## GOVERNMENT OF INDIA

# ARCHÆOLOGICAL SURVEY OF INDIA

# ARCHÆOLOGICAL LIBRARY

ACCESSION NO. 65403 CALL No. 913.054 P | Cla

D.G.A. 79





# Wild and Domestic Animals in Prehistoric and Early Historic India



# Wild and Domestic Animals in Prehistoric and Early Historic India

65403



A. T. CLASON

913.054P Cla

> Ref. 571.230954 Cla



Ethnographic & Folk Culture Society, Lucknow-India

Published by Ethnographic and Folk Culture Society Post Box 209, C 861, Sector C, Mahanagar, Lucknow.

@ 1979 A. T. Clason



Price: Rs. 80.00 U.S. \$ 20.00

PRINTED AT
PNAR MUDRAK
LUCKNOW
INDIA

#### Publisher's Note

This volume is a dissertation based on three decades of excavations in the western part of the Indian peninsula carried out by the Archaeology Department of Deccan College, Poona. The focus is on the detailed study and analysis of faunal remains collected during these excavations, and the author's intention has been to supplement earlier studies in 1960, 1971 and 1975, with original observations and interpretations.

Clason studied part of a large collection of animal bones in 1972 and has presented their analysis in the perspective of food production, stock raising, subsequent cultivation and domestication on the one hand and climatic conditions and vegetation on the other. As an exposition of the Indian scene in prehistoric times, this work and its author have a decided claim to novelty.

The sixteenth publication of the Ethnographic and Folk Culture Society, (EFCS), this volume has already simultaneously appeared as a special number of *The Eastern Anthropologist* (Vol. 30: No. 3). Though the objective of the EFCS since its inception in 1945 by late Prof. D. N. Majumdar, has been to publish material relating to folk culture, ethnography and social relations, publication of original work in physical anthropology, as well as prehistory and archaeology, has also progressed side by side. The Society's two earlier publications No. 4 (1963) and No. 15 (1977) on prehistoric archaeology have been well received.

The book had been edited by Late Dr. K. S. Mathur, Editor of *The Eastern Anthropologist*, but its publication was delayed due to his sudden demise on September 21, 1977.





Introduction

For three decades the Archaeology Department of the Deccan College in Poona has been carrying out the excavation of a number of prehistoric settlements in the western part of the Indian peninsula. During those excavations not only structural remains, pottery, stone and metal tools and other items of material culture were found, but also faunal remains, inostly bones. Part of these faunal remains were put at my disposal for examination during a stay in Poona in the second half of 1972. The object of my sojourn in India was not only to study the ancient animal bones, but also to make a beginning with archaeozoological research at the Archaeology Department of the Deccan College. My work on the faunal remains has to be considered in this context. I learned, however, only gradually that the animal bones which were put at my disposal were only a fraction of the bones available at the time of the excavations, and that the bones of some sites had already been studied and the results published at an earlier date by Shah (1971, 1973), Eapen (1960) and Alur (1975). As the San earlier date by Shah (1971, 1973), Eapen (1960) and Alur (1975). As the purpose of those studies was mainly to provide the archaeologists with a list of species names I think it will be useful to supplement those studies with . Some of my own observations.

#### ARCHAEOZOOLOGICAL RESEARCH IN INDIA

The first archaeozoological studies in India were the result of the discovery of the large settlements of the Indus Valley culture and the excavations of Mohenjodaro and Harappa in present-day Pakistan in the 1920s and 1930s. Semour Sewell and Guha (1931) described the bones found during the early Mohenjodaro excavations. Prashad (1936) identified the bones of Harappa,

Little work has been done since then in India on the faunal remains found during excavations. Two publications exist which try to give a survey. The first is by Conrad (1966), who gave a detailed report on the evidence published up till 1966 (Paddayya 1974). The author surveyed the evidence known about animal remains from the farming settlements in the Quetta Valley and the Zhob-Loralai region and those of the Indus Valley culture. She not only discussed the scanty animal remains, but paid particular attention to the animals depicted on pot sherds, scals, copper plates, descriptions in old texts, the clay figurines, and amulets. The fauna of the later settlements are not discussed by Conrad. Added to the book is a most useful bibliography.

