the one throwing the blame on the other), whilst God was bringing to light what you concealed, then we spoke: Beat him (the killed person) with part of her (the killed cow mentioned in the preceding "). In that case the killed person will again become alive and tell who murdered him. "Thus God brings to life the dead ones," &c. Cf. A. Geiger, Was hat Mohammed aus dem Judenthume aufgenommen? Bonn, 1833, p. 172. Muḥammad has moulded this part of Sūra 2 from elements taken directly or indirectly from Numb. xix. 2 seq., and Deut. xxi. 2 seq.

The Sufies try to show by this sentence that the body must be mortified before the heart can become alive by mystic knowledge.

P. 89. Sāmkhya.—For the two enumerations of created beings, v. Gauḍapāda to S. Kārikā, liii. p. 162, and xliv. P. 143.

The reading of the MS. سومین is certainly wrong. The author means सौम्या = سومین, but it would have been better to write سوم in accordance with دیت = دایتا. As all the other words of this enumeration stand in the singular, it is not allowable to read this word in a plural form, پهلوی سومین like پهلوی the Rishis, پهلوی the Pitris.

P. 90. In the book Gītā.—The first quotation on the prevalence of one of the three gunas, sattva, rajas, tamas, is to be compared with Bhagavad-Gītā, xvii. 3, 4, seq., and xiv. 6–8 seq.

The second extract, "Belief and virtue," &c. I am inclined to combine with Bhagavad-Gītā, xvi. 3, 4, seq.

P. 91. People say that Zoroaster, &c.—The author was aware of the identity of the Persian dev (demon) with the Indian deva (god). It is in this way that he tries to account for the discrepancy of the meaning.

The second quotation, v. on p. 271:—

αἱ ἔνεμεν ἡν ὑπενεκτύμου εἰρήκει ῥίζαν, ἐπειδὴ στάχυς ὕνομαζεται νάρδου. Βουλείται δὲ αὐτὴν εἰναι Κρητικὴν, εἴνα Φησίν, ἢν ἀνέθρεψε χῶρος ὁ τὸν Πίστη Ζήνα λοχεσάμενος, ἐπειδὴ τὸν Δία φανεί οἱ μυθολόγοι κατὰ τὸ Δυκταίον ῥοῖς Κρήτη τραφήναι, κρυπτόμενον ὑπὸ τῆς μυτρὸς Ἐρ’ας, ὅπως μη καὶ αὐτὸς ὑπὸ τοῦ πατρὸς τοῦ Κρόνου καταπόθη.

P. 96. Europe, the daughter of Phaëthon, &c.—In the source whence the author drew his information about Greek legends, Greek, Hebrew, and Persian traditions seem to have been mixed together. It was synchronistic like the Chronicon of Eusebius, with which it is nearly related (note to p. 105), comparing the dates of Greek history with those of the Biblical and Persian history. Julius Africanus and Eusebius are the fathers of this kind of literature, but I do not know by whom the book which Alberuni used had been composed. Cf. Eusebi chronicorum canonum quae supersunt, ed. A. Schöene, ii. p. 13 (Zeus), 26 (Cecrops), 32, 34 (Asterius); also the Syriac Epitome, p. 204, 206.

P. 96. The story of Alexander is derived from the romance of Pseudo-Kallisthenes (ed. Didot), which Eastern scholars have mistaken for a historic record.

"Man cannot oppose the gods" (p. 97, 1)=πρὸς τάντας γὰρ δυνάμεθα οἱ βασιλεῖς, πρὸς δὲ τοὺς θεοὺς οὐ δυνάμεθα (ed. Didot, i. 9).

"When then he died," &c., "from a wound in the neck," &c. (p. 97, 4)=πεσὼν δὲ Νεκτανεβῶν λαμβάνει φοβερὸν τραύμα κατὰ τοῦ ἱσχίου αὐτοῦ (i. 14).
P. 97. Galenus.—Cf. note to p. 34.

P. 97. Aratus.—The author quotes the Phænomena and a commentary to them, which exhibits certain relations with the scholia edited by Immanuel Bekker, but is not identical with them. As I learn from my colleague, Professor C. Robert, this commentary is to be combined with the Catasterismi of Pseudo-Eratosthenes.

The first quotation from Aratus is v. 1 seq.

'Eκ Δίος ἀρχύμεσθα, τὸν οὐδέποτ' ἄνδρες ἐδοξεῖν
Ἀρρήτων μεστὰ δὲ Διὸς πάντα μὲν ἄγνως,
Πάσαι δ' ἀνθρώπων ἀγορά, μεστῇ δὲ θάλασσα
Καὶ λιμένες πάντῃ δὲ Διὸς κεχρήμεθα πάντες.
Τού γὰρ καὶ γένος εἰμέν ὅ δ' ἦπιος ἀνθρώποις
Δεξία σημαίνει, λαοὺς δ' ἐπὶ ἐργον ἐγείρει,
Μεμισθῶν βιότοιο λέγει δ' ὅτε βῶλος ἀρίστη
Βοσκεῖ τε καὶ μακέλης λέγει δ' ὅτε δεξιά ἄραι
Καὶ φυτὰ γυρώσαι, καὶ σπέρματα πάντα βαλέσθαι.
Αὐτὸς γὰρ τάγε σήματ' ἐν οὐρανῷ ἐστήριξεν,
Ἀστρα διακρινάς ἐσκέψατο δ' εἰς ἕναιστὸν
Ἀστέρας, οἳ κε μάλιστα τετυγμένα σημαίνοιεν
Ἀνδράσιν ὁραίων ὃπ’ ἐμπεδα πάντα φώνασε.
Τῷ μὲν ἀεὶ πρῶτον τε καὶ ὕστατον ἑλάσκοντα.
Χαίρε, πάτερ, μέγα θαύμα, μὲγ' ἀνθρώποισιν ὑνειάρ,
Αὐτὸς καὶ προτέρη γενεὴ, χαῖροιτε δὲ Μοῦσαι
Μειλίχια μάλα πᾶσιν, κ.τ.λ.

P. 97. Commentary on the Phænomena of Aratus.—The following quotation from the Scholia Sangermanensia, p. 55, I owe to the kindness of Professor Robert: “Crates autem Jovem dictum caelum, invocatum vero merito ærem et ætherem, quod in his sint sidera, et Homerum Jovem dixisse in aliqua parte caelum.”

ώς δ' ὅτι ταρφείαν νεφέλαι Δίος ἐκποτίσσαι
—(Ilias, i. 3571).

The common tradition of this verse is—

ώς δ' ὅτι ταρφείαν νπάδεις Δίος ἐκποτίσσαι,
and thus it has been rendered by Alberuni. Cf. on the Scholia Sangermanensia, C. Robert, Eratosthenis Catasterismorum Reliquiae, Berlin, 1878, p. 21.

P. 99. These twins, state and religion.—Vide note to p. 79.

P. 101. The Vaiśya who were created from.—In the Arabic text, ٱ, 4, there is a lacuna, where originally stood the words "from the thigh (đr) of Brahma. The Sūdra who were created from." Cf. Manu, Dharmasāstra, i. 87, mukha-bāhu-đr-paj-jānāṁ.

P. 101. Haḍāt, Đoma, &c.—Of these classes of outcast people, the Badhatau are not known to me. The Cāndāla are well known, called Sandhāla by Ibn Khurdādhbih (Elliot, "History of India," i. 16). The Haḍās and Đoma are mentioned by Colebrooke, "Essays," ii., "Enumeration of Indian Classes," p. 169, note 3. On the latter (cf. Rom, the name of the gipsies), v. "Memoirs on the History, Folk-lore, and Distribution of the Races," &c., by Elliot, edited by Beames, London, 1869, i. p. 84. Are the Badhatau identical with the Bediṣyas, mentioned in the note of Colebrooke just quoted?

P. 103. Vāsudeva answered.—The first quotation from Gītā is identical with Bhagavad-Gītā, xviii. 41-45; the second is similar to ii. 31-38.

P. 104.—The saying of Vyāsa.—Vide note to pp. 40-44.

P. 104. Vāsudeva.—This quotation from Gītā much resembles Bhagavad-Gītā, ix. 32, 33.

P. 105. Minos.—I cannot acquit the book on ancient history which Alberuni used of the blunder of having split the Minos of Greek traditions into two persons, a Minos and a Mianos (sic). Cf. on this source note to p. 96.
At the time of Darius, &c.—Except the synchronism of Persian history, the whole passage relating to Numa Pom- pilius may be derived from Eusebius, Chronicon, ii. 82:—

Νομιμάς μετὰ Ῥωμόλον βασιλέυσας Ῥώμης πρῶτος νόμους Ῥωμαίοις εἰσήγαγεν. [ὁ αὐτὸς τὸ Καπετώλιον ἐκ θεμελίων ὕψωσεν.] ὁ αὐτὸς τῷ ἐνιαυτῷ δύο μίνας προσέθηκε, τὸν τε Ἰανουάριον καὶ τὸν Φεβρουάριον, δικα- μανίαν τοῦ ἐνιαυτοῦ πρὸ τοῦτον χρηματίζοντος. ὁ αὐτὸς καὶ κογγάριον ἔδωκεν, ἀστάρα ξύλινα καὶ σκύτινα καὶ ὀστράκινα.

P. 105. Plato.—These extracts from Plato's Leges are the remnant of an Arabic translation. We give the Greek text for the purpose of comparison:—

I. 1. Ἀθηναίοις. Θεός ἦ τις ἀνθρώπων ὑμῖν, ὃ ἔγεν, ἐλήφη τὴν αὐτήν τῆς τῶν νόμων διαθέσεως; Κλεινίας. Θεός, ὃ ἔγεν, θεός, ὃς γε τὸ δικαίωματον εἰπεῖν, παρὰ μὲν ἡμῖν Ζεὺς, παρὰ δὲ Λακεδαιμονίων, ὃθεν ὅδ' ἔστιν, ὁμιλεῖ θύμα τοῦτος Ἀπόλλωνα.

I. 6. οἱ Κρητῶν νόμοι οὐκ εἰσί μάτην διαφερόντως ἐν πάσιν εὐδοκίμοι τοῖς "Ἐλληνῖν ἐχούσι γὰρ ὀρθῶς, τοὺς αὐτοὺς χρηματίζουσιν εὐδαίμονας ἀποτελοῦντες ἀπαντᾷ γὰρ τὰ ἀγαθὰ πορίζουσιν.

II. 1. θεοὶ δὲ, οἰκτείραντες τὸ τῶν ἀνθρώπων ἐπίπονον περίκος γένος, ἀναπαύλας τε αὐτοῖς τῶν πόνων ἐτάξαντο τὰς τῶν ἔρτων ἁμοιβάς, καὶ Μοῦσας Ἀπόλλωνα τε μουσαγέτην καὶ Διὸνυσον ἐνυφαρταστὰς ἔδωσαν.

II. 1. ἡμῖν δὲ οὕς εἴπομεν θεοὺς ἔννοχορευτὰς δεδύσθαι, τούτους εἶναι καὶ τούς δεδοκότας τὴν ἐνυρθοῦν τέ καὶ ἐναρμόνιον ἀίσθησιν μεθ᾽ ἰδιόν, ἢ ἢ κινεῖν τε ἡμᾶς καὶ χορηγεῖν ἡμῖν τούτους, φῶς τε καὶ ἀρχηγεῖν αλλήλους ἐνειροῦτος, χοροῦς τε ἴωνομακένα τὸ παρὰ τῆς χαρᾶς ἐμφυτὸν ὄνομα.
ANNOTATIONS.

Vyāsa.— His mother is Satyavati: v. Vishnu-Purāṇa, l. c. The birth of Vyāsa is mentioned in Mahābhārata Adiparvan, v. 3802.

P. 108. Pancahir, better Panchir.—The author means the alpine countries of the Hindukush between Kashmir and a line from Faizabad to Kabul, i.e. the Hazāra country, Svāt, Citrāl, and Kafiristan. It is well known that polyandry exists among the Tibetan tribes in the Alps between Kashmir and Tibet, but I am not aware whether it is also found among the inhabitants of the more western extension of the Himālaya which he mentions, e.g. among the Siyāhposh. On polyandry in the Panjab v. Kirkpatrick in “Indian Antiquary,” 1878, 86.

The Panchir mentioned by the author is the tributary of the Kābul-Rūd. Another Pancahir (sic) is mentioned by the Arab geographer Yākūt as a city in Bactriana with rich silver mines.

Among the heathen Arabs.—Cf. here i. 185.

P. 109. Barshawār the Girshāh.—This seems to be a mistake, and I propose to read, as I have done in the edition of the Arabic text, بَارْشَواَر, i.e., the Shāh of Pādāshāγīr or Prince of Tabaristān (as e.g. Gīlānshāh = the Shāh of Gīlān). Cf. P. de Lagarde, Beiträge zur Baktischen Lexicographie, p. 50; Sachau, “Chronology of Ancient Nations,” P. 47, 19, and note; Nöldeke, Geschichte der Perser und Araber zur Zeit der Sasaniden, p. 462.

P. 113. Ambarisha.—The story of this king seems to have been taken from the Vishnu-Dharma, v. note to p. 54. Probably Ambarisha, the son of Nabhāga, is meant,

P. 116. Nârada.—The story of this saint, a Moses in India, is not known to me from other sources.

P. 116. Jalâm Ibn Shaîbân.—The pronunciation of the former name is conjectural, the history of this Karmatian chief unknown. The expedition of King Mahmûd against Multân took place A.D. 1006, in the ninth year of his rule, the seventh year of his usurpation of sovereignty, in which he had left out the name of his Sâmânt liege-lord on the coins and in the public prayer, and had received the investiture, a robe and a title, from the source of all legitimacy in the Muslim world, the Khalif Alkâdir, the great enemy and persecutor of the Karmatians. Cf. on this expedition Elliot, "History of India," ii. p. 441.

P. 116, l. 21.—There is an error in the calculation of the years. From the end of the Krita-yuga up to the year 4132 of the Kali-yuga there have elapsed—

Of the Tretâ-yuga	1,266,000
Of the Dwâparayuga	864,000
Of the Kali-yuga	4,132
Sum	2,164,132

As Alberuni gives but 216,432 years, it seems he has omitted by inadvertence the cipher 1 (Schram).

P. 117, l. 7.—The above supposition is confirmed by this passage; it ought to be the 132 years instead of the 432 years. One can consider 132 years as a kind of arbitrary equivalent for the sum of about 100 years, but 432 years cannot be an equivalent for about 100 years (Schram).

P. 117, l. 10.—It must be 2,164,000 instead of 216,000 (Schram).

P. 117. Varâhamihira says.—This extract is a translation of Brihât-Samhitâ, chap. lxi. §§ 30-48, 56-57, on the fabrication of the idols (p. 117-120); chap. lvi. §§ 4952, on the consequences of faults in the construction of idols (p. 120); chap. lx. § 19, on the various classes of priests (p. 121); chap. lx. §§ 4, 5, on the effects of the
idols (p. 121). The order of the single verses is to some extent different from that of the Sanskrit text as exhibited in the edition of Kern. In the Arabic text, p. "v, l, in the lacuna after السيف والترس, are required the words السيف والترس ("the sword and shield")

P. 122. Gîtâ.—I do not know similar passages in Bhagavad-Gîtâ. The first quotation distantly reminds one of Bhagavad-Gîtâ, iv. 25.

P. 123. Plato.—This quotation shows considerable confusion in the rendering of the Greek text. Cf. Leges, iv. 8.

πρῶτον μὲν, φαμέν, τιμᾶς τὰς μετ’ Ὀλυμπίους τε καὶ τοὺς τὴν πόλιν ἐχοντας θεούς τοῖς χθoνίοις ἀν τις θεοί ἄρτια καὶ δεύτερα καὶ ἀριστερά νεμών ὀρθότατα τῷ τῆς εὐσεβείας σκοποῦ τυχανοῖ, τοῖς δὲ τούτων ἄνωθεν τὰ περίττα καὶ ἀντίφωνα τοῖς ἐμπροσθεν ῥηθεὶσι νῦν δή· μετὰ θεοὺς δὲ τούσδε καὶ τοῖς διάμοισιν ὄγ’ ἐμφρον ὁργαῖοι τ’ ἂν, ἠρωσι δὲ μετὰ τούτων· ἑπάκολουθεὶ δ’ αὐτοῖς ἱδρύματα ἑνὶ πάτρῳς θεῶν κατὰ νόμον ὁργαίωμεν· γονεῶν δὲ μετὰ ταύτα τιμᾶς ἑώς τῶν, ὡς θέμις, ὁφειλόμενα ἀποτίνεων τὰ πρῶτα τε καὶ μέγιστα ὁφειλήματα, κ.τ.λ.

The underlined words are the original of the Arabic quotation. The translator has rendered δαίμονως by θεῖ (gods), ἠρωσι by μέχρι τακτικα, by which elsewhere the word Μοῦσαι is translated, and ὁργάζειν by نسب في الس (instead of نسب في الس (الس لباس) (in the 1st person). He seems to have mistaken the meaning of the word ἑπάκολουθεῖ, translating in this way: "they (the ἱδρύματα = اسما) follow in rank after the πάτρων θεοί," i.e. you shall not put the πάτρων θεοί in the first place, but worship them secundo loco.

P. 123. Galenus.—Vide note to p. 34.

P. 126.—The tradition of Saunaka from Venus (so the Arabic text), i.e. Śukra, is perhaps taken from the Vishnu-Dharma: v. note to p. 54.

Vishnu-Purâna.—Compare this quotation with book iii. chap. ii. p. 29 (ed. Wilson-Hall). The Great Bear is called the Seven Rishis in Sanskrit.
P. 126. Vasukra.—This reading does not quite accurately correspond to the Arabic signs, which must be read Vasukra. I have preferred the former, because it is mentioned in the St. Petersburg Dictionary as the name of a man who occurs in the Veda as a poet of Vaidic hymns.

P. 127. Galenus.—The quotation from Galenus must be compared with the following passage in his peri suneidseos farmaqon kata yen (ed. Kuhn, tom. xiii. p. 995):—

ηρέθη δὲ υπὸ Μενεκράτους, κ.τ.λ. ιατικὸν φαρμακον. ἐπιγεγραπται δὲ τὸ βιβλιον, κ.τ.λ. αὐτοκράτωρ οἱογράμματος: αὐτοκράτωρ μὲν, ἑπειδή τοῦτο προσπεφώνηται, οἱογράμματος δὲ διὰ τις χαρακτηρῶν διὰς ταῖς συλλαβαῖς γεγραπται β' καὶ γ' καὶ δ' καὶ ε' καὶ τῶν ἄλλων ἀριθμῶν ἐκαστος, κ.τ.λ. τοῦτο δ' ἐπραξεν ὁ Μενεκράτης, ἑπειδὴ πολλάκις οὐ μόνον ἀκόντων ἀμαρτάνεσθαι συμβαίνει κατὰ τάς γραφάς, ἄλλα καὶ διὰ φθόνον ἐκόντων εἰνόν, κ.τ.λ.

εἰκότως οὖν ηδοκίμησε τὰ Δαμοκράτους βιβλια τῶν φαρμάκων εἰς μέτρα γραφέντα [καὶ εἴπερ ἀπάντα τὸν τρόπον τοῦτον ἐγέγραπτο], κάλλιστον ἄν ην.

That which I have underlined forms the text as given by Alberuni.

P. 127.—Vyasa had four sishya.—Cf. Vishnu-Purana, book iii. chap. iv.

P. 128. A peculiar kind of recitation.—This is a description of the four pāthas, padapātha, kramapātha, &c. Cf. Colebrooke, "Essays," i. 18.

P. 128. Kāndin.—The word كا in evidently refers to the divisions of the Yajurveda called kandika. "The text of the Yajurveda is composed of Kāndī, and its name (the name of Yajurveda i what name of it?) is derived from it (from kāndī ?), i.e. the collection (or totality) of kāndī." It does not appear which one of the names of Yajurveda is here meant by the author as having been derived from
kāndīkā. Is there a name of Yajurveda like kāndika or kāndin, meaning consisting of kāndikas?

In kāndī = kāndikā the cerebral d is rendered by an Arabic r, as in kūḍava, बायर viyādi, कर garuda, द्रविद dravida, नाडिना nādī, बायर vinādi, सर्व vinādi, vaidūrya, &c. The termination in long ḷ seems to be characteristic of the vernacular form of Indian speech, and is probably a survival of the more ancient termination ikā, ikā. Cf. R. Hörnle, "Comparative Grammar of the Gaudian Languages," § 195, 203, 205.

P. 129. The well-known story.—It is told by Alberuni himself, i. p. 396.

P. 131. Viṣṇu-Purāṇa.—This index of the Purāṇas occurs in book iii. chap. vi. p. 66, 67. In the Arabic text ʿw, 12, read ɡr instead of ɡr.

P. 131. Smṛiti.—The author erroneously calls it a book. It is the literature on law, and the twenty sons of Brahman here mentioned are authors of Dharmaśastras. Cf. on smṛiti (opp. śruti), Colebrooke, "Essays," i. 337, 466; A. Weber, Vorlesungen, p. 296, note 327; Indische Studien, i. 232.

Alberuni sometimes quotes the book Smṛiti. However, he had not the book himself, but transferred those quotations from the Brahmasiddhānta of Brahmagupta. In reality it is the latter author who quotes it. As, according to him, the book smṛiti was composed by Manu (v. here ii. 110, 111), he means the Dharmaśāstra of Manu. This law code is only once clearly referred to by Alberuni (ii. 164), but in a manner which makes me think that it was not in his hands. On Manu, as the author of the great Mānasas (a work on astronomy and astrology?), v. p. 157.

Sāṁkhya.—Vide the same note.

Patañjali.—Vide note to p. 27.

Nyāyabhāṣā.—This my transliteration of नयायभाषा will perhaps seem doubtful, as the contents of the book have
no relation to the Nyāya philosophy or logical system of Gautama (cf. Colebrooke, "Essays," i. 280), but are clearly identical with the Mīmāṃsā philosophy of Jaimini, who is here mentioned a few lines farther on. However, I do not know another mode of reading the word. That Kapila was the author of such a work does not seem to be known.

Mīmāṃsā.— Cf. Colebrooke, "Essays," i. 319. In opposition to Kapila, Jaimini teaches that the Veda is primeval and superhuman. This theory and the discussions through which it has passed are also found in the history of Islam applied to the Koran. According to Islam, the Koran too is primeval and superhuman.

Bṛhaṇaspati is the founder of this school; his sūtra is quoted by Bhāskara-ācārya. The Bṛhaṇaspatyasūtram is mentioned by A. Weber, Vorlesungen, p. 263.

Vishnu-Dharma.— Vide note to p. 54.

P. 132. Bṛhārata, i.e. Mahābhārata, which is repeatedly mentioned by Alberuni. Bhagavad-Gītā is a part of it (i. 132). The story of the birth of Vāsudeva and of his five brothers (i. 401-406) is taken from Mahābhārata.

I am not quite certain whether Alberuni had a copy of the work. When giving quotations from the book, he does not mention it, which he probably would have done if he had had it in hand.

P. 133.—With the index of the chapters of Mahābhārata cf. Monier Williams, "Indian Epic Poetry," p. 91 seq. The list of Alberuni exhibits some remarkable differences.

P. 135. Pāṇini.—The reading of the MS. is pāṇrīti,
which I cannot explain. If पारिनि pānrini is the correct reading, we must remember that in the sound न न there is an admixture of the sound र. So Hörnle, "Comparative Grammar," p. 15, says: "The cerebral न contains the sound of र, being somewhat like रन." In this way Alberuni has transliterated the न in the word बनिफ banif, which he writes बनिफ barnif. Accordingly we should expect to find पारिनि pānrini, but the author seems to have written पारिनि pānrini.

P. 135.—The word हेकित = śishyahita, has been deciphered by Professor Kiellhorn, Göttingen.

P. 136. Sālavāhana.—Other forms of the name are Sālavāhana, Sālivāhana (Hemacandra, i. 211); but Alberuni clearly notes the pronunciation Samalvāhana, which is not known to me from other sources.

P. 136.—Instead of māudakāṁ read modakāṁ = mā udakāṁ.

P. 136.—Abul'aswad, &c., is, according to the literary tradition, the originator of their grammatical science. Cf. G. Flügel, Grammatische Schulen der Araber, p. 19 seq.

P. 136. Chandas.—In translating the chapter on metrics, I have derived much help from Colebrooke, "Essays," ii. p. 57 (on Sanskrit and Prākrit poetry), and from Weber's edition of the Sūtras of Piṅgala (Indische Studien, vol. viii.). Alberuni, however, seems to have used other sources and to have followed another system, which has greatly increased the task of the translator.

P. 137. Piṅgala.—What are the Sanskrit forms of the names चित् calitu, गैसित् gaisitu, अलियंदु auliyāndu?

The chapter of Brahmagupta's Brahmasiddhānta, of which the author here (p. 147-150) communicates a few extracts, is chap. xxi., On the calculation of the measures of poetry and on metrics, v. i. 155.

P. 138.—Alkhalīl, also mentioned i. 147, is in Arabic literature the father of the science of metrics. Cf. G. Flügel, Grammatische Schulen der Araber, p. 37. Sabab.—Cf. Freytag, Arabische Verskunst, p. 64, 65.
P. 140. Madhya.—I do not know this term in Sanskrit, and the signs admit of different transliterations. Both the terms madhyā and madhu are used in metrical terminology, but with different meanings. Cf. Colebrooke, "Essays," ii. 141 (madhu), and ii. 136, 141 (madhyā).

P. 141.—Haribhatta?—This name is not known to me as that of an author of a lexicographical work. The MS. clearly writes hariuddu, which may represent various other forms of Sanskrit names.

P. 141.—The single letters m, y, r, &c., denoting the single feet, are mentioned by Colebrooke, "Essays," ii. 63.

P. 142. Place the numeral 2, &c.—The rule, as explained in ll. 4, &c., differs from that which is followed in the example (ll. 11-14), in so far as in the former place the subtraction of 1 ("and from the product (4) he subtracts 1") has been omitted. But even if we correct the text of the rule according to the exemplification, it cannot be correct, and we agree with Alberuni that something in the manuscript must have been wrong (also in the passage below, ll. 30-34). For it can be applied not to all eight feet, but only to two, viz., to

\[|| < (2 \times 2 = 4 - 1 = 3 \times 2 = 6 - 1 = 5) \]

and to

\[|| < (2 \times 2 = 4 - 1 = 3 \times 2 = 6), \]

i.e. these two feet occupy respectively the fifth and sixth places in the arrangement on p. 141 (below).

P. 143. The Greeks, too, &c.—The comparison with Greek metrics is unintelligible, as something must have been dropped in the Arabic text.

P. 143. Consonant or syllable.—I suppose the author means syllable. The Arabic word حرف has the same inconvenience as Sanskrit akshara of meaning both syllable and sound (mostly consonant).

P. 143. Āryā.—This reading is a conjecture of mine, as the MS. has aral, which I cannot explain. The description given by the author seems to be applicable to the
ARYA metre, which could be known to him from his study of Brahmagupta's Brahmasiddhānta. Cf. Colebrooke, "Essays," ii. 66.

Khaft.—This Arabic metre, represented in European fashion, is the following:

| | | | |

P. 145. Vritta.—On the metre of this name v. Colebrooke, "Essays," ii. 145. However the signs ṭ ρ (b-r-t) admit of various other ways of reading. The MS. has britu.

P. 150. I have only seen a single leaf.—This translation is to be replaced by, "I have only studied a single leaf."

P. 151. Galenus.—The quotation is found in his peri synbēseos farrmákōn kata γένη (ed. Kühn), tom. xiii. p. 996:

άλλ' ἦ γε διὰ τῶν χυλῶν ὑπὸ Μενεκράτους εὑρεθεῖσα διὰ τῶν τριμέτρων στοιχείων ὑπὸ Δαμοκράτους γέγραπται.

