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Preface

I HAVE wrtten this volume for the adule or student reader withour
specialized scientific background, but with a knowledge of secondary-
school mathematics. The reader | have visualized, then, is the nonspecialist
who is beginning the study of history of science, although I hope the work
will not be without interest for the specialist as well,

Its this volume 1 have attempted to give especial and marked attention to
the fate of Greek science in late antiquity. Elementary texts in the past have
long ignored this aspect of Greek science. The importance of the course of
Greek science In late antiquity is evident, for it was during this period that
much of the Greek scientific corpus was. put into the form in which it
passed to the medieval Latin West. We are justified, then, in considerng
this volume 2 an introduction to medieval and carly modem science—that
science being considered as a transformation of Greek science. In faet, 1
am preparing a volume on medieval science that will take up the develop-
ment of scence where this volume leaves off.

One of my colleagues hay raised a quesdon as.to whether the title Greek
Sclence in Antiquity i a tautology. My ausswer is no for two important
reasons. In the fiest place there is other than Greek Science in annquity
(e.g., Babylonian Science or Indian Science). Secondly and more important,
1 have seressed throughout the volume that the Greek scientific corpus has
had a long life in antiquity, in the Middle Ages, and in carly modem times.
This volume covers only the first pare of that long life.

[ should like to give special thanks to Professor Thomas Smith, of the
California Institute of Technology, who for several years assisted me in the
adventare of trying to teach Greek science to nonspecialized students, and
who read with cire the first draft of this book. Thanks are due also to
Professor 1. E. Drabkin, of the City College of New York, who read the
manuseript in typescript and offered 2 number of valuable suggestons for
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its improvement, and to my colleague Professor R. C. Stauffer of the
History of Science Department, who read proof and saved this volume from

a number of errors.

M. C
University of Wisconsin
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PART 1

The Origins of Science in Antiquity






CHAPTER ONE
Science in Egypt and Mesopotamia

i

DAY most of us are keenly aware of the close ties that exist
between science and the character of our civilization. The his-
tordan of science hopes to throw light on this relationship by investi-
gating how and why science grew out of the more general province
of learning to occupy its dominant position. In this investigation he
must study the unfolding life of science. He must, in addition,
evaluate the details uncovered and judge their significance for
modern scientific attitudes, principles, and methods.

As in the history of any other aspect of man's activity—politics,
economics, religion, etc.—so In the history of his science, a study of
the early stages of growth is of great importance for an understanding
of the modern institution. This volume attempts to treat the phases
of science that lie in antiquity—from the very early empirical efforts
of prehistoric man through the relatively mature scientific activities
in Greek antiquity. Our volume will, then, cover an enormous
period of time, of which the beginning is unrecorded and the terminal
date is about A.p. boo.

It is generally agreed that the learning of antiquity was digested
in the Middle Ages and Renaissance to form the chief nourishment
for growth of early modern thought. Thus early modern science
grew out of Greek science and philosophy as modified by the natural
philosophers of Islam and the Latin West. The acceptance of this
essential continuity in the development of Western thought does not
obviate the novelty of the scientific activity of the seventeenth century,
the century of Galileo, Boyle, Hooke, Leibniz, and Newton. It
serves rather to clarify that novelty, to show how it arose in great
part from the interplay, modification, and rearrangement of older
stock ideas as they were fashioned into an essentially new system.

In the course of our inquiry into the foundations of science we
must direct our attention toward many aspects and features of
intellectual activity so that we may achieve a relatively complete
picture. Special care must be exercised in the exposition and

3



4 GREEK SCIENCE IN ANTIQUITY

evaluation of the more important scientific principles, laws, and
theories that matured, suffered modification; or originated in
antiquity. But the mere cataloguing of the substantial scientific
knowledge of antiquity would ill satisfy our objective, We must
also turn our attention to the methods and procedures pursuant to
that science. We must show the relative importance of revelation,
authority, reason, experience, and experimentation, and how the
emphasis on one or another of these factors changed. And we must
examine the more general philosophical ideas that influenced both
the method and the substance of science in antiquity, particularly
during the beginnings of Greek science.

In setting out to characterize this young, active, and exciting
period in the life of science, we should, no doubt, state our definition
of science, although we are tempted, like one recent historian of
science, to beg the question until the history has been written and
the reader can judge for himself what kind of enterprise has been
described, The difficulty is that there is little agreement on the
question of definition among the professional scientists or among
historians and philosophers of science. And vet most of us have a
rather intuitive understanding of the province of science and to
some extent of its methods, Schoolboys speak easily of laboratories
with betatrons, of fission, of penicillin, of frequency modulation, of
the expanding universe, and of a myriad of other scientific topics.
It will nevertheless be useful to go beyond our ill-defined intuition
of science to accept some definition, however arbitrary, as a point
of departure for this study.

For the sake of breadth we would be inclined to accept the
definition of one of our greatest living historians of science, George
Sarton, who defines science as systematized positive knowledge,
were it not for the fact that the term “positive’ is ambiguous and
demands commentary. Also, this definition would seem to deny or
at least to exclude important nonpositivistic elements that were once
closely united with science—e.g., magic,. We can, perhaps, avoid
these difficulties and still retain sufficient breadth by assuming that
science comprises, first, the orderly and systematic comprehension,
description, and /or explanation of natural phenomena and, secondly,
the tools necessary for that undertaking., The first part of the
definition permits us to inquire into man's scientific activity even in
times of which we have no written records. The latter part of the
definition allows us to treat the growth of mathematics and logic as
a part of the history of science.
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SCIENCE IN EGYVT AND MESOPOTAMIA
Il

wm

Science as an orderly and rational structure scarcely goes beyond
the Greeks into the early history of man. Yet we should be aware of
the countless centuries of man’s activity before the inception of
written records, as well as of the two thousand years of so of
“civilized” activity before the emergence of Greek culture.

In prehistory—before the invention of writing—Stone Age man
left us many evidences of his understanding of nature. Who cannot
feel the eye for naturalistic detail revealed in the Stone Age wall
paintings and reliefs in the caves of southern France and narthern
Spain (see Figs. 1-4)? Man was a naturalist long before he was a

Fi. 4—The Celtic horse and the reindeer, from engraved out-
tines at the Grotte de la Mairie, in Dordogne, France.

farmer, an architect, or a politician. At the same time, there can be
little doubt that in the manufacture of his tools early man made a
permanent record of his experience with and understanding of
nature. This idea has been developed in an interesting, if somewhat
extravagant, way by the British archeologist V. Gordon Childe in
various of his publications. Childe sees the tool as “an embodiment
of science . . . a practical application of remembered, compared,
and collected experience of the same kind as are summarized in
scientific formulae, descriptions, and prescriptions.””  Although this
statement glosses too readily over the generalization and abstraction
involved in scientific formulae and description, there is a kernel of
truth in its representation of the tool as a product of man’s under-
standing of nature.

In studying the activity of carly man, Childe and other historical
materialists have done important service by emphasizing the
influence of man's technological activities upon both his general
cultural development and his particular scientific advances. The
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control and use of fire was one of his earliest cultural discoveries
and certainly one of the most significant. The chemical and metal-
lurgical arts stem from that fundamental discovery and the com-
plementary discovery that charred wood ignites more easily than
uncharred. Thus early man had the chief instrument for learning
the protochemistry involved in the firing and burnishing of pots and
in the working of metals,

Man emerged into civilization in the fourth millennium s.c. in
at least three important areas: the Nile Valley, Mesopotamia, and
the Indus Valley. This emergence was due in part to his discovery
of the use and working of metals. With the coming of the metal
ages his practical knowledge of natural phenomena multiplied. He
learned to reduce and work copper, to make use of its ready mallea-
bility and fusibility, to alloy it with tin 10 produce bronze, 1o make
castings by delicate and sure processes. He also made brick arches,
caught the wind in sail, and applied the wheel to pot and vehicle,
He learned to do all this, no doubt, by a long and arduous trial-and-
error method—or, we may say, by experimentation, so long as we
are careful to distinguish the experimentation involved in the dis-
covery and improvement of the technological arts from the planned
experimentation used for the confirmation of scientific theory.
Finally, with the invention of writing, possibly first in the area of
Mesopotamia about the middle of the fourth millennium g.c., man
stepped over the threshold of civilization. This invention has been
described by some authors as a social accident tied in with the
development of ownership signs and property lists. It has, of course,

been the chief instrument in the perfection of man's cultural and
thus of his scientific achievement.

1x

The study of rationally organized sciemtific activity, as dis-
tinguished from handicraft activity, in two of the first areas of
civilization, Egypt and Mesopotamia, reveals advances primarily
in mathematics and astronomy, and in some aspects of medical
practice, The rest of man's understanding and description of nature
remained either entirely in the state of technology, as in the case of
his knowledge of chemical and mechanical principles, or in that of
mythology and magic, as in the case of his cosmology and much of
his medicine.

Just as the approach of the early inhabitants of Egypt and
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Mesopotamia toward the origin of the world and man was almost
entirely mythological and religious, and just as their reliance for the
explanation ol natural phenomena was upon supernatural causation,
so much of the medical practice in Egypt and Babylonia was based
upon belief in other than natural causes. There was considerable
dependence upon incantations and other magical cures, For
example, one of the medical papyri from Egypt, the so-called Ebers
Papyrus, compiled in the eighteenth dynasty (about 1500 B.C.),
presents considerable evidence that the sorcerer worked side by side
with the ordinary practitioner (and, no doubt, was often the same
person), utilizing spells and incantations for desired therapeutic
ends. Thus, in applying malachite for a cataract of the eye, we are
told to incant the following, after having pounded malachite with
honey: “Come Malachite. Come thou green one; Come discharge
from Horus' eye. Come secretion from Atum’s eve. Come Auid
that has come out of Osins. . . ." G. Conteneau, the most able
historian of medicine in the Mesopotamian area, shows how
thoroughly bound to the whim of gods was the Assyrian-Babylonian
pathology and therapeutics. Medical treatment in numerous cases
took the form of mollifying the gods by prayer and sacrifice and
expelling demons by incantations and medicines.

But there is one medical treatise from early antiquity that makes
us hesitate in dismissing Egyptian medicine, at least, as completely
magic-perverted. This is the renowned Edwin Smith Surgical Papyrus.
Named for its modern purchaser, it was copied in the seventeenth
century s.c. from a work of the third millennium ».c. Free of the
magical features of other Egyptian medical works, it is organized
in a systematic manner and approaches a scientific presentation of
empirical data. Although incomplete, it contains forty-eight cases
involving injuries and wounds to various parts of the body. It
starts with eases occurring to the head—to the nose, face, and ears
—and then proceeds to the collarbone, humerus, thorax, shoulder,
and spinal column. The presentation of each case is divided into a
title, an examination, a diagnosis and opinion, a treatment, and
glosses to explain already antique and specialized terminology.

Almost as remarkable as the quasi-scientific organization of the
treatise is its clear indication of the straightforward simplicity and
restraint practiced in the cures. Particularly noteworthy is the
admission in some thirteen cases that the wound is fatal—i.e., it is an
“ailment not to be treated.” ]. H, Breasted, the modern editor and
translator of the papyrus, in his edition (which will remain one of the
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great monuments of careful and complete scholarship in the ficlds of
Egyptology and the history of medicine) justly remarks on the signil-
icance of describing cases not treatable.

The inclusion of these thirteen hopeless cases (about one fourth of the
materidl in the treatise as preserved to us) is a remarkable evidence of
the surgeon's scientific interest in recording and discussing the observe
able facts in a group of cases for which he could suggest no reatment.
L], H. Breasted, The Edwin Smith Surgical Papyrus, Vol. 1, Chicago, 1930,
p- 47-)*

1t has been suggested that the inclusion of hopeless cases demonstrates
less scientific prudence than a reluctance to fice the social, or perhaps
even legal, reprisals against unsuceessful diagnosis and treatment.

The factual anatomical knowledge exhibited by Egyptian medical

writings is not extensive. But the Edwin Smith papyrus does give us
the first, although incomplete, description of the brain, and it savs
something of the brain as a control center for the nervous system. It
also takes note of the use of the pulse “to know the action of the
heart," and it reveals a rudimentary knowledge of the blood system,
although there i1s no evidence of an understanding of the circulation
of the blood, Citation here of Case 6 will give the reader a vivid
picture of both the organization of and the state of the substantial
surgical knowledge in the treatise,

Case 6

(Tide) Instructions concerning a gaping wound in his head, pene-
trating to the bone, smashing his skall, (and) rending open the brain of
his skull.

(Examination) I thou examinest a man having a gaping wound in his
head, penetrating to the bone, smashing his skull, and rending open the
brain of his skull, thou shouldst palpate [i.e., feel with your fingers] his
wound. Shouldst thou find that smash which is in his skull [like] those
corrugations which form in molten copper, (and) something therein
throbbing (and) fluttering under thy fingers, like the weak place of an
infant’s crown before it becomes whole . . . (and) he [the patient]
discharges blood from both his nostrils, [and) he suffers with stiffnest in
his neck,

[Dragrosts) [vou say] “an ailment not w0 be treated.”

[ Treatment] | But] thou shouldst anoint that wound with grease, Thou
shalt not bind it; thou shalt not apply two sirips upan it until thou
knowest he has reached a decisive point,

* This and the succeoding guotation are gquoted by permision of the publither, the
University of Chicago Press) copyright, 1930, by the University of Chicage,
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(Glasr A, Explaining:) *'Smushing his skull and rending open the
birmin of his skull," (it means) the smash is large, opening to the interior
of his skull, (to) the membrane enveloping his brain, so that it breaks
apen his fluid in the interior of his head.

(Gilass B, Explamng:) “Those corrugations which form in molten
copper:” it means copper which the coppersmith pours off (rejecis)
before it is [forced] into the [mald], because of something foreign upon
it like [wrinkles]. It is said: "It is like ripples of pus™ (7hid., pp.
164-173.)

v

These rudimentary efforts to organize empirical data in a
scientific manner in surgery were perhaps less influential in the
further development of science than the prescientific efforts exerted
in astronomy and mathematics by the peoples of Mesopotamia and
Egypt. With certain exceptions in the mathematics and astronomy
of Mesopotamia to which we shall briefly allude in a moment, these
preliminary steps toward science taken in pre-Greek antiquity have
left imprints of a protoscience largely empirical in character—Lie.,
largely observational, with little regard for theory,

One of the principal products of the empirical procedure in
astronomy in both Egypt and Mesopotamia was the development
of more accurate calendars. Motivating early calendaric develop-
ment was a variety of social needs: the demands of political adminis-
tration, such as the need for the establishment ol regular tax-
collecting days; the pressing requirements of agriculture, including
the need for advance determination of flood seasons and planting
times; the fixing of regularly occurring religious feast days; and so
on. The rise and concurrent use of a number of different calendars
in both Egypt and Mesopotamia has left our modern study of them
in considerable confusion. But it is known that in Egypt an official
calendar of 465 davs (twelve months of thirty days each plus five
additional days) was utilized during much of the historical period.
This has been called the “sliding” or “wandering” year; since it
was almost one fourth of a day shorter than the tropical year of the
seasons, its New Year's Day came about one fourth of a day earher
in the wopical calendar each year, Thus in a period close to 1460
tropical years the New Year's Day of the sliding year slid through
every day of the tropical year.

Existing side by side with the official calendar in Egypt was a
lunar calendar of 954 days and twelve months which, recent re-
search suggests, extended from the first day after the old crescent to
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the first day after the next old crescent, in contradistinction to the
months of most lunar calendars, which extended from one new
moon to the next. Apparently a simple empirical rule was used to
add on occasion a thirteenth month to bring the year in line with the
official year, and it was perhaps not until the fourth century v.c. that
a schematic lunar calendar based on a predicted cycle was introduced.

It has long been supposed that the fact that the official calendar,
with its “*wandering” year, would in time [ail to correspond with the
scasons led the Egyptians to invent a fixed sidereal year quite close
to the tropical year. It was believed by scholars that the New Year's
Day of this sidereal year of approximately 365] days was deter-
mined by observing when the bright star Sirius (Sothis) first rose
Just before dawn after its long period of invisibility. But the scanty
evidence for such a Sothic fixed year is most ambiguous, and at
least one recent investigator asserts rather that the rising of Sirius
was used to bring a lunar calendar into some agreement with the
scasons. Thus, according to this view, it was the lunar calendar
that served as an agricultural or seasonal calendar,

In the Mesopotamian area it was the lunar calendar that received
official support throughout the historical period. Since a calendar
of 354 days was about 11} days short of the tropical year of the
seasons and so would soon be out of adjustment with the seasons and
of little use for agricultural activities, the practice arose, as in Egypt,
of adding an extra month in certain years. The technical term used
for this practice is “intercalation.” This intercalation of an extra
month was at first an empirical rather than a systematic act, but in
the late historical period, possibly by 480 B.c. and probably by the
fourth century ®.c., a regular system of intercalation, known
among the Greeks as the Metonic cycle, was in effect. Fach
ninetcen-year cycle contained seven leap vears of thirteen mounths,
with one particular month being repeated in six of the years and
another month in the seventh,

The constant effort to coordinate the lunar and the tropical
years seems to have been one of the important stimuli in this area to
careful and continual observation of the apparent movements of the
moon and the sun. This activity became “scientifically significant™
at least as early as 747 B.c., the date of the first regularly repeated
observations under the Assyrians, These observations were recorded
in the form of tables which were apparently used by the later Greek
astronomers and which were a great tribute to the patience and skill
of Babylonian astronomers of Mesopotamia, although the length and



ACIENCE IN EGYPT AND MESOPOTAMIA i

completeness of these observations appear to have been greatly
exaggerated by modern authors. Many pertinent scientific data
were organized in these tables. It is immaterial in the progress of
science whether the motivation to this observation was solely
calendar-fixing or was in part astrological (as it was if we assay
correctly the significance of a number. of astrological tablets that
date all the way back 1o the third millennium s.c., although here
again the significance of the astrological material for the develop-
ment of mathematical astronomy scems to have been unduly stressed
by modern investigators), In either case the result was to stimulate
the application of mathematics to the observational data for the
purpose of predicting the future positions of the sun, the moon, and,
on occasion, the planets. This was an exwraordinary step, for it is
the application of mathematics to observational data which lies at
the heart of the method of modern science.

One of the foremost students of ancient astronomy, O. Neuge-
bauer; has brilliantly described this application of mathematics to
astronomy, showing how it led to the development of a very im-
portant technique in astranomy. He paints out how there developed
from about 700 B.c. preliminary methods of prediction based on
long-range observations. By these methods over-all averages for the
main periods of astronomical phenomena could be obtained. These
averages then might be improved by occasional individual observa-
tions. At the same time, short-range predictions of phenomena
could be made on the basis of a series of observations immediately
preceding the event.

After such methods had been developed to a certain height, appar-
ently one ingenious man conceived a new idea which rapidly led w0 a
systematic method of long range prediction. This idea is familiar 10
every modern scientist; it consists in considering a complicated
periadic phenomenon as the result of a number of periodic effects, each
of a character which is simpler than the acwal phenomenon. The
whole method probably originated in the theory of the moon, which
we find at its highest perfection. (0. Neugebauer, “The History of
Ancient Asironomy: Problems and Methods,” Journal of Near Eattern
Studres, Viol. 4 [1945], p- 9.)

The basic problem was to predict the first visibility of the crescent
cach month, for the beginning of the month was established on the
basis of this phenomenon. The time between the successive first
visibilities is never more than thirty days and never less than
twenty-nine days, but the fundamental question is: which of these
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alternatives is it for each month? Now this complicated periodic
phenomenon—namely, the first visibility of the crescent—is in-
fluenced by a number of factors that have independent variations
of their own: the moon’s velocity, the sun's “velocity,” the length
of daylight for the point of observation, the moon’s movement 1n
latitude, etc. It was one of the great glories of Babylonian astronomy
to recognize that this complicated periodic phenomenon was the
result of a series of independent periodic variations, When we
examine the lunar ephemeris in detail—column by column—we
realize that each of the variables is being considered and its con-
tribution to the general phenomenon noted. And, finally, one of
the most important features of the ephemerides, which appeals w0
the modern reader with some astronomical and mathematical
training, is the way in which linear methods were used to approxi-
mate complex functions. The Babylonian astronomers used
arithmetical serics in which the terms uniformly increased to a
maximum and then uniformly decreased (o a minimum; and we
can find by extrapolation the crucial maximal and minimal points
they used. It is worth noting that the Babylonian procedures seem
to have been entirely arithmetical, Unlike the Greeks, the Baby-
lonians did not assume geometrical models.

Before concluding our survey of the initial steps taken in scientific
astronomy among the peoples of Egypt and Mesopotamia, we must
note in passing that this pre-Greek period gave us not only the long-
range time system of the calendars but also the first short-term
timepieces: A variety of sundials (see Fig. 5) and water clocks were
devised in pre-Greek times which contained the essential features
of timepieces used until the rise of mechanical clocks in the high and
late Middle Ages. 1t is worth remembering that for accurate time
measurement in a scientific experiment Galileo, in the seventeenth
century, resorted to 4 water clock, a product of the first civilizations,
rather than to the then ineflicient mechanical clock, which was in
the next two centuries to become the most essential ol scientifie
instruments. It is also worth noting that the measurement of time
was of scientific moment in antiquity and the Middle Ages only in

astronomy. In physics it had to wait on the experimental investi-
gation of mechanics.

v

It would seem from our briel account that Babylonian astronomy
developed further than did that of Egypt. Why was this s0? The
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instruments of the Babylonian astronomer were in no way superior
to those of the Egyptian astronomer, for both possessed only the
simplest sighting instruments, Nor was the system of constellations
or star arrangements devised by the Babylonian astronomer to act
as a reference frame on which he might plot his data markedly
superior to that of the Egyptian astronomer. Part of the answer to
this question lies in a fact that has already been suggested, that in
Babylonia the lunar calendar was adopted and continually had to be

Fig. 5.—A sundial, (Reproduced from L. Hogben, “Setence
far the Citizen,”” New York, 1938, by permission of the publisher,
Alfred A. Knopf.)

adjusted to the seasons, thus demanding detailed caleulations of the
moon’s movements. But it is likely that an equally persuasive reason
for the superiority of Babylonian astronomy lies in the development
of a superior system of numerical calculations. Babylonian mathe-
matics seems to have advanced considerably beyond that of Egypt
—except perhaps in practical geometry.

A glance at the mathematical papyri of Egypt will readily
convince us of the grossly empitical nature of Egyptian mathematics
and will reveal the awkward and cumbersome nature of the system
of numeration. The system was both “additive” and “decimal.”
It was decimal in that a new symbol was employed for cach power
of ten, Thus there were distinct symbols for 1, 10, 100, 1000, . . .
1,000,000, It was additive since these symbols were laid down side
by side to add up to the number to be represented.  Hence 5 was
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represented by stroking off five unit signs, and 55 would be written
with five signs for ten and five unit signs. A number such as 48g,321
would involve twenty-seven markings. Such a system did not lend
itsell to easy calculation,

The additive nature of Egyptian numeration carried over into
the method of calculation. Thus in the multiplication of 5 < 7 the
following arrangement is employed:

i v 7
L ] ]3

V4 V2
5 35

The first step is to take 7 ance, then to double it, and then to double
the duplication. After successive duplications we add from the
column of multipliers the numbers 1 and 4 to make the desired
multiplier 5. Thereupon we add up the numbers opposite the
multipliers 1 and g—namely, 7 and 28. This gives us for the
multiplier 5 the final product 35. Hence by combining addition
with the simplest possible multiplication—i.e., duplication, itsell
akin to addition—a more extended multiplication was accomplished.
With larger numbers multiplication by ten was used as well as
duplication. A similar procedure was used in division.

The cumbersome and empirical nature of Egyptian mathematics
is further illustrated by the concept and treatment of fractions found
in the celebrated Rhind Mathematical Papyrus, copied about 1660
8.c. from an original of about 1845-1801 n.c. Fractions for the most
part were reduced to fractions with the numerator of one. Utilized
for this reduction was the so-called “table of two'" found in the
papyrus. This table gives us the reduction of fractions with numera-
tor 2 and odd-numbered denominators up to to: to fractions with
numerator t. Thus § = } + & The actual manipulation of
fractions was quite complicated, for it scems to have involved a
paintul trial-and-error procedure. It is just to say that the Egyptian
was held back in the development of arithmetic and algebra by his
elaborate procedures in calculation.

It is little wonder, therefore, that, unlike the Babylonians, who
carried algebra to a remarkable degree of development, the
Egyptians were able to solve only simple linear equations and a few
quadratic equations of the type ax* = b, The foregoing symboliza-
tion 13 used for the sake of clarity; if there was symbalization of a
sort in early mathematics, it was not of this kind.
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The most advanced of the Egyptian mathematical achievements
were in geometry. In dealing with the areas of circles the Egyptians
took the square of side 8 as equivalent to the circle of diameter o,
This is the same as using a value of pi equal to 3.16, a much better
value than 3, which was most often used by the Babylonians, although

Fi16. b.—The manner of setting stomes inte place in
the building of pyramuds.

F16. 7.—A diagram representing the use of the principle
of the lever to set stones into place.

one tablet found at Susa uses a cocfficient that implies an approxi-
mation of §}. Inaddition, the Egyptians knew how to determine the
areas and volumes of a number of figures; they could find the area
of a triangle and a trapezium, the volume of a cylindrical granary
and of a frustum of a square pyramid, and perhaps even the area of
the surface of a hemisphere {although the last is doubtful). Their
proficiency in geometry was certainly fostered by their high develop-
ment in architectural engineering and surveying, as Herodotus and
other Greek authors have long since reminded us (see Figs, 6 and 7).
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The solutions of the geometrical problems were never given in a
completely general form; ie., reference was not made to amy
triangle having an area equal to one half its altitude times its base.
But specific as the problems and their solutions were, a certain
generality obviously was implied. The specific problem given was
quite clearly meant to be an example problem. Presumably the
surveyor who had to find the area of a triangular plot of land would
use the same procedure that was used in the specific example,
changing the numbers to suit his observed values. But we must

Fic. 8.—The Babylonian method of measuring an irvegular field
by breaking it up inlo common grear the measurements of which
could be determined.

await the formation of Greek geometry 1o find explicitly expressed
general formulae based on wholly general and abstract concepts of
lines, surfaces, and volumes.

When we turn to Mesopotamia, we find from at least 1800 8.c.
a Babylonian mathematics more highly developed than the Egyptian.
Although it voo had strong empirical roots that are clearly present in
most of the tablets that have been published, it certainly seems to
have tended toward a more theoretical expression. The key 1o the
advances made by the Babylonians in mathematics appears to have
been their remarkably facile number system, which demands brief
characterization.

(1) Although it had certain features of both decimal and sexa-
gesimal systems, it was primarily a sexagesimal system. That is to
say, it was based on sixty and powers of sixty.
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(2) It was a system highly general and abbreviatory in character,
All numbers could be made with only two symbols, 7 = 1 and
<« = 10. Using these symbols the numbers from 1 w 59 can be
represented thus: V7 = 2; <<V = 21} ectc. Numerous tricks
were used to save writing all the symbols out in a string. Not only
could these symbols be used to represent numbers from 1 to 59 but
they could also be used 1o write the numbers 1 10 59 times any power
of 60, Thus unless one knew what order of magnitude was being
considered from the details of the problem being worked, he could

a.. i

o ——

& E s ——

s seiE e s

Fia. g.—Babylonian world map,

not know whether the two symbols <« by themselves on a tablet
without supporting text equaled 20, or 20 X 6o, or 20 x 6o% or
20 x Bo=l, etc.

(3) What is more, these same symbols changed their value as
their position changed; that is to say, this system was a place-value
system, as is our own decimal system. In our system as the symbol
1 changes position in the following numbers it changes its value in
that it stands for a higher power of ten: oo.1, 1, 10, 100, cte. So
in the number V<7 the symbol 7 has the value of 1 in the last
position and 6o in the first position, the whole number being 71
{if the 77 in the last position represents 6o, then the ¥ in the first
position represents 6o* and the whole number is 4a60: 60* plus
11 ¥ 6o).

(4) It was not untl very late that the Babylonian system
developed what in the decimal system is called zero—i.c., a sign for
the absence of any units of a given power of ten indicated by
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position; thus o1 means, of course, one hundred, no tens, and one
unit. Instead of using that sign we could agree that we would
simply leave a space, writing 1 1. This was done until the very last
stages of the Babylonian system, when a zero sign or its equivalent
was developed.

(5) Finally, we should emphasize that, as in our decimal system,
fractions were treated in the same manner and as readily asintegers.
In the decimal systems we add 1.1 to 1.1 in the same way as 11 to
11. Similarly, in the sexagesimal system of the Babylonians it was
just as easy to calculate with 1; 1{using the semicolon to separate
integers and [ractions, so that this would be 1 + %) as it would be
1o manipulate 1, 1 {or tir, using the comma to separate powers of
sixcy). This ready facility with fractions was coupled with fractional
approximations, for we find Va approximated as 1; 24, 51, 10
(i, 1.414213...) in one tablet (sce Fig. t1). As Neugebauer
points out, “‘the determination of the diagonal of the square from its
side is sufficient proof that the ‘Pythagorean’ theorem was known
more than a thousand years before Pythagoras."

Freed from the drudgery of calculation by this really remarkable
system of calculation, and by the preparation of many kinds of tables
(tables of squares, tables of square roots, multiplication tables,
reciprocal tables, and others), the Babylonians made extraordinary
advances in algebra, in the numerical or algebraic solution of
quadratic equations (i.e., equations in which the unknown is
squared, such as x* -+ fx = ¢). Apparently, by some procedurc
similar to making the left side of the equation a perfect square (i.e.,
by completing the square} and adding the same amount to the right
side of the equation, they reached a formula for the solution of such

an equation; —
= o= Jor Bt
=NfTE T

Or perhaps it would be better 1o say that the Babylonians solved
specific problems involving the type of equation 22 + bx = ¢ by a
series of numerical steps corresponding to the solution we have given
in modern symbols above. They solved numerous other problems
involving quadratic equations of somewhat different forms, modi-
fying their solutions accordingly. Now it must not be thought that
the Babylonians had a general solution of the quadratic equation,
couched in general terms. As in the case of Egyptian geometry,
specific problems were given 1o illustrate the main types of numerical
procedure in the solution of equations of somewhat different forms.
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But even without the general solution, the Babylonians laid an
extraordinary base for the subsequent development of algebra, and
it is difficult—indeed, almost impossible—to believe that the Greek
algebraist Diophantus and the Indian and Islamic algebraists do not
owe there fundamental methods to these people of Mesopotamia,
who worked out the basic solutions of elementary algebra in the
second millennium before Christ.

Vi

We can now take stock of and assay the essential contributions
and features of the science of the pre-Greck period.

(1) This science was above all empirical in nature, without
attention to theory, the chief exception being in very late develop-
ments in Mesopotamian astronomy and some developments fairly
early in Babylonian mathematics. The empirical nature of much of
Egyptian mathematics, astronomy, and medicine is cvident. A
history of the science of this period clearly confirms the empirical
arigin of science.

(2) The objectives of this early science were largely social,
Pure science was almost indistinguishable from applied science.
We have noted the important stimulus of the calendaric develop-
ment to astronomy and of engineering 1o geometry.

(3) Preliminary steps were taken to organize empirical data in
a scientific manner, as reference to the Edwin Smith Surgical Papyrus
and to the astronomical tables of Babylon readily confirms.

(4) There were occasional examples in this pre-Greek period of
attempts to predict the course of phenomena on the basis of scientifi-
cally organized data. The prediction of the fatal outcome of certain
wounds by the author of the surgical papyrus is a rather obvious
example; the attempts to predict the positions of the heavenly
bodies on the basis of observations constitute an cven better
example.

(5) And coupled with the attempts at prediction there was
strikingly evident in at lcast one case, Babylonian astronomy, an
attempt to treat the description of natural phenomena mathemati-
cally, It was also in the ficld of astronomy that the Greeks were (o
use mathematics most brilliantly.

(6) It was among the Babylonians that the only theorctical
¢fforts in mathematics developed, However firmly the early mathe-
matics might have been rooted in the practice of the engineer and
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the administrator, the priestly scribe who compiled the problem
texts with algebraic problems and their solutions was already
shaking off the dust of practice.

(7) But the sciences of astronomy, mathematics, and surgery
did not advance so far in this period that they freed natural inguiry
from the strong mythological and magical roots that lay deep in
man’s cultural past. In fact, they but inched him toward & more
naturalistic path of inquiry. When he undertook explanation of
natural phenomena, he was inclined to fall back upon supernatural
causation. Or when he undertook to explain the remote past, such
as the origin and formation of the world, hie had similar recourse 1o
the supernatural. Thus his cosmogony, his cosmology, and his
natural physics were intimately reflective of the supernatural. The
magic, we have seen, entered immediately into his daily life in the
use of incantations for therapeutics, We have also seen how astro-
logical motives stimulated him to the scientific observation and
description of the movements of heavenly bodies.



CHAPTER TWO

Greek Science: Origins and Methods

UCH has been written concerning the seemingly sudden

emergence in the Greek lonian colonies of the sixth century
w.c. of a nawral philosophy or science rational and surprisingly
secular in character. In fact, historians, in recognition of the gulf
that separates the approach of this natural philosophy from that of
the cosmology of the Egyptians and the Babylonians, have called
this phenomenon the “Greek Miracle.”” Study of the antecedents in
carlier Greek and Near Eastern cultures does something to lessen
the miraculous element but leaves us with considerable admiration
for the first two centuries of Greek science and philesophy, from
about Goo 8.c. to about 400 B.C.

We cannot hope to detail here the developments leading to the
“Greek Miracle.” But we can suggest certain crucial factors. We
recognize the importance of the change from a Bronze Age civiliza-
tion to an lron Age civilization, & change made possible by the
improvement of the techniques for reducing and working iron.
These improved techniques appear toward the end of the second
millennium 8.c. The cheap production of tools and weapons resulting
from that change must have been an important factor in the ability
of the smaller Greek city-states to compete successfully in trade with
the mare centralized monarchies of the Near East.

Of at least equal importance, no doubt, was the development of
the alphabet, which tradition would have us believe originated i
Phoenicia about 1200 B.c and which spread to areas of Greek
culture sometime after the turn of the millennium. Adoption of
alphabetic writing did not, of course, initiate anything like popular
education. But the comparative ease with which alphabetic writing
can be learned certainly made possible a wider distribution of learn-
ing than had prevailed in the earlier monarchies, where writing and
reading were the property of an exclusively scribal-priestly class,

The independence of the commercial-minded inhabitants of
Miletus, an lonian city on the coast of Asia Minor, the possible
weakness of the ties between the governing classes of Miletus and

20
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older religious orthodoxy of the cities of the mainland, the immediate
contact with the more cultured peoples of Asia Minor, who had
drawn their culture from Mesopotamis and Egypt, and the
occasional direct contacts with the culture of Mesopotamia and
Egypt themselves—all these factors and no doubt others helped to
produce the natural philosophy associated with the “school™ of
Miletus and its traditional founder, Thales (f, 575 8.6.).

But lest we ignore the intellectual past of Greece in favor of
uncertain, although probable, social factors, we should not set aside
the undoubted effect of the changing mythology on the evolution of
natural philosophy and science among the Greeks. H, Diels, the
greatest of the modern editors of the fragments remaining from the
writers of the pre-Socratic period, conjectures as to the very probable
development of Greek thought out of earlier mythological specula-
tions. And one of our most distinguished students of Greek culture,
W. Jaeger, has led us carefully along the road from the mythological
cosmogonies of early Greece to the “natural’ theology that is evident
among the so-called “materialists’ of lonia.

It is convenient to divide the period of Greek science into four
main chronological divisions. The first and formative period is that
usually called by the historians of philosophy the pre-Socratic
period, from about 600 B.c. until just before 400 B.c. The second is
the fourth century, the century of Plato and Aristotle and, later, of
the creation of the Epicurcan and Stoic philosophies. The third
period is the so-called Hellenistic period, g00-100 8.c., when Greek
culture behind the conquests of Alexander began to spread over the
Near East and reaet more directly with the remains of the older
cultures. This was the great period of Greek science, the period of
Euclid, Archimedes, Apollonius, and many others. And the last is
the Greco-Roman period, from about 100 B.¢. to A.p. 600, a period
in which Greek science was affected by the spiritual and non-
rational currents that were in part responsible for the rise of
Christianity., It was in this period that the Greek science which was
to pass later to the Arabs and through them to the Latin West was
epitormized, reorganized, and subjected to extensive commentaries.
Hence this period must be studied in detail by the student of
medieval and modern science. We have reserved the second part of
this hook to its study. In the first part of the book we shall analyze
the important advances made during the first three periods, first as
to method and then as to substantive knowledge.

Initially we must insist upon the general “rational,"” eritical, often
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secular and nonmythological tone that the natural philosophers of
the pre-Socratic period gave 1o much of Greek thought and science.
We hasten to add that this does not mean that Greek philosophy in
general was atheistic. The briefest reading of such Pythagorean
fragments as appear genuine, the references in the Ionian fragments
themselves, and the subsequent Neo-Platonic development make
any such judgment ridiculous, But the critical spirit that emerges
from this period is of great moment for the subsequent growth of
science. Recalling the widespread attribution of disease among
the Mesopotamians to demons or to displeased gods, one can feel
that somcthing profoundly significant has happened when the
Hippocratic author of the Sacred Disease, writing toward 400 B.C.
under the influence of the lonian school, can open as follows:

I am about 1o discuss the disease called “sacred.” It is not, in my
opinion any more divine or more sacred than other diseases, but hasa
natural cause, and its supposed divine origin is due to men's inexperi-
ence, and to their wonder at its peculiar characver. . .. (Sacred
Disease, Chap. 1, Loeb Classical Library transiation of W, H. S, Jones,
London, 1923.)*

Another distinctive feature of Greek thought that emerged during
the first period was the basic concept of a “gencralized™ science as
distinct from a set of empirical rules, It most clearly appears in the
creation of a theoretical and abstract geometry. As we indicated in
the last chapter, the Egyptians were accustomed in their mathe-
matical papyri to give specific problems, such as the finding of the
area of a particular field with particular dimensions. The theoretical
geometry behind these empirical operations remained unexpressed
and latent, Now with the Greeks it was the theoretical and abstract
geometry that became the object of attention. They arnived at the
general solution for the area of any triangle, starting with funda-
mental definitions, axioms, and postulates.

Although it is difficult to know to what extent these early Greek
authors were aware of their invention of a generalized science, a
much later author, Proclus, in speaking of the origins of geometry,
says:

It was Thales, who, after a visit 1o Egype, first brought this study 1o
Greece.  Not only did he make numerous discoveries himself, but laid
the foundations for many other discoveries on the part of his successors,
anacking some problems with greater generality and others more

* Quoted by permimion of the proent publisher and bolder of the copyright, the
Harvard Univenity Prea
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empirically. . . . After these Pythagoras changed the study of geom-
etry, giving it the form of a liberal discipline, seeking its first principles
in ultimate ldeas, and investigating its theorems abstractly and in a
purely intellectunl way. (M. Cohen and 1. E. Drabkin, A Source Book
in Greek Science, New York, 1048, p, 34.)*

Interestingly enough, the same author, in a pasage just pre-
ceding the one quoted, had insisted upon the dependence of the
Grecks on the Egyptian beginnings and also upon the birth of science
in social needs:

. . . it was, we say, among the Egypiians that geometry is generally
held to have been discovered. It owed its discovery to the practice of
land measurcment. For the Egyptians had to perform such measure-
ments because the overflow of the Nile would cause the boundary of
each person’s land to disappear. Furthermore, it should occasion no
surprise that the discovery both of this science and of the other sciences
proceeded from utility, since everything that is in the process of
becoming advances from the imperfect to the perfect. The progress,
then, from sense perception to reason and from reason to understanding
ita natural one. (fhed, pp. 33-34.)

The debt of Greek geometry to the Egyptians had been asserted by
numerous authors much earlier than Proclus, the earliest being
Herodotus. Nor was the nicely phrased judgment of Proclus on the
precedence of utility to theory particularly original, since Aristotle
had expressed the same idea almost one thousand years carlier.
Closely connected with the rise of the concept of a generalized,
theoretical, and abstract science and closely connected also with the
rising critical spirit among the pre-Socratic philosophers, particularly
in the so-called Eleatic school of philosophy, was the evolution among
the Greeks of a strict methodology of reason, or logic. Together
with its kindred disciplines of mathematics, logic is a fundamental
instrument of science. Observed data, whether assembled by the
most careful experimental means or not, would mean little if we had
no rules for testing the truth and falsity of arguments. It would, of
course, be impossible to say when man first used rules of logic—say,
for example, the principle of noncontradiction. But it is clear that
conscious and critical study of the rules of reasoning is a Greek
discovery. In the pre-Socratic period the founder of the Eleatic
school, Parmenides (ca. 475 ®.c.) would appear to be one of the
first to be entirely self-conscious about the internal consistency of an

* This and the succeeding quotation are quoted by permision of the publisher, the
MeGraw-Hill Book Company, Inc.; copyright, 1548,
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argument. In Fact, he insists upon it to the point that if the argument,
when properly premised upon the inconceivability of the existence
of nonbeing, leads us to conclusions that appear contrary to
experience (one such conclusion being the nonexistence of move-
ment), then we must ignore our experience and have confidence in
reason

For this (niaw) can never predominate, thar That Which Is Not
exists, You must debar your thought from this way of search, nor let
ordinary experience in its variety force you along this way, (namely,
that of allowing) the eye, sightless as it is, and the ear, full of sound, and
the tongue, to rule; but (juu must) judge by means of the Reason
(Lagor} the much-contested proof which is expounded by me. (Trans
fation of K. Freeman, Awcille fo the Pre-Socratic Philosophers, Oxford,
1948, p. 43.)*

It is, then, among the Eleatic philosophers of the sixth and fifth
centuries B.c. that we can find important beginnings in logic,
particularly in deductive logic, which was used so skilfully by Plato,
was formulated as a discipline by Aristotle, and served as the chief
instrument for the exiraordinary mathematics of Euclid and
Archimedes—in fact, for the Hellenistic science generally (from
about 300 B.c.), The Greeks, then, became masters of deduction,
the drawing of necessary inferences from given premises,

On the other hand, less satisfactory was the Greek understanding
of induction, the drawing of prabable general conclusions from a
multiplicity of particulars, the relative probability of the general
conclusion depending on the relative completeness of the set of
particulars, Also unsatisfactory was the discussion by the Greeks of
the relation of arguments to experience, although in practice, as
we shall see, they often exhibited an almost intuitive understanding
of the proper relation of a scientific theary to observed data,

A word must be said about the very difficult question of Aristotle’s
scientific method. Although his Posterior Analytics is his chicf dis-
cussion of this question, there is much elsewhere to throw light on it.
In the first place the object of a science is to find its principles, its
clements, or its causes. This is as true of physics as it is of zoology.
“The natural way of doing this is to start from the things which are
more knowable and observable to us and proceed towards those
things which are clearer and more knowable by nature,” That is,
we proceed initially from complex effects to simple causes; and once
we have found causes or principles we have scientific knowledge.

* Quoted by permision of the publisher, the Clarendon Press, Oxford.
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But how do we proceed to causes? Herein lie the difficulties of
Aristotelian procedure.

Let us take first the case of finding out what we can call “specific”
causes or kinds, And among these we investigate initially the case
where the cause we are secking produces an action, Experience
shows us that when an individual Callias was ill of some discase, a
certain drug cured him. The same thing happened to Socrates and
to many other individuals. As Aristotle says, this is a maiter of
experience. But then we do “science’ when we conclude that such
a drug generally cures all persons of a certain constitution who are
afflicted by this disease. We have, in short, “from many notions,
gained by experience, [produced] one universal judgment about
a class of objects,”” A similar procedure is evident in forming con-
clusions about the causes of the characteristics of biological organisms,
We are to proceed, Aristotle holds, after considering the phenomena
presented by animals and their several parts, subsequently to treat
of the causes and the reasons why. Although the individuals com-
prised within a species, such as Socrates and Coriscus within the
species man, are the real existences, it is sufficient for the purpose of
science 1o describe the universal attributes of the species, that is, the
attributes common to all of its individuals. Let me give a final example
of this initial procedure from individual to specific nature. From
individual “lines” in nature we could induce the essence or cause
of the species “straight line,” namely, extension in either direction.

We can call this initial procedure of Aristotle “induction to
species.” But in science we do more than determine specific causes;
we also determine more general causes—generic causes.  Aristotle
holds that if certain species comprise 2 genus and all the species are
identifiable as a given cause, then that cause is generic. For example,
let A stand for “long-lived,” B stand for “bileless,” and C stand for
the particular kinds of long-lived animals, for example, man, horse,
mule. A then belongs to the whole of C, for whatever is in C is
long-lived. But B (“bileless”) also belongs to all C. Hence A
belongs to B, i.e., the long-lived animals are bileless. But demon-
stratively (rather than inductively) the cause they are long-lived is
generic: they are bileless. But as Aristotle warns it must be appre-
hended that C is made up of all the particulars. “For induction
proceeds through the enumeration of all the [specific] cases.” This
whole procedure is called the inductive syllogism.

We noted in the beginning of our statement in re Aristotle’s
method that in discovering scientific knowledge we proceed from
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things more knowable to us, i.e., from the complex, undifferentiated
wholes given us as effects, to the things more knowable by nature,
i.e., to the differentiated, elementary causes. But although Anstotle
holds this procedure to be true lor discovering scientific knowledge,
in presenting the results of his scientific investigation, for example,
in zoology, he starts with the most general causes, i.e., the auributes
common to the largest groups of animals, which attributes he calls
“analogues,” to the next most general attributes which he labels
“‘generic,” and finally the least generalized attributes which he
calls “specific” (see Chap. ¢, Sect. 11 below),

We are not to think that the search for principles recommended
by Aristotle is self~contained within each science, that once we have
found the principles of the science we have necessarily reached the
end of our investigation. In some sciences, as in optics, it is apparent
that we have to go behind its principles or causes to another science,
namely mathematics, for a further search for causes or principles.

Now a number of criticisms have often been leveled against
Aristotle’s methodology. They are essentially these: (1) The initial
induction of a specific generalization which Aristotle lays to intuition
constitutes a much more difficult and hazardous task than Aristotle
seems to realize. (2) In his search for causes Aristotle often seems
satisfied with finding merely names, In other words, his causes are
often just restatements of the effects in terms of undefined powers
producing these effects. (3) In physical science Aristotle remains
too close to gross observation. In short, in physical science he leaves
little room for abstraction. For this reason, he seldom applies
mathematics to physical problems. Or to put it in another way, his
physical science is too qualitative. [4) Once having found causes
Aristotle does not have adequate methods of verification. He did
not develop a technique which employs critical experiments to test
other conclusions deducible from the principles. (5) And closely
connected with this last, Aristotle seems to have little interest in
prediction, the essence of modern scientific theories. For him science
is the search for causes to explain the facts which are already at hand.
This is what he intends when he calls science the syllogism of the
reasoned fact.