The second work is by Nath (1973) who enumerates the work he has done since 1955 on the faunal remains of Indian sites ranging from layers of the third and second millennium B.C. of Mohenjodaro and Harappa to the medieval layers of Sarnath from the 12th century A.D. In this work Nath gives useful lists of the species found at each site, illustrated with pictures of the more spectacular finds.

#### EARLY FOOD PRODUCTION IN THE MIDDLE EAST

It is thought at present that the main regions where the transition of food gathering to food production took place are to be sought in the Near East in the following areas:

- 1. the southern alluvial plain of Mesopotamia;
- 2. the low hills at the foot of the Zagros and Taurus mountains;
- 3. the valleys of those mountains;
- 4. the high plateaus of Turkey; and
- 5. the coastal area and the low hills of the eastern Mediterranean.

Here, not only the wild species of a number of our food grains are found, but also wild cattle, wild sheep, wild goat, wild pig and a small wolf—species that are considered to be the parent species of the domestic animals. Only the wild horse was missing in this region. Sheep and goat are considered to have been domesticated close to 10,000 B.P., followed at a later date by cattle, pig and dog (Reed 1969). In the absence of the wild horse, the half-ass—Equus hemionus—was domesticated at first, to be replaced by the real domestic horse after 3000 B.C. (Conrad 1966; Brentjes 1965). Others, however, think that the onager was never domesticated, but that the domestic horse came at an earlier date to the Near East than has been presumed until now (Herre & Röhrs 1973).

It is assumed that from the five regions mentioned above, stock-breeding spread to the west and north into North Africa and Europe, to the southwest into the Nile Valley and East Africa and to the east into Afghanistan, India and the Far East (fig. 1). If the domestic animals themselves had not actually been spread, then at least the idea of domestication had. Why domestication took place is still an unanswered question. There is no evidence that there was a sudden change in climate (van Zeist 1969a, 1969b) or in culture. On the contrary, everything points to a gradual development. What is evident, however, is that in the Late Palaeolithic and Mesolithic man learned to exploit ever more 'niches' of his surroundings to obtain food, not only hunting the smaller and larger mammals and birds, but also collecting shell-fish and crustaceans (Reed 1969; Flannery 1969). This enabled him to live in permanent settlements. Probably it was this settled life that led in the first place to stock-breeding and plant cultivation. It is, however, not a certain result of a settled life. There is evidence that some 20,000 years ago in the tundra steppes of Central Europe, man established a fairly settled way of life based on the hunting of the woolly rhinoceros and a number of other species such as aurochs, musk-ox, etc. (Klein 1974). At that time, however, he never reached the stage of animal keeping.

It is noteworthy that thus far the oldest farming cultures known from Pakistan and India date no further back than the middle of the third millennium B.C. However, as there is evidence that west of this region in Baluchistan, Sind (Fairservis 1956, 1959) and the Near East (Clason 1974), and east of it in northern Thailand (Solheim 1972), farming cultures existed at a much earlier date, it seems only a question of time before traces of older farming communities will be found in Pakistan and India. The first results of archaeozoological research of the animal remains found at Bagor (Misra 1971; Thomas 1975) and Adamgarh point in this direction. The bones found in the oldest layers of the microlithic site of Bagor, dated by C14 at 4500 B.C. (Agrawal, Gupta and Kusumgar 1971) seem to have belonged to small ruminants (sheep/goat) and cattle.

#### CLIMATE, FAUNA AND VEGETATION IN PRESENT-DAY INDIA

For a better understanding of the evidence given by the animal bones, climate and vegetation have to be discussed.<sup>1</sup> We will use the term India in its geographical sense, to include Pakistan, Ceylon and Bangla Desh.

In the north, northwest and northeast, this region is bordered by mountain ranges, including the highest in the world, the Himalayas, and in the south, southwest and southeast by the Indian Ocean. Access to this vast area

<sup>1.</sup> The data are taken mainly from Prater (1971), Book of Indian mammals.

was only possible by mountain passess, and along the coasts. Zoo-geographical India is part of the oriental region. In the west it is part of the large deserts of Arabia end Africa, in the east of the tropical evergreen forests of East Asia. The whole of India can be divided into two subregions, that of the Himalayas and that of the Indian peninsula. In the former, some of the Indian mammals are found, but in the east the Sino-Indian element is marked and species are found that also live in Assam, Burma and southern China. In the west in the mountains of Kashmir and Western Ladakh they have been mainly supplanted by Indian species and forms, and by European and northern Asiatic forms. The second subregion, or India proper, is found south of the Himalayas. In the north we find here the immense stretches of the alluvial plains of Indus, Ganga and Brahmaputra, bordered in the south by the Vindhya Range and the rift in which the Narbada flows. The South has the form of a triangular table-land, slightly tilted to the east, bordered in the west by the Western Ghats along the coast of Maharasthra and Mysore, and the Eastern Ghats along the Madras coast. The animal life is marked by a true Indian fauna, of which black buck, nilgai and spotted deer are components.