Varāhamihira.—Vide note to p. 54.

Pp. 153, 154. Brahmagupta.—His work, the Brahmasiddhānta, has been very largely used by Alberuni. It exists in manuscript, but has not yet been completely edited or translated. Alberuni translated it into Arabic when he wrote the Indica (A.D. 1030). We do not know whether he ever finished it.

Brahmagupta was only thirty years of age when he
wrote this work. He is accused of the sin against conscience of having propagated futilities and lies in order to please the bigoted priests and the ignorant rabble of his nation, in order to avoid those dangers in which Socrates perished. Vide chap. lix. on eclipses, and specially ii. 111. Besides, Alberuni accuses him of undue animosity against Áryabhaṭa (i. 376).

Brahmagupta holds a remarkable place in the history of Eastern civilisation. It was he who taught the Arabs astronomy before they became acquainted with Ptolemy; for the famous Sindhind of Arabian literature, frequently mentioned, but not yet brought to light, is a translation of his Brahmasiddhánta; and the only other book on Indian astronomy, called Alarkand, which they knew, was a translation of his Khandakhádyaka.

The latter work (here ii. 7) is also called Karanakhandakhádyaka (i. 156). It was explained in a special commentary by Balabhadrā (ii. 187).

A third composition of Brahmagupta's called Uttarakhandakhádyaka, is mentioned i. 156, and quoted ii. 87, 91.

Notes from Varāhamihira’s Pañcasiddhántikā have been edited by G. Thibaut in the "Journal of the Asiatic Society of Bengal," 1884, vol. liii. p. 259.

Sindhind is mentioned ii. 191, as the only source of the information of Muslims on Indian astronomy and astrology. According to ii. 90, the Indian computation of the heliacal risings of the stars and the moon is identical with that given in Sindhind. It is called the great sindhind (Siddhánta) ii. 18.

Alberuni has written a treatise on it. See preface to the Arabic edition, p. xx.

P. 154. Pulisa.—This name and Paulisa are written Puliśa and Pauliśa in Utpala's commentary to the Samhitā of Varāhamihira; but as Alberuni writes them constantly with a ș, not ș, I am inclined to believe that he and his Pandits pronounced Pulisa and Paulisa. Alberuni has
drawn from the *Pulisasiddhānta* almost as largely as from the *Brahmasiddhānta*, and was occupied with translating it (v. also i. 375).

The relation between Pulisa and Paulisa is this:—

Paulisa is the sage who communicates his wisdom in this *Siddhānta*. He was a native of Saintra, i.e. Alexandria.

Pulisa is the redactor or editor of the book. The one as well as the other is called Ἰουλίας, Greek (not Ḥουλίας, Byzantine Greek). "Pulisa says in his *Siddhānta* that Paulisa the Greek had mentioned somewhere," &c., i. 266.

A commentator of this *Siddhānta* is mentioned i. 339 med., where I now prefer to translate: "The commentator of the *Siddhānta* of Pulisa," &c.

Pulisa quotes Parāśara (ii. 208), and is himself quoted by Āryabhaṭa jun. (i. 316).

Paulisa is quoted by Brahmagupta, i. 374 (v. note).

P. 156.—Āryabhaṭa senior is clearly distinguished from Āryabhaṭa junior, who is mostly called "that one from Kusumapura," i.e. Pātaliputra (Patna). Alberuni knows him only through the quotations in the works of Brahmagupta. He mentions two of his works, *Daśagitāka* and *Āryāśtasata*, which have been edited by Kern, *Ārya-bhaṭiyam*, 1874.

P. 156. Balabhadra.—Of his works are mentioned:—

(1.) A *tantra*.

(2.) A *Sañhitā*.

(3.) A commentary of the *Brihajjñātakam* of Varāhamihira (p. 158).

(4.) A commentary to the *Khandaḥkādyaka* of Brahmagupta.

(5.) He is supposed to be the author of the book *Khandaḥkādyakaṭippa*.

Alberuni always calls him the *commentator*, and frequently quotes him without indicating from what particular book he quotes. He gives on his authority the latitude of Kanoj and Tāneshar, and passes harsh judgment on him i. 244, 275. *Cf.* also note to p. 27.
he therefore, perhaps, was a scholar of the time and a personal acquaintance (teacher?) of Alberuni's. The title of a book of his is not mentioned.

P. 338.—The spēd muhra or white shell, an Indian blowing instrument, is also mentioned by Elliot, "History of India," ii. 215, note.

Purshūr (پرشور), as the manuscript has, is probably a mistake for Purushāvar, i.e. Peshavar.

P. 338. Horaæ equinoctiales and temporales.—Vide note to p. 214.

P. 339. The commentator of the Siddhānta, Pulisa.—Read instead of this, "The commentator of the Siddhānta of Pulisa," and compare note to pp. 153, 154. Who this commentator was is not mentioned.

P. 340.—Abhijit means the 8th muhārta of the day. The Arabic form ّبجيب means perhaps to Sanskrit abhijitī.

P. 340. Vyāsa.—This statement points to Mahābhārata, the Ādi-parvan, v. 4506; but the chronological detail is not found there.

P. 340. Śiśupāla.—Vide note to p. 165.

P. 342.—The names of the dominants of the muhārtas are also mentioned in the following four lines taken from Aufrecht's Catalogue of the Sanskrit manuscripts of the Bodleian Library, p. 332a:—

rudrāhimitrapitaro vasuvāriviśve vedhā vidhiḥ śatamakhaḥ puruhūtavahni.

naktamcaraś ca varuṇāryamayonayaś ca proktā dinē daśa ca paṁca tathā muhūrtāḥ

niśāmuhūrtā giriśājapādāhirbudhnyapūshāsvīyamāṅgnaśyaśca.
vidhāṭrīcārṇḍāditi jīvavishṇuṁgadyutitvāshṭrasamārañās ca.

P. 343. *Except the astrologers.*—Cf. the meaning of *hord* in astrology, ii. 222.

P. 343. *Vijayanandī.—Vide* note to p. 156. The title of his book would be in Arabic ﻣَهرة الَرِجمات (Ghurrat-ulzijāt).

P. 344. *Names of the hordas.*—I have not found these names in Sanskrit. Perhaps they are mentioned in some commentary to *Sūrya Siddhānta*, xii. 79.

On *Srādhava*, v. note to p. 158.

P. 347. *Physical scholars know, &c.*—There is a similar passage on the physical effects of moonlight in the author’s “Chronology of Ancient Nations,” p. 163. I am afraid I have not caught the sense of the sentence, “and that she affects (?) linen clothes,” &c.

P. 348. *Atuh (?, &c.*—The MS. seems to read *ātvahhu*.

The word *aṭha*, BRBA, is perhaps a mistake for *āṭha*, barkhu, which, according to the table, ii. 197 (cf. Trumpp, “Grammar of the Sindhī Language,” p. 158), is the name of the first day of a *paksha*.

P. 348. *Veda.*—The author gives six quotations from the *Veda*: one taken from *Patanjali* (i. 29), one from *Śāmikṣya* (i. 31), two from the *Brahmasiddhānta* of Brahmagupta (ii. 110, 111), and two quotations which were probably communicated to him by his Pandits, as he does not mention a particular source whence he took them (i. 348 and ii. 348).

P. 352. *Vāsudevā.*—The quotation corresponds to *Bhagavad-Gītā*, viii. 17.

The book *Śmirī.*—Vide note to p. 131. This quotation seems to have been taken from Manu, *Dharmāśāstra*, i. 72.
P. 353.—The information on the four mānas (cf. Sūrya-Siddhānta, chap. xiv.), as given by Ya’kūb, was the only one at the disposal of Alberuni at the time when he wrote his “Chronology” (v. English edition, p. 15). It was communicated to him by the Kitāb-alghurra of Abū Muḥammad Alnā‘ib Alāmuli. The four different kinds of spaces of time mentioned there are the four mānas, saura, sāvana, candra and nakshatra.

P. 353.—Bhūktī, in Arabic buht, is the daily motion of a planet; cf. Sūrya-Siddhānta, i. 27, note, and here, ii. 195. The Arabic form does not seem to have passed through an intermediate stage of a Prakritic nature, for in Prakrit it would have been bhutto (Vararuci, iii. 1).

P. 355. The sāvana-māna is used, &c.—Cf. the similar rules in Sūrya-Siddhānta, xiv. 3, 13, 15, 18, 19.

P. 357. Ritu.—Vide the description of the six seasons in Sūrya-Siddhānta, xiv. 10, 16.

P. 358. Dominants of the halves of the months.—I do not know a Sanskrit list of these names. The Aśana (Āshunu) perhaps means Aśvin or Aśvini.

P. 359.—Dimas (probably pronounced dimasu) = Sanskrit divasa, is the shibboleth of the Indian vernacular dialect spoken round Alberuni, and probably by himself. I do not know which dialect this was, nor whether there are any traces of it in our days. The change between v and m is also observed in the following examples:—
carmamnat = carmanvati (Chambal), himamant = himavant, jāgamalku = yājnavalkya, macci = vatsya, sugrimu = sugrīva. Some examples of the change of v to m are also given by Hörnlé, “Comparative Grammar,” § 134.

P. 359. The three sounds h, kh, and sh, &c.—On the pro-
nunciation of sh as kh, cf. Hörnle, l. c. § 19, and on the further change of kh to h, ibid. § 19. Examples of the former change are numerous in the Indica; of examples of the latter, cf. munha = mukha, ḍerhaṇa = vapakhaṇa (?), and also āhaři, cf. āshāḍha, kikhaṇa = kishkindha. In Prakrit muham = mukha (Vararuci, ii. 27).

P. 362. 1 ghaṭi = 16 kalā.—Cf. with these measures of time the statements on pp. 336, 337.

P. 364, Chapter XL.—It has also been translated by Reinaud, Fragments Arabes et Persans, pp. 155–160.

P. 364. Samdhī udaya and samdhī astamana.—One would expect samdhīyanḍaya and samdhīyaśtamana, but there is no trace of a y. The forms have a vernacular character, and must be explained according to the analogy of duti = dyuti, and antar = anṭaya.

Hiranyakaśipu.—The story of this king and his son Prahlāda is told by the Vishṇu-Purāṇa, ii. 34 seq.

P. 366. Samdhī.—The way it is used in astrology is shown by the table, ii. 219.

P. 366. Puṇjala.—Vide note to p. 157. The tradition here given is very similar to that mentioned by Colebrooke, "Essays," ii. 332, 333.

P. 366, l. 35.—We find that the beginning of the Hindu solar year 854 Sakakala takes place A.D. 932, March 22, 6 ghaṭi 40° 15', which corresponds to March 22, 7 h. 40 m. civil Greenwich time, whilst the real instant of the solstice is March 15, 12 h. 15 m. civil Greenwich time, so that the solstice precedes the calculation by 6 days and 19 hours, which agrees very well with the 6° 50' which Puṇjala mentions (Schram).
P. 368. Ahargana = ahar + gana.—The author’s erroneous explanation is repeated ii. 26.

Śind-hind = siddhānta.—It may be questioned whether the inorganic n has been introduced into the word by the Arabs, or whether it existed already in the pronunciation of the Hindus from whom they learned the word. I do not know of a rule to this effect in Prakrit or vernacular, but there are certain Indian words which apparently show a similar phonetic process. Cf. e.g. Prakrit uto (Sanskrit, uṣṭra), which in Eastern Hindī has become ūṭ or uṇṭ. Hörnle, “Comparative Grammar of the Gaudian Languages,” § 149.

P. 370. Āryabhāṭa, sen.—Vide note to p. 156.
Āryabhāṭa of Kusumapura. Vide note to p. 246.

The word I cannot decipher may be read َنَفَ, i.e. the article and three consonants with three dots above them, something like َنَفَ.

P. 372. The book Smṛiti mentions.—This is Manu, Dharmaśāstra, i. 80.

P. 375. A translation of his whole work, &c.—Cf. note to pp. 153, 154. Alberuni was translating the Pulisa-Siddhānta, which until that time had not yet been translated into Arabic by Muslim scholars, because they did not like its theological tendency.

P. 378. In writing the introductory sentences of chap. xliii., the author seems to have had in mind Plato’s Timæus, 220: πολλαί καὶ κατὰ πολλαὶ φθοραὶ γεγονασιν ἀνθρώπων καὶ ἔσονται, κ.τ.λ.

The name Ἕππολοχος seems to be a repetition of the name Hippolochos. If it is dropped from the list, we have the fourteen generations which the author counts between Hippocrates and Zeus.

The Arabic مأثاقون seems to be a mistake for مثاقون, Machaon.

P. 380. Paraśurāma.—Vide this legend in Vishnu-Purāṇa, iv. 19 (here added from the Mahābhārata).

P. 380. Buddhodana.—Vide my conjecture as to the origin of this name in note to p. 40.

The Mūhammira.—This term has been explained in note to p. 21.

P. 382. Garga, the son of.—The name of his father is written Jashū or Jashō (here and p. 397). Could this be Yaśodā?

P. 382.—Ali Ibn Zain was a Christian physician in Merw; cf. Shahrazūrī, MS. of the Royal Library, Berlin, MS. Or., octav. 217, fol. 144b; the same in Baihākī, ibid. No. 737, fol. 6a. According to this tradition, his son was the author of the famous medical book Firdaus-alhikma. Cf. also Fihrist, p. 296 and notes; Wüstefeld, Geschichte der Arabischen Aerzte, No. 55.

The book Caraka.—Vide note to p. 159.

P. 383. Kṛiṣa, the son of Ātreya.—If this is what the author means, the Arabic signs مرس must be altered to مرس. Cf. A. Weber, Vorlesungen, p. 284, note 309.

P. 383.—The quotation from Aratus is Phaenomena, vv. 96–134. I give the text from Imm. Bekker, Aratus cum Scholiis, Berlin, 1828:

'Αμφοτέρους δὲ ποσσὶν ὑποσκέπτετο βοῶτεω
Παρθένον, ἓρ ἐν χερσί φέρετι Στάχθην αἰγαλήντα,
εἴτε οὖν Ἀστραίον κείνη γένος, οὐν ρὰ τε φασίν
ἄστρων ἀρχαίον πατέρ' ἐμμεναι, εἴτε τεν ἄλλων,
ἐκεῖδος φορέωτο· λόγος γε μὲν ἐντρέχει ἄλλος.
ανθρώποις, ὃς δὲθεν ἐπίθυμον πάρος ἦν, ἔρχετο δ' ανθρώπων κατεναντία, οὐδὲ ποτ' ἀνδρῶν οὐδὲ ποτ' ἀρχαῖων ἰδιάντα φύλα γυναικών, ἀλλ' ἀναμιξ' ἐκάθητο καὶ ἀθανάτη περ ἐσώσα. καὶ εἴ Δίκην καλέσκειν ἀγειρομένη δε γέροντας ἦ' που εἰν ἀγορῇ ἢ εὐρυχορῷ εὐν ἀγωγῇ, δημοτέρας ἦ' ἐπισπέρχοντα σεμιστας. οὔπω λεγαλέου τότε νεῖκος ἦπισταντο, οὖν διακρίσιον περιμεμφέος οὖν κυδομοῦ αὐτῶς δ' ἐξων. χαλεπὴ δ' ἀπέκειτο θάλασσα, καὶ βίον οὔπω νῆς ἀπόπροθεν ἦγινεσκον. ἀλλ' βοες καὶ ἄραυτα καὶ αὐτῇ πότνια λαῶν μυρία πάντα παρεῖχε Δίκη, ὅτεταρα ὅκαιν. τόφρ ἦν ὄφρ' ἐτί γαία γένος χρυσείων εὗρεβεν. ἀργυρεῖο δ' ὀλυγή τε καὶ σκέφτη τάμπαν ὅμοια ὁμίλει, ποθέωσα παλαιῶν ἦθελα λαὼν.

ἀλλ' ἐμπνυ ἐτί κεῖνο κατ' ἄργυρον γένους ἦν, ἔρχετο δ' ἐξ ὀρέων ὑποθείεσσος ἡχηντων μονιμίας. οὑδὲ τεο ἐπεμισγετο μελιχίουσιν. ἀλλ' ὅτοτ' ανθρώπων μεγάλας πλήσατο κολώνας, ἦπειλεὶ δὴ ὑπετεκτα καθαπτομένη κακότητος, οὐδ' ἐτ' ἐφ' εἰσόποτος ἐλεύσεσθαι καλέσσαν. οὕνεν χρυσείως πατέρες γενέν ἐλπίνοντο χειροτέρην ὑμεῖς δὲ κακότερα τεξείσθε. καὶ δὴ ποῦν πόλεμοι, καὶ δὴ καὶ ἀνάριστον αἴμα ἐσσεται ανθρώπους, κακοῖς δ' ἐπικεκείται ἄλγος. ὃς εἰπέως' ὄρεων ἐπεμαίετο, τός δ' ἄρα λαοῦς εἰς αὐτὴν ἐτί πάντας ἐλιμέναν παπταίνοντας. ἀλλ' ὅτε δὴ κακεῖνοι ἐτέθνασαν, οἱ δ' ἐγένοντο, χαλκεῖν γενέθ, προτέρου ἄλοφεροι ἄνδρες, οἱ πρώτοι κακοεργοῦ ἐχαλκεύσαντο μαχαίραν εινοῦν, πρὼτοι δ' βοῶν ἐπάσαντ' ἄροτροι, καὶ τότε μειὸτα α ἰκη κεῖνον γένους αὐτῶν ἐπταθ' ὑπουρανί.
commentary is not identical with the scholia edited by Bekker. Cf. Eratosthenis Catasterismorum Reliquiae, rec. C. Robert, pp. 82-84.

P. 385. Plato.—This quotation is from Leges, iii. 677; but the phrases forming the conversation have been omitted.

\. ὈΘΗΝ. Τὸ πολλὰς ἀνθρώπων φθοράς γεγονέναι κατακλυσμοῖς τὲ καὶ νόσοις καὶ ἄλλοις πολλοῖς, εν οἷς βραχύ τι τὸ τῶν ἀνθρώπων λειποῖσι γένος, κ.τ.λ. ὦσ οἱ τότε περιφυγόντες τὴν φθορὰν σχεδόν ὀρεινοί τινες ἀν εἰν νομεῖες ἐν κορυφαῖς ποιος, σμικρὰ κύπερτα τοῦ τῶν ἀνθρώπων γένους διασεστομένα, κ.τ.λ. καὶ ὅ τοὺς τοιούτους γε ἀνάγκη ποι τῶν ἄλλων ἀπείρους εἰναι τεχνῶν καὶ τῶν εν τοῖς ἀστείοι πρὸς ἄλληλους μηχανῶν εἰς τε πλεονεξίας καὶ φιλονεκίας καὶ ὀπός ἄλλα κακοργήματα πρὸς ἄλληλοις επινοοῦσιν.

P. 387.—Cf. with this table Vishnu-Purana, book iii. chap. i. and ii., and the Bombay edition, 1886.

Stāmasa seems to be a mistake for Tāmasa.

Caitraka instead of caitra seems to have been derived from an erroneous reading of the beginning of the Sanskrit caitrakīḥpurushādyāśca.

Sudīvya seems to have risen from a wrong division of the words Parāśu (other readings Parabhu, Parama) Divya. The Bombay edition reads praṇahparāmadīvyādīyādīstasya.

Antata, the name of Indra in the fifth Manvantara, can hardly be combined with the Vīhu of Sanskrit tradition.

Sindhu, Reva.—These words, whatever their proper pronunciation may be, are not found in the Sanskrit text.

Puru Muru is Sanskrit Uru Puru, but Pramukha is a gross mistake, for the text has urupurushatadgumnapramukhāh, i.e. Uru, Puru, Satadyumna, and others.

Nabasa and Dhrishna are mistakes for Nabhaga and Dhrishta.

Virajas, Aścarvari, Nirmoga.—The Sanskrit text runs viraścārvarivarvāmścanirmohādyās, which Alberuni has divided into viraja-aścārvarivarvāmśca-nirmoha. Cf. Scor-
varī Vāṃśca on p. 394. Wilson reads the second name Arvarīvat.

Mahāvīrya, name of Indra in the ninth Manvantara, instead of Adbhuta, rests on a misinterpretation of these words: teshām indrō mahāvīryō bhavishyatādbhūto dvija. Sudharmātman.—The Sanskrit text has Sarvadharmā.

Devata Vānupadevāśca, instead of Devavat and Upadeva, rests on a wrong division of the words devavānupadevaśca.

Vicitra-adyā, a mistake for vicitrādyā, i.e. Vicitra and others.

Uru, Gabhī (sic MS.), Budhnya-adyā, a mistake for ururgabhīrabudhnyadyā, i.e. Uru, Gabhīra, Budhnya, and others.

P. 391. The almanac or calendar from Kashmir for the Śaka-year 951 (A.D. 1029) is quoted in two other places, ii. 5 and ii. 8.

P. 392. Only by 525 years.—Cf. on Varāhamihira note to p. 54.

P. 392. Kāraṇasāra by Vītṛesvara.—Vide note to p. 156.

P. 394.—This table is taken from Vishnu-Purāṇa, book iii. chaps. i. and ii.

Niśvara.—Alberuni read Nirāva.

Ścīrvari Vāṃśca.—The author has wrongly divided the

Caitrogni, as the author has, is a mistake for Caitrāgni.

Varaka.—Ed. Bombay, Vamaka; Wilson-Hall, Vanaka.

5. Manvantara: Purdhvābhū has risen through the wrong division of the two words vedāṅrūrdhvābhāu.

Apara has by mistake been taken for a proper noun in the following words:—urdhavāhustathāparah.

Subāhu (Śrābāhu ?).—The Sanskrit text has svadhāman.

6. Manvantara: Atināman.—The Arabic text has atimānu. Or are we to read اتتام instead of انتمان؟

Carshayah (= and the Rishis) by mistake derived from the following passage:—saptāninitiṣcarshayah.

Medhādhriti (Wilson-Hall), medhāmriti (ed. Bombay). Alberuni seems to have read Vedhādhriti, if we are not to read میدهادت instead of میدهادت.

10. Manvantara: Sattya (Wilson-Hall).—The Arabic has something like Sattayd.

Sukshetra.—The Arabic has Sushera instead of Satyaketu. Perhaps the author has overlooked this word and copied the following one, viz., Sukshetra.

Agnidhra = Agnitejas. The Arabic has agnitru اکتیترو, which is perhaps to be changed to اکتیترو (agnitejas).

Nagha.—Wilson-Hall, Anagha.

12. Manvantara: Sutaya, in the Sanskrit text sutapāsca. Perhaps the author has read sutayāsca.

Dyutī and Isānyas have by mistake been derived from the following verse—

tapodhyitirdyutidscānyahsaaptamastutapodhanah.

13. Manvantara: Tatvadarśica, mistake for Tatvadarśin, for the Sanskrit text has tatvadarśica.

Vyaya, mistake for Avyaya. The author seems to have read dhṛtimān vyayaśca instead of dhṛtimānavyayaśca.

Yuktasā and Jīta are taken from the following verse—
yuktas-tathā-jitasa-cānyo-manuputraṁ ataḥ śrīnu.

P. 395.—Vālakhilyas are known as pigmy sages from the Vishnu-Purāṇa, but I do not find there this story of them and Śatakraṭu.

P. 396. Bāli, the son of Virocana, and his Vazīr Venus, i.e. Śukra.—Vide Vishnu-Purāṇa, iii. p. 19, note. There is a Hindu festival called after him Balirāja; v. ii. 182.

P. 397. Vishnu-Purāṇa.—This quotation is found III. ii. p. 31.

P. 398.—The second quotation from Vishnu-Purāṇa is III. iii. p. 33.
Kāli, the son of Jashō (?).—Vide note to p. 382.

P. 398.—The names of the Vyāsas of the twenty-nine Dvāpara-yugas have been taken from Vishnu-Purāṇa, III. iii. pp. 34-37. The author’s tradition differs a little from the Sanskrit text, in so far as he does not always combine the same Vyāsa with the same Dvāpara, particularly towards the end of the list. The names agree in both traditions, except Trivrishan, for which the Arabic has something like Trivarta or Trivритa. Besides, in the word Rinajyeshṭha (in Arabic Rinajertu) the author has made a mistake. The Sanskrit verse runs thus—

kritamjayaḥ saptadaśe riṇajyoshtādase smritah.

Alberuni has read riṇajyeshṭoshtādase instead of riṇajyeshṭādase, and has wrongly divided these words into riṇajyeshṭo-ashtādase instead of riṇajyos ashtādase. Further, he has been guided by the analogy of jyaishṭha (the name of the month), which in vernacular was pronounced jerti, in changing riṇajyesṭha into riṇajertu.

P. 398. Vishnu-Dharma.—In mentioning Vāsudeva, Saṁkarṣaṇa, &c., as the names of Viṣṇu in the yugas, this source agrees with the teaching of the sect of the Bhāgavatas or Pāncarātras.—Vide Colebrooke, “Essays,” i. 439, 440.
ANNOTATIONS.

P. 401.—The story of the birth of Vāsudeva, i.e. Krishṇa, is related in the Vishnu-Purāṇa, book v. chap. iii.

P. 403. The children of Kaurava, &c.—The following traditions are taken from the Mahābhārata: the dice-playing from book ii., or sahādāparvan; the preparing for battle from book v., or udyogaparvan; the destruction of the five brothers by the curse of the Brahmin from book xvi., or mausalaparvan; their going to heaven from book xvii., or mahāprasthānakaparvan.

The introductory sentence of this relation, وكان أرود كورو على بني العمومة, literally, “The children of Kaurava were over their cousins,” is odd, and perhaps not free from a lacuna. Pāṇḍu had died, and his children grew up in Hastinapura, at the court of Kaurava, i.e. Dhṛita-rāṣṭra, their uncle, the brother of Pāṇḍu. One expects a sentence like “The children of Kaurava cherished enmity against their cousins,” but as the Arabic words run, one could scarcely translate them otherwise than I have done. The children of Kaurava had “the charge of their cousins,” &c.

Mankalus seems to be a mistake for Myrtilus. Cf. Eratosthenis Catasterismorum Reliquiae, rec. C. Robert, p. 104. The source of Alberuni seems to have been a book like the chronicle of Johannes Malalas.

The second tradition, taken from a commentary on Aratus’ Phaenomena (vide note to p. 97), is found in the same book, Eratosthenis, &c., p. 100, 98. For this information I am indebted to my colleague, Professor C. Robert.

P. 408.—The number 284,323 of people who ride on chariots and elephants is a mistake for 284,310. I do not see what is the origin of this surplus of 13 men. However, the wrong number must be kept as it is, since the author reckons with it in the following computation.
ANNOTATIONS.

VOL. II.

P. i.—The famous chronological chapter xlvii. consists of two parts of very different value. Part i., on p. 2-5, an explanation of the mythical eras of the Hindus, is taken from the Vishnu-Dharma, on which work cf. note to i. P. 54.

Part ii., on p. 5-14, containing information of a historical character, has not been drawn from a literary source. If the author had learned these things from any particular book or author, he would have said so. His information is partly what educated people among Hindus believed to be historic and had told him, partly what he had himself observed during his stay among Hindus and elsewhere. That their historic tradition does not deserve much credit is matter of complaint on the part of the author (on pp. 10, 11), and that altogether the description of historic chronology, as far as he was able to give it, is by no means in all points satisfactory, is frankly admitted by the author himself (on p. 9). Whatever blame or praise, therefore, attaches to this chapter must in the first instance be laid to the charge, not of Alberuni, but of his informants. What he tells us is to be considered as the vulgata among educated Hindus in the north-west of India in his time.

Although the tales which had been told Alberuni may not have been of a high standard, still it is much to be regretted that he has not chosen to incorporate them into his Indica (cf. p. 11, 1-6).