A medical author of Aristotle's time, in the treatise entitled
Precepts, while speaking in very general terms expresses the growing
concern of physicians with the problem of the proper relationship of
theory (logismos) and experience, a problem that occupied a number
of philosophers and physicians from about 300 B.c. to about A.p. 200.
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. « . one must attend in medical practice not primarily to plausible
theories, but 1o experience combined with reason. For a theory is a
composite memory of things apprehended with sense-perception, For
the sense-perception, coming first in experience and conveying to the
intellect the things subjected to it is clearly imaged, and the intellect,
receiving these things many times, noting the occasion, the time and
the manner, stores them up in itsell and remembers. Now 1 approve
of theorising also if it lays its foundation in incident, and deduces its
conclusions in accordance with phenomena. (Hippocrates, Precpts, I,
wanslation of W. H. 5. Jones, London, 1925.%)

We have already briefly suggested above that the Greeks often
had a happy faculty for following what was essentially sound use of
empirical observation as a foundation of and check on theory. For
example, the whole course of Greek astronomy, as one mathematical
system after another attempts to account for the solar, lunar, and
planetary movements, was fashioned with the avowed intention of
“saving the phenomena' —i.e., accounting for appearances—and it
seems that one or another of the earlier systems was rejected precisely
on the grounds that the theory could not account for the phenomena,
or rather that the phenomena directly contradicted some deductive
conclusion of the theory. Thus the system of concentric spheres
introduced by Eudoxus in the fourth century s.¢. and taken up and
popularized by Aristotle foundered on the fact that the apparent
size of the moon and the planets varies. This indicates that these
bodies are not always the same distance from the earth, and they
would have to be as a necessary conclusion of the theory of concen-
tric spheres. One later astronomer, Sosigenes, categoncally states
this failure to account for phenomena as the reason for the decline
of the theory of Eudoxus: “Nevertheless the theories of Eudoxus and
his followers fail to save the phenomena. . . "

In stressing the importance of observed data, carefully collected
and utilized for scientific investigation, we should also note briefly
Anstotle’s magnificent zoological works and the amount of detail
collected and used to support his attempts to generalize on the forms
of living things. Although we shall mention these works again in
talking about the substantial developments of Greek science, we can
point out here, for example, the wealth of carefully noted detail
brought to support his general classificatory statements, particularly
where he discusses and generalizes on the various kinds of generation.
Similarly rooted in careful observation were the botanical investi-

* Quoted by permision of the present publisher and holder of the copyright, the
Harvard University Fress.
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gations of Aristotle’s student, associate, and successor, Theophrastus,
one of the most brilliant scientific figures in Greek antiquity,

Somewhat different was the role of observation and experience
in the formation of the early systems of natural philosophy of
Thales and his successors. These systems seem to have originated in
the grossest analogies and patently insufficient observational data.
Thus it is supposed that such gross factsas the plenitude of water on
the earth’s surface and its ready change of form to ice or vapor led
Thales to assume water as the fundamental stuff of nature and to
build a system around this assumption. [t may be that the insuffi-
ciency of the ties between theory and experience in the early systems
is merely representative of the fact that these were the first stages of
science and philosophy. It was recognized as important that there
be some ties between the theoretical explanation of nature and our
experience of nature; but the necessity of a multiplicity of such
ties and of their surety was not apparent. In a sense, the growth of
modern science has been brought about on the one hand by the
increasing sophistication of theoretical explanation, due largely to
the use of mathematics, and on the other hand by the development
of experimental ways to establish the surcty and firmness of manifold
bonds that unite theory with experience.

It would, of course, be incorrect to state that there was no
experimentation in antiquity, either for the purpose of uncovering
new facts about nature or for the purpose of confirming scientific
theory. Even at the earliest stages of Greek science, in the sixth and
fifth centuries 8.c., there was experimentation by Pythagoras and
the early Pythagorcans. Thus Pythagoras or his followers clearly
established by experiment the relationship between the lengths of
vibrating strings and the pitch of the notes emitted by the strings,
It is true that the equally famous experiment of Empedocles (4g0-
435 B.¢.) with a water vessel to prove the corporality of air was more
a natation of common experience than a deliberately planned and
controlled test to confirm theory. But numerous controlled experi-
ments are recorded in the Hippocratic medical treatises, which date
from the fifth and fourth centuries B.c., and when we examine the
activity of the successor of Theophrastus at the famous Lyceum,
Strato the Physicist, we are confronted with activity deliberately
experimental for purposes of scientific investigation. A later
mechanical author, Hero of Alexandria, begins his discussion of a
vacuum with a beautiful section which is thought to be drawn from
Strato, and which has reference 1o numerous experiments:
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Vessels which scem to most men empty are not empty, as they
suppose, but full of air. Now the air, as those who have treated of
physics are agreed, is composed of particles, minute and light, and for
the most part invisible. If, then, we pour water into an apparently
empty vessel, air will leave the vessel proportioned in quantity to the
water which enters it. This may be seen from the following experiment.
Let the vessel which seems to be empiy be inverted, and, being carefully
kept upright, pressed down into water; the water will not enter it even
though it be entirely immersed: so that it & manifest that the air,
being matter, and having itsell filled all the space in the vessel, does not
‘allow the water to enter. Now, if we bore the bottom of the vessel, the
water will enter through the mouth; but the air will escape through
the hole. Again, if, before perforating the bottom, we raise the vessel
vertically, and turn it up, we shall find the inner surface of the vessel
entirely free from moisture, exactly as it was before immersion. Hence
it must be assumed that the air is matter, The air when set in motion
becomes wind (for wind is nothing else but air in motion), and if, when
the bottom of the vessel has been pierced and the water is entering, we
place the hand over the hole, we shall feel the wind escaping from the
vessel; and this is nothing else but the air which is being driven out
by the water. It is not then to be supposed that there exists in nature
a distunct and continuous vacuum, but that it is distribured in small
measures through air and liquid and all other bodies. . ... The
particles of the air are in contact with each other, vet they do not fit
closely in every part, but void spaces are left between them, as in the
sands on the sea shore. , . . Hence, when any foree is applied to it,
the air is compressed, and contrary to its nature, falls into the vacant
spaces from the pressure exerted on its particles: but when force is
withdrawn, the air returns again to lts former pasition from the
elasticity of its particles, as is the case with hom shavings and sponge,
which, when compressed and set free again, return to the same position
and exhibit the same bulk. Similarly, if from the application of force
the particles of air be divided and a vacuum be produced larger than
is natural, the particles unite again afierwards. . . ., Thus, if & light
vessel with a narrow mouth be taken and applied to the lips, and the
air be sucked out and discharged, the vessel will be suspended from the
lips, the vacuum drawing the flesh towards it that the exhausted space
may be filled. It is manifest from this that there was a continuous
vacuum in the vessel. . . . (Cohen and Drabkin, 4 Source Book in
Gireek Sctemce, pp. 249-50.%)

The passage goes on in brilliant fashion to cite other experiments for

confirming the existence of a vacuum spread between the particles

* Quoted by ission of the publisher, the McGraw-Hill Book Company, Inc.;
mwﬁiht.tmﬂ-m '
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of air and for producing a vacuum artificially, This tradition of
experimental activity was carried on into the mechanical works of
the Hellenistic period, where numerous experiments in pneumatics
were performed.

If, then, scientific investigation in antiquity involved considerable
experimental activity, we may well ask why it was that Greek science
falls short of modern science. It falls short in the matunity and the
universality of its use of mathematical-experimental techniques.
There is no question that a mathematical-experimental science
existed in nascent form, at least, in optics, in statics, and in applied
mechanics; that a mathematical-observational science was present
in astronomy; and that an experimental science existed in zoology
and physiology. But the techniques of these sciences were not yet
commonly considered as the necessary methods in all fields of natural
investigation. Before mathematical and experimental techniques
had become the common property of Greek science, that science
began to level off. The leveling off (note that reference is made to
“leveling off”* rather than to “dying out”) of Greek science in late
antiquity took place for a number of important political and social
reasons, which will be discussed in detail in the next part of this
volume. We can, however, note briefly the importance of Rome’s
rise to political power and domination of the Mediterranecan ares,
the rise of Christianity and the consequent funneling off of many
scholars who might have been scientists into dogmatic activities, and
the gencral effect of noncritical spiritual forces that beset the
Mediterranean world from at least late Hellenistic times.

In concluding our remarks on the general methodological
achievements of Greek science we ought to mention Greek contri-
butions toward the establishment of institutions or organizations for
scientific investigation. Some might say that the priestly-scribal
classes of both Egypt and Mesopotamia preceded the Greeks in such
organization. 1t has been conjectured on fair evidence that the best of
the Babylonian cuneiform mathematical texts are products of scribal
schools. And it would be interesting to know the full range of in-
tellectual activity at the Royal Library of the Assyrian Assurbanipal.

But it appears that for Western science the Greek organizations
and “schools" were of the greatest importance, because so many of
the scientific works that were to form the basis of Western thought
were produced there. Now it has long been a debatable question
how formally organized were the Greek medical schools of the fifth
century B.c., schools such as the great medical school at Cos. Some
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historians have held that these schools had formal organization of a
guild nature. The existence of medical libraries connected with
these schools has been argued persuasively, The Pythagoreans, at any
rate, had formal organization, apparently of religious character, and if
some of their activity was “‘scientific” much of their organized activity
was religious. We can only guess as to the ties that held together the
followers and successors of Thales at Miletus, or those of Democritus
at Abdera, or other groups of philosophers in various places.

In tracing the growth of institutions of learning we cannot pass
over Plato’s Academy, which is, in one sense, the spiritual ancestor
of Western academic organization, cven as the name itself suggests.
Founded after 388 n.c., it probably possessed little formal organiza-
tion. From the tradition that there was erected in Plato’s garden a
shrine to the Muses has come the apparently ill-founded conclusion
that the Academy was incorporated as a thiasos, or religious fra-
ternity. It appears that regular dinners were held by the Platonic
group, but probably few formal lectures. However, we simply do
not know. Nor is the curriculum known, although efforts have been
made to endow the early Academy with the educational systems
described in the Republic and the Laws. Although we cannot be
certain of the nature of formal instruction given in the sciences, we
do know that a series of brilliant mathematicians and astronomers
were associated with Plato. It is difficult to escape the conclusion
that astronomical and mathematical activitiecs were pursued
vigorously at the Academy.

Even more clearly than the Academy of Plato was the Lyceum
of Aristotle an institution for scientific research. It was founded
after Aristotle’s return to Athens in 335 B.c. We know a little of its
organization in the time of Anstotle’s student and successor,
Theophrastus. [t had a garden (perhaps for botanical or pharmaco-
logical research), a lecture room, an altar 16 the Muses. That
lectures were given there can scarcely be doubted, The form of
Aristotle’s works is usually ascribed to their having been prepared
as lecture notes. Subjects for investigation at the Lyceum were
historical, political, literary, and scientific. Something more of the
school's activities will be said in the discussion of Aristotle’s and
Theophrastus' contributions to biology (Chap. Four) and in the
detailing of some of the experimental work and physical views of
Strato (Chap. Six).

Both the Academy and the Lyceum had long if erratic lives that
extended into late antiquity. The Academy was not permanently
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closed until a.p. 520. The general spirit of the two groups seems to
be well reflected in the will of Theophrastus as he bequeaths property
to the school:

The garden and the walk and the houses adjoining the garden, all
and sundry, 1 give and bequeath to such of our enralled friends as may
wish to study literature and philosophy there in common, since it 18 not
pussible for men to be always in residence, on condition that no one
alienates the property or devotes it 1o his privale use, but a0 that they
hold it like a temple in joint posession, as is right and proper, on terma
of familiarity and friendship, (W, Jaeger, Arintatle, 2nd ed., Oxford,
1948, p. 315.%)

There is some historical evidence that the activity at the Lyceum
led directly to the organization of the Museum at Alexandria, scarcely
more than a generation after Alexander had swept over the Near
East. In all probability the Museum began to take shape under the
first king of the newly established Macedonian dynasty, Polemy
Soter (305-283 B.c.), and a foundation date of about 290 8.C. would
not be too wide of the mark. Unlike its predecessors, the Museum
was a state-sponsored institution with a semireligious administrative
organization dedicated to the Muses. Needless to say, it was not an
organization for religious worship, in spite of the fact that its director
i¢ sometimes designated as Archpriest of the Museum. More than
any of its predecessors the Museum was a center of scientific research.
During the reign of the second Ptolemy, Ptolemy Philadelphus, its
members numbered perhaps one hundred. Connected with the
Museum was the great Alexandrian library, long the largest ani
most famous library in the world, Tt was built up in part at least by
the purchase of private librarics, one of which, a doubtful tradition
tells us, was that of Aristotle, The figures we have on the library’s
size are somewhat ambiguous but seem to show that under Prolemy
Philadelphus it had close to 500,000 books. We know next to
nothing about the methods of instruction at the Muscum. Possibly
it had lectures, like the Lyceum. We know that colloquies or group
discussions were held. It is tempting to think that there were
laboratories of some kind, where the numerous experiments recorded
of the Alexandrians were performed. Specimens of animals and
plants seem to have been collected, but it is doubtful that there
were public exhibits like those of the “muscums” of a later day.
The closest parallel of the Muscum today would probably be a
state research laboratory or a graduate school.

& Quored hyp:nnhidnufdnpnblhhﬂ,lhrﬂumdmﬁm{hfmi



CHAPTER THREE

Science and Early Natural Philosophy

this point we have discussed without much attention to
chronology some of the important methodological aspects of
Greek science; we should now attempt to say something of the
content of Greek science, discussing particularly those works which
were to pass on to the Middle Ages and early modern times. Tumn-
ing to the early pre-Socratic period, we ought to note initially thar
the first philosophers of Miletus set the basic' problem for the
philosophy of the succeeding gencrations—namely, the determina-
tion of the natore of the basie stuff | physis) of the universe. In the
course of the search for the answer to thar problem at least three
characteristic ways of looking at nature emerged by the time of
Aristotle; each has had enormous influence in the history of
Western thought.

The first of these ways of looking at nature is called the physical
or sometimes the material view. It emphasized the reality and
permanence of matter and movement and, in its most mature form,
the existence of void or empty space. Responsible for initiating this
point of view were the lonian philosophers of Miletus: Thales ( ff.
575 B.c.) with his view of the fundamental character of water;
Anaximander (fl. 547 8.c.), who subtly fell back on a fundamental
“indeterminate' substratum out of which all things were formed and
into which they returned unceasingly; and Anaximenes (A, sixth
and fifth centuries B.¢.) who relied upon mist or air as the corner-
stone of matter. In general the physical view held that the
substance of knowledge was supplied by the sense, even though such
philosophers as Heraclitus, who seemed to express general sympathy
with the point of view, cautioned that “the eves and ears are bad
witnesses if the mind cannot interpret what they say, and the
atomists built up a system that is not directly sensible but thar is
entirely inferential from sensory data. This view of nature reached
its highest expression in the atomic theory of Leucippus and
Democritus (fifth century 8.0.). It sought to overcome the criticism
of the Eleatic school (noted in Chap. Twao), which denied movement

4
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as illusory, by positing the real existence of & void in which an
infinite number of mfravisible and indivisible atoms everlastingly
moved, associating themselves now in one configuration, now in
another. In spite of its general eclipse in the Middle Ages, this view
of nature has never wanted some adherents. The reader will hardly
have to be reminded of its success in modern times.

The second solution to the problem of nature has been given
various names, which range from the psychical view of nature, or
formal view, to the mathematical view. [t emphasized the reality
and permanence of forms, ideas, and concepts. The world of the
senses, matter, was conceived to have a transitory nature. In the
least subtle form of this view, the way to knowledge was to free
oneself from the impermanence of the senses and by recollection
w recover the knowledge of the permanent forms and ideas that
reside in the soul. This view attained its earliest systematic expres-
sion with Plato. Some would say that Pythagoras (f. 532 p.c.} and
the Pythagoreans adumbrate the ideas implicit in this view of nature,
But the Pythagorean fragments are ambiguous, and John Burnet,
in emphasizing their experimental character and describing the
general cosmology found in them, ties the Pythagoreans with the
lonians. The interest of the Pythagoreans in mathematics and their
resorting to a belief which almost seems to make number itself the
basic stufl of the universe, as well as their view that nature is in a
sense written in mathematics, do provide background material for
the Platonic view of nature, The consequences of this Pythagorean
belief in the mathematical character of the universe have been
enormous. Some twenty-two hundred years later Galileo was still
to believe in it.

The third view of nature, that of Aristotle, can be characterized
as a compromise view. Fmphasis was laid on "“becoming," on the
actualizing of things that exist in potentiality. Nature is motion
conceived in its broadest aspect as any kind of change. Rejecting
the exclusive emphasis that the materialists put on matter and the
Platonists on form, this view pictured matter and form as inseparable
and inextricably bound together, and thus as equally important for
the understanding of the fundamental character of nature. Aristotle
seems to have been led to this view by the necessity of accounting
for generation (coming into being) and corruption (passing away),
and also for the kind of organization that we find in living organisms.
We shall have much to say of the details of Aristotle’s physics and
something to say of his biology in succeeding chapters. For the
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Anstotelian framework became of paramount importance for
medieval philosophy and science.

In the course of the evolution of these vanous views of nature,
the pre-Socratics and their immediate successors in the fourth
century B.¢. advanced, often in very primitive form, some stock
ideas that were to reappear again and again in the history of Western
science and thought in constantly more subtle and expressive forms;

(1) The idea of the nondestructibility of the fundamental
material substratum as it passes from one form to another lies
behind the whole discussion of the basic stuff of the universe by the
Tonians and their successors, When applied to chemistry, as it was
by Jean Rey in the seventeenth century and Lavoisier in the
eighteenth, this idea leaves the philosophical realm and becomes
the fecund scientific principle of the conservation of the weight of
matter passing from one chemical form to another. Although
sharpened by the concept that all matter has weight, this principle
is fundamentally tied with the broader philosophical idea.

(2] From the empirical observations of change of phase—say,
from water to ice or to steam—and from the concept of the per-
manence of the substratum came the notion that change of phase
brings with it changes in properties of basic matter. This idea,
already present in fragments of Anaximenes and Heraclitus, has a
long history in the development of alchemy and chemistry.

(3) Complementary to this idea was the thesis that change of
phase and hence change of properties are accomplished by rarefaction
and condensation. This appears to have been the basic idea behind
Anaximenes' account of nature. 1t is further employed in the atomic
philosophy and has scientific significance in modern times,

(4) Constant atrention to change and movement and speculation
as to the causation involved stimulated the basic idea that when
things change or move there are activating forces—no longer
mythological but physical forces. The concept of force begins to get
historical attention in the fifth century n.c., with Empedocles’ {4g90-
435) assignment of two fundamental and opposing forces, poetically
named Love and Strife, and with the introduction by Anaxagoras,
his contemporary, of nous, or mind, as an external force causing
motion. The early emphasis on foree, power, action is also reflected
in the medical works contemporary with the philosophical activity.
Thus Plato says that Hippocrates (b, at Cos in 4602 n.c.) holds that
to find the fundamental nature (physis) of a thing we must examine
its “power,”" or dynamii—i.e., its capacity of acting or being acted
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upon—and in truth this idea is suggested in several places in the
Hippocratic corpus. And later, with Aristotle, active and resistive
powers or forces play an important role, as they do with all of the
subsequent scientists in antiquity and the Middle Ages who are
interested in mechanics.

(5) Another general idea that comes out of this early Greek
philosophical speculation and that was o play an important role in
early mechanics is that of an infinitude of space. When this space
takes on the basic Euclidian three-dimensional character, it becomes
the idealized or abstract space in which, according te Newron,
bodies tend to move uniformly in a straight line when undisturbed
by external forces. Infinite void or space is one of the fundamental
tenets of the atomic system of the fifth century s.c. It reappears
often among the commentators in late antiquity and the Islamic
period and occasionally among commentators in the Latin West in
the Middle Ages.

(6) With an infinity of space or void and an infinity of matter in
that space, we see the idea develop of an infinitude of worlds like our
own. The discussion of a plurality or infinity of worlds, cither
successively or simultaneously existing, goes back to the atomists
and perhaps even further; it appears again and again before it
comes 1o a head in the sixteenth-century treatment by Giordano
Bruno.

Turning from the more general cosmalogical stock ideas evolving
out of this early speculation, we should note at least two important
fundamental ideas regarding living things that were to be enor-
mously influential in the growth of science.

(9] The first is a speculative “hunch™ as to the evolutionary
nature of the development of living things, a hunch that is first
assigned to Anaximander, that is rejected completely by Aristotle,
but that reappears strongly much later, in a passage from Diodarus
Siculus.

(8] The second is one of the basic biological ideas apparent in
the Hippocratic corpus of medicine of the fifth and fourth centurics
n.c.—namely, the concept of the healing power of naturr. The
physician is but to aid nature in effecting the restoration of the
patient to health, This is the primitive recognition of the funda-
mental biological doctrine that organisms have the capacity or at
least the tendency when damaged or diseased to return to their
normal integrity by knitting broken bones, replacing tissue, ete.

In terminating these remarks on some of the stock ideas that
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appear to come out of earlier philosophical writers on nature, it is
advisable to leave a word of caution. Our knowledge of the philos-
ophy and science of the pre-Socratic period is based on a very
scattered and meager set of fragments, together with the evaluations
made of the opinions of the early philosophers by men of later
periods who speak in the terms and disputes of the science and
philosophy of their own day. And it is a favorite academic sport to
search the fragments for clues of the origin of a favorite point of
view. But with these facts considered, it is safe to say that we can
find these germinal ideas in the carly fragments or in the works of
men not very far removed in time from the early philosophers.



CHAPTER FOUR
Greek Medicine and Biology

i

EAVING the general philosophical ideas of the early periods of

Greek thought that seem to have had later scientific importance,
we can begin to describe the state and development of the individual
sciences from about 400 B.c. to about A.n. 200, thus embracing all
of the periods we have named as the second and third in our chrono-
logical outline and part of the fourth. We can point first to the
development of medicine. We have already intimated that the
Greeks created a secular medicine that often employed the methods
of observation and experience, The tradition of rational and even
experimental medicine (although there is some doubt of this] is
usually extended back to the beginning of the fifth century 8., to
the natural philosopher and physician Alemaeon of Croton, in
southern Italy, perhaps a Pythagorean.

His detailed work on the nature of the senses was based on experi-
ment; tradition records that he was the first 1o "dare to undertake the
excision of an eye.” This clearly refers to a surgical operation on a
human subject; and he profited by this opportunity, and doubtless
also by dissection, to examine the eye and the brain, (K. Freeman,
The Pre-Socratic Philasophers, Oxford, 1946, p. 137.*)

A number of medical schools scem to have grown up in the course
of the fiflth century, of which the one that achicved the greatest fame
both in its own day and with posterity was the school on the island
of Cos. The works that emerged from this school were codified
quite carly under the name of the greatest physician of the school,
Hippocrates, who flourished about 420 5.c. The so-called Hippocratic
corpus contains some seventy works, which date from the time of
Hippocrates to about goo s.c. The problem of deciding which of
the works, if any, are genuinely by Hippocrates is generally con-
sidered insoluble on the basis of the now known evidence. The
corpus as a whole was of extraordinary influence during late

* Quoted by permimion of the publisher, the Clarendon Press, Oxford.
3o
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antiquity and the Middle Ages, both among the Arabs and in the
West. Besides including the remarks quoted above on the impartance
of experience as a basis for medicine and on the sccular character
of epilepsy, the corpus contains a number of other ideas interesting
to the historian of science. One treatise, in listing foods for dietary
purposes, sets forth a very rudimentary classification of plants and
amimals, We find in another treatise, On Nutriment, of about 400 2.c.,
one of the carliest references in medical literature 1o the pulse as a
diagnostic sign, as well as the beginnings of the distinction made in
antiquity between the arteries and the veins. In certain of the
treatises we find the development of the doctrine of humors, or
body fluids, that later became so widespread. The humoral doctrine
is epitomized in the work On the Nature of Man:

The body of man has in itsell blood, phlegm, yellow bile, and black
bile; thess make up the nature of his body, and through these he feels
pain or enjoys health. Now he enjoys the most perfect health when
these elemests are duly proportioned to one another in respect of cons-
pounding, powtr and bulk, and when they are perfectly mingled,
Pain & felr when one of these elements is in defect or exeess. . . .
{Loeb Classical Library translation of W, H. 8. Junes, Hippocrates.
Vol. IV, pon.®)

With a pathology based on excess or defect of body fluids or some
similar disharmony, Hippocratic therapeutics concerned jsell’ with
the restoration of the normal proportion or mixture of fluids or the
general harmony of the body. And even though nature tended itself
to restore the balance, the physician actively aided by the use of
purgatives, fomentations and baths, barley waters, and wine, and by
bleeding or venesection, Perhaps the greatest achievement of
Hippocratic medicine lay in the masterful clinieal descriptions that
were to help the physician predict the course of disease. Who cannot
feel the terseness and accuracy of the so-called facies Hippocratica, the
signs of approaching death: “nose sharp, eyes hollow, temples
sunken, cars cold and contracted with lobes turned outward, skin
tense and parched, face discolored, eyelids livid, mouth open, lips
loose and blanched.”

With the spread of Greek culture and the rise of science in
Alexandria, some remarkably original work was done in medicine
that has a distinct bearing on the history of biology, Special
attention should be paid to two important figures of the third

* Qicted by permisdon of the proent publisher and holider of the copyright, the
Harvard University Presw.
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century 8:c. The first is Herophilus, who made anatomical descrip-
tions that were in all probability a considerable advance over
previous ones.  That he was able to dissect human cadavers seems
likely. At any rate, we are told that he left detailed descriptions of
the wvarious systems—nervous, vascular, digestive, and osscous.
Particularly noteworthy was his description of the brain, in which
the cerebrum was distinguished from the cercbellum. Herophilus
discovered and named the duodenum, the first part of the small
intestines; he distinguished the arteries from the veins, but showed
that the former do have some amount of blood in them, contrary to
some contemporary opinion which classified the arterial system as a
carrier of a pneuma, or spirit, alone, His junior contemporary,
Erasistratus, continued the work of Herophilus in anatomy and
physiology. He described correctly the action of the epiglottis in
preventing entrance of food and drink into the windpipe during
swallowing. It is said that he rejected all but mechanical explana-
tions in describing physiological functions. Thus he thought of food
as being ground up in the belly during digestion. Even his ex-
planation of the blood system, which was a distinct forerunner of the
influential explanation of Galen, was formulated in mechanical
terms, and this in spite of his usc of airs, or pneumas, It appears
that for him blood was the source of matter in the body, whereas
pneuma (air as modified in the parts of the body) was the source of
energy or activity. He explains why, although the arteries carry
mostly pneuma, we find so much blood in them when they are cut,
According to him, the blood gushes over into the arterial systern
when a temporary vacuum is formed there by the escape of the
prieumna through the cut, In this he seems o be leaning on the
physical ideas of Strato the Physicist, who apparently had contact
both with the Lyceum at Athens, as a successor of Theophrastus,
and with Alexandria, as a tutor of Ptolemy Philadelphus, second of
the Greek rulers of Egypt. (See Chap. Six.)

We have the names of a number of the followers of these carly
Alexandrians and of the seccts that arose. But we can make only
passing reference to two of the chief sects which differed in their
views toward method—that is, toward the relation of experience
and theory in medical practice, The first sect was the Dogmatists,
who, as Celsus (see Chap. Eight) tells us, professed “a reasoned
theory of medicine.”” This group *‘propounds as requisites, first, a
knowledge of hidden causes involving diseases, [and] next of evident
causes.” Naturally they admit the evidence of experience—for
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example, in discussing the disease of internal parts where it “be-
comes necessary 10 lay open the bodies of the dead and to scrutinize
their viscera and intestines. They hold that Herophilus and Erasis-
tratus did this in the best way by far, when they laid open men
whilst alive—criminals received out of prison from the kings—and
whilst these were still breathing, observed parts which beforehand
nature had concealed, their position, colour, shape, size, arrange-
ment, hardness, sofiness, smoothness, relation, processes and
depressions of cach, and whether any part is inserted into or is
received into another.”

The second important sect that was established at Alexandria
was that of the Empiriai, or Empiricists, They accept evident canses,
but, according to Celsus, “they contend that inquiry about obscure
causes and natural actions is superfluous, because nature is not to be
comprehended.” They object to simple universal causes and reject
entirely theoretical medicine, for “even philosophers would have
become the greatest of medical practitioners, if reasoning from
theory could have made them so.”

Finally, we can move all the way to the second century after
Christ for our concluding remarks on Greek medicine and its
relation to the history of science, In doing so, we skip a number of
interesting writers to take up the most important single figure in
Greek medicine after Hippocrates—namely, Galen. Galen was not
really a member of any medical sect, but he was probably closer in
spirit to the Dogmatists than to the Empiricists. This, of course, did
not prevent him from being one of the greatest medical experi-
menters in the history of early medicine. We can illustrate this fact
by quoting from his demonstration of the irreversibility of the flow
of urine from kidney to bladder:

Now the method of demonstration is as follows. One has 1w divide
the peritoneum in front of the ureters, then secure these with ligatures,
and next, having bandaged up the animal, let him go (for he will not
continue to urinate). After this one loosens the external bandages and
shows the bladder empty and the ureters quite full and distended—in
fact almost on the point of rupturing; on removing the ligature from
them, one then plainly sees the bladder becoming filled with urine,

When this has been made quite clear, then, before the animal
urinates, one has to tie a ligature round his penis and then to squeeze
the bladder all over; still nothing goes back through the ureters to the
kidneys. Here, then, it becomes obviows that not only in & dead animal,
but in one which is still living, the ureters are prevented from receiving
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back the urine from the bladder. These observations having been made,
one now loosens the ligature from the animal’s peais and allows him
1o urinate, then again ligatures one of the areters and leaves the other
to discharge into the bladder. Allowing, then, some time to clapse, one
now demonstrates that the ureter which was ligatured is obviously
fill and distended on the side next to the kidney, while the other voe—
that from which the ligature had been taken—is itself flaceid, but has
filled the bladder with urine. Then, again, one must divide the full
ureter, and demonstrate how the urine spurts out of it, like blood in the
operation of venesection; and after this one cuts through the other
also, and, both being thus divided, one bandages up the animal
extermally. Then when enough time seems to have elapsed, one takes
off the bandages; the hladder will now be found empty, and the whale
region between the intestines and the peritoneum full of urine, as if
the animal were suffering from dropsy. Now, if anyone will but test
\his for himself on an animal, I think he will strongly condemn the
rashness of Asclepiades, and if he also learns the reason why nothing
regurgitates from the bladder into the ureters, 1 think he will be
persuaded by this also of the forethought and art shown by Mature in
relation to animals. (Galen, On the Natwral Faculties, 1, 13, Loeh
Classical Library translation of A. J. Brock, London, 1916.%)

Galen was enormously prolific as a writer, and his works deal
with a number of philosophical questions not connected with
medicine. He may have dissected human cadavers; but even if so,
he dissected animals much more frequently, including Barbary apes
and pigs. Many of his mistakes in anatomy and physiology derive
from the fact that the analogies were too close that he attempted to
draw between man and the animals he dissected.

One of the most interesting and influential of Galen's descriptions
is that of the great blood and pneuma systems that had been in the
process of formation since at least the fourth century B.c. As the
reader well knows, the current theory of the circulation of the blood,
which dates from the time of Harvey and Malpighi, in the seven-
teenth century, holds that the blood flows, or circulates, in an
essentially closed system of arteries and veins, with the heart acting
as a pump that motivates the flow. The bright scarlet blood charged
with oxygen is pumped out of the left side of the heart through the
arterics and then is carried throughout the body in the arterial
system. From the arteries it passes through numerous systems of
small capillaries, or tubes, in the tissues of the body into the veins.
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In the course of this passage the blood supplics oxygen to the tissues
and changes to the darker hue that it has in the veins. In the veins
it Aows to the right side of the heart. From the right side of the
heart it is pumped through the pulmonary artery to the lungs,
where it is replenished with oxvgen as it is forced through capillaries
into the pulmonary vein, From the pulmonary vein it enters the

Fic. 10.—Charles Singer's vepresentation of Galen's vascular

systems, (Reproduced from R, W. Livingstone, ed., " The Legacy

of Greece," Oxford, 1921, by permission of the publisher, the
Clarendon Press, Oxford.)

left side of the heart, completing the circulation. Now let us return
to Galen's description of the blood.

Like Erasistratus, Galen holds that blood and pneuma are the
body's essential ingredients. The blood is fashioned in the liver
from the chyle produced in the intestines (see Fig. to). 1t is charged
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with at least traces of pneuma, which have their ultimate origin in
the air we breathe, The blood is distributed by an ebbing and
flowing motion 1o all parts of the body by the venous system. It is
so carried to the right ventricle of the heart, where it discharges
through the pulmonary artery and lungs (on exhalation) certain
impurities. But, Galen believed, a certain amount of the blood
trickles through pores or passages in the seprum separating the right
and left ventricles of the heart, Some later Galenists would hold
that this blood is charged with natural spirits or pneuma (although
Galen does not make definite the role of natural spirits). Then the
arterial system carried a mixture of blood and zotic or vital spirits
throughout the body; the left ventricle of the heart together with
the arteries constituted the seat or home of the innate heat of the
body, Some of the blood and vital spirits reached the brain, where a
psychic pneuma is formed. This psychic pneuma is then carried
throughout the body by what was believed to be a third vascular or
tubular system, the nervous system. A recent author has described
some of the details of Galen's view of the blood system as follows:

The veins serve the main purposc of anadosis, Le. transportation of
proper nourishment to the organs. The chyle from the gastrointestinal
tract reaches the veins of the portal system where it appears as crude
blood, The main process of hematopoiesis (blood formation) is effected
in the liver, the supposed origin of the veins, which now offer to each
part what it will attract, hald, assimilate, and eliminate by means of the
natural faculties. In addition, the veins contain pneuma from three
main sources. In the first place, the veins take the vaporous and useful
part of the winds developed in the abdomen. In the second place, the
juices of chyle and blood can and do exhale some pneuma, 30 that
even the psychic preuma, to a small extent, may be engendered from
the veins in the cerebral ventricles. This is of importance in as far as
the pneumatic content of the venous hload can substitute for the
vital pneuma of the arteries, At any rate, the blood in the veins o
some extent is vaporous; for its “thinnest and most vaporows'" portion
is attracted by the arteries through their anastomoses {intercommunica-
tion of blood vessels] with the veins, The arterial blood in turn,
through these anastomoses, forms a third source of preuma for the
veins, *The arteries and veins form synastomoses in the whole bady
(i.e. where the walls of the two kinds of blood vessels barder upon each
other) and accept fram each other hlood and pneuma through some
invisible and perfectly narrow paths.” The mle which the pores in
the intraventricular septum of the heart are supposed to play in this
respect is too well known to need any comment, It is only necessary
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to add that in Galen’s opinion the arteries which reach the intestines
on their part also ahsorb a little food in order to see the far-reaching
parallel between arterial and venous blood. Neither of the two s
without a pneumatic ingredient; the difference is one of degree,
Whereas blood and pneuma are fine and thin in the arterics, they are
crude and “smoky™ in the veins, And whereas the arterial blood has
# large preumatic compaonent, the latter is much smaller in the veins,
Just because the difference is only one of degree, both arteries and veins
can supply the organs with food. Generally speaking, the organs take
thinner food from the arteries; thicker food from the veins. In particu-
lar, the nature of the organ will decide the kind of blood needed. The
spongy spleen shows a wide ramification of large arteries and the lungs
receive blood from the right ventricle of the heart where it has assumed
an almost arterial character. The liver, on the other hand, has small
arteries chiefly for cooling purposes. Thev do not absorb blood from
the liver, nor do they have to [eed it tissues with thin and vaporous
fuod, “nor do they have w furnish the liver with much vital pneuma as
they do some other organs.’”” (. Temkin, “On Galen's Pneumatology,"
Gesnerus, B (1951), pp. 184-85.

Galen was of special importance for medieval science, for it is
his presentation of Greek medicine that, with the Hippocratic corpus,
was to be translated and studied in both Islam and the West. And
it was his emphasis on the teleological or purposeful function of all
the parts and organs of the body that was to appeal so greatly to both
Islamic and Christian physicians.

The beginnings of the study of human biclogy, we have seen,
appear in the medical works of antiquity. Those parts of biology
which are designated as natural history, particularly zoology and
botany, emerge as scparate sciences in the fourth century s.c.
Chiefly responsible was Aristotle (384—322 8.c.). Son of a physician,
the great philosopher of Stagira, a town in portheastern Chaldice,
came (o Athens to study with Plato at the age of seventeen and
stayed with Plato until the latter’s death (347 8.¢.), The impression
made upon Aristotle by Plato was profound, and the dialogues
wnitten by Anstotle in this period and now lost were Platonic in
spirit and content, according to our scanty knowledge of them.
Leaving Athens, Aristotle studied and probably taught successively
at Assos and Lesbos, in Asia Minor, then proceeded to the court of



GREEK MEDICINE AND BIOLOGY 47

Philip of Macedonia to act as a tutor to the young Alexander, the
future conqueror of Greece and the whole Near East. This period of
wandering terminated with Aristotle’s return to Athens in 335 B.C.
On his return he founded the famous Lyceum, which became the
first great scientific research center in the history of mankind, with
the possible exception of Plato's Academy. But the latter appears
to have been a place of philosophical inquiry—which included, of
course, mathematics—more than it was a school for the patient
collecting and organizing of scientific data, as the Lyceum clearly
became.

Jaeger, one of the greatest students of Aristotle, has advanced the
persuasive idea that in the course of the latter’s carcer his approach
developed from one that was predominantly Platonic and meta-
physical to one that was increasingly empirical and more interested
in what the Greeks call kistoria—i.e., rescarch. Thus Jaeger believes
that it was during the Lyceum period that Aristotle pursued further
the research into and organization of zoological data which he
probably had begun with Theophrastus, his associate and successor,
on the island of Leshos in his middle period. Presumably Aristotle’s
great Parts of Animals and History of Animals took final form at the
Lyceum., The botanical works of Theophrastus were probably
begun during the middle and last periods of Aristotle’s life. To the
period of the Lyceum belong, in all probability, Aristotie’s short
biological tracts, called the Parva naturalia, his Meteorology, and a lost
work on the flooding of the Nile, of which we have just one brilliant
fragment that disposes of the problem much mooted by Greek
natural philosophers: “The Nile floods are no longer a problem, for
it has actually been observed that rains are the causes of the
swellings."

Patient work in chronological studies was also undertaken at the
Lyceum, such as collection of the names of the winners of the
Pythian Games and assemblage of the records of dramatic per-
formances at Athens. Historia at the Lyceum is no doubt illustrated
also by the collection of 158 constitutions of the various city-states,
of which the extant Constitution of Athens forms one book. It was also
at the Lyceum that first researches into the history of science were
conducted, Theophrastus undertaking the history (partly extant) of
the opinions of the physici, or natural philosophers, Menon describing
the history of medicine (only extracts extant), and a third student,
Fudemus, dealing with the history of arithmetic, geometry, and
astronomy [only extracts extant). The schematism or systematiza-
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tion undertaken at the Lyceum was of great importance; but,
according to Jaeger,

. « . to suppose its real achievement lay in the classification of animals
and plants would be wrong. It was far less important in the develop-
ment of natural science than the fact that here for the first time the
observation and description of the individual and its life history was
being taken absolutely seriously, (W, Jaeger, dristotle, 2nd ed., Oxford,
1948, p. 331.%)

But what were some of the important biological results of
Aristotle’s research? The most important of his works containing
the results of his researches into natural history are those already
mentioned, the History [or Investigation] of Animals and the Parts of
Ammals, together with On the Generation of Animals and On the Pro-
gressive Motion of Animals. His more philosophical O the Soul is also
important for understanding his views on life.

We are not to think that, because he paid more attention to
detailed research toward the end of his career, Aristotle abandoned
some of the important philosophical principles that had no doubt
developed by the time of his middle period. In a sense the earlier
periods gave him a certain fundamental metaphysical framework
which he amended as the result of his research, but did not neces-
sarily abandon, His ideas of matter and form, of the various kinds
of causation, of movement as the actualizing of a potentiality—all
play an important role in his biological researches. But more than
once he stresses the importance of appealing to facts in sufficient
number before forming general conclusions. Thus in the Generation
of Animals in taking up a difficult problem he observes: *“There are
not enough facts to warrant a conclusion, and more dependence
must be placed on facts than on reasonings, which must agree with
facts.”" In another place he points out that it is easy to distinguish
those who argue from facts and those whe argue from notions.

Aristatle’s collecting of the facts in natural history was done in a
number of ways. He made countless personal observations of the
habits and structures of animals. Some of the facts ohserved could
have been made plain only by the use of the dissecting knife—e.g.,
his description of the eye of the mole, his description of the gall
bladder of the pelamid, his description of the stomach in ruminants;
or cud chewers.

In certain cases there are evidences of the dissection of living
animals—i.e., vivisection. Thus there is reference to the movement

* Duoted by permision of the publisher, the Clarendon Press, Oxford.
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of the heart of a tortoise after its removal and another w the move-
ments of the heart and the sides of a chameleon after dissection.
There is also much evidence that Aristotle used (often with critical
caution) the observations and reports of others.

Same of the specific observations that Aristotle made have long
stimulated the admiration of naturalists, An example is his dis-
tinction of cetaceans (whales, dolphins, and porpoises) from fish.
He noted that the former have lungs and blowholes, that the embryo
is tied to the mother by an umbilical cord, and that the young are
born alive. -His description of the placental dogfish was not con-
firmed until the nincteenth century, nor was his description of the
sexual reproduction of the cuttlefish and the octopus, with the
special arm acting as a sexual organ and fining into the mantle-
cavity of the female. This list of important observations can be
extended easily: Aristotle described carefully the habits of bees, the
development of the embryo of the chick, the transformation of the
caterpillar to the butterfly, the testes of mammals, the habits aof
clectric fish, etc.

But Aristotle’s zoological works are more than mere description
of animal habits. Certain fundamental ideas emerge from his
descriptive material. Thus we see him supporting with some cle-
gance the doctrine of cpigenesis, which holds that the embryo
develops from undifferentiated material. Again, in the History of
Arimals Aristotle is constantly concerned with the problem of the
samenesses and differences of animals, the problem of classification;
and, although he nowhere presents a single classificatory system, he
makes numerous important statements on classification that allow
us to construct a general system.  Although we cannot deal with this
system in detail, we should note that he recognizes the most general
division possible between red-blooded (sanguinous) and non-red-
blooded animals. This division corresponds to the modern dis-
tinction between veriehrates and invertebrates, since, as Aristotle had
observed, it is the sanguinous animals that have a backbone. His
classificatory statements involve the use of the terms ados (species),
genos (genus), and amalogon. The first corresponds fairly closely to
the use of the term “species” in modern times; the last two cut
across classes, orders, and families, and are used loosely.

We have, then, fint to describe the common functions, common,
that is, 1o the whole animal kingdom, or to certain large groups, or 10
the members of a species. [n other words, we have to describe the
attributes common to all animals, or to asemblages, like the class of
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Birds, of closely allied groups differentiated by gradation, or to
groups like Man not differentiated into subordinate groups. In the
first case the common attributes may be called analogous, in the second
generic, in the third specific. (Aristotle, On the Parts of Animals, 1, 5.
Translation of William Ogle, Oxiord, 1912.%)

Aristotle’s general ideas on classification had great vitality until
the r.lghttcmh and carly nineteenth centuries, long after his
authority in physics and philosophy was overthrown. His concern
with classification seems to have led him to the recognition that
nature can be ordered into a hierarchy of living things, a so-called
ladder of nature from the simple to the complex:

Nature proceeds little by little from things lifeless to animal life n
such a way that it is impossible to determine the exact line of demar-
cation, nor on which side thereof an intermediate form should lie.
Thus, next after lifeless things in the upward scale comes the plant, and
of plants one will differ from another a3 1o its amount of apparent
vitality. . . . Indeed, as we have just remarked, there is observed in
plants a continuous scale of ascent towards the animal. So, in the sea,
there are certain objects concerning which one would be at a loss to
determine whether they be animal or vegetable. . . . Thus the pinna
(n mollusk) is rooted 10 a particular spot, and the solen {or razor-shell)
cannot survive withdrawal from it burrow. (Aristotle, Hiloria
amimalium, V111, 1, wranslation of D. W, Thomson, Oxford, 1g910.%)

Notice that Aristotle in this passage speaks of the varying
amounts of vitality, The over-all ordering of living things rests
fundamentally on the amount of vitality. Thus plants are distinct
from animals in having limited vital activity, and animals are
generally distinguished from man in the same fashion, as they possess
more restricted vital activity than man. Aristotle’s discussion of
vital activity, so important for his biology, is concentrated in his
book On the Soul. The soul for Aristotle is the life principle. *“It is
the form of a patural body having in it the capacity of life.” As
the form it is inseparable from the matter of the natural body. But
in investigating the soul we are investigating the functions, or levels
of vital activity, of living organisms, and for Arstotle this is
psychology.

We take, then, as our starting-point for discussion that it is life
which distinguishes the animate from the inanimate. But the rerm
life is used in various senses: and, if life is present in but a single one

'Thhnnduulummdh‘qwmnmmqunwdhrpummn{lhrpuhlkhu the
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of these senses, we speak of a thing as living. Thus there Is intellect,
sensation, motion from place to place and rest, the motion concerned
with nutrition and further, decay and growth, (Aristotle, On the Seul,
I1, 8, translation of R. D, Hicks.%)

Now a plant possesses life in the sense of growth, decay, and
reproduction only; i.e., the faculty of the vegetable soul is that of
nourishment and growth for the purpose of reproduction. All
living things possess this faculty in commaon with the vegetable soul,
but the vegetable soul possesses only this faculty. The animal soul
ordinarily possesses, in addition to the faculty of growth and decay,
the laculties of local motion and semsation, "but it is sensation
primarily which constitutes the animal. For, provided they have
sensation, even those creatures which are devoid of movement, and
do not change their place, are called animals,” Finally, the rational
soul of man possesses, in addition to the faculties of growth and
decay, motion and scnsation, that of intellect, This analysis, based
in part on prior views of Plato, was the starting point for much
discussion in the Middle Ages, in which the vegetative, animal, and
rational souls emerged much more clearly as distinct and separable
entities.

A final but important note on Aristotle’s biology should be
recorded.  Aristotle, like Galen, was a teleologist. He believed
firmly in the purposeful element of nature. ““Therefore action for
an end is present in things which come to be and are by nature.”
Arpuing against chance growth as being fundamental in nature he
says, ", . . natural things either invariably or normally come about
in a given way; but of not one of the results of change and spon-
taneity is this true.” In his zoological works Aristotle investigates
not only the purpose of the organism as a whole but also the purpose
or end of the parts,

11

The work of Theophrastus stands clearly as a continuation and
often brilliant extension of that of Aristotle, Although we know
Theophrastus chiefly for his magnificent botanical works, his
excellence in logic has recently been demonstrated and the impor-
tance of his metaphysical judgments has long been recognized. In
natural history his reputation rests upon two great works: History
[or Inguiry] of Plants and Causes of Plants, both of which may be later

* Quoted by permission of the publisher, the Univenity Press, Cambridge, England.
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compilations of a number of works of Theophrastus. These arc the
most important products of botanical investigation until well into
early modern times.

Like Aristotle, Theophrastus concerns himself with questions of
classification, for “our study becomes more illuminating if we
distinguish different kinds,” Plants he classifies into trees, shrubs,
undershrubs, and herbs, He discusses the various possible bases of
classification of plants—such as wild or cultivated, aquatic or ter-
restrial, fruit-bearing or fruitless, flowering or flowerless, evergreen
or deciduous—criticizing each one. But he concludes that in spite
of our inability to be precise about definition and classification we
should use these distinctions, since they are based on natural
character, even though the character may be modified in different
localities under different conditions.

Theophrastus' minute descriptions of plants are excellent, and
he did much to establish a standard botanical language, some of
which is still with us today. His discussion of the various methods
of plant reproduction is of interest. **A plant has the power of
generation in all of its parts, for it has life in them all.” He dis-
tinguishes reproduction from a seed, a root, & piece tomn from a
branch or twig or from the trunk itself, Like Aristotle, he believed
that on occasion spontancous generation is possible. But at the same
time he is cautious about the matter, and thinks that in some instances
where spontaneous generation is assumed there is a more plausible
explanation. For example, in certain cases where plants appear to
grow up spontaneously, the seed has been carried there by the wind.
In discussing germination he makes the important distinction
between monocotyledons and  dicotyledons—i.e., between those
plants the seed of which has a single leaf, such as cercals, and those
the seed of which has two leaves; such as leguminous plants.

Theophrastus’ influence on medieval botany was extensive, but
entirely indirect. A pseudo-Aristotelian work entitled On Plants,
probably dating from the first century 8.c., shows Theophrastian
influences and was quite widely read in the Middle Ages. The same
can be said for the great Materia medice of Dioscorides, which
attempts a description and a rational classification of some six
hundred plants, but the main concern of which is the plant as a
medicine. Most of the medievil herbals used Dioscorides as a point
of departure. It appears that Theophrastus' works were not trans-
lated into Latin until the fifteenth century.
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CHAPTER FIVE

Greek Mathematics

IF the high point of natural history came during the century of
Aristotle and Theophrastus, that of mathematics and the sciences
dependent upon it, such as physics and astronomy, came during the
Hellenistic period, from about 300 8,c. But much important mathe-
matical activity preceded the Hellenistic geometry and made it
possible. We have already spoken of the invention of a general and
abstract mathematics during the sixth and fifth centuries B.c.; now
we should note briefly some of the developments that led to the
flowering of mathematics in the Hellenistic period. During the
earlier period, from the time of Thales onward, many specific
theorems were discovered that were later to reappear in Euclid.
In the discovery and elaboration of the proofs of these theorems not
only was much of the language of geometry devised but some of the
fundamental methods of discovery and proof evolved,

One of the most important of the general methodological
achievements of the early Greck mathematicians was the develop-
ment of the methods of analysis and synthesis, for these methods
constitute the basic inferential procedure of Greek geometry.
Analysis, according to the Greeks, commences with the assumption
of what is to be proved and then proceeds backward by successive
inferences to theorems or axioms or postulates generally accepted or
previously proved. Synthesis is, of course, the reversal of this pro-
cedure, starting with the previously accepted or proved theorem
and proceeding therefrom to the proof of the new theorem. As formal
methods applied to higher problems, analysis and synthesis (par-
ticularly where they are together with analysis preceding and
demanding a consequential synthesis for the proof of a particular
theorem) are usually attributed to Euclid and his successors. But it
is obvious that these basic methods arc the product of the earlicr
geometrical activity of the fifth and fourth centuries B.C.