When we are discussing the distribution of the animal species we have to remember that practically in the whole of India the original vegetation has been destroyed, and most of the present-day landscape is entirely man-made. In the west and centre, with an annual rainfall of 30 inches and less (figs. 2,3), vast areas were covered by a tropical thorn-forest. In the west of the peninsula and the east of the plain, tropical forest prevailed. In between those forest belts, and surrounding the thorn-forest nucleus, a vast region is found belonging to the tropical dry forest. It has been surmised, and there are indications for it in the West (Singh 1971), that in prehistoric times conditions could have been slightly more humid than today. Singh found that in the Indus Valley around 2000 B.C. fresh water plants were growing that are absent in this region at present. It has to be kept in mind, however, that the destruction of the original vegetation and the erosion of the top soil makes it difficult, if not impossible, for the available water to be retained for a longer time. In the period when the first farmers settled in the subcontinent the original vegetation was still present.

The trans-Indus districts of Punjab, Western Sind and Baluchistan form the eastern border of the large deserts, broken by the Indus Valley and bordered by the thorn-scrub region in the east. A large number of desert species are found here. The plains region has in the west still a number of desert forms, in the east it becomes more humid and merges into the Sunderbans, a vast area of swamp and tropical forests. The animals found here are no different from those of the peninsula. The table-land has undulating plains separated by ranges of flat-topped hills. The Western Ghats cut it from the monsoon rains. In those plains large herds of gazelle and antelope were common. The jungle cat, the common fox, the Indian wolf, hares, rats and mice are still to be found. Gaur, sambar, chital and the cuon are species of the open deciduous hill forests. North and east of Nagpur the conditions are more humid; wild elephant, baffalo and swamp deer also occur in this area. The Western Ghats, finally, are a zone with great humidity and heavy rainfall in the monsoon. The forests of the Western Ghats and the south Indian Hill ranges have a richer fauna than the other parts of the peninsula.

It is interesting that in the southern hills species are found that also live in the higher forests of Assam and the Himalayas. The birds present a different picture from that of the mammals. Their distribution is less restricted by natural barriers than that of the latter. In India we have indigenous species, but also the winter migrants from northern Eurasia. In the Himalayas, birds migrate to higher and lower altitudes with the coming of spring and winter. Hill birds which breed in the Himalayas spend the winter in the southern Nilgiris (Salim Ali 1949). The migrating habits of some birds make it sometimes possible to decide in which season a prehistoric settlement was inhabited. Archaeozoological research may help to explain the present-day distribution of certain species that live in isolated mountain ranges.

Of the wild mammals that are living in India a number may have been domesticated. The wild gaur and the buffalo are still present, and in the most eastern regions also the banteng (Prater 1971). All three species have been domesticated. The domestic buffalo is found all over India, the mithan or gayal (domesticated gaur) and the Bali cattle (domesticated banteng) are, however, restricted to the eastern parts. Of the domestic cattle that roam the country it is not known whether a wild ancestor lived at any time in India. It is assumed that modern cattle are the descendants of the wild Bos primigenius from western Asia (Herre & Röhrs 1973; Epstein 1956). Wild sheep and goat are still found in Western India and the northern mountain areas, though their relationship with the domestic breeds is not clear. The wild boar was found in large parts of India and could have been locally domesticated. Both the horse and the donkey must have been introduced from elsewhere, and the wild half ass-the kiang-found in Western India, is not supposed to have been domesticated. The history of the dog and the cat is still unknown. The camel is restricted to the west and northwest. The elephant cannot be counted among the true domestic animals. Their breeding is often not controlled by man and the animals have to be caught young to be tamed and trained for the work they are to do.