Whether his hope (expressed on p. 8), that he might some day learn something more of this subject, was realised
or not, I cannot make out. However, the stray notes on Indian chronology scattered through his *Canon Masudicus*, which he wrote some years after the *Indica*, do not seem to betray that his Indian studies had made much progress.

In all researches on Indian chronology, Alberuni's statements play an eminent part, specially those relating to the epochs of the Saka and Gupta eras. Cf. among others the following publications:

M. Müller, "India, What can it teach us?" pp. 281, 286, 291.

P. 2.—As the author had to compare a number of different eras with each other, he stood in need of a common standard to which to reduce all of them, and for this purpose he chose the New-Year's Day or first Caitra of the year 953 of the Saka era, which corresponds to—

1. A.D. 1031, 25th February, a Thursday.
2. A. Hijræ 422, 28th Safar.
3. A. Persarum 399, 19th Isfandârmadh-Mâh.

The Naurôz or New-Year's Day of the Persian year 400 fell on 9th March 1031 A.D., which is the day 2,097,686 of the Julian period (Schrüm).

P. 2, l. 30.—This refers to the year of the kaliyuga 3600, as there have elapsed 10 divya years or 3600 years of the present yuga. On the next page Alberuni makes the calculation for the gauge-year, or the year 4132 of the kaliyuga. A kalpa being a day of Brahman, 8 years, 5 months, 4 days correspond to \(8 \times 720 + 5 \times 60 + 4 \times 2 \), or 6068 kalpas, or 26,213,760,000,000 years. Of the present kalpa there have elapsed six manvantaras or 1,840,320,000 years, seven samdhis or 12,096,000 years, twenty-seven caturyugas or 116,640,000 years, the kritayuga or 1,728,000 years, the tretayuga or 1,296,000 years, the dvaparayuga or 864,000 years, and of the kaliyuga 4132 years; so altogether of the seventh manvantara 120,532,132 years,
of the kalpa 1,972,948,132 years, and of Brahman's life 26,215,732,948,132 years, as stated p. 3, ll. 6-9 (Schram).

P. 3. It was I who told it to Yudhishthira, &c.—The author of Vishnu-Dharma refers in these words to the third parvan (vanaparvan) of the Mahābhārata.

P. 4. l. 29.—From the beginning of Brahman's life to that of the present kalpa there have elapsed 6668 kalpas or 6668 × 1008 × 4,320,000 or 26,423,470,080,000 years. Six manvantaras = 6 × 72 × 4,320,000 or 1,866,240,000 years; twenty-seven caturyugas = 27 × 4,320,000 or 116,640,000 years; three yugas + 4132 years = 3 × 1,080,000 + 4132 or 3,244,132 years. The latter number represents the years elapsed of the caturyuga; adding to it successively the other numbers of years, we find the numbers given ll. 29-31 of this page. The Arabic manuscript has 26,425,456,200,000 instead of 26,425,456,204,132 (Schram).

P. 6, l. 3.—In the book Srudhava, &c., cf. note to i. p. 158. Candrabīja.—I first took the reading of the manuscript to be جنريل, but now I believe I can see a pale dot above the last consonant, so that we may read جنريل. On the shashtyabda, or sixty-years cycle, cf. chap. lxii. p. 123.

P. 6. The epoch of the era of Śaka, &c.—Alberuni speaks of this era in his Canon Masudicus (composed during the reign of Mas'ud) in the following terms: الوقت بلغة الهند هو كال وأشهر التواريع عددهم وعاصمة عند منحصبيهم هكذا اى وقت سق وحسب من سنة هلكه لا أنه كان متغلبًا عليه والرسم فيه وفي غيره أن تذكر سنة الثامنة دون الناقصة. (Beginning of the sixth chapter, book i., copied from the Codex Elliot, now in the British Museum.)

Translation: "Time is called Kāla in the language of the Hindus. The era most famous among them, and in particular among their astronomers, is the Śakakāla, i.e. the time of Śaka. This era is reckoned from the year of his destruction, because he was ruling (rather, tyrannising) over it (i.e. over that time). In this as well as in other
eras it is the custom to reckon only with complete, not with incomplete or current years."

Then the author goes on to give rules for the comparison of the Śaka era with the Greek, Persian, and Muslim eras.

A later author, 'Abū-Sa'id 'Abd-alḥayy Ibn Alḍahḥāk Ibn Mahmūd Gardēzī (Garδez, a town east of Ghazna), has reproduced the information of Alberuni on the Śaka era in Persian. Not having the original (MS. Ouseley 240, Bodleian Library, Oxford) at my disposal, I give a translation made years ago:—

"The Hindu era is called کل (kāla) means time, and دک (Śaka) is the name of a king whose death was made an era; he did the Hindus a great deal of harm, so they made the date of his death a festival" (Oxford manuscript, p. 352).

The place Kārūr is also mentioned in the Chachnāma. Vide Elliot, "History of India," i. 139, 143, 207.

P. 7. Al-arkand.—Cf. note to i. 312. The book does not seem to exist in the collections of Arabic manuscripts in Europe.

P. 8.—The pronunciation of the names Kanir, Bardari, Mārigala, and Nirahara (Nira-griha?) is more or less conjectural.

Alberuni identifies Mārigala with Takšašila (vol. ii. 302), i.e. the Taxila of the ancients. The name Mārigala seems to be preserved in that of a range of hills lying only two miles to the south of Shahdhest (Cunningham, "Ancient Geography of India," p. 111). The place is also mentioned in the Tābakāti-Nāsiṛt. Vide Elliot, "History of India," ii. 271, 273.

P. 9.—Durlabha, a native of Multān, is only twice mentioned. Here the author quotes from him a method for the computation of the Śaka era, and p. 54 a method for the computation of ahargana. According to him, the Indian year commenced with the month Mārgaśīrsha, but the astronomers of Multān commenced it with Caitra (p. 10).

P. 10. Barhataki.—The name occurs only in this one
place. If it were an Indian name, I should think of something like Vrihatkîna (or Vrihatketu 부하 stk). If it is Turkish, it is a compound, the second part of which is tagin (as in Toghrultagin and similar names). As the author declares the dynasty to be of Tibetan origin, the question is whether the name may be explained as Tibetan.

P. 10. Var.—As the Arabic verb may be connected either with the preposition bi or with the accusative, we may read either bvr or vr.

P. 10, l. 25. He began to creep out.—In the Arabic text, p. t'y, 8, read َُهُلٌ أُلمٌ instead of َُهُلٌ لُهُلٌ.

P. 11. Kanik.—Only the three consonants KNK are certain. We may read them Kanik or Kanikkhu, which would be a Middle-Indian Kanikkhu for Sanskritic Kanishka. Thus the name Turk was pronounced by the Middle-Indian tongue as Turukkhlu, and Sanskritized as Turuskha.

This Zopyrus-story was reproduced by Muḥammad ‘Auff. Cf. Elliot, “History of India,” ii. 170.

P. 13. Lagatürmān.—The uncouth formation of this name seems to point to a Non-Indian (Tibetan?) origin. I at first thought to combine it with the name of the Tibetan king, Langtarma, who abolished Buddhism, A.D. 899 (v. Prinsep, “Useful Tables,” ii. 289), as our Lagatürmān was the last of a series of Buddhistic kings, and as the names resemble each other to some extent. However, this combination seems delusive.

The name Kallar is written Kallr َُكٍ. Could this name be combined with Kulusha (Kalusha ?), which e.g. occurs as the name of the Brahmin minister of the Mahratta Rāja Sambaji?

P. 13, l. 17. The Brahman kings.—The word sāmanta means vassal.

Kamalūk was a contemporary of the prince ‘Amr Ibn Laith, who died A.D. 911. Cf. Elliot, “History of India,” ii. 172. Is the name a hypokoristikon of one like Kamalavardhana?
Ánandapála, Bhímapála, and Trilocanapála mean having Śiva as protector. If, therefore, these princes, like the Indo-Scythian kings (cf. Drouin, *Revue Numismatique*, 1888, 48), were Śiva-worshippers, we must explain the name Jaipál perhaps as Jayápála, i.e. having Durgá (the wife of Śiva) as protector. Cf. the Hindu kings of Kabul in Elliot, "History of India," ii. 403 seq. (in many points antiquated).

The name Trilocanapála (here Tarúcanpál) has been much disfigured in the Arabic writing. Vide the Puru Jaipal in Elliot, l.c., ii. 47, 463, 464.

P. 13, l. 14. The latter was killed.—The Arabic manuscript has قتل، which may be read قتل (narratum est) or قتل (interfectus est). I have not been able to ascertain whether the year in question was that of the enthronisation of Trilocanapála, or that of his death. I prefer, however (with Reinaud), to read قتل, "he was killed," because evidently the author stood so near to the events in question that he could have ample and trustworthy information, and that, in fact, an on dit (لا) seems here entirely out of place.

P. 13, l. 22. The slightest remnant, literally one blowing fire, a well-known simile for nobody. Cf. e.g. Hasan Nizāmī in Elliot's "History of India," ii. 235, l. 13.

P. 15.—For Alfażārī and Ya'kūb Ibn Ṭarīk, cf. note to i. 165, 169.

Muḥammad Ibn Ishāk of Sarakhs is mentioned only here and in the tables on pp. 16 and 18, besides in Alberuni's "Chronology" (English edition, p. 29).

P. 16, l. 6 of the table.—It is not clearly said in the text that the anomalistic revolution is meant, but the numbers which Alberuni quotes leave no doubt on the subject. The days of a kalpa are 1,577,916,450,000, which being divided by the number 57,265,194,142, give for one revolution 27,962,183,142 days, or 27 days 13 h. 18 min. 33 sec., whilst the anomalistic revolution of the moon is equivalent to 27 days 13 h. 18 min. 37 sec., an agreement so very close, that every doubt that there could be meant
anything but the anomalistic revolution is completely excluded. Moreover, the number of the revolutions of the apsis, 488,105,858, being augmented by 57,265,194,142, is equal to 57,753,300,000, the number of sidereal revolutions; and, indeed, the revolutions of the apsis, plus the anomalistic revolutions, must be equal to the sidereal revolutions (Schram).

P. 16.—The note in the table “The anomalistic revolution of the moon is here treated,” &c., is not quite clear, and probably materially incorrect. That the term \(\text{حامة القمر} \) means the anomaly (\(\text{ανωμαλία} \) in Greek, \(\text{κέντρον} \) in Sanskrit), was first pointed out to me by my friend and colleague, Prof. Förster; but this note, which seems to be intended as a sort of explanation of the term, does not exactly render what astronomers understand by anomaly. Literally translated it runs thus: “The \(\text{حامة القمر} \)-alkamar stands in the place of the apsis, because the result is its (whose? the apsis?) share, since it (the \(\text{حامة القمر} \)-alkamar) is the difference between the two motions” (لاين ما يخرج يكون حامة القمر (not (is between the two motions)). Accordingly, we must translate the term as “falling to the moon as her lot or share,” viz., movement, in Arabic \(\text{الحركة الحامة القمر} \). Therefore, in the Arabic text, pp. 14 and 64, 8 write \(\text{حامة} \) instead of \(\text{حامة القمر} \).

P. 19.—Abû-alhasan of Ahwâz is mentioned only in this place. He seems to have been a contemporary of Alfazâri and Ya'kûb Ibn Ħârîk.

P. 21, l. 24.—A caturyuga or 4,320,000 solar years consists of 53,433,300 lunar months or 1,602,999,000 lunar days; so one solar year has \(\frac{371}{1,96} \) lunar days, and the difference between the solar and lunar days of a year is \(\frac{11}{4,32} \). The proportion 360 lunar days: \(\frac{11}{4,32} \) days = \(x \) lunar days: 30 days gives for \(x \) the number of
9764 and 1191, which is equivalent to 9764 and 1199. Vide p. 24, l. 23 (Schram).

P. 22, l. 17.—Read 22nd instead of 23nd (Schram).

P. 23. Padamāsa.—This seems to be an old mistake which has crept into the Arabic manuscripts of the works of Alphazārī and Ya’kūb. Cf. the author’s “Chronology” (English edition), p. 15.

P. 27.—The rule given in the first fifteen lines of this page is completely erroneous, and consequently the example calculated after this rule is so too. The right method would be the following:—“The complete years are multiplied by 12; to the product are added the months which have elapsed of the current year. The sum represents the partial solar months. You write down the number in two places; in the one place you multiply it by 5311, i.e. the number which represents the universal adhīmāsa months. The product you divide by 172,800, i.e. the number which represents the universal solar months. The quotient you get, as far as it contains complete months, is added to the number in the second place, and the sum so obtained is multiplied by 30; to the product are added the days which have elapsed of the current month. The sum represents the candrāhargana, i.e. the sum of the partial lunar days.” These two proceedings would be identical, if we were not to omit fractions; but as an adhīmāsa month is only intercalated when it is complete, we must first determine the number of adhīmāsa months, and, omitting the fractions, change them to days; whilst when we multiply beforehand by 30, the fractions of the adhīmāsa months are also multiplied, which is not correct. This is at once seen in the example which he works out after this rule, and we wonder that Alberuni himself did not see it. He is calculating the aharaganas for the beginning of a year, consequently also for the beginning of a month, and, notwithstanding, he is not at all surprised to find (p. 30) 28 days and 51 minutes of the month already passed.

The adhīmāsa days are nothing else than adhīmāsa months converted into days. As the number of the adhi-
mâsa months must be a whole, so the number of the adhimâsa days must be divisible by 30. Accordingly, the number quoted, p. 29, l. 30, not being divisible by 30, is at once recognised as erroneous, and it is astonishing when he says in the following lines, "If, in multiplying and dividing, we had used the months, we should have found the adhimâsa months and multiplied by 30, they would be equal to the here-mentioned number of adhimâsa days." In this case certainly the number ought to be divisible by 30. Perhaps he would have found the fault, if not, by a strange coincidence, the difference between the true value and the false one had been exactly 28 days or four complete weeks, so that though the number considered is an erroneous one, yet he finds, p. 30, l. 9, the right week-day.

Alberuni finds, p. 29, l. 2, as the sum of days from the beginning of the kalpa to the seventh manvantara 676,610,573,760. Further, he finds, l. 7, that from the beginning of the seventh manvantara till the beginning of the present caturyuga there have elapsed 42,603,744,150 days, and, l. 12, that till the beginning of the kaliyuga there have elapsed 1,420,124,805 days of the present caturyuga. Adding these numbers, we find that the sum of days elapsed from the beginning of the kalpa to that of the caturyuga is 720,634,442,715; but as he finds, p. 30, l. 5, that from the same epoch to the gauge-date there have elapsed 720,635,951,963 days, so the gauge-date would be 1,509,248 days after the beginning of the kaliyuga. Now we know that the gauge-date is 25th February 1031 (see p. 2, l. 17, and note), or the day 2,097,686 of the Julian period, whilst the first day of the kaliyuga, as is generally known, coincides with the 18th February 3102 before Christ or with the day 588,466 of the Julian period, so that the difference of the two dates is 1,509,220, and not 1,509,248 days.

To this result we shall also come when working out Alberuni's example after the method stated in the beginning of this note. Instead of p. 29, l. 16, we should then have: the years which have elapsed of the kalpa up to that year are 1,972,948,132. Multiplying them by 12, we get as the number of their months 23,675,377,584. In the date which we have adopted as gauge-year there is
no month, but only complete years; therefore we have nothing to add to this number. It represents the partial solar months. We multiply it by 5311 and divide the product by $172,800$; the quotient $727,661,633\frac{3443}{5800}$ represents the adhimâsa months. Omitting the fractions, we add $727,661,633$ to the partial solar months $23,675,377,584$, and get $24,403,039,217$ as the partial lunar months. By multiplying this number by 30 we get days, viz., $732,091,176,510$. As there are no days in the normal date, we have no days to add to this number. Multiplying it by $55,739$ and dividing the product by $3,562,220$, we get the partial īnarâtra days, viz., $11,455,224,575\frac{193449}{400000}$. This sum of days without the fraction is subtracted from the partial lunar days, and the remainder, $720,635,951,935$, represents the number of the civil days of our gauge-date. Dividing it by 7, we get as remainder 4, which means that the last of these days is a Wednesday. Therefore the Indian year commences with a Thursday. The difference between $720,635,951,935$ and the beginning of the kaliyuga $720,634,442,715$ is, as it ought to be, $1,509,220$ days (Schram).

In the beginning of chap. lli., in the Arabic text, ل 8, it seems necessary to write هیجر and ایام instead of يم and اليام.

P. 29, l. 10. Thursday.—The Arabic manuscript has Tuesday.

P. 30, l. 10–17.—This ought to run as follows:—We have found above $727,661,633\frac{3443}{5800}$ for the adhimâsa months; the wholes represent the number of the adhimâsas which have elapsed, viz., $727,661,633$, whilst the fraction is the time which has already elapsed of the current adhimâsa month. By multiplying this fraction by 30 we get it expressed in days, viz., $24\frac{3}{8}$ days, or 28 days 51 minutes 30 seconds, so that the current adhimâsa month wants only 1 day 8 minutes 30 seconds more to become a complete month (Schram).

P. 31, l. 19.—The number $1,203,783,270$ is found by adding the $30 \times 1,196,525$ or $35,895,750$ adhimâsa days to the $1,167,887,520$ solar days (Schram).
ANNO\TATIONS.

P. 31, l. 24.—The number of days from the beginning of the caturyuga to the gauge-date is here found by Pulisa's method to be 1,184,947,570, whilst p. 33, l. 16, the number of days from the beginning of the caturyuga to that of the kaliyuga is found to be 1,183,438,350. The difference between both numbers is (as it ought to be) 1,509,220 days (Sahram).

P. 33, l. 24.—The method of Āryabhaṭa is the same as that given before, only the numbers by which we are to multiply and to divide, are different according to his system, which supposes a different number of revolutions in a kalpa. According to Āryabhaṭa the elder, a caturyuga has 1,577,917,500 days (see vol. i. p. 370, l. 28). As to the revolutions of sun and moon, they seem to be the same as given by Pulisa. The tables, pages 16 and 17, are not quite correct in this, as they give, for instance, for the revolutions of the moon's node and apsis the 1000th part of their revolutions in a kalpa, whilst in vol. i. p. 370, l. 16, it is said that, according to Pulisa and Āryabhaṭa, the kalpa has 1008 caturyugas. But p. 19, l. 15, the numbers 4,320,000 for the sun and 57,753,336 for the moon are given as possibly belonging to the theory of Āryabhaṭa. The same numbers are cited by Bentley in his "Historical View of the Hindu Astronomy," London, 1825, p. 179, as belonging to the system of the so-called spurious Ārya Siddhanta. It is doubtless the same system, for if we compare the number of days between the beginning of the kalpa and that of the kaliyuga, which Bentley states in the above-cited book, p. 181, to be 725,447,570,625, with the same sum quoted by Alberuni, p. 33, l. 29, there can scarcely be a doubt as to the identity of both systems, especially as this number 725,447,570,625 is a curious one, giving Thursday for the first day of the kalpa, whilst the other systems give Sunday for this date. Of this book Bentley says, p. 183: "It would be needless to waste any more time in going over its contents; what has been shown must be perfectly sufficient to convince any man of common sense of its being a downright modern forgery;" and p. 190, "The spurious Brahma Siddhanta, together with the spurious Ārya Siddhanta, are doubtless the productions of the last century at farthest." Perhaps
he would have chosen more reserved expressions, if he had known that this "production of the last century" was already cited by Alberuni.

When we adopt these numbers for a caturyuga, i.e. 1,577,917,500 civil days, 4,320,000 revolutions of the sun and 57,753,336 revolutions of the moon, and consequently 53,433,336 lunar months, we find the numbers belonging to a yuga by dividing the above numbers by four, as in this system the four yugas are of equal length. Thus we get for a yuga 394,479,375 civil days, 1,080,000 solar years, and consequently 12,960,000 solar months, and 388,800,000 solardays, 13,358,334 lunar months, 400,750,020 lunar days, 398,334 adhisthôsa months, and 6,270,645 ānaratra days. To find the number 725,449,079,845 mentioned, p. 33, l. 31, as the sum of days between the beginning of the kalpa and the gauge-date, we are to proceed as follows:—From the beginning of the kaliyuga to our gauge-date there have elapsed 4132 years, which multiplied by 12 give 49,584 as the partial solar months. This number multiplied by the universal adhisthôsa months 398,334, and divided by the universal solar months 12,960,000, gives 1523$^{14}_{13}$ as the number of adhisthôsa months. This number, without the fraction added to the solar months 49,584, gives 51,107 as the number of the partial lunar months, which multiplied by 30 gives 1,533,210 as the number of the partial lunar days. This number multiplied by the universal ānaratra days 6,270,645 and divided by the universal lunar days 400,750,020 gives 23,990$^{24}_{23}$ as the sum of the partial ānaratra days; and 23,990 subtracted from the partial lunar days 1,533,210 gives 1,509,220 as the civil days elapsed of the kaliyuga till the gauge-date, identical with the number found in note to p. 27. These 1,509,220 days added to the 725,447,570,625 days which separate the beginning of the kalpa and the kaliyuga, give the number of 725,449,079,845 days cited p. 33, l. 31. Finally, the number of days elapsed of Brahman's life before the present kalpa, is got by multiplying the number of days in a kalpa, i.e. 1,590,540,840,000 (see page 370, vol. i.) by 6068, the number of the kalpas elapsed before the present one (Schram).

P. 34, l. 32.—There is here the same fault as that which
led Alberuni to a false result, p. 27. The multiplication by 30 must be made after dropping the fraction of the adhimāsa months, not before (Schram).

P. 36, l. 1.—The lacuna must have contained a phrase like this:—“In three different places; they multiply the number in the lowest place by 77, and divide the product by 69,120.” This follows clearly from the explanation which he gives in the following page (Schram).

P. 36, l. 9.—Read lunar instead of solar, in the Arabic (مر, 7, last word), القمرة instead of القمرية.

P. 36, l. 10.—The expression is a very concise one, so that it is not quite clear what is meant (l. 14) by the “middle number.”—It is to be understood in the following manner: “This number of the partial lunar days is written down in two different places, one under the other. The one of these is “in the uppermost place” (l. 17); they multiply the lower number by 11, and write the product under it. Then they divide it, i.e. the product, by 403,963, and add the quotient to the middle number, i.e. to the product of eleven times the partial lunar days (Schram).

P. 36, l. 26.—A certain number of months A is to be divided by $\frac{1155}{6513933}$. If we wish to get the same result by dividing only by 65, we must subtract from A a certain number X which is to be determined by the equation

$$\frac{A}{6513933} = \frac{A-X}{65}.$$

This equation gives for X the value $X = A \left(\frac{1155}{6513933}\right)$, or, reduced, $X = A \left(\frac{1155}{1036880}\right)$, or at last $X = A \left(\frac{77}{80120}\right)$. The equation $X = A \left(\frac{1155}{6513933}\right)$ can also be written in the form $65\frac{1155}{13933} : \frac{1155}{13933} = A : X$, that is, as Alberuni states it (l. 30), “the whole divisor stands in the same relation to its fractions as the divided number to the subtracted portion” (Schram).

P. 36, l. 33.—Alberuni has not made the calculation given
above in a general way, but he has made it only for a special case, for the gauge-date. He finds the fraction \(\frac{77}{91} \), which he would find for every other date, as this fraction is independent of the number \(A \) (Schram).

P. 37, l. 26.—Here again a certain number of ñunarâtra days \(A \) is to be divided by \(63 \frac{30606}{11} \). If we wish to get the same result by dividing only by \(63 \frac{11}{11} \), or, which is the same, by \(7 \frac{9}{11} \), we must add to \(A \) a certain number \(X \), which is determined by the equation

\[
\frac{A + X}{7 \frac{9}{11}} = \frac{A}{63 \frac{30606}{11}} \quad \text{or} \quad A + X = A \left(\frac{703}{11 \times 63 \frac{30606}{11}} \right) \quad \text{or} \quad X = A \left(\frac{703 - 11 \times 63 \frac{30606}{11}}{11 \times 63 \frac{30606}{11}} \right) = A \left(\frac{703 - 11 \times 63 \frac{30606}{11}}{11 \times 63 \frac{30606}{11}} \right)
\]

or at last, dividing numerator and denominator by 97, we find \(X = \frac{A}{403963 \frac{9}{11}} \). The \(\frac{9}{11} \) are neglected (see p. 38, l. 9) (Schram).

P. 38, l. 25.—The Arabic manuscript has 77,139, instead of 7739, as Dr. Schram demands; v. p. 39, l. 7, and p. 40, l. 8.

P. 39, l. 20.—Here he grants that the 28 days which we get over 727,661,633 months are to be reckoned after the beginning of the month Caitra, so that the result found, p. 29, l. 30, agrees with the 28th, not with the first Caitra (Schram).

P. 39, l. 24.—The middle number was multiplied by \(\frac{8}{80} \); a solar year has 365 \(\frac{8}{80} \) days (l. 36), or 52 weeks 1 day and \(\frac{8}{80} \) of a day. By adding the product of the number of years multiplied by \(\frac{8}{80} \) to this number itself, we get the sum of days by which these years exceed whole weeks. The rest of the calculation is sufficiently explained by Alberuni himself (Schram).

P. 41, l. 19.—This is the same case as p. 36, only the numbers are a little different. If \(A \) is the number of months to be divided by 32 \(\frac{38}{38} \), and we wish to subtract a number from \(A \) so as to get the same result by
dividing the difference by 32 only, we have the equation
\[
\frac{A}{32} = \frac{A - X}{3}
\]
which gives for \(X\) the value
\[
A \left(\frac{1}{32}\right) \text{ or } X = A \left(\frac{3553}{216000}\right) \text{ or } X = A \left(\frac{1111}{67500}\right).
\]
Alberuni has again made the calculation for a special case, the gauge-date, and found the same fraction (Schram).

P. 41, l. 20.—"This number of days," viz., the number of solar days corresponding to the given date (Schram).

P. 41, l. 33.—The MS. has 974 instead of 976.

P. 42, l. 3.—The number of solar days, 1,555,222,000, is here taken as divisor instead of the number of adhimāsa months, 1,593,336. The fraction ought to be \(976\frac{104064}{139856}\) = 976\(\frac{104064}{129856}\), the common divisor 24 (Schram).

P. 42, l. 6.—Alberuni does not seem to have understood Pulisa's calculation which is correct, although there seems to be a lacuna in its explanation. According to Pulisa's theory, there are in a caturyuga 1,555,200,000 solar days and 1,593,336 adhimāsa months. Dividing the first number by the second, we get as the time within which an adhimāsa month sums up \(976\frac{104064}{139856}\) days. So one would get the number of adhimāsa months by dividing the given number of solar days by the number \(976\frac{104064}{139856}\); but Pulisa prefers not to reckon with the fraction, so he diminishes the number of given days by a certain amount and divides only by 976. The number which is to be subtracted from the given days is easily found by the following equation:

Let \(D\) be the number of given solar days; we then have
\[
\frac{D}{976\frac{104064}{139856}} = \frac{D - X}{976} \text{ or } X = D \left(\frac{104064}{139856}\right) \text{ or } X = D \left(\frac{104064}{129856}\right)
\]
\[
\text{or } X = D \left(\frac{104064}{139856}\right).
\]
Now 384 is a common divisor to 104,064 and the divisor 1,555,200,000. So we get \(X = D\frac{271}{208000}\), just as Pulisa finds it (Schram).
P. 42, l. 22.—Not only is it not "quite impossible that this number should, in this part of the calculation, be used as a divisor," but it needs must be used as a divisor. This we see at once when, instead of working out the calculation with special numbers, we make it algebraically. Let S be the number of solar days in a caturyuga, and A the number of adhimāsa months in a caturyuga. Then the number of days within which one adhimāsa month sums up, will be found by dividing S by A. By this division we shall get wholes and a fraction; let the wholes be represented by Q and the numerator of the fraction by R. We then have $\frac{S}{A} = Q + \frac{R}{A}$ or $S = A Q + R$. Now if, the given number of solar days being D, we have to divide D by $Q + \frac{R}{A}$ to get the number of adhimāsa months, but as we wish to divide by Q alone, we must subtract from D a number X, which will be found by the equation

$$\frac{D}{Q + \frac{R}{A}} = \frac{D - X}{Q}$$

or

$$X = D \left(\frac{\frac{R}{A}}{Q + \frac{R}{A}} \right)$$

As $AQ + R$ is equal to S, we have $X = D \frac{R}{S}$, where S is the number of solar days in a caturyuga, which must necessarily be a divisor in this part of the calculation (Schram).