The classic Greek description of combined analysis and synthesis
is that of Pappus of Alexandria (f. at the end of the third and the
beginning of the fourth centurics):

53
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Analysis; then takes that which is sought as il it were admitted and
passes from it through its successive consequences to something which
is admitted as the result of synthesis; for in analysis we aonune that
which is sought as if it were (already) done and we inguire whar it is
from which this results, and again what is the antecedent cause of the
latter, and so on, until by so retracing our steps we come upon some-
thing already known or belonging to the elass of first principles, and
such a method we call analysis as being solution backwards.

But in synthesis, reversing the process, we take as already done that
which was last arrived at in the analysis and, by arranging in their
natural order as consequences whar were before antecedents, and
successively connecting them one with another, we armive finally at
the construction of what was sought; and this we call synthesis. (T.
L. Heath, Euclid: The Elemmss, T, p. 138.%)

One form of analysis—considered generally—that was invented
by the Greeks and used with particular skill by Euclid and Archi-
medes was proof by reduction to absurdity. We assume the con-
tradiction of what is to be proved and then by & series of successive
logical inferences finally reach some inference that contradicts a
theorem or first principle we hold to be true. Then, since we have
proved that the contradicton to what we are proving Is false, the
thearem under proof is assumed to be true. The correct use of this
type of proof corresponds with the very highest point of Greek
geometry. It is also interesting to note that some of the very best
geometrical proofs that are original with medieval authors are cast
in this form, which, of course, the medieval geometer borrowed fram
Hellenistic geometry. (Consult Appendix I for an example of
Archimedes’ skillful use of this method,)

As we shall note later, in discussing Archimedes, one of the
barriers to our understanding of the operational techniques of the
Greek geometer is that, although the proofof a difficult theorem may
have been discovered first by analysis, only the synthetic proof is
formally presented. Ofien he seems o have preferred the arrange-
ment of the antecedents and consequents in their “natural order,”
as Pappus has called it

In actuality, some of the other important methods devised by
the Greek geometers, according to later commentators, are inti-
matcly connected in spirit at least with analysis. Let us take, for
example, the so-called “reduction method.” This expression was
applied to the general technique of reducing a problem for which

* Quoted by permision of the publisher, the Univenity Press, Cambeidge, England.



GREEK MATHEMATICS 5%

the type of proof is not readily apparent to another problem, the
solution of which would appear to be possible by known techniques.
Thus the difficult problem of the construction of a cube double the
volume of a given cube was reduced to what was considered a more
casily soluble problem—namely, inserting two mean proportionals
between two given lines, Proclus claims that Hippocrates of Chios,
possibly the greatest geameter of the fifth century #.c., was the first
to use reduction in difficult problems; although this may not be 5o,
it is apparently true that he was the first to use it in the problem of
the duplication of the cube, This was one of the three classic prob-
lems, the attempted solution of which did much to stimulate the
early development of Greek geometry. The ather two were the
squaring of the circle and the trisection of an angle. Unable 1o solve
these problems by the use of rule and compass, the Greeks were led
to construct and study a number of special curves.

The method of reduction applied in these special problems
would appear to be analogous on an operational level to formal
analysis on a demonstrative level. For if by “reduction™ you do not
arrive at # proposition or a principle asserted to be true, vou do
reduce the difficult problem w something that has a more familiar
form and thus looks to be soluble.

Still another important methodological concept that took shape
in the geometrical corpus was the concept of diorismei, or distinctions
determining the possibility of proof. “The diorismes,” as a gloss on 4
work of Pappus has told us, “is a statement in advance as to when,
how, and in how many ways the problem will be capable of solution.”
Proclus further defined the procedure of the diorismn as “the deter-
mination of the conditions under which the problem posed is
capable of solution, and the conditions under which it is not.” The
discussion of this concept goes back, in all probability, to the fifith
century B.c. The idea of determining the possibility or impossibility
of proof has been extremely important in the growth of modern
mathematics, particularly in the nineteenth and twentieth centuries;
it was less important in the elementary mathematics of the Middle
Ages, although on at least one oceasion & medicval author attempted
to prove the insolubility of a given problem.

In addition to describing the foregoing techniques of proof and
solution, we must mention in passing the evolution, during the first
three centuries of Greek mathematics, of the general form of
presentation that finally appears in Euclid’s Elements. This form
included the over-all organization of a “book” into definitions,
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axioms, postulates, and propositions and the particular propositional
organization embracing the general statement of the proposition, its
specification in terms of given geometrical figures, the construction
of any additional Agures necessary for the proof, and, finally, the
proof. We shall have more to say later about Euclid's understanding
of these various elements of organization. Now we shall note the
importance that formal methods of presentation have as signs, if
nothing else, of a high state of mathematical inquiry, Thus early
Latin mathematical treatises before A.n. 1000 reveal immediately
the poor state of mathematical knowledge by the lamentable per-
version and disappearance of the formal Euclidian organization.
Conversely, the reappearance on a wide scale of Euclidian and
Archimedean forms in the twelfth and thirteenth centuries bespoke
a rapidly maturing mathematics and mathematical physics.

As these methodological advances were emerging in the first two
or three centuries of Greek thought, some important steps were being
taken in the building up of substantial mathematical knowledge.
Certain specific theorems were attnbuted (probably falsely?)
to Thales: a circle is bisected by any diameter; in two intersecting
straight lines, the opposite angles are equal; etc. Other specific
theorems and proofs have been attributed to Pythagoras. The
Pythagorean theorem (Euclid, Elements, 1, prop. 47) is the most
famous. We have already mentioned the tradition that claimed
Pythagoras as the inventor of abstract and generalized geometry and
held that he believed the universe to be numerical in structure.
That the Pythagoreans made elementary progress in number theory
is to be accepted. They appear to have known and expressed
(although by no means invented, as both Egyptian and Babylonian
mathematics clearly demonstrate) simple forms of the proportion-
ality of whole numbers, such as arithmetic proportionality where
difference in any two successive terms is a constant (¢ — § = § — a)
or geometric proportionality where the ratio of any two successive

terms, taken in the same order, is a constant. (g- = E]

The Pythagoreans are also credited with the invention of the
method of the application of areas, a method perhaps based ultim-
ately on Babylonian algebra, lts object is the construction of a
rectangle or parallelogram equal in area 10 a given area and having
as a base a given line, or a segment of the line, or the line produced.
In its simpler forms this method involves the solution of geometric
problems equivalent to linear equations in algebra (such as
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ax = b¢); solution of the more advanced problems is equivalent
to the solution of quadratic equations (expressed in the lorm
(a+ %)== ).

The Pythagoreans may also have discovered that the diagonal of
a square is not commensurable with the side—i.e., that there is no
common magnitude which taken any number of times will measure
both of them exactly. Hence it is believed that the Pythagoreans
introduced among the Greeks the study of numerical irrationality.
‘The discovery of irrational magnitudes seems to have been of great
importance. Let us suppose that the Pythagoreans really belicved
that the universe could be described in terms of the natural order of
discrete numbers 1, 2, 3, 4. - . . n'and the rational fractions formed
therefrom. Then where in this arder can we place the number
representative of the diagonal in terms of the side of a unit square—
namely, V2? Obviously nowhere, if this series of discrete numbers is
considered sufficient, for the V2 cannot be expressed in terms of
whole numbers and rational fractions. But it can easily be repre-
sented in terms of the lines or continuous magnitudes of geomerry,
where in fact it was discovered. Simply draw a square of side 1, and
the length of the diagonal is the desired irvational magnitude.
Similarly, the other irrational numbers discovered shartly thereafter
could be represented only in ternis of the continuous magnitudes of
geometry rather than in the discrete numbers of Greek arithmetic.
This greater sufficiency of a geometry of continuous magnitudes may
well have been one of the decisive factors in its greater growth among
the Grecks.

One of the consequences of the discovery of irrationals was that
there was then a class of irrational magnitudes not accounted for in
the Pythagorean theory of proportionality based on discrete numbers.
Tradition has it that it was the mathematicians who surrounded
Plato, and particularly his brilliant associate Eudoxus, who fashioned
a broader concept of proportionality embracing both rational and
irrational magnitudes. Although we have next to nothing extant
from Eudoxus, it is believed that the theory of proportionality as
presented in the fifth book of Euclid's Elements is essentially his.

In spite of the absence of his works the tradition of his greatness
is so strong that historians of mathematics are inclined to rank
Eudoxus among the very greatest of Greek mathematicians—as one
historian says, second only to Archimedes. And if he had a hand in
devising the remarkable method of exhaustion that appears in
Euclid’s Elements and that is used with such brilliance by Archimedes,
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then he deserves this praise. We shall discuss the method of exhaus-
tion presently.

The benefits of the intensive mathematical activity of the fifth
and fourth centuries s.c. were reaped by the mathematicians of the
Hellenistic periods. Among the numerous figures of this period
who were important in mathematics, space allows us to mention
only three: Euclid, Archimedes, and Apollonius.

Little is known about the life of Euclid, although probably more
people have read some version of his Elemenis than have read any
other scientific book. We know that he flourished about 300 B.C.; or
as Proclus says, "in the time of the first Ptolemy." Proclus goes on
to repeat one of the stories told about Euclid; *‘and further they say
that Ptolemy once asked if there was in geometry any shorter way
than that of the elements, and he replied that there was no royal
road to geometry.” Besides the famous Elements of geometry—which
Proclus says he put together by “collecting many of Eudoxus'
theorems, perfecting many of Theaetetus’ [a contemporary of Plato],
and also bringing to irrefragable demonstration the things which are
somewhat loosely proved by predecessors”—a number of other
mathematical and physical works are credited to Euclid. We shall
have cause to mention them clsewhere,

As the passage from Proclus suggests, Euclid's great achievement
lay not in presentation of original material but rather in his able
synthesis of geometrical knowledge, His Elements replaced the several
carlicr collections or “clements” composed by mathematicians of
the fourth century. Almost all of us have come into contact in our
high-school carcers with some form of Euclid's Elements, although in
most cases this form was much removed from the original. Among
the general topics of the thirteen books comprising the Elements are
plane geometry, the theory of proportions of magnitudes, the nature
and properties of whole numbers, and solid geometry, We shall
make no attempt to summarize the topics, but the form and organi-
zation of the Elements are worthy of some note, for such form was
quickly adopted in most of the mathematical and physical treatises
of the Hellenistic period, and it survived into medieval and modern
times, The reader who has looked at the Mathematical Principles of
lzsaac Newton will appreciate its debt to Euclidian form and
arganization,

In the Elements Euclid uses definitions, postulates, axioms, and
propositions.  Definitions do not constitute a formal part of the
proof; they do not state the existence or nonexistence of anvthing
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(or if they do, the existence is provisional and awaits formal demon-
stration) but are descriptions that simply have o be understood.
Examples in the first book are the definitions of a line, a plane; and
various kinds of tangles. Postulates are unproved but accepted
premises, The five postulates of the first book are the most note-
worthy, since they really define the whole character of the space and
geometry under consideration. The first permits us to draw a
straight line from any one point 1o any other point; the second
allows us to extend that line indefinitely from either extremity; the
third allows us to draw a circle from any center at any distance from
the center; the fourth asserts that all right angles are equal; and
the fifth, which is the famous parallel postulate, tells us under what
conditions straight lines will intersect. The genius of Euclid in
recognizing this fifth postulate as a postulate ‘and not attempting
formal proof has often been remarked. It is well known that in the
nineteenth century geometries that were not Euclidian were con-
structed on the basis of denial of one or more of the postulates.
Axioms, called by Euclid “common notions,” are things that are
generally accepted as true and that often apply not only to geometry
but to all of mathematics. Thus “things which are equal to the same
thing are equal to each other,” or “*a whole is greater than its parts.”
Finally, the propositions included by Euclid are of two kinds. The
first concern themselves with problems of construction—e.g. (Book I,
prop. 1), “to describe an equilateral trangle on a given straight
line." The second kind are theorems—e.g. (1, 47), "in any right-
angled triangle, the square described on the hypotenuse is equal o
the sum of the squares on the other two sides.” The organization
within propositions was itself very formal and included a number of
well-defined steps, such as “Enunciation’ and “Example.” (Note:
For illustration of the formal pars of a “Euclidian™ proof, see
Appendix 11, which gives the Greek names and their English
equivalents for a proof of Archimedes, and also Appendix I1l,
which adds the common Latin terms for the parts of a proof.)

A generation or two after the time of Euclid, there lived the most
distinguished mathematician of antiquity, Archimedes (e, 287-212
w.c,). It is inferred, but not surely, that he studied st Alexandria
with the successors of Euclid. We know him to be a native of
Syracuse, where he spent some time in the service ol its ruler, Hiero,
and where he was slain in its siege by Roman troops in 212 8.6, (see
Fig. 13).

His fame as an engine builder is preserved in the fanciful account
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of Archimedes given by Plutarch in his life of Marcellus, the Roman
general who conducted the siege of Syracuse.

And yet even Archimedes, who was a kinsman and a friend of King
Hiero, wrote to him that with any given force it was possible to move
any given weight; and emboldened, as we are told, by the strength of
his demonstration, he declared that, if there were another world, and
he could go to it, he could move this. Hiero was aswnished and begged
him to put his propesition into execution, and show him some great
weight moved by a slight force. Archimedes therefore fixed upon a
three-masted merchantman of the royal fleet, which had been dragged
ashore by the great labours of many men, and afier putting on board
many passengers and the customary freight, he seated himself at a
distance from her, and without any great effort, but quietly setting in
motion with his hand a system of compound pulleys, drew her towards
him smoothly and evenly, as though she were gliding through the water.
(Plutarch, Life of Marcellus, 14, translation of Bernadotte Perin,
Lemdon, 1917.*)

Plutarch goes on to deseribe Archimedes’ use of wonderful
military engines in the defense of Syracuse, which, however, did not
save either Syracuse or Archimedes, for both fell before the Romans.
In spite of these great mechanical talents, we are told further by
Plutarch, Archimedes held the mechanical arts in disdain, “*regarding
the work of an engineer and every art that ministers to the needs of
life as ignoble and vulgar,” and devoted his greatest efforts to
theoretical studies, such as geometry. In view of the general non-
critical nature of this account there is no good reason to accept this
statement as reflecting the actual attitude of Archimedes; neverthe-
less, it is true that his greatest efforts were in mathematics and in the
theoretical and mathematical aspects of statics and hydrostatics.
The latter we shall summarize shortly. Here we must say something
of his mathematics.

We can glean something of Archimedes’ subject matter from a
recital of the titles of his warks: On the Sphere and the Cylinder, On the
Measurement of a Circle, On Coneids and Sphervids, The Sandrsckaner, On
Spirals, On the Equilibrium of Planes, On Floating Bodies, On the Quadra-
ture of the Parabola, and On the Method. Tn much of his mathematical
work he concerns himself with finding the areas and volumes of
special curved surfaces and solids, relating them to the more readily
obtained results for a triangle, a rectangle, a cube, or some such

* Quated by permision of the peesent publisthicr and holder of the copyright, the
Hapvard University Press.
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figure. His most powerful tool for proof consisted of (1) a highly
developed procedure of reduction to absurdity, combined with (2)
the method of exhaustion. The fundamental idea of the method of
exhaustion is that ene inscribes and Jor circumscribes regular figures
within or without the figure for which the formulation of the area
or volume is sought. Then in regular fashion the areas or volumes of
the inscribed or circumscribed figures are increased or decreased
until the diference between the unknown area or volume and the
inscribed or circumscribed area or volume is less than anmy given
quantity. In this method we do mot say that the increased inscribed
figure or the decreased circumscribed figure ever actually reach the
limit—namely, the unknown higure [for this, the Greeks thought,
would involye them in fundamental difficulties about the infinitely
small). We say only that the inscribed or circumscribed figure can
be made to approach as closely as we like 1o the figure under considera-
don. With this type of exhauston granted, it can be shown by
reduction to absurdity that the area or volume under consideration
must carrespond to some given formulation, for, if not, a basic con-
tradiction will appear. The reader is invited 10 inspect in Appendix [
the brilliant proof of Archimedes on the area of a circle, in which the
method of exhaustion is neatly and simply illustrated,

The reader interested in mathematics may well note one of the
difficulties inherent in this use of exhaustion and reduction to
absurditv. In a very real sense, one must know the answer before
he begins. He assumes a given formulation and then shows that if it
is not true a contradiction follows, But where does he get the given
formulation? Asking this question highlights one of the fandamental
problems in the history of science, the distinction of method of discovery
Jrom method of proof. To understand how science has developed and
how scientists have worked we want to know how the scientist first
gets the answers as well as how he proves them. Unfortunately the
documents rarely tell us of the almost intuitive methods by which
basic problems are solved. But in the case of Archimedes we are
lucky to have extant a treatise rediscovered scarcely mare than a
generation ago, entitled On the Method. 1t illustrates a mechanical
method by which Archimedes mathemancally balanced geometrical
figures as on a weighing balance. He balanced a figure the area or
volume of which was desired against one the area or volume of which
was known; then, by noting the relative distances of the centers of
gravities of the two figures from the fulcrum of the balance and by
applying the law of the lever, he arrived at the desired area or
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volume in terms of the known area or volume (see Appendix I1).
One of the basic assumptions employed in this method is that an
area can be considered a summation of an infinite number of line
segments or a volume an infinite number of plane segments, Archi-
medes was quite aware, as his introductory letter tells us, that his
method was not rigorous so far as demonstration was concerned, but
it allowed him to find the answer and thus apply the more rigorous
method of exhaustion and reduction to absurdity:

. . certain things first became ¢lear 1o me by a mechanical method,
although they had to be demonstrated by geametry afierwards because
their investigntion by the said method did not furnish an actual
demonstration.  But it is of course easier, when we have previously
acquired, by the method, some knowledge of the questions, to supply
the prool than it is to find it without any previous knowledge . . . and
I deem it necessary to expound the method partly because | have
already spoken of it . . . but equally because | am persuaded that it
will be of no little service to mathematics; for I apprehend rhar some,
either of my contemporaries or of my successors, will, by means of the
methed when once established, be able 1o discover other thearems in
addition, which have not vet occurred o me. (Archimedes, Methad,
Introduction; 2, transiation of T. L. Heath, Cambridge, Eng,, 1912.%)

By the elegance of his methods Archimedes was able to demon-
strate thearems equivalent to the formulations S = 47+ for the surface
of asphereand V = {=r' for its volume, as well as that the segment of
a parabola is equal to four thirds the triangle having the same base
and altitude as the segment. It has often beéen pointed out that in
some of his more clegant theorems “he performs the equivalent to
the operations of integration” in integral caleulus. Of considerable
interest in the history of mathematics is his system of representing
large numbers, outlined in The Sandreckoner, and his determination of
pias 34 < = < 3}

But what strikes the historian of science as the most important
achievement of Archimedes is his extraordinary influence in the
development of a mathematical and guantitative view of physical
problems in the sixteenth and seventeenth centuries, an influence
that had already been previewed by the spread and use of some of
his works in the thirteenth century. The influence of Hellenistic
geometry in general and of Euclid and Archimedes in particular in
the high and late Middle Ages is a wopic that will receive the author’s
attention in a later volume,

* Quored by permission of the publisher, the University Prem, Cambiridige, England.
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We can conclude our brief summary of Hellenistic mathematics
with passing reference 1o the third of the grear tumvirate, Apol-
lonius of Perga, who fourished at the end of the third and the begin-
ning of the second centuries s.c. OFf the eleven works attributed to
him, the most important (and one of the two to survive) is his
Treatrise on Conic Sections, which deals, of course, with theorems
relative to ellipses, parabolas, and hyperbolas. Tt represents the
culminating effort of some two centuries or more of study of conics
that grew out of attempts to solve such classic problems as that of the
duplication of a cube (see Appendix II1 for some remarks on conic
sections). Itsinfluence both upen Arabic mathematicians and, later,
upon early modern scientists such as Galileo and Newton was great.

We are not to think that Greek mathematics immediately
declines with the passing of Euclid, Archimedes, and Apollonius or
that its study is limited to them. Only the three greatest of the Greek
mathematicians have been selected for the present discussion,
Greek mathematics continued to be studied and written about
during the whole late antigue period, and we shall encounter later
the names of Hero of Alexandria, Diophantus, Nicomachus, Pappus,
and Proclus, as we study iis continuing tradition.



CHAPTER: 5IX

Greek Physics

WE do not have to wait until medieval or early modern times
for the application of geometry to the investigation of nature,
for it began in both physics and astronomy in the fourth century and
matured in the Hellenistic and Greco-Roman periods. We have
already suggested the basic importance of the Pythagorean mathe-
matical paint of view of nature; but when the mathematical view
was coupled with something close 1o scorn of the world of the senses,
as it was in some of the Platonic dialogues, little sound physics could
arise. Even the most apologetic Platonist will not stand behind
Plato’s Timaeus as a work of high scientific caliber, although it is true
that some of the ideas suggested therein were not without their
influence on Aristotle and later authors, On the other hand, the
Flysies of Aristotle; in spite of its general nonmathematical and in a
sense qualitative character, was enormously influential in the
subsequent development of physical ideas during the medieval
period. Here we shall briefly summarize some of the most important
views in the Physics, to which we shall return in Chapter Thirteen
when discussing Aristotelian commentaries in late antigquity.
Aristotle’s physical picture distinguishes between celestial and
terrestrial arcas of activity, Loeking for the moment at the terrestrial
world, we are aware first of the doctrine of matter and form already
mentioned (Chap. Three}. There s a substratum, a prime matier,
the independent existence of which is only potential but the actual
existence of which is always in conjunction with form. Something
is said to belong to classes as a result of its form, but it is said to be
individual as the result of matter. In short, matter is the principle
of individuation. Form gives something its essential character. It is
by its form that we recognize it for what it is. But when we examine
more decply the principles of things we are struck by four types of
causation—one might say by four “factors” that are involved in
things that exist in the terrestrial world. The first is the “material’”
factor, the second is the “formal,” the third is the efficient, and the
fourth is the final or purposeful cause, The four causes can be

iy
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explained by analogy with something artificially produced. A bed
is a bed because it is made of wood (the material cause), in a given
shape (its formal cause), by a carpenter (its efficicnt cause), for the
purpose of providing slumber (final cause).

As we look at the fundamental manifestations of matter and form
in the terrestrial world we detect or infer (for they are never in a
pure state} the existence of four basic elements—carth, water, air,
and fire—each having a distinctive pair of qualities. Earth is cold
and dry; water, cold and wet; air, hot and wet; fire, hot and dry.
These elements tend to arrange themselves concentrically about the
center of the world; the earth is a sphere at the center, and the water,
air, and fire are successive shells about the core of the earth. There
is constant change as the elements are transformed into one another
when the substratum is differently formed, or as the elements com-
pound themselves differently with one another. In the clementary
changes, the substratum i1s common to the four elements. The com-
mentators later suggest that there is some prime form joined with
prime matter (and as potential as the prime matter) which consti-
tutes corporeity, also common to all of these elements, and which
renders matter susceptible to receiving three dimensions. Now, as
we have suggested, the elements tend to seck a static arrangement
according to their places about the center of the world, but because
of the continuous change in elements and compounds, in actuality
change and movement are the order of nature. The study of nature
becomes the study of movement.

Movement in its broadest sense is said by Aristotle in some
passages to include not only locomotion—i.e., change of place—but
also qualitative alteration, quantitative augmentation and diminu-
tion, and even on occasion generation (coming into being) and
corruption (passing away). In an effort to find a definition to include
all these categories, he seizes upon a description of movement as the
actualizing of something that exists in potentiality. For example,
something white undergoes qualitative alteration and becomes black.
When actually white, it nevertheless is potentially its contrary, black.
This particular qualitative movement is, then, the actualizing of the
potential blackness. Such a definition seems to be an ambiguous
locution, for the nature of potential existence is most elusive. Essential
to this concept of movement was the doctrine of the existence of
fundamental sets or pairs of contraries, with movement being the
passage from one contrary of the pair to the other, This approach
to movement as the actualizing of the potential seems to have been
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advanced to get around the basic criticism of the Eleatic philosophers
of the preceding century that change and movement do not exist,
for if they did, something existent would follow from something non-
existent, or in short the nonexistent must exist, a fundamental con-
wradiction. Aristotle is saying rather that movement and change
are not examples of the existent arising from the nonexistent but
only of changes of the mode of existence, changes lrom potential
existence to actual existence,

Local movement of the elements and their compounds—i.e.;
terrestrial local movement—is governed by the doctrine of natural
place. In the concentric arrangement of the elements each element
has its natural place, the earth at the center, the water adjacent to it,
and the air and fire in successive places. Now if an element is
removed from its natural place, it tends toreturn to that place by a
straight-line movement, Hence if we pick up a stone and let go of
it, since it is predominantly earth it falls downward in an attempt
to return to its natural place near the center of the universe. The
same is true with water; rain generated in the midst of the air tends
to seek its natural place and so falls, Air and fire, on the other hand,
tend upward, for their natural place is above us. The movement re-
sulting from the tendency of clements to return to their natural places
is called natural movement. Contrariwise, if we remove a body from its
natural place—e.g., lift a stone—we have acted against the natural
tendency of the body, producing thereby unnatural or vielent movement,

[t can be seen that local movement is intimately tied to qualita-
tive changes or alteration, for if a transformation of elements; one
into another, takes place and the new element is formed out of its
natural place, then the tendency of that newly formed element will
be to seek its natural place, thus producing movement. Similarly,
if the proportion of clements in a mixture or a compound is altered
sufficiently, movement can result. Thus something that is pre-
dominantly earth may by exposure to heat or some other influence
change to a mixture predominanty of fire, and the result is the
motion of the new mixture upward. And since both elementary and
mixture changes are going on unceasingly, the terrestrial world is
essentially in motion. The laws of movement that Anstotle deduces
from gross experience, laws that necessitate the continual presence
of mover and moved, force and resistance, for the continuance of
movement, we shall deal with in Chapter Thirteen, when we take
up their criticism by late antique authors. We can observe here that
they are of only a quasi-quantitative nature.
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We have spoken briefly of the terrestrial, or sublunar, world
according to Aristotle, Distinet from it, but surrounding it, is the
finite celestial world, including the moon, the sun, the planets, and
the stars. Here the laws of movement and the nature of the con-
stituent element differ from those in the sublunar world. Celestinl
bodies are formed of a fifth element, ether (the later quintessence) ;
and ether is unchanging and eternal so far as its qualitative nature is
concerned. This celestial fifth element possesses only the tendency
for uniform, continuous, circular movement. Thus circular move-
ment is natural to celestial bodies and actual movement is presum-
-ably engendered by intelligences. Unlike sublunar rectilinear move-
ment, the circular movement of the celestial bodies does not require
the continued presence and substantial contact of both lorce and
resistance.

The distinction between the sublunar and celestial regions, with
the consequent distinction of the physical laws 10 describe each,
although completely rejected by atomists throughout our period,
kept a tenacious hold on a considerable majority of natural philas-
ophers until the sixteenth century.

Aristotle’s rejection of an actual infinite, in the form of either the
infinitely large or the infinitely small, his denial of the existence of
a void, and his consequent definition of place and space in terms
relative to contiguous bodies are chamcteristic Aristotelian doctrine
to which we shall return later.

Before leaving Aristotle we ought to note that his is the first
extant discussion of the kinematic aspect of movement, He is the
first one whose treatise we have to give us rules for comparing the
speeds of bodies in terms of the space traversed in given times. Now

o

)
Aristotle does not tell us neatly and generally that V= T where V

is a velocity, § is a distance and 7 is a time. Rather, he gives usa
whole set of specific comparisons. In one chapter he tells us what is
meant by the term “quicker.”” Here he says that the movement of
one body is said to be quicker than that of another in three ways,
These can be represented symbolically as follows: Assume that |V,
and F represent the “movements” or different speeds of two bodies.
Now assume that the body with a speed of 'V traverses distance 5,
in time 7, and that the body with a speed of Vy traverses distance 5
in time 7, Then, according o Aristotle, three statements can be
made about the relation of the one movement to the other. These
are: (1) Vy> ¥V, if $; > 8, when Ty = Ty; (2) Ve > FyifS; =5
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and T, < T,; (3) Vo= V, il 8§ > 8§, and Ty < T;. In another
passage he notes that the movement of one body can be said to be
equal to that of another body when the same distance is traversed
in the same time; or, symbolically; V, = V,if$, = S, and Ty = T,.
Now we can derive from all four of these statements our general

5
expression V' = T once we have decided that velocity can be

represented as a ratio, but Aristotle does not go ahead to the general
statement of the simple definition of speed as a ratio of distance over
time. (In fact Greek geometers generally do not express their
quantification of variables and relationships in nature by means of
metrical formulae involving the ratios of unlike quantities but rather
by means of mathematical statements involving true proportions of
like quantities, such as distance is to distance as time is to time, etc,)
No doubt the whole analysis of speed in terms of distance and
time had been initiated even carlier, in the fifth century B.c., by the
developing interest in geometry and in special kinds of curves that
were constructed kinematically. To give an example of this kind
of approach to geometry we could say that a circle could be con-
structed kinematically iff we allow a line to rotate in a plane about
one of its termini. Many higher curves were constructed only in
kinematic terms—that is to say, by the movements of points or lines.
No doubt the interest in astronomy, which centered in the problem
of a geometrical representation of the movemenis of heavenly bodies,
also stimulated the interest in kinematics,

First results of the investigations into physical phenomena under-
taken by Aristotle at the Lyceum appeared in the generation or two
after Aristotle’s death. Among them were the following: (1) the
activity of Strato the Physicist (f. 287 B.c.), whose views often
differed radically from those of Aristotle; (2) the writing of a treatise
called Mechanics, which was afterwards ascribed to Aristotle but
which may have been written by Strato or some contemporary;
(3) and the preparation of the treatise On Audibles, ascribed to
Aristotle, but perhaps by Strato.

Strato holds an important place in this briel description of Greek
science, for he apparently represents a link between the Lyceum at
Athens and the great Museum at Alexandria. Little is known of his
life. He was born at Lampsacus and no doubt studied at the
Lyceum. He is mentioned as a tutor of the son of the first King
Prolemy of Egypt. We know that in 287 8.c. he was called to succeed
Theophrastus as head of the Lyceum in Athens, Over forty writinga
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have been attributed to him by later authors, but all are lost except
for fragments. They include writings on logic, ethics, metaphysics,
physiology, psychology, and, above all, physics. Polybius, Cicero,
and Simplicius call him Strato the Physicist (the Natural Philos-
opher), no doubt to distinguish him from a namesake, Strato the
Physician.

Strato had an apparently deserved reputation as an experi-
menter. The passage summarizing Strato's idea on the corporality
of air and the existence of a vacuum, which is quoted from Hero
(Chap. Two), is a clear case of the use of experiment as an active
control of natural phenomena to confirm scientific hypotheses.
Strato is usually represented as assuming a compromise position
between the atomists and Anstotle. Like Aristotle he seems to have
held that no natural continuous vacuum existed. But he asserted
that a continuous vacuum could be produced artificially, as experi-
ment clearly proves. At the same time, experiment showed the
existence of fine vacua distributed between the particles of bodies,
a fact reflective of the atomic position. But, probably aware of the
necessity of close liaison with experience, Strato is said to have been
amused by the hooked character attributed to atoms by Democritus,
since experience neither confirms nor denies this kind of assumption.

Interesting also are Strato’s views on weight. We know from
Cicero that Strato taught that everything which is or which is made
is the result of weights and movements, a position which, according
to Cicero, “frees God from his great work and me from fear.'
Unlike Aristotle (but like Epicurus, according to Simplicius) Strato
believed that all bodies have weight and tend toward the center, but
the lighter are displaced and forced upward by the pressure of the
heavier anes. With this correct view, he set aside the artificial
distinction of heavy and light bodies made by Aristotle.

Strato's views on movement, so far as we know them, are im-
portant. We know from a passage from the later commentator
Simplicius (sixth century) that Strato composed a work, now lost,
called On Motion., Simplicius quotes from this work in connection
with a discussion regarding acceleration:

1t is universally asserted as self-evident that bedies moving naturally
to their natural places undergo acceleration. . . . But few adduce any
proof of the fact itselll . . . It may not therefore be out of place 1o set
forth the indications (of acceleration) given by Strato, the Physicist.
For in his treatise On Mation, after asserting that a body so moving
completes the last siage of its trajectory in the shortest time, he adds:
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“In the case of bodies moving through the air under the influence of
their weight this is clearly what happens. For if one observes water
pouring down from & roof and falling from a considerable height, the
How at the top is seen to be continuous, but the water at the bottam
falls to the ground in discontinuous parts. This would never hnppc:n.
unless the water traversed each successive space more swifily, .

Strato also adduces another argument as follows: “If one drups a
stone or any other weight from a height of abour ancinch, the impact
made on the ground will not be perceptible, but if one drops the object
from a height of a hundred feet or more, the impact on the ground will
be a more powerfiil one. Now there is no other eause for this powerful
impact, For the weight of the object is not greater, the object [tsell
has not become greater, it doss not strike & greter space of ground,
nor i it impelled by a greater (external force). It is merely a case of.
acceleration. And [t is because of this acceleration that this phenome-
non and many others take place.” (M. Cohen and 1. E. Drabkin, A
Source Book in Greek Science, New Yark, 1048, pp. 211-212.%)

One of the most interesting features of this passage and one that
is generally overlooked is that it seems to approach accelerated
movement from a kinematic rather than from a dynamic point of
view; i.c., Strato seems to be thinking of acceleration in terms of the
dimensions of space and time rather than in terms of the forces
producing acceleration. We have already seen that Aristotle gave
us some rudimentary rules for determining which of two movements
8 quicker. Furthermore, Aristotle distinguished uniform velocity
(tsatachds) from non-uniform. Non-uniform velocitics were classified
as increasing or decreasing speed (. . . it makes no difference
whether the velocity is increased, decreased, or is uniform’).
movement is non-uniform because its parts are unequal, i,
varying times for equal spaces or varying magnitudes of distance
in equal periods of time. With Strato the analysis appears to be
more explicit. Like Aristotle he applies the concept of the “quicker”
to the parts of a single movement. Thus he gives us the first analysis
(even if it is incomplete) of acceleration in terms of space and time.
We can represent Strato's analysis in modern terms as follows: The
statement describing acceleration by the completion of the last part
of a trajectory in the shortest time assumes that (1) for distances
8 =8 =8=.. .8, the times are related as follows: § > &
>y > . ..t, He then goes on to canclude that acceleration
assumes (2) that for §, = §; = §; = . . . §,, the speeds are related

* Quoted by permision of the pobbisher, the McGraw-Hill Book Company, Inc.;
copyright, 1948,
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as follows: V< VFy<V¥,...< V.. One can get from (1) to
(2) by applying Aristotle's sccond definition of the “guicker™—
namely, that which traverses the same space in less time. In
summary, the definition of acceleration understood by Strato would
be movement such that equal spaces are traversed in succeeding
periods of less time—i.c., at continually greater speed. I{ we assume
continuous variation (i.e., if we assume, as Anistotle and Strato did,
that both distance and movement were continuous quantities
marked by divisibility 1o infinity), then Swratw seems 1o be saying
that, for falling bodies, speed is directly proportional to the distance
of fall (¥ o 8). The correct description is, rather, that speed is
directly proportional to the time of fall, but we must await late
medieval and carly modern times for the correct enunciation of the
law of free fall. Presumably the third-century commentator on
Anstotle, Alexander of Aphrodisias, was following Strate when he
claimed that “bodies move downward more swiftly in proportion to
their distance from above."

All in all, it is to be lamented that Strato’s On Motion is lost, for
perhaps he carried this analysis even further than the brief quotation
of Simplicius suggests. [t can be observed further that, so far as we
know, no other figures in antiquity treated the problem of accelera-
tion from this kinematic point of view, although many discussed the
causes ol acceleration. [t is possible, of course, that the whole
problem was treated both dynamically and kinematically by the
famous astronomer of the second century 8.¢., Hipparchus, in a now
lost treause entitled On Bodies Carried Dotwn by Weight. But so far as
the evidence that we have now is concerned we must conclude that
it was not until the thirteenth and fourteenth centuries in the Latin
West that we get a detailed analysis of uniformly accelerated
movement.

To return to Strato, we should note that there is a tradition that
the famous astronomer Aristarchus, the so-called “Copernicus of
antiquity” (Chap. Seven), was a student of Strato. If this is true, it
connects Strato solidly with the activity of the Museum at Alexand-
ria. It has also been suggested that the views of the physician
Erasistratus reflect Strato’s ideas on the vacuum and that the great
physiologist's experimental approach may stem from Strato’s
influence,

The second evidence of physical investgation in the period of
transition between the high point of the Lyceum at Athens and the
Museum at Alexandria is the Aristotelian treatise Mechanics (or,
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more accurately, Mechanical Problems), which, as we have suggested,
may have been written by Strato or one of his contemporarnies.
Apparently formal mechanical treatises go back at least 1o the begin-
ning of the fourth century s.c. One of Plato’s contemporaries,
Archytas of Tarentum, is said to have written *“the first systematic
treatise on mechanics based on mathematical principles.” 1If this is
so, then it would be difficult w avaid concluding that the law of the
lever and other fundamental mechanical principles such as appear
in the later mechanical treatises were contained in Archytas' work
in some germinal fashion. The Aristotelian Mechanies, which seems
to be our first extant treatise of this type, already contains the law
of the lever, the statement of the inverse proportionality of the
weights and the lever arm lengths. But there is no formal mathe-
matical demonstration of the law, as in the Treatise on the Balance
attributed to Euclid or as in Archimedes' On the Eguilibrium of
Planes, where one of the most elegant proofs in antique physical
treatises is found. The author of Mechanics explains the law of the
lever by stating that if movement has been imparted to a lever in
equilibrium, the velocities of the weights—i.c., the arcs swept out
in equal time—will be inverscly proportional to the suspended
weights. At least one important histonian of ancient physics, P.
Duhem, has connected this exposition of the law of the lever with
the general Anstotelian laws of movement and has held that it
contains in germinal form the “dynamic” approach to statics that
in modern times was to replace the “static” approach of Archimedes,
This may very well be true, but we must not lose sight of the fact
that there is an extraordinary guif in scientific maturity between the
rather confused statements of the Mechanics and the mathematically
sophisticated proofs of Archimedes.

Another interesting theory exposed in the Mechanics is that of the
so-called “parallelogram of velocities." This enunciation seems to
represent the first mathematical exposition of this important
principle of composite movements. It is proved by easy geometrical
method that when a body is possessed of two uniform velocities
differently directed, the resultant velocity can be represented by the
diagonal of the parallelogram of which the adjacent sides represent
the magnitudes (and directions) of the two velocities. The author of
the Mechanics also realized, without providing an extended analysis,
that if the ratio of the two velocities was not a constant (or if the two
velocities were not both uniform), then the line representing the com-
position or resultant of the two velocities would not be a straight line.
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Also of interest in the treatise is the nice analysis of the horizontal
stability of a lever supported from above. Wedges, pulleys, and the
steelyard (the balance of unequal arm lengths) are treated by the
author. And he asks the searching question, “Why is it that a body
which is already in motion is easier to move than one at rest?”’ The
answer, he believes, lies in the fact that a body at rest has a contrary
resistance to being moved not so great as, but similar to, the resist-
ance presented by a body moving in a direction contrary to that of
the motivating force.

We have posed as the third important post-Aristotelian develop-
ment in physics the writing of the treatise on sound entitled On
Audibles, which, although attributed to Aristotle, is probably by
Strato or some other figure of the Lyceum (some scholars have even
assigned it to Heraclides of Pontus). Interest in sonic phenomena
did not, of course, begin with this treatise. We have already
mentioned that Pythagoras or the early Pythagoreans investigated
the relationships of pitch with string lengths (see Chap. Two).
Thus an author of the second century, Theon of Smyrna, tells us
that Pythagoras “investigated these ratios [i.c., the fourth, the fifth,
the octave, etc.] on the basis of the length and thickness of strings,
and also on the basis of the tension obtained by turning the pegs or
by the more familiar method of suspending weights from the strings”
(Cohen and Drabkin, A Source Book in Greek Science, p. 295). As to
the physical nature of sound, we are told in a fragment of a work of
an early Pythagorean, Archytas, that there cannot be sound “with-
out the striking of bodies against one another,” and further that
swift motion produces a high-pitched sound and slow motion one at
low pitch. Aristotle, in his treatise On the Soul, also indicated that it
is the colliding of bodies with one another and the air that produces
sound, and he recognized that a medium such as water or air is an
indispensable condition of hearing: “. . . and it is the air which
causes hearing, when being one and continuous it is set In moton.
« « . That, then, is resonant which is capable of exciting motion in a
mass of air continuously one as far as the ear. There is air naturally
attached to the ear. And because the ear is in air, when the external
air is set in motion, the air within the ear moves,” (Translation of
R. D. Hicks, Chap. Two, 8), In the treatise On Audibles we are told
even more explicitly how the air transmits sound: “For, when the
nearest portion of it is struck by the breath which comes into contact
with it, the air is at once driven forcibly on, thrusting in like manner
the adjoining air, so that the sound travels unaltered in quality as
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far as the disturbance of the air manages to reach” (Oxford trans-
lation of Loveday and Forster, 1914, of Boo at-bg). Much later, in
the fifth century, Bocthius, following the Greek tradition, was to
spell out even more explicitly a nascent “wave theory” of sound as he
connected frequency of vibration with pitch:

14. Let us now speak of the method of hearing. In the case of sounds
something of the same sort takes place as when a stone is thrown out
and falls onto a pool or other calin water. The stone first produces a
wave with a very small circumference. Then it causes the waves o
spread out in ever wider circles until the motion, growing weaker as
the waves spread out, finally ceasss. The later and larger the wave,
the weaker the impulse with which it breaks. Now if there is an object
that can block the waves as they grow larger, the motion is at once
reversed and farced back, in the same series of waves, to the center from
which it originated,

In the same way, then, when air is struck and produces a sound,
it impels other air next 1o it and in a certain way sets a rounded wave
of air in motion, and is thus dispersed and strikes simultaneously the
hearing of all who are standing around. And the sound is less clear
to one who stands further away since the wave of impelled air which
comes to him is weaker. (Cohen and Drabkin, A Source Book in Greek
Science, pp. 293-294.%)

But let us return to the post-Aristotelian physics. The highest
development of the mechanical tradition inaugurated in the fourth
century B.c. took place in the Hellenistic and post-Hellenistic periods.
To Euclid is attributed by Islamic and later Latin scribes certain
mechanical writings, or rather, fragments of writings. Two of these
are dircctly Aristotelian in character. The third, entitled Treatise on
the Balance, may be genuine and is of interest because, unlike the
statement of the law of the lever in the Aristotelian Mechanics,
its statement on the subject is proved on entirely geometrical grounds.
It clearly presents the basic idea of static moment, that effective
force of a weight in a lever system is measured by the product of the
weight and the horizontal distance of the vertical line running
through the fulerum, regardless of what angle the weights’ suspension
line makes with the lever arm.

Like Euclid's proof of the law of the lever, that of Archimedes in
the On the Eguilibrium of Planes is based completely on statical-
geometrical grounds (see Appendix IV). The proof of Archimedes

* Quoted by permission of the publisher, the MoGraw-Hill Book Company, Inc.;
copyright, 1048,
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depends fundamentally on the extension of two ideas: (1) equal
weights at equal distances from the fulerum are in equilibrium
(postulate 1); and (2) the center of gravity of two equal weights not
having the same center of gravity is at the middle point of the line
connecting their individual centers of gravity (proposition 4). At
the heart of the brilliant proof of the law (propositions 6 and ),
then, is an appeal to the geometrical symmetry apparent in the
fundamental ideas noted. The proof is among the ablest that
Archimedes has given us,

Archimedes utilized mathematics in & completely mature
fashion for the treatment of a physical problem. We should note the
abstraction evident in the Archimedean demonstration. He has
dispensed with all the properties of weights not bearing on the
mechanical theorem being proved. His weights have become
idealized geometrical magnitudes not actually and completely realizable.
This mathematical abstraction is to be emphasized, for it was to
influence Galileo and his successors—and in fact, his predecessors in
the thirteenth and fourtcenth centuries, who were as early pro-
ponents of kinematics to speak of points, lines, und magnitudes in
maoion.

To problems of hydrostatics Archimedes in his On Floating Bodies
applies the same kind of geometrical analysis. Thus, on the basis of
two geometrically expressed initial propositions, Archimedes demon-
strates propositions concerning the relative immersion and weight
in a fluid of solids less dense than, as dense as, and more dense than
the fluid. The proposition relative to solids more dense than the
fiuid (proposition 7) expresses the so-called “principle of Archi-
medes” —namely, that “the solid will, when weighed in the fluid, be
lighter than its weight in air by the weight of the fluid displaced,”
Book I1, which takes up the stability of floating paraboloid segments,
is even more geometrical in character. Archimedes contributions
to hydrostatics are reflected on the legendary side by the widely
known bathtub incident related by the Latin writer Vitruvius,. We
are told that, as Archimedes entered the tub, the more he sub-
merged his body, the more the water spilled over the tub, and this
led him suddenly to the method of determining whether the crown
being made for King Hiero was pure gold, for if it were not the crown
would displace a greater volume of water than a weight of gold
equal to the weight of the crown, since the equal weight of gold
would have a greater density or specific gravity and thus occupy less
volume than the crown made of alloy, At any rate, according to
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Vitruvius, Archimedes . . . without a moment’s delay and trans-
ported with joy . . . jumped out of the tub and rushed home naked,
crying out in a loud voice that he had found what he was seeking;
for as he ran he shouted repeatedly in Greek, ‘Eurcka, eurcka."”

The tradition of formal mechanical treatises, including both
theoretical and applied mechanics as distinct from the almost com-
pletely theoretical mechanics of Archimedes, was continued in the
third century B.¢, by Ctesibius (/. ca. 283247 8.¢.2), whose work is
lost and is known only by the references of Vitruvius (see Chap.
Ten), and by Philo of Byzantium (A, ¢a. 250 B.c.?), who wrote a
composite Mechanical Syntaxis, of which only the fourth part, on
artillery machines, and the fifth part, on pneumatic phenomena and
machines, are extant. Unfortunately the part dealing with simple
machines such as the lever, which undoubtedly contained something
of theoretical mechanics, is missing. But in the artillery section there
are worked ballistic lormulae of an empirical character, and the
section on pneumatics contains the description of a thermoscope,
which, although it has the avowed purpose of illustrating the
relationship of fire and air, at the same time represents differences
in temperature,

The most comprehensive of the extant mechanical treatises is
that of Hero of Alexandria (first century ?), who was at the same
time a fine mathematician and an excellent mechanician. In his
Mechantes he kept in mind the theoretical basis of the machines
described, In the second section of his work he described five simple
machines “by the use of which a given weight is moved by a given
force.” These machines were the wheel and axle, the lever, a system
of pulicys, the wedge, and the screw. As Pappus of Alexandria (end
of third and beginning of fourth centuries) remarks, Philo and Hero
both reduced these machines to a single principle. Today we say
that the ratio of the motivating force to the weight moved is in-
versely proportional 1o the ratio of the distance through which the
motivating force acts to the distance through which the weight is
moved. This idea is expressed in another way by Hero: the smaller
the force we have available to lift a given weight, the longer it will
take us. Suppose we have the axle-wheel arrangement shown in
Figure 16. A weight of 1000 talents is hung on axle A, Wheel B has
a radius five times that of axle A. Hence a weight or force of 200
talents applied to the rim of B will just equalize the tooo talents at
A, or a weight of 200 plus will lift the 1000 talents. B is geared to
axle C, which is equal in radius 1o axle A. C is fixed to wheel D,
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which is equal in radius to wheel B. Hence a weight of 40 talents
on the rim of D will just balance the 1000 talents at A, and a weight
of 40 plus will just move the 1000 talents. Now suppose by the
application of 4o plus at the rim of D we turn D through a single
revolution, and suppose that by the application of 200 plus on B we
turn the equal wheel B one revolution. Now a single revolution of
D lifts the 1000 talents only one fifth of the distance that a single

Fic. 16.—An axle-wheel train, according to Hero.

revolution of B does.  Hence, if we are going to lift the 1000 talents
by the 4o plus talents at D rather than by the 200 plus talents at B,
we must turn [) through five revolutions for every revolution of B,
and thus it will take us five times as long wing the 40 plus talents at
D as using the 200 plus talents at B. Hero expresses the general
principle as follows:

In this machine (wheel and axle) and all the machines like it which
are productive of great force (quwat kabiraf) there i retardation,
because in the proportion that the moving force which moves the large
weight is weak, so in this proportion it must be extended in time, For
Just as is the proportion of one force to another, so is that of time
(2emdn) to time [inversely]. (Hero, Mechanics, Book 11, Chap, 21,
translation from the Arabic text of L. Nix.)