### The material

The faunal remains of 11 prehistoric settlements were investigated. The bones from all sites were fractured, show cutting marks, and a number of them had been in contact with fire. It seems that these bones were the leftovers of meals or were slaughter-garbage. The bone samples range from a small number, if collected during surveys, to several hundreds collected during excavations. The state of preservation of the bones is in many cases reasonable, but they can also be brittle, and then break easily. In a number of instances fossilisation had already progressed considerably. Most of the bones were covered with a thin crust of grey material that was difficult to remove (fig. 14). In some cases it was so thick that it made precise identification difficult or impossible; especially where teeth-patterns were concerned. The different stages of fossilisation and the thin crust made weighing the bones superfluous, since values thus obtained could not have been compared with each other. The same holds for the number of bones. In Kayatha, Nevasa, Navdatoli and Inamgaon, the bones were selectively collected by the excavators. The skeletal parts that were collected and the nearly total absence of the bones of small species (tables 3-13) illustrate this clearly. In Inamgaon the bones which were not thought worth studying were still laid out in the 'sherd yard' when I visited the site in 1972. Unfortunately the data about the stratification of this 'sherd yard' were no longer available, otherwise the bones could still have been collected for study.

#### ARCHAEOLOGICAL BACKGROUND

Before discussing the sites we shall have to discuss briefly the archaeological history of India. The data were taken mainly from recent publications such as The birth of Indian civilisation (Allchin and Allchin 1968) and Prehistory and Protohistory of India and Pakistan (Sankalia 1974).

For many millennia, India was inhabited by the hunter-gatherers of the Early and Middle Stone Age, followed by those of the Late Stone Age, which is characterized by microlithic industries. From three sites in Gujarat and Rajasthan, Langhnaj (Clutton-Brock 1965), Adamgarh and Bagor (Misra 1971) there is evidence of early stock-breeding. The last mentioned settlement, dated by C 14 at 4500 B, C. (Agrawal, Gupta and Kusumgar 1971), preceded those of Baluchistan and Sind in the middle of the third mill. B. C. (Conrad 1966) by at least a thousand years. The next evidence comes from the cities of the Indus civilisation in the valleys of the Indus and its tributaries, which spread west to the region between the Jamuna and Ganga. Somewhat earlier or contemporary with the early Indus Valley culture is the settlement of Burzahom in the Vale of Kashmir. In the south of India, in the Karnatak region, another group of stock-breeders was found, contemporary with those of the Indus Valley cultures. The oldest, dated by C 14 at 2300 B. C., is Kodekal (Paddayya 1971). In the northeast also, in Assam and Nagaland, habitation traces belonging to this period are found. They show a close affinity with finds in southern China. Farmers spread further south into India in the period between 2000 B. C. and the beginning of our era. They settled along the courses of the rivers. In this period metal was introduced, first bronze, and later iron.

The sites of which the animal remains will be discussed in this paper are located in Malwa, Maharashtra, and Karnatak (fig. 3). Around 300 B.C. the historical period begins with the edicts of Emperor Asoka.

Basham (1971) gives us some idea of an early Indian village, which was a cluster of large and small huts grouped around a well or pond. The excavations in Nevasa showed that the houses were constructed from mud bricks and could be either round or rectangular. In the old days the villages may have been walled in. The earliest villagers would certainly not have known the cultural deserts of present-day India. In Malwa and Maharasthra the villages were mostly situated on river banks. The river valleys as well as the higher-lying land would have been covered by natural grasslands and woods. The natural vegetation would have been disrupted by clearings for land cultivation, only around the villages. Cattle, sheep, goat and swine must have been put to pasture outside the villages. In the seventh century A. D. dense jungle still lined the banks of the Ganga for many miles, according to an account by the Chinese Hsuan Tsang (Basham 1971). In the south, the hills were favoured for habitation, away from the rivers. The landscape may have had an open character of vast expanses of grass.

The houses of the villages in the south may have been circular huts with

wooden frames, interlaced with wattle screens and plastered with mud and cowdung.

In the north, in Malwa (Navdatoli), the huts were both round and oblong, built of a wooden frame and wattle and daub walls. The floors were made of cowdung. The settlements of Maharashtra seem to have been very similar to those of Malwa.

### The sites

### ASH-MOUNDS AND HABITATION SITES IN THE SHORAPUR DOAB

The oldest sites, the ash-mounds, were comprehensively discussed by Allchin (1963) and recently by Paddayya (1971, 1973). Allchin put forward the theory that the ash-mounds were cattle pens, in which the cattle dung was regularly burnt. The animal bones that were collected from these sites do not support this theory, since most of them seem to be slaughter garbage. If the sites are not closely linked to a settlement, it seems that they may also have been habitation sites.