P. 42, l. 31.—As one ānurātra day sums up in $\frac{63}{63} \frac{\text{609,545}}{\text{609,545}}$ lunar days (see p. 37, l. 17), we have again the equation

$$\frac{L}{\frac{63}{63} \frac{\text{609,545}}{\text{609,545}}} = \frac{L - X}{63}$$

or

$$X = L \left(\frac{\frac{63}{63} \frac{\text{609,545}}{\text{609,545}}}{63} \right)$$

where L represents the number of the given lunar days.

P. 44, l. 1.—The number $720,635,951,963$ is not correct, as we have seen in note to p. 27. It is too great by 28 days. But the number of adhimāsa days, $21,829,849,018$ (l. 10), is also 28 days too great. So the difference is again correct. There is the same fault as at p. 27. The calculation ought to run as follows:—The partial civil days which have elapsed up to our gauge-date are $720,635,951,935$. This number is given, and what we
want to find is how many Indian years and months are equal to this sum of days. First we multiply the number by 55,739 and divide the product by 3,506,481; the quotient is 11,455,224,575\(\frac{19343900}{1811}\) únarâtra days. We add 11,455,224,575 to the civil days; the sum is 732,091,176,510 lunar days. Dividing this number by 30, we get as quotient 24,403,039,217 lunar months (and no fraction; so we see that the date in question consists of a number of months only, or, what is the same, that the date corresponds to the beginning of a month). Multiplying the lunar months by 5311 and dividing the product by 178,111, we get 727,661,633\(\frac{608444}{1111}\) adhimâsa months; 727,661,633 adhimâsa months subtracted from the 24,403,039,217 lunar months give 23,675,377,584 solar months, which divided by 12 give 1,972,948,132 years and no fraction. So we find the given date corresponding not only to the beginning of a month, but also to that of a year. We find the same number of years of which the gauge-date consists (see p. 29, l. 17) (Schram).

P. 45, l. 12.—This rule must indeed be based on some complete misunderstanding, for it is absolutely erroneous, as Alberuni rightly remarks (Schram).

P. 46, l. 1.—If we calculate from the beginning of the kalpa or the caturyuga, there are in the epoch neither fractions of the adhimâsa months nor of únarâtra days; but as the great number of days embraced by such long periods makes the calculation wearisome, the methods set forth in this chapter start neither from the beginning of the kalpa nor from that of the caturyuga, but from dates chosen arbitrarily and nearer to the time for which they are to be employed. As such epochs are not free from fractions of the adhimâsa months and únarâtra days, these fractions must be taken into account (Schram).

P. 46, l. 27.—The numbers employed here do not belong to Brahmagupta's, but to Pulisa's system. The year taken as epoch is the year 587 Śakakâla. As we have seen, p. 31, ll. 8–10, that in the moment of the beginning of our gauge-date or of the year Śakakâla 953, there have elapsed 3,244,132 years of the caturyuga, there must have elapsed
3,243,766 years of the caturyuga till the beginning of the year 587 Śakakāla. We must now first calculate the adhimāsa months and ūnarātra days for this epoch. After Pulisa’s method (p. 41, l. 29), we have: 3,243,766 years are equal to 38,925,192 solar months or 1,167,755,760 solar days. This number multiplied by 271 and divided by 4,050,000 gives 78,138\frac{443}{527}. As here the nearest number is to be taken, we get 78,139, which, subtracted from 1,167,755,760, gives 1,167,677,621. This latter number divided by 976 gives as the number of adhimāsa months 1,196,391\frac{8}{23}. Now 1,196,391 adhimāsa months are equal to 35,891,730 adhimāsa days, which, added to 1,167,755,760 solar days, give 1,203,647,490 lunar days. According to Pulisa’s theory (see p. 26, l. 9), there are in a caturyuga 1,603,000,080 lunar and 25,082,280 ūnarātra days; so one ūnarātra day sums up in 63\frac{27}{83} lunar days. Therefore we should have to divide the given number of lunar days \(L\) by 63\frac{27}{83}, but we prefer to subtract from \(L\) a certain number \(X\), and to divide the rest by 63\frac{27}{83} or \(\frac{703}{11}\). The number \(X\) will be given by the equation \(L = \frac{11L - 11X}{63\frac{27}{83}} = \frac{703}{11}L - X\). This equation gives for \(X\) the value \(X = \left(\frac{703}{63\frac{27}{83}}\right)L\) or \(X = \left(\frac{439}{48980558}\right)L\) or \(X = \left(\frac{1}{111573439}\right)L\), or nearly \(11L\) \(X = \frac{11}{111573}\).

Now \(L\) being equal to 1,203,647,490 lunar days, \(11L\) will be equal to 13,240,122,390 lunar days; this number divided by 111,573 gives 118,667\frac{189}{111573}. Taking the nearest number, we subtract 118,668 from 13,240,122,390 and get 13,240,003,722, which divided by 703 gives 18,833,575\frac{75}{69} as the number of ūnarātra days. This added to the 1,203,647,490 lunar days gives for the date of our epoch the number of civil days 1,184,813,915.

This number divided by 7 gives 5 as remainder. Now the last day before the present caturyuga was a Monday (see p. 33, l. 11), therefore the last day before our epoch is a Saturday, and any number of days elapsed since that epoch if divided by 7 will indicate by the remainder, the week-day counted from Sunday as 1, as it is said, p. 47, l. 19. Now the whole method is easily recognised.
as thoroughly correct. Instead of multiplying the partial solar days by \(\frac{371}{40,509,000} \), we multiply them by \(\frac{1}{11,1045} \), which is sufficiently correct, as \(\frac{271}{40,509,000} \) is equal to \(\frac{1}{14944,114} \).

As besides the whole adhimāsa months there is yet a fraction of \(\frac{5}{7} \) adhimāsa months in our epoch, we add 5 before dividing by 976. The calculation of the ưnarātra days has already been explained; but as in our epoch besides the whole ưnarātra days there is still a fraction of \(\frac{27}{46} \) ưnarātra days, we must add 497 before dividing by 703. The whole proceeding is thus explained (Schram).

P. 48, l. 11.—The calculation has been made for the complete years elapsed before our gauge-date. So we get the week-day of the last day before the first Caitra of the gauge-date, and if this is a Wednesday, the first Caitra itself is a Thursday; cf. p. 30, l. 9.

The first day of this epoch corresponds to the day 1,964,031 of the Julian period. Adding 133,655 to 1,964,031, we have for the first Caitra 953 the day 2,097,686 of the Julian period, as it ought to be (Schram).

P. 48, l. 21.—The 18th Isfandârmadh of Yazdajird 399 corresponds in fact to Wednesday, 24th February 1031, the day before the first Caitra 953 Šakakâla (see note to p. 2, l. 17) (Schram).

P. 49, l. 22. By six years.—The Arabic manuscript has seven instead of six.

P. 50, l. 1.—The method here employed is based on Pulisa’s theory. According to this theory, the solar days must be divided by 976,4238 to get the adhimāsa months. Now 976,4238 with sufficient accuracy is equal to 976,39 or \(\frac{29282}{39} \).

If \(S \) represents the number of solar months, the solar days or 30 \(S \) are to be divided by \(\frac{29282}{39} \), or, what is the same, 900 \(S \) must be divided by 29282.

To get the ưnarātra days, the lunar days must be divided by 63,62972 (see note to p. 46, l. 27). Now 63,62972 is equal to \(\frac{703,6273}{11} \), or with sufficient accuracy \(\frac{703}{11} \).
or at least equal to $\frac{210063}{22000}$. So the multiplications and divisions of this method are explained.

The constant numbers which are to be added, are inherent to the epoch. The year 888 Śakakāla corresponds to the year 3,244,067 of the caturya; 3,244,067 years are equal to 38,928,804 solar months, or 1,167,864,120 solar days. These solar months multiplied by 66,389 and divided by 2,160,000 give 1,196,502 $\frac{4063}{180000}$ adhimāsa months, or 35,895,060 adhimāsa days. This added to the 1,167,864,120 solar days gives 1,203,759,180 lunar days. Eleven times this number is equal to 13,241,350,980; this latter number divided by 111,573 gives 118,678 $\frac{99486}{111573}$, or the nearest number 118,679. Subtracting this from 13,241,350,980, the remainder is 13,241,232,301, which being divided by 703, gives 18,835,323 $\frac{2283}{75}$ ūnarātra days; these days subtracted from the lunar days give for the number of civil days 1,184,923,857. Dividing this last number by 7, we get the remainder 5; and as the last day before the present caturya was a Monday (see p. 33, l. 11), the last day before the epoch here adopted is a Saturday, so that any number of days elapsed since that epoch, if divided by 7, will indicate by the remainder the week-day counted from Sunday as 1. The first day of this epoch corresponds to the day 2,073,973 of the Julian period. We have found in our epoch the fraction of adhimāsa month $\frac{4063}{180000}$, which is equal to $\frac{660}{29282}$ or very nearly $\frac{661}{29282}$ adhimāsa month, so we must add 661 before dividing by 29282.

The fraction of ūnarātra days $\frac{332}{703}$ is equal to $\frac{69,600}{210902}$ or nearly to $\frac{69601}{210902}$. Therefore we must add 69,601 before dividing by 210,902. Alberuni has, instead of this number 69,601, the number 64,106, 4 instead of 9, and the last three numbers reversed (Schram).

P. 50, l. 35.—We had 780 months; adding thereto the 23 adhimāsa months, we have 803 months, which being multiplied by 30 give 24090, and not 24060 days. All the following faults are the consequences of this one (Schram).

P. 51, l. 2.—It ought to be “adding thereto 69,601, we
get the sum 79,566,601. By dividing it by 210,902, we get the quotient 377, i.e. ūnarātra days, and a remainder of $\frac{56247}{210902}$, i.e. the avamas." (In the Arabic text, p. 77, the reading of the MS. ought not to have been altered.) The correct result is 23,713 civil days. If we divide this number by 7, we find the remainder 4, which shows again that the last day before our gauge-date is a Wednesday. By adding 23,713 to 2,073,973, we get for the first Cāitra 953 the day 2,097,686 of the Julian period, as it ought to be (Schram).

P. 51, l. 4.—Read 377, instead of 307.

P. 51, l. 9.—This method works with numbers much less accurate than the preceding ones. It is assumed that one adhimāsa month sums up in $32\frac{1}{4}$ solar months. So the solar months are divided by $32\frac{1}{4}$ or by $\frac{329}{11}$, or, what is the same, they are multiplied by $\frac{11}{329}$. For the time within which an ūnarātra day sums up, there is simply taken $63\frac{10}{11}$, and the lunar days are divided by $63\frac{10}{11}$ or $\frac{703}{11}$, or, what is the same, multiplied by $\frac{11}{703}$. The epoch corresponds to the year 427 Šakakâla, or the year 3,243,606 of the caturyuga. This number of years is equal to 38,923,272 solar months, which, multiplied by 66,389 and divided by 2,160,000, gives 1,196,331 adhimāsa months. The author has taken 1,196,332 adhimāsa months and neglected the little fraction $\frac{11}{703}$, so that he has no fractions of adhimāsa months. These 1,196,332 adhimāsa months added to the 38,923,272 solar months give 40,119,604 lunar months or 1,203,588,120 lunar days. Multiplying by 11, we have 13,239,469,320, which divided by 111,573 gives 118,661 or $\frac{118661}{111573}$ or 118,662. Subtracting this from 13,239,469,320, we have 13,239,350,658, which divided by 703 gives 18,832,646 for the number of ūnarātra days. So the fraction of ūnarātra days is $\frac{658}{703}$, very near to that adopted by the author of the method, viz., $\frac{714}{703}$. By subtracting the ūnarātra days from the lunar days we get as the number of civil days 1,184,755,474, which is divisible by 7. So, as the last day before the caturyuga was Monday, the last day before this epoch is also Monday, and the number of days elapsed since this epoch if divided by 7, will give a remainder which indicates the week-day,
ALBERUNI'S INDIA.

counting Tuesday as 1. The first day of this epoch corresponds to the day 1,905,590 of the Julian period (Schram).

P. 51, l. 24.—It is easily understood why this method is called that of the Siddhânta of the Greeks. It is assumed that an adhimûsa month sums up in 32 ⅝ or \(\frac{229}{7} \) solar months. Now \(\frac{229}{7} \) solar months are equal to 1⅔ solar years. Therefore this method is apparently an application of the cycle of nineteen years of the Greeks (Schram).

P. 52, l. 2.—32 months 17 days 8 ghaṭi and 34 cashaka are only another expression for 32 ⅝ months (Schram).

P. 52, l. 10.—The number of civil days is 192,096; dividing by 7, we have as remainder 2. As in this method (see note to p. 51, l. 9) Tuesday is to be reckoned as 1, this gives for the last day before our gauge-date Wednesday. Adding 192,096 to 1,905,590, we get as the first Caitra 953 the day 2,097,686 of the Julian period, as it ought to be (Schram).

P. 52, l. 20. Al-harkan.—This book is mentioned only in this passage. The author calls it a canon, ṣ, i.e. a collection of astronomical, chronological, and astrological tables and calculations. Whether it was an original composition in Arabic or translated from Sanskrit, and from what original, we do not learn from him. The word seems to be an Arabic rendering of aharyana. Alberuni quotes from this book the computation of an era the epoch of which falls 40,081 days later than that of the Persian era, and compares it with the gauge-date (p. 53).

P. 52, l. 22.—If the epoch should fall 40,081 days after that of the era Yazdajird, it would fall on the first Caitra of the year 664 Šakakâla; but this is not the case. The first of Sha'bân of the year 197 coincides with the beginning of Vaiśākha 735. As there are 72 years to be subtracted, we should come to Vaiśākha 663, and to begin with the beginning of a year, the epoch must be postponed to Caitra 664. But this is of no importance, as we shall see that Alberuni altogether misunderstood the method here given (Schram).
P. 52, l. 24.—These two dates do not agree to a day. The first Ferwerdinmâh Yazdajird coincides with 16th June 632; 40,081 days later was Monday, 12th March 742, whilst the 21st Daimâh of the year 110 of Yazdajird corresponds to Sunday, 11th March 742. But as the date itself is erroneous, this is of no importance (Schram).

P. 52, l. 27.—As the numbers which form multiplications and divisions in this method are identical with those of the Pañca Siddhântikâ (p. 51), we can reckon the constants by the directions there given. The epoch of the method of Al-hârkan is the beginning of Sha’hân of the year 197. But this date corresponds to the beginning of Vaisakha 735 Śakakâla. So we should have for this date the following calculation:—Subtracting 427 from 735 years and 1 month, we get 308 years 1 month, or 3697 months; 3697 multiplied by 7 and divided by 228 gives for the number of adhimâsa months 11331/5; the 113 adhimâsa months added to the 3697 solar months give 3810 lunar months or 114,300 lunar days. This number multiplied by 11 is 1,257,300; we add 514. which gives us 1,257,814; this divided by 703 gives for the number of űnarâtra days 17891/65. So we should have all the numbers wanted for our epoch if, in fact, this epoch were the true epoch. But we have to add 864 months to the interval. Therefore these 864 months, which must always be added, must first be subtracted from the epoch, so that this latter is thrown back by 72 years. Now 72 years or 864 solar months multiplied by 7 and divided by 228 give the number of 26147/50 adhimâsa months. These together with the 864 solar months are 890 lunar months or 26,700 lunar days, which multiplied by 11 and divided by 703 give 417249 űnarâtra days. So we have to subtract from the numbers first found 26147/50 adhimâsa months and 417249 űnarâtra days. The number of adhimâsa months inherent to our true epoch will then be 11331/5 - 26147/50 = 86523/50, or with sufficient accuracy 87 without a fraction, and the number of űnarâtra days 17891/65 - 417249 = 137189/65. Therefore no fraction is to be added to the adhimâsa months, whilst to the űnarâtra days there must be added 29/63, or nearly 1/703. Therefore we must add 28 (not 38) before multiplying by 11. The 114,300 lunar
days of the first epoch diminished by the 26,700 lunar days of the 72 years, give 87,600 lunar days. Subtracting therefrom 1371 uunaratra days, we have 86,229 civil days, which being divided by 7 give as remainder 3. So the last day before this epoch is Thursday, and the number of days elapsed since the epoch of this method, if divided by 7, will give a remainder indicating the week-day, counting Friday as 1. The first day of this epoch corresponds to the day 1,991,819 of the Julian period (Schram).

P. 53, l. 1.—It must be 28, not 38 (see preceding note) (Schram).

P. 53, l. 6.—We must add 1, if we wish to have the weekday of the date itself, not that of the last day before it.

P. 53, l. 8.—Here Friday is considered as the first day of the week, not, as in the Indian books, Sunday. This ought to have been remarked (Schram).

P. 53, l. 9.—Alberuni’s notes to this method of Alharkan are perhaps the weakest part of his work. His very first remark shows a complete misunderstanding of the whole calculation. The method is correct, for the months of the seventy-two years with which it begins are solar. If, as Alberuni would have them, they were lunar, and the rest of the months, as he understands it, were lunar too, then the calculation would simply be nonsense; for finding adhimâsa months is nothing else than finding the number which we must add to convert solar months into lunar ones. But when the months are already lunar, how can one add anything to them to make them once more lunar? (Schram).

P. 53, l. 15.—The example he works out is as erroneous as the remarks on the method itself. It must be clear to anybody who examines the method given on p. 52, that by the words (l. 29), “Add thereto the months which have elapsed between the first of Sha’bân of the year 197 and the first of the month in which you happen to be,” there can only be meant solar months. The author fixed the initial epoch in his calendar by saying “1 Sha’bân 197,” instead of fixing it in the Indian calendar by saying
“first Vaiśakha 735.” This accidental circumstance, which is of no consequence, induced Alberuni to think that he was to take the interval in lunar months, as the Arabic calendar has only lunar months, and he did not notice that lunar months in this part of the calculation would be absolutely impossible. He takes, in fact, in the example, the interval in lunar months, for there are 2695 lunar months between the first Sha'bān 197 and first Rabi' I. 422, and to these 2695 lunar months he adds the 864 months which he knows to be solar. Then he changes all these mingled months, of which the greatest part are already lunar, to lunar ones, as if they all were solar, and at last he wonders that the result is nonsense, and tries to amend the method. The only fault in the matter is that he did not understand the method.

If we wish to exemplify the method of the canon Al-ḥarkan in the case of our gauge-date, i.e. the first Caitra 953 Šakakāla, we must proceed as follows:—Subtracting from 953 years 735 years 1 month, we get as interval 217 years 11 months or 2615 solar months; adding thereto 864 solar months, we have 3479 solar months. This multiplied by 7 and divided by 228 gives for the number of adhimāsa months $\frac{106}{3\frac{3}{28}}$; adding the 106 adhimāsa months to the 3479 solar months, we get 3585 lunar months, or 107,550 lunar days. We add 28, and multiplying 107,578 by 11, we have 1,183,358, which number divided by 703 gives the number $168\frac{3}{28}$ for the ūnarātra days. Subtracting the 1683 ūnarātra days from the 107,550 lunar days, we have 105,867 civil days. We add 1 in order to get the week-day of the first Caitra 953, and dividing by 7, we get as remainder 7. And as here Friday is considered as 1, so 7 corresponds to Thursday, and the first Caitra 953 is found to be Thursday. By adding 105,867 to 1,991,819 we have for the first Caitra of the year 953 the day 2,097,686 of the Julian period, as it ought to be (Schram).

P. 53, l. 33.—The emendation is as erroneous as the example was. The 25,958 days are counted from the epoch falling 40,081 days after that of Yazdajird to the first Sha'ban 197. But 25,958 days are equal to 879 Arabic months, or 73 years and 3 months. Further, he
takes again the interval in lunar months, so that now in
the amended method he has nothing but lunar months,
which he changes to lunar months as if they were solar.
So he gets a number which is, of course, absolutely errone-
ous, but he thinks it to be correct, for in the last instance
he commits a new fault by subtracting 1 instead of adding
it. And so by an accidental combination of different faults
he finds by chance a week-day which agrees with that of
the day before our gauge-date (Schram).

P. 54, l. 12.—As the multiplications and divisions of
this method have already been explained in the note to
pp. 36 and 37, we have here to account for the constant
numbers only which are inherent to the epoch. The
epoch is 854 Śakakāla, which corresponds to the year
1,972,948,033 of the kalpa. Multiplying 1,972,948,033
by 12, we find 23,675,376,396 solar months, which multi-
plied by 1,593,300,000, the adhimāsa months of a kalpa,
and divided by 51,840,000,000, the solar months of a kalpa,
give the quotient 727,661,597 14463 as the number of
adhimāsa months. Adding the 727,661,597 adhimāsa
months to the 23,675,376,396 solar months, we have
24,403,037,993 lunar months or 732,091,139,790 lunar
days. This latter number multiplied by 25,082,550,000, the
ūnarātra days of a kalpa, and divided by 1,602,999,000,000,
the lunar days of a kalpa, gives for the number of ānarātra
days 11,455,224,000 14463. Subtracting the 11,455,224,000
ūnarātra days from the 732,091,139,790 lunar days, we
find as the number of civil days elapsed from the begin-
ing of the kalpa to this epoch 720,635,915,790, a number
which divided by 7 gives as remainder 0. So, as the last
day preceding the kalpa was a Saturday (see p. 28, l. 31),
the last day before this epoch is also a Saturday, and
any number of days elapsed since this epoch, if divided
by 7, shows by its remainder the week-day counted from
Sunday as 1. The fraction of the adhimāsa months inher-
ent to the epoch has been found to be 14463. Now
14463 is equal to 14459 65, or very nearly 29 83; so we add 29
before dividing by 65. The fraction of the ānarātra days
is 14463. Now again 14463 is equal to 685,670,793, or
nearly 686; so we add 686 before dividing by 703.
The first day of this epoch coincides with the day 2,061,541 of the Julian period (Schram).

P. 55, l. 5.—This method consists in finding first the difference of the mean longitude of sun and moon. The numbers are Pulisa's. There are in a caturyuga 4,320,000 revolutions of the sun, and 57,753,336 revolutions of the moon. The difference, 53,433,336, is the number of lunar months. In every lunar month the moon gains one revolution or 360 degrees over the sun. Dividing 53,433,336 by the solar years 4,320,000, we find as the number of lunar months belonging to one solar year 12\frac{134188}{2000000}. So in every solar year the moon gains over the sun 12\frac{134188}{2000000} revolutions.

Omitting the whole revolutions which have no interest, the moon gains over the sun \frac{134188}{2000000} revolutions, or, what is the same, 132\frac{7758}{9000} degrees. Now 7758 degrees are equal to 46\frac{63}{60} or to 46\frac{63}{20} minutes. So the moon gains over the sun in every solar year 132 degrees 46\frac{63}{20} minutes. By multiplying the number of years by 132 degrees 46\frac{63}{20} minutes, we find the number of degrees which the moon has gained in the given interval over the sun. Now if in the beginning of this epoch sun and moon had been together, this would be the difference of the mean longitude of sun and moon. But as this was only in the beginning of the caturyuga, but not at the moment of our epoch, there is an initial difference between the longitudes of sun and moon which must be added. Our epoch, or the year 821 Śaka-kāla, corresponds to the year 3,244,000 of the caturyuga. Multiplying 3,244,000 by the number of lunar months 53,433,336, and dividing by the number of solar years 4,320,000, we find that in these 3,244,000 years the moon gained over the sun 40,124,477\frac{117}{88} revolutions. Dropping again the whole revolutions, we see that the moon was in advance of the sun at the moment of our epoch by \frac{117}{88} revolutions, or 112 degrees. Therefore these 112 degrees must be added, and all the numbers of this method find in this their explanation. The result for our gauge-date, 358° 41' 46", is the number of degrees, minutes, and seconds by which the moon is in advance of the sun at the moment of the beginning of the solar year 821, that
is, in the moment when the sun enters Aries. As in the beginning of the luni-solar year sun and moon must have been in conjunction, the beginning of the luni-solar year has preceded that of the solar year by an interval which was just sufficient for the moon to make 358° 41' 46'' in advance of the sun. Now as the moon gains 360 degrees in a lunar month or 30 lunar days, so she gains 12° in every lunar day. Therefore dividing 358° 41' 46'' by 12, we get the number of lunar days and fractions by which the luni-solar year's beginning preceded that of the solar year. The fractions of the lunar days are changed to ghaṭīs and cashakas. Thereby we get 29 days 53 ghaṭīs 29 cashakas as the time by which the beginning of the luni-solar year preceded the sun's entering Aries, in agreement with the fraction of the adhimāsa month found on p. 31, l. 17. For 44 28/110 adhimāsa months are also equal to 29 days 53 ghaṭīs 29 cashakas. The number 27 days 23 ghaṭīs 29 cashakas which he gives, p. 55, l. 25, is obtained by dividing 328° 41' 46'', and not 358° 41' 46'', by 12 (Schram).

P. 55, l. 17.—The Arabic manuscript has 328 instead of 358.

P. 55, l. 33.—The number is 132° 46° 34'' (as the Arabic manuscript has). Therefore the portio anni is not 11° 3' 52'' 50'', but 11 days 3 ghaṭīs 53 cashakas 24''; and the portio mensis not 0° 55' 19'' 24'' 10'', but 0 days 55 ghaṭīs 19 cashakas 27''

The reason of this calculation is the following:—In a year or 12 solar months the moon gains over the sun 132° 46° 34''. As she gains 12 degrees in every lunar day, the twelfth part of these degrees will represent the sum of lunar days and their fractions which the solar year contains over 360, that is to say, the sum of adhimāsa days and their fractions. One solar month containing 0 adhimāsa days 55 ghaṭīs 19 cashakas 27'' the number of solar months within which one adhimāsa month or 30 lunar days sum up, will be found by dividing 30 days by 0 days 55 ghaṭīs 19 cashakas 27''. This gives 2 years 8 months 16 days 3 ghaṭī 55 cashaka.

P. 56, l. 1.—There must be a great lacuna, for the first
ANNOTATIONS.

385

lines of this page are absolutely without meaning. I am inclined to attribute this lacuna to the source whence the author drew this information, i.e. the Arabic translation of Karaṇasāra.

P. 59, l. 23.—The calculation should be made in the following manner:—The sum of days of the kaliyuga is multiplied by the star-cycles of a kalpa and divided by the civil days of a kalpa, viz., 1,577,916,450,000. So we get the revolutions and part of a revolution which the planet has made during the time elapsed since the beginning of the kaliyuga. But in the beginning of the kaliyuga all planets have not been in conjunction; this was only the case in the beginning of the kalpa. Therefore to the fractions of revolutions which the planet made since the beginning of the kaliyuga, we must add its place at this beginning itself, i.e. the fraction of a revolution which every planet had at the beginning of the kaliyuga, the whole revolutions being of no interest. But Brahmagupta adds these numbers before dividing by the civil days of the kalpa, and this is quite natural, both fractions having by this proceeding the same divisor. Therefore what he calls the basis, ought to be the fraction of every planet at the beginning of the kaliyuga multiplied by the civil days of the kalpa; but he has made a great mistake. Instead of multiplying the fractions by the civil days of a kalpa, viz., 1,577,916,450,000, he has multiplied them by the years of a kalpa, viz., 4,320,000,000. Therefore all numbers given on p. 60 as the bases are entirely erroneous. To find the fractions for each planet and the bases we have the following calculation:—From the beginning of the kalpa to that of the kaliyuga there have elapsed 1,972,944,000 years; so to get the places of the planets at the beginning of the kaliyuga we ought to multiply the revolutions of each planet by 1,972,944,000, and to divide them by the years of a kalpa, 4,320,000,000. As these two numbers have the common divisor 432,000, we multiply the revolutions of each planet by 4567 and divide them by 10,000. This will give us the place of the planet at the beginning of the kaliyuga. We have thus for the single planets:

For Mars, 2,296,828,522 revolutions multiplied by 4567

VOL. II. 2 B
and divided by 10,000 give $1,048,961,585\frac{9,074}{10,000}$ revolutions; so the place of Mars at the beginning of the kaliyuga is $\frac{9,074}{10,000}$ of a revolution.