The same principle expressed in the same words with a similar
explanation is also presented by Hero for a system of pulleys and for
the lever. This is the fundamental principle called later the principle
of virtual velocities or virtual work, and its recognition is a great
achievement of the Greek mechanicians,

Finally, we should note that Hero in the Mechanies (Book 1,
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Chap. 33) generalizes the principle of the lever further, applying it
to the bent lever; thus he savs that the ratio of the weights is equal
to the inverse ratio of the horizontal distances 1o the vertical through
the fulcrum, rather than to the inverse ratio of the lengths of the bent
lever arms. Referring to the accompanying figure (Fig. 17) he

-
A

H 2 T
Fic. 17.—The bent lever.

declares that the ratio of the weights hung from D and E is inversely
as the ratio of HZ wo ZT.

The numerous mechanical contrivances as given in another
work by Hero, entitled Pneumatics, have always drawn curious
attention, particularly the so-called “Hero's steam engine,” which
used the propelling force of two steam jets to produce the rotary
motion of a glass ball mounted on an axis (see Fig. 18).

Our account of Greek physics would not be complete without
some reference to the optical investigations made during the Hel-
lenistic and Greco-Roman periods, We have already drawn
attention, in Chapter Two, to the fact that optics among the Greeks
was a discipline of a distinctly experimental and mathematical
character. The science of optics was in a sense built up independently
of the theories of vision. Whether visual rays proceeded from the
eye to the object (as the Pythagoreans are wraditionally supposed to
have held), or from the object to the eve (as the atomists asserted), or
even from both (as Plato scems to have indicated), 1s immaterial
from the standpoint of the geometry of rays,



GREEK PHVSICS 74

The geometrical aspects of optics were no doubr studied in the
fourth century n.c., as Aristotle’s curious and erroncous treatment
of the rainbow indicates, but the earliest extant treatise so treating
vision is the Opties of Euclid. It is a treatise on perspective, the
geometrical principles of vision. For example, one proposition

()

22 o

FiG. tB.—Hero's “steam engine” : -a ball rotated by
the “jel" action of steam.

proves geometrically that “equal magnitudes situated at unegual
distances from the eye appear unequal, and the nearer always
appears larger." The law of reflection—namely, that the angle
made by the incident ray with a perpendicular crected on the
reflecting surface at the point of reflection is equal to the angle
made by the reflected ray with that same perpendicular—was
known in the fourth century B¢, and no doubt earlier. It was
employed by Euclid in one of his proofs in the Opties and appears
also in the Catoptrics (On Mirrors), attributed to Euclid but quite
certainly not by him, although it may be based on a work of his.
The basic law was proved by both Hero and Ptolemy in their optical
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treatises. Hero's prool is interesting, being based on a “‘least-
distance principle.” He turns his attention first to the straight-line
propagation of light, which rests on the fact that the rays “are
emitted with infinite (in the sense of enormously large) velocity,
Therefore they will suffer neither interruption nor curvature, nor
breaking, but will move along the shortest path, a straight line.”
Then, proceeding 1o the basic reflection law, he assumes that the
path of the rays from eye to mirror o object is a minimum, and he
casily demonstrates by geometry that the minimum path results
when the angle of incidence equals the angle of reflection.

Ptolemy, on the other hand, in his Opties (if indeed he is the
author of this work} gives experimental confirmation of the re-
flection law as well as of a number of other basic optical principles.
But even more interesting are his experimental efforts in connection
with the refraction of light passing from air to water, air to glass,
and water to glass. He notes values of the angle of refraction—i.c.,
the angle made by the ray as it emerges into the other medium with
the perpendicular at the point of refraction for a whole series of
incident angles increasing by 10° Although he realized “that the
angles (of incident and refraction) as measured from the perpendicu-
lar have a definite quantitative relationship,” Ptolemy failed, as
indeed did all the antique and medieval optical investigators, to
find that relationship, the so-called sine law described by both Snell
and Descartes in the beginning of the seventeenth century. By
study of his tables it has been inferred that Ptolemy believed the
following relationship to hold between the angle of incidence (i) and
the angle of refraction (r): » = ai — #*, where a and b are constants
that vary for the different media. This is not as close as the sine law,
sney = ki but it is not very far off, and it is better than * —

sine r
which also was occasionally affirmed.

Ptolemy’s entire experimental procedure can be illustrated by
the following extract. It is quoted at length, for it set the pattern
for the standard medieval optical experiments.

The amount of refraction which akes place in water and which may
be observed is determined by an experiment like that which we performed
with the aid of a copper disk, in examining the laws of mirrors,

On this disk draw a circle (sce Fig. 19) ABGD with center at E and
wo diameters AEG and BED intersecting at right angles. Divide each
quadrant into ninety equal parts and place over the center a very
small colored marker. Then set the disk upright in a small basin and
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pour into the basin clear water in moderate amount so that the view
is not obstructed. Let the surface of the disk, standing perpendicular
t the surface of the water, be bisected by the latter, half the circle, and
only half, that is, BGD, being entirely below the water. Let diameter
AEG be perpendicular to the surface of the water.

Now take a measured arc, say AZ, from point A, in one of the two
fuadrants of the disk which are above the water level. Place over Z
a small colored marker. With one eye tuke sightings until the markers

A

Fia. 19.— The refraction of light.

at Z and E both appear on a stwaight line proceeding from the eye.
At the same time move a small, ‘thin rod along the arc, GD, of the
opposite quadrant, which is under the water, until the extremity of the
roxd appears at the point of the arc which s on a prolongation of the
line joining the points Z and E.

Now if we measure the arc between point G and the point H, at
which the rod appears on the aforesaid line, we shall find that this arc,
GH, will always be smaller than arc AZ. Furthermore, when we draw
ZE and EH, angle AEZ will always be greater than angle GEH. But
this is possible only if there is a bending, that is, if ray ZE is bent toward
H, according to the amount by which one of the opposite angles exceeds
the other.

If now, we place the eye along the perpendicular AE the visual
ray will net be bent but will [l upon G, opposite A in the same
straight line as AE.
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In all other positions, however, as are AZ is increased, are GH is alio
inereased, but the amount of bending will also be progressively greater.

When AZ is 10", GH will be about 87
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This is the method by which we have discovered the amount of
refraction in the case of water. We have not found any perceptible
difference in this respect between waters of different densities. (Cohen
and Drabkin, 4 Source Book in Greek Science, pp. 274-275.%)

* Quoied by permission of the publisher, the McGraw-Hill Book Company, loc;

eopyright, 1agf,



CHAPTER SEVEN

Greek Astronomy

A‘i in some arcas of physics, soin all of Greek astronomy from the
fourth century 8.6, we have a brilliant example of the fruitful
application of geomerrical techniques to scientific inquiry. Our
knowledge of Greek astronomy before the fourth century s.c. is
fragmentary. But we are told that the true nature of solar and lunar
eclipses was discovered. Similarly, it was early asserted that the sun
iz the source of the moon's Light and that the ecliptic, or sun’s path
through the fixed stars in the course of the vear, is inclined to the
celestial equator. There is a strong (if late) tradition that Pythagoras
ar the Pythagoreans believed the earth to be spherical in shape.
For the most part it was thought that the earth resided in the center
of a spherical universe, although certain Pythagoreans devised a
system wherein the earth, a companion counter-earth, the sun, the
moon, and the planets turned about a central fire.

Crucial for the rise of mathematical astronomy toward the begin-
ning of the fourth century s.c. was the problem of explaining the
irregular movement of the planets as they wander through the fixed
stars. This irregular activity of the planets could be reduced to a
number of other movements:

(1) The planets rose and set nightly from east 10 west, as did all
the heavenly bodies,

(2} Yet they also moved in the manner of the sun, from west (o
east through the fixed stars. Their courses could be plotted nightly
through patterns or certain constellations of stars which were called
the zodiac and which were hisected by the sun's apparent annual
path through the sky. In fact, the west-to-east paths of the planets
were found 10 be quite close 1o that of the sun. Each of the planers
made the complete circling of the zodiac—i.e., returned to the same
position relative to the fixed stars of a given constellation of the
zodiac—in a different period of time. Saturn was seen to take
nearly thirty years; Jupiter, twelve years; Mars, two years and six
months; Mereary, Venus, and the sun, ane year.

(3] Now it was further noticed that, in addition to rising and

oy
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setting nightly and circling the sky, the planets moved in still another
fashion. In the course of their encirclement of the zodiac from west
to east they were seen to slow down in their easterly movement until
they appeared to stop in the sky, whereupon they seemed to reverse
the direction of their movement and proceed in a westerly direction
for some time until they again stopped, reversing their direction once
more to continue in their over-all easterly traversal of the zodiac.
These points of apparent stopping arc called stations, and the reverse
westerly movement of the planet is called its retrograde movement.
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Fio. so.—Apparent path of Mars in 14935, Note the station

about July 1, the retragradation through July and August, and

the second station about September 1. (Reproduced by permission

of the publisher from R. H. Boker, **Astromomy,” sth edition,
copyright 1950, Van Nostrand Co., Ine.)

If we plot these curious gyrations of the planctary movement
against the constellations in the background, they will resemble a
loop {see Fig. 20).

This phenomenon is readily explained on the basis of the
Copernican system, which locates the sun at the center of the plane-
tary system. For the planets, including the earth, revolve about the
sun at various speeds, the planets closer to the sun moving with
greater angular speed than those farther out, Sinee this is the case,
the earth in traversing its orbit is continually overtaking the slower
planeis farther from the sun (the so-called superior planets: Mars,
Jupiter, and Saturn) and at the same time is continually being over-
taken by the planets closer to the sun (the inferior planets: Mercury
and Venusj. Now the planets arc all revolving in the same easterly
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direction, but the carth’s continuous change of position with respect
to the other planets makes it appear to an observer on the earth who
believes ke is at rest that a given planet is reversing its movement.
How this continuous change of position can produce the looping
movement of stations and retrogradation is illustrated in Figure 21,

(4} One further aspect of planetary movement was observed and
had to be accounted for by each of the systems devised to explain
celestial movements; this was the motion of the planet in latitude.
Here a word of explanation is required. The Greeks adopted the
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Fio. ot —Stations and retrogradation of Mars explained on the

basis of Copernican theory. (Reproduced by permissian of the

publisher from R. H. Baker, " Astranamy,” 5th edition, copyright
1650, Van Nostrand Co., Inc.)

convention of using the zodiac as a kind of celestial map. The path
of the sun, ar ecliptic, which was the great circle running through the
center of the circular zodiacal band with its twelve signs or distinctive
star patterns, was assumed as one reference line, On the other hand,
a circular meridian line perpendicular to the ecliptic and running
through at the beginning of one of the signs, the ram (Aries), was
used as the other reference line, The angular distance from this line
of Aries along the ecliptic was called celestial longitude, and the
angular distance along the line of Aries from the ecliptic was called
celestial latitude. So far we have talked about the movements of
the planets in longitude. These are the major movements, since the
planets are seen to move quite close to the plane of the ecliptic. But
in actuality the planes of the paths of the planects make small angles
with the plane of the ecliptic. Hence the planets are continually
changing their celestial Jatitude as well as longitude, and so any
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astronomical system has to account for this movement in latitude as
well as for the major movements in longitude.

Now the objective of the mathematical astronomical systems
devised by the Greeks was to account for the various classes of move-
ment that we have outlined, in addition to certain less important
movements. The over-all task of the astronomer was, as Simplicius
has told us, “to invent hypotheses by which the phenomena will be
saved (i.e., accounted for).”” But, as Simplicius also pointed out,
the astronomer in Greek antiquity borrowed his basic principles from
the physicist, or, in actuality, the metaphysicist. Now the funda-
mental principle which the astronomer borrowed from the physicist
at the very beginning of Greek mathematical astronomy was that
celestial bodies as the result of their perfect nature move with a
uniform, circular movement eternally, If the astronomer assumed
the truth of this principle, then his problem became one of reducing
the apparent irregularity of planetary movement to some combina-
tion of uniform, circular movements.

We are told by one author, Geminus, that “the Pythagoreans
were the first to approach such questions, and they assumed that the
motions of the sun, moon, and the planets are circular and uniform.”
But another author asserts that it was “Plato who set this problem
for students of astronomy: By the assumption of what uniform and
ordered motions can the apparent movements of the planets be
accounted for?"" It makes little difference whether it was Plato or
the Pythagoreans, for the former seems to have borrowed heavily
from the latter in such matters. This assumption of circular, uniform
movement continued to be made for all of astronomical systems
devised until the time of Kepler, in the early seventeenth century.
It was the basic assumption behind the system of Copernicus,

Author of the first mathematical system to reduce the irregular
movements of celestial bodics to uniform, circular movements was
the extraordinary, fertile mathematician Eudoxus; the student and
associate of Plato. We have already celebrated his genius in mathe-
matics as the perfecter of a more fecund theory of proportions and of
the method of exhaustion.

For the basic astronomical problem Eudoxus devised a system of
homocentric (“having the same center") or concentric spheres. It
was outlined in a book entitled Onr Speeds, which is now lost. The
geometrical details of the system have been reconstructed on the
basis of two passages, one in Aristotle's Metaphysies and the other
in Simplicius’ commentary on Anstotle’s On the Heavens. This
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reconstruction was accomplished in brilliant fashion by the Italian
astronomer Schiaparelli, in 1875. It is Schiaparelli’s reconstruction
that is followed today and that we shall describe briefly, first noting
Sir Thomas Heath's neat summary of it:

Eudoxus adopted the view which prevailed from the carlisst times
to the time of Kepler, that circular motion was sufficient to account
for the movements of all the heavenly bodies, With Eudoxus this
circular motion took the form of the revolution of different spheres,
each of which moves about a diameter as axis. All the spheres were
concentric, the common centre heing the centre of the earth; hence
the name of ""homocentric spheres” used in later rimes 1o describe the
system. The spheres were of different sizes, one inside the other.
Ench planet was fixed at a point in the equator of the sphere which
carried it, the sphere revolving at uniform speed about the diameter
joining the corresponding poles; that is, the planet revolved uniformly
in & great circle of the sphere perpendicular to the axis of rotation.
But ane such circular motion was not enough; in order to explain the
changes in the speed of the planets’ motion, their stations and retro-
gradations, as well as their deviations in latitude, Eudoxus had o
assume a number of such circular motions working on each planet and
producing by their combination that single apparemtly irregular
motion which can be deduced from mere observation. He accordingly
held that the poles of the sphere which carries the planet are not fixed,
but themselves move on a greater sphere concentric with the carrying
sphere and moving about two different poles with a speed of its own.
As even this was not sufficient to explain the phenomena, Eudoxus
placed the poles of the second sphere on a third, which again was
concentric with and larger than the first and second and moved about
separate poles of its own, and with a speed peculiar to itsell For the
planets yet a fourth sphere was required similarly related to the three
others: for the sun and mooen he found that, by a suitable choice of the
positions of the poles and of speeds of rotation, he could make three
spheres suffice. In the accounts of Aristotle and Simplicius the spheres
are described in the reverse order, the sphere carrying the planet being
the last. The spheres which move each planet Eudoxus made quite
separate from those which move the others. One sphere sufficed of
course to produce the daily rotation of the heavens [i.e., the fixed strs).
Thus with three spheres for the sun, three for the moon, four for each
of the planets and one for the daily rotation, there were 27 spheres in all.
It does not appear that Eudoxus speculated upon the causes of these
rotational motions or the way n which they were transmitted from one
sphere to another; nor did he inquire about the material of which they
were made, their sizes and mutual distances. . . . It would appear
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that he did not give his spheres any substance or mechanical con-
nection; the whole system was a purely geometrical hypothesis, or
set of theoretical constructions calculated to represent the apparent
paths of the planets and enable them to be computed. (T. L. Heath,
Aristarchys af Samos, Oxford, rg13, pp. 195-196.%)

Let us recapitulate briefly the theory as applied to the planets
by referring to Figure 22. Sphere (1), the outermost sphere, rotates
from east to west on its axis every twenty-four hours to account for

(1)

Fic. 22.—A cross section of the four concentric spheves used by
Eudoxus to explain planetary motion.

the daily rising and setting of the planet, The poles of sphere (1)
lie on a north-south axis. The rotation of sphere (2) accounts for the
great encirclement of the planet from west to east through the
zodiacal band; its axis is accordingly inclined to that of sphere (1)
in about the same angle as the zodiacal band is inclined to the
celestial equator (i.c., the equator of the first sphere), The third and
fourth spheres rotate in equal times but in opposite directions.
Together they account for the looping movement of the planet (i.e.,
for the statons and retrograde movement described above) and for
some movement in latitude. The poles of the third sphere lic in the
zodiacal band (i.e., in the equator of sphere (2)). The axis of the
* Quoted by permimion of the publisher, the Clarendan Prew, Oxford.
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fourth sphere is inclined at an angle to the axis of the third sphere
that varies for each planet, just as the speeds of spheres (3) and (4)
vary for each planet. The planet (P} is carried on the equator of the
fourth sphere. Now the combined movement of the third and fourth
spheres will, as Simplicius notes, cause the planet to describe about
the zodiac the curve called in Greek the hippopede, or “horse-
fetter,” which Schiaparelli shows to be a spherical lemniscate (see
Fig. 23). This curve bears a fair resemblance to the looping motion
described by the planets.

That Eudoxus' theory had some currency we note from the fact
that it was modified to include more spheres in order to take care of

Fio. 29.—The “horse-fettes” (spherical lemniscate) which the

combined movements of Eudoxus’ spheres (3) and (4) generate,

Here described by the intersection of the surface of a oylinder and
the surface of a sphere.

other observed irregularitics; it was altered first by Callippus, an
associate of Aristotle, and then by Aristotle, who, in an attempt to
give the system some physical significance, arrived at a possible
maximum of fifty-five spheres. The deseription of Eudoxus® system
by Aristotle made it important for the medieval period. And even
though it rather quickly passed out of favor in antiquity, it was
revived from time to time under the authority of Aristotle by some
Islamic and Western Latin authors. The fundamental observational
evidence against the theory has already been noted in Chapter Twao.
It was the fact that the apparent size of the moon and of the planets
varied, which seemed to indicate that they were at varying distances
from the earth, And this observation ran counter to the hypothesis
of concentric spheres.

The second important event in the development of planciary
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systems in Greek antiquity was the modification of the geocentric
system suggested by another student of Plato, Heraclides of Pontus
{ra. 388-310 B.C.). Heraclides is credited with two important
doctrines that were later, when properly extended, to become a part
of the Copernican system, (1) Initially he supposed, as Simplicius
has told us, “that the earth is in the center and rotates while the
heaven is at rest,” and “he thought by this suppoesition to save the
phenomena.” (2} The other doctrine usually atributed to Hera-
clides was the assumption that Mereury and Venus, the so-called
inferior planets, which always appear to be near the sun, do in fact
revaolve about the sun rather than about the earth, while the remain-
ing planets together with the sun and i system of two satellite
planets revolve about the earth.

Both doctrines have considerable interest for the historian of
medieval science. When the rotation of the earth on its axis was
seriously discussed in the fourtcenth century at the University of
Paris, it was Heraclides who was cited as the authority. The second
doctrine was discussed by certain Latin authors in late antiquity and
reappeared on occasion in medieval Latin writings.

We do not have to wait until early modern times for the extension
of Heraclides’ ideas, for it was accomplished by the Alexandrian
astronomer Aristarchus (fl. ce. 281 8.0.), apparently another of the
brilliant scholars at the Museum. Ta the rotation of the earth on
its axis he added another movement, thar of a revolutdon arcund the
sun as a fixed center. Thus he brought to a halt both the apparent
daily movement of celestial bodies and the annual movement of the
sun through the fixed stars. It is 1o be assumed that Aristarchus also
held that the other planets revolved about the sun in the manner of
the earth. In short, Aristarchus appears to have arrived at the basic
assumptions of the Copernican system almost two thousand years
carlier than Copernicus. Aristarchus’ original account of his system
is lost, but Archimedes, who was only one generation removed from
him, describes the svstem briefly in his Sandreckoner.

Aristarchus of Samos brought out a hook consisting of some hypoth-
cses, in which the premises led 1o the result that the universe is many
times greater than that now sp-called. His hypotheses are that the
fixed stars and the sun remain unmoved, thar the earth revolves about
the sun in the circumference of a circle; the sun lying in the middle of
the orhit {or, i the cireumference of a circle which lies in the midst of
the course of [the Plancs]), and that the sphere of the fixed stars,
situated about the same center as the sun, is so great that the circle
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in which he supposes the earth to revolve hears such a proportion to the
distance of the fixed stars as the centre of the sphere bears to its surface.
(T. L. Heath, Works of Archimedes, Cambridge, Eng., 1847, pp. 221-222;
modification by O. Neugebauer, Isis, Vo, 34 [1942], p. 6.%)

The context of the whole passage makes it apparent that
Aristarchus extended the distance to the fixed stars enormously in
order to meet ane of the main objections to his theory. This objection
was that if the carth revolved about the sun, in different points in
the orbit the angular distances between any two given fixed stars
would change—i.e., would increase and then decrease in a regular
fashion. In more technical language the objector would say that
there should be parallactic displacement of the stars. A familiar
analogy ought to make this clear w0 the reader. When one is riding
on a train and looking at telephone poles ahead, these poles scem
very close together; in fact, if we look far enough ahead the poles
seem to be touching. Then, as we watch two poles and come abreast
of them, the distance between the poles grows to a maximunm, and as
we leave them behind they look as though they were coming to-
gether again, The objector would say that the same thing should
happen if the earth were changing its position relative to the stellar
telephone poles. But Aristarchus apparently met the abjection by
the assumption that the stars are so distant that the entire orbit is
but & point in comparison, and hence the apparent displacement
of stars would be so slight as to be unnoticeable, In fact, this
displacement was not observed until the nineteenth century. The
astronomers who came after Aristarchus shrank from this. set of
assumptions,

Plutarch tells us of a religious objection tw the theory of’
Aristarchus, which, 1o the Hellenistic scientist, may not have been
so important as the ohservational objection already noted. He notes
that # certain Cleanthes (d. ca. 232 8.c.) had charged Aristarchus
with impiety “for putting in motion the Hearth of the Universc,
this being the effect of his attempt to save the phenomena by sup-
posing the heaven to remain at rest and the earth to revolve in an
oblique circle, while it rotates, at the same time, on its axis.”

There are a number of other short passages which associate
Aristarchus with @ theory of the earth’s motion, Although we have
no idea of the extent to which Aristarchus developed his system, it
would not appear unreasonable to call him the Copernicus of antiq-
uity, or perhaps it would be preferable to call Copernicus the

* Quoted by permission of the publizher, the Univenity Prem, Cambridge, Eaglamd
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Aristarchus of modern times, Our only extant treatise by Aristarchus
is one entitled On the Sizes and Distances of the Sun and Moon, which
reveals a nice understanding of geometry and makes calculations
with angles and the ratios of the sides of triangles that are equivalent
to later tngonometric calculations, The results obtained were quite
poar—e.g., that the distance of the sun from the earth is greater than
eighteen times but less than twenty times the distance of the moon
from the earth. Bur the reason for the poor results is that very poor
observational data were assumed; the method employed (using
similar triangles) is sound.

The attempt of Aristarchus to establish the distance and size of
the sun and moon by geometrical methods was matched by their

SUN RAYS

Fio. 24.—FEratosthenes determination.

most successful application to the determination of the circumference
of the carth by one of the ablest all-round scientists of antiquity,
Eratosthenes of Cyrene. Eratosthenes, friend of Archimedes,
librarian of the Museum at Alexandria, and founder of scientific
cartography, was talented in so many fields that he was called
Beta—i.c., the second best after the leading figure in each of the
scientific fields.

Eratosthenes' determination has been described in detail by a
later Greek astronomer, Cleomedes; since it was this type of method
that was used also in the Middle Ages, we shall report its highlights,
referring to Figure 24. (1) 1t was assumed that the rays coming
from the sun and striking various parts of the carth are parallel.
(2) It was observed (somewhat erroneously) that Alexandria (A)
and Syene [8) were on the same meridian, 5000 stades apart. (3)
When the sun was at the highest point in the sky at Syene on the
day of the summer solstice, the pointer of a sundial cast no shadow.
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But at Alexandria it cast an arcal shadow on a bowl-shaped or
hemispherical sundial equal to ), . 360°. (4) This shadow measures
the angle at P (the angle of the sun at noon below zenith). But it
also measures the angle at O, subtended by the are AS, since the
rays striking P and S are parallel, OS is the prolongation of the ray
at S, and these parallel rays are cut by the straight line OF 1o form
the equal angles at O and P. Hence the angle at O is ) . 360°
(5) The circumierence is now immediately given by a simple

. C 5000
proportion: 360° = . 360° C = #50,000 (stades).
W=

He appears later to have arrived at a modified value of 252,000
stades as the result of further trials.

* We are not sure which of the various stades ranging in value
from 7} to 10 stades to a Roman mile Eratosthenes used. Hence, we
cannot be sure of his accuracy. A recent student of the problem has
suggested the value of 10 stades to a mile; 5o that then the figure of
Eratosthenes works out to 25,200 Roman miles {equal to 37,497
kilometers); while other students compute Eratosthenes’ value as
30,600 kilometers, but in doing so they imply & stade which has an
irrational value and is unreported in ancient sources. But the latter
value is quite attractive since it is close to the actual mean circum-
ference of about 40,120 kilometers. We are equally as ignorant of
the value of the stade assumed by Posidonius (1st century 8.c.) and
Polemy (2nd century A.D.) in giving their value of 180,000 stades
for the circumference. Some would say that a long stade of 74 w0
the Roman mile was used, thus bringing the values of 252,000 and
180,000 into approximate agreement; but there is lintle direct
evidence for this conclusion.

The fourth major attempt to reduce the apparent irregular
movements of the celestial bodies to uniform, circular movements
was the system of epicycles, or small circles having their centers on
the circumferences of other circles. Its origins are obscure. Some
would say that it goes back to the fourth century B.c., to the cfforts
of Heraclides, but others prefer to emphasize that it took form with
the mathematical work of Apollonius of Perga (fl. end of third and
beginning of second centuries B.c.) and his contemporaries. It vied
with and absorbed the system of eccentric circles, so that by the
time of the second century after Christ, when the system received
its most detailed exposition by Ptolemy, it included a mélange of
eccentric and epicycle circles. Ptolemy’s elaboration of the epicycle
theory appeared in the Mathematical Syntaxis, or, as it was later called
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by the Islamic astronomers, the Almagest. This work is a superb
blend of the mathematical and chservarional astronomy of antiquity.
It was clearly the mast influential single astronomical work until
the time of the De revolutionibus of Copernicus {1543).

The nature of eccentric and epicycle circles is shown in Figure 25,
which represents the movement of the sun according to both
cecentric and epicycle circles, Thus, in the case of the eccentric
system, E represents the earth and C is the center of the sun's
circular path O. Hence the orbit or path of the sun is eccentric o
the carth,

Now in the epicycle system, E is again the earth, but the sun, S, is
assumed o be revolving in a small circle or epicycle about a mathe-
matical point G, and G is assumed to be describing a circle D (called

s\ \

o

Fi1G. 25— The nature of eccentric and epicycle circles.

the deferent circle) about the earth as a center. The complete
equivalence of these two ways of representing the movement of the
sun may have first been demonstrated by Apollonius. But it is
suspected that Prolemy was following the astronomer Hipparchus
(second century 8.¢.), when, after noting the equivalence of the two
systems for the sun’s movement, he decided for the eccentric system,
because it was the simpler of the two hypotheses, involving as it did
only one circle (see Appendix V). This observation of Ptolemy (or
Hipparchus?) represents an interesting point of view of which we
get occasional glimpses in antiquity: that it is the job of the
astronomer (and the mathematical scientist in general) to present
the most economical mathematical system that will account for the
phenomena, without regard necessarily for the real nature of the
system, Economy, then, is a rule of rational procedure. Occasionally
we find in the Middle Ages the complementary but different idea
that we adopt the most economical system because God or nature
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Fic. 26.— The equivalence of the epicyele motion of the sun with

an elliptical path. (Reproduced by permission of the publisher

from M. Cohen & I. E. Drabkin, “A Source Book Careek
Science,”” copyright 1948, McGrau-Hill Boak Co., Inc.)
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FiG. 27.— The Piolemaic system of planetary movements. (Repro-
duced by permission of the publisher from R. H. Baker,
“ Astronomy," sth edition, copyright 1950, Van Nestrand Co., Inc.)

Fic, 28.—Huotw the epicycle mocement of a planel accounts Jor

the stations and retrogradations of the planet. (Reproduted by

permission of the publisher from R. H. Baker, ** Astranoms,”
sth edition, copyright 1950, Van Nastrand Co., Inc.)
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operates with the fewest possible causes—i.e.; in the simplest way;
hence economy of thought is necessary because of the eéconomy of
nature.

The details of how the eccentric and epicycle systems were
merged can be ascertained by a careful study of Figures 26-28 and
the diagrams in Appendix VI, showing the Ptolemaic descriptions
(much abbreviated) of the principal movements of the heavenly
bodies. It is important to realize that the Prolemaic system repre-
sented the finest in Greek mathematical theory applied to astronomy.

Fic. 20.—The precession of the equinoxes. “From the standpoint
of @ sun observer (heliocentric or Copermican mien) the precession
can be vegarded as analogous to the wobble of a spinning lop. The
earth's polar axis rotates slowly about the pole of the ecliptic and
the earth's equator revolves at the approximately fixed inclination
of 234" to the plans of the earth’s orbit. Thus rotation means that
the north pole, which is tilted sumvard when the wun is ‘in Cancer,’
will be tilted away from the sun in Caneer a half orele (426,000
= 13,000 years) later.”" (Reproduced from L. Hogben, *'Science
Sar the Citizen”" New York, 1038, by permission of the publisher,
Alfred A. Knopf.)

At the same time it contained reference to the observations of
Hipparchus and his successors, Hipparchus, it may be briefly
noted, is hailed as the greatest observational astronomer in antiquity.
He is credited with a much improved catalogue of some 850 or more
stars the positions of which were given in terms of celestial longitude
and latitude. By the careful comparison of his observations with
earlier ones he discovered the continual displacement of all of the
stars relative to the equinoxes, which phenomenon is called the
"'precession of the equinoxes™ (see Fig. 29). Also by a comparison of
observations he concluded that the tropical year was not exactly
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465} days long but was 4}, of a day short of that figure. By using
this new figure of the year's length, and the statement of Censorinus
that Hipparchus determined a cycle of o4 years, wegeta final figure
of 110,135 days in the cycle. One purpose of such a cycle is to
compute the mean month, *This gives us as the length of the mean

Fic. 30.—A “dioptra," or sighting instrument, described by

Herg of Alexandria. The gearing mechanism allows for changes

in both azimuth and elevation, It was equipped with a hydraulic
level to determine the horizontal plane.

lunar month 2g days, 12 hours, 44 minutes, 2} seconds, which is less
than a second out in comparison with the present accepted figure of
24.530596 days!" (T. L. Heath), Hipparchus was able to achicve
his success because of improved instruments (including an improved
dioptra; sce Fig. o). Finally, we should note that Hipparchus and
Prolemy laid the foundations for trigonometry by computing the
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lengths of chords of various angles. Ptolemy gives us a table of the
lengths of chords for each angle from 17 1o 180° at increments of §°
{see Appendix VII),

To this point we have examined the principal achievements of the
Greeks in evolving the general concept of a science, in developing
the logical and mathematical tools—principally geometrical—
needed for scientific investigation, and in realizing, however incom-
pletely, something of the necessary relationship between theory and
experience, We have seen how with these achievements in method
the Greeks were able to build up a considerable body of scientific
knowledge in medicine, in botany and zoology, in mathematics, and
in physics and astronomy. In short, we have now examined the
main elements of Greek sciente uncovered by an unending applica-
tion of Austorta. Although some of the conclusions of Greek science
rubbed off on the Romans, the concept of rescarch cpitomized in
historia never caught on among them, as the documentation of our
next chapter clearly demonstrates.



CHAPTER EIGHT
Roman Science

1

IN the second chapter we spoke of the basic chronology of Greek
science and we labeled the last period, from about 100 B.C. t0
aD. 600, the Greco-Roman period. But, although we spoke often
in the succeeding chapters of writers who lived during this period,
they were almost exclusively Greek or Greek-speaking, And this
was no accident of selection, for Rome had little independent
science, however great were her engineering achievements. Yer,
unoriginal as Roman science was, its study is not without importance
for the student of the history of science, since it was the Roman
version of Greek science that was the main source of the scientific
activity of the Latin West in the early Middle Ages.

In pursuing the main features of Roman science, we should
keep in mind a few key observations:

(1) First, it should be realized that the Roman forte was
practical, applied science. The word “applied" is used with some
hesitancy, for more often than not the architect or engineer who
covered the hills of Rome with mighty buildings or brought water
within the city’s limits over splendid aqueducts did not consciausly
apply scientific principles or methods to the solution of construction
problems. But we do have a number ol treatises in applied science
that reveal a conscious attempt to stress some of the scientific theory
behind and implicit in the engincering or technological activity.
Such is the work an architecture of Vitruvius, that on aqueducts of
Frontinus, the sundry works on agriculture, and a number of others
which we shall treat briefly as we unfold the general chronological
development of Roman scientific writing.

(2) With the emphasis on applicd science came an apparent and
deep-rooted disinterest in higher mathematics. It is extraordinary
that not until the second century after Christ was a Greek mathe-
matical work translated into Latin, and then it was only a rather
inferior beginner’s manual, Even after the scientific translations
became more common, in late antiquity, only Euclid among the

&
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great Hellenistic mathematicians—and perhaps not even all of
Euclid—was rendered into Latin, It is no answer to say that the
learned Roman knew Greek and felt no need to make the trans-
lations, for at least some scientific translations were made (see
Chap. Ten), but very few in mathematics.

{3) As students of Greek science without marked independent
and original development, the Romans were attracted to the
encyclopedic kind of presentation. This is demonstrated in the
works uf’i}am:r, Vitruvius, Celsus, Pliny, and Sencca, as we shall see
more clearly below. Interest in the independent scientific problem,
s0 evident in the Hellenistic mathematical and physical treatises, is
for the most part lacking in‘the Roman writings. The comprehen-
sive manual, with emphasis on definition and description rather than
on solution and demonstration, is the characteristic form of Roman
science, just as it was the characteristic form of the scientific writings
in the carly Middle Ages which depended on the Roman science.

]

We can give only the most cursory glance to the marvelous
engineering feats of the Romans and to their practical scientific
achievements. Thus we can but mention the system of agqueducts
that supplied Rome with millions of gallons of water each day, the
remarkable sewage system of Rome, the fine harbors, the celebrated
system of roads that linked Rome with all parts of its empire, and
the military and public hespitals,. Needless to say, these monuments
attest the Roman genius for organization and engineering.

The practical nature of Roman scientific activity is illustrated
also in the calendar reform initiated under Julius Caesar, which
utilized Greek astronomical knowledge. The importance for
administrative purposes of having a uniform calendar throughout
the territory under Roman control was evident. And the importance
for agricultural and other purposes of a calendar that corresponded
with the seasons was also apparent. Replacing the lunar and other
calendars then in use in various areas, the so-called Julian calendar
assumed a solar year of 365 days and a leap year of 366 days every
fourth year. This leap year was called the bissextile year, because
of the addition of an extra sixth day, the bitsextus, before the kalends,
or first, of March. Hence the average length of the year in the
Julian calendar was 365} days. But this year was slightly longer
than the tropical year of the seasons, which runs from one vernal
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equinox to the next and is 365d, sh, 48m, 463, This made the
Julian year too long by some three days in 400 years—i.¢., the vernal
equinox came a day earlier about every century and a third. In
spite of this discrepancy, the Julian calendar persisted in Europe,
not without some attempts at reform in the Middle Ages, until 1582;
at that time Pope Gregory X111 ordered a modification, and the
result is called the Gregorian calendar. Ten days were dropped out
of the current year to bring the vernal equinox back to March 21.
The new calendar compensated for the excesive length of the
Julian year by making the century years regular years instead of
leap years, except when those century Yyears were divisible by 400
(e.g-, 1700, 1800, and 1900 were regular years, whereas 1600 was a
leap year, as will be 2000), As can be readily seen, this step removes
three days in 400 years from the Julian calendar.

Also of a practical nature was the survey of the empire planned
by Caesar but executed under Augustus. Augustus’ son-in-law
Agrippa (d. 12 B.c.) supervised the preparation of the survey and
wrote a commentary in connection with it. The survey map then
prepared was presumably the point of departure for a series of
strategic maps prepared under the empire. These were route maps
carrying accurate measurements of distances but probably not
drawn on scientific cartographic principles, for if we can trust the
medieval copy of one of such maps as being an accurate reproduction,
there was a great distortion in the cast-west direction.

mn

The derivative character of Roman science is particularly
evident in the fine poem On the Natare of Things, by Lucretius (from
abaut 98 or g5 to 55 B.c.). Although not a work of science, it was to
have great influence on scientists, not so much on medieval scientists
—on whom its influence, if any, was indirect—as on the scientists of
the early modern period, who in secking to abandon Aristotelian
philosophy turned to atomism, The principal source of the content
of the poem was the teaching of the Greek atomist Epicurus. But
the ethical aspects of Epicurcanism are played down, and the result
is a treatise on physical theory written in ringing poetic cadences;
we must touch these difficult topics, Lucretius tells us, “with the
Muses’ delicious honey."

In the first book Lucretius initially attacks religion, “which has
brought forth criminal and impious deeds” (1, B2-83). He denies
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creation by asserting the permanence of matter: *'No thing is ever
produced from nothing by divine power, . . . No thing can be
created from nothing™ (nil! pesse creare de nilo, 1, 150-156). Martter is
atomic in form. The atoms he posits as indivisible, permanent,
invisible, varying in size, homogeneous as to character, and infinite
in number. A void is assumed as a frame and a referent for motion.
There are then two principles: atoms in motion and void. Time is
an accident of bodies. It does not exist per se, “But rather from
things (of nature) is derived the sense of what has been done in the
past, of what is present with us, and lurther of what lollows in the
future (1, 459-461)."" In the investigation of nature we must appeal
to the senses; for “‘what can we find more certain than the senses
themselves to mark the true and the false™ (1, 6gg-700).

The second book is also important for the historian of science,
for it deals with the kinetics of the atomic theory., The picture of the
random movement, collisions, groupings, and separations of atoms
to form the individual bodies that we know is a classic one (11,
Bo-130). The atoms wander through the void “carried on either by
their own weight or by a chance blow from one or another.,” They
often meet and collide while in rapid motion and so “'they leap apart
suddenly in different directions; and no wonder since as solids they
are pertectly hard and nothing obstructs them from behind.”" “No
rest is granted to the atoms throughout the profound void, but rather
driven by incessant and varied motions, some after being pressed
together then leap back with wide intervals, some again after the
blow are tossed about within a narrow compass. And those being
held in combination more closely condensed collide and leap back
through tiny intervals. . . ." An analogical confirmation for the
kinetic activity of the atoms exists in the acuvity of minute specks
in the air revealed by the rays of the sun as they penetrate a dark
room. These specks as they dance in the sunlight are as if “in ever-
lasting conflict struggling, fighting, battling in troops without any
pausc, driven abour with frequent meetings and partings; so that
you may conjecture from this what it is for the primordial atoms to
be ever tossed about in the great void."

Now Lucretius tells us that the atoms tend downward in the
void (H, 1B4-251), although it would be interesting to know what
meaning is given to the term “downward” in an infinite extent;
however, it is guessed that he meant downward with respect to the
earth. Although fire moves upward, it is only by compulsion, for it
would naturally fall downward if not subjected to force by the air,
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which pushes it upward against its tendency to move downward.
Without hindering bodies, all things would move downward in a
void. Lueretivs then tells us in a celebrated passage that things
would Fall with equal speed in a void. 1T things of different weight
move with different speed through media because of different
resistances, in a void which “cannot offer any support to anything
anywhere . . . they must all be carried with equal speed, although
they are not of equal weight."" The reason why -atoms can collide
in a void in the first place is that they tend to swerve a bit. Other-
wise there would have been no collisions and nature would have
produced nothing, since all atoms would have fallen their separate
parallel ways downward with equal speed. Itis quite unclear what
constitutes the weight of the falling atoms of Lucretius.

As we study Lucretius’ account of the assembling and separating
of the atoms to form the bodies that we sense, we see that the essential
characteristics of the atoms (later one would speak of the primary
qualities of the atoms) are their weight, their size, and their shape;
but, although there is an infinite number of atoms, there is a finite
number of sizes and shapes. Other gualities are reducible 1o these
fundamental properties. The sensation of color is reducible to shape-
Similarly, atoms are in themselves devoid of warmth and cold, barren
of sound and moisture. “Nor do they throw off any odor of their own
from their bodies.” All these are derived qualities reducible to par-
ticular groupings of the root atoms possessing size, shape, and weight.

Lucretius’ account in Book 111 of the material composition and
mortality of the human soul we can pass over. We may also skip
Book TV, which presents his somewhat complicated psychology and
theory of sense perception, as they are nop very significant 1o the
history of science, On the other hand, his description in Book V of
the origin of things is of some interest. Initially he here rejects the
divinity of celestial bodies. Nor, he states, do they have any vital
foree. There is no home of the gods in the visible universe. This
universe will some day pass away to be replaced by other com-
binations or universes. Our world is still young and developing, as
is our study of it, and Lucretius asserts that he is one of the first
students to deseribe the nature and the system of the world in Latin,
He recounts how the world arose: not by design but by a chance
assembly of atoms. In our universe the earth is at rest in the center,
The cosmological details given by Lucretius are primitive and remind
us of the opinions of the pre-Socratics. He recognizes the possibility
of several worlds like our own, as did the carlier atomists.
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In his discussion of the origin of things on the earth, Lucretius
presents an evolutionary theory, which differs from the later
Darwinian theory on some fundamental points. Both theories use
the idea of natural selection or survival of the fittest. But in the
theory of Lucretius the selection is made of chance atomic com-
binations that are better suited 1o survive: the combinations il
suited to survive die out. The entire concept of the variation and
descent of species, fundamental to the Darwinian theory, is not
present in the account of Lucretius. Thus in the Darwinian theory
the selection is made of varieties of species more fit to survive, so that
the species in its continuous history changes and evolves. But
Lucretius describés the fate of the ill-fit as follows:

But those to which nature gives no such (protective) qualities, so that
they could neither live by themselves at their own will, nor give us
some uscfulness for which we might suffer them 10 feed under our
protection and be safe, these certainly lay at the mercy of others for
prey and profit, being all hampered by their own fateful chains, uniil
nature brought that race to destruction. (Lucretius, On the Nature of
Things, Book V, lines B51-877, Loeb Clawsical Library translation of
W. H. D. Rouse, Cambridge, Mass,, 1947.*)

1w

Entirely different in character from the poem of Lucretius were
the works of the learned Roman author Varro. Unfortunately
Varro's influence on the Middle Ages was largely indirect, for his
works disappeared at an early date. Varro is dated from 116 to
27 B.c. He was appointed curator of a future public library by
Caesar in 47 m.c. By his seventy-cighth year he was reported to
have edited some 490 books: All are lost but two, one on the Latin
language and one on agriculture. But we have numerous fragments
from the others. His most influential work so far as the history of
science is concerned wais his encyclopedia, Nine Books on the Disciplines.
These disciplines included the later seven liberal arts of grammar,
dialectics, rhetoric, geometry, arithmetic, astronomy, and music,
plus medicine and architecture. We shall have occasion later to
mention Varro's influence on such writers as Martianus Capella,
whao in turn were read and studied by medieval writers. Varro, then,
is usually thought of as having set the original pattern for the
liberal arts.

* Quoted by permision of the peesent publisher and holder of the copyright, ithe
Harvard University Pres.
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We are more fortunate in the case of Varro's junior contemporary
Vitruvius, for his important On Architecture, written between 27 and
13 B.C., has come down to us intact. Like Lucretius and Varro
before him, Vitruvius is heavily dependent on his Greek predecessors
for his knowledge of the sciences. Although architecture is his main
topic, Vitruvius covers a wide varicty of scientific topics which he
considers of importance for the architect. In the first chapter of the
first book we are told that the science of architecture, itself consisting
of practice and theory, is dependent on, or accompanicd by,
numerous other disciplines. The architect should be a man of
letters, a drafisman, a skilled geometer familiar with scientific
investigations, a student of philosophy with a knowledge of music
and of medicine, a man who knows law and has an understanding
of astronomy. He must, further, be acquainted with optics. In
giving the detailed reasons why the architect should be familiar
with other sciences Vitruvius gives some sound arguments, as well
as some very labored ones. Thus he tells us that “philosophy
explains the nature of things, whicn in Greek is called phyaologia,
a subject which it is necessary to have studied carefully because it
presents many different natural problems, as for example, in the
case of water conduction. . . ." Natural air pockets are produced
in the aqueduct courses, causing difficulties “which cannot be
remedied unless one has learnt from philosophy the principles of
natural phenomena.” And so the architect, to meet such situations,
should read the works of Ctesibius (a mechanician of Alexandria
dated about 283-247 B.c.?) and Archimedes. Furthermore a knowl-
edge of astronomy, he says, is necessary for the study of clocks. He
then pays tribute to Greek mathematicians and mechanicians, and
he lists a few of them.

Vitruvius clearly practiced what he preached, for he shows a
surprisingly good knowledge of Greek science. Among the observa-
tions of interest to the historian of science we may note his opimons
on the importance for man of the discovery of fire and human
discourse, as well as on the importance of man's life in common and
the advantage gained by the use of his hands:

Therefore, because of the discovery of fire, there arose at the be-
ginning, concourse among men, deliberation and a life in common.
Many came together in one place, having from nature this boon
beyond other animals, that they should walk not with their head
down, but upright, and should look upon the magnificence of the
world and of the stars. They also easily handled with their hande and
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fingers whatever they wished. Hence after thus meeting together, they
began, some to make shelters of leaves, some 1o dig caves under the
hills, some to make of mud and wattles places for shelter, . . .
{Vitruvius, On Architecture, Book 11, Chap. 1, Loeb Classical Library
translation of F. Granger, London, 1931.%)

Meteorologists will find interesting Vitruvius' description of
wind currents (1, 6) and, particularly, of the wind tower built at
Athens by Andronicus of Cyrrha. Vitruvius describes the tower as
an octangular marble structure “and on the several sides of the
octagon, there were representations of the winds carved opposite
their several currents. And above that tower he {Andronicus)
caused to be made a marble upright and above it he placed a bronze
Titan holding a rod in his right hand, He 30 contrived it that it was
driven around by the wind and always faced the current of air, and
held the rod as an indicator above the representation of the wind
blowing."