At present about sixty mounds are known. These are distributed in the Gulbarga, Raichur and Bellary districts of North Karnataka and Anantapur and Kurnool districts of Andhra Pradesh. On the basis of his excavation at Utnur (Mahabubnagar district of Andhra Pradesh) and his study of surface evidence from other mounds, Allchin (1961, 1963) put forward the view that these mounds were cattle-pens in which the accumulated cowdung was burnt on ceremonial occasions reminiscent of present day festivals like Holi and Pongal.

The ash-mounds and habitation sites described below are situated in the Shorapur Doab, Gulbarga district, Karnataka (Paddayya 1973: 4-11). The area is a triangular tract lying between the Krishna and Bhima rivers. Climatically it is semi-arid and forms part of the deciduous thorn-forest zone. The sites under study are generally confined to the hilly southwestern zone of the Doab.

#### KODEKAL-KKL

The ash-mound at Kodekal is situated approximately 4 km southeast of Kodekal village and 8 km from the left bank of the Krishna river. The mound lies in a small valley with a mountain stream, bordered on both sides by granite hills. The mound was originally 45.7 m in diameter and was 4.6 m high. At present, the diameter is only 36.6 m, and the height 3.6 m. In 1967, two small trenches were dug into the mound. In the largest, measuring 3.6 x 3.0 m, six layers could be distinguished (fig. 5). The bones were mainly collected in (TF-748) layer 4 and 6, dated by C 14 at 4285+ 85 B. P. - 2335 B.C. (Paddayya 1971). According to the excavator, every bone was collected, and a number of them could be identified. Most of the bones were covered with a thin grey crust. The majority of the identified bones (table 2) belonged to cattle, followed by sheep/goat, pig, dog and small rodents. One bone may be of a deer. A carpometacarpus is from a bird the size of a domestic duck. Part of the bones were earlier identified by Shah (1973), who also found horse, buffalo, gazelle, swamp deer, spotted deer and domestic fowl. The bones of horse, deer and domestic fowl were not among the collection I myself saw. It is possible that part of the Bos sp. bones were from buffalo, though they seemed to be a homogeneous sample. One maxilla and one mandibula of cattle still had the deciduous dentition table 14). Four fishbone fragments were also found.

Cattle predominated over the other species, which is in agreement with the observations of Allchin (1961) and Alur (manuscript) on the animal remains of Utnur. Although he does not mention it, it seems that Allchin is also describing a number of selectively collected animal remains.

#### BUDIKAL-BHL. s

The Budikal ash-mound is situated 0.8 km north of Budikal village on a sandstone plateau. The original large mound was damaged by a cart-track. The bones of this site are surface finds (table 2). No other bones than those of Bos sp. could be identified. One tibia was fossilised and belongs to a large fossil Bovid.

#### KANNEKOLUR-KKR. I

In the vicinity of Kannekolur two ash-mounds were found. The bones which will be discussed here came from the first. This mound is situated 0.8 km northwest of the village on the right bank of the Kannekolur nulla. The bones were surface finds and seemed slightly rolled, having rounded ridges. Sixteen bones belonged to Bos sp. and two to the small ruminants, sheep/goat,

#### KUPI-KP

The site is situated 1.6 km northwest of Dimanhal. The mound no longer exists, the bones were surface finds. Neolithic habitation material and ashy earth covered an area of one acre. Six bones belonged to Bos sp.

#### MALLUR-MLR-1 AND 2

Two ash-mounds occur at this place. Mallur 1 is situated northeast of Mallur, the mound originally measured 6 m in diameter and was 1.5 m high. Mallur 2 is situted ±33 m west of Mallur 1 and forms no real mound. Ash was found over an area of 13.7 x 9 m, to a depth of 0.9 m. Four bones could be identified with certainty as belonging to Bos sp.

#### THIRTH-TH

The mound of Thirth was found on the same sandstone plateau as Budikal and 1.6 km west-northwest of the village Tirth. It measures 11 x 8.2 x 1.8 m. The bones were surface finds. Six cattle bones could be identified.