For Mercury, $17,936,998,984$ revolutions multiplied by 4567 and divided by $10,000$ give $8,191,827,435\frac{9,988}{10,000}$ revolutions; so the place of Mercury is $\frac{9,988}{10,000}$ revolutions.

For Jupiter, $364,226,455$ revolutions multiplied by 4567 and divided by $10,000$ give $166,342,221\frac{9,988}{10,000}$ revolutions; so his place is $\frac{9,988}{10,000}$ revolutions.

For Venus, $7,022,389,492$ revolutions multiplied by 4567 and divided by $10,000$ give $3,207,125,280\frac{9,984}{10,000}$; so her place is $\frac{9,984}{10,000}$ revolutions.

For Saturn, $146,567,298$ revolutions multiplied by 4567 and divided by $10,000$ give $66,937,284\frac{9,988}{10,000}$ revolutions; and his place is $\frac{9,988}{10,000}$ revolutions.

For the sun's apsis, 480 revolutions multiplied by 4567 and divided by $10,000$ give $219\frac{2180}{10,000}$ revolutions; and its place is $\frac{2180}{10,000}$ revolutions.

For the moon's apsis, $488,105,858$ revolutions multiplied by 4567 and divided by $10,000$ give $222,917,945\frac{2416}{10,000}$ revolutions; and its place is $\frac{2416}{10,000}$ revolutions.

For the moon's node, $232,311,168$ revolutions multiplied by 4567 and divided by $10,000$ give $106,096,510\frac{4268}{10,000}$ revolutions; and its place is $\frac{4268}{10,000}$ revolutions.

Multiplying now the place of every planet by $1,577,916,450,000$, we get the following bases for the single planets:

For Mars, $1,573,813,867,230$.
" Mercury, $1,566,555,451,500$.
" Jupiter, $1,575,549,575,325$.
" Venus, $1,572,235,950,780$.
" Saturn, $1,572,551,534,070$.
the sun's apsis, $340,829,953,200$.
the moon's apsis, $550,061,674,470$.
the ascending node, $671,561,241,120$ (Schram).

P. 67, 1. 14. A.H. 161.—According to p. 15, the year was A.H. 154. Cf. note to i. 169.

P. 71.—With the orbits of the planets cf. Sūrya-Sidhānta, xii. 90, note.

Pp. 74 seq.—As for the Arabic terminology of these pages, it deserves to be noticed that—
(1.) the true distance = Sanskrit mandakarna.

(2.) That the true distance of the shadow's end; and

(3.) Sinus totus, the radius = Sanskrit trijyā or trijyā, means the sinus of three zodiacal signs or 90 degrees, i.e. the radius.

P. 74, ll. 17, 18.—Instead of TC= the Arabic manuscript has KC=, which has been corrected by Dr. Schram.

P. 75, l. 34.—The lacuna must be something like the following:—"For KC must be divided by the divisor kept in memory" (Schram).

P. 78, l. 27.—This and the two following passages are not clear. Alberuni does not seem to have understood the subject, for the shadow is neither the greatest nor the mean, but the true shadow; and the shadow from which one is to subtract, i.e. 1581, is nothing else than the earth's diameter, which also is neither the mean nor the greatest, but always the same (Schram).

P. 82. Two suns, two moons, &c.—This theory, as well as the expression fish (a name for the polar star ?), seem to be of Jaina origin. Cf. Colebrooke, "Essays," ii. 201.

P. 84.—Cf. with this table of the Nakshatras a paper of Thibaut, "The Number of the Stars constituting the several Nakshatras according to Brahmagupta, &c.," the "Indian Antiquary," 1885, p. 43; also Colebrooke, "Essays," ii. 284, and Sūrya-Siddhānta, p. 321.
P. 89, l. 32.—In the Arabic text, p. ﴾٤٥﴿, 15, read ﴾٤٥﴿ instead of ﴾٤٥﴿. The number of years is 1800, not 2800.

P. 90. Kālāmākā. —This term (also kālāmākā) is explained in Sūrya-Siddhānta, note to ix. 5.

The work Ghurrat-alxzājāt, only once mentioned, is perhaps identical with the Kitāb-alghurra, which Alberuni quotes in his "Chronology" (my translation, p. 15 et passim). Its author was Abū-Muḥammad Almāʾib Alāmūlī, who has used the work of Yaʿkūb Ibn Ṭārīk. Cf. note to i. 169.

P. 90, l. 21.—Emendation of the khandaḥkhaṭyaka (also on p. 91), i.e. Uttarakhandaḥkhaṭyaka.

On Vijayanandīn (l. 26), the author of Karaṇatīlaṅka, cf. note to i. p. 156.

P. 101.—The enumeration of mountains, here taken from the Matsya-Purāṇa, may be checked by the help of Vishnu-Purāṇa, ii. 141, note 2, and ii. 191 seq. The last name is written bahāshīr in the Arabic, which I cannot identify with an Indian name. Perhaps it is a blunder for mahāshīr, which might represent mahāsaila. Vide Vishnu-Purāṇa, II. iv. p. 197.

P. 102.—The story of Soma, the husband of the daughters of Prajāpatī (the lunar stations), occurs in its elements already in the Vedic period. Cf. H. Zimmer, Althindisches Leben, pp. 355, 375.

P. 104.—On the Hindu theory of ebb and flow, cf. Vishnu-Purāṇa, ii. 203, 204. The two names, of which I have not found the Indian equivalents, are written bahāraṇa and vuhar in the Arabic.

P. 105. The Vishnu-Purāṇa says.—The author seems to refer to Vishnu-Purāṇa, II. iv. p. 204: "The rise and fall of the waters of the different seas is five hundred and ten (not 1500) inches" (or finger-breadths).
P. 106.—The author’s theory of the origin of the Dibajat has already been mentioned, vol. i. 233.

P. 110.—As to the strictures of the author on the sincerity of Brahmagupta, cf. note to p. 25 (here ii. p. 263). The passages which excited the indignation of Alberuni do not express the view of Brahmagupta, but were simply taken by him from older books—in fact, written पूर्वकौशांतसारसार्या. Cf. Kern, translation of Brihat-Samhitā, note to chap. iii. v. 4 (p. 445).

P. 114, i. 12. Kinds of eclipses.—Read instead of this, colours of the eclipses. On Alkhwārizmi, cf. note to ii. 79. What the author here mentions as a view of the Hindus, agrees literally with Śūrya-Siddhānta, vi. 23.

P. 116.—On the Khanda-khādyaka, the Sanskrit original of the Arabic Sindhind, cf. note to i. 153, 154.

P. 118.—On the Brihajjātakam of Varāhamihira, cf. note to i. 219.

P. 119.—Rules for finding the dominants or regents of the day, month, and year are given in the Śūrya-Siddhānta, i. 51, 52; xii. 78, 79.

P. 120.—On the srudhava (?) of Mahādeva, not to be confounded with the book of the same title by Utpala, cf. note to i. 157.

P. 120. Table of the serpents.—The names of this table must be compared with the names in Vishnu-Purāṇa, ii. 74. 285. The words Sukra and Cakrakāṣṭha seem to be mistakes of the Arabic copyist for Vāsuki and Cakrakāṣṭha.

P. 121.—The names of the dominants of the planets are not known to me from a Sanskrit source. Therefore the pronunciation of some of them remains uncertain.

Pp. 121, 122.—The names of the dominants of the Nakshatras are given by A. Weber, Ueber den Vedakalender Namens Jyotisham, p. 94. Cf. also Śūrya-Siddhānta,
viii. 9, pp. 327 seq., and *Vishnu-Purāṇa*, II. viii., notes on pp. 276, 277.

Instead of *Mitra*, the deity presiding over Anurādhā, it would perhaps be better to write *Maitra*, and in the Arabic *میتر* (*Vishnu-Purāṇa*, ii. p. 277).

The latter part of this list in the Arabic text is not free from confusion.

The regent of Uttarabhādrapada is placed side by side with Purvabhādrapada, whilst the latter station is left without its regent, which is *aja ekapāt* (*Sūrya-Siddhānta*, p. 343). A part of this word seems to be extant in the square for *aśvini*, which has *اوبرکبارَ*. Perhaps this is to be read *aśvin ajaiakapād*, *اپوِ آجرکبار*, in which case the Arabic copyist has made two blunders, dropping part of the word *ajaiakapād* and placing it in the wrong square.

Pp. 127, 128.—The dominants of the single *lustra* are given in *Brihat-Samhitā*, chap. viii. 23.

The names of the single years exhibit some differences from the Sanskrit text (*Brihat-Samhitā*, viii. 27–52).

No. 8, *پایاسِ* instead of *bhāva*, has risen from a wrong division of the words of the text—

srīmukhabhāvasāhvau,

i.e. *srīmukha-bhāva-sāhvau*.

No. 9, *حی* instead of *جو* = *yuva* = *yuvan*, is perhaps a mistake of the copyist of the Arabic text.

No. 15, *ویشا* (in Kern’s edition *vrisha*), is not a mistake, but a different reading. The word in brackets (*Vrishabha*) is to be cancelled.

No. 18, *ناوات*, cannot be combined with *pārthiva*. It corresponds to *natain*. Cf. Kern’s various readings to chap. viii. 35.
No. 30. The name of the thirtieth year is durmukha. Perhaps the reading has risen from a wrong division of these words (viii. 38)—

\[\text{manmatho 'ya paratasa\text{c}a durmuk\text{h}a,}\]
so as to represent the elements -\text{c}a dur-.

No. 34. (sarva), seems to be a mistake for sarvari or sarvarin.

No. 40. par\text{\textv{\textd{a}}}vasu is the reading of some manuscripts for parab\text{\textv{\textd{a}}}va. Cf. Kern, various readings to viii. 41.

No. 48. This year is called \text{\textd{a}}nanda by Kern, but the reading of Alberuni, vikrama, occurs also in Sanskrit manuscripts. Cf. various readings to viii. 45.

No. 56. The of the text seems to be a blunder of the copyist for \text{\textd{a}}nd\text{\textv{\textd{a}}}bhi (viii. 50).

No. 57. \text{\textv{\textd{a}}}ng\text{\textv{\textd{a}}}ra or \text{\textv{\textd{a}}}ng\text{\textv{\textd{a}}}ri, the reading of certain manuscripts instead of ud\text{\textv{\textd{a}}}ri (viii. 50).

No. 58 and 60. The words (instead of \text{\textd{a}}nk\text{\textv{\textd{a}}}ra) and \text{\textv{\textd{a}}}k\text{\textv{\textd{a}}}\text{\textv{\textd{a}}}sha and kshaya, seem to be examples of a phonetic change between \text{\textd{a}} and r.

The same list of names is given in S\text{\textv{\textd{a}}}rya-Siddh\text{\textv{\textd{a}}}nta, i. 55, note.

P. 130.—With this chapter on the four parts of the life of a Brahman cf. Vish\text{\textv{\textd{a}}}nu-Pur\text{\textv{\textd{a}}}na, book III. chap. ix.

P. 131.—The complete verse of Bashsh\text{\textd{a}}r is this—

\textquote{The earth is dark, but the fire is bright,}
\textquote{And the fire is worshipped, since there is fire.}

This is the saying of a man whose parents had come as prisoners of war from Tukh\text{\textv{\textd{a}}}rist\text{\textv{\textd{a}}}n on the Upper Oxus, but he was born in Ba\text{\textv{\textd{a}}}ra, and lived in Bagdad under the Khalif Almahdi. As he stood under the accusation of being a heretic (Zoroastrian or Manich\text{\textv{\textd{a}}}en), or, according to another version, because he had composed satirical verses on the Khalif, he was, notwithstanding his great age, sentenced to be beaten, and died in consequence, A.H. 167 = A.D. 784. Cf. Ibn Khallik\text{\textv{\textd{a}}}n, \textit{Vita}, No. 112.

P. 134, l. i.—The south, as the direction foreboding evil, has already once been mentioned in connection with the islands L\text{\textv{\textd{a}}}k\text{\textv{\textd{a}}} and Va\text{\textv{\textd{a}}}v\text{\textv{\textd{a}}}mukha, \textit{vide} i. 307, 308.

P. 135.—On the vegetables which must not be eaten, cf. Manu, v. 5, and Vāsishṭha, xiv. 33. Nālīkā seems to be =Sanskrit nālikā.

P. 136.—The contents of this chapter are nearly related to Vishnu-Purāṇa, book III chap. viii.

P. 137.—The story of King Rāma, the Brahmin, and the Candra, taken from the Rāmāyana, vide in Wilkins’ "Hindu Mythology" (Calcutta, 1882), p. 319.

Pp. 137, 138.—The two quotations of Alberuni from the Bhagavadgītā can hardly be compared with any passage in the book in its present form. Cf. note to i. 29.

P. 139.—On the āśvamedha or horse-sacrifice, cf. Colebrooke, "Essays," i. 55, 56.

Pp. 140, 141.—This legend, as given on the authority of the Vishnu-Dharma, is not known to me from a Sanskrit source.

P. 142.—As the original of this quotation from the Purāṇas is not known to me, the pronunciation of some of the proper nouns remains uncertain.

P. 145.—I do not know the original of this quotation from Varāhamihira’s Śaṅkhyā.

Pp. 145, 146.—The words here attributed to Śaunaka are probably taken from the Vishnu-Dharma. Cf. note to i. 54.
P. 147.—The story of the head of Brahman is part of the legend of Śiva's fight with the Asura Jalandhara. Cf. Kennedy's "Researches," p. 456.

P. 149.—This and the following chapters treat of subjects which are discussed more or less in every Indian law-book, as in those of Manu, Āpastamba, Gautama, and others. Alberuni, however, does not seem to have drawn directly from any of these books, but rather from his own experience, from what his Pandits had told him, and what he himself had observed during his stay in India.

P. 153.—Alḥajjāj was governor of Babylonia during twenty years under the Omayyade Kalif 'Abdulmalik (684–704) and his son Alwalid (704–714).

P. 153. That a Brahmin and a Cāṇḍāla are equal to him.—Cf. the saying of Vyāsa, the son of Parāśara, here vol. i. p. 44.

P. 155.—On the forbidden degrees of marriage, cf. Manu, iii. 5.

P. 156.—On garbāḍhāna, śīmamontonnayam, &c., cf. the Dharmasāstra of Gautama, viii. 14; also the Grihyasūtras of Aśvalāyana, i. 13, 14.

P. 157. Thus, when Kābul was conquered, &c.—The sentence added in brackets to indicate the meaning of the author's words, as I understand them, ought to run thus: "(which proves that he abhorred the eating of cows' meat and sodomy, but that he did not consider harlotry as anything baneful or unlawful)."

The detail in the history of Kābul here alluded to is not known from other sources, e.g. Balādhūrī. During the Omayyā Kaliphate of Damascus, both Kābul and Sījistan bravely fought against the Muslims. During certain years they were subdued and had to pay tribute, but Kābul always remained under the sway of its Hindu (Brahmin) kings of the Pāla dynasty. It was incorporated into the Khalif's empire under the Abbaside Ma'mūn; it had to receive a Muslim governor, but retained at his side
the Hindu Shâh. The same double rule existed in Khwârizm.

About A.D. 950–975 the city of Kâbul was already Muslim, whilst the suburb was inhabited by the Hindus (and by Jews). Kâbul was the coronation-city for the Pâla dynasty, as Königsberg in Prussia for the Hohenzollerns. Even when they ceased to reside in Kâbul, they had to be crowned there.

By the Ispahbad, mentioned by Alberuni, I understand the Hindu governor who ruled over the city for the Pâla king. Our author applies a title of the Sasanian empire to the official of a Hindu empire.

In what year the negotiation referred to by Alberuni took place is not known. Perhaps under Ma'mûn, when the city was definitely ceded to the Muslim conquerors.

It seems to have been the public opinion among Muslims that Hindus considered fornication as lawful, as Ibn Khurdâdhbih expresses it (Elliot, "History of India," i. 13), whilst, according to Alberuni, they considered it indeed as unlawful, but were lax in punishing it.

P. 157.—The Buyide prince 'Aḍūd-aldaula, who held Persia under his sway, died a.h. 372= A.D. 982. Not long before Alberuni wrote, the last of their dominions had been annexed to the empire of Mahmûd of Ghazna.

P. 158. — 'Iyâs Ibn Mu'âwiya was judge in Basra under the Omayya Khalif Omar Ibn 'Abdala'ziz, and died there, a.h. 122= A.D. 740.

P. 166.—For the first quotation from Phædo, 81D, cf. note to i. p. 65. The second quotation can hardly be identified with any passage in Phædo. Perhaps it is derived from a commentary on the following words, 81C:—

\[\text{ἀλλὰ διειλημμένην γε, οὐμαί, υπὸ τοῦ σωματοειδοῦς, ὃ αὐτῇ ἡ ὀμιλία τε καὶ συνονισία τοῦ σώματος οίᾳ τὸ ἀεὶ ἔχειναι καὶ διὰ τὴν πολλὴν μελέτην ἐνεποίησε εὔμφυτον.}\]

P. 167.—The quotation from Phædo is found 115C–116A:—

\[\text{Θάπτωμεν δὲ σε τίνα τρόπον; ὅψως ἂν, ἔφη, βουλησθε, ἐάνπερ γε λαβῆσθε με καὶ μὴ ἐκφύσω ύμας, κ.τ.λ.}\]

\[\text{εὐγνώσασθε ὅν με πρὸς Κρίτωνα, ἔφη, τὴν ἐναντίαν ἐγγύνη ἢ ἂν ὁστὸς πρὸς δικαστὰς ἡγγύστο, ὁστὸς μὲν γὰρ ἢ μὴν παραμενεῖν. ὡμεῖς δὲ γὰρ ἢ μὴν μὴν παραμενεῖν ἐγγύσασθε, επειδὰν ἀποθάνω, ἀλλὰ οἰχίστηθαι ἀπίστα, ἵνα Κρίτων ῥᾶν φέρῃ, καὶ μή ὁρῶν μοῦ τὸ σῶμα ἢ καίμενον ἢ κατορνύττόμενον ἀγανάκτη υπὲρ ἐμοῦ ὡς δεινὰ πάσχοντος μηδὲ λέγῃ ἐν τῇ ταφῇ, ὡς ἢ προτίθεται Σωκράτη ἢ ἐκφέρει ἢ κατορύττει, κ.τ.λ.}\]

\[\text{ἀλλὰ θαρρεῖν τε χρή καὶ φάναι τοῦμον σῶμα θάπτειν καὶ θάπτειν ὁστός, ὅπως ἂν σοι φίλον ἢ καὶ μάλιστα ἠγῇ νόμιμον εἶναι.}\]

P. 168. Galenus, &c.—I do not know the Greek original of this quotation. Cf. note to i. p. 35.

P. 69.—The words of Vāsudeva are a quotation from Bhagavad-Gītā, viii. 24.

P. 171. Johannes Grammaticus.—Cf. note to i. 36.

P. 171.—The two quotations from Phædo are found in 62C:—

\[\text{Ἤσως τοῖνον ταῖτη οὐκ ἄλογον μὴ πρότερον αὐτὸν ἀποκτινώναι δεῖν, πρὶν ἀνάγκην τινα θεός ἐπιτεύμης, ὡσπερ καὶ τὴν νῦν ἦμιν παρὼν.}\]

And 62B:—

\[\text{ὡς ἐν τινὶ φρονμα ἐσμεν οἱ ἀνθρωποι καὶ οὐ δεῖ ὅτι}\]
For the Vishnu-Purana, vide note to i. 54. The reading Duve is not certain, as the Arabic text has only गो.

The names Dilipa, Dushyanta, and Yayati have been verified by means of the index to Vishnu-Purana.

The Arabic manuscript has गा, i.e. ātaj. For the word attātaja, cf. H. H. Wilson, "Essays and Lectures," ii. 232.

The latter half of this word is apparently a derivation from the root svap = to sleep. In Prakrit sleep = sivino (Sanskrit svapna). Vide Vararuci, i. 3.

The here-mentioned bhishma-paṇca-rātri seems to be identical with the bhishma-paṇcakam mentioned by Wilson, "Essays and Lectures," ii. 203.

The name Gaur-t-r, गौर, occurs also ii. 179, and is apparently a vernacular form for gaurī-trittiyā. Cf. Wilson, i. l. p. 185.

With this calendar of festivals are to be compared the treatise of H. H. Wilson, "The Religious Festivals of the Hindus," in his "Essays and Lectures," ii. p. 151 seq., and Garcin de Tassy, Notice sur les fêtes popu-

This chapter has been translated into Persian by Abû-Sa'îd Gardezi (manuscript of the Bodleian Library in Oxford, Ouseley 240). Cf. note to ii. 6.

P. 178. Aqûs.—The Arabic has only گردیس, which might be something like ajya-divasa.

Muttai.—This pronunciation is given by the manuscript. The name, not to be confounded with the Arabic name Mattâ (Matthæus), is perhaps identical with the name of a prince of Siwistan mentioned by Elliot, "History of India," i. 145-153.

Hindoli-caitra.—Cf. Dola-yâtrâ or Holt of Wilson, p. 223.

Bahand.—Vide Wilson, i. c., and vasanta, here ii. 179.

P. 179. Gaur-t-r.—Cf. note to ii. 177.

P. 180. Gâihat (?), &c.—In the Arabic text the word گبیس must be added before یکهع.

In the following line there is a lacuna, which in my translation I have filled up by the help of the Persian translation of Gardêzi which runs thus:

کاهش بود (sic) و این روز خشم بود که اندرون این روز زندانیان را طعام کاهش دهد. In another place Gardêzi writes

P. 181.—On Jivâjarman, cf. note to i. 164.

P. 182. Kirt (?)—This is perhaps only a misspelling of the Arabic copyist for كندي, Gandî (Gandî Ribât-ala'mir). Cf. note to i. 317, and Elliot, "History of India," ii. 112, 150; iv. 138; Baihaki, ed. Morley, p. 274. It is the place where King Mas'ûd was murdered.

P. 183. — The festival dholā seems to be identical with holi, holikā or dol-jātra. Cf. Wilson, p. 147, 210. Instead of dholā the Persian translation of Gardēzī has ḥool, hōlt.

P. 184. — Pāyattanu is perhaps = pūpadāśṭamī. Cf. pūpāshtakā.

P. 186. — On the 15th Māgha, as the beginning of kaliyuga, cf. Wilson, "Essays and Lectures," ii. p. 208. Alberuni seems to have taken his information regarding the yugādyā or beginning of a yuga from Vīshnū-Purāṇa, III. chap. xiv. p. 168.

P. 187, l. 5. — The number of lunar days, 1,603,000,010 (sic MS.), must, according to Dr. Schram, be altered to 1,603,000,080.

P. 188. Vīshhūva. — On the use of this term in astronomy, cf. Sūrya-Siddhānta, iii. 6, note.

P. 188. — On Śamaya (?), cf. note to i. 336.

P. 189, l. 17, after the table. — The solar year is 365 days 15′ 30″ 22⅞ 30⅞, not 365 days 30′ 22″ 30⅞ 0⅞. Accordingly the last line must run thus: "(i.e. 1 day 15′ 30″ 22⅞ 30⅞ are equal to 3⅞ 555)" (Schram).

P. 190, l. 7. — The bhāgahāra is not 572, as the manuscript has, but 576, and the fraction ⅞ 555 (Schram).

P. 190. — Auliatta (?). The name is written اولت بن دوابمی. A more literal rendering is this: "And that which A. the
son of S. has dictated of the same (subject), is based on the theory of Pulisa." This author seems to have been contemporaneous with Alberuni, as also Samaya (ii. 188).

P. 190. *Varāhamihira.*—Cf. note to i. 54.

The term *śaḍāśṭimukha* is explained in *Sūrya-Siddhānta,* xiv. 6, note.

P. 191.—On the *Parvan,* cf. chap. ix.

P. 192.—On the book *Srādhava,* cf. note to i. 157 and ii. 120. Is the word = *sarvadhara*?

P. 194.—With the theory of the *karaṇas,* cf. *Sūrya-Siddhānta,* ii. 67-69.

P. 195.—For an explanation of the term *bhukti,* cf. *Sūrya-Siddhānta,* i. 27, note.

P. 197.—The names of the common *karaṇas* are found in *Sūrya-Siddhānta,* ii. 69, note.

The other names are Indian numerals of a vernacular stamp. The corresponding Sindhi forms are *barkhū* (?), *bīō, triō, coṭhō, panjō, chahō, satō, athō, nāō, dāhō, yārhō, bārhō, tērhō, codhō.* Cf. Trumpf, "Sindhi Grammar," pp. 158, 174. The form *panēdhō* (= the 15th) has, as far as I can see, no analogy in the vernacular dialects.

P. 200. *Alkindī.*—The way in which this scholar has transformed the Hindu theory of the *karaṇas* is instructive, as showing how Indian subjects were handled by the Arabs before Alberuni, even by the most learned and enlightened among them. The first knowledge of these things was probably communicated to the Arabs by the translation of the *Brahma-Siddhānta* (Sindhind) and *Khanḍakhādyaka* (Arkand) of Brahmagupta. On Alkindi, cf.
G. Flügel, Alkindi, genannt der Philosoph der Araber, Leipzig, 1857 (in vol. i. of the Abhandlungen für die Kunde des Morgenlandes).

P. 201.—The names of the viṣṭis, as taken from the Sruḍhava (of Mahâdeva?—cf. note to ii. 120), are not known to me from a Sanskrit source. However, vaḍavāmukha, ghora, and kālarātri seem to be certain. The words چنال and blö might be plava and āvāla, but گر؟

The other series of names of the viṣṭis, according to Alkindi, which by a mistake have been omitted in the Arabic text, may be transliterated in this way:—

(1.) Shūlpī (ṣūlapādī ?).
(2.) Jamadūd (yāmyodadhi ?).
(3.) Ghora.
(4.) Nastarīnish.
(5.) Dāruni (dhrārint?).
(6.) Kayāli.
(7.) Bahayāmani.
(8.) Bikata (vyakta ?).

P. 204. On the yogas.—The contents of this chapter are near akin to those of chap. xi. of the Sūrya-Siddhānta. Compare also in the same book ii. 65, 66. The technical term pāta, which literally means fall (for its astrological meaning, cf. l. c. xi. 5, note), has in Arabic been rendered by the word ھسوم, i.e. falling (page ٥٥, ١١, ٢٤), here ii. 207, 208, 209. In the Arabic text on p. ٧١, ٧, read ٧١ instead of ٧١, and to the word بدرہ, l. 16, it must be added that the manuscript has بدران.

P. 205.—On the Kāraṇatilaka of Vijayanandin, cf. note to i. 156.

P. 207.—The bhuktyantara has been explained, ii. 195.

P. 208.—Syāvabala (?) seems to have been a Hindu from Kashmir who had become a Muslim, and wanted, by means of an Arabic book, to be informed on certain chapters of Hindu astrology. The pronunciation Syāvabala is not certain. The Arabic manuscript has siyāwala.
P. 208.—On the Brahmin Bhattachila, cf. note to i. 157. The names of the yogas which he mentions are not known to me from other sources. The names gandanta, kala-danda, and vaidhrita are certain, and barh is probably varsha.