The ninth book is devoted to astronomy; although it is quite
elementary, there are some passages worthy of note. In the first
chapter Vitruvius alludes to the doctrine of the revolution of Mercury
and Venus about the sun, without mentioning the name of its
author, Heraclides (see Chap. Seven): “The stars of Mercury and
Venus make their retrograde motions and retardations about the rays
of the sun, forming by their courses a wreath or crown about the sun
itselfl as center™ (T. L. Heath, Anstarchus of Samos, Oxford, 1913, p.
255). Another section (IX, 8) tells us of the construction of water
clocks attributed to Ctesibius. According to Vitruvius, Ctesibius, who
was the son of a barber, discovered the nature of wind pressure and
the principles of pneumatics. We get the impression thar Vitruvius
believes him to be the father of the Greek mechanicians whose works
we have described in Chapter Six. The clocks described by Vitruvius
are of considerable ingenuity,

Book X of On Architecture he devotes to mechanics. A machine
he defines as “'a continuous material system having the power to
maove weights." He classifies machines as (1) ladders, (2) pneumatic
machines, and (3) traction machines depending on equilibrium.
The machines described resemble those found in the works of Philo
and Hero and are often given in great detail, And should anyone
think that the machines devised were used only as toys, as the
materialists ofien say, let him read Chapter 2 (section 11), where

* Quoted by permiimion of the present publisher and holdes of the copyright, the
Harvarnd University Press.
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there is described an ingenious device for bringing the shafts to be
used as columns from the quarries to the Temple of Diana at
Ephesus, and let him also read Chapters 4-7, which detail devices
10 be utilized for the raising of water. Included in the latier dis-
cussion is a pump attributed to Ctesibius. We know that water
pumps of this kind were utilized in the water system of the Romans,
for the remains of such a pump from Bolsena in Etruria is now
extant at the British Museum. Note should be made also of the
tiydraulic organ described by Vitruvius (X, 8) and Hero ( Preumatics,
I, 42). It was supposedly invented by Ctesibius and used in late
antiquity and the early Middle Ages by the Christians, OF similar
interest is Vitruvius' description of a hodometer to measure the
distance traveled by a four-wheeled carriage or by a ship | M, g; el
Hero, Dioptra, 34).

The principal manuscripts of On Architecture are of the early
medieval period, and the best manuscript comes from the cighth
century. Hence we must conclude that Vitruvius was not without
some influence in the carly medieval period. Those fortunate
enough to have a copy of Vitruvius' work at hand were in contact
with a writer who had some real understanding of Greek science.

¥

Even more closely dependent on Greek sources than Vitruvius
was the Roman medical writer Celsus, who composed a treatise
called On Medicine. Little is known about Celsus. He appears to
have lived in Narbonne and to have been born about 25 s.c. It is
quite possible that this treatise was the second part of a seientific
encyclopedia, which included books on agriculture, military science,
rhetoric, philosophy, and jurisprudence. It is a moot question
whether Celsus was a physician or merely a capable summarizer.
It is further mooted whether the medical work represented an
original editing and paraphrasing of Greek medical sources or
whether it was a direct translation of a Greek original. Whoever
composed the treatise, it demonstrates a firm grasp of Greek medicine
as it existed about the first century after Christ. The introductory
section, from which we have quoted in Chapter Four, gives a sum-
mary of the history of Greek medicine, Its value to the historian of
science lies in its references to the principles of method followed by
Greek medical practitioners.  The author follows neither the
Dogmatists nor the Empiricists exclusively, but seems rather to
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assume a middle course. One of his more recent editors has described
the anatomical knowledge of Celsus as fair. Four of the chief manu-
scripts of On Medicine date from about the ninth and tenth centuries
and show that the work had some currency in the early Middle Ages.

We have already spoken of the progress of the Romans in the
development of military and public hospitals and of their remarkable
sewage system in Rome, the so-called Cloaca Maxima, which
emptied into the Tiber. And reference has likewise been made to
the Roman aqueduct system. A description of the latter has come
down to us from Frontinus, who flourished from A.p. 35 to 103.
Entitled On the Waters of the City of Rome, it has scientific interest
because of its description of the volumetric measures used in com-
puting the capacity of the aqueducts. This part constitutes a nice
dissertation on measures. [t demonstrates an appreciation of the
fucts that the pressure of water flow increases with the height or head
of the water supply and that the volume of water delivered is re-
duced as the length of the conduit is increased, “owing to the resist-
ance of the conduit.”

Although the Romans never achieved anything like the inde-
pendent theoretical investigation of natural history of Aristotle and
Theophrastus, they were keenly interested in the subject, particularly
in its practical aspects. Thus we have a number of good agriculwural
treatises written in Latin, as well as an excellent treatise on veterinary
science by Renatus (A.p. 383-450). On the less practical side,
encyclopedic works such as that of Pliny contain much of interest to
the nature lover.

b |

In our discussion of Celsus and Frontinus we have pushed well
into the first century of our era. And in this century we are Brought
face to face with the celebrated authors Seneca and Pliny. These
men were neither theoretical scientists nor specialists in one of the
arts or crafts. And yet they cannot be left out of any discussion of
the history of science, because their influence on medieval writers
was marked.

We cannot detail here the life of Seneca, but we should note that
he was born toward the beginning of our era (estimates run from
810 1 B.c.), in Cordova, Spain. Although he appears to have studied
in his youth many of the numerous sects and philosophical move-
ments of his day, he reflects the Stoic philosophy more than that of
any other school. Seneca spent many years in political positions,
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playing the game of palace intrigue which finally, after Nero's
dissatisfaction with him, resulted in his enforced suicide,

The only one of Seneca's many writings of interest to the historian
of science is his Natural Questions, written soon afier A.n. 63. The
questions treated covered varied topics in astronomy, meteorology,
physics, and physical geography. In the form that the work has
¢come down to us it is a potpourri, badly organized. A distinctive
feature of the work is that the author frequently draws morals for
man's conduct from his exposition of natural questions. Thus his
most interesting description of an earthquake in a.p. 63 is followed
by an essay on meeting death stoically,

Seneca's sources were primarily Greek and included Aristotle’s
Metearology, his Book of the Heavens, and possibly the pseudo-
Aristotelian De mundo (On the Universe); the writings of Theophrastus;
and the works of a number of less important writers. Just as he
appreciated the Greek sources, so he understood the essentially
progressive nature of the development of science, This he tells us in

a moving passage:

Why should we be surprized, then, that comets, so rare a sight in
the universe, are not embraced under definite laws . . . seeing that
their return i at long intervals? It is not yet fifteen hundred years
since Greece “counted the number of the stars and named them every
one.”” And there are many nations at the present hour who merely
know the face of the tky and do not vet understand why the moon is
obscured in an eclipse. . . . The day will yet come when the progress
of research through the lung ages will reveal to sight the mysteries of
nature that are now concealed. (Seneca, Natural Questians, Book V11,
Chap. 25, translation of J. Clarke, London, 1g10.)

Seneca’s style is loose and rambling, and the evidence of inde-
pendent research is generally lacking. Among the topics he treats
are meteors, halos, and rainbows; the nature of air, thunder, and
lightning; the forms of water, rivers, and seas; snow, hail, and
rain; the winds and atmospheric movements; earthquakes; and
comets, In drawing a moral on the movements of comets and the
various explanations thereof, how like the Christian authors such as
St. Basil he sounds:

Nor is it for man that God has made all things. How small a portion
of His mighty work is entrusted to us? But He who directs them all,
who established and laid the foundations of all this world, who has
clothed Himself with creation, as is the greater part of His work. . . "
(Natural Questions, Book VII, Chap. 30.)
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Pliny, Seneca's contemporary, iz in some ways analogous to the
‘Stoic philosopher. Born in A.p, 23 or 24, he died at the spectacular
eruption of Vesuvius in 79, a martyr to scientific curiosity. Like
Seneca his life was one of public service, and like the Cordovan he
drew morals from nature, but in our opinion without the hypocrisy
of Seneca. He entered military service and served the emperors
Vespasian and Titus in various capacities.

The work that brings Pliny into the annals of science is his
voluminous Natural History, clearly one of the most important books
in the Latin tongue. Some thirty-seven books of the Natural History
remain as a storchouse of antique learning. As he tells us in his
dedication, he has included *“‘20,000 topics all worthy of attention
.+ . gained by the perusal of about 2000 volumes . . . of one
hundred select authors.” (Modern students of Pliny believe they
have found some 400 to 500 authors used.) One of the striking
things about Pliny's technique is his scrupulous citation by name of
the authorities he has employed. He tells us he thinks it courteous
and modest to acknowledge sources from which he has derived
assistance, Although on occasion he attacks Greek authors, his work
is either directly or indirectly dependent upon them.

Since the Natural History is a compilation, its accuracy and value
vary from book to book in accordance with the sources Pliny
utilizes, as is frequently true of encyclopedias. Little of the material
is the result of his own scientific research, But he does show critical
acumen in places, and some of the stories cited to prove his credulity
are often simply evidences of his attraction to curiosities, showing
rather the antiquarian than the devotee of the fabulous and marvel-
ous. Perhaps the key to his attitude is revealed by the statement of
his nephew Pliny the Younger to the effect that his uncle thought that
no book was so bad that some good might not be gotten from it.
Lynn Thorndike has pointed out that, although Pliny condemns
magic, he often seems unable to distinguish between magical and
natural phenomena, an inability shared by many of the writers of
his and a later day, and perhaps symptomatic of the second-hand,
encyclopedic type of learning.

The general arrangement of the materials of the thirty-seven
books of the Natural History is worth noting. Book I is dedicatory and
contains a table of contents. The second book summarizes astronom-
ical knowledge. Then follow four books on geography and a book
on man and his inventions. Books VIII-XI are zoological, describ-
ing various animals with real and fabulous properties. Books XI1I-
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XIX are botanical in content, and they are followed by eight books
that deal with medicines derived from plants. Books XXVIII-
XXX] deal with medicines compounded from man and animals,
Book XXXII treats of the properties of aquatic animals, and the
last books are concerned with metallurgy, plants, and gems.

Among the most interesting of Pliny’s chapters is the one (11, r12]
on the dimensions of the carth. Here he rather grudgingly reports
the value of 252,000 stades found by Eratosthenes, which value he
equates 1o 31,500 Roman miles. He notes that the value is presented
with such subtle arguments that we must give assent to them. He
gives at the same time a larger value which he autributes to
Hipparchus. At the same time he cannot resist (nor can we) giving
a most remarkable determination of one Dionysidorus, a determina-
tion that Pliny, no doubt with his tongue in his cheek, characterizes
as “less worthy of confidence.”

He was a native of Melos, and was celebrated for his knowledge of
geometry; he died of old age in his native country. His female
relations, who inherited his property, attended his funeral, and when
they had for several successive days performed the usual rites, they are
said to have found in his tomb an epistle written in his own name to
those lefi above; it stated that he had descended from his tomb to the
lowest part of the earth, and that it was a distance of 42,000 stadia,
There were not wanting certain geometricians, who interpreted this
epistle as if it had been sent from the middie of the globe, the point
which is at the greatest distance from the surface, and which muse
necessarily be the center of the sphere. Hence the estimate has been
made that it is 252,000 stades in circumference.

(Pliny, Natural Histery, Book 11, Chap 112, translation of J. Bostock
and H. T. Riley, London, 1855.)

The more we learn of early medieval science the more we realize
that Pliny, at least in excerpt form, was quite widely known in the
carly Middle Ages, from the eighth century onward, And before
that time he was known through St. Isidore and others. The work
of one of his plagiarizers, Solinus (who wrote some unknown time
after Pliny), was also known, particularly to St. Isidore, whose
encyclopedia, which will be discussed later, was a most widely read
work. Also current was a collection of medical excerpts entitled the
Medicine of Pliny. And, as we shall sec in a later chapter, his state-
ments on astronomy were excerpted and became part of a com-
putistical corpus that attained wide popularity from about the

cighth century.
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The story of Roman science does not, of course, stop with the
figures of the first century. But we should like to postpane presenting
the Roman science of late antiquity until a later chapter, so that we
may examine the transition to medieval science more closely. For
there is a clearly discernible set of ties between the Roman science
here presented and the Latin science of the carly Middle Ages. But
before we examine these ties, something should be said on the
effect on science and on learning in general of the spiritual forces
loose in the empire.



PART 11

Science in Late Antiquity






CHAPTER NINE
Science and Spiritual Forces in Late Antiquity

1

N the first part of this volume we have traced the rise of Greek

science and its development to maturity. We must now investigate
the fate of that science in late antiquity. We must see what modifi-
cations and reorganizations the Greek corpus of science and philos-
ophy underwent in late antiquity, in preparation for its long journey
as it passed successively into Syriac, Arabic, and Latin.

It has already been suggested that Greek science did not decline
radically in late antiquity, at least to the point where it was no
longer worked over and studied. We have said that it leveled off.
This leveling off was undoubtedly tied up with complicated social
and political changes brought about in the Mediterranean area by
the rise and spread of Roman power. But it would have taken a fine
eye in the first two or cven three centuries of the Christian era to
detect any decline in Greek science or the Greek rational spirit by
an examination alone of the works of the best scientists.

Let us suppose that our investigator examined the extraordinary
activity of Pralemy in the second century. In the Almagest, he would,
as we have already noted, find one of the highest products of Greek
astronomy, the author of which is clearly a peer of the best that the
Hellenistic period had to offer in astronomy. Or, if he were fortunate
enough to read Ptolemy’s other works, he would see other scientific
topics being treated with the same fine critical spirit in conjunction
with mathematical and observational techniques. After reading the
Optics, usually attributed to Ptolemy, our invesugator would con-
clude that this was certainly the best of the numerous optical
treatises that came out of Hellenistic and post-Hellenistic times.
Nowhere else would he find so nice a juncture of mathematics and
experiment, even though the mathematics is of an elementary nature.
On turning to Ptolemy’s Geography, he would see a work that extends
the Hellenistic beginnings in mathematical-scientific cartography.
Furthermore, he would find in the Planisphere some of the funda-
mentals of sterecographic projection. He might begin to wonder if
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he had not found some evidence of a nonscientific approach as he
read Polemy's astrological work, the Tefrabiblos, But even here the
critical spirit is present,

On pursuing his inquiry into the scientific works of the second
century, our investigator would examine, if he had time, the 153
books of Galen. He would find among them such works as On the
Use of Partr and On the Natural Faculties, which contain the best in
Greek medical and biological research; and if he found errors and
petty argumentation, he could find them, too, in the writings of
Greek scientists of an earlier period. But we ask him particularly to
read the passage quoted in Chapter Four, Section ! {and numerous
others like it), which shows Galen as an imaginative proponent of an
experimental procedure.

Now it might be said with some justification by our investigator
that some of the other scientists, particularly a number of the
mathematicians of the first centuries of our era, were mediocre
products of Greek science. Thus Nicomachus, who flourished about
AD. 100 and who seems to have been a Pythagorean, wrote an
inferior Intraduction to Arithmetic, But it should be remembered that
we tend to compare Nicomachus with the very best men, such as
Euclid or Archimedes. OF course he does not come up to their
genius; nor does he compare with Prolemy, or Diophantus, or
Pappus—men close to his own time, In fact, Nicomachus is im-
portant to the historian of science mainly because the Roman states-
man and philosopher Boethius, on the very edge of the Middle Ages, in
the sixth century, wrote a manual of arithmetic based on Nicomachus,
and thus indirectly established him as the chief authority on arith-
metie, whose work was availahle in Latin in the carly Middle Ages.

If Nicomachus was not in the same class with the great geometers
of the Hellenistic period, his work nonetheless bears the imprint of
Greek rationalism. The same can be said for two authors of the
first century who wrote on the subject of spherical geometry,
Theodosius and Menelaus. Both were compilers [but so was
Euclid). Yet the Spherics of Menelaus was an advanced and perhaps
cven oniginal work. It included a treatment of spherical triangles
that was more comprehensive than Euclid's presentation of plane
triangles. And its third book is one of the landmarks in the early
history of trigonometry. Because of their importance for astronomy,
the works of both Theodosius and Menelaus were ranslated in the

high Middle Ages and became part of the medieval mathematical-
astronomical corpus,
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We have already suggested that Galen and Ptolemy were not the
only authors of the early Christian era who represented Greek science
at its highest level. Hero of Alexandria also belongs to that select
group. We have already discussed his Mechanics as being the cul-
minating effort of mechanics in late antiquity (see Chap. Six) and
as containing both theoretical and applied mechanics. His writings,
particularly the Meirica, which included many formulae, and his
commentary on Euclid's Elements (of which parts remain in Arabic)
reveal him as an excellent mathematician,

It is generally agreed that one of the most powerful and skilful
of the Greck mathematicians was Diophantus of Alexandria ( fl. ca.
A.D. 250). A kind of geometrical algebra had existed from the
earliest days of Greek mathematics, and probably from the time of
Fuclid it had even been used to find numerical answers; Diophantus
in his Arithmetic greatly extended algebraic analysis beyond the
point of the earlier Greek mathematicians. In addition, his use of
algebraic notation was, so far as we know, original. In the develop-
ment of his algebra he may have been dependent in some fashion on
the well-developed Babylonian algebra or even on the less advanced
algebra of Egypt. But neither of these early algebras used symbols.
We shall go into the question of algebra a little more extensively in
a later volume, when we discuss its further maturation in Islam;
but we can note here in passing that Diophantus used a sign for the
unknown in an equation {something on the order of the modern
usage of x for that quantity); similarly, he had special signs for
powers of the unknown, such as x% % etc. But since he had only
one sign for the unknown instead of several, such as x, 3, 2, whenever
he dealt with more than one unknown he had to use great skill to
avoid confusion. Diophantus also used a symbol for subtraction, a
minus sign. Thus he used symbols on the one hand for an unknown
quantity and on the other for operations. Since the establishment
of symbols was one of the real stimuli to the rapid development of
algebraic analysis in early modern times, it is indeed unfortunate
that Diophantus’ initial efforts produced little response among
medieval algebraists. Diophantus easily solved quadratic equations
(involving the unknown squared) and in one special case a cubic
equation. His name is still connected with the solution of what are
called indeterminate equations. There can be little doubt that
Greek mathematical genius was still burning brightly at the time of
Diophantus.

Scarcely less gifted was the mathematician and mechanist Pappus
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of Alexandna, a junior contemporary of Diophantus, who Aourished
in the period 284-305. Pappus apparently set as his goal “the re-
establishment of geometry on its former high plane of achievement"
(T. L. Heath). Pappus’ activity was prodigious. Among his works,
extant only in part, were a commentary on the Elements of Euclid
and commentaries on the Mathematical Syntaxis and Planisphere of
Ptolemy. Probably his greatest work was his enormous Mathsmatical
Collection, which covered the whole field of geometry. Intended asa
handbook to be used in conjunction with the great treatises of
geometry, it nevertheless gave many alternate and independent
proofs. Itis a gold mine of historical information, mentioning and
discussing most of the famous geometers of the past. Sir Thomas
Heath, one of the ablest historians of Greek mathematics, has con-
firmed that “the whole work shows on the part of the author a
thorough grasp of all the subjects treated, independence of judgment,
mastery of techmique. . . ; in short Pappus stands out as an

accomplished and versatile mathematician, a worthy representative
of the classical Greek geometry.”

n

It should be unnecessary to extend further the evidence that,
although Greek science was not everywhere soaring to its greatest
heights, it flourished deep into the critical period of late antiquity
as a monument to the persistence of the Greek rational spirit.

Yet if our investigator were to look beyond the more obviously
scientific works, he would find an impressive amount of evidence of
the effects of spiritual forces that were predominant in the Empire
and that were to affect noticeably the pursuit of natural knowledge.
Now of course there were always such currents alive in the Greek
and Hellenistic world. But by the first centuries of the Christian era,
these forces were helping to produce profound social and intellectual
changes.

We shall not attempt here to assay critically the spread of
spiritual and religious movements. No doubt the merging of the
Greek and Near Eastern cultures in the Hellenistic period, & merger
confirmed by the establishment of Roman hegemony over the entire
area, provided an opportunity for that spread. It would be incredible
that the Near East should be Hellenized (however lightly) without
exerting some counterinfluence, first on the ruling Greeks and
Macedonians and later on the Romans. Numerous sects that were
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to multiply in the first centuries of the Christian era were strongly
indicative or reminiscent of a Near Eastern origin. While the inter-
mixture of the cultures offered the opportunity for the spread of the
spiritual movements, no doubt fundamental political and economic
causes favored their rapid growth in the Empire. One historian of
Roman religion, T. R. Glover, gives us a hint of this when he speaks
of “a rule that robbed men of every liberating interest in life and left
society politically, intellecrually, and morally sterile and empty.”
Not only did “a flood of vulgar superstition” attempt to fill this
moral vacuum, but also religious movements of higher character.

Let us take, for example, the cult of Isis, which spread from Egypt
throughout the Mediterranean. In its early stages it appears to have
been of an excessively superstitious nature, if we can believe the
Roman writers who scornfully labeled it a sancruary of superstition
and loose women. But by the end of the second cemtury it was
possessed of an organized clergy, prayer books, vestments, secret
initiations, a form of baptism, and fasting. Isis was the all-merciful
mother *who identified all the Divinitics with herself” and “who
was the power underlying all nature.”

Still other cults and offshoots were to influence the intellectual
activity of the Empire. We can mention, for example, the Gnostic
sect, for it appears to have had some influence on the mystical side
of alchemy. Gnosticism has been considered until very recently a
rather debased offthoot of Christianity. This opinion resulted largely
from our reliance on the opponents of Gnosticism for our judgments.
But the discovery recently of a block of some 1000 papyri containing
in Coptic (the language of Egypt) the religious books of Gnosticism
portends a change in the evaluation of Gnosticism. Preliminary
examination of this material has already shown Guosticism as a vital,
perhaps independent, religious movement with a significant sacred
literature of its own.

But the Christian church soon outdistanced its rivals, both as to
membership and as to influence. Its rapid growth in the third
century was met by a more forceful reaction from the Empire.
Where persecutions before had been occasionally spectacular but
really inconsequential, from 250 onward political persecution on a
large scale became more frequent until 313, when Christianity won
its major victory and was accepted on equal footing with the other
religions of the Empire. In fact, its influence soon greatly exceeded
that of the other religions, and within a century after its acceptance
it was, for all intents and purposes, the state religion. What is
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important for the historian of science is that from about the year 200
the Church began to attract in fairly significant numbers men who
might have gone into philosophy or science but now undertook the
writing of Chrisuan apologetic and dogmatic literature. And, as we
shall see in the next chapter, when these early fathers of the Church
concerned themselves with scientific matters their opinions were
naturally colored by their moral and religious predispositions.

m

One of the most interesting evidences of the influence of the
spiritual movements on intellectual activity was the so-called
Hermetic literature. This was a collection of works attributed to the
god Hermes Trismegistus (“the thrice-great Hermes") or to his
Egyptian counterpart, Thoth. It included treatises on many
subjects, including alchemy, astrology, astronomy, physics, embry-
ology, botany, medicine, and numerous topics of a purely magical,
mystical, or religious character which are not of concern to us.

Why were these writings attributed to Hermes or Thoth? From
the ecarliest times, the Egyptian god Thoth was designated as the
secretary of Osiris and then as the inventor of writing. Later he
became the patron and discoverer of the sciences. After Greek
mythology fused with Egyptian in the Hellenistic period, Thoth or
Hermes began to be designated as the author of various treatises of
a religious and quasi-scientific character.

Dating of the origin of these writings is elusive. Although some
references to such treatises apparently go back at least to the first
century 8.c., more clear-cut references appear in the following
century. By the second century a number of treatises existed,
according to contemporary references.

The motivation behind attribution of the writings to a god is
obvious—to give the treatises in question the authority of sanctity
and age. As revealed literature they pretended to be the word of
Hermes and therefore to be beyond contradiction. The spread
of the revelation technique to topics of scientific interest constituted
a profound alteration in scientific literature. In a sense it was the
Greek miracle in reverse, In the Hermetic corpus the appeal to
supernatural causation and to the continuous and direct influence
of supernatural on natural phenomena was made on a wide scale.
Divine revelation as the source of truth, even of scientific matters,
also became characteristic of Christian writing, and it persisted into
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the Middle Ages even when it was played down in favor of empirical
cvidence.

In spite of the revealed character of the Hermetic writings, their
most recent and authoritative student, A. M. Festugiere, has come
to the conclusion that they do not represent the work of a single
religious order; they were not the “bible” of a sect. Rather,
Hermeticism was one of the forms thar Hellenistic pietism took when,
in the words of Festugiére, it became “‘fatigued with rationalism.™
It abandoned itsell to revelation. The Egyptian touches were in
part local color intended to lend mystery and authority.

v

Among the various topics treated in the Hermetic corpus was
astrology. Although in general we shall not consider the fortunes of
astrology in this volume, a word about its spread in late antiquity
will reveal more clearly the effect of the spiritual currents on scientific
endeavor.

Now it must not be thought that astrology was born in Hellenistic
or Roman times, For in one form or another it existed as early as
the third millennium B.c. in Mesopotamia, and the Greeks themselves
were acquamted with it before the time of Plato. We know that
Theophrastus composed a work called On the Signs, treating Chaldean
judicial astrology, but it is now lost. On the testimony of Cicero we
know also that the Stoics were well disposed toward the art imported
from Chaldea. Among them was Posidonius (about 135 to about
50 B.C.), an astronomer of some note who made a new determination
of the circumference of the earth based on a method somewhat
different from that attributed to Eratosthenes (see Chap. Seven).
Posidonius seems to have been addicted to astrology and to have
written some five works on it. He made a carcful study of the tides
and appears to have used the obvious connection of the moon's
movement with the tides as evidence for his astrological views. It
was Posidonius’ account of astrology that St. Augustine studied in
his youth.

It is clear that in spite of the long acquaintance of Greek authors
with the basic tencts of aswrology its rapid spread, which had
already been apparent in the Hellenistic period, increased in extent
in the first centuries of the Empire. The major objectives of this
astrology are to trace the influence of the positions and the move-
ments of celestial bodies on terrestrial activities in general and on
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those of man in particular, and by a knowledge of these influences,
to predict events, including even the character and life of man.

Certain fundamental philosophical ideas lay behind the accept-
ance of astrology in the Greco-Roman period. Initially Aristotle
had given sanction to the influence of the movements of celestial
bodies on the terrestrial, or sublunar, world. *“This (sublunar)
world is tied in some way and in a necessary manner to the local
movements of the superior world, in such a way that all the power
which resides in our world is governed by these movements”
(Metearology 1, 4). Yet Aristotle elsewhere accepted chance and
undetermined occurrences in our world and he certainly appears to
have supported freedom of individual decision. This later came to
be the basic difficulty for the Christian astrologers: how to reconcile
determinism with the free will of man, The Stoics simply accepted
the determinism unqualifiedly.

Among the Stoics and their successors, a related but important
philosophical doctrine also acted to support astrology—namely, the
doctrine of the unity of the cosmos. From this unity of the ordered
universe followed the interdependence of all of its parts, and partic-
ularly the dependence of the terrestrial parts on the movement and
activity of the celestial, An allied doctrine that was also woven
into the general pattern of astrology was that of the identity of the
macrocosm (the universe) with the microcosm (man). Man was
considered a small cosmos reflecting the larger world. Man, there-
fore, acted in sympathy with the activity of the universe,

We are particularly interested in the relationship of astrology not
only with philosophical doctrines but with the science of the time.
From the early days of astrology its liaison with astronomy was
close. Aswrology naturally had to use astronomy for a determination
of the positions and movements of the celestial bodies, for such a
determination was the point of departure of the astrologer. Astrol-
ogy, on the other hand, often provided the means of remuncration
for the astrologer-astronomer. The union of astronomer and astrol-
oger in one person was an old one in Mesopotamia, but apparently
not in Greece, In all probability such a union was not common until
Hellenistic times or later. We have mentioned the astronomer
Posidonius, of the first century n.c., who was also interested in
astrology. But the classic example was Piolemy, in the second
century of the Christian era. His Tetrabiblosr was one of the most
influential astrological writings of all time. Its influence was felt in
late antiquity as well as during the Middle Ages. Part of the work’s
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influence was due to its scientific form. It took up eritically the
problem of the validity of the astrological art, and the arguments
for and against that validity were carefully marshaled.

Ptolemy next proceeds to set forth the natures and powers of the
stars “according to the observations of the ancients and conformable
to matural science.” Later, when he comes to the prediction of parte-
ulars, he still professes 1o follow everywhere the law of natural
causation,’’ and in a third passage he states that he “will omit all those
things which do not have a probable natural cause, which many never-
theless scrutinize curiously and to excess: nor will 1 pile up divinations
by lot-castings or from numbers, which are unscientific, but 1 will
treat of these which have an investigated certainty based on the
positions of the stars and the properties of places. . . " The Tetrabibles
has heen called “Science's surrender,”” but was it not more truly
divination purificd and made scientific? (L. Thorndike, A4 History of
Magic and Experimental Science, I, New York, 1923, pp. 112-113.%)

We shall note only briefly at this point that the rise of astrology
did not take place unchallenged. Cicero and other pagan authors
had already attacked the doctrine of the Chaldeans before Christian
authors opposed it on the ground that it jeopardized the doctrine of
free will.

v

Another important quasi-scientific product of the spiritual forces
of late antiquity was alchemy, the art of transmuting baser metals
into gold and silver. The technical details of alchemy we shall
examine in a later volume, when considering Islamic alchemy.
Now we would like merely to tic up its origins with the movements
under consideration in this chapter.

Following one of the ablest students of alchemical history, E. J.
Holmyard, we can single out three important currents that came
together to produce alchemy sometime in the first three centuries of
the Christian era.

(1) The first of these currents is the tradition of the practical
working metallurgists, particularly that of the Egyptian metallur-
gists, for it was apparently in Egypt that the beginnings of alchemy
took place. Now we observed in passing in the first chapter that
among the technical arts, metallurgy gained an early maturity;
methods were developed to reduce metals from their ores, to cast, to
form alloys, etc. Atsome time during the development of metallurgy

* Quoted by permission of the publisher, the Columbin University Pres.
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it became fashionable o color metals artificially so that they would
resemble gold or silver. Presumably this imitation of precious metals
was already an ancient custom by the time these recipes first began
to be written down. We have some of these technological recipes,
written on papyrus and dating from the third century. The recipes
were not alchemical in nature. They do not pretend to accomplish
transmutation. Their objective is simply to produce 2 product that
looks like gold or silver. They are completely free from philosophical
or mystical considerations.

(2} Tf the metallurgical techniques afforded the practical and
experimental background to alchemy, it was Aristotle’s basic view of
the elements and their possible transmutations that provided the
theoretical element. As we have already indicated in Chapter Six,
Aristotle believed that the elements could be and were continually
undergoing transformation, one into another, in nature. Now it was
the objective of the later alchemists to see that this transformation
took place at the will of man, Processes were sought that would
produce the qualitative changes necessary to make changes in
clements, More specifically, the alchemists adopted the Aristotelian
view of the nature of metals and minerals found in the Meteorology:

We maintain that there are two exhalations, one vaporous the other
smoky, and there correspond two kinds of bodics that originate in the
carth, “fossih'" and metals. The heat of the dry exhalation is the
cause of all “fossils."" Such are the kinds of stones that cannot be melted,
and realgar, and ochre, and ruddle, and sulphur. . . . The vaporous
exhalation is the cause of all metals, those bodies which are either
fusible or malleable such as iron, copper, gold. All these originate
from the imprisonment of the vaporous exhalation in the earth, and
especially in stones, Their dryness compresses it, and it congeals, . . .
Hence, they are water in & sense, and in a sense not, Their mater was
that which might have become water, but it can no longer doso . . .
they all (except gold) are affected by fire, and they possess an admixture
of earth; for they still contain the dry exhalation. (Aristotle, Meteor-
ology, 111, 6, translation of E. N, Webster, Oxford, 1g23,%)

This doctnine of exhalation was to be taken over by the Islamic

alchemists and to become the foundation of their theory of metals,
the so-called sulphur-mercury theory.

{3) Metallurgy provided the experience and Aristotelian
philosophy the chemical theory behind alchemy. But its third
clement—the essential clement, one can say—was the mystical

* Quoted by permission of the publisher, the Clarendon Press; Ondoed, England.
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doctrine that formed the cement which bound alchemy into a whole.
This element was fed to alchemy by the Hermetie, Gnostic, Neo-
Pythagorean and Neo-Platonic literature of the first three centuries
of our era. The first of the distinctly alchemical warks to possess the
mystical and allegorical element dates from about the first century
before Christ or the first century after Christ. These were generally
attributed to earlier historical figures, such as Democritus, who was
renowned for having spent some time in Egypt, and to gods, such as
Hermes. These carlier works are referred to by later authors with
obvious reverence, for they seem to give doctrine the sanctity and
authority of religions dogma.

One of the first historical alchemists whom we can clearly identify
is Zosimos of Panopolis, who lived at Alexandria in the third century,
Zosimos occupied a central position in the growth of alchemy, for
he unites the carlier tradition with the later Greek alchemy. A
number of the later alchemists composed commentaries on the works
of Zosimos or were at least inspired by his writings, As we shall sce
when we examine alchemy in greater detail later, these works
contain much of importance for the growth of practical chemical
techniques and equipment, even though they possess strong mystical
overtones (sce Fig. 32). Mystical allegory is particularly evident in
the Greek alchemical treatises. Ome finds Lynn Thorndike's
judgment on the allegorical side of these writings repeatedly con-
firmed as one dips into the great collection of Greek alchemical
texts edited by that pioneer student of alchemy P. E. M. Berthelot:

These early alehemists were also greatly given to mystery and
allegory. “Touch not the philosopher’s stone with your hand," warns
Mary the Jewess, “you are not of our rice, you are not of the race of
Abraham.” In a tract concerning the serpent Ourobores we read,
“A serpent is stretched out guarding the temple, Let his conqueror
begin by sacrifice, then skin him, and after having removed his flesh
to the very hones, make a stepping stone of it to enter the temple.
Mount upon it and you will find the object sought. For the priest, at
first & man of copper, has changed his color and nature and become a
man of silver; a fow days later, if you wish you will find him changed
into a man of gold."” Or in the preparation of the aforesaid divine
water Ostanes tells us to take the eggs of the serpent of oak who dwells
in the month of August in the mountains of Olympus, Libya, and the
Taurus, Synesisus tells us that Democritus was initinted in Egypt at
the temple of Memphis by Ostanes, and Zosimus cites the instruction
of Ostanes, "Go towards the stream of the Nile; you'll find there a
stone; cut it in two, put it in your hand, and take out its heart, for its
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soul is in its heart." Zosimus himself often resorts to symbolic jargon
to obscure his meaning, as in the description of the vision of a priest
who was torn to pieces and mutilated himself, He, too, personifies the
metals and talks of 4 man of gold, a tin man, and so on. A brief
example of his style will have to suffice, as these allegories of the
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Fio. 32.—Greek alchemical equipment appearing in
medieval Byzantine manuseripts.

alchemists are insufferably tedious reading. *Finally I had the longing
to mount the seven steps and see the seven chastisements, and one day,
as it chanced, 1 hit upon the path up. After several attempts [ traversed
the path, but on my rewrn, ! lost my way and, profoundly discouraged,
secing no way out, [ fell asleep. In my dream 1 saw & little man, a
barber, clothed in purple robe and royal raiment, standing outside the
place of punishment, and he said to me. . , ."" [The whole is of course
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an allegorical description of transmutation.] When Zosimus was not
dreaming dreams and secing visions, he was usually citing ancient
authorities.

At the same time these early alchemists cannot be denied a certain
scientific character, or at least a connection with nawral science,
Behind alchemy existed a constant experimental progress. “Alchemy,"
sayvs Berthelot, “‘rested upon a certain mass of practical facts that were
known in antiquity and that had to do with the preparation of metals,
their alloys, and that ol artificial precious stones; it had there an experi-
mental side which did not cease to progress during the entire medieval
period until positive modern chemistry emerged from it.” (Thorndike,
A History of Magic and Experimental Science, 1, pp. 197-108.%}

VI

In discussing the rise of alchemy we made reference to Neo-
Pythagoreans and Neo-Platonists. The rise and spread of their
interrelated philosophical movements is further testimony to the
strength of the spiritual forces loose in the Empire. It is most
difficult o order the miscellancous information that remains of the
Neo-Pythagorean movement. We see traces of this movement from
the first century B.c., and it is not impossible that there were tenuous
ties of the Neo-Pythagorean movement with the remnants of the
older Pythagorean movements of the fifth century 8.0, The greatest
difficulty of all is experienced in trying to separate doctrines of the
Neo-Pythagoreans from those of the Pythagoreans of the early
period, because of the tendency to ascribe everything to the master
himself as a kind of a prophet. In fact, in many ways the Neo-
Pythagorean movement appears to us more as a church than as a
philosophical school. Discussion among the members was terminated
by the almost ritualistic expression ipse dixit (or, in Greek, autos epha)
—i.c., “He (Pythagoras) has declared. . . ."" There existed a
Pythagorean catechism. Pythagoras' doings, like the later acta of the
Christian saints, were recorded, and included among them were
miracles. Sacred books were attributed to him. Hymns were com-
posed. In the course of the development of the movement Homer
and Plato were annexed to it. The works of both were the object
of exegesis to reveal their spiritual messages.

The importance of mathematics and particularly of number
theory to the Neo-Pythagorean movement apparently caught the

* Quoted by permission of the publisher, the Columbia Univenity Pres,
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imagination of a number of mathematicians who associated them-
sclves with the movement. We have already mentioned the rather
mediocre mathematician of the first century, Nicomachus, who is
said to have been a Pythagorean and to have composed, in addition
to his manuals on arithmetic and harmony, a work on the “theology™”
or mystic properties of numbers.

This devotion to mathematics is also apparent among the Neo-
Platonists, who undoubtedly had ties of varying firmness with the
Neo-Pythagorcan movement. We cannot possibly detail the
philosophic content of this movement, so irritating at times and yet
so important for an understanding of the intellectual history of the
Middle Ages; but its relationship with contemporary and medieval
science should not escape us. Among the early Neo-Platonists
Plotinus should be mentioned, who flourished from about 203 to 2;0.
Historians of philosophy concern themselves with Plotinus’ develop-
ment of the characteristic Neo-Platonic doctrine of the emanation
and hierarchy of beings and powers, this emanation proceeding from
the First Being through spiritual or noncorporal beings to matter.
The influence of the spiritual forces of the times is reflected in the
importance given to incorporeal beings, such as Intelligence (Nous)
and Soul (Psyche) in this hierarchy, and in the assumption of matter
as the source of evil. It should be remarked that the mystic excesses
founded in the works of some of the later Neo-Platonists are missing
in the works of Plotinus. He was at times quite critical of the occult
science of his day. Thus he asserted that diseases are due not to
demons but to natural causes. It is true that he accepted the effects
of magic on the physical nature of man. “But the rational soul may
free itselfl from all influences of magic. . . . The life of reason is
alone free from magic" (paraphrase of Thorndike).

Plotinus’ amendment to astrological doctrine is worth noting.
The movements and positions of stars are generally not the causes of
events but are merely signs or indications of future events, although
in some cases they are both the causes and the signs, They operate
as signs because the First Principle has established a perfect harmony
among the manifold things that make up the universe, On the other
hand, ““Plotinus made a distinction between the extent of the control
exercised by the stars over inanimate, animate, and rational beings.
The stars signify all things in the sensible world but the soul is free
unless it slips and is stained by the body and so comes under their
control. . . . Plotinus arrives a1 practically what was to be the
usual Christian position in the middle ages regarding the influence
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of the stars, maintaining the freedom of the human will and yet
allowing a large field to astrological prediction.” (Thorndike, A
History of Magic and Experimental Science, 1, p. 306.*)

Among the successors of Plotinus, Iamblichus, who died about
330, is of some importance because of his interest in mathematics
and his close ties with the Neo-Pythagoreans. He composed some
nine books on the Pythagoreans, including a long life of Pythagoras,
a commentary on the Introduction to Arithmetic of Nicomachus, and
books on arithmetical science in physics, in ethics, and in theology.
He was well acquainted with Pythagorean number mysticism. He
is also credited with a short chemical tract.

Also important for the history of science were the late Neo-
Platonists Proclus, Simplicius, and Philoponus. The last two, who
flourished in the first half of the sixth century, played an important
role in the growth of the criticism of Aristotelian ideas, particularly
in mechanics. And their influence among the Islamic philosophers
and the later medieval authors was significant. Hence we have
reserved a separate chapter for them. Proclus (410-485) was
perhaps the ablest of the Neo-Platonic mathematicians, He was
trained at both Alexandria and Athens, In philosophy his renown
rested upon his numerous commentaries on the dialogues of Plato,
Apparently Proclus taught mathematics at the Neo-Platonic school
at Athens. One of the products of this teaching, no doubt, was his
Commentary on Book | of Euclid's Elements, 8 work rich in historical
references. Proclus also composed a work called Outline of Astro-
nomical Hypotheses, which was an introduction to Hipparchus and
Ptolemy.

That Neo-Platonism was responsive to the times is demonsirated
by the fact that this was the philosophy which was to have the most
influence on the early Christian writers as they composed their
apologetic and dogmatic works. To complete the chronicle of the
effects of the spiritual forces on intellectual and scientific activity we
must examine that Christian literature.

* Quoted by permision of the pulilisher, the Columbia Univenity Pres,



CHAPTER TEN
Science and Patristic Literature

1

E have singled out Christianity as the most important and

obvious result of the triumph of the spiritual forces that beset
the Empire in the first three centuries after Christ. We have also
noted that in its growth and triumph the Church siphoned off men
who might well have pursued natural philosophy or science. Then
we suggested, without documentation, that the fathers inter-
preted science according to their predilections for moral philosophy
and the predispositions that naturally came from their sacred
literature.

In this chapter we must provide some of the necessary docu-
mentation by examining more closely the attitudes prevalent among
the Church fathers toward Greek philosophy and science and then
by following this examination with a briel account of some of the
common scientific and philosophic opinions held by the fathers.

But before we undertake a more detailed analysis of the attitudes
and opinions of the fathers, we should note that the Christian thought
of late antiquity owed much to the fundamental attitudes and
opinions of the Jews who Aourished in Alexandria from the time of
the translation of the Pentateuch or Books of Moses into Greek,
about 260 B.c,, until the first century after Christ. Professor Harry
Wollson, of Harvard University, has shown that the attempt to use
Greek philosophy by these Jews of Alexandria, and particularly by
their outstanding philosopher Philo Judacus, whose activity extended
until about A.p. 40, resulted in the elaboration of some basic philo-
sophical and religious views that were stamped on the whole succeed-
ing religious philosophy of the late antique Greek Christians, of the
Syriac Christians, of the Islamic and Jewish medieval philosophers,
and finally of Latin medieval schoolmen.

The dominant position of revealed truth as opposed to rational
doctrine, with the relegation of philosophy to the position of a hand-
maiden to theology, the essential unity of correctly interpreted
revealed truth with correctly reasoned truth, the necessity of

130
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allegorical as well as literal interpretation, to say nothing of funda-
mental religious views that do not concern us here, such as the
existence and unity of God—all these basic attitudes and doctrines
appear in scattered fashion in the writings of Philo and were made
the basis of the medieval religious philosophy. And as we examine
the attitudes and opinions found in Patristic literature, we shall
more than once note their prior exposition by Philo.

If the fathers were to bend philosophy to the use of Christianity,
they first had to show wherein the philosophers, who were for the
most part, they claimed, ignorant of the Scriptures or had distorted
them, had fallen into error. Hence, even though philosophy was to
be used as a handmaiden by the fathers, they nevertheless often
criticized the philosophers with distinct hostility. One of the
favorite charges against the Greek philosopher by the fathers was
that he had gotten the truth, on occasion from the prophets, but
for pride and vainglory had distorted it. The Latin father Tertullian,
who flourished about A.p. 200, in his Apologeticus (Chap. 47), 2
defense of Christianity, expressed this view. He asks what poet or
sophist has not drunk at the fountain of the prophets? And he
asserts that “the philosophers watered their arid minds" from the
Scriptures. But the philosophers sought only glory and eloquence,
and “if they fell upon anything in the collection of sacred Scriptures
which displeased them, in their own peculiar style of research, they
perverted it to serve their purposes.” The hostility of Tertullian was
also demonstrated in the work Ad nationes (11, 2), where he endeavors
to show that the natural philosophers (physici) were in error, as well
as the poets and others. Now all things with the philosophers are
uncertain, because of their variaton. Philosophy has not recognized
that 3 man who has the fear of God and thus knowledge of the truth
of God has “full and perfect wisdom.” And even the truth which
the natural philosophers had discovered “‘degenerated into un-
certainty, and there arose from one or two drops of truth a perfect
Aood of argumentation (argumentationum inundatto).'

The argumentation, cantankerous disputes, and disagreement
of the philosophers on fundamental matters were often alluded to by
the fathers and contrasted with the supposed unity of Christian
belief. Thus St. Basil (§29-479), in noting the dispute that arose
among the philosophers over the nature of celestial bodies, remarks,
“If we attempt to treat here of these questions we shall fall into the
same pitfalls as they (the philosophers). Let us leave them to ruin
themselves and to refute each other™ (Hexameron, 1, 11.) In another
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place the same author compares the simplicity of spiritual discourse
to philosophical discussion. *“‘As the beauty of the chaste woman
surpasses that of the courtesan, so our discourse is superior to those
of men who are strangers (to Christianity)™ (Hexameron, 111, 8). St.
Augustine (354-430) expresses the same idea in his City of God
(XVIIIL, 41): *“As for our canonical authors, God forbid that they
should differ. . . . (But) let one look amongst all the multitude
of the philosophers’ writings, and if he find two that tell both one
tale in all respects, it may be registered for a ranty.”

But hard as Augustine is on the philosophers he does admit that
there is certitude in the work of the astronomers, who seck out things
by the nature and light of the spirit that God has given them. They
predict several years in advance solar and lunar eclipses, giving the
day, the hour, and the magnitude of the eclipses. And, he goes on
to say, that which they have predicted takes place just as predicted
{Confessions, ¥, 3).

Some of the hostility—one might better say indifference—to
philosophy stems from the fact that the philosophers, even where
they are not wrong, are missing the whole point of existence, the
discovery of God. So St. Basil castigates the astronomers most of all
for being so wrapped up in the vanities of their research that they
fail to comprehend the important truth, They hix the locations of the
stars in the northern and southern skies; they observe with great
care the retrogradations, the stations, the declinations, and other
movements of the heavenly bodies; they determine the periods of the
planets; and so on. But they miss one thing, “the discovery of God,
the Creator of the universe, the Just Judge” (Hexamerom, I, 4). In
like fashion Augustine in his Enchiridion insists that the opinions of
the physia are of little moment for the Christian:

When . . . the question is asked what we are to believe in regard 10
religion, it is not necessary 1o probe into the nature of things, as was
done by those whom the Greeks call physica; nor need we be in alarm
lest the Christian should be ignorant of the force and number of the
elements—the mition, and order, and eclipses of the heavenly bodies;
the form of the heavens; the species and the natures of animals, plants,
stones, fountains, rivers, mountains; about chronology and distances;
the signs of coming storms; and a thousand other things which those
philesophers have either found out, or think they have found out,
For even these men themaelves, endowed though they are with so much
genius, burning with zeal, abounding in leisure, tracking some things
by the aid of human conjecture, searching into others with the aid of
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history and experience, have not found out all things; and even their
boasted discoveries are afiener mere guesses than certain knowledge.
It is enough for the Christian o believe that the only cause of all
created things, whether heavenly or earthly, whether visible or in-
visible, i the goodness of the Creator, the one true God; and that
nothing exists but Himself that does not derive its existence from Him;
and that He is the Trinity—to wit, the Father, and the Son begotien of
the Father, and the Holy Spirit proceeding from the same Father, but
one and the same Spirit of Father and Son. . . . {Enchiridion, Chap.
IX, translation of J. F. Shaw.)

In another place (D¢ Genesi ad literam, Chap. 10) Augustine, in re-
plying to some detailed cosmological question, claims that the
answers take detailed investigation for which he has not the tme.
And this kind of activity is not useful and necessary for the Church,

If the fathers were often hostile or indifferent to the activity of the
philosophers, it was admitted, as the initial passage quoted from
Tertullian illustrates, that they occasionally did get hold of the
truth. But when they did, many of the fathers held, that truth came
ultimately from God. This truth was possessed first by the prophets
and is enshrined in the Scriptures. The truth revealed by God was,
when properly interpreted, true wisdom of a kind superior to results
of human reason. This attitude had prevailed among the Jews, as
was reflected in the works of Philo and was reiterated a century or
more later by the early Christian father Justin (ca. 150}, Justin tells
us that in ancient times there were “happy men., just men, cherished
by God, who spoke by the Holy Spirit.” These prophets made
oracles which have come to pass; they saw and announced the
truth to man, Those of their writings that still exist can be examined
with profit by the philosopher who sceks knowledge on the begin-
nings and end of things, or on any other matter. “But it is not by
demonstration they have advanced their statement, for they are
witnesses of the truth bevond any demonstration’ (Dialogue with
Trypho, Chap. 7).

This concept of truth by revelation, one of the paramount
attitudes present in the medieval writings, we have now se¢n to have
existed in the Hermetic writings, in the semiphilosophical works of the
Jews of Alexandria, and then in the works of the Christian fathers.
We have insisted that it constitutes a fundamental alteration from
the spirit of Greek rationalism, And the best science of the medieval
period is that which ignores or at least minimizes revealed truth in
favor of agreement with empirical evidence or rational cogency.
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But if the fathers thought of revealed truth as the more certain
knowledge, the early Christian father, and Philo before him, often
made the important supplementary assumption that there is really
only one truth, and properly conducted philosophy or human reason
will also arrive at that truth. This attitude has been called the
double-faith doctrine, when applied to truth of God; faith can be
achieved by both revelation and reason. The reader familiar with
medieval scholastic writings will recognize this as a fundamental
view of St. Thomas Aquinas.

Listen to Clement of Alexandria [ f. ca. 215) in his Miscellamies
as he talks about the gnostic, the seeker after truth.

For him knowledge (gross) is the principal thing. Conseguently,
therefore, he applics to the subjects that are a training for knowledge,
taking from each branch of study its contribution to the truth. Prose-
cuting, then, the proportion of harmonies n music; and in arithmetic
noting the increasing and decreasing of numbers, and their relations tw
one another, and how the most of things fall under some proportion
of numbers; studying geometry, which is abstract essence, he perceives
a continuous distance, and an immutable essence which is different from

these bodies. . . . And by astronomy, again, raised from the earth
in his mind, he is elevated along with heaven, and will revolve with its
revolution. . . . Further the gnostic will avail himself of dinlectics,

fixing om the distinction of genera into species, and will master the
distinction of existences till he comes to what are primary and simple.
But the multitude are frightened at the Hellenic philosophy, as children
are at masks, being afraid lest it lead them astray. Bur if the faith (for
1 can not call it knowledge) which they possess be such as 1o he dissolved
by plausible speech, let it be by all means dissolved, and let them
confess they will not resin the wuth. ( Mescellanies, Book V1, Chap. 10,
rranslation of William Wilson, New York, 1903.)

Clement goes on to say that the righteous man will not dread
cunning words if he is able to distinguish them or answer them
carrectly. Logic, then, becomes a bulwark so “that truth cannot be
trampled under foot by the sophists.” "“The studies of philosophy,
therefore, are aids in treating of the truth.” Clearly, Clement has
stressed the basic idea that was to persist from the time of Philo
through a good part of the Middle Ages, that philosophy is the hand-
maiden to religious truth—to theology, if you will. The hand-
maiden idea goes back at least to Philo, who notes that just as the
encyclical studies (grammar and other liberal arts) are hand-
maidens to philosophy, as the Stoics and others wished, so philosophy
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is the handmaiden of wisdam—i.e,, religious truth. Philo actually
uses the term “handmaiden™ (therapaimis).

Origen (ca. 185-254), Clement’s junior contemporary at
Alexandria, expresses this ancillary concept in much the same
fashion when he urges a [riend to direct the whole force of his
intellect to Christianity as his end:

And T would wish that you should take with you on the onc hand
those parts of the philosophy of the Greeks which are fit, as it were, to
serve general or preparatory studies for Christianity, and on the other
hand so0 much of geometry and astronomy as may be helpful for the
interpretation af the Holy Seriptures. The children of the philosophis
speak of geometry and music and grammar and rhetoric and astronomy
as being ancillary to philosophy; and in the same way we might speak
of philosophy itself as being ancillary to Christianity, (Epistle fo
Gregery, Chap. 1.)

Note that, of the disciplines mentioned by both Clement and Origen,
the ‘sciences of the quadrivinm—arithmetic, geometry, music, and
astronomy—stand out as the natural sciences. These are the sciences
first emphasized and grouped together by the Pythagoreans and then
pursued by the Platonists.

Although we have noticed in Augustine’s writings some im-
patience with secular philosophical studies as not leading o God,
there is a clear case of his utilizing the ancillary concept. In one
place in his Confessions (V, 3) he refutes certain Manichean (the
Manicheans were a quasi-Christian sect in the Near East) ideas
about astronomy by an appeal to the astronomy he had learned
following the rules of mathematics and his own eyes. The point of
Augustine's argument is that, even though Christianity rather than
science is wisdom, if we can show by an appeal 1o astronomy that the
Manicheans are wrong in their science, they are no doubt wrong
about their religion as well.

The persistence of the subsidiary position of science and
philosophy to theology has been pointed out as having an important
effect on philosophical activity in the Middle Ages. But further
clarifying ideas might well be observed. The first is that it was
always difficult to say where the study of philosophy as ancillary was
to stop. A man with a philosophical bent—an Abelard, say, or an
Ockham—might fundamentally agree that philosophy is ancillary,
but as a rather independent philosopher he pursues philosophy across
any arbitrary boundaries between philosophy and theology. And,
what is more important in the history of science, the decision to utilize
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Greek philosophy as ancillary brought about the further study of the
sciences that were in a certain sense ancillary to philosophy. Let us
take, for example, the decision made at the University of Paris that
logical works of Aristotle could be included in Christian studies.
Following this decision there was increased pressure for the study
of Aristotle's works in patural science, and soon they were widely
studied. A final point worth noting is that, in spite of the continued
affirmation of the subsidiary nawre of secular scientfic studies by
the natural philosophers, there were always some who pursued the
Greek scientific tradition without consideration for an ulterior
religious purpose and outside the confining limits of the superiority
of revelation. We hope to show later the virility of the Hellenistic
tradition in the thirteenth century in mathematics;, mechanics, and
other subjects, which was in a sense independent of the religious
philosophy of the day.

n

We have spoken of some of the general attitudes of the Christian
fathers toward Greek philosophy and science. Now let us examine
some of the particular philosophical and scientific opinions that
appear in their apologetic and exegetic writings.

The fathers were led to a discussion of natural philosophy by the
apparent differences and similarities between the account of creation
given in Genesis and the opinions of the philosophers. Commentaries
on Genesis go back at least to Origen (¢a. 185-254), and in Jewish
writings, of course, much further—at least to the important De
Opificio mundi (On the Creatian of the World) of Philo the Jew in the
first century or earlier. Of Origen's commentary we possess some
interesting fragments, one of which recounts the rather recondite
theory of the astonomers on the precession of the equinoxes. This
phenomenon, we may recall, was discovered by Hipparchus and
discussed by Ptolemy, who lived in Alexandria scarcely more than a
generation earlier than Origen.

As commentaries on Genesis became more popular, the so-called
Hexameron form of commentary arose. As the name indicates, the
Hexameron discussed the creation activity of the six days. Perhaps the
most important of these Hexameron writings were the Homilies on the
Hexameron of 5t. Basil (329-979), who had been trained in the
schools of Alexandria and Athens. Basil's Hexameron was defended
and elaborated by his younger brother Gregory of Nyssa [ca. 330
4o00), and it was paraphrased by one of the Latin fathers, St. Ambrose
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(340—367). It was also translated into Latin in the fifth century and
was widely read during the early Middle Ages, as its further epitome
into Anglo-Saxon illustrates. And one of the most important of
the English churchmen of the early Middle Ages, Bede, whose
activity we shall discuss in a later chapter, utilized it in part in his
Hexameron, St. Augustine (354-430) also composed some com-
mentaries on Genesis, the most important for our purpose being his
De Genesi ad lteram. But in general we shall make greater use of his
more widely known works, the Confessions and the City of God.

We should point our immediately that the scientific as distinct
from the more general philosophical ideas expressed by these
authors were of a very elementary nature, None of their works,
with the exception of the sixth-century De Opificio mundi of the former
Neo-Platonist _John Philoponus; shows the expert’s eye. As Duhem
points out, “the science which they suppose their listeners and readers
to know and with which they themselves seem to be content is com-
posed of a number of simple and general propositions.” These
writings were addressed, then, to the general run of Christians, who
could not be expected to be familiar with the more advanced
doctrines of the scientists,

One of the fundamental views taken over by the fathers from
Greek philosophy, but radically modified in the Christian writings,
was that there exists in nature a generally fixed order expressible in
terms of laws, for the most part immutable, This fixed order with
its laws may, however, be set aside in miraculous fashion at God's
pleasure. The introduction of the idea of the miracle, of God’s
complete freedom of action with respect to the natural order of
things, was a distinct modification of the Greek concept of natural
order. In their general attitude, Philo and the Jews of Alexandria
were perhaps the first to give philosophic expression to the concept
of the natural order modifiable at the will of God. Philo had noted
that “the nature of the heavenly bodies and the movements of the
stars , . . the vast number of other operations in nature . . . are
invariably carried out under ordinances and laws laid down in the
universe as unalterable” (De Opificlo mundi, XIX, 61; cf H. A,
Wolfson, Phile, 1, Cambridge, Mass., 1947, p- 328). And Philo goes
on to describe three such fundamental laws: the law of the existence
of oppusites, the law of the harmony of opposites, and the law of the
perpetuity of species, OF the last law he says: “God willed that
nature should run a course that brings it back to its starting point,
endowing the specics with immortality, and making them sharers of
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cternal existence,” by the wery cycle of life from plant to fruit to
sced to plant again. But, although these laws are generally im-
mutable, God as their author can suspend them, reverse them, or
operate in any fashion he desires outside of them, Wollson sum-
marizes the pertinent remarks of Philo on this subject:

While admitting that earth, rain, air, husbandry, medicine, and
marriage in the ordinary course of nature are productive of certain
effects, yet he (Philo) maintains that *‘all these things, through the
power of God, admit of change and transition, so as often 1o produce
effects quite the reverse of the ardinary." (Walfson, Phels, 1, Cambridge,
Mass., 1947, p. 349.)

The Christian authors speak in precisely the same way and to a
man. Thus Augustine answers the protestation that miraculous
changes in things are contrary to their nature by asserting that God
i the author of all nature and so the miracle is simply *‘by the Will
of Almighty God." However, Augustine admits that if the alleged
miracle is not recorded in the Scriptures we have a right to be
skeptical. Some at least unnatural or curious things he himself has
proved by trying, among them being *'the burning of lime in water
and cooling in oil; the loadstone’s attraction of iron, but not
straw,"" and so on,

Other authors express suspicion of some of the miracles recorded
but none doubted the possibility of miracle through God's omnip-
otence. One effect of such a doctrine was to encourage even very
good practicing scientists, such as Albertus Magnus, to be somewhat
more credulous, although credulity is by no means an attribute of
any particular religion or society, as Professor Thorndike's research
into the history of magic and experimental science has well shown.

Although the fathers believed generally in the laws of nature as
modified by possible miraculous intervention, for the most part they
shied away from interpreting the actions of laws in a completely
deterministic fashion; for not only was God free to change the
natural order when he wished, but man was free to exercise his will,
Thus most of the lathers expressed determined opposition 1o the
determinism implied in astrology.

Among the carliest opponents of astrology was the already
mentioned Tertullian, Astrology he believed to be an invention of
the fallen angels, as were also botany and metallurgy. And Basil
noted that the acceptance of astrology would obviate the great hopes
of the Christians and the whole system of justice with attendant
punishments and rewards.
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Most interesting of the criticiems of astrology was that developed
by St. Augustine in the fifth book of his City of God. The casting of
horoscopes comes under his particular criticism. If the principle of
like causes producing like effects is correct, and the movements and
positions of the stars at the time of hirth determine or even signify
the future activities of man, how can we account for the different
lives and characters of twins, even though they would have the same
horoscopes? He describes the varied activity of twins he knows;
one is a staff officer (V, 6), married and with a number of children,
continually at war; the other, his sister, & holy virgin, who never
leaves her country. Similarly, think of the diverse futures of seeds
sown under the same astrological conditions (V, 7).

If the Christian writers were vigorous opponents of the restriction
that astrology would place on the human will, they nevertheless
often accepted the limited influence of the heavenly bodies on
transformations of sublunar matter. And Augustine gives sanction
to this view when he admits that “it is no such absurdity to say thar
there are some planetary influences that have cfiect only upon
diversity of forms in bodics, as we see the alteration of the year (the
scasons) by the sun's access and departure, and divers things to
increase and decrease, just as the moon does (crabs, for example,
and all shell fish: besides the wonderful course (tides) of the sea)
yet it is absurd to say that the mind of man is subject to any of these
powers of the stars” (City of God, V, 6). Augustine does admit that
the astrologers often loresee many wonderful and true things, but
they do so with the help of evil spirits whose intention is to deceive
man into accepting “‘this false and dangerous opinion of fate in the
stars’”’ (fbad., V, 7).

In addition to introducing the miraculous action of an almighty
God as a serious modification in the concept of the natural order,
and to freeing the activity of man from the influences of celestial
bodies, the fathers, in line with the account in Genesis, opposed the
general philosophical view that held matter 10 be eternal (see Chap.
Three above). The opening sentence of Genesis indicates that “In
the beginning God created the heaven and the earth.” Some of
them admit that he made the earth out of pre-existent matter—as
Augustine calls it, *a certain unshapedness”—but even that must
have been created by God. The fathers tend to believe that the
ambiguous account in Plato's Timaens suppoerts the creation doctrine.
Some appeal, certainly with no justification, to the Aristotelian con-
cept of the Prime Mover, who appears to be cocternal with matter.
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Holding to the creation doctrine, the fathers also affirmed that
time had a beginning when the world was created. The funda-
mental connection of time with movement, recognized by Plato,
Aristotle, and the Stoics, was usually acknowledged by the fathers
when they had anything to say on the subject of the nature of time,
Even before the fathers, Philo had told us that “time was conceived
when bodies were in motion,” and that the world of our senses, when
sel in motion, has caused the nature of time (o shine forth and to
become conspicuous.” St. Augustine in his City of God stresses the
necessary relationship between time and movement:

For if eternity and time be rightly distinguished, time never to be
extant without movement, and eternity to admit no change, who would
not see that time could not have being beftire some movable thing were
created; whose motion and successive alteration (necessarily following
one part after another) the time might run by? (Gity of God, Book XI,
Chap. 6.)

However, Augustine submitted the problem of time to a much more
profound analysis in his Confessions (Book XI). Although time units
are related to the movements of heavenly bodies. such movements
do not constitute time. “Time is not the motion of a body” (XI, 24).
Time is the duration in which these movemenis take place and by
which they are measured. Accentuating the difficulty as to what is
time is the realization that past time no longer exists, future time
does not yet exist, and present time as something instantaneous has
no duration. Yet we do affirm that past, present, and future exist.
How do they exist? They exist in the mind. “The present time of
past things is our memory; the present time of present things is our
sight; the present time of future things is our expectation™ (X1, 20).
As to the measurement of time, Augustine says (X1, 27), It is in
thee, O my mind, that | measure my times. . . , Inthee, | say, it is that
I measure times, The impression, which things passing by cause in
thee, and which remains when the things are gone, is that by which
I measure time, rather than the things which passed by to produce
the impression.” It is also in relation to some impression that an
anticpated duration in the future is measured.

Augustine has, then, given a rather nice psychological analysis
of time which supplements the earlier treatments of time relating it
to movement.

Once having established in the beginning of their treatments of
Genesis that matter and time were created and thus had beginning,
the lathers usually fell back on rarlier Greek ideas as to the nature of
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the elements, particularly the ideas of Plato and Answde. The
doctrine of four clements, each with its pair of qualities, which
Aristotle developed out of carlier ideas, was quite widely accepted
by the fathers, Thus St. Basil in his Hexameron follows Aristotle
rather closely in his acceptance of the four elements, cach with its
natural place; similarly, his analysis of natural movement is strictly
Aristotelian. Accepting the qualitative nature of the elements as
outlined by Aristotle, Basil recounts (TV, 5) a contemporary doctrine
of how compounds are formed, stating that it is only compounds
which we see and not the elements in pure state. The unions or
mixtures of elements take place by the sharing of a quality common
to each of them. Thus water can combine with earth because they
are both cold, and water can combine with air because they are both
moist, etc. The sharing of a common quality, then, was believed 10
be the mechanism of union. This doctrine, as Duhem has shown,
had some popularity in the Middle Ages.

When it came to the nature of the substance of which celestial
bodies were formed, the fathers followed no single position. Basil
refuses to decide whether they are composed of some mixture of
the four elements or of the fAfth element. But Basil's brother,
Gregory of Nyssa, takes the Platonic position that the heavens are
composed of fire. When the fire mounts to the upper regions, it
necessarily turns in a circle upon reaching the upper regions.
Similarly, Ambrose prelers a position holding the heavens to be
composed of fire and water rather than of the Aristotelian fifth
essence,

Accepting the concept of four elements, the fathers came up
against the problem of prime matter, the material substratum the
independent actual existence of which the Aristotelians had denied
in favor of a potential existence only. Under Neo-Platonic influences,
certain of the fathers transformed this doctrine into the notion that
prime matter can exist in actuality.

St. Basil assuredly had an idea of prime matter completely different
from that which Aristotle conceived and quite analogous to that which
we shall see St. Augustine borrowed from the Neo-Platonists. He takes
the word hyld (matter) in a sense very close to that which we give the
word “matter”’ to-day. He seesin it a body, but a body incompletely
and badly defined. As to that matter deprived of all form and of every
quality of which the philosophers speak, he would seek it only as pure
denial, entirely inconceivable. (P, Duhem, Systéme du Monde, 11, Paris,
1913, p- 429.)
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St. Augustine seems to have a doctrine not unlike that of Basil, in
which prime matter emerges as an incompletely defined matter. He
notes in his Confessions (XII, 3) that it cannot be denied completely,
that it must have some existence, perhaps as “unshapedness.” This
concept of actual prime matter was present among the Neo-
Platonists. In an entirely different fashion, another concept of
actually existing first matter existed among the atomists, for whom
it was the atoms stripped of all secondary qualities caused by their
configuration. Possibly both traditions of the actual existence of
prime matter were important in the formation of the modern concept
of mass.

Of the cosmological ideas forced upon the fathers by the account
of Genesis none was more contrary to the teaching of Greek philos-
ophy than the idea that there existed waters above the firmament,
Origen interprets this doctrine of supracelestial waters allegorically,
but many of the fathers take it seriously. The most sensible of the
accounts of those who accept the doctrine is that of John Philoponus,
the sixth-century Christian and former Neo-Platonist, According to
Philoponus, Moses was not concerned with the technical considera-
tions of astronomy and cosmology. His principal aim was to lead
men to an understanding of God, and Genesis should be examined
in this light. Philoponus, of course, had a far better understanding
of Greek science than any of the other fathers we have had occasion
to cite, and hence his account is richer in allusion to the prior
opinions of the philosophers. He believed that Moses' account of the
nature of the firmament was more satisfactory than that of Plato and
Aristotle, which Philoponus had cause to review briefly, He thinks
that Moses, because of the transparency and fluidity of water and
air, believed that a salid or rigid substance had been formed still
translucent; this solid substance was the firmament. “Moses, then,
has suggested the idea that the Heaven, because of its Lransparency,
was formed in major part from the air and water: this idea is more
physical and accords better with appearances than the hypotheses
of Plato and Aristode™ (De Opificio mundi, T11, 5).. Of course, he
g0cs on 1o say, the heavenly bodies, obviously not transparent, are
formed of a different igneous substance than the surrounding
transparent firmament. He dismisses the Aristotelian concept of &
fifth element.

We have talked mostly about the cosmological ideas of the fathers,
and necessarily 50, because the fathers centered their interest on that
part of philosophy and science which would contrast with the jdeas
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expressed in Genesis. But one field of scientific endeavor in which
the fathers occasionally expressed detailed scientific opinions was
natural history.. Direct use was made of the habits of animals to
reveal Christian dogma or morals. The result was a Christianized
natural history. There is little evidence among the various authors
who write such natural history that they themselves did any in-
dependent investigation, Ordinarily they give a description of the
habits of the animal taken either from folklore or, often in truncated
or incorrect form, from such scientific works as the zoological writings
of Aristotle; this is [ollowed by a moralization based on Christian
principles, These moralizations go much beyond the rather modest
moralizing we find in the Natural Questions of the Roman author
Seneca. But it is supposed, on the basis of those questions of Seneca
and other evidence, thar such a bastardizing of natural science
was by no means exclusively Chnstian, As a matter of fact,
Aristotle’s works themselves are by no means completely free of such
moralizing.

Earliest of the works that illustrate the Christianizing of natural
history is the so-called Physiologus, which treats of forty-eight actually
existing or mythical animals, plants, and stones. It stresses their
sometimes real but often fabulous properties in order to make some
moral regarding Christ, the Dewil, or the Church. It draws its name
from the continued repetition of the phrase physiologus dieit or its
equivalent in Greek. Thus the description of the properties or
habits is introduced by the phrase “The Physiologue says.”” Who
the original physiologue—which simply means “student of nature”—
was, we do not know. We know that the work is cited unambiguously
by fourth-century fathers, and it may go back to the second century.
It has been conjectured that it was written at Alexandria in Greek.
But there are vemsions in numerous languages, including Greek,
Latin, Armenian, Ethiopic, Syriac, and the later European languages.

One author has attempted to show that, like many of the
romantic-mystical writings in natural history and allied topics of the
first centuries after Christ, the Physialogus goes back to one Bolos of
Mendes, who flourished about 200 s.c. Bolos composed a work on
powers, animals, and stones; it was entitled Natural Potents and had
subtitles Sympathier and Antipathies, 11 is not impossible that Pliny’s
Natural History, of the fist century, had some influence on the
Physiologus and similar products of moralized natural history. The
account of the viper in Physiologus illustrates the type of material and
form of the work:
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John said to the Pharisees: A generation of vipes (Math. 3, 7;
Luke, 3, 7). Physislogue says concerning the viper that the male has
the appearance of a man, while the female has the figure of a woman
up to the umbilicum, but the figure of a erocodile from the umbilicum
up to the wil. Morecover, the female does not have any hidden place,
i.e. any hollow member for bearing (children), but has a pointed hole.
Further, if the male cohabits with the female, he gjects semen into the
mouth of the female, and if she drinks his semen she cuts off the necet.
sary or virile parts of the male, and the male dies, When, moreover,
his children are born in the uterus of their mother, who does not have
any bearing pouch, the children rip apen the side of their mother and
come out killing their mother.

Henece our Saviour assimilated the Pharisess 1o the viper, for this
generation killed its father and mother, and thus here the people who
are without God kill their father Jesus Christ and their earthly mother
Jerusalem, And how will they flee from the wrath to come? Mareover,
our Father Jesus Christ and Mother Church will live unto eternity,
while they living in sin arc moral. (Physiologus, Chap. XIII, trans-
lated from Latin version y, edited by F. J. Carmody.)

Of a somewhat higher scientific character and interest was the
natural history that appeared in some of the Hexameron treatises,
particularly those of Basil and Ambrose. These works have some
scientific importance, because they rely in part on the natural history
of Aristotle, and they constitute the only form of some of Aristotle’s
zoological ideas in the early Latin West before the great period of
translations of the twelfth and thirteenth centuries. Basil, for
example, in the last of his homilies is cither directly or indirectly
dependent on Aristotle, not only for some of his statements on the
classification of animals but also in many cases for the specific
factual knowledge about their habits. Thus, in talking about the
necessity of air for insects (VII1, 7), he makes the same observation
that Aristotle made, that if the insects are covered with oil they will
not survive. Basil goes one step beyond Aristotle by saying that they
do not have lungs, but rather breathe through the pores of their
whole body, and these pores will be covered when we dip them into
the oil. The distinction of viviparous from oviparous marine animals
obviously comes from Aristotle, as do his remarks on the similaritics
and difference between these basically different animals, Basil makes
an interesting observation that it is & law of nature (momos physeds, or
naturae lex) “which according to the needs of each kind (of fish) has
allotted to them their dwelling places with equality and justice”
(Homilies on the Hexameron, V11, 3)-
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Although the Hexameron of the early father does not ordinarily
have the fable or folk quality of the Physiologus, it does utilize the
habits of animals for the illustration of morals. Hence Basil after
keeping fairly close to the natural history of marine animals for
three chapters, proceeds to moralize for a number of chapters. Here
is a sample of that moralizing:

A fish does not resiat God's law, and we can not endure His precepts
of Salvation! Do not despise fish because they are dumb and quire
unreasoning; rather fear lest, in your resistance to the disposition of
the Creator, you have even less reasan than they, Listen to the Rsh, wha
by their actions all but speak to say: it i for the perpetuation of cur
race we undertake this long voyage. (Basil, Homilies on the Hexameron,
VIL 4.

As these samples of Christian cosmological opinion and natural
history amply illustrate, the objective of the fathers of the church
was fundamenmally different from that of the Greek philosopher or
scientist who made natural philosophy his profession. But even
though he carried on little if any independent scientific research
(Philoponus being a notable exception), the early Christian writer
often illustrated a persistent interest in and wonder of nature that
made him seek out scientific opinion of the past and transmit it,
however he may have perverted and obscured it. And surely as
Christian Europe matured after many centuries of political and
economic settling down, these Christian writings whetted the
appetite of the student of the eleventh and twelfth centuries, making
him scek out the great body of Greek and Islamic learning possessed
by Islam.



CHAPTER ELEVEN
Latin Science in Late Antiquity

UP to this point we have studied the scientific activity of the
antique world very much as a whole, Now, in conformity with
the events of history, we must begin to consider Western Latin
science separately from the main stream of Greek scientific develop-
ment in the Eastern part of the Roman Empire.

The chief factor dictating an increasingly separate and inde-
pendent development in the West was the relative success of bar-
barian incursions in the West. From the early days of the Empire
(and even before) the pressure of the barbarians on the borders of
the Empire became increasingly insistent, and in fact during the
first three centuries of the Christian era the Empire was being slowly
barbarized. Barbarians were taken into the army, settled on the
lands, and on occasion held administrative posts. The gradual
barbarization quickened to avalanche proportions from the fourth
century. The East and the West were hit alike during the fourth,
ffth, and sixth centuries, and durable success was achieved by the
Germanic invaders in the West. The result was that the Germanic
tribes as nations seized the major parts of the Western half of the
Empire. And, although they paid lip service to the Empire at times,
they achieved virtual political control. Principal success was had
by the Visigoths in Spain, the Ostrogoths and later the Lombards in
Italy, and the Franks and other tribes in France and parts of
Germany. Just as the Barbarians felt the influence of and submitted
to the Roman forms of law, administration, tenure, and so on, 5o in
the cultural field they submitted to Latin literature, The scientific
literature, we have seen, was at best mediocre in comparison with
the great products of Greek scientific learning.

The Latin science of the early Middle Ages was dependent
cither directly or indirectly on the following sources:

(1) The earlier Roman science itself, a feeble offshoot of Hellenic
learning for which men of letters (Seneca and Pliny) must stand as
representatives.

146
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(2) The writings of the Latin fathers together with the writings
of the Greek fathers that had been translated into Latin.

(3) A handful of didactic philosophical works of late antiquity,
such as those of Chalcidius, Macrobius, Martianus Capella, and,
even more important, Boethius and Cassiodorus.

(4) The scattered Latin translatons and paraphrases of Greek
scientific works. This last source was never extensive and for the
maost part excludes the greatest of the Greek scientific writings—
namely, the great mathematical works of Archimedes, Apollonius,
Hero, Diophantus, etc. Also excluded were the most important
works of Greek astronomy and mechanics.

We have spoken about the principal products of early Roman
science as well as about some of the Christian writers of late antiquity.
Now it remains to mention the didactic and philosophical works in
Latin of the late antique period, works that were to influence medie-
val science, Our last principal source for the later Latin science, the
direct translations, we shall comment upon later.

The first of the three didactic authors of the fourth and fifth
centuries who were fairly popular in the early Middle Ages was
Chaleidius, who Rourished in the first part of the fourth century.
Chalcidius is important to us because of (1) his translation of the
Timaeus of Plato, the dialogue that concerned itsell with natural
philosophy, and (2) a commentary on the same work.

It was apparently Chalcidius' translation rather than an earlier
onc by Cicero that was used in the ecarly Middle Ages. Thus
Chalcidius provided the only direct knowledge of Plato’s physical
ideas to the natural philosophers of the early Middle Ages.

Although his basic opinions are naturally Neo-Platonic, when, for
example, he describes the stages of gods, Chalcidius is not unaffected
by the ideas of Aristotle. Sometimes he quotes or paraphrases the
Aristotelian positions, cither to dispute them or to accept them ina
modified form. But so long as he passes the opinion on to later
writers, his acceptance or denial of it is unimportant. He describes
briefly the astronomical theory of concentric spheres; he paraphrases
Aristotle's account of the soul contained in the first chapter of the
book On the Soul, He paraphrases the Aristotelian theory of prime
matter, and he presents an Aristotelian view of the transmutation of
clements by reason of common qualities. His proof of the spherical
form of the universe and the earth in great part stems from Aristotle,
as does his distinction of the sublunar and celestial worlds. Similarly,
his observations on the pre-Socratic natural philosophers are drawn
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from Aristotle, as well as his distinction of pessibile from confingens and
from necessarmem—that is to say, the distinction of the possible from
the contingent and from the necessary.

Chalcidius also transmits some of the physical opinions of the
Stoic philosophers, He advances the concept of & periodic re-
creation of the universe and the concept of the sowing in the world
by God as Reason of rational seeds, or “semina." For him, these
seeds are the fundamental principle of things procreated according
to the law of nature (lex nature).

The most interesting part of Chalcidius’ commentary occurs in
the astronomical section, where he describes [probably erroneously)
Heraclides' theory of the revolution of Mercury and Venus about
the sun, Like Theon of Smyrna before him, Chalcidius grafts the
theory of epicycles onto Heraclides' view., Thus, for him, Mercury
and Venus do not revolve about the sun as the center, as they had
for Heraclides; rather, the sun itsell revolves in a small epicycle,
and Mercury and Venus revolve in different and larger epicycles
about the same center as the epicycle of the sun.

In describing the motion of Venus, and he probably assumes a
similar motion for Mercury, Chalcidius says: “Lastly Heraclides
Ponticus, when describing the cirele of Lucifer as well as that of the
sun, and giving the two circles one center and one middle, showed
how Lucifer is sometimes above and sometimes below the sun™
(Chapter 110, translation of T. L. Heath, dristarchus, p. 256).

A similar account of Heraclides” doctrine is given by the second
of the late antique Latin Neo-Platonic writers, Macrobius, who
flourished about 4oo. This account occurs in Book 1, Chapter 19, of
his Commentary on Cicero's Dream of Seipio. In actuality, this is much
more a commentary on the Timasur of Plato than on the Republic of
Cicero. The astronomical passage runs as follows: “The circle
{epicycle) which the sun traverses is lower than and encircled by
the circle of Mercury, which in turn is encircled by the superior
circle of Venus,"

In addition to the astronomical reference there is a considerable
elaboration of Pythagorean number mysticism (see Book 1, Chaps.
5 and 6). In rather rambling chapters on the celestial bodies,
Macrobius reparts the figure of 252,000 stades for the circumference
of the earth. This figure is reputed to be a correction made by
Eratosthenes of his original value of 250,000 stades. In these chapters
Macrobius also describes the doctrine of the harmony of the spheres
attributed to the Pythagoreans, the doctrine that the number and
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movement of the celestial spheres is such as to produce several
distinct but harmonious tones, Macrobius declares further that
certain Platonists hold that the distances of the planets from one
another are such as to produce harmonious accord.

One modern student of Macrobius has detected direct usages of
Macrobius® work in the early Middle Ages, enough to prove con-
clusively the widespread influence of this Neo-Platonist. Authors,
such as Boethius and Isidore, whose works we shall treat presently
and who themselves became very popular indeed, were also familiar
with and employed Macrobius’ commentary.

A third pagan author of late antiquity who had influence on the
Latin science of the early Middle Ages was Martianus Capella, who
flourished in the fourth or fifth century. He compiled a treatise on
the seven liberal arts entitled The Nuptiali of Mercury and Philology.
The arts treated were: grammar, rhetoric, dialectics, arithmetic,
music, geometry, and astronomy. The grouping of most of these
subjects wogether as liberal arts probahly goes back at least to the
first century B.c., but the tendency to set the arts at the fixed number
of seven hardens in canonical fashion in about the fourth century
after Christ. As a result of Martianus’ treatise and the adoption of
seven liberal arts as the basic set of disciplines by Cassiodorus and
Isidore, these arts are transmitted as the standard curriculum of the
early Middle Ages. [t is well known that the first three were called
the trivium and that the mathematical subjects, grouped together by
the carly Pythagoreans, formed the guadrivium.

Martianus' work is cast into allegorical and mythological form.
It deals with the wooing and marriage of Philology, "‘the most
learned maiden,” by the god Mercury., The seven liberal arts are
attending maidens, and each makes a speech describing herself.
The quadrivium, which is of interest to the historian of science,
occupies Books VI-IX, In the first part of the treatment of geometry
(Book V1) there is also contained some geography which is drawn
largely from Pliny. It states that the shape ol the earth is not a
plane nor concave but is “rotund and global." References are also
made to Ptolemy's geography. The part on geometry proper is very
short and is based at least indirectly on Euclid. It contains only
definitions of various geometric magnitudes as well as postulates and
axioms of the first book of Euclid. The arithmetic section has
material similar to that of Macrobius and of his source, Theon.
It depends on Nicomachus and thus, of course, indirectly on Euclid.
The section on astronomy is drawn at least in part from the Roman



150 GREEK SCIENCE IN ANITQUITY

encyclopedist Varro, It is of interest for repetition once again of
Heraclides' idea of the revolution of Mercury and Venus about the
sun. But Martianus’ account is more accurate than those of Chalci-
dius and Macrobius, for it does not introduce falsely the idea of
epicycles into Heraclides' account. He tells us that Venus and
Mercury do not encircle the earth but rather “circle around the sun
in a free circuit. Then it is the sun which they take as the center of
their cirele. Martianus' work was popular in the early Middle
Ages, as its appearance in the catalogues of monastic libraries would
indicate. Four of the principal manuscripts date from the tenth
century, and one of the most popular of the early medieval authors,
John the Scot, in the ninth century made the Nuptials the object of a
commentary. There were in addition at least two other com-
mentaries on it, dating from the early medieval period.

As we come to the end of the antique period and the beginning
of the Middle Ages, we encounter two writers of the sixth century
who occupy significant positions in the transmission of ancient
learning to the Middle Ages. These transitional figures were
Boethius and Cassiodorus. Neither of these Roman statesmen-
authors can be classified as a scientist, but each played an important
role in the history of science which we cannot neglect.

Bocthius (ca. 480-524) was a Roman by birth and held a series
of important political offices under Theodoric the Ostrogoth, whose
favor he finally lost. The unhappy imprisonment and execution of
this distinguished Roman is a well-known story. Students of
philosophy from his day to this have read with admiration his
famous Consolation of Philosophy, written while he was in prison. But
more significant for the history of science were : (1) his translations,
commentaries, and extensions of Aristotelian logical writings and (2]
his manuals for the subjects of the mathematical quadrivium.
Bocthius in his mathematical handbooks continued in Latin the
tendency already apparent in Martianns Capella's Nuptials. Thus
he attempted to comprehend the whole extent of a subject in a short
compendious work. It is of incidental intelligence to note that
Boethius appears to have been the first to use the Latin term guad-
rigium to embrace the four mathematical subjects long associated
together by the Pythagoreans. He speaks of the pursuit of the
quadrivium as the way to perfection in the discipline of philosophy.
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And it is through the quadrivium that one is led from the senses to
the surer things of intelligence.

The first of Boethius' handbooks, that on arithmetic, was based
almost completely on Nicomachus' Infreduction to Arithmetic (see
Chap. Nine above); In fact, it has often been called a translation.
It should be ebserved, however, that Boethius compressed much of
the material found in the original work and occasionally added
remarks. Of some interest is his statement (I, 1) that “nothing
which is infinite can be found in science nor be comprehended in
science.” Also noteworthy is his definition of atoms (11, 4) and his
comparison of the three principal types of proportions to the political
forms of oligarchy, aristocracy, and democracy, The significance
of this arithmetical work lies not in its originality but in the fact that
it was probably the principal source of arithmetic in the Latin West
in the early Middle Ages.

The second of Boethius' mathematical handbooks, still extant,
deals with music. Like the Arnithmetic this treatise was based on
anterior Greek treatises, principally those of Prolemy and Nicomac-
hus, One of its most interesting passages, which in theory goes
back at least to Euclid, connects pitch with frequency of vibration:
“. . .the same string, if it is tightened further, gives a higher pitched
sound; ifitisloosened, a sound of lower pitch. For when it is tighter
it renders a swifter impulse and returns more quickly, striking the
air more frequently and more densely.” We have already quoted
Boethius' exposition of a “wave theory” of sound in Chapter Six.
Like Arithmetic, the Music of Boethius introduced the fundamentals
of a Greek discipline to the early Middle Ages. The other two
mathematical handbooks of Boethius, on geometry and astronomy,
are lost. There is an extant work on geometry in at |east two
versions that goes under the name of Boethius, but this is generally
considered to be spurious. It purports to be or to include a trans-
fation of Euclid, but what a lamentable rendering it is! For the
most part the propositions are given without proof and only certain
selected propositions are included. It is possible that this extant
version was based on the original, a more inclusive translation of
Euclid, for there scem to be remaining fragments of a genuine
translation of the Elements of Euclid made by Boethius, Of consider-
able interest in one version of this spurious treatise is the description
of Hindu numerals. It is generally considered, howewver, that this
reference to Hindu numerals is a later interpolation resulting,
perhaps, from contact with Arabs in Spain in the tenth and eleventh
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centuries. We shall return to the question of the origin of these
numerals in a later volume.

That Boethius also composed a handbook of astronomy is inferred
from a letter written to Boethius by Cassiodorus. In this letter,
Cassiodorus praises Boethius for having made available in Latin
the music of Pythagoras and the astronomy of Ptolemy, as well as
the arithmetic of Nicomachus and the geometry of Euclid. The
same letter tells us of still another wranslation by Boethius not now
extant; it is of some work of Archimedes, possibly the On the Equilib-
rium of Planes. For Cassiodorus tells Boethius that he has restored
to the Sicilians in Latin form their mechanician, Archimedes. We
also have a reference by Boethius himself to a work that he composed
on physics, but it oo is lost.

Boethius' efforts to make the logical works of Aristotle and
kindred logical treatises of other Greek authors available in Latin
was a part of a greater scheme: 1o ranslate Aristotle and Plato inwo
Latin, Unfortunately he died before he accomplished this task.
Stll, his translations of the logical works of Aristotle were of great
importance for the early Middle Ages. The translations that he
made are as follows: (1) the Categories of Anstotle, (2) Aristotle's
On Interpretations, (§) two commentaries on Aristotle’s On Interpre-
tationr, (4) a translation of the Neo-Platonist Porphyry’s introduction
to the Categories, (5) two commentaries on Porphyry, (6) a com-
mentary on the Topies of Cicero, and (7) possible translations of the
Topics, Prior Analytics, and Posterior Analytics of Aristorle. If the
translations of these last three works were made they were probably
not used extensively until the twelfth century, In conjunction with
these various translations of logical works we should note also that
Boethius composed a series of independent works on logic that drew
on the logical achievements of the Stoics. To Boethius, then, the
carly Middle Ages owed most of what it knew about logic.

A word must be said on the theological tracts atributed to
Boethius. At least four of them are often accepted as genuine.
Some students have seen in these tracts the germ of the method
followed in the schools of the high and late Middle Ages, the so-called
“scholastic method.” Although this may be an overenthusiastic
evaluation of these short treatises, there is no question that Boethius
attempts in them to use Aristotelian logic and philosophy for the
exposition of theological problems. Similarly, his general division
of knowledge, which separates physics, mathematics, and theology,
is Aristotelian. One remaining point of interest in these theological
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tracts is a note he makes that he will follow the example of mathe-
matics and similar disciplines in laying down terms and rules on the
basis of which he will proceed. And in one such treatise he defines
an axiom in the manner of Aristotle and Euclid. He says “a common
conception (axiom) is ‘a siatement which anyone (immediately)
affirms upon hearing it."” He goes on to say that such common
opinions are of two kinds: One is generally acceptable to all people;
for example, “if equals are taken from equals the remainders are
equal.” And the second is a conception generally known to the
learned only; his example of such a conception s, “Things which
are incorporeal cannot occupy space.”

One final word might be said of Boethius' last work, his Conselation
of Philosophy. It reflects a wide variety of philosophical opinion,
Platonic and Arstotelian alike. Dame Philosophy, of grave
countenance and glistening clear eyes, visits Boethius in his prison
and leads him by discussion fram his despair to contentment in reason
and virtue. In the course of her discussion in Book 11 she states
that she will employ the geometrician's type of argumentation to
deduce porismata (deductions) or corollaria from demonstrated
propositions. The ultimate object of this argumentation is to prove
that the substance of God consists in nothing but goodness. In
examining goodness, Boethius notes as a fundamental rule of nature
that every living creature labors to preserve his health and to escape
injury and death. This is true of plants as well as animals, and even
of those things thought to be without life. “For why does levity lift
flames and heaviness depress things of earth—only because these
places and movements are fitting for them.” Goodness is, in fact,
the purpose of the universe. The teleological point of view is as
strongly imbedded in this work of Boethius as it is in the works of
Aristotle. The wide popularity of the Consolation in the Middle Ages
15 well known. It was rendered into Anglo-Saxon by King Alfred in
the ninth century, into old High German in the eleventh century,
into Middle English by Chaucer, and so on.

Of less intellectunl power and scientific knowledge was Cassio-
dorus (ca. 488-575). Like Boethius, he was a Roman who held
many important positions under the Ostrogothic kings. His over-
whelming importance for the history of learning lies in his prescrip-
tion to the monks of the monasteries that he founded to copy the
monuments of divine and human letters, This prescription occurs
in his Introduction fo Diwine and Human Readings, written sometime
after 551. He was not the first to urge such monastic labor, but
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because of its detailed advice and the extent of such advice, his was
the most influennal call 1o the preservation of manuscripts. It is
true that we are told by Cassiodorus to cultivate the liberal arts in
order to increase our capacity for understanding sacred literaturr,
but fortunately he took the question of preserving profane as well as
religious literature most seriously. We know that he collected
manuscripts to serve as the models for copying, He details carefully
what rules of spelling are to be followed in copying and what errors
are to be avoided. Besides listing some of the important works of
science that he thinks should be preserved, he gives us some indication
of his own understanding of Greck learning. For example, he
describes the basic Aristotelian classification of the sciences, first in

diagrammatic fashion and then in more detail. The diagrammatic
classification follows:

: " Music
{inspectivg) L%F:{{EKMW?] Sr———

Astronomy

: Economics (dis feva )
(actualis) | oo it

eoretical |Ph'r!im (naturalis) Arithmetic

Philasophy

The mathematical sections in the book are more elementary and
brief, with definitions predominating. Like that of Boethius, the
influence of Cassiodorus in the early Middle Ages was extensive.
His principal work was often used and cited, and the extant manu-
scripts dating as early as the ninth and tenth centuries are numerous.

i

Before going deeper into the Latin science of the early Middle
Ages we can profitably scan and summarize the translations of Greek
scientific works into Latin in antiquity. As we have mentioned
before, there is a distinct absence of translations of the best mathe-
matical and mechanical works. The predilection for medical works
should not escape attention. 1t will also be noted that, so far as our
knowledge of these translations is concerned, they seem to stem
largely from the later antique period. In listing the translations
below we have maintained a rough chronological order, This list
does not pretend to be absolutely complete but does mention the
most important scientific translations or direct paraphrases of Greek
scientific writings made in antiquity.
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{1) Celsus' paraphrase or translation of an unknown Greek medical
work (see Chap. 8, Sect. V).

{2) Vitruvius' paraphrase of Cresibius and other mechanical authors
{see Chap. 8, Sect. IV).

{4} The possible translation of the Timaeus of Plato by Cicero; but
it was the later translation of Chalcidius that was used in the Middle
Ages (see Chap. 11, Sect. 1),

(4) One transiation of the Phaenomema of Araws by Cicero. The
Phasnomena was an astronomical-meteorological poem written in the
third eentury s.c. and based, at least in part, on a work or works of
Eudoxus (see Chap. 7). There was apparently also an early transiation
of this poem by Varro of Atax, as well as two later translations.

(5) A possible translation or compilation by Pompeius Trogus of
parts of Aristotle’s zoological works; composed under Augustus and
used by Pliny in the first century.

(6) Possibly a work on plants based on Theophrasius, by the same
Pompeius.

(7) The translations of Nicomachus' Infroduction to Arithmetic and his
Harmonies by Apuleius in the second century (see Chap. g, Sect. 1).

(8) A translation by Apuleius of the pseudo-Aristotelian On the
Umiverse (De mundo).

(9) The sundry paraphrases of Greek works in nataral history that
appear in Pliny's Natural History (see Chap, 8, Sect. VI).

(10) An anonymous translation of Books XI-XIIT of Euclid's
Elements in about the fourth century, of which only fragments are extant,

(11) Anonymous translation of about the fifth century of several of
Hippocrates' works, including the following: The Aphorisms; Airs,
Waters and Places: On Diet; On Sevens; Progriostic,

(12) Anonymous translations of about the ffth century of the
following of Galen's works: Therapeulics; On Feoers; On Medicinal
Simples.

(13} Miscellaneous and partial translations and paraphrases of other
Greek medical authors, such as Rufus of Ephesus, Oribasius, and
Soranus.

(14) An anonymous translation, entitled Exposition of the Whale
Uniperse, of an unknown Greek original, done after 412.

(15) Prohably three different translations of the work On Medicine
of Dimcorides,

(16 A medical paraphrase of Galen and others done by Cassius
Felix about 440, entitled On Medirine,

(17} The translations and paraphrases of several Greek geographical
works, such as the Deseriptio orbisterrae of Dionysius of Alexandria.

(18) The numerous translations and claborations of Aristotelian
logic of Boethius (see Chap. 11, Sect. H1).
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(1) A possible translation of one of the mechanical works of
Archimedes by Boethius (see Chap. 11, Sect. 11). This work apparently
did not survive even mto the carly Middle Ages. Which, if any, of
Archimedes' works were 1ranslazed is not known,

{20) A rranslation or paraphrase by Boethius of some astronomical
work of Prolemy, which was also lost at an early date.

(21) The possible translation of Euclid's Elemmts by Boethius (see
Chap. 11, Sect. 11),

(22) Boethins' paraphrate and translation of Nicomachus™ Iniroduc-
fion to Arithmetic,

{23} A possible epitome of Aristotle’s Physics by Boethius. If it
existed at all, it does not appear 1o have survived into the early Middle

(24) Several paraphrases and translations of Greek works on music,
including that of Nicomachus, already mentioned, and that of Gaueden-
tius, the latter being translated in the sixth century by one Mucianus,

(25) An early medieval translation of the medical handbook | Thera-
pruticon) of Alexander of Tralles (see Chap. 19, Secr. 111).

After closely examining this list and considering it alongside the
much more extensive number of works transdlated from Greek into
Arabic in the ninth and tenth centuries, one will readily appreciate
the fact that in comparison with the scientist of Islam the early
medieval nawral philosopher in the Latin West had only meager
scriaps of the Hellenistic corpus of scientific writing.



CHAPTER TWELVE
Latin Science in the Early Middle Ages

1

OETHIUS, Cassindorus, and their predecessors in the last

centuries of the Western half of the Empire st the lorm and to
a large extent the content of early medieval natural philosophy.
Compendious encyclopedias and epitomes containing only the
simplest scientific propositions became the rule. Of the authors of
these encyclopedias and epitomes we should first mention Isidore of
Seville, who succeeded his brother as Bishop of Seville about 600 and
died in 636. Less than a century separates St. Isidore from Boethius,
But the gulf in scientific and philosophical learning that separates
the two men is profound. Boethius was directly bound up with
Greek learning, and his knowledge of the Greek language and some
of its finest products was sure and sensitive; it was no accident that
Boethius was able to add something original to the growth of
propositional logic. Isidore, on the other hand, seems to have had
but a superficial knowledge of Greek learning; and his understand-
ing of the subtleties of Greek science is either elementary or com-
pletely lacking.