P. 209.—On Sripala, cf. note to i. 164.

P. 210.—With the names of this table cf. Surya-Siddhanta, ii. 65, note (also p. 432). The of the Arabic seems to be a mistake for vishkambha; No. 15, a mistake for ganda.

Instead of ayushman (name of the third yoga), the Arabic has raja-kama (rajakama?); instead of vyapata it has (gutipata?).

P. 211.—The contents of this astrological chapter are principally taken from the Laghujatakam (i.e. the smaller book of nativity) by Varahamihira, of which the chapters i. ii. have been translated by A. Weber (Indische Studien, 2, 277 seq.), whilst the remainder has been translated by H. Jacobi (De Astrologia Indicae horarum appellatæ originibus. Accedunt Laghujataki capita inedita iii.—xii., Bonn, 1872). Alberuni does not always adhere to the order of the paragraphs which we have in the Sanskrit text, and for certain parts he seems to have drawn from some commentary.

The exact meaning of the term seconds of the stars (the same page, ll. 23, 24), is not known to me.

Pp. 213–215.—The table of planets is taken from chapters ii. iii. iv. of the Laghujatakam.

For the reading of the terms naisargika, vimisra, and shadaya (p. 215), I am indebted to Prof. H. Jacobi, Kiel.

The number 25, as, in the column with the heading The scale of their magnitude, seems to be a mistake for 3, e.

Pp. 217–219.—This table of the zodiacal signs has been taken from Laghujatakam, chap. i.

Pp. 221, 222.—This table of the Houses has been taken from Laghujatakam, chap. i. 15.

vol. ii.
P. 234.—The notes on comets and other meteorological subjects, with which the author concludes his book, have been taken from the Brihat-Samhita of Varâhamihira.

The children of the fire are called hutâsasutâh in Sanskrit, in Arabic ولد الثانى, which I cannot explain.

Pp. 241–244.—This table of comets is taken from Brihat-Samhita, chap. xi. 29–51.

The reading نيدمكنت, instead of padmaketu, seems to be a mistake of the copyist for بدمسكنت.

INDEX I.

a = Aditya, i. 215
abda, ii. 118
abhi, i. 178
Abhāpūrī, i. 200
Abhāstala, i. 230
Abhi, i. 303
Abhijit, i. 340, 341, 342; ii. 66, 85, 87, 122
Abhira, i. 300, 301, 302
Abhira, i. 178
Abhika (?), i. 299
ācārya, i. 155
Achā (!), ii. 143
Aadarśa, i. 302
Aḍhaka, i. 162, 163, 164
adhas, i. 290
adhimāsa, ii. 20 seq., 23; universal or partial, ii. 23
Adhīsthāna, i. 207; ii. 181
Adhomukha, i. 61
ādī, i. 178; ii. 23
ādī-purāṇa, i. 130
Aditi, ii. 121
Adittāaur, i. 206
Aditya, i. 116, 179, 215, 216, 291
Adityavāra, i. 213
Adityapūrāṇa, i. 130, 168, 217, 229, 230, 232, 248, 363
Adityaputra, i. 215
adri, i. 178
aga, i. 178
Agastya, i. 132; ii. 66, 91, 92, 94
Agastyaimita, i. 132
Agilīs (!), ii. 178
Agneya, i. 290, 297, 301; ii. 203
Agneya, i. 358
Agni, i. 131, 178, 242, 342, 357, 358, 394; ii. 121, 125
Agniha (!), i. 394
Agnihrtra, i. 394
agnihotra, i. 102

Agniṣṭhāna, i. 231
Agnimukha, i. 231
Agniṣṭhāna, i. 302
Agniṣṭhāna, i. 159
agoktra, i. 220
aḥan, i. 368; ii. 26
aḥaṅkāra, i. 41
ahargana, i. 355, 368; ii. 26, 27
ahārya, i. 34, 46 seq., 48, 60, 116, 184
āhārgya, i. 119
Ahirbudhnya, i. 342; ii. 66, 122
āhot, ii. 180
ahorātra, i. 359
aindira, i. 135
Airāvata, ii. 245
aśāna, i. 290, 297; ii. 202
aśānya, i. 303
Aja, i. 342, 358
Aja ekapād, ii. 122
Ajodaha (Ayodhya), i. 200
Ākara, i. 301
ākāśa, i. 178
akahara, i. 172
akshauhinī, i. 179, 403, 407, 408
akshepi, i. 178
Ālīka, i. 300
Allispūr, i. 203
Amarāvatī, i. 271
Amarāvatipura, i. 271
amāvāya, i. 348; ii. 185, 197
ambara, i. 178, 303
ambaratāla, i. 230
Ambatya, i. 113
Ambhaṅgha, i. 301
ampīta, i. 54, 253, 262, 344; ii. 107
ānāka, i. 140, 144
ānāśya, ii. 227
ānāhu, i. 217, 230
ānumant, i. 217
anasa, ii. 123
Amudapaśa, i. 135; ii. 13
INDEX.

Aśvatara, i. 231, 247
śāvattha, i. 86 ; ii. 140, 141
Āśvatthāman, i. 133, 394, 398, 405, 406
śāvyuja, i. 217, 218, 358, 403 ; ii. 98, 173, 177, 179, 186, 193
śāvin, i. 159, 178 ; ii. 122, 128
śāvinta, i. 218, 242, 389 ; ii. 84, 86, 122, 128
stala, i. 230
Ātāvya, i. 300
stharvanaveda, i. 127, 129
atīdhīti, i. 179
atīn, ii. 197
Atināman, i. 394
atitāvika, i. 63
ātman, i. 351
ātmapurusha, i. 321
Ātyeya, i. 163, 300, 383
Atri, i. 131, 291, 301, 390, 394
attātaja, ii. 176
atvā (I), i. 348
atyashti, i. 179
Audumbara, i. 300
Auliatta (I), ii. 190
Audra, ii. 101
Auta (I), i. 387
autami, i. 387
avana, ii. 38, 43, 47, 48, 50, 51, 53, 54
āvaneya, i. 215
Avanti, i. 298, 301
Āvarta, ii. 244
avasarpiṇī, i. 371
avasāva, i. 339
avyakta, i. 40
ayana, i. 356, 366 ; ii. 118
Āyana (I), i. 257
Āyurdāya, ii. 228
ayuta, i. 175
ayutam, i. 176, 177

b= Budha, i. 215
Brahbān, i. 296
Bādara, i. 302
bhadhatu (I), i. 101, 102
Baga, i. 208
Baha, i. 261
bahan, ii. 178
Bahimaravara, i. 261
Bahroj (v. Ribhroj), i. 205, 261
Bāhudāsa (I), i. 259
bahudānya, ii. 127
bakhūta (I), ii. 208
bala, ii. 228, 230
Balabandhu, i. 337
Balabhadrā, i. 155, 157, 158, 225, 237, 238, 248 (I), 241, 243, 244, 246, 273, 274, 275, 279, 281, 282, 317, 401, 403 ; ii. 70, 75, 187
Balabhīd, ii. 127
Balađeva, i. 118
Balađevapattana, i. 301
bālāgra, i. 162
Balāhaka, ii. 101
bālava, ii. 197, 199
Bali, i. 117, 129, 231, 387, 396 ; ii. 3, 11, 145, 182
Baliśāya, ii. 182
Baliśāvar, i. 205
Bālāka (I), i. 257
Bālūvabhi, i. 257
BāmAhaūrt, i. 202
Bambhanā (not Bahanvā), i. 21, 173, 205, 316
Banāras (Benares), i. 200
Banavās, i. 202
Bāngāla, i. 158
banij, ii. 197, 199
Bānjulā, i. 257
bāra, i. 213
Baramūla, i. 207
Barbara, i. 261, 302 ; ii. 129
Bardari, ii. 8
bard (I), i. 405
barh, i. 359
Barhamūl, i. 200
Bārī, i. 200, 201, 261
barkhu, i. 359, 345 (I) ; ii. 197
Barodā, i. 403
Barō, i. 208 ; ii. 105
barsh, i. 359
Barshāvar (Peshawar), i. 211
Bārvacat, i. 261
Barārāna (I), i. 300
bava, ii. 197, 199
Bavārī, i. 208
Bazāna (I), i. 202, 205, 300
Benares, i. 22, 156, 173 ; ii. 146, 147
Bhadattā (I), i. 1
Bhadīla (I), i. 157
Bhadrokhāra (I), i. 299
Bhadra, i. 300, 301
bhadrāk, i. 217, 218, 340, 353, 403 ; ii. 8, 98, 173, 175, 177, 180, 193
Bhadräva, i. 249
Bhaga, i. 217, 238 ; ii. 121, 128
bhágahāra, ii. 30, 159, 190
Bhagavat, i. 255
Bhāgavata, i. 121, 131
bhuktyantara, ii. 195
bhūmi (?), i. 387
bhūmihara, i. 203
bhūpa, i. 179
bhūri, i. 175
bhūrisha, i. 387
bhūrja, i. 171
bhūrloka, i. 45, 232, 233, 238
bhūta, i. 90, 93, 93, 173
bhūtapura, i. 303
bhuvana, i. 294
bhuvraloka, i. 45, 232, 233
bibata (?), i. 215
Bihāt, i. 201
Bihīrōj, i. 209
bisl (?:), i. 165, 166
bitra, i. 292
Bītur, i. 259
biya, i. 197
Biyāha, i. 259, 260
Biyatta, i. 206, 259, 260
Blv (f. plava), i. 202
Bodha, i. 299
bodhana, i. 215
Brahmadanda, ii. 237
brahmādī (?), ii. 116
Brahmagupta, i. 147, 150, 153, 154,
156, 168, 221, 224, 241, 243, 267,
272, 276, 277, 279, 280, 282, 283,
312, 314, 335, 365, 369, 370, 372,
373, 374, 376, 377, 386 ; ii. 4, 7,
15, 16, 17, 18, 19, 24, 28, 31, 40,
59, 71, 73, 74, 75, 76, 77, 78, 82,
90, 110, 111, 112, 186, 189, 192
brahmāhārātra, i. 331
brahmālok, i. 233
brahman, i. 23, 54, 72, 77, 89, 92,
94, 100, 116, 118, 125, 129 ; his
sons, i. 131, 134, 159, 155, 157,
159, 176, 241, 256, 266, 321, 322,
seq., 331, 332, 342, 350, 352, 360,
361, 363, 369, 380, 386; ii. 2 ;
life of, ii. 28, 63, 99, 115, 116,
118, 120, 145, 147, 199, 237
Brahman, era of, ii. 1
brahmana, i. 100, 102, 104, 121
brahmana (?), ii. 159
brahmānda, i. 131, 221 seq., 237
brahmānda-purāṇa, i. 130
Brahmānt, i. 119
Brahmapura, i. 303
brahma-purāṇa, i. 130
Brahmaputra, i. 337
brahmara, i. 93, 247
Brahmarupa, i. 256
Brahmasavarni, i. 337
dakshinayana, i. 356, 357
Dāmara, i. 303
damarīyā (I), i. 344
Damin, i. 254
Dāmodara, i. 403
dānadharma, i. 133
Dānak, i. 203
dānava, i. 91, 231, 237, 248, 256, 272, 330, 331
dānayaguru, i. 215
Danda, i. 303; ii. 97
Dandahamār (I), ii. 176
Dandaka, i. 300
Dandakāvana, i. 301
dantin, i. 178
Dantura, i. 301
Darada, i. 261
Daraur, i. 200
darbha, ii. 130, 131
Dardura, i. 301
Dārva, i. 303
Darvad, i. 209
dasāgitikā, i. 157, 386
dasālaksha, i. 176
dasam, i. 175
Dāsameya, i. 303
Darva, i. 300
Dasāpura, i. 301
Dasāratha, i. 117, 306, 372
Dasārṇa, i. 301
Daśārnā, i. 257
dasaśāhasra, i. 176
Dāsara (I), i. 302
Dasera (I), i. 300
daśa, i. 178, 342
daśa, i. 166
Datta, i. 394
detottinī, ii. 177
desāntara, i. 312, 314, 315
deva, i. 90, 91, 92, 95, 159, 176, 247, 248, 252, 256, 266, 272, 330, 331; ii. 63, 66, 96, 99, 139, 140, 141, 177, 279, 280, 357
devagriha, ii. 178
devaka, i. 330, 352, 369, 372
Devakīrtī, i. 158
Devala, i. 132; ii. 235
devaloka, ii. 235
devamantrin, i. 215
Devāngula, i. 357
devapitā, i. 215
devapurāhabita, i. 215
devasinti, ii. 176
Devasrēshta, i. 357
Devata (I), i. 387
devējya, i. 215
Devikā, i. 259
Dhāman, i. 394
Dhanājaya, i. 231, 398
dhanisha, i. 218, 291; ii. 85
dhanishtā, ii. 122, 124
dhanu, i. 166, 220
Dhanusmītiman (I), i. 302
Dhanyā, i. 254
Dhār, i. 202, 203
Dhāra, i. 191
dharaṇi, i. 178
dharma, i. 40, 132, 242, 291
Dharmāranya, i. 300
dharmasāvārma, i. 387
Dhātri, i. 217, 238, 342; ii. 127
dhā, i. 178
Dhīvara, i. 262
dhōla, ii. 183
Dhūṣhna, i. 387
Dhūrtaketa, i. 387
Dhūrtāraśastra, I. 108, 403
dhūrti, i. 179
Dhūrtīmat, i. 394
dhruva, i. 239, 241
dhruvagriha (I), ii. 180
Dhūlikā (I), i. 261
dhruvaketa (I), ii. 242
dhūrā (I), ii. 21
dhūrābūrtha, ii. 21
Dhūtaspāpa, i. 259
dhūnagrahādyāya, i. 155
dībālī, ii. 182
dīkṣa, i. 102
Dilīs, ii. 174
dīmas, i. 359
Dīpāpa, i. 262
Dīptimāt, i. 394
Dīrghagrīva, i. 302
Dīrghakēṣa, i. 302
Dīrghamukha, i. 302
Dīrvā (Drāvidī), i. 173
Dīrvādeśa, i. 173
dīś, i. 178, 179
Dīvakanbār, i. 210
Dīvākara, i. 168, 215, 217
Dīva-kūśhi, i. 210
dīvasa, i. 359
Dīvārā (I), i. 301
Dīvaspati, i. 357
dīvya, i. 42, 374; ii. 235
dīvyāhorātra, i. 329
Dīvyatattva, i. 157
dīvyavaraha, i. 350, 363; ii. 2
Dīyāman, i. 205
Dītā (I), ii. 140
dombā, i. 101, 102
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dramida</td>
<td>302</td>
</tr>
<tr>
<td>draukasana</td>
<td>161</td>
</tr>
<tr>
<td>Dravidadeśa</td>
<td>173</td>
</tr>
<tr>
<td>Dravina</td>
<td>101</td>
</tr>
<tr>
<td>drekkāpa</td>
<td>229, 233</td>
</tr>
<tr>
<td>drīgbalā</td>
<td>225</td>
</tr>
<tr>
<td>Drīhāla (?)</td>
<td>300</td>
</tr>
<tr>
<td>Drīshadhvatī</td>
<td>259</td>
</tr>
<tr>
<td>drīshṭibala</td>
<td>225</td>
</tr>
<tr>
<td>Drona, i. 183, 162, 163, 164, 254, 394, 398, 405, 406; ii. 101</td>
<td></td>
</tr>
<tr>
<td>Drūtsa</td>
<td>259</td>
</tr>
<tr>
<td>Dūdahāi</td>
<td>202</td>
</tr>
<tr>
<td>Dūgum</td>
<td>201</td>
</tr>
<tr>
<td>Dūgumputr</td>
<td>200</td>
</tr>
<tr>
<td>dundubhī</td>
<td>128</td>
</tr>
<tr>
<td>Dunpūr</td>
<td>296, 211, 317</td>
</tr>
<tr>
<td>Durgā</td>
<td>300</td>
</tr>
<tr>
<td>Durgā</td>
<td>257</td>
</tr>
<tr>
<td>Durgaviśruti</td>
<td>135</td>
</tr>
<tr>
<td>Durilebha</td>
<td>9, 10, 54</td>
</tr>
<tr>
<td>durmati</td>
<td>128</td>
</tr>
<tr>
<td>durtama (?)</td>
<td>371</td>
</tr>
<tr>
<td>Durvāsāsa</td>
<td>404</td>
</tr>
<tr>
<td>Duryodhana</td>
<td>133</td>
</tr>
<tr>
<td>Dushyanta</td>
<td>174</td>
</tr>
<tr>
<td>dūvāḥi, ii. 197</td>
<td></td>
</tr>
<tr>
<td>dūvē, ii. 174</td>
<td></td>
</tr>
<tr>
<td>Dvaimpāyana</td>
<td>398</td>
</tr>
<tr>
<td>dvāpara</td>
<td>372, 397, 398</td>
</tr>
<tr>
<td>dvāpara-yuga</td>
<td>126, 373; description, i. 380; ii. 5; its beginning, ii. 186</td>
</tr>
<tr>
<td>Dvār</td>
<td>207</td>
</tr>
<tr>
<td>dvīṣeśvara</td>
<td>216</td>
</tr>
<tr>
<td>dvipa</td>
<td>168, 223, 234, 235, 236, 243, 251 seq., 265, 295, 301, 388; ii. 144</td>
</tr>
<tr>
<td>dvīsavabhāva</td>
<td>220</td>
</tr>
<tr>
<td>Dyutī</td>
<td>394</td>
</tr>
<tr>
<td>Dyutimat</td>
<td>394</td>
</tr>
<tr>
<td>Ekačarāna</td>
<td>303</td>
</tr>
<tr>
<td>ekam</td>
<td>175</td>
</tr>
<tr>
<td>ekanakta</td>
<td>172</td>
</tr>
<tr>
<td>Ekapada</td>
<td>301</td>
</tr>
<tr>
<td>Ekaśvilocana</td>
<td>302</td>
</tr>
<tr>
<td>Elāpatra</td>
<td>120</td>
</tr>
<tr>
<td>gā, i. 140</td>
<td></td>
</tr>
<tr>
<td>gabhastrāla</td>
<td>230</td>
</tr>
<tr>
<td>Gabhastimat</td>
<td>230, 296</td>
</tr>
<tr>
<td>Gabhṛtra</td>
<td>387</td>
</tr>
<tr>
<td>gādā, i. 133</td>
<td></td>
</tr>
<tr>
<td>gagana</td>
<td>178</td>
</tr>
<tr>
<td>gālhat (?)</td>
<td>180</td>
</tr>
<tr>
<td>Gaśitū (?)</td>
<td>137</td>
</tr>
<tr>
<td>gaja</td>
<td>178, 300</td>
</tr>
<tr>
<td>Gajakarna</td>
<td>231</td>
</tr>
<tr>
<td>Gālavṛta</td>
<td>394</td>
</tr>
<tr>
<td>gana, i. 407</td>
<td></td>
</tr>
<tr>
<td>gana (?)</td>
<td>181</td>
</tr>
<tr>
<td>Gānya</td>
<td>238</td>
</tr>
<tr>
<td>Gānapati (?)</td>
<td>121</td>
</tr>
<tr>
<td>Gāparāgya</td>
<td>301</td>
</tr>
<tr>
<td>gandha</td>
<td>203</td>
</tr>
<tr>
<td>Gāndakī</td>
<td>259</td>
</tr>
<tr>
<td>gandānta</td>
<td>208</td>
</tr>
<tr>
<td>gaudha</td>
<td>42</td>
</tr>
<tr>
<td>Gaudhamādana</td>
<td>248, 249</td>
</tr>
<tr>
<td>Gaudhāra</td>
<td>21, 259, 261, 300, 303</td>
</tr>
<tr>
<td>gandharva</td>
<td>89, 91, 238, 247, 292, 303</td>
</tr>
<tr>
<td>gandharva</td>
<td>296</td>
</tr>
<tr>
<td>Gāndharvī</td>
<td>142</td>
</tr>
<tr>
<td>Gāgā, i. 200 seq., 203, 253, 254, 259, 261; ii. 144</td>
<td></td>
</tr>
<tr>
<td>Gāgādvāra</td>
<td>199</td>
</tr>
<tr>
<td>Gāgāśāgara</td>
<td>261</td>
</tr>
<tr>
<td>Gāgāsāyara</td>
<td>201</td>
</tr>
<tr>
<td>Gangeya</td>
<td>202</td>
</tr>
<tr>
<td>gara</td>
<td>197, 199</td>
</tr>
<tr>
<td>Garbha</td>
<td>236</td>
</tr>
<tr>
<td>garbhādhāna</td>
<td>156</td>
</tr>
<tr>
<td>Garga</td>
<td>157, 342, 382, 390, 391; ii. 96, 110, 235</td>
</tr>
<tr>
<td>garuda</td>
<td>114, 130, 131, 193, 194, 231, 253, 344</td>
</tr>
<tr>
<td>Gauḍa, the anchorite</td>
<td>132</td>
</tr>
<tr>
<td>Gauḍaka, L 301</td>
<td></td>
</tr>
<tr>
<td>gaura</td>
<td>161</td>
</tr>
<tr>
<td>Gaura (?)</td>
<td>143</td>
</tr>
<tr>
<td>Gauragriva</td>
<td>300</td>
</tr>
<tr>
<td>Gauri (Gauḍi)</td>
<td>173</td>
</tr>
<tr>
<td>Gauri</td>
<td>119; ii. 121, 179, 182, 183</td>
</tr>
<tr>
<td>Gaur-t-r (gauri-tritūyā)</td>
<td>177, 179</td>
</tr>
<tr>
<td>Gautama</td>
<td>131, 394, 398</td>
</tr>
<tr>
<td>gāyatri</td>
<td>147</td>
</tr>
<tr>
<td>ghana, i. 140, 144, 146</td>
<td></td>
</tr>
<tr>
<td>ghatt, i. 334 seq., 337, 338, 349, 362, 366; ii. 48, 52, 56, 189, 190, 195, 200</td>
<td></td>
</tr>
<tr>
<td>ghatisā, i. 279, 282, 285</td>
<td></td>
</tr>
<tr>
<td>Ghora</td>
<td>202</td>
</tr>
<tr>
<td>Ghorōwand</td>
<td>259</td>
</tr>
<tr>
<td>Ghoshā</td>
<td>300, 303</td>
</tr>
<tr>
<td>ghritamanda</td>
<td>235</td>
</tr>
<tr>
<td>Ghūṣak</td>
<td>259</td>
</tr>
<tr>
<td>Gīrī, i. 302</td>
<td></td>
</tr>
<tr>
<td>Gīrnagara</td>
<td>301</td>
</tr>
<tr>
<td>gītā, quoted, i. 29, 30, 40, 52-54, 70-72, 73-74, 75, 76, 78, 79, 80, 86, 90, 103-104, 122</td>
<td></td>
</tr>
<tr>
<td>jaña, i. 215</td>
<td></td>
</tr>
<tr>
<td>jriṅga, i. 302</td>
<td></td>
</tr>
<tr>
<td>jūga, i. 220</td>
<td></td>
</tr>
<tr>
<td>jūdari, i. 211</td>
<td></td>
</tr>
<tr>
<td>jvāla (t), ii. 202</td>
<td></td>
</tr>
<tr>
<td>jvalana, i. 140, 141, 143, 145, 146, 178</td>
<td></td>
</tr>
<tr>
<td>jyaishṭha, i. 217, 218, 340, 358, 403; ii. 173; festivals, ii. 179, 193</td>
<td></td>
</tr>
<tr>
<td>jyeshṭhā, i. 218; ii. 85, 86, 122</td>
<td></td>
</tr>
<tr>
<td>jyotis, i. 394</td>
<td></td>
</tr>
<tr>
<td>jyotisha, i. 300</td>
<td></td>
</tr>
<tr>
<td>jyotishmat, i. 394</td>
<td></td>
</tr>
<tr>
<td>kā, ii. 242</td>
<td></td>
</tr>
<tr>
<td>kābandha (t), i. 231; ii. 238</td>
<td></td>
</tr>
<tr>
<td>kābul, i. 206, 259, 317; ii. 157</td>
<td></td>
</tr>
<tr>
<td>kāca (t), i. 261</td>
<td></td>
</tr>
<tr>
<td>kacch, i. 208, 260</td>
<td></td>
</tr>
<tr>
<td>kachchha, i. 303</td>
<td></td>
</tr>
<tr>
<td>kachchhya, i. 300</td>
<td></td>
</tr>
<tr>
<td>kadamba, i. 272</td>
<td></td>
</tr>
<tr>
<td>kadara, ii. 129</td>
<td></td>
</tr>
<tr>
<td>kadrū, i. 252</td>
<td></td>
</tr>
<tr>
<td>kākā, i. 302</td>
<td></td>
</tr>
<tr>
<td>kāliśa, i. 218, 302; ii. 142, 143</td>
<td></td>
</tr>
<tr>
<td>kāliśvata, i. 302</td>
<td></td>
</tr>
<tr>
<td>kaj, i. 260</td>
<td></td>
</tr>
<tr>
<td>kajūrā, i. 202</td>
<td></td>
</tr>
<tr>
<td>kakūtsthā, i. 176</td>
<td></td>
</tr>
<tr>
<td>kāla, i. 160, 335, 337, 362</td>
<td></td>
</tr>
<tr>
<td>kālabala, ii. 226</td>
<td></td>
</tr>
<tr>
<td>kālabhāga (t), ii. 231</td>
<td></td>
</tr>
<tr>
<td>kālājina, i. 301</td>
<td></td>
</tr>
<tr>
<td>kālaka, i. 302</td>
<td></td>
</tr>
<tr>
<td>kāḷāhāka, ii. 90</td>
<td></td>
</tr>
<tr>
<td>kālanemī, i. 231</td>
<td></td>
</tr>
<tr>
<td>kālanjar, i. 202</td>
<td></td>
</tr>
<tr>
<td>kālapagrama, i. 262</td>
<td></td>
</tr>
<tr>
<td>kālarātri, i. 344; ii. 203</td>
<td></td>
</tr>
<tr>
<td>kālas, i. 166</td>
<td></td>
</tr>
<tr>
<td>kālatoyaka, i. 300</td>
<td></td>
</tr>
<tr>
<td>kālavinta, ii. 129</td>
<td></td>
</tr>
<tr>
<td>kālavatora, ii. 5</td>
<td></td>
</tr>
<tr>
<td>kālayukta, ii. 123</td>
<td></td>
</tr>
<tr>
<td>kali, i. 140, 382, 397; ii. 1, 193</td>
<td></td>
</tr>
<tr>
<td>kalidara, i. 262</td>
<td></td>
</tr>
<tr>
<td>kālika (t), i. 281</td>
<td></td>
</tr>
<tr>
<td>kālikās, ii. 1, 5</td>
<td></td>
</tr>
<tr>
<td>kāliṅga, i. 231, 293, 399, 301</td>
<td></td>
</tr>
<tr>
<td>kāliyā, i. 231</td>
<td></td>
</tr>
<tr>
<td>kālīyuga, i. 325, 373; description, i. 280, 297, 399; ii. 1, 4, 17, 18, 28, 59, 60; its beginning, ii. 186</td>
<td></td>
</tr>
<tr>
<td>kālikot, i. 300</td>
<td></td>
</tr>
<tr>
<td>Page</td>
<td>Content</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
</tr>
<tr>
<td>207</td>
<td>Kulārjak, i.</td>
</tr>
<tr>
<td>261</td>
<td>Kulata, i.</td>
</tr>
<tr>
<td>344</td>
<td>Kulika, i.</td>
</tr>
<tr>
<td>345</td>
<td>Kulinda, i.</td>
</tr>
<tr>
<td>238</td>
<td>kulira, i.</td>
</tr>
<tr>
<td>300</td>
<td>Kulūta, i.</td>
</tr>
<tr>
<td>303</td>
<td>Kulūtalaḥada, i.</td>
</tr>
<tr>
<td>299</td>
<td>Kulya, i.</td>
</tr>
<tr>
<td>257</td>
<td>Kumārī, i.</td>
</tr>
<tr>
<td>220</td>
<td>kumbha, i.</td>
</tr>
<tr>
<td>220</td>
<td>kumbbakarna, ii.</td>
</tr>
<tr>
<td>321</td>
<td>Kumbhiaka, i.</td>
</tr>
<tr>
<td>255</td>
<td>Kumuda, i.</td>
</tr>
<tr>
<td>243</td>
<td>ii.</td>
</tr>
<tr>
<td>257</td>
<td>Kumudvati, i.</td>
</tr>
<tr>
<td>303</td>
<td>Kunatha, i.</td>
</tr>
<tr>
<td>301</td>
<td>Kuñjaradarā, i.</td>
</tr>
<tr>
<td>200</td>
<td>Kûn, i.</td>
</tr>
<tr>
<td>203</td>
<td>Kunkan (Konkan), i.</td>
</tr>
<tr>
<td>309</td>
<td>Kuntala, i.</td>
</tr>
<tr>
<td>262</td>
<td>Kupathu (?), i.</td>
</tr>
<tr>
<td>297</td>
<td>kūra-babaya (?), i.</td>
</tr>
<tr>
<td>156</td>
<td>Kuraha, i.</td>
</tr>
<tr>
<td>200</td>
<td>Kurava, i.</td>
</tr>
<tr>
<td>130</td>
<td>kûrma, i.</td>
</tr>
<tr>
<td>297</td>
<td>kûrma-pûrâga, i.</td>
</tr>
<tr>
<td>130</td>
<td>kuroh, ii.</td>
</tr>
<tr>
<td>66</td>
<td>Kuru, i.</td>
</tr>
<tr>
<td>249</td>
<td>262, 292, 299, 380</td>
</tr>
<tr>
<td>308</td>
<td>Kurukshetra, i.</td>
</tr>
<tr>
<td>316</td>
<td>ii. 147</td>
</tr>
<tr>
<td>254</td>
<td>Kurura, i.</td>
</tr>
<tr>
<td>307</td>
<td>kuśa, i.</td>
</tr>
<tr>
<td>235</td>
<td>kuśadvipa, i.</td>
</tr>
<tr>
<td>254</td>
<td>325</td>
</tr>
<tr>
<td>262</td>
<td>Kushikâsa, i.</td>
</tr>
<tr>
<td>262</td>
<td>Kuśaprâvara, i.</td>
</tr>
<tr>
<td>266</td>
<td>Kusnârī, i.</td>
</tr>
<tr>
<td>140</td>
<td>kusuma, i.</td>
</tr>
<tr>
<td>146</td>
<td>357</td>
</tr>
<tr>
<td>301</td>
<td>Kusumanaga, i.</td>
</tr>
<tr>
<td>316</td>
<td>Kusumapura, i.</td>
</tr>
<tr>
<td>330</td>
<td>335, 370</td>
</tr>
<tr>
<td>120</td>
<td>kutâra, i.</td>
</tr>
<tr>
<td>181</td>
<td>kuthâra, i.</td>
</tr>
<tr>
<td>205</td>
<td>Kutt, i.</td>
</tr>
<tr>
<td>155</td>
<td>kutţaka, i.</td>
</tr>
<tr>
<td>140</td>
<td></td>
</tr>
<tr>
<td>205</td>
<td>Ladda (?), i.</td>
</tr>
<tr>
<td>138</td>
<td>laghu, i.</td>
</tr>
<tr>
<td>13</td>
<td>Lagatârmân, ii.</td>
</tr>
<tr>
<td>145</td>
<td>laghu, i.</td>
</tr>
<tr>
<td>146</td>
<td></td>
</tr>
<tr>
<td>259</td>
<td>Lahore, i.</td>
</tr>
<tr>
<td>208</td>
<td>Lahūr, i.</td>
</tr>
<tr>
<td>236</td>
<td>laksha, i.</td>
</tr>
<tr>
<td>284</td>
<td>175</td>
</tr>
<tr>
<td>154</td>
<td>Lakshmi, i.</td>
</tr>
<tr>
<td>182</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>lâlabhâksha, i.</td>
</tr>
<tr>
<td>317</td>
<td>Lamghâna, i.</td>
</tr>
<tr>
<td>252</td>
<td>317, ii. 8</td>
</tr>
<tr>
<td>300</td>
<td>Lampâka, i.</td>
</tr>
<tr>
<td>229</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Lambagâ, i.</td>
</tr>
<tr>
<td>257</td>
<td>Lângûlin, i.</td>
</tr>
<tr>
<td>267</td>
<td>268, 301, 303,</td>
</tr>
<tr>
<td>306</td>
<td>307, 318, 370</td>
</tr>
<tr>
<td>209</td>
<td>Lârân, i.</td>
</tr>
<tr>
<td>205</td>
<td>Lârdeshi, i.</td>
</tr>
<tr>
<td>173</td>
<td>Lâr, i.</td>
</tr>
<tr>
<td>268</td>
<td>Lâta, i.</td>
</tr>
<tr>
<td>268</td>
<td>269, 280</td>
</tr>
<tr>
<td>173</td>
<td>Lâtadesâ, i.</td>
</tr>
<tr>
<td>206</td>
<td>Lâhâvur (Lahore), i.</td>
</tr>
<tr>
<td>208</td>
<td>Lâubûr, castle, i.</td>
</tr>
<tr>
<td>317</td>
<td>Lâukâya, i.</td>
</tr>
<tr>
<td>9, 54</td>
<td>laukikakâla, ii.</td>
</tr>
<tr>
<td>336</td>
<td>337, 362</td>
</tr>
<tr>
<td>235</td>
<td>lavana, i.</td>
</tr>
<tr>
<td>156</td>
<td>lavanamarṣuṭi, i.</td>
</tr>
<tr>
<td>235</td>
<td>lavanassamudra, i.</td>
</tr>
<tr>
<td>131</td>
<td>Lîkhîta, i.</td>
</tr>
<tr>
<td>162</td>
<td>likhyâ, i.</td>
</tr>
<tr>
<td>117</td>
<td>liṅga, i.</td>
</tr>
<tr>
<td>181</td>
<td>181; ii. 102, 103</td>
</tr>
<tr>
<td>300</td>
<td>Lîttâ (?), i.</td>
</tr>
<tr>
<td>220</td>
<td>liyaya, i.</td>
</tr>
<tr>
<td>178</td>
<td>locana, i.</td>
</tr>
<tr>
<td>8</td>
<td>Lohâvar, ii.</td>
</tr>
<tr>
<td>8</td>
<td>lokakâla, ii.</td>
</tr>
<tr>
<td>157</td>
<td>lokânanda, i.</td>
</tr>
<tr>
<td>6</td>
<td>Lônt, ii.</td>
</tr>
<tr>
<td>205</td>
<td>Lohârâni, i.</td>
</tr>
<tr>
<td>208</td>
<td>260, 316</td>
</tr>
<tr>
<td>259</td>
<td>Lohitâ, i.</td>
</tr>
<tr>
<td>231</td>
<td>; ii. 143</td>
</tr>
<tr>
<td>143</td>
<td>Lohitanâdi, ii.</td>
</tr>
<tr>
<td>301</td>
<td>Lohitya, i.</td>
</tr>
<tr>
<td>232</td>
<td>233</td>
</tr>
<tr>
<td>284</td>
<td>lokâloka, i.</td>
</tr>
<tr>
<td>247</td>
<td>lokâloka, i.</td>
</tr>
<tr>
<td>247</td>
<td>284, 286</td>
</tr>
<tr>
<td>257</td>
<td>Lôpa (?), i.</td>
</tr>
<tr>
<td>142</td>
<td>Maddhyândâ (?), ii.</td>
</tr>
<tr>
<td>403</td>
<td>Maddhava, i.</td>
</tr>
<tr>
<td>300</td>
<td>Maddhra (?), i.</td>
</tr>
<tr>
<td>394</td>
<td>Maddhu, i.</td>
</tr>
<tr>
<td>403</td>
<td>Madhusûdana, i.</td>
</tr>
<tr>
<td>140</td>
<td>madhya (?), i.</td>
</tr>
<tr>
<td>141</td>
<td>143, 144,</td>
</tr>
<tr>
<td>145</td>
<td>146, 175</td>
</tr>
<tr>
<td>251</td>
<td>madhyadesâ, i.</td>
</tr>
<tr>
<td>290</td>
<td>madhyaloka, i.</td>
</tr>
<tr>
<td>195</td>
<td>madhyama, ii.</td>
</tr>
<tr>
<td>228</td>
<td>madhyamâya, ii.</td>
</tr>
<tr>
<td>302</td>
<td>Madra, i.</td>
</tr>
<tr>
<td>303</td>
<td>Madraka, i.</td>
</tr>
<tr>
<td>161</td>
<td>madrî (?), i.</td>
</tr>
<tr>
<td>298</td>
<td>Madura, i.</td>
</tr>
<tr>
<td>252</td>
<td>madya (?), i.</td>
</tr>
<tr>
<td>121</td>
<td>Maga, i.</td>
</tr>
<tr>
<td>228</td>
<td>Magadha, i.</td>
</tr>
<tr>
<td>301</td>
<td>Magadha, i.</td>
</tr>
</tbody>
</table>
INDEX.