In our investigation of the science of the early Middle Ages we
are particularly interested in two of Isidore’s works: On the Nature
of Things and the Etymologies. The first of these is a short treatise
including a diversity of topics, such as chronology, elementary
astronomy, cosmology, meteorology, and geography. One confused
chapter of this work (Chap. 10) appears to be an attempt to apply
the Greek theory of climatic zones o & flat world. 1f this is 2o, then
Isidore stood practically alone among the natural philosophers of
the Middle Ages in his belief in a fiat earth. 1t would appear to be
more likely, however, that Isidore was simply doing a rather poor
job of explaining and describing a Greek theory which he did not
completely understand, and that he did not actually believe in a
flat carth. For in the first place he describes the zones or climes more
correctly elsewhere. In the second place, he speaks of the circum-
ference of the earth, giving its value as 180,000 stades, If he under-
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stood any of the sources from which he might have taken this figure,
he could hardly have escaped the conclusion that the earth was
spherical in shape. The value of 180,000 stades was one value
reported by Strabo the Geographer and was also given by Ptolemy.

In discussing the nature of the elements Isidore recounts the
Aristotelian doctrines generally known and repeated by the Latin
authors of late antguity. He also mentions the celestial fifth
element, or ether. He relates the elements to the constitution of man
and to the four bodily humors., Meteorclogical doctrines are ex-
plained in terms of the clements. Painfully unsophisticated is his
notion of spring as composed of moisture and heat, summer of fire
and dryness, and so on. Similarly, the four cardinal points are
related to the seasons and to the elements in an entirely unsatisfactory
manner.

About Isidore’s Etymologies little need be said. Written in twenty
books, it runs through the seven liberal arts, medicine, law, chronol-
ogy, religion, man, natural history, mineralogy, geography, and a
miscellany of other topics. Rarely is any topic discussed with
maturity. The treatment is always brief, in dictionary form, and
reveals little evidence of independent observation. The etymological
derivations from which the work takes its title are often ingenious, if
in error.

The section on the four mathematical subjects is like the weat-
ment of Cassiodorus, of an abbreviated, definitional character,
without interest to the historian of mathematics, Much comes
through the late Latin authors from Nicomachus. The long book
on animals contains a wide variety of species with both real and
fabulous habits and characteristics. Solinus and Pliny appear to be
the sources for this section. The division is made between domestic
and wild animals, The two groups are described. Then follow
descriptions of insccts, serpents, worms, fish, birds, and minute
flying animals such as the bee. Thorndike judges that there is
proportionally less superstitious matter in Isidore’s works than in
Pliny’s. 5till Isidore cites numerous cases of mythical monsters and
portentous births. From the fact that he uses the phrase “this has
been proved by numerous experiences” we must not conclude that
Isidore himself was a mature naturalist, seeking to confirm the facts
of natural history by careful observation in the manner of Arstotle
and Theophrastus. We would be closer to the mark in affirming
Thorndike's judgment that the chief importance of the Etymologies
consists “in showing how scanty was the knowledge of the early
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middle ages.”” It should be noted finally that the medieval authors
after lsidore tended to follow the arrangement found in the Eb-
mologies rather than that of Pliny's Natural Histery. In fact, the
Etymologies served as a kind of bridge between the Roman authors of
antiquity and the early medieval writings.

Although Isidore surpasses his contemporaries in the extent of
the subject matter he covers, his individual treatment of a single
subject tends to be more cursory than corresponding discussions in
the few treatises on separate scientific topics which survive from this
day. We can note, as an example, the treatise entitled On the Course
of the Stars, composed by Gregory, Bishop of Tours, from 573 to 504.
Educated in Gaul, Gregory appears to have been acquainted with
the Nuptials of Martianus Capella, His fame rests largely on his well-
known Hivtory of the Franks. As for his short astronomical tract, to
which he refers in one place as De cursibus ecelesiasticis, we are told
that its purpose is not to teach mathesis (astronomy) or to warn about
the future but rather to provide information about the nightly course
of the constellations so that the clergy might know when are the
proper hours for their night offices in different months of the
year.

The little work begins with a description of the seven man-made
wonders of the world: Noah's Ark, the gardens at Babylon, the
temple of Solomon, the tomb of a Persian king (the Mausoleum?],
the statue of the Colossus at Rhodes, the theater at Heraclea, and
the Pharus or lighthouse at Alexandria. But there are also wonders
of God in the universe, natural wonders repeated every day or every
year. Examples are the tidal movements, the growth of plants, the
phenix, Mount Etna, the hot springs near Grenoble, the sun's
course, and the phases of the moon. From this introduction Gregory
proceeds to a description of some of the stars and constellations and
a statement of their varying times of visibility throughout the year.
As the text demands and the vighth-century Bamberger manuscript
of the work shows, the descriptions were accompanied by pictorial
diagrams, Let us take as an example the beginning of the brief
entry for the Big Bear:

Ursa Major

Chapter 33. Of these stars, which rustics call the Wagon, what can
we say, since they do not rise and set like the other stars. However little
we know about them, we should not remain silent. . , . (De curn
stellarum ratio, translated from the edition of Br. Krusch, Hanover,
1885.)
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Another work, which purported to be a specialized work on
geography translated by Saint Jerome from the Greek of Ethicus
Cosmographicus, was in reality a work of about the eighth century
which depended heavily on Isidore. Of somewhat more interest is
the geographical survey of an anonymous writer of Ravenna dating
from about the same period, which is an itinerary or a list of place
names; in part, at least, it goes back to the earlier survey called the
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FiG. 33.—Ursa Mujor, according to an eighth-century
Bamberger manuseript.

Peutinger Table, the accuracy of which has recently been supported.
Other compilations of earlier geographical statements scarcely
include enough original material to merit separate treatment.

11

Among the succeeding authors who drew on the work of Isidore
but who were not without individual importance was the able
English church historian Bede (ca. 673-735), Bede's wark is a monu-
ment to the accelerated intellectual activity in the late seventh and
cighth centuries. Some of the credit for this English activity must be
given to the Greek monk Theodore of Tarsus, who was elevated to
the Archbishopric of Canterbury in 669, and to his contemporary
Hadrian, formerly an abbot of a monastery near Monte Cassino, in
Ttaly, and later of the abbey of St. Peter and St. Paul at Canterbury.
As Bede tells us in his Ecelesiastical History of the Englisk Nation, both
Theodore and Hadrian were well read in sacred and profane
literature. In addition to teaching sacred literature, they taught
astronomy and arithmetic, “A testimony of their influence is that
there are still living at this day some of their scholars who are as well
versed in the Greek as in the Latin tongue,”
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To the influence of Theodore and Hadrian on the English
development we must add the undoubted influence of the Irish
monastic education. It was evident particularly in the evolution of
a quasi-scientific genre to which Bede was to make notable con-
tributions—namely, the computus, a collection of materials to be used
in the construction and understanding of ecclesiastical calendars,
i.e., for the preparation and understanding of Easter tables. One
of the foremost students of the computus, Jones, has given the following
characterization of the genre:

The manuscripts of this type written from, say, the eighth to the
twelfth centuries, number several hundred, and when they are properly
organized they can reveal to us fruitful information about the scientific
life of those ages. . . . These computi consist of extracts or complete
tracts, often either anonymous or atwributed to the wrong author,
Easter-tables, a yearly calendar, lists of calculations, accessory tables
for help in caleulation, computistical verses for memorizing, dialogues for
school catechism, and multiplication tables. Thee combinations very
shortly auracted to themselves works on arithmetic, astronomy,
geography, chemistry, and medicine, (C. W. Jones, Bedae Opera oe
temporitus, Cambridge, Mass., 1943, pp. 75-76.)

In one computus (Migne, Patrologia Latina, Vol. 120, 1274~
1372), for example, there are some 156 computistical items ranging
in length from a fraction of a column to several columns. Tt contains
numerous repetitious items, since it was drawn from many sources
and put together loosely. One of the chapters (Chap. 48) summarizes
some of the objectives of the compulus:

Hence by the first reckoning you ought to inquire concerning the 19
year (lunar) cycle. By the second, the disposition of the moon through
the calendar of months. By the third, how the moon has a number in
its manth. By the fourth, what sort of day and moon is the Pascal
solemnity. By the fifth, iow Easter is 1o be computed. By the sixth,
the ascension and descending of the sun. By the seventh, the response
to those whe are in discord over the computation of Easter.

As to the scientific content of the computus, let us limit our
citation 1o a single computistical formula for finding out the age of
the moon on a particular day.

If you wish to know on this or that day what the number of the moan
is (i.e., how many days after new moon), reckon the number of days
from the Kalends of January up to the day you are inquiring about.
And when you know this, add the age of the moan on the Kalends of



{5 OREEK SCIENCE IN ANTIQUITY

Jenuary. Divide the total by 58. If more than g0 remains subtract g0,
and the remainder s the moon of the required day. . . . I vou wish
tr know the moon of the Kalends of January, take the eyele of the
present year (ie., the number of the year In the current 19 vear lunar
eyvcle), Multiply it by eleven, Divide this by 0. Add (ordinarily onc).
The result is the age of the moon on the Kalends of January.

The medicval computus as a corpus of items seems to have had its
beginnings in Spain. From there it traveled to Ireland and England
and then back to the Continent, where it played an important part
in Carolingian scientific education. Bede, standing solidly in the
computistical tradition, applies critical methods to that tradition
and leaves the computus in more understandable form.

Bede's interest in the computus was demonstrated principally by
two warks: On times (De temporibus) and On the Reckoning of Time:
(De temporum ratione). The former was composed in jog, the latter
twenty-two years later. The second of the treatises is an elaboration
of the first. Neither work is of high scientific caliber when compared
with Greek science, yet there is a certain internal consistency and
clarity that are missing in the works of Isidore. Bede appears to have
been careful to understand something before he borrowed and used
it.

The most noteworthy part of Bede's De temporum ratione deals with
the tides. In Chapter 29 he observes the differences between the
stronger and weaker tides (malinge and ledones, “living" waters and
“dead” waters). He also notes that prevailing or contrary winds can
advance or retard the hours of flux and reflux and even the days of
the strong and weak tides. Most important, he advances what is
essentially the concept of “establishment of the port"—i.e., that the
tides can be established as roughly constant for a given port, or to
put it somewhat more scientifically, that the interval between the
moon's meridian passage and the high water that follows is roughly
tonstant for a particular port on the globe, but varies in length from
port to port. He supported this idea with observations. It is
believed that Bede's remarks on the tides stimulated the construction
of tide tables based on the nineteen-vear lunar cycle, At any rate,
such tables appear in the later computus (see Fig. 36).

It should be pointed out as of scientific interest that the com-
putistical material did much to stimulate the use of tables and
diagrams. Although the tables abound in error and, as Bede points
out, encourage the lazy, their construction stimulated at least
clementary scientific ratiocination. We have included here a most
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interesting diagram that appears in numerous astronomical compufus
manuscripts, some of which date back to the ninth century (see
Fig. 34). It attempts to plot the paths of the sun, the moon, and the
planets through the zodiac in accordance with Pliny's description
of their movements. Notice that a graph has been used with twelve
divisions of latitude and thirty divisions of longitude. Such divisions
probably arise from a statement made by Martianus Capella, It is
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Fio. 94.—An early medieval graphing of planetary
mopements (according to Ginther via Lattin).

possible but by no means proved that such astronomical graphing
influenced the application of the graphing technique to problems
of local motion and qualitative changes in the fourteenth century.

This diagram should be compared with one representing the
movements of the planets, in which the stations and retrogradations
are noted (see Fig. 35). But the sun also appears to have been
given stations and retrogradations in the latter diagram, Among the
other figurae that appear in the astronomical-computistical writings
is the well-known rofa, or wheel, connecting the tides with the moon's
phases (see Fig. 36). To give a final example of astronomical illus-
tration in the early Middle Ages we can point to a diagram without
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textual elaboration appearing in a ninth-century manuscript; it
represents the system of Heraclides of Pontus, with Mercury and
Venus encircling the sun rather than the earth. Included with the
main diagram is a close-up showing Venus with an oval (or ellip-
tical?) orbit, whereas Mercury has a circular one.

Much less interesting than the computistical writing to which
Bede contributed was his primer On the Nature of Things. Although

F1c. 35.—An early medieval graph showing the stations
and retrogradations of the planets.

it followed the model and aften the words of Isidore’s treatise of the
samie name, it is generally more lucid and depends in part on Pliny's
Natural History. 1t was probably responsible for an increased interest
in Pliny in the Carolingian period immediately following, demon-
strated by the fairly wide circulation of an encyclopedia of excerpts
from Pliny. The ambiguity on the shape of the earth in lsidore’s
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treatise is gone in this work of Bede. Bede clearly supports the
spherical earth of Greek scicnce,

1t

Much has been written about the so-called Carolingian Renais-
sance in education and letters that began under Charlemagne (sole
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Fic. 36.—dAn early Lumar-tide wheel {llustrating the
medieval eompulus,

ruler of Frankland from 772, emperor from Boo) and continued under
his successors. Scholars migrated to France from England, from
Italy, and even from what was left of Visigothic Spain after the
Arabic incursions of the peninsula, Thus the English scholar Aleuin
of York played an important role in the Palace School of Charle-
magne. The works written by Alcuin apparently in connection
with this school were dialogue in form and, where scientific topics
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are treated, most clementary, Alcuin's greatest achievement seems
10 have been the inauguration of a tradition of education in northern
France that was to have important results in the ninth and tenth
centuries.

But educational reform was not accompanied by the collapse of
all opposition to the liberal arts as pagan-inspired. One critic, after
lambasting the liberal arts one by one, comes finally to the astron-
omers, “who have wished to soar heavenwards, but so conspicuously
have they failed 1o mount thither by their ideas that rather they have
placed carthly reason in heaven and heavenly reason in earth. For
the while they have set rams and bulls, scorpions and crabs, lions and
bears, she-goats and fishes in the realm of the sky, they have done
naught but raise up earthly things into the sky.” (M. L. W.
Laistner, Thought and Letters in Western Europe 500-goo, London, 1931,
p. 168.)

Of the subjects comprising the mathematical quadrivium,
geometry fares least well in the early stages of the Carolingian
reforms. There is no evidence of any geometrical knowledge beyond
the elementary handbook attributed to Boethius and the few state-
ments in Cassiodorus and the encyclopedists. It was not until the
time of Gerbert (¢a. g40-1003) that geometrical studies began to pick
up. Of this activity of Gerbert we shall speak in another volume.
Arithmetic and astronomy centered in the passages in the encyclo-
pedias, the Boethian handbooks, and the computus corpus.

A number of authors of the Carolingian age would deserve
mention in a more general study of thought and learning in the
cighth and ninth centuries. But they have little importance for a
study of the science of the period. However, the works of one of the
ninth-century authors touch on scientific matters: these are the
writings of John Eriugina, known as the Scot (ra. Boo-B77). His
knowledge of Greek was extensive, Furthermore, it was not merely
passive knowledge, for he translated a Neo-Platonic work. His own
Division of Nature also shows Neo-Platonic influences. The only part
of this work of interest to the historian of science is the astronomical
section. He gives an account amplified from Martianus Capella,
of how Eratosthenes found the circumference of the earth (see Chap.
Six). He also gives the value of 252,000 stades for the circumference,
as well as that of 180,000 stades, attempting to reconcile the two,
But the whole discussion shows a rather shaky knowledge of mathe-
matics and astronomy, if the published texts are accurately repre-
sentative of John's work. But there is one interesting passage in
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which John appears to have extended the system of Heraclides of
Pontus, 5o that not only are Mercury and Venus thought to be
encircling the sun rather than the earth, but Jupiter and Mars as
well, although some recent authors, the von Erhardis, have
attempted (without success, it seems) to give this passage anather
interpretation. In his Annolations to Martianus Capella John attributes
to Plato the idea that the sun is the center of all the plancts with the
exception of the earth (Annotations, 13-3). This is essentially the
system adopted by Tycho Brahe in the sixtcenth century, a system
wherein all the planets revolve about the sun and the sun and its
planctary satellites revolve about the earth, which is at rest in the
center of the universe. We are not to infer from John's improved
system that he was a practicing astronomer, but rather that he was
a diligent student of past astronomical literature with a certain turn
of speculative originality. To John is also attributed a translation
of the Solutions written by one Priscianus Lydus in the sixth century.
The Greek original is now lost. This work contains clementary
problems of natural science of little interest to us.

In our survey of carly medieval science we have not discussed
technological chemistry or medicine. In both of these fields there
was activity worthy of report. In each case we shall defer treatment
until, in a later volume, we can discuss the entire medieval
development.

Our final judgment of Western Latin science ro about goo is that
it was on a considerably lower plane than was science in the Greek
East. The tendency toward the encyclopedia and toward epito-
mizing earlier authors appears in both areas, but in the Greek East
the encyclopedias are complemented by the classical texts of Greek
science, as well as by original and searching commentaries on those
texts. In the West the only area of learning where we find anything
like sustained scientific investigation is that of the computus. But
even there the few important evidences of scientific learning are
bogged down in a mire of uncritical summary and quotaton of past
authors.



CHAPTER THIRTEEN
Greek Science in the Age of Justinian

E have pursued the meager trickle of Latin science through

the late antique and early medieval periods to about goo,
Now we must backtrack to the main stream of scientific development
in the East. In the sixth century, before the Greek corpus of learning
in the East was taken up and translated into Syriac and Arabic, a
significant burst of Greek science took place, We shall call this
study of science in the sixth century that of “'the age of Justinian,”
after the chief political architect of the period. Actually it is difficult
to know how directly the remarkable activity of Justinian affected
scientific pursuits.

It would seem reasonable that Justinian's enormous sacred and
profane building program stimulated the study of mechanics and
mathematics. In fact, two of the chief architects of the famous
church of St. Sophia in Constantinople can be connected directly
with the study of the best of the classical mathematicians. These
architects were Anthemius of Tralles and Isidore of Miletus. A
friend of both was the mathematician Eutocius, who flourished about
520. Eutocius prepared a version of the first four books of the
Comes of Apollonius of Perga, to which he added a commentary of
his own. This work Eutocius dedicated to Anthemius.. It should be
noted that it is the Greek text prepared by Eutocius that survives
today. Of the remaining four books of the Conics, Books V-VI1 are
extant only in the Arabic and Book VIII is lost. Hence we would
judge that without the actvity of Eutocius all contact with the
original text of this great mathematical work of Apollonius would
have been lost.

Similarly, we owe to Eutocius the preparation of commentaries
on at least three of Archimedes® works: On the Sphere and Cylinder,
The Measurement of the Cirele, and On the Equilibrium of Planes. 1t is
suspected that these were the three most popular of Archimedes'
works at this time. The commentaries on the first two works were
edited by Isidore of Miletus, i.c., the latter prepared a new edition

1l
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of them. Eutocius' commentary on The Measurement of the Circle
has proved most useful in -attempts to reconstruct the calculat-
ing procedures used by Archimedes in his determination of pi. It
seems likely that there was a fairly flourishing school of mathe-
maticians under Isidore and that we owe to his and Eutocius’
interest in Archimedes the survival in Byzantine Constantinople of
Archimedean manuscripts. This survival became crucial in the
ninth century, when Leon, the so-called reformer of the Byzantine
University in Constantinople, collected the then existent works of
Archimedes. It is apparently Leon’s ninth-century collection that
proved to be the source of our extant texts of most of the mathe-
matical works of Archimedes, and only a single manuscript of Leon's
collection seems to have survived into the Middle Ages. But for
the survival of that manuscript (and, of course, the previous activity
of Eutocius and his contemporaries), the Greek text of much of the
work of antiquity’s greatest mathematician might not have come
down to us today.,

o

Another source of mathematical and scientific activity during
this period was the Neo-Platonic movement. We have already
spoken of the mathematical interests of the Neo-Platonists through
the time of Proclus in the fifth century (see Chap. Nine, Sect. VI).
In the sixth century the movement produced two of its most able
exponents: John Philoponus (in his pre-Christian period) and
Simplicius. It is true that the movement was rebuffed, but certainly
not terminated, by the closure of the Neo-Platonic school in Athens
by Justinian in 529 as a center of paganism. The Hight w Persia
under the protection of King Khusraw of seven of the group and
their subsequent return to the Empire was certainly not the first nor
the last academic flight from political persecution.

In recent years our estimate of the stature of John Philoponus as
a natural philosopher has risen with the closer examination of his
commentaries on the works of Aristatle. The historian of science is
particularly interested in the commentary on the Physicr of Anistotle,
of which commentary four books are still extant. For in this com-
mentary Philoponus subjected the mechanical views of Aristotle (o
a severe and often just eriticism.

In our preliminary examination of Aristotle’s views on movement
(see Chap. Six) we noted that Aristotle assumed that for movement
to take place both a motivating force and a resistance are required.
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From several passages in the Physies and the Book on the Heavens we
can deduce the following simple “quantitative” laws:

(1) S8 FcF, when T, =T, and R, = R;, and assuming that
movement occurs. §;, §; are distances. T, T,
are times. In “[orced” movement F,, F; are
extermal forces; R, are weighs, But in
“natural” movements (such as that of Rlling
bodies) F,, Fy are weights and R,, &, are the
densities of the media through which the weights
fall,

(2) Ty Ty::F 2 Fy when §, = 8, R, = Ry, and movement occurs,
(3) 8,:8:::R: R, when Fy = F,, T, = T, and movement occurs.
(4) Ti:73::Ri: R, when 8, = §,, F; = F,, and movement occurs.

One could, for the sake of economy, use & single modern formula
to express all these cases, although, of course, Aristotle does not do
this:

Fo 1 A
(5] ¥ acT.-:cﬁwuh ¥ as the speed.

Thus the basic dynamic formuls which we might deduce from
the scattered statements of Aristotle is that “‘speed is proportional to
the ratio of the motive force to the resistance, provided that the
force is sufficiently great to overcome resistance and produce
movement.” Now suppose that we had a natural movement in a
vacuum. The density of the medium would obviously be zero and
thus the movement would take place instantancously (or, in the
modern formula above, ¥ would go to infinity as # goes to zero).
Since an instantancous movement appears to Aristotle to lead to
contradictions, it is unthinkable, and hence a vacuum does not exist.

Eager to prove that movement can take place in a vacuum, John
criticized the basic dynamic laws of Aristotle in the following passage:

Weight, then, is the efficient cause of downward motion, as Aristotle
himaelf asserts. This being so, given a distance 1 be traversed, 1 mean
through a void where there is nothing to impede motion, and given that
the efficient cause of the maotion differs, the resultant motions will
inevitably be at different speeds, even through a void. . . . Clearly,
then, it is natral weights of bodies, one having a greater and another
a lesser downward tendency, that cause differences in motion. For
that which has a greater downward tendency divides & medium better.
Now air is more effectively divided by a beavier'bodv, To what other
cause shall we ascribe this fact than that that which has greater weight
has, by its own nare, a greater downward tendency, even if the motion
is not through a plenum? . . .

And so, ifl a body cuns through a medium better by reason of s
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greater downward tendency, then, even if there & nothing to be cut,
the body will none the less retain is greater downwarnd tendency. . . .
And if bodies possess a greater or a lesser downward tendency in and of
themselves, clearly they will possess this difference in themselves even
if they move through a void. The same space will consequently be
traversed by the heavier body in shorter time and by the lighter body
in longer time, even though the space be void. The result will be due
not to greater or lesser interference with the motion but to the greater
or lesser downward tendency, in proportion to the namral weight of
the bodies in question. . , ,

For if a body moves the distance of a stade through air, and the body
is not at the beginning and at the end of the stade at one and the same
instant, a definite time will be required, dependent on the particular
nature of the body in question, for it to travel from the beginning of
the course to the end (for, as 1 have indicated, the body is not at both
extremities at the same instant), and this would be true even if the space
traversed were a void. But a certain additional fime is required because of
the interference of the medium. For the pressure of the medium and the
necessity of cutting through it make motion through it more difficult.

Consequently, the thinner we conceive the air to be through which
a motion takes place, the less will be the additional time consumed in
dividing the afr_ . . .

If 2 stone moves the distance of a stade through a void, there will
necessarily be o time, let us say an hour, which the body will consume
in moving the given distance. But if we suppose this distance of a stade
filled with water, no longer will the motion be accomplished in one
hour, but a certain additional time will be necessary hecause of the
resistance of the medium, Suppose that for the division of the water
another hour i required, so that the same weight covers the distance
through a void in one hour and through water in two. Now if you thin
out the water, changing it into air, and if air is half as derse as water,
the time which the body had consumed in dividing the water will be
proportionately reduced. In the case of water the additional time was an
hour. Therefore the body will move the same distance through air in
an hour and a half. 1f, again, you make the air half as dense, the motion
will be accomplished in an hour and a quarter, And if you continue
indefinitely to rarcfy the medium, you will decrease indefinitely the
time required for the division of the medium, for example, the additional
hour required in the case. of water. But you will never completely
eliminate this additional time, for tume s indefi nitely divisible. (M.
Cohen and 1. E. Drabkin, 4 Sow'rz Book in Greek Sciemce, New York,

1648, Pp. 217-219.%)

' Thuqmthnmdlhcﬁwmmmdin;qmimluqmmwmﬂdw
publisher, the McGraw-Hill Book Company, Inc.;
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For Philoponus, then, the fundamental and “original” deter-
miner of movement is motive force, If there were no resistance—
that is, if bodies were moving in a vacuum—a certain force would
implant in a certain body a given movement, and the body would
maove a certain distance in a certain time (the “original" time).

& .
(6} T x F,

Philoponus says that in addition to the original time there is a
time due entirely to the resistance. This added time is directly
proportional to the density of the medium, Thus John is saying that

7 L=T,+T, and 8) T, R.

where T, is the total time taken to move through § when there is
resistance R, T, is the time taken to move through § when there is no
resistance, and 7, is the additional time due exclusively to the
resistance. By this doctrine of “original time,” as it was later called
by the Islamic authors, motion in a vacuum was saved. Later
authors were also to interpret this passage as saying essentially that
speed is proportional 1o the difference of force and resistance (rather
than to the ratio of force to resistance, as Aristotle was interpreted as
saying). But we shall discuss this extension of Philoponus by the
Islamic authors in a later volume,

In the passage already quoted above Philoponus has clearly
opined that in a vacuum bodies would fall in times inversely pro-
portional to the weights. But when we come 1o actual fall in a
resistant medium Philopenus demonstrates that the Arstotelian
conclusion of the inverse proportionality of the weights and the times
i clearly erroneous. Notice that Philoponus concludes that the
time of fall for bodies of which the difference in weight is not
(0o great is virtually the same. Notice further that he supports this
conclusion by reference 10 the experiment of letting fall objects of

different weight. This is the experiment supposedly firse performed
by Stevin or Galileo,

For Arutotle wrongly assumes thal the ratio of the times required for wotion
thraugh various medin is equal o the ratio of the densities of the media. . . .

But from a consideration of the moving bodies themselves we are
able o refute Aristotle’s contention. For if, in the case of one and the
same hody moving through two different media, the ratio of the times
required for the mations were equal to the ratio of the densities of the
respective media, then, since differences of velocity are determined
not anly by the media but also by the moving bodies themselves, the
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following proposition would be a fair conclusion: “'in the case of hodies
differing in weight and moving through one and the same medium,
the ratio of the times required for the motions is equal o the inverse
ratio of the weights.” For example, if the weight were doubled, the
time would be halved. That is, if a weight of two pounds moved the
distance of a stade through air in one-half hour, a weight of one pound
would maove the same distance in one hour, Conversely, the ratio of the
weights of the bodies would have 1o be equal o the inverse ratio of the
times required for the motions,

But this is completely erroneous, and our view may be commoborated
by actual olwervatinn more effectively than by any sort of verbal
argument. For if you et fall from the same heipht oo weights of which ane
it many limes ar heaty as the other, you will see thal the ratic of the fimes
required for the motion doer not depend on the ratio of the weights, but that the
difference tn time 25 a very small one.  And so, if the difference in the weights
is not considerable, thar is, if one is, ler us say, double the other, there
will be no difference, or else an imperceptible difference, in time,
though the difference in weight is-by no means negligible, with one
body weighing twice as much as the other.

Now, if, in the case of different weights in motion through the same
medium, the ratio of the times required for the motions is not equal to
the inverse ratio of the weights, and, conversely, the ratio of the weights
is not equal o the invene ratio of the times, the following proposition
would surely be reasonable: "Ifidentical hodies move through different
media, like air and water, the ratio of the times required for the
motions through the air and water, respectively, is not equal to the
ratio of the densitics of air and water, and conversely.” ([hid., pp. 219-
220.)

It is somewhat difficult to reconcile this experimental evidence
with Philoponus’ earlier opinion on the relationship of weight and
speed in a vacuum; but we must suppose that the effect of resistance
is such as to nullify difference in weight. A further but unlikely
possibility is that Philoponus held the principal determiner of the
speed of movement in a resistant medium to be specific weight rather
than gross weight, and thus in the experiment above he drops
different weights of the same substance. Benedetti and Galileo in
his youth were to hold such an opinion.

Besides criticizing Aristotle’s dynamic laws Philoponus attacked
Aristotle's curious views on projectile motion.  Aristotle had supposed
that the air in some fashion exerts the continuing force that keeps
the projectile moving when it is no longer in contact with the
projector. Thus the movement of the air is given the role of a
motiving force in projectile motion. Aristotle was uncertain of the
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detailed mechanics involved in the air's role as propellant. But he
seems to have believed cither that the air accomplished its pushing
force by filling a temporary vacuum formed behind the projectile
as it moved forward or that the air, being more elastic and more
easily excitable and having a greater facility for being moved,
retains its turbulence and thereby successively pushes the projectile
in the direction toward which it has been stirred. Philoponus directs
a devastating appeal to experience and common sense against these
VICWE.

Let us suppose that antiperistasis takes place according to the first
method indicated above, namely, that the air pushed forward by the
arrow gets to the rear of the arrow and thus pushes it from behind. On
that assumption, one would be hard put to it to say what it is (since there
seems to be no counter force) that causes the air, once it has been
pushed forward, to move back, that is along the sides of the arrow, and,
after it reaches the rear of the arrow, to turn around once more and
push the arrow forward. For, on this theory, the air In question must
perform three distinct motions: it must be pushed firward by the arrow,
then move back, and finally turn and proceed forward once more, Yet
air is easily moved, and once set in motion travels a considerable
distance. How, then, can the air, pushed by the arrow, fail to move in
the direction of the impressed impulse, bur instead, turning about, as
by some command, retrace its course? Furthermore, how can this
air, in so turning about, avoid being scattered into space, but instead
impinge precisely on the notched end of the arrow and again push the
arrow on and adhere to it? Such a view is quite incredible and borders
rather on the fantastic. . , .

Now there is a second argument which holds that the air which is
pushed in the firstinstance [i.e., when the arrow is first discharged)
receives an impetus to motion, and moves with a more rapid motion
than the natural [downward] motion of the missile, thus pushing the
misile on while remaining always in contact with it until the motive
force originally impressed on this portion of air Is dissipated. This
explanation, though apparently more plausible, is really no different
from the first explanation by antiperittasis, and the following refutation
will apply also to the explanation by antiperistasis,

In the first place we must address the following guestion (o those
who hold the views indicated: “'When one projects a stone by force, is
it by pushing the air behind the stone that one compels the latter to
move in a direction contrary to its natural direction? Or does the
thrower impart a motive force to the stone, wo?" Now if he does not
impart any such force te the stone, but moves the stone merely by
pushing the air, and if the bowstring moves the arrow in the same way,
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of what advantage is it for the stone to be in contact with the hand, or
for the bowstring to be in contact with the notched end of the arrow.

For it would be possible, without such contact, 1o place the arrow
at the top of & stick, a3 it were on a thin line, and to place the stone in
a similar way, and then, with counitless machines, to set a large quantity
of air in motion behind these bodies. Now it is evident that the greater
the amount of air moved and the greater the force with which it is
moved the more should this air push the arrow or stone, and the
further should it hurl them. But the fact is that even if you place the
arrow or stone upon a line or point quite devoid of thickness and set
in motion all the air behind the projectile with all possible force, the
projectile will not be moved the distanee of a single cubit. (lbid,,
pPp. 221-222.)

If the motion of the air does not move the projectile but rather
resists the movement of the projectile, what is it that causes the
continued motion of the projectile? Newtonian physics, rejecting
the necessity of a continuing force, answers in terms of inertia.
Philoponus' explanation is that an incorporeal kinetic force has been
impressed in the body and this impressed force continues the mave-
ment of the body until it is spent by the resistance to movement
present by the weight of the body and the resistance of the air.

From these considerations and from many others we may see how
impossible it is for forced motion to be caused in the way indicated.
Rather is it necessary to asrume that some ncorporeal motive farce is imparted by
the projector to the projectile, and that the air set in motion contributes
either nothing at all or else very little to this motion of the projectile.
If, then, forced motion is produced as 1 have suggested, It s quite
evident that if one imparts motion “contrary to nature” or forced
motion to an arrow or a stone the same degree of motion will be
produced much maore readily in a void than in 3 plenum. And there
will be no need of any agency external to the projector, . . . (Jbid,,
B 223:)

Like his criticism of Aristotle’s views of natural movement,
Philoponus' concept of an incorpareal kinetic force as the source of
the continuing movement of a projectile had considerable historical
influence, particularly among the philosophers of Islam, such as
Avicenna, Alpetragius, and Abu ‘l-Barakar, and possibly also
indirectly among the Latin schoolmen of the late thirteenth and
fourteenth centuries. We shall examine in a later volume the various
emendations of Philoponus' theory of impressed force, which form
an interesting background to the rise of a concept of momentum in
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early modern times. 1t is supposed that Philoponus did not originate
the theory of an impressed force, that it went back to the astronomer
Hipparchus in the second century B.¢. or even further, But it should
be pointed out that the earliest extant account of the theory is that of
our sixth-century Neo-Platonist,

Scarcely less important and influential as a critic of Aristotle was
Philoponus’ contemporary Simplicius; whose direct influence on the
Latin West began with trandations made in the thirteenth century.
We have already observed Simplicius’ importance in transmitting
some of the contents of Theophrastus' treatise on the opinions of the
early natural philosophers. To Simplicius we owe also the longest
extant passage describing the astronomical theory of concentric
spheres developed by Eudoxus and adopted by Aristotle, as well as
Strato’s observations on the acceleration of falling bodies (see Chap.
Six). Like Philoponus, Simplicius on more than one occasion
appealed to the evidence of expericnce and experiment to oppose
or confirm a scientific judgment, His attempt to settle the question
of whether air or water has “weight in its own place" by an experi-
ment is noteworthy although indecisive.

Now Ptolemy secks 1w prove the proposition that air has no weight
in its own medium by the same experiment of the inflited skin. Not
only does he contradict Aristotle’s view that the skin when inflated is
heavier than when uninfiated, but he maintains that the inflated skin
is actually lighter.

I performed the experiment with the greatest possible care and
found that the weight of the skin when inflated and uninflated was the
same. One of my predecessors who tried the experiment wrote that
he found the weights to be the same, or rather that the skin was
a trifle heavier before inflation, # result which agrees with that of
Ptolemy,

Now if the result of my experiment is correct, it follows, clearly, that
in their respective natural places the elements are without weight,
having neither heaviness nor lightness, | . . {fbed., p. 248.)

Omne of the most influential sections of Simplicius' commentary
on Aristotle’s Book of the Hesvens, translated in the thirteenth century,
is his summary of the various attempts to explain the acceleration of
falling bodies, and the theories that he deseribes have considerable
popularity in the fourteenth century and later. The theories
described by Simplicius are reducible to three main explanations.

(1) Acceleration takes place because a body nearing its natural
place is desirous of completing or perfecting its form as fast as
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possible. “‘As bodies approach the whole mass of their own element
they acquire a greater force therefrom and receive their own form
more perfectly; that thus it is by reason of an increase of weight
that earth moves mare swiftly when it is near the center.”

[2] Hipparchus, on the other hand, in his work entitled On Bodies
Garried Down by Thar Waght declares that in the case of earth thrown
upward it is the projecting force that is the cause of the upward motion,
so long as the projecting force overpowers the downward tendency of
the projectile, and that to the extent thar this projecting force pre-
dominates, the ohject moves more swiftly upwards; then, as this force
is diminished (1) the upward motion proceeds but no longer at the same
rate, (2) the body moves downward under the influence of its own
internal impulse, even though the original projecting force lingers in
some measure, and (3) as this foree continues to diminish the object
moves downward more swifily, and muost swiftly when this force is
entirely lost.

Now Hipparchus asserts that the same cause operates in the case of
bodies let fall from above. For, he says, the force which held them back
remains with them up to a certain point, and this is the resiraining
factor which accounts for the slower movement at the start of the
Rl . ..o (fbad, p.o200.)

[3] Now there are not a few who assert that bodies move downward
muore swiftly as they draw nearer their goal hecause ohjects higher up
are supported by a greater quantity of air, objects lower down by a lesser
quantity, and that heavier objects fall more swifily because they divide
the underlying air more easily. For just as in the case of bodies which
sink in water the lighter they are the more does the water seem to hold
them up and resist the downward motion, so it is fair to suppose that
the same thing happens in air, and that the greater the amount of
underlying air, the more do lighter objects seetn buoved up. . . .
(Ibid., p- 210,

1t should be noted that the second of these theories, the theory
of Hipparchus, was the one adopted by Galileo in his youth.

n

In our discussions of the Latin science we mentioned the popu-
larity of the encyclopedia and the handbook. Together with the
commentary, these forms of scientific literature also became popular
in the Greek East. Thus the corpus of literature in a branch of
science in the East consisted of certain selected “classical™ Hellenisue
or earlier works, commentaries, compendious encyclopedias, and
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handbooks or epitomes. The organization of medical literature in
the sixth century was illustrative of this variety of literary forms,
To the classical works of Hippocrates and Galen were added
numerous compendia, epitomes, and occasionally an original com-
mentary. Thorndike has noticed the trend in medicine toward
compendia.

As Tribonian and Justunian boiled down the voluminous legal
literature of Rome into one Digest, 50 there was a similar tendency to
reduce the past medical writings of the Grecks into one compendious
work. Paul of Aegina, writing in the seventh century, observes in his
preface that it is not right, when lawyers who wsually have plenty of
time to reflect over their cases have handy summaries of their subject
to which they can refer, that physicians whose cases often require
immediate action should not also have some convenient handbook, and
the more so since many of them are called upon 1o exercise their
profession not in large cities with easy acces 1o librariss, but in the
country, in desert places, or on shipboard. Oribasius, friend and
physician of the emperor Julian, an. 461-963, had made such a
compendium by that emperor’s order. In this he embodied so much
of Galen’s teachings that he became known as “the ape of Galen,"
although he also used more recent writers. But Paul of Aegina regarded
this work of Oribasius as wo bulky, since it originally comprised
seventy-two books although only twenty-five are now extant, and so
essayed a briefer compilation of his own. . . . (L. Thomdike, 4
Hutory of Magic and Experimental Science, |, New York, rg23, pp.
568-569.%)

Adoption of these less specialized forms does not necessarily
mean sterility and lack of originality. Critical ability and originality
are not entirely wanting in the great medical compilers of the age:
Aetius of Amide (sixth century), Alexander of Tralles (sixth century),
and Paul of Aegina (seventh century). Thus Alexander’s principal
work, his Handbook, has been described by one historian as “more a
record of his own medical observations and experiences than a
compilation from past writers,” Without detailing the medical
activity of these three and other post-classical physicians, we should
observe that medical instruction as organized by and around these
men at Alexandria and elsewhere had great influence on Islamic
medicine. It is another case of medieval investigators' looking at
classical material as reorganized and selected by the physicians or
philosophers of late antiquity.

* Quoted by perinlsion of the publither, the Columbia Univenity Pres.



GREEK SCIENCE IN THE AGE OF JUSTINIAN 179
v

One final event in the course of late antique Greek science needs
catalogning: the preliminary and partal translation of the Greek
corpus of scientific learning into Syriac. Just as parts of the Greek
corpus were turned into Latin, the common language of the Western
half of the Roman Empire, so certain Greek logical, medical,
alchemical, and astronomical works began in late antiquity to be
translated into Syriac, a Semitic tongue common to divers localities
and peoples of the Eastern parts of the Empire, The composition of
independent philosophical works in the Syriac language goes back
at least to the second century. But the translating activity in which
we are interested at this point of our studies arises in the Nestorian
school of Edessa (northern Mesopotamia) in the fifth century, The
rise of a “national” Syrian church or Christian Syrian sect with
formal theological education in Syriac provided the initial stimulus
to the translation of some of the logical works of Aristotle into
Syriac. We cannot go into the religious doctrines of the Nestorian
movement, which became firmly entrenched in certain Syrian cities
by the fifth century; but we can insist that the conscious attempt to
preserve the Nestorian doctrines did much to nourish and -gtimulare
further a separate development of Syriac Hellenism.

Without discussing in any detail the fifth-century translators into
Syriac, we can note that they knew and rendered into Syriac
Aristotle’s more elementary logical texts, particularly The Categories
and the On Interpretation. It is also probable that the Prior Analytics
was translated in the fifth century.

The increasing hostility toward the Nestorians of Edessa resulted
in their final expulsion from that city in 48g. At least some of those
expelled went across the Persian border to the town of Nisibis (some-
what to the east of Edessa, in northern Mesopotamia). In the course
of the sixth century, Syriac schools took root and flourished in several
Persian towns. The Syriac school that was to have most influence
on the development of Arabic learning was that at the great Persian
center Jundi-Shapur (modern town of Shah Abad?). Jundi-Shapur
had developed into a flourishing intellectual center of Hellenism by
the sixth century. Two centuries later, after the Arabs conquered
Syria and Persia and built their new capital of Baghdad, they called
upon the Syriac Christians of Jundi-Shapur to provide them with
the best medical and linguistic talent available in their empire,
Jundi-Shapur had become by that time one of the most famous
centers of medical teaching in the Near East. There seems little
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doubt that its curriculum was based on the medical teaching of
Alexandria, and it is probably to such schools as that at Jundi-
Shapur that the great Syriac and Arabic translator Hunain ibn
Ishiq was referring when he alluded to “Christian" schools of his
day.

These are the books (of Galen) to the reading of which the students
in the medical school at Alexandria were confined, . . . They were
accustomed to meet every day for the reading and interpretation of one
of the standard works, in the same way in which, in our days, our
Christian friends are accustomed 10 meet every day at the educational
institution _known as ayodn for the study of a standard work from
among the books of the Ancienis. Concerning the remainder of
(Galen's) books they were accustomed to read them everyone for
himself, after an introductory study of the aforementioned books:
just as our friends read to-day the explanations of the books of the
Ancients. . (fns, Vol. B, p. y02.)

It should be pointed out that not all of the Syriac activity grew
out of the Nestorian schools. Some Syriac-speaking peoples took up
the views of the Manophysites, a sect rather directly opposed to the
Nestorian views on Christ’s nature. In fact, the best of the early
Syriac ranslators was not a Nestorian but a Monophysite. This was
Sergius of Reshaina (d. ca. 536?). Sergius was a Christian priest
and physician whose activity as a translator was marked. His home
of Reshaina is located about halfway between Edessa and Nisibis, in
northern Mesopotamia; and he was no doubt acquainted with the
neighboring Nestorians, for he dedicates a work to one of their
bishops. His translation of the pseudo-Aristotelian book On the -
Universe {De munds) has been praised for its skilful rendering of the
Greek. He also translated The Categories of Aristotle as well as the
Neo-Platonic Introduction to the Categories of Porphyry. Thus he was
translating this Aristotelian logical material into Syniac at almost
the same time as Boethius was turning it into Latin at the other end
of the Empire.

But Sergius’ most important translations were of medical works.
Although the extant copies of these medical translations are few,
from the detailed remarks of the great Syriac-Arabic translator of
the ninth century, Hunain ibn Ishiq, we learn the titles of some
twenty-six works of Galen translated by Sergius, Sergius was
particularly interested in translating the works of Galen which
served as textbooks in the school of Alexandria, where Sergius him-
self had studied. Hunain ibn Ishaq is often quite critical of Sergius’
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translations. For example, of his translation of Galen on The Kinds
of Fevers, Hunain says, “Sergius translated this book, but not in a
creditable manner.” Although he makes other such remarks about
Sergius' incompetent translations, he occasionally speaks of his later
translations in 2 more favorable light; thus, when speaking of one
Galenic translation of Sergius, Hunain says: “Sergius translated
this book into Syriac, the first parts when he was yet weak and
inexperienced in translation work. He translated the remaining
eight parts when he had acquired experience so he did this version
better than that of the first six parts,”

Whether or not Sergius’ translations are bad, it must be remem-
bered that he was probably the first significant translator of Greek
medicine into a Semitic language. On his own he also composed
two warks, On the Influence of the Moon and The Movement of the Sun.
They no doubt depended on Greek sources. Sergius has been
epitomized by a later author as “a man eloquent and greatly skilled
in the books of the Greeks and Syrians, and a most learned physician
of men's bodies. He was orthodox in his opinions . . . but his morals
corrupt, depraved and stained with tust and avarice.”

Our consideration of the other Syriac translators prior to the
Arabic period can be limited to one: the celebrated seventh-
century translator Severus Sehokt, Sebokt was a bishop and monk
about 640 at the convent of Kenesre on the Euphrates, a monastery
that had become celebrated for its teaching of Greek. Like his
predecessors he continued the study of Aristotelian logic. But more
important for us, he pursued astronomical studics. He may have
been the author of an extant Syriac translation of Prolemy’s
Almagest. In addition, he composed a work on the phases of the
moon; one on constellations, which is a rambling work including
geography, chronology, and cosmology; a tract on the aswolabe
(one of the chiel astronomical instruments of the day); and so on.
He makes mention of the Hindu numerals (i.c., the numerals known
to us ordinarily as the Arabic numerals) in a work dated before 660,
All in all, Severus appears to have been a key figure in the partial
transmission of Greek learning into Syriac.,

Before leaving our discussion of Syriac translations we should
note that one of the largest sources of extant Syriac letters is a corpus
of alchemical works, works which are either translations from the
Greek or paraphrases of previous Greek alchemical works. We
shall have occasion to mention these texts when we speak in a later
volume of Istamic alchemy.



CHAPTER FOURTEEN

In the End the Beginning

WE have now reached the point where the Greek corpus of
scientific learning had run its course in antiquity. We have
seen that by the year 600 preliminary efforts had been made to turn
parts of the corpus into Latin in the West and into Syriac in the
East. But as yet not enough of the corpus had been translated to
constitute a major conversion of Greek science into another language.
We have also seen that in the East—in several centers of Hellenistic
learning—most of the best classical scientific authors, such as
Aristotle, Archimedes, Euclid, Apollonius, Hero, Ptolemy, Galen,
continued 1o be studied and were in fact re-edited and commented
upon as late as the fifth and sixth centuries.

Now the succeeding history of Greek science would show that it
was converted first into the Arabic tongue, in the ninth and tenth
centuries, and then once again from both Arabic and Greek into
Latin, in the twelfth and thirteenth centuries. But we must set that
history aside as the subject of another volume.,

We shall do well to remember as we close our preliminary
account of Greek science in antiquity that, although the Greek corpus
received major additions and modifications at the hands of the
Arabic and Latin authors, it was still essentially the Greek learning
that made its way to the Latin West. By the thirteenth and four-
teenth centuries it constituted the major element of scientific studies.
Far example, it was the interpenetration of Euclidian-Archimedean
mathematics and Aristotelian  philosophy in the schools that
accounted for the major achievements of the medieval mechanicians
in the thirteenth and fourteenth centuries,

Furthermore, it was still basically the Greek scientific corpus that
continued to be studied in the West in the later Middle Ages and
carly modern times. And it was in great part that corpus which
stimulated the most fertile scientific activity in the sixteenth and
seventeenth centuries, Thus Vesalius started from Galen and
Benedetti and Galileo from Archimedes and Apollonius.

It was Seneca who insisted that science builds upon past founda-
tions. And surely the foundation stones quarried, faced, and laid in
Greek antiquity have provided the surest support for the scientific
structure raised in modern times,

18z
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ARCHIMEDES AND THE QUADRATURE OF
THE CIRCLE

(Proposition | from Archimedes” Measurement of the Circle—A Free
Paraphrase)

futroduction: In the earliest period of mathematics, formulae for the
arcas of figures bound by straight lines (rectilinear figures) were worked
out; e.g., for a triangle, ia - b, or a rectangle a - &, 2 and § being straight
lines, of course, Now when the problem arose of finding a formula for the

-y

——

L
Fic. 49.—The quadrature of the circle,

area of figures bound by curved lines (curvilinear figures), the whole ques-

tion of “quadrature’” was raised. “Quadrature” is simply the finding of a

rectilinear figure equivalent to the curvilinear figure. Archimedes shows

in the following proof that a right tnangle, of which the sides including the

right angle are equal respectively to the circumference and radius of a
16y
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circle, is equal in area to the circle. This triangle is the rectilinear figure
equal to the curvilinear figure (the circle) the arca of which is sought.
Proof: Suppose that A = area of a circle,

Ta
L,
2,

3.