Māgadha, i. 255, 394
māgha, i. 211, 217, 218, 403; ii. 177; festivals, 183, 186
maghā, i. 218, 390, 391; ii. 84, 121, 124, 180
mahābhūta, i. 41, 42, 321, 382
Mahācāna, i. 207
Mahādeva, i. 54, 92, 93, 94, 117, 118, 119, 120, 121, 130, 131, 136, 158, 176, 179, 181, 292, 342, 361, 362; ii. 6, 102, 103, 120, 125, 140, 143, 144, 147, 179, 180, 181, 182, 184, 192, 239
Mahāgauri, i. 257
Mahāgriva, i. 301
Mahājambha, i. 231
mahājāla, i. 60
Mahākāla, i. 202
mahākalpa, i. 332
mahākhyā (?), i. 230
Mahāmegha, i. 231
Mahānadi, i. 237
Mahanāra, i. 259
mahānavami, ii. 179
mahāpadma, i. 175, 176, 247; ii. 120
Mahārāṣṭra, i. 299
maharīkā, i. 232, 238, 325
Mahārnava, i. 302
Mahāśāla, ii. 101
mahāśākhu, i. 176
mahāśāla, i. 230
mahāśātan, i. 183
Mahātaxi, i. 301
mahātrij, ii. 183
Mahāvikā (?), i. 257
Mahāvīrā, i. 386
Mahendra, i. 242, 247, 257, 301
māheya, i. 215, 300
mahīdhara, i. 178
Mahisha, i. 254, 299, 325
Mahishnisha, i. 231
Mahrattadeshu, i. 203
Mahāura, i. 109, 202; ii. 147, 175
Mahvi, i. 206
Maināka, ii. 101
maitra, i. 358
Maitreyas, i. 63, 388, 397
Maitreyi, ii. 174
Maivār, i. 202
makara, i. 204, 219, 220; ii. 93
makaradī, i. 358
mala, ii. 20
Māla, i. 299
Mālāda (?), i. 300
malamāsa, ii. 20
Mālava, i. 173, 191, 202, 219, 299
300, 303; 308
Mālavartika, i. 299
Malaya, i. 200, 247, 257, 301
Malayaparvata, i. 248
Mālindya, i. 301
Malla, i. 300
Malvāri, i. 173
Malvashau, i. 173
Mālyavant, i. 248
māna, i. 166, 353, 355
Mānahala, i. 303
manas, i. 44
mānas, i. 157, 247, 255, 256, 386; ii. 143, 245
Mānasottama, i. 256
mānda, i. 215; ii. 142
Mandaga, i. 255
Mandagir, i. 203
Mandahākūra, i. 206
Mandākini, i. 257; ii. 142
Mandakkakor, i. 317
Mandavahini, i. 257
Māndavya, i. 157, 300, 302, 303
Mandesha, i. 254
māṅgala, i. 178, 215, 261
māṅgalabāra, i. 213
manguniha (?), ii. 245
maniketu, ii. 243
Manimān, i. 302
Manittha, i. 157
manmatha, ii. 127
Manojava, i. 387
māṃsartagu, ii. 183
Manu, i. 131, 132, 157, 179, 241, 386; his children, 357, 393; ii. 110, 111, 118, 127, 162
manushyāśorātra, i. 328
manushyaloaka, i. 59
manvantara, i. 179, 241, 291, 359, 361, 367, 369, 372 seq., 386 seq.; their names, 387, 393, 398; ii. 1, 2, 17, 118, 119
Mara, i. 261
Māraka, i. 302
mārgaṇa, i. 178
mārgasṛṣaṇa, i. 217, 218, 358, 402, 403; ii. 10, 174; festivals, 182, 193
marci, i. 163, 242, 390
Mārcika, i. 302
Mārigala, ii. 5
Mārkandeya, i. 54, 131, 241, 321, 340, 360, 372, 386; ii. 2, 3, 64, 68
mārkandeya-puruṣa, i. 130
Maru, i. 261, 300
ALBERUNI'S INDIA.

Maruchpattana, i. 301
Marukucca, i. 302
Marut, ii. 199
mása, i. 179, 359
másārdham, i. 178
māsha, i. 160, 161, 162, 163 164; ii. 206
Maahaka (!), i. 299
māospavāsa, ii. 173
Mathara, i. 302
Māshurā, i. 300, 308, 401, 403; ii. 5
mātrā, i. 139, 140
mataya, i. 131, 300
Mātaya, i. 282
mataya-purāna, i. 130, 168, 235, 236, 247, 248, 251, 252, 254, 255, 258, 261, 271, 284, 285, 286, 325; ii. 62, 65, 101, 102, 142, 245
Mau, i. 157
mausala, i. 133
māyā, i. 344
Meda, i. 300
Medhāśātri, i. 394
Megha, i. 231
Meghavān, i. 302
Mekala, i. 300, 301
Meru, i. 243 seq., 257, 265, 271, 274, 302, 303, 308, 316; according to the Buddhists 326, 327, 329; i. 82, 96, 129, 142
mesha, i. 220
meshādi, i. 357
Mhrān, i. 260
mūmatāhā, i. 132
mūr, i. 220
Mithilā, i. 301
māthima, i. 219, 220
Mīrat (Meerut), i. 205
Mitra, i. 217, 242, 342; ii. 122, 199
Mitrākhya, ii. 115
mleccha, i. 19, 302; ii. 137
modaka, i. 136
moksha, i. 70, 80; ii. 133
mokshadharma, i. 133
mora, i. 166
Mrāvarta, i. 249
Mrīgī, i. 255
mrīgalāneha, i. 137; ii. 102
mrīgāśiras, ii. 86
mrīgāśiras, i. 218, 342; ii. 84, 121
mrīgavādha, ii. 91
mrītasānmaiyan, i. 254
mrīttāla, i. 230
mrītyasāra, i. 344
Mrītyu, i. 398
Mrūna, i. 261

Mucukunda, i. 231
Mudrakaraka (?), i. 299
Mohrān (Sindh), i. 204
muhūrta, i. 239, 287, 337, 338 seq., 341; their names, 342, 366; ii. 118, 119, 248, 244
Mukta, i. 301
mūla, i. 218, 298; ii. 85, 122, 179
Mūlashāna, i. 298
mūlastikona, ii. 225
Mūlika (!), i. 300
Mūltān (mūlastāna), i. 21, 116, 153, 205, 211, 240, 260, 300, 302, 308, 317; ii. 6, 8, 9, 54, 145, 148, 184
Munḍa (!), i. 299
Mungrī, i. 200
Munha, i. 203
muni, i. 93, 178, 238
Munja, i. 231
Muru, i. 387
Māshika, i. 299
Muttai, ii. 178

Nāraka (!), i. 387
Nābhāga, i. 394
nāḍi, i. 335
nāga, i. 178
nāga, i. 91, 178, 247, 267, 344; ii. 120, 197, 198
Nāgadvipa, i. 296
nāgaloka, i. 59
nāgara, i. 173
Nāgarapura, i. 156
Nagarasamvṛtta, i. 257, 296
Nāgārjuna, i. 189
Nagarkot, i. 260; ii. 11
Nagha, i. 394
nagna, i. 121
Nagnaparna, i. 301
Nahusha, i. 93
Naipāl, i. 201
nairṛita, i. 290, 297, 301
nairṛiti, ii. 203
naisargika, ii. 215, 227
naisargikābala, ii. 227
Nalīka (!), i. 300
nakha, i. 179
nakshatra, ii. 64
nakshatramāna, i. 353, 354
nakshatranātha, i. 216
Nakula, i. 403
Nalaka, i. 300
nālī, ii. 135
Nālikera, i. 301
Nalini, i. 261, 262
nālva, i. 166
INDEX.

nāmakarma, ii. 156
Namāvur, i. 203
Nāmiyā, i. 203
Namuci, i. 231
nanda, i. 178, 231, 401; ii. 120
nandagola, i. 401; ii. 148
Nandana, ii. 257
nandana, ii. 127
Nandanasana, i. 244; ii. 96
nanda-purāna, i. 130
Nandavishtha, i. 303
Nandikēśvara, i. 93
Nandna, i. 317
Nara, i. 387
Nārada, i. 116, 131, 237, 357; ii. 96, 101, 236
Naraka, i. 236
nara-loka, i. 59
Narasimha, i. 365, 366
Narasimha-purāna, i. 130
Nārāmukha, i. 302
Narmadā, i. 257, 259
Nāsīkya, i. 300, 301
nātha, ii. 103
Naumand (?), ii. 129
navakanda, i. 207
navakhanda-prathama, i. 294, 296
navan, i. 178
navin, ii. 197
netra, i. 178
nīlāgha, i. 357
nībāvaśa, i. 399
nikharva, i. 175, 176
Nīla, i. 231, 246, 249; ii. 142
Nilamukha, i. 262
nīmaśa, i. 335 seq., 337, 362
Nirakara, ii. 8
nirakara, i. 267
Nirāmaya, i. 387
Nirbindhyā, i. 257
Nirūshabhā (?), i. 394
Nirmogha, i. 387
Nirmohas, i. 394
nīrīti, i. 358; ii. 122
Nirūsuka, i. 394
Nīśakā, i. 342
Nīścara, i. 394
Nīśtrā, i. 259
nīśeśa, i. 216
Nīshāka (?), i. 262
Nīshadha, i. 247, 248, 249, 257, 301; ii. 142

nīshkūpāda (?), i. 231
Nīshprakampa, i. 394
Nīśvarā, i. 394
nītañ, i. 230
nīvra, i. 140
nīyutam, i. 176, 177
nūpa, i. 179
Nṛśimhahavana, i. 302
Nūr, i. 259
nyagrodha, i. 258
nyarūdha, i. 175, 176
nyāyahāsā, i. 132

om, i. 173
odā (?), ii. 183
Oḍra, i. 301

PADA, ii. 23
pāda, i. 143, 144, 145, 146, 147, 148, 150, 160
padamāsa, ii. 23
Padha, i. 300
pada, i. 114, 131, 175, 176; ii. 120
pada-maketa, ii. 244
Padmanabha, i. 403
Padma-Tulya (?), i. 300
Padnār, i. 209
Pahlava, i. 300
Pāla, i. 127
paitāma, i. 153
Pājaya (?), i. 257
paksha, i. 140, 143, 145, 146, 176, 359; ii. 118
pala, i. 162, 163, 164, 165
palaśa, ii. 131
Palāśini, i. 257
Palhava, i. 261
pāli, i. 161
Palōla, i. 303
Pañcāhasta, i. 337
pancābhi, ii. 197
Pañcāla, i. 133, 262, 298, 299
pañcha mātaraś, ii. 42
Pañcācanadā, i. 260, 302
pañcha-siddhāntika, i. 153; ii. 7, 51
190
Pañcāśikha, i. 325
pañca-tantra, i. 159
Panchir, i. 108, 259
pancā, ii. 197
Pāndava, i. 178
Pāndava-kāla, ii. 1, 5
Pāndu, i. 107, 132, 133, 199, 300, 380, 403
Paṇḍya, i. 299
Paṇini, i. 135
Pânapat, i. 205
pânīya, i. 235
Pânjâyâvar (f), i. 209
Pantl, i. 166
pâpagraha, i. 216
Parâ, i. 257, 259
parâka, ii. 173
paramapada, ii. 2
parapadma, i. 176
parârdha, i. 174, 175, 333
parârdhakalpa, i. 333
Parâsara, i. 44, 63, 107, 131, 157, 369, 388, 394, 397; ii. 96, 208, 235
Pârâsâva, i. 302
Parâsûrâma, i. 380
parasvadha, ii. 203
Pârâsta, i. 302
parâvasu, ii. 128
Pâreśvara, i. 158
paridhâvin, ii. 128
Parikshâ, i. 77, 113
parivasâra, ii. 125
Parîyâtra, i. 247, 257, 259, 300
Parjanya, i. 217, 394
Parnâsâ, i. 257, 259
pârthiva, i. 42; ii. 127
pârtina, i. 220
parvan, i. 132; ii. 115 seq., 119, 191
Parvân, i. 259
parvata, i. 140, 141, 143, 145, 146, 178; ii. 101, 199
Parvatamaru, i. 262
parvatî (f), ii. 181
pâseima, i. 290
pâshånabhûmi, i. 230
Pâsûpâla, i. 303
pâta, ii. 207
pâtâla, i. 59, 230, 307; ii. 140
Pâtaliputra, i. 200
pâthôjala, i. 8
Pâtanjali, i. 27, 55-56, 68-70, 76, 80, 81, 82, 87, 93, 132, 189, 232, 234, 235, 236, 238, 243
Pathësvara, i. 299
patti, i. 407
pattnin, i. 178
Paulisâ, i. 153, 266
Paundra, i. 301
Paurava, i. 303
pausha, i. 217, 218, 358, 403; ii. 174, 177; festivals, 183, 193
pâvaka, i. 178
pavana, i. 178
Pâvani, i. 261, 262
pavitra, ii. 130
Payosânl, i. 257
Phalgulu, i. 302
phâlguna, i. 217, 218, 358, 403; ii. 174; festivals, 183, 193
Phanikâra, i. 301
Phenajirî, i. 302
pîtumant (f), ii. 129
pînda, ii. 104
Pîndâraka, ii. 120
Pîngala, i. 137; ii. 128
Pîn galaka, i. 303
Pinjaур, i. 205
Pîpyâla, i. 257
Pîrâvâna (f), i. 158
Pîrâbika (f), i. 257
pîrâca, i. 89, 90, 92, 247; ii. 296
Pita, i. 255
pîtvahûni, i. 230
pîtvâmaha, i. 178, 361
pîtvanda (f), ii. 142
pîtvâna, i. 89, 93, 232, 243, 330, 357; ii. 121, 128, 133
pîtri, i. 342
pîtrîloka, i. 233, 236, 238; ii. 233
pîtrînâmahârastra, i. 323
pîtrîpâka(la), i. 180
pîtrya, i. 358
Pîvâra, i. 394
plakshâ, i. 235
plava, ii. 128
pîvânga, ii. 128
Pojjihana (!), i. 300
prabhava, ii. 127
Pradyumna, i. 118, 158, 393
Prâggyotishâ, L 299, 301
prahara, i. 337
Prahîdâ, i. 365
prajâpati, i. 59, 92, 94, 159, 291, 357, 398; ii. 102, 121, 125, 127, 238
prakrîti, i. 41
pramâna, i. 353
pramâdha, ii. 128
pramâthini, ii. 127
pramoda, ii. 127
Pramukha (!), i. 337
prâna, i. 277, 334 seq., 337, 339, 361, 394
Praśastâdri, i. 302
praśâna-gûḍhumâna (!), i. 158
prasthâ, i. 162, 163, 164, 165
prasthāna, i. 133
prathama, i. 295
Prathanga (!), i. 299
Pratimsâja, i. 394
Prâstragîra (!), i. 299
Prâyâga, i. 200; ii. 179, 241
INDEX.