4

HII‘

o= o

o,

T = ares of a right triangle with sides ¢ and », the
circumference and radius of the circle,
£ = area of an inscribed regular polygon, of which
the perimeter is s and the line from the
ceriter of the circle or figure to the middle
of one of its sides is 4.
prove: A= T.*
Either A = Tord 2 T,
I 4 =T, we have the proposition; if 4 = T, then 4 > T or
4<T.
Suppose first that 4 > T. Then 4 > T by some definite amount,
which weletbes. Then A =T + ¢
Now in the circle 4 we can inscribe a regular polygon P, and as we
double the sides of P, P exhausts more and more of A, and as a
matter of fact P approaches 4. Although we cannot think of P as
ever reaching A, we can, by doubling its sides, make P appraach
A as closely as we like. So by doubling the sides we finally have a
regular polygon ¥ which is closer to 4 in area than is 7. We say,
for example, 4 = P+ f, where [ < ¢, Because of P's approach
toward A we can always find an £ less than any ¢ we asume. In
short, P> T,
Now in actuality the formula for an inscribed regular polygon is
knowntobe P =4 4,5 and we know T = } .

- And b is always less than r and 5 is always less than .
- Therefore in fact § 4.5 < } ¢, 1, or P is always less than T,
+ Thus the fact of (7) contradicts the deduction of (¢). Hence the

assumption of (3), namely that 4 > T, on which (4) is based, is
false, Thus 4 3 T,

. In a series of similar steps we can show by the use of a circumscribed

polygon that the assumption 4 < T is also false. Thus 4 < T,
Thus, if A 3 Tand A < T, then 4 = T. Q.ED,

* The symbols ysed it the peool have the following meanings :

# means “'not eepual 10,

= means “'greater than,”

< mrany “'lesy than*

* means “nol greater than."”
4 means “nut loa than,™
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ARCHIMEDES AND THE APPLICATION
OF MECHANICS TO GEOMETRY
{Propesition I from Archimedes' Method—A Paraphrase)

. Enunciation (protasis)s Any segment of & right-angled cone (ie, ol a

parabola) is | of the triangle which has the same base and equal
height.

. Example (ekthestz): Let the segment be APBC and the miangle ABC.
. The specification of the proposition (diorismos): Segment APBC = 4

triangle ARC.

Fic. 48.—d parabolic segment.

. Further construction (kataskoue) ;

(g} Pisany point on the parabola APEC; let BD be drawn parallel
to the axis.

(b) Extend a tangent from C indefinitely.

(¢} Extend diameter BD 1o tangent forming line DBE.

(¢) Draw line MNPO through point P and parallel 1o DBE.

(¢} Draw line AXF through A and parallel 1o DBE,

() Extend BC o cut MO at N, F4 at K, and firther so that
HKE = RC.

(g) Then let HC be considered a balance beam with fulcrum at K.

. Proof (apodeiksis):

[4) Since APBC is a parabola and EC lies on the tangent, and DC
is a semiordinate, then BD = EB. [This was proved in the
Elements of Coniés by Evelid.]

() Then MN = NO,

FA = KA [Euclid, V1, g, and V, 6—MO and FA being
parallel to ED and using (a)].

]
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(¢} And AC: A0 = MO : PO [Property of parabola, see Quad.
parab. 5 and Euclid VI, 18].
(d) Thus MO : PO = KC : KN (since AC: AD = KT : KX by simi-
lar triangles).
= HK: KN (since KT = HK by construction).

(¢} Then if we consider HC as a balance and leave line MO sus-
pended at its midpoint N, which is its center of gravity, and if
we mke a segment TG = PO and suspend it at H, then from (4,
and the law of the lever, TG at H just balances MO at N.

{f} But Pis any point and PO is any line in the segment, while MO
is any corresponding line in the triangle AFC, Thus there are as
many lines in the segment as in the triangle. Hence if we place
all lines PO (ie, the whole parabolic segment) at H, they
would just balance all the lines MO (i.e., the trangle AFC
placed as 1t is).

(g) Now if CK = 3&A'W, then W is the center of gravity of triangle
AFC [This was proved in On the Equilibrium of Planes; 1, 15], and
thus the whole triangle can be taken as acting at W.

(k) Since from ( f | we know that the parabolic segment at M balances
the triangle where it is, we deduce from the law of the lever that

segment APBU . HK = triangle AFC . KW,
But HK = CK = qK'W, and so
segment APBC = § triangle AFC,
And it can be shown that triangle 4FC — Liriangle ABC.
(i) And so segment APBC = | triangle ABC.

6. Conclusion (pmperarma): And so a parabolic segment is § of the
triangle with the same base and altitade,

The reader is reminded of three important points in connection with
this proof: (1) Archimedes applies a mechanical law, the law of the
lever, for the determination of a geometric theorem, or perhaps it would
be better o say for the “discovery” of a geometric theorem. (2) And in
order to apply mechanical reasoning to geometry, Archimedes assumes
further that the center of magnitude of a figure can be taken as its center
of gravity, so that the whole magnitude can be said to be concentrated,
so far as weight is concerned, at the center of magnitude, (3) A magnitude
can be conceived as being composed of an infinite number of line segments;
or, perhaps better, any two area magnitudes can be thought of as being
composed of the same number of segments,

We have already noted in Chapter Five the statement by Archimedes
that he did not consider this method demonstrative, but only heuristic.

Note: The formal Greek terms for the parts of & “Euclidian™ proof
have been added as illustration, They are nat in the Greek text.
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APOLLONIUS OF PERGA AND THE
DEVELOPMENT OF CONIC SECTIONS
(CL. T, L. Heath, Hittory of Greek Mathematics, 11,
Oxford, 1921, pp. 110-141)

Certainly one of the earlisst authors to use conic sections in geometric
problems was the pupil of Eudoxus, Menaechmus, who flourished about
gbo-g50 me. It is believed by Heath thay Menaechmus generated the
three conic sections from a right circular cone the vertical angle of which
was a right angle. Thus a parabola can be produced by passing a plane
at right angles to ane of the generators of the cone. A hyperbola results
when a plane parallel to the axis of the cone cuts the cone. And, finally,
an ellipse can be formed by a plane which cuts all the generators of the
cone, but is not parallel to the base. But regardless of the way in which
Menaechmus formed his conic sections, a conventional way had grown
up by the time of Euclid and Archimedes. For each section a right
circular cone was used and the cutting plane remained perpendicular to
one of the generators, but the rertical angles were aried. ' With the vertical
angle a right angle a parabola was produced, with an acute angle an
ellipse was produced, and with an obtuse angle a hyperbola was formed.
Hence a parabola was called “a section of a right-angled cone," an ellipse
a “section of an acute-angled cone,” and a hyperbola a “section of an
obruse-angled cone."

It is known that Menaechmus had used the properties of conic sections
to solve the problem of finding two mean proportional lines between two
given lines, a problem which we rewrite in modern fashion,

where g and & are the given quantities, and x and y are the unknowns,
We can rewrite (1) as follows:
{2} #* =an, " = bx, ay =ub.

It is obvious that these are three simulianeous equations and that the
first two are the equations of parabolas and the third is an equation of a
hyperbola, wsing a modern rectangular coordinate system. Hence it is
equally obvious that we can solve for x and y by using any fwo of the
equations—or, to put it another way, that the two mean proportionals
can be found by the intersection of the two parabolas, or by cither of the
parabolas with the hyperbola. Tt was precisely by such intersections that

1y
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Menaechmus solved the problem. For supposing he uses the linea as a
parameter o construct one parabola and the line b as a parameter 1o
construct the other parabola, the parabolas being respectively about the
¥ and x axes, and O being the common vertex. Then, as shown in the
accompanying figure, P is the point of intersection of the two parabolas,
anid PAM and PN are the dsired values of v and y,

M P
a0 N
h\

Fic. 39.—Intersecting parabolas,

Among the authors after Menacchmus who eontributed to the develop-
ment of conic sections we can single out Aristacus [Aourished somewhat

A

M C

E
Fig. 40.—The parabola,

carlier than Buclid), Euclid, who composed a treatise in four books on
conics, and Archimedes, But all of the prior work was superseded by the
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Conter of Apollonius of Perga, some twenty-five years the junior of
Archimedes, It was largely from this work of Apollonius that early
maodern scientists learned their geometry of conic sections, We cannot
in this brief appendix discuss in demil the many theorems of this work
{of which Books 1-1V anly arc extant in Greek, V-V11 in Arabic, and
VI is lost). 1t will suffice to show how he expresses the fundamenial
properties of the different sections in a new way, so that he arrives at the
new terms “parabola’ “hyperbola, " and “ellipse.”” For example, let us

A

Fie. 41.—The ellipse.

take the parabola. Referring to Fig. 40, we can note that line PL is the
parameter of the parabola—i.c., the constant quantity that expresses the
nature of the pamabola. It is constructed as a line perpendicular 10 the
axis of the paraboli.

He then assumes for PL (1) PL: P4 = BCY: (BA - AC). Then HN is
made parallel to 8C, and thus is a diameter of circle HQK. Hence, (2)
QV*= HV-VK. Then (3) HV: VP =BC:CA, and (4) VK:PA=
BC: BA. Multiplying (3) by (4), we bave (5) (HV - VEK): (VP - PA)
= BC*: (CA+ BA). Then substituting (1) and (2) in (5], we have (6)
@V* = PL+PV. The equation (&) represents the “‘equation’ of the
parabola. If we consider PV the abscissa (x) and QF the ordinate (),
and let the parameter PL bie called p, then we have the familiar form:
¥ = px, Now for Apollonius PL is considered the "'line of application,”
and thus for a parabola the square of the ordinate (QV?) is equal to a
rectangle (PL - PV) exactly applied to the parameter PL and the name
“parabola’ means “applied."

Without going into as much detail we can show how the new appli-
cation method of expressing the fundamenal properties applies also o
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the ellipse and the hyperbola. For an ellipse, Apollonius assumes a para-
meter PL defined as follows: PL: PP’ = (BF - FU) : AF? (see Fig. 41},
From this he shows by a scries of steps that QV* = PV'- VR. And so in
the case of the ellipse the square of the ordinate (QF¥) is equal to a
rectangle (PV - VR) applied to PL but which falls shoert of the rectangle
PL - PV by the amount of a small parallelogram LR which is similar to
parallelogram LP - PP’ and is similarly situated. And the fact that we
have a rectangle which falls short of the exact application to PL determines
the name “ellipse,”” which means “falling short."

F16. 42.—The hyperbola.

Finally, asuming that PL: PP’ = (BF-FC): AF? (see Fig. 42),
Apollonius shows that, for a hyperbola, QF? — PF- VR Thus in the case
of a hyperbola the square of the ordinate (@7 is equal to a rectangle
PV« VR which exceeds the rectangle PL + PV by the small rectangle LR
similar to LP PP’ and similarly situated. From the fact that PV - VR
excends the exact application PL - PV, it is called a hyperbola, which
means “exceeding.” And so all of the conic sections are expressed as
equations of areas in which one side of the equation is the square of the
ordinate and the other is a rectangle applied equally, or in deficiency, or
in excess to a given line, the parameter, called also the fatus rectum.
Hence by using the method of application of areas, which we saw in

Chapter Five went back to the Pythagoreans, Apollonius has managed to
generalize completely the properties of conic sections.
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ARCHIMEDES' PROOF OF THE LAW
OF THE LEVER

This is & paraphrase rather than a direct translation of propositions
V1 and VII of Archimedes” work entitled On the Equilibrium of Planes. Tt
will be noticed that Archimedes depends primarily on an intuition of the
geometrical symmetry implied in the particular case of the lever where
equal magnitudes are equally distant from the fulcrum. In the particular
¢ase he assumes that equilibrium pertains. Another crucial symmetrical
assumption is that any number of equal magnitudes where centers of
gravity are equally spaced on a given beam may be replaced by a single
weight composed of all of the individual weights and hung at the mid-
point of the beam between the centers of gravity of the first and last of the
equal weights. The following expesition of this proofl replaces the Greek
letters of the original with letters less difficult to follow by modern readers.

Prorogimion VI

To prove, if 4 and B are unequal, but commensurable, magnitudes
which are in the ratio of the linear distance a to the linear distance b, and
which are hung respectively on beam a + § at distances from O respec-
tively of b and g, that @ is the center of gravity of the system and that the
system therefore is in equilibrium,

-3 28 2b
s b 0 a -h {i.e., side & has been
R TRt extended by & dis-
~— 2h tance ¢, and side a
28 by a distance §).

Fic, 43.—Commensurable magniludes on a lever.
T
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(1) ; = %= :—: {given).

(2) Extend beam a + & to form beam 24 + 2b as shown in the drawing,

(3) I 4 and B are commensurable, then @ and 8, as well as 2¢ and 25,
are commensurable.

(4) Hence there is common measure of distance 5 and some common
magnitude measurement of m, such that k- s =2z and k- m = A,
and also such that n-s = 2b and n-m = B. [From (1) and (3).]

{(5) Now in the extended beam of (2} imagine that the n number of m's
of B are hung at the midpoints of the s number of 1's of 25,
Similarly, take the & number of m's of 4 and distribute them at the
midpoints of the & number of #'s in 2a. Thus we have distributed
A and B uniformly over the beam 24 + 2b.

{6) Since O is the center of beam 22 + ok and since 4 and B are
distributed uniformly over 2a + 2b, 0 is the center of gravity of
the magnitudes so distributed. But the magnitudes 4 and 8 so
distributed act the same as if they were hung at the ends of 4 and a.

Henee O is also the center of gravity of the latter system, and thus
the system is in equilibrium, Q.E.D,

Proposmios. V11

To prove, il A + eand B are incommensurahle magnitudes related as
distance a to distance b and are hung at distances § and a respectively
from O, that 0is the center of gravity and thus the system is in equilibrium.

A+g b O

a
_-_._|B

Fio. 44.—Incommensurable magnitudes on a lever.

[ é% = E (given),

(2} Either A + ¢ balances 8, or it does not. If it does nor, then either
A + ¢ is depressed or il is elevated.
(3) Suppose that 4 + ¢ is depressed,
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(4) Take away from 4 + ¢ a quantity ¢, ao! large enough to prevent
the depression of 4 but such as o leave 4 commensurable with B.
[Nate: This is an application of the fertile method of exhaustion
used by Archimedes in proving geometric theorems {see Appendix

1)l

. A4+e¢ ‘a A _a
{5) Since we assumed thutT::-b, th:nﬁ-t::i.
it

(6) Fram proposition VI whnn% =

then equilibrium exists,

But in (5) it is said um%q;. Hence 4 is not sufficient to

halance B, and so A will be elevated.

{7) But the fact of (6) contradicts the suppaosition of (4) and thus of
(3), and hence (g)—mnamely, that 4 + ¢ is depressed—is false,

{8) In the same way it can be shown that 4 + 5 is not elevated; and
thus equilibrium exists. Q.E.D.
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EQUIVALENCE OF EPICYCLE AND ECCENTRIC
MOVEMENTS FOR THE SUN

The following proofis a little more rigorous than that of Ptolemy in his
Almagest, Book IT1, But the spirit of the two proofs is essentially the same.

Purpase: To devise a system such that the movement of the sun will
seem 10 speed up and slow down in the various parts of its annual orbit,

Procedure; Use either an eccentric or an epicyclic movement, for they are
equivalent.

Proof of their equivalence:
L. (Exemplum) Assume the earth 7; € a point eccentric to T the sun
travels bath the eccentric circle £ and the epicycle F. D is the

A

Fi6. 45— Equiralence of epicycle and eccentric motions.

deferent circle which the center G of the epicycle F traverses about T
in & year. The radius of F—je,, AG—equals eccentricity €T, The

194
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sun starts from point 4 at any time period, traveling about F in a
year or about E in a year. In the first case after a given time lapse
it is at point §” an F, and at point § on eccentric E.
2. (Specificatio) We are to prove, therefore, that § is always identical
with §',
3. (Dispositic) Extend TGA" and draw C§.
4. (Probatia)
(r) CSTG is always a parallelogram, for OT = SG and CS = 7G by
construction.
(2) We have assumed that when the sun has gone over arc 45 on
circle E it will have gone over an equal arc 45’ on epicycle F.
Thus /. A'GS' = / ACS.
(3) But / A'GS' = / A'GS because
L AGS = ; ACS from (2) and
£ ACS = s A'GS from (1).
(¢) Henee 5 is identical with 57

5. (Coneluris) The epicyelic and eceentric methods are identical for the
motion of the sun under the conditions posited.

Note: Some of the Latin terms for parts of a proposition and it proof
have been added for illustration. Their Greek equivalents are not in the
text,
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THE MOVEMENTS OF THE PLANETS AND
THE MOON ACCORDING TO PTOLEMY

1. The movement of Venus (and the superior planets).

{t) The planet (shown at ¥V and V") moves on an epicycle directly
(i.e., from west to east),

F1G. 46.—The movement of Venus.

{2) The center of the epicyele (here at b and r) moves directly on a
deferent circle of which the center A is fixed, eccentric from T,
the center of the earth.

{3) But the center of the epicycle does ad move uniformly with
respect to A, the center of its circle, but rather with respect 1o
some paint C© which is fixed on the fine ATO (ie., the line
passing through the centers of the earth and the deferent circle)
in such a position that €D = AT, This point € i known as the
center of the equant. Any circle E drawn with it as its center

tfi
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(e.g., ane with ¥ on its circumference) is known as the equalizing
circle or equant.

{4) The planet moves uniformly on its epicycle with respect 1o the
center of the epicycle. But note that Polemy and all medieval
astronomers measure the change from 8.

(5) A similar combination of circles is used for Mary, Jupiter, and
Saturn.

(6) Note that in this description as well as in those of Mercury and
the moon little or no attempt is made to show that the planes of
cireles might be inclined to cach other, as Prolemy definitely
states for the purpose of representing latitude.  These diagrams,
then, are simplified drawings, showing all the circles in the same

plane.
2. The movement of Mercury,

(1) The planet Mereury shown at M moves directly (west to east)
on an epicyele in a period equal 1o jts synodic revolution.

Fi6. 47— The movement of Mercury.

(2] The center of the epicycle (here at rj moves directly on an
eccentric deferent D the center of which is A,

{3) Bu, as is not true in the case of Venus, this center A, eceentric
to center of earth T, is not fixed, but moves on a circle 4 with
center £ in a period of one year in a retrograde direction (east
1o west), The radius of circle 4 is § the distance between £ and
T, the center of the earth.
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As in the case of Venus, the center of the epicycle (here at r)
does not move uniformly with respect to A, the center of its
eccentric deferent, but with respect to a point €, the midpoint
in ZCT. Thus the line Cr turns with uniform angular velocity
around C, and any circle around € would be the equalizing
circle or equant.

A, the center of the movable cecentric D, moves uniformly
about its center ., and the planet also moves uniformly about
its center r.

Notice that in the description of all planets and the moon
Prolemy is in a sense violating the Platonic rule representing
planctary motions by uniform circular movement around the
center of a circle, in introducing the idea of an equant removed
from the center of the deferent,

E

Fre. 48.— The movement of the Moon.

3. The movement of the moon,

{1) The moon, L, moves uniformly on an epicycle (shown in position

£} directly (west to cast),
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{2) The center of the epicycle, r, traverses from west to east a
deferent circle, D, which is a movable eccentric,

(3) Center A of the deferent is constantly situated on the intersection
of its plane (inclined to the zodiacal plane) with the zodiacal
or ecliptic plane, at an invarable distance from the center 7 of
the earth. A describes around T circle A uniformly.

(4) The center of the epicycle, v, does not move uniformly with
respect to A, the center of its circle, but rather with respect o a
point €, diamerrically opposite to A on circle 4. Point C, the
center of the equant, is itsell wurning uniformly around T, the
center of the earth, Line A TT is the line of nodes of the lunar
orbit.

{5) This theory takes into account not only movement of nodes but
alio evection.
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PTOLEMY’S TABLE OF CHORD LENGTHS
(See the Mathematical Syntaxis, Book |, Chap, IX)

Although it is conventional to begin the history of Greek trigonometry
with a reference to the lost work of Hipparchus On the Chords in e Circle,
trigonometry quite obviously had a prehistory in the development of
astronomy, and particularly in the development of spherical geometry as
applied 10 astronomy, It is evident also; as we have pointed out in
Chapter Seven, that Aristarchus made approximations of line lengths
that were essentially measures of angles and thus were trigonometric in
character. But assuming that trigonometry proper is not established until
we have a fable relating line lengihs 1o angles, then we do well 1o Rollow
the traditional approach and start with Hipparchus. For without doubt
Hipparchus' loat work contained & table of chord lengihs 1o be used for
the solution of plane and spherical triangles. It is known, furthermore,
that in the first century Menelaus (see Chap. Nine), one of the best of the
spherical geometers, composed & tahle of chord lengths. Thus Piolemy
in the next century was the heir of this already established rradition when
he set out in the first book of the Mathematical Smtasii to obtain a table of
chord lengths. He found such lengths for every angle from | to 180°,
proceeding by steps of §°; these lengths he expressed in terms of parts of
the diameter, which was assumed as having 120 pars.

Cc
Fic. 49.—Lhords and sines.

The modern student will note thar this wable is equivalent to a table of
the sines of one hall of the angles. For by reference 1o the accompanving
diagram one sces that the chord A8 is the same number of parts of the
diamerer DB as EB is of CB. Buy AB expressed as parts of DB is the chord

s
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of @ and EB expressed as parts of CB is the sine nf'g. This identity follows,

since DB = 2CB and AB = 2EB.

tn serting ow to build up a table of chords, Prolemy sought first to
find a few readily determined chords and o establish a few key geometrical
relationships between chords of related angles.

(1) First by simple geometry and the calculation of certain square-root
approximations he found the following chord lengths which are the sides
of regular inscribed polygons:*®

erd 36° = 37p 4 55
erd 72° = jop 32’ §°
erd B0’ = bop— —

erd go” = Byp 51" 107
crd 120" = 1o3p 55" 23"

{2) Prolemy next established by the Pythagorean theorem the relation-
ship:
erd®a + crd? (180" — @) = 120?

A

B c
Fia. 5o.— The squares of complementary chords,

This is immediatelv evident, for trinngle ABC is a right riangle since
it is inscribed in a semicircle, AC is the chord of a, and A8 is the chord of
(180° — a}, and BC is 120,

This is equivalent to the familiar triggnometric relationship

Sinte + Cos*ec = 1,
where a4 = 2.

Now from this relationship Pwlemy observed that one could compute
from the chord of & the chord of (180° — a), and he computed, for
example,

erd (180" — 36°) =crd 144" = 114p 77 37"
() After proving by geometry that the product of the diagonals ol an

* p stands for one part of the dismeter which contains 130 parts. The fractions are
expressed as sexagesmal,
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inscribed quadrilateral equals the sum of the products of the opposite
sides taken two at a time (“Ptolemy’s theorem™), he established the
following important relationship for the chord of the difference of two
angles: _

erd (2 — ) _ crd a s crd (1807 — &) t—mm'di-nﬂ {1B0° — a).

This relationship will be evident from the following. In Figure 51 the
following equivalent quantities should be noted:

AB = erd b BD = crd (180" — b)
AC=od & CD = crd {180 —a)
BC =erd (04 —8) AD = 120
H
B
A D

Fic. 51— The difference of chords.

From "Puolemy’s thearem” concerning the diagonals of inscribed
quadrilaterals, we get immediately the relationship:

AC- BD = (BC- AD) + (AB-CD)
and this
_ (AC- BD) — (AR - CD)
BG AD

ar

-
ord (& — ) = Sdaord (180° — ) :mtrdﬁrtrd{tﬂo‘—u}.

This is equivalent to the familiar formula
sin (e — d) = (sin ¢ cos ) — (sin d - cos ¢)
where g—::md%=n’,
With this relationship we can find, e.g.,
ed (72" —60%) = erd 12" = 12p 32" 56°
(4) The next important relationship developed by Prolemy is the one
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for finding the chord of half of the angle when the chard of the angle is
given, This he fnds to be

:rdE= V6o [120 — ord (180" — a))
which Ptolemy develops as follows (consult Fig. 52).

a/2
A
E Z -
FiG, 52.—The chord of half the angle.

Let us first note these equivalents:

GD = erd 2

2
HG:C‘]"d‘
A8 = od (180" — a)
Al = 120

Now GD is sought. BG is given and hence 4B is given. AE is made
equal to AB with D2 perpendicular to AG. Hence JG = | (4G — AB),
for (1) AABD = AAED, two sides and the included angle of ane being
equal to two sides and the included angle of the other; and thus (2)
DE = DB; but as chords of equal angles BD = DGy and thus with
AEDG isosceles and DZ a perpendicular 10 EG, (3) EJ = 3G or
LG =} (AG — AB).

But AG: GD : : GD : GZ by similar triangles

or GIF = AG- G
= | AG {AG — AH) where all the gquantities are known.
And thus, substinuting equivalent values,
GD = Vbo [120 — crd (180" — a}].

The formula for GO* is equivalent to the well-known formulation

sin* Je=1 (1 —coa¢)

where ==
&
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With this formulation, Prolemy points out, many chords can be found
as halves of known chords; e.g., the chord of 6° from the known chord of
12%, then from the chord of 6" the chord of 3%, and from it the chard of
14%, and from it the chord of §°.

{5) Finally, Prolemy gives us the most important rule of all, that for
finding the chord of the sum of two angles, when the chord of each of the
two angles is known. The proof is not unlike that for the determination
of the chord of the difference of two angles, and makes use of “Polemy’s
theorem.' Because of its similarity we give only the principal formulation,
which is for the chord of the complementary angle of crd (@ -+ 4), namely
(1B0° —a — b);

120 crd (1Bo® — g —#) = crd (180° — a) » oxd (180" — )
—erd a-ord b
which formulation is equivalent to the familiar

tos e+ d) =coe-cond —sine-sind

where £ = ?—and d= E]
2 2

It should be noted finally that from crd (180" — & —8) we can
immediately find the chord of its complementary angle, crd (a + 8,
fram the relationship given in (1). And this was sought.

(6) Following the formulation of (5) Prolemy determined the approxi-
mation of the crd 17, and then with () and this approximation the table
was completely built up. For he found crd §” using formula {4) on his
approximation of 1°, Thus we simply have to determine all the succeeding
angles by the addition of formula (3); eg.:

crd §"=opqas®
erd "= ip2's0”
crd  1}° =crd (1" + }*) = 1p 44’ 15"
erd 2" =ord (3f2° 4 }°) = 2p 5’ 40°
crd  2)" =erd (2" 4 §") = 2p 37" 4
elc,
erd 179" = ond (178§" -+ §°) = 110p 50" 1"

crd 1794" = erd (179" + ) = 119p 50' 567
crd 180% = 120 pars

As 1 have indicated, the principal use of the table of chords is in the
calculation of spherical triangles. 1t is used, for example, in the problem
of finding an arc between the equator and the ecliptic {Book 1, Chap.
XII). The reader is referred to M. Cohen and 1. E, Drabkin, A Souree
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Bovk in Greek Science, New York, 1948, pp. 84-85, lor an example trans-
lated into English of the use of chords in the problem of determining the
latitude of a place when there is known the length of the longest day of
the year at that place.

FURTHER READINGS

The best general accounts covering either all or a large part of antique
science are the following:

1. P, Brunet and A. Michi, Histoire det sefencer: Antiguitd, Paris, 1935,
{ Includes selected readings.)

2. George Sarton, A History of Science : Ancient Science through the Golden
Age, Cambridge, Mass., 1952.

3. George Sarton, Introduction lo the History of Science,1, Baltimore, 1927.
(Contains extensive bibliographies and short biographies.)

On a more popular level are:

4. B. Farrington, Seience in Antiquity, Oxford, 193h.

5. B. Farrington, Greek Seience: Its Meansng for Us, 2 vols., London,
1944-1949. (Excellently written, but has a strong materialist bias.)

6. ]. L. Heiberg, Muthematics and Physical Science in Classical Antiquity,
translated from the German by D. C, Macgregor, London, 1922,

7. W. A. Heidel, The Hereic Age of Seience etc., Baltimore, 1933,

8. A. Reymond, A History of the Sciences in Greco-Roman Anbiguity,
translated from the French by R, G. de Bray, New York, 1927.

"The most useful single volume on Greek science is the following boak
of source readings: M. Cohen and 1. E. Drabkin, A Saurce Book in Greek
Science, New York, 1048. Those teachers who wish to use the present
volume as a textbook will find thar the Cahen-Drabkin volume will
provide an exeellent supplement. And the general reader will also find
it profitable to have that volume at hand as he reads.

In suggesting further readings on the topics of each chapier 1 make no
effort toward completeness. [n fact, for the most part, 1 have merely
added items of importance which are not found in the excellent bibli-
ographies appended to Cohen and Drabkin's volume.



PART 1

Cuarrer One

Since Cohen and Drabkin have no hibliography for science in pre-
history and in Egypt and Mesoporamia—the topic of this chapter—a
somewhat longer list is given here than for the succeeding chapters:

1. J. H. Breasted, The Edwin Smith Papyrus, 2 vols., Chicago,

1930. (Contains excellent introductinns evaluating Egyptian
medicine, )

2. J. H. Breasted, Daun of Conscience, New York, 1935.

3

+

8

a

A. B. Chace, The Rhind Mathematical Papyrus, 2 vols,, Oberlin,
Ohio, 1927-1924.

V. Gordon Childe, Man Makes Himself, London, 1936. (The
best of Childe's numerous popularizations; has a materialist
bias.)

- G. Conteneau, La Medicine en Ausyrie ¢t en Babylonie, Paris, 1038.

{Excellently illustrated; much more than a history of medicine.)

- F. X. Kugler, Sternkunst und Sterndienst in Babel, 2 vols., and g suppl.,

1967-1935.  (The masterwork which recovered Babylonian
astronomy, )

- O. Neugebauer, The Exact Sciences in Antiguity, Princeton, 1951.

(By far the best single volume on Egyptian and ‘Mesopotamian
astronomy and mathematics; it includes excellent bibliogriphical
supplements to its various chapters.)

O. Neugebauer and A. Sachs, Mathematical Cuneiform Texts, New
Haven, 1945.

R. A. Parker, The Calendars of Ancient Egypt, Chicago, 1950.

1o. J. L. Partington, The Origini and Deselopment of Applied Chamristry,

Il

2.

13

14

London, 1g935. (A detiled study of many aspects of ancient
techniques; a superb summary of the modem [iterature on this
subject.)

W. F. Petrie, Wisdom of the Egyptions, London, 1940. (The mathe-
matical sections can be used only with great caution, but this
volume contains much technological information.)

H. Sigerist, A History of Medicine, 1, New Haven, 1951. (The most
recent general treatment based on the best availahle monographs.)
R. C. Thompson, Dictionary of Assyrian Chemistry und Geology,
Oxford, 1936.

F. Thureau-Dangin, Textes mathématique: babyloniens (transcrits ot
traduits, Leiden, 1938, '

106
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Cuarrers Two ano Turee

Consult the bibliography in Cohen-Drabkin, pp. 560-561, and the

following additional items:

1. F. M. Comford, Principium Sapientiar, The Origing of Greek Philasophical
Thaught, Cambridge, Eng., 1952. (A radical departure from the
Burnet *positivistic’ treatment of the pre-Socratics.)

2. K. Freeman, The Pre-Socratic Philosophers, Oxiord, 1940,

3. K. Freeman, Amcills to the Pre-Socratic Philosophers, Oxford, 1948.
(These works render much of Diels inte English.)

4. W. Jacger, The Theology of the Early Greek Philasophers, Oxford, 1047
(Also dizagrees with the Burnet presentation of the pre-Socratics,)

Cuarrer Foun
Consult the bibliographies for biology, botany, zoology, and medicine in
Cohen-Dirabkin, pp. 566-568. To these bibliographies, add the following:
1. W, Heldel, Hippocratic Medicine, New York, 1041, (Emphasizes the
relations of medicine with science; of uneven quality, but parts are
worth reading.)
2. W, Jaeger, Aristotle etc., Oxford, 1034.
3. W. D. Ross, drislotle, London, 1930,

Cuarten Five

See the bibliography for mathematics in Cohen-Dirabkin, pp. 561-563.
Also useful is the posthumous volume of T. L. Heath, Matkematics in
Aristatle, Oxford, 194g9. A most interesting approach 1o the dependence
of Greek mathematics on Babylonian linear methods is to be found in the
sixth chapter of Neugebauer's The Exact Scienves in Antiquily, already cited
in the readings for Chapter One. Also of interest is the recent volume:
Paul-Henri Michel, De Pythagore & Euclide, Paris, 1950.

CHAPTER Six

See the biblisgraphy for Greek physics and technology in Cohen-
Drabkin, pp. 564-565. Also consult:

1. Anstotle, Phyrica (in the edition of W, D. Ross, Oxford, 1936, which
has rich and informative commentaries),

2. H. Canteron, La Notion de force dans le systéme d'Aristote, Paris, 1923,

3. F. L. Cooper, Aristotle, Galileo, and the Tower of Pira, Ithaca, 1635.

4 A. G. Drachmann, Ktesibios, Philon and Heron. A study in Ancient
Preamatics, Copenhagen, 1948

5. P. Duhem, Systéme du monde, Vol. I, Paris; 1013, (Has almost as
much interest for the history of physics as for the history of
astranomy.)



zof GREEK SCIENCE IN ANTIQUITY

CuarTER SeEVES

See the excellent bibliography for astronomy in Cohen-Drabkin,
PP 563-564. Consulr also:

1. O. Neugebaver, Evael Seiences in Antiguity, Chap, VI, (A fresh
approach to the dependence of Greek astronomy on Babylonian
methods.)

2. B. L. van der Waerden, Die Astronomie der Pythagoreer, Amsterdam,
195T.

3. A Diller, “The Anciemt Measurements of the Earth," fiis, 40
(1949), f-g.

Cuarrer Eicar
There is no separate bibliography for Roman science in Cohen-
Drabkin. There are, however, two short accounts with citations of
readings:
1. Cyril Bailey, Legacy of Rome, Oxford, 1924, (The article on science
is by Charles Singer.)
2. P. Brunet and A. Mieli, Hidtoire des seiences: Antiguité, Paris, 1935,
[Chaps. 91-33 and 36-48 are on Roman seience.)

In addition the reader is urged to read the Loeb Library and other
modern editions and translations of the principal figures studied in this
chapter: Celsus, Lueretivs, Vitruvius, Frontinus, Seneca, and Pliny.
See also:

3. John Clarke, Physical Seience in the Time of Nero etc,, London, 1910,
(Contains a translation of Seneca’s Natural Questions with notes by
the fameus gealogist Sir Archibald Geike.)

4. Giuseppe Cozzo, Ingegneria romana, Rome, 1928,

5 Instituto de Studi Romani, Le Scienze fisiche ¢ biologiche in Roma ¢ nel
Lagip, Roma, 10933,

b. A. Terquem, La Seience romaing & Pepoque ' Auguste erc., Paris, 1885,
{On Vitruvius,)

7. L. Therndike, A History of Magic and Experimental Science, I, New
York, 1523, (Particularly Chaps. 2 and 3, on Pliny and Seneca.)

8. M. Wellmann, A. Comnelius Celsus, Berlin, 1914,



PART 11

For Part 11 of our volume, where Cohen-Drabkin is no longer helpful
for bibliographies, we give pertinent chapters in the three standird
aceounts of this period, namely, Duhem’s Syitéme du monds, cited above in
the bibliography of Chapter Six; and the Brunet-Mieli and Thorndike
volumes cited in the bibliography for Chaprer Eight. All these cohtain
hibliographical material to which we shall add a few titles. But these
aceounts are quite limited in scope and the reader is urged to read the
standard editions and translations (when they are available) of the Greek
and Latin authors mentioned, For the most part exact citations w the
works are given in the numerous quotations throughout Chapters Eight
to Thirteen,

CuarTers Nive anp Tex

For the mathematical parts of Chapter Nine use the various works
noted in the readings for Chapter Five, For the alchemical materials, see
the bibliography in Cohen-Drabkin, pp, 565-566. Consult the following
standard treatments;

t. Brunet-Mieli, Histoire, Chaps. 4446 and 48-40.

2. Duhem, Systéme, Vol, 1, Part T, Chap. 5; Vol. 2, Part 11, Chap. 1;
Vol. 3, Part 11, Chap. g (Sect. 2).

4. Thorndike, Magic, I, Chaps. 4 and g-23.

Also examine the following more specialized works:

4 Q. M. Cochrane, Chrirtianity and Classical Culture, Oxford, 1040.

5. F, Cumont, Asirelogy and Religion amang the (Greeks and Romans, New
York, 1g12.

6, A. M. Festugitre, translator, and A. D. Knock, editor, Corus
hermeéticum, 2 vols, in 1, Paris, 1045

7. A. M. Festugiére, La Révélation o’ Hermes Trimdgivte, 2 vols., Paris,
1950,

f. H. A. Wollson, Phifs ete., 2 vols,, Cambridge, Mass., 1047.

For the Cliristian Hterature in wranslation, see:

g. J. B. Lightoot, editor, The Apastolic. Fathers, 5 vols,, Londaon,
1 385- 180,

10. A. Roberts and J. Domaldson, editors, The Ante-Nicene Fathers, 10
voli., New York, 18gb-18a4,

1. P. Schafl, editor, The Nicene and Post-Nicene Fathers, 28 vols., New
York, 1880-18g0.

204
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GREER SCIENCE IN ANTIQUITY

CuarTERs ELEVES anp TwWELVE
Brunet-Mieli, Hisoire, Chaps. 54-55.
Duhem, Systéme, Vol. 3, Part 11, Chap. 1, Sects, 1 and 2; Chap. 3,
Sects. 1=7.

4, Thorndike, Magic, I, Chaps. 27 and 2q,
Other specialized works are:
4 H. M. Barrett, Borthivs, Cambridge, Eng., 1040.

LT

P om

e

10,

Ia.

13

15
16,

1y

18.

9.

E. Brehaut, An Encyclopedist of the Dark Ages, Isidove of Seville, New
York, 1g12.

E. 5. Duckett, Galaway to the Myddle Apes, New York, 1938,

E. S. Duckett, Latin Writers of the Fifth Century, New York, 1930,
Erika von Erharde-Sichold and Rudoll von Erhardt, The Astronomy
of Erigena, Baltimore, 1940,

Erika von Erhardi-Siebold and Rudolf von Erhardt, The Commology
in Annotationes in Marcianum: Mare Light un Erigena's Astronomy,
Baltimare, 1040,

C. W, Jons, Bedae Opera ds temporibus, Cambridge, Mas., 194t.
{Intmduction has good discussion of computus literature.)

L. W. Jonss, editor, Casstodoras® ““Introduction to Ditine and Human
Readings,"" New York, 1946. (Has a good introduction.)

M. L. W. Laistner, Thought and Letters m Western Europe 500500,
London, 1g3r.

H. P. Lattin, "The Eleventh Century Manuscript Munich 14436,"
Isis, Vol. 38 (1948), pp. 205-425. (Contains a wealth of material
on carly medieval science.)

. C. E. Lutz, Johannis Scotti Annotationes in Marclanum, Cambridge,

Mass., 1634,

H. R. Patch, The Tradition of Boethivs, Oxford, 1g3s.

E. K, Rand, Founders of the Middle Apes, and ed., Cambridge,
Mass,, 1920,

C, Singer, From Magic to Science; Essays on the Scientific Tuwilight,
Landon, 1528.

W. H. Stahl, Macrobins, Commentary on the Dream of Sexpro, New York,
1952.

Thomas Wright, Popular Treatises on Science Writlen during the Middle
Ages in Anglo-Saxon etc., London, 1841,

Cuarrer Tmarees

Some general accounts are:

1.

2,

3.

Brunet-Mieli, Histoire, Chaps. 47 and 53,
Duhem, Sytéme, Vol. 1, Chap. 6; Vol, 2, Chap, g, Sect. 6. (This

it the best single account of mechanics in the sixth century.)
Thormdike, Magi, 1,
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For Syriac trunslations, see:
4 A. Baumstark: Syrische Literatur, Bonn, 1922,
5. R. Duval: Litthrature syriac, 3rd ed., Pans, 1907.
6. M. Meyerhof, "“New Light on Hunain ibn Ishaf," Ids, Vol. B
(1926), pp. 686-724.
7. W. Wright, 4 Short History of Syriac Literature, London, 18g4.

On mechanics, see:

8. A. Haas, “Uber die Originalitit der physikalischen Lehren des
Johannes Philopanus,” Bibliotheca Mathematica, Dritte Folge, Vol.
6 (1905) pp- 337-342-

g E. Wohlwill, “Ein Vorginger Galileis in 6 Jahrhundect,”
Physikalische Ceitichrift, Vol 7 {190b), pp: 23-32.

On the wadition of classical mathematics in the sixth century, see
particularly the introductions 10 J. L. Heiberg’s latest editions of the
works of Apollonius and Archimedes.
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42, Meteorelogy of, 122, 124, phy-
sical ideas and Phwsicr of, 64-68, 140—
#1, 156, 16g—70; scientific method
of, 25-27; woolegy of, 46-51; 144,
t55; mentioned, 24, 28, 53, 108,
158, 182 & parim

Aristotle {pseudo):  Awfibles of, b8
D¢ munds, 100, 155, 180; De plantis,
52; Michanics of, 68, 7133

arithmetic: Babylonian, 16-18; Egyp-
tlan, 13-14; Greek, 47, 36-57:
and e Nicomaehus
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97-28; Socred Disaw of, 23; men-
tioned, =0, 43, 155, 178

hippopede, 89

historia, 47, 98

Hogben, L., 13, b

Holmyard, E. J., 123

Homer, 127

Hooke, R,, 3

humours, 4o

Hunain ibo Ishig, 180-81

famblichus, 129

inertia, 73, 175

intercalation, 1o

Iren Age, 21

irrationality, 57

Isidore of Miletus, 168

Isidore of Seville, St., 111, 140, 157-59
Isis; cult of, 119

Jaeger, W., 33, 47, 4B
Jones, W, 161

Jones, W. H. 5, 23, 28, 40
Jundi-Shapur, 179

Justin, 133

Justinian, 168, 16qg

Kepler, ., 86
kinematics, 67-68, yo-71
Krusch, Br., 159

Laismer, M, 1. W,, 166

Lavoisier, A., 36

Leibniz, G Wi, 3

Leon of Byzantium, 169

Leucippus, 34

lever, principls or law of: Archimedes
on, 74-75. 191-94; Euclid on, 74:
Hero on, 77-78; Pseudo-Aristotle
on, 7 mentioned, 15

Lucretius, 101-104

Lyceum: described, 32, 47, 48;
physics ar, 68-73, Chap, 6&; men-
lmtd:. 20, 41, 68
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Macrobius, 14849

magic, 7. 20

Malpighi, M., 43

mEDs, 17, 101, 115

Marcellus, Go

Martianus Capella: his  Nuptials,
1;9—50 150; mentioned, 104, 147,
163

mathematics: Babylonlan, i7-1g, 41,
36; Egyptian, 13-16, 23, 56; Greek,
Chap. b, o passim

mechanics, s kinematics, motion,
Aristotle, Archimedes, and Hero

medicine: Egyptian, 7-9; Greek,

39-36, 174

Menaechmus, 187

Meneluus, 116

Menon, 47

method:  Aristotelean, 25-27; ox-
bauwstion, 57, 61, 183-84; geometric,
53-56; Inductive and deductive,

25; Platonic, g5, B4; and gee

Archimedes and Aristotle

Metpnic cyele, 1o

Miletus, zi-22, 94

motion: Aristotle on, 65-66; laws of,
66, 16g~70; Philoponus on, 16g-176;
Simplicius on, 176-77

Mucianus, 156

mythalogy, 7, 20, 23

Neo-Platonists and Neo Pythagoreans,
teb-29 (pasgm), 147, 140, 166, 16

Nestorians; t79-8o

Neugebauer, 0., 11, 18, g1, fac. 52

Newton, L, 3, 37, 58, 63

"Qrml:hm Arithmetic, 116, 151, 155~
56, i58;  Hormonies, 155, is6;
Pythagoream snd, i12B-z9: men-
tioned, 63, 149

Nile floods, 47

Nuibis, 179

N, L., 77

Ockham, W., 135
Ogle, W., 50
optics, 78-82
Oribasius, 155, 178
Origen, 135, 136
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Philo of Byzantium, 76, 106

Philo Judacus, 15038 (passio), 140

Phileponus, John; on Genends, 197, 142;
on the Physics, 166-176; mentioned,
129, 145

Physiologus, 143-44

pi, 15, B2

Plato: on astronomy, 86; education
and, 32; formal view of nature, 35;
Neo-Platonists and, t27-20; the
Timaews of, 130-40, 141, 147, (55:
mentioned, 25, 26, 46, 51, & passm

Pliny : Natwral Histry of, t1o~11; use
of by later authors, 138, 159, 64
mentioned, 100, 108, 145, 155

Plotinus; 128-2q

Plutarch, 6o, g1

pneumatics, 76, 78

Pompeius Trogus, 155

Porphyry, 152, 180

Posidoniu, g3, 121

precession of the equinoxes, of, 136

Pre-Socratica, 23, 24, Chap. 3 (passim)

Priscianus Lydus, 167

Proclus: career of, 12g9; on Euclid, 59,
12; on origind of mathematics,
29-24; on reduction, 55; men-
tioned, By

Piolemy, the sstronomer: astronomy
of, 96, 104-95, 19699; on chord
lengths, 2oc-—a05; Optics of, 79-82,
t15; am size of earth, g3, 158;
translations of, 152, 156, 1Bi;
works listed, ri5-16; mentioned,
1496, 183

Prolemy, the kings, 93, 58

and Pythagoreans: astrop-

omy of, By, 86; experiments of 20,
73: mathematics of, 56-57, 148-45,
150, tQo; ¢f pawim; wview of nature
of, 35: mentioned, a4, 116

Rey, J., 36

Rhind papyrus, 14
Riley, H. T, 111
Rmﬁﬁiw H-..D. hong
Rufus of Ephesus, 155



INDEX

Sarton, G., 4

Schiaparelli, G., 87

Sebokt, Severus, 1

Seneca, 108-110, 143, 146

Sergius of Reshaina, 18081
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Shaw, I. ], 133

Simplicius: on acceleration, by, 176-
773 on Evudoxus® astronomy, B6-87,
176: on weight of air, 1756; men-
tioned, 129

Singer, C., 44

Smith, Edwin, papyrus, 7-9, 19

Snell, W., Bo

Salirus, 111, 158

Saranus, 155

28

Sothis (Sirius), 10

sound, 29, 73-74

Stoics, 22, 108, 122, 140, 148

Stone Age, 56

Sirabo, 158

Strato, 29-41, b8-71

surgery, 7-9

Synesius, 125

Syriac tranalations, 1yg-81

Temkin, O, 46
Tertullian, 1918, 193, 138
Thales, 22, 25, 34, 56
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Theodore, 160

Theodosiux, 116

Theon of Smyroa, 73, 148, 149

Theophrastus: as asociate of Aristolle,
47; his botanical work, 51-52; his
will, 33; mentioned, 2q, 108, 155,

158, 176

Thamson, D. W,, 50

Thorndike, L., 110, 129, 135-27, 138,
158, 178

trigonometry:  Anstarchus and, 92
Hipparchus and Prolemy and, g7-
off, an0-20%5

vacuum and void: Aristotle on, 67, 69;
atomic view of, 35. 17, 69, 1oz
motion in, 102-109, 170-72; Strawn
on, 30-31, 69

Varro, 100, 104, 150

Vesalius, 182

Vituviuws: on Archimedes, 75-70; on
Architectare of, 105-107; mentioned,
gg, 100, 155

wave theory of sound, 74
Webster, E. N, 124

weight, b9, 103, 176

Wikon, W., 194

Wolbwon, H. A, 130, 137, 138
work, principle of, 76-77
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