praṣṇaścitta, i. 355
prayuta, i. 175, 176, 177
preta, i. 90
Prishaka, i. 262
prītanā, i. 407
prīthivi, i. 238
Prīthu, i. 292, 394
Prīthūdanaśvāmin, i. 158
Prīthūnavāmin, i. 316
Priyavrata, i. 241, 387
Prasāthapada, ii. 127
pūhā (?), ii. 180
pūhaval (?), ii. 183
Puhūṅga (?), i. 299
Pulaḥa, i. 390
Pulastya, i. 390
Pulindra, i. 300
Pulissa, i. 153, 154, 168, 169, 224, 266, 275, 276, 278, 312, 313, 316, 335, 339, 370, 374, 375, 376, 377; ii. 4, 18, 19, 24, 31, 41, 42, 58, 67, 69, 70, 72, 74, 91, 187, 190, 192, 208
Pulisa-siddhānta, i. 153, 177, 275, 333; ii. 31
Pūkala, i. 302
Pūkara, ii. 147
Puleya, i. 300
Pulinda, i. 262
punarvasu, i. 218; ii. 68, 84, 121, 176, 180
Pūreca (?), i. 157, 366, 367
Punjadrī, i. 303
punyakāla, ii. 187, 191, 192
purāṇas, i. 92; ii. 136
purāṇa, i. 130, 233, 238, 264, 273, 283; ii. 110, 113
Purandara, i. 387, 397
purārājaka, ii. 183
Purika, i. 301
Pūrṇa, i. 262
pūrṇimala, i. 348; ii. 185, 197
purobhita, ii. 132
Pūrshāvar (Peshavar), i. 206, 259, 317
Pūrshū (Peshavar !), i. 338
Puś, i. 357
pusha, i. 31, 40, 321
pusha, i. 324, 332, 333, 350, 351, 360, 386; ii. 118
Purushāda, i. 300
purushāhoratra, i. 332
Purushaparvata, i. 248
Purushāvar (v. Purushāvar), ii. 11
pūrva, i. 290
pūrvabhādra-pādā, i. 218, 240; ii. 85, 122
Pūrvedaśa, i. 173
pūrvapalguni, i. 218, 291; ii. 85, 121, 123
pūrvābhadaḥ, i. 218, 291; ii. 85, 122
pūshan, i. 217, 342, 358; ii. 122
pushandita (?), i. 181
Pushkala, i. 254
Pushkalāvatī, i. 302
pushkara, i. 235, 254, 261; ii. 120
pushkaradvipa, i. 235, 255, 256, 284, 286
Pushpa-jāti, i. 257
pushya, i. 218, 291; ii. 66, 84, 121
pūṭhi, i. 171
pūyattanu (?), ii. 134
Rāda (?), i. 231
Rahab, i. 261
rahu, i. 228; ii. 234
rahuacakra, i. 292
rāhunirakarana (?), i. 157
rāt, ii. 11
raibhya (?), i. 387
raiṅa, i. 387
Raṅvataka, i. 302
raja, i. 162
rājadharma, i. 133
Rājagiri, i. 205, 208
Rājanya, i. 302
rājasa, i. 93
rajasa, i. 40, 399
Rājauri, i. 202
Rājāvarī, i. 203
rākṣasa, i. 89, 90, 91, 92, 231, 247, 248, 262; ii. 3, 128
rakta, i. 215
raktabhumi, i. 230
raktāksha (?), ii. 123
raktāmala, i. 190
Rāma, i. 117, 121, 166, 209, 258, 306, 307, 310, 372, 380, 397; ii. 3, 137
Rāmadī (?), i. 257
Rāmāyaṇa, i. 307, 316; ii. 3
Rameshvar (?), i. 209
Rāmakṣetra (?), i. 209
Ramayana, i. 249
Ramdhura, i. 178
Raṅka, i. 192
rāsa, i. 42, 178, 188
rasātala, i. 230
rasāyana, i. 80, 188, 191, 193
rasāyana-tantra, i. 156
Rāsātra, i. 301, 303
raśmi, i. 178
raśniketu (?), i. 242
ratha, i. 407, 408
rátri, i. 359
raneyya, i. 387
raudra, i. 344, 358; ii. 128, 241
raurava, i. 60
Rāvana, i. 306, 307, 380; ii. 3
Rāvanasēras, i. 179
ravi, i. 215, 216, 217, 342
ravicandra, i. 178
Rebbha (?), i. 387
repu, i. 162
Revanta, i. 119
revati, i. 218, 291, 342, 369; ii. 66, 85, 86, 122, 177, 180
ric, i. 123
Rīgveda, i. 127, 128
Rīhanjūr, i. 205
Rīkṣa, i. 257
Rīnayēshtha (?), i. 398
Rīshabhā, i. 301; ii. 101
rīsī, i. 93, 106, 130, 237, 239, 241, 404; ii. 96, 103
Rīshika, i. 257
Rīshika, i. 301
Rīshyamōka, i. 301
Rīshyāśīnga, i. 394
Rītadhāmān, i. 387
ritu (?), i. 178, 357, 359; ii. 118
Rītukūlyā, i. 257
rodha, i. 60
rodhakṛiti, ii. 123
rodhī, i. 218
rohini, i. 218, 344, 401; ii. 66, 84, 96, 97, 99, 100, 102, 121, 175, 176, 177
Rohitaka, i. 308, 316
Romaka, i. 267, 303
Romaka-siddhānta, i. 153
rudhīra, i. 61
rudhīrāndha, i. 61
Rudra, i. 94, 179, 342, 362, 363; ii. 120, 121, 140
rudrāputra, i. 387
rukamākha (?), i. 129
Rūm, i. 268, 272
Rūmānā (?), i. 299
Rūmimāṇḍala, i. 262
rūpa, i. 42, 140, 178
rūpa-paśca (?), ii. 179
Rūpaka, i. 300
Rūrakā (?), i. 281
Rūrchwadvahhu (?), i. 394
ruvu, i. 161, 162
Sakṣī (?), i. 261
śabda, i. 42
śabhā-parvan, i. 133
Śadāśiva, i. 361, 362, 363
Śaddānā (?), i. 257
śadāhāraṇa, ii. 128
sāgara, i. 178
Sāgara, i. 20; ii. 143, 176, 169
sāgārtam, ii. 183
sahadeva, i. 403
Sahanyā, i. 202
sahasam, i. 175, 177
sahasrāṁśu, i. 179
Sahāti (?), i. 190
Sahishnu, i. 394
Sahya, i. 247, 257
dalasastapati, ii. 125
Śailodā, ii. 143
śaindhava, i. 173, 261
Śaintra, i. 153
Śairukiru (?), i. 301
Śairvedha, i. 303
Śaka, i. 300, 302; ii. 5, 6, 8
śaka, i. 235
śakadvipa, i. 235, 252, 253
śakakāla, i. 365, 390, 391, 392; ii. 6, 7, 9, 23, 123, 129, 183, 190
śakata, i. 135
śakatīyana, i. 135'
śakra, i. 358; ii. 122
Śakrānala, ii. 128
śakti, i. 118, 119, 363
śakuni, ii. 197, 198, 200
śakvara, i. 241
śālāka, i. 239
śalila, i. 261
śālīkot, i. 317
śāmalī, i. 235
śāmalīdvipa, i. 235, 254
Śālīya, i. 299
śāvanī (?), i. 300
Śalīya, i. 133
śama, i. 371
Śamalvāhana, i. 136
śāman, i. 129
Śāmanta, ii. 13
Śamatāta, i. 301
śāmaveda, i. 127, 129, 396
Śamaya (?), i. 336, 337; ii. 183
Śamba, i. 118
śambha-purāṇa, i. 130
Śambhaphura, i. 293
Śambhaphuruyātra, ii. 184
śamādi, i. 128, 364, 366, 369, 372; ii. 2, 17, 110, 133, 225, 226, 244
śamādi-śatamana, i. 364
śamādi udaya, i. 364
śamādhyaśāna, i. 372, 373
Tanvat (I), i. 201
tapana, i. 178
Tāpāsāram, i. 301
Tapasvin, i. 394
Tāpti, i. 257
tapodhṛiti, i. 394
tapoloka, i. 232
Tāpomūrti, i. 394
taporati, i. 394
taptakumbha, i. 60
Tāra (I), i. 303 ; ii. 64
Tārkakāsha, i. 231
taranā, ii. 64
tāraṇa, ii. 127
tāri, i. 171
tārkṣaya-purāṇa, i. 130
Tarajanāpāla, ii. 13, 14
Tarū, i. 201
Tarūpana (I), i. 300
Tarkasa, i. 298
tattva, i. 44, 179
Tattvadarśa (I), i. 394
tauksika, i. 220
Tavalleśar, i. 203
Tharpura (I), i. 300
thoher (Sindhill), i. 192
Tisur, i. 292
tikanî- (I)-yātra, i. 158
Tilītta (I), i. 300
Tilvat, i. 201
Timingilāśana (I), i. 301
tiryagloka, i. 59
Tishya, i. 254, 372, 380
tithi, i. 179 ; ii. 194, 195, 201-203
Tobā, i. 257
tola, i. 160, 162
trahagattata (I), ii. 192
traḥ, troh, ii. 197
Traidura, i. 300
tranjā, ii. 182
traśāntya, i. 344
trayam, i. 178
Trayyārūna, i. 398
tretā, i. 372
trettayuga, i. 253, 373, 397, 393 ; ii. 186
Tridhāman, i. 398
Tridiva, i. 257, 292
Trigarta, i. 300, 302
triguna (I), i. 178
tribarkasha (I), ii. 191
tribhapaaka (I), ii. 191
triṣaṭi, i. 178
trikāla, i. 178
trikatu, i. 178
Trikūṭa, i. 248
Trilocanapāla, ii. 13, 14
Trinetra, i. 303
triṇasāṃsaka, ii. 223
Tripavā (I), i. 257
Tripurāntika, i. 243
Tripuri, i. 301
Triṣāgā, i. 257
Triśira, i. 231
Trivikrama, i. 403
Trivṛiṣha, i. 398
triya, ii. 197
truti, i. 335 seq., 337, 362, 363
Tukhāra, i. 261, 302
tulā, i. 165, 219, 220
tulādī, i. 357
Tumbavana, i. 301
Tumbura, i. 300
Tuṇgabhadrā, i. 257
Turagānana, i. 302
Tūrān, i. 208
Tvāṣṭri, i. 217, 342, 358 ; ii. 117, 121, 137

UDAKA, i. 136
Udayagiri, i. 301
Udbhira, i. 300
Uddevika, i. 300
udruvaga, i. 220
Udunpur, i. 173
udvatsara, ii. 125
Udyānamarūra, i. 262
udyoga, i. 133
Ugrabhūti, i. 135
Ujain, i. 189, 202, 259, 298, 301, 304, 308, 311, 313, 316
Ujjayini, ii. 241
Ulyānda (I), i. 157
Umādevi, i. 54
Umāmaṇa, i. 209
unā, ii. 21
unārastra, i. 354 ; ii. 21 ; universal or partial, 23, 25, 34, 37, 186, 187, 192
Uṣhara (I), i. 231
Upakṣa, i. 262
upari, i. 290
Upavasa, i. 301
upavāsa, ii. 172
Uraga, i. 242
Urdhabhisau, i. 200
Urdhvakarana, i. 301
Urdhvakuṭa, i. 231
Uṛja, i. 394
Urū, i. 387
urvarā, i. 178
uṣanas, i. 77, 131, 393
INDEX.

Üskhārā, i. 207
Ushnakāla, i. 357
Ushtrakarna, i. 262
Uskāla, i. 301
uttāmasa (!), i. 387
Utkāla, i. 300
uktī, i. 179
Utpala, i. 157, 158, 293, 334, 336, 337, 361, 387
Utpalavini (!), i. 257
utsarpini, i. 371
Uttama, i. 398
Uttamaujas, i. 387
Uttamarpāṇa, i. 300
Uttānapāda, i. 241, 242
uttara, i. 290
uttarabhadrapadā, i. 218, 342 ; ii. 85, 86, 122, 127
uttarakhandakhāyaka, i. 156 ; ii. 87, 90, 91
uttarakula, i. 357
Uttarakurava, i. 302
uttaramañasa, ii. 142
Uttaranārma, i. 300
uttaraphalguni, i. 218 ; ii. 84, 121
uttarashāhdhā, i. 218 ; ii. 85, 122
uttarāyanya, i. 356, 357 ; ii. 169
Uvaryaḥār (!), i. 200

VAĐAVĀMUKHA, i. 266, 267, 269, 272, 278, 279, 302, 307, 327 ; ii. 201
Vadāvānala, ii. 104
Vāda, i. 300
Vadhra, ii. 101
vāhini, i. 407
Vairgirā, i. 299
Vāhifikā (!), i. 300
vāhijīvāla, i. 61
Vairāgī, i. 300
Vaidarbha, i. 300
Vaidises, i. 300
vaidhritā, ii. 204, 206, 208
Vaidika, i. 300
Vaidūrya, i. 301
Vaiśand, i. 206, 259, 317
Vaiṣyā, i. 257
Vairahma (!), i. 344
vaiśākha, i. 217, 218, 358, 403 ; ii. 123, 173 ; festivals, 179, 182, 186, 193
vaisnavā, i. 357
Vaishnavi, i. 120
vaisvānara, i. 178
Vaisampayana, i. 127
vaisya, i. 101, 125, 247, 302 ; ii. 95, 98, 136, 155, 157, 170, 191
vaitarāṇi, i. 61, 257

Varāvasvāta, i. 271, 337
Vājasaśas, i. 398
vajra, i. 119, 236, 241, 321, 360, 386 ; ii. 2, 3, 65, 203
vajrabrahmaḥatyā, ii. 192
Vāka, i. 299
vakra, i. 216 ; ii. 101
Vālikhiyā, i. 395
Vallabha, i. 192, 193, 209 ; ii. 5, 6
Vallabhī, i. 192 ; ii. 6
Vālmki, i. 398 ; ii. 3
Vāmana, i. 129, 131, 396, 403
vāmana-pūrāṇa, i. 130
Varāhāvara, i. 257
Vātāca (!), i. 394
vāna, i. 178, 300
Vanarājya, i. 303
Vanaugha, i. 302
Vanaudāl, i. 301
Vanaśāka, i. 299
Vangha, i. 301
Vāṅgaya, i. 299
Vānapadevaśa, i. 387
Vaprīvan, i. 398
Vapuṣhmat, i. 394
var (!), ii. 10
vāra, i. 355
Varaha, i. 131
varāha-pūrāṇa, i. 130
Vārāhī, i. 120
Varaka, i. 394
Varṇhāmāna, i. 301
varga, i. 297, 298
Vāricara, i. 301
varna, i. 100
varsha, i. 359
varahakāla, i. 211, 357 ; ii. 95
Varuna, i. 217, 242, 271, 292, 342, 355, 372 ; ii. 92, 115, 122
varunamāntra, ii. 97
Varvāra, i. 261
Vasā, i. 241
vāsana, ii. 118
vāśanta, i. 357 ; ii. 179
Vasāti, i. 342
Vasāvas, i. 122
Vasishthā, i. 115, 131, 225, 239, 263, 280, 340, 390, 394, 398 ; ii. 66, 96
INDEX.

Vivinás, i. 254
vīyat, i. 173
Viyāthha, i. 259
Vodha, i. 325
Vokkāna, i. 302
Vṛihspati, i. 131, 215
Vṛika, i. 299
Vṛikavaktra, i. 231
vṛścika, i. 220
vṛścikaloṣa, ii. 233
Vṛisha, i. 301, 387
vṛṣhadha (f), ii. 127
Vṛishabadhvaja, i. 300
vṛśhan, i. 220
vṛśhmil, i. 344
Vṛitraghni (?), i. 257
vṛitta, i. 145
vuhara (?), ii. 104
Vṛyādi, i. 189–191
Vyāgramukha, i. 300
vyākarana, i. 135
vyakta, i. 41
Vyālagriva, i. 301
Vyāna (!), ii. 121
vyāsāntandala, i. 238
vyāsatatrāśākha, i. 313
vyātipāta, ii. 204, 206, 208
Vyaya, i. 394; ii. 127

Yādava, i. 133, 404, 405
yāhi, ii. 197
Yajña, i. 242
Yājñavalkya, i. 128, 131, 132; ii. 174
yajnopavita, i. 181; ii. 130, 136

yajurveda, i. 127, 128
yaksha, i. 89, 91, 92, 247, 262
Yama, i. 131, 178, 271, 291, 292, 303, 332; ii. 115, 122
Yamakoti, i. 267, 268, 272, 303
yamala, i. 178
Yamunā, i. 308, 316
Yāmuna, i. 300, 302
yāmya, i. 358
Yāmyodāhi, i. 301
Yaśodā (!), i. 382, 397, 401
Yaśovati, i. 302
yātrā, i. 178
Yauḍhiya, i. 303
yava, i. 160, 162
Yavanas, i. 153, 158, 300, 302; ii. 5
Yavanas-koti, i. 306
Yavanas (!), i. 261
Yayāti, ii. 174
yoga, ii. 191, 204 seq.
yogayātrā, i. 153
yojana, i. 153, 167, 168, 169, 224, 234, 236, 244 seq., 265, 311; ii. 65, 67
yojanas of heaven, ii. 72, 74, 79
Yima, i. 119
Yudhishthira, i. 340, 341, 390, 391, 403; ii. 3
yuga, i. 298, 367, 372 seq., 397; ii. 1, 2, 124; their beginnings, 186, 187
yūkā, i. 162
Yuktasa, i. 394
yuvan, ii. 127

Zābraj, i. 210
Zamba (!), ii. 142
Zindutunda (!), i. 261
INDEX II.

Abdalkarim Ibn 'Abd Al'aujaj, i. 264
Abdallah Ibn Almuqaffa, i. 159
'Abd-al-aman im v. 'Abd-Sahl, i. 5
Abu Ahmad Ibn Catlaghtagin, i. 317
Abu-Abbabs Aluranshabri (v. Aluranahabri), i. 6
Abu-al'aswad Al-du'ali, i. 136
Abu-alfath Albusut, i. 34
Abu-alhasan of Ahvaz, ii. 19
Abu Bakr Al-shibbi, i. 87
Abu-Mas'har, i. 304, 325
Abu-Sahl 'Abd-al-aman im Ibn 'Ali
Ibn Nah Al-tifisi, i. 5, 7 (also under 'Abd-al-aman im)
Abu-Yakub of Sijistan, his book
Kashf-ulmahjub, i. 64
Abu-Yazid Albastami, ii. 88
'Adud-aldaula, ii. 157
Afghan, i. 208
Afriqf, i. 304
Aluranshabri v. Abu-Abbabs, i. 6, 249, 325
Alexander, story of his birth, i. 96
Alexander of Aphrodisias, i. 320
Alexandria, i. 153
Afazar, i. 165, 303, 314, 315; ii. 15, 16, 17, 18, 23
Al-hajjaj, ii. 153
'Alt Ibn Zain of Tabaristan, i. 382
Aljihiz, i. 204
Al jahant, book of routes, i. 240
Alkhali Ibn 'Ahmad, i. 133, 147
Al-khwirizmi, ii. 79, 114
Alkindi, ii. 200, 201
Alma'mura, i. 21
almanac from Kashmir, i. 391
Almanshr, Khalif.
Al-manshora, i. 21, 173, 193, 205, 260, 316; ii. 6
Ammonius, i. 85

Aphrodisius, i. 407
Apollonius, de causis rerum, i. 40
Arabian astronomy (lunar stations), ii. 81, 90
Arabian metrics, i. 138, 142, 144
Arabian traditions, i. 170, 185
Arabic literature, translation of Caraka, i. 159; Kalila and Dimna, translation from the Indian corrupt, i. 162
Arabs, i. 302; different forms of matrmony with them, i. 108; their idols, i. 123
Aratus, i. 97, 333; scholia on the Phenomena, i. 97, 334
Archimedes, i. 163
Ardashir Ibn Babak, i. 100, 109
Ardisya, Eranian, i. 249
Aristotle, letter to Alexander, i. 124, 225, 226, 232; φαισκή ἀκρασίας, i. 329
Arjabsar, ii. 19
Arkand, i. 312, 316; ii. 7, 48, 49
Asclepius, i. 222
Asvira, i. 207

Babylonia, i. 153
Bagdad, ii. 15, 67
Balkh, i. 21, 260, 304
Barhatagin, ii. 10
Baridish, Eranian, i. 260
Barmecides, i. 159
Barshawir, i. 109
Bazak, i. 63
Barzoya, i. 159
Bashashr Ibn Burd, ii. 131
Bhatta-Shah, i. 207
Bhattavaryac, i. 207
bist (=vahiti), ii. 201
Bolor mountains, i. 117, 207
Bolor-Shah, i. 206
INDEX.

Buddhists, i. 7, 21, 40, 91, 121, 156; their writing, 173; their cosmographic views, 249, 326; ii. 169
Būshang, i. 299

CALENDAR of Kashmir, ii. 5, 8
Ceylon, i. 209; pearls, i. 211
chess, i. 183-185
China, ii. 104
Chinese, ii. 239
Chinese paper, i. 171
Christianity, i. 6, 8
Christians, their use of the words
Father and Son, i. 38
Christian views, i. 69
Christians, i. 94; ii. 186
Christian traditions, ii. 151, 161
Clepsydra, i. 337
Commodus, Emperor, i. 123
Constantine, Emperor, ii. 161

DAIBAL, i. 203
Daizan, i. 109
Dânak, Persian, i. 163
Denars, i. 309
Dibajāt (Maldive, Laccadive), i. 293; ii. 106
Dirhams, i. 160, 163, 164
diz (Persian), i. 304

EMPEDOCLES, i. 85
era of the realm of Sindh, ii. 48, 49
era of Yazdajird, ii. 48, 49
Eranian traditions, i. 249
Erānshahr, i. 54
Erichthonius, i. 407

FÁRFAZA, i. 299
farsakh, Persian, i. 167; 311; ii. 67, 68
Fulūs, i. 160
Fúsaj, i. 299

GALLENUS, i. 222, 329; de indole animae, i. 123; book of speeches, i. 95; book of deduction, i. 97; commentary to the Apothegms of Hippocrates, ii. 182; Protredticos, i. 34; commentary on the Aphorisms of Hippocrates, i. 35, 36; Karā yēn, i. 127, 151
Gauge-year, ii. 2, 7, 28, 31, 39, 44, 47, 48, 50, 53
Gaza, i. 117, 206, 317
Ghazân, i. 103
gāzr, measure in Khwâzirn, i. 166

Ghurrat-alatjât, ii. 90
Ghuzz (Turkia), ii. 168
Gilgit, i. 207
Girnagar, Eranian, i. 250
Girshâh, i. 109
Gospel, quoted, i. 4
Greek legends, i. 96
Greek philosophy, i. 7, 24, 33
Greek traditions, i. 105, 112, 143; origin of the alphabet, i. 172; on the astrolabe, ii. 215, 219, 220, 222; on the Milky Way, i. 281, 289; on the first meridian, i. 304; on the chariot of war, i. 407

HARKÀN, ii. 52
Hebrew, i. 36, 37, 33
Herbs, i. 109

HINDUS, their language, i. 17; classical and vernacular, i. 18; shortcomings of manuscript tradition, i. 18; the metrical form of composition, i. 19; their aversion to strangers, i. 20; their systems of matrimony, i. 107; the balance they use, i. 164; relation between authors (writers) and the nation at large, i. 265; their architecture, ii. 144
Hippocrates, his pedigree, i. 379
Homer, i. 42, 93
Huna, ii. 239

IBN ALMUKAFA', i. 264
Impēl, name of the rhinoceros with the Negroes, i. 204
India, rainfall, i. 211, 212
Isfandiyâd, i. 193
Islam, sectarian views, i. 31, 263, 264
Ispahbad (of Kâbul), ii. 157
'Ilâs Ibn Mu'âwiya, ii. 158

JABRITA, a Muslim sect, i. 31
Jalam Ibn Shaibân, i. 116
Jâm, i. 304

Jewish tradition on the tetragrammaton, i. 173
Jews, ii. 6, 109; ii. 240
Johannes Grammaticus, refutation of Proclus, i. 36, 65, 226, 231; ii. 171
Jân, Arabised form of yejuhû, i. 167
Jurjân, i. 258, 305; ii. 182
Jûrazân, i. 308

Kâbul, i. 22; its history, ii. 10, 157
ALBERUNI'S INDIA.

Kābul-Shāh, ii. 10
Kāf mountain, i. 193, 249
Kaikā'tā, i. 304
Kaihkosrau, i. 304
Kalila and Dimna, i. 159
Kandī (l.), ii. 182
Kangiz, i. 304
Kanz-al'īḥyā, title of a book of the
Manicheans, quoted, i. 39
kardajāt, i. 245, 275; ii. 205
Karmatians, i. 116, 117
Kā'ūs, i. 193
Kashmir, i. 117
katā-birds, i. 195
Khānakhāhīyāka, Arabic, ii. 208
khōm, Eranian, i. 249
Khoten, i. 206
Khayāl-alkusūfainī (by Alberuni),
ii. 203
Khurāsān, i. 21
Khwārizm, sea of, i. 258
Khvārizmian measures, i. 166
kirtās (papyrus), i. 170
Kitāb-almanashūrat (by Ptolemy), ii.
69
Kitāb-tībb-alfiyāla, ii. 245
Koran, i. 4; Šaffi interpretation, i.
83, 88; quoted, i. 170, 222;
sectarian interpretations, i. 263;
quoted, i. 264; ii. 111, 113
Kūlzm, i. 270
Kumair islands, i. 210
kurtāk, Arabic piece of dress, i.
180, 239
Laccadives, i. 210, 233
Langa (dove-country), i. 309
Langabāthā, i. 241, 310
lavang (= clove), i. 309
Lehāniyyā, i. 316
lunar stations (of the Hindus), i.
297

MAHMŪD (Yamin-aldaula), i. 22,
117; ii. 2, 13, 103
Makrān, i. 208
Maledivas, i. 210, 233
Mānā, Arabic, i. 163, 164, 166
Māni, i. 48, 54, 55; his Book of
Mysteries, i. 54, 264, 381; ii.
105, 169
Manicheans, i. 7, 39, 111, 123, 159
Miḥta'h-ilm-alhā'a (by Alberuni),
i. 277
mīkyās, Arabic, i. 166
mithkāl, i. 160, 161, 163, 164

Mu'āwiya, Khalif, i. 124
Muhammad Ibn Alkāsim, the con-
queror of Sindh, i. 21, 116
Muhammad Ibn Isḥāk, of Sarakha,
ii. 15, 18
Muhammad Ibn Zakariyyā Al-rāzī, i.
319
Muḥammad (Buddhista), i. 330
Mukī, Arabic, a tree, i. 208
Mulumma', Arabic, kind of wood, i.
211
Multān, i. 121
Mu'tazila, i. 5
Myrtillus (l.), i. 407

Nard, a play, i. 182
Nauroz, ii. 2
Nikāb-almaḵṭ, i. 109
Nile, sources, i. 270
nimbahr, Persian, i. 343
nimbaḥra, Persian, i. 214
Nimroz, i. 193
Nishāpūr, i. 305
努bahr, ii. 225, 228, 229

Ordella, ii. 159, 160
Oxus, i. 260

PAPER, i. 171
Papyrus, i. 171
Persian, i. 40; vazādī = guzīda, i.
158, 213, 214; susuvar, i. 241
Persian grammar, technical term, i.
19
Persian metric, i. 133
Persian traditions, i. 21, 63, 100,
109, 193, 304
Plato, i. 43, 65, 67; Leges, i. 105,
123; 379, 385; Timæus, i. 35,
223, 231, 222; Phaedo, i. 56, 57,
65-67, 71, 76, 85, 86; ii. 166,
167, 171
Pontus Euxinus, i. 258
Porphyry, quoted, i. 43
Proclus, i. 57, 86
Ptolemy, Almajest, i. 226, 269;
geography, 298, 399; ii. 69
Pythagoras, i. 65, 75, 85

RAMM, island, i. 210
ratl, Arabic, i. 163
Rome, i. 306
Romulus and Remus, i. 112
Rustam, ii. 246

SABUKTAGĪN (Nāṣir-aldaula), i. 22
INDEX.

Śakakâla, ii. 46, 47, 49, 50, 51, 54, 55
Śakilkand, i. 299
Samarkand, paper of, i. 171
Sarakhs, ii. 15
Sattâ, ii. 155
Seven Rishtis, i. 394
Shahk (=Saka t), ii. 48, 49
Shamaniyya (éramanço), i. 21
Shapûrkân, i. 304, 308
Shâši, i. 298
shauhaṭ, Arabic, kind of wood, i. 211
Shiltâs, i. 207
Shughnân-Shâb, i. 206
Shifty, i. 124
Sidar, Arabic, piece of dress, i. 180
Sijistân, i. 198
Simonides, i. 172
Sindh, Muhammadan conquest, i. 21, 22, 165; Eranian, i. 260; mission from Sindh to Bagdad, ii. 15
Sindbhid, i. 153, 332, 368; ii. 90, 191
Slavonians, ii. 167
Slavonians, sea of the, i. 258
smallpox, (a wind blowing from Lañhâ), i. 309
Socrates, i. 25, 85, 170; ii. 171
Sogdiana, i. 249
spêd-mubra, Persian, i. 323
Stoa, i. 98
Sufâla, i. 204, 211, 270; ii. 104
Sûfî, explanation of the word, i. 33
Sûfìa, i. 351
Sûfism, i. 8, 57, 62, 69, 76, 83, 87, 88
sukkhâb, measure in Khwârizm, i. 166
suamár, Persian, i. 241
Syria, i. 270
Syriac, psálémpl, i. 33
Târkhân-al'âflâk (v. Ya'kûb), i. 316, 353; ii. 67
Tartarus, i. 67
Tâshkand, i. 298
Tausar, i. 109
Tibet, i. 201, 206
Tibetans, ii. 10
Tîrmidh, i. 260, 302
Tîz, i. 208
Tîrân, i. 208
Turk, i. 22, 206, 252, 202; ii. 10, 135, 178
Tûz, Persian, name of a tree, i. 171
Uânsî, i. 207
Uâzîn (u'ajîn), i. 308
Vâkhân-Shâb, i. 206
velum, i. 171
Wâkwâr, island, i. 210
Ya'kûn Ibn Târik, his Târkhân-al'âflâk, i. 169, 303, 312, 316, 353; ii. 15, 18, 23, 26, 34, 38, 44, 45, 67, 68
Yazdajird, his era, ii. 43
Yemen (distinguished from Arabia), i. 270
Zâbaj, i. 210; ii. 106
Zanj, the nations of Eastern Africa, i. 252, 270; ii. 104
Zârkân, i. 7
Zindik, i. 264
Zoroaster, i. 21, 91, 96
Zoroastrians (in Sogdiana), i. 249, 260; their dakhmas, ii. 167

PRINTED BY BALLANTYNE, HANSON AND CO.
EDINBURGH AND LONDON.
Central Archaeological Library,
NEW DELHI.

Call No. 23742.

Author—
H. H. (34775)

Title—
Alberti's Notes

Borrower No. | Date of Issue | Date of Return

“
A book that is shut is but a block”

CENTRAL ARCHAEOLOGICAL LIBRARY
GOVT. OF INDIA
Department of Archaeology
NEW DELHI

Please help us to keep the book clean and moving.