#### SITES IN MADHYA PRADESH AND MAHARASHTRA

#### KAYATHA-KTH

Kayatha, situated 25 km east of Ujjain, was discovered by V. S. Wakankar in 1964. During a trial excavation in 1968-69 by the Deccan College under the direction of Dr. Z. D. Ansari, two trenches, A and B, were dug. In trench A, five habitation phases could be distinguished; in trench B phase I was missing (fig. 4, table 14). There appear to be three phases preceding the arrival of iron. Phase I (c. 2000-1800 B. C.) has Harappan affinities, in phase II (c. 1700-1500 B.C.) a Harappan seal was discovered, and in phase III (c. 1500-1200 B. C.) pottery of the Malwa and Jorwe traditions. Phases IV (c. 600-200 B. C.) and V (c. 200 B. C.-600 A. D.) belong to the historical period (Ansari and Dhavalikar 1975).

The dwelling-mound is situated on the left bank of the Choti Kalisind, a tributary of the Kalisind, which is in turn a tributary of the Chambal. These rivers are dry most of the year. A fairly large village at present crowns the mound of Kayatha which makes large scale excavation impossible. The surrounding area is undulating, fertile and has reasonable rainfall; it belongs to the dry deciduous forest zone. From phase I, II, III and IV, bones were collected (table 3). It appears that nearly all of them were the long bones of Bos sp. An antier fragment of a deer beloning to period II was picked up, as well as the horn-core of a black buck. The value of the Kayatha bones lies mainly in the fact that they help to provide an insight into the Bovid

population of the region. A few bones of the small ruminants were also found: a mandibula of a three-year-old smalll ruminant (sheep/goat) from the transition layer of phase II/III, and two of one-year and 1\(\frac{3}{4}\)-year-old animals in layer III. Of Bos sp., a maxilla of an approximately \(\frac{1}{2}\)-year-old animal was collected from phase II. Maxillae of animals with adult sets of teeth, when slaughtered, were found in phase II, phase II/III, and in phase? Of the mandibulae, four were of animals not yet three years old; two from phase II, and phase II : III, and one from phase III. A larger number of mandibulae with adult sets of teeth belong to phase I, phase II/III and phase IV (table 13).

#### NAVDATOLI-NVT

The dwelling-mound of Navdatoli is situated on the left bank of the Narbada river, opposite Maheshwar, where an old north-south route crossed the river. The Narbada flows to the west in a rift region and discharges its water into the Gulf of Cambay near Broach. The Narbada has a succession of several wide valleys, that of Navdatoli is 24 km long and 12 km wide. In the north, it is bordered by the hills of the Vindhya range, in the south, by those of the Satpura range. The important tribal group of the Bhil still lives in the region today. Navdatoli was excavated in the period of 1952-53 and 1957-59 by Prof. Sankalia, Dr. Deo and Dr. Ansari. Four mounds could be distinguished. The bones which were collected came from mound IV. Here, four trenches were dug, the major ones being trench I and II. The trenches were divided into a grid system (fig. 6) (Sankalia, Deo and Ansari 1971). Four main periods could be distinguished.

- d. Medieval Islamic ± 1400 A. D.;
- Late Early Historic ±100 A, D, –300 A, D.;
- b. Early Historic ±100 A. D. -300 A. D.;
- a. Chalcolithic—phase 1, 2, 3,  $4-\pm 1600-1300$  B. C.

Bones were only collected from layers belonging to the first period. The inhabitants lived in round and rectangular houses. Since the bones were collected selectively, it is unnecessary to separate the material of the three trenches. In spite of the selective collecting, a relatively large number of species could be identified (table 4). Bones of Bos sp. were the most numerous, both sheep and goat could be identified with certainty, and also black buck, gazelle, buffalo and nilgai. Deer remains may belong to the spotted deer or hog deer and the swamp deer or sambar. One fish-bone and the remains of tortoises were found. Compared with the other sites the large amount of pig bones is conspicuous. Although the bones were selectively

collected it seems that the pig really could have been of more importance as a food animal in Navdatoli than in the other sites. This is probably due to the environment which is comparatively humid. Nowadays, rice growing is possible along the river, and in ancient times the valley would have been more wooded than at present.

At present, the Narbada Valley is part of the territory of the Bhil, one of the large tribal peoples still to be found in India. The inhabitants of Navdatoli may have been the early ancestors of the Bhil. The Bhil are nowadays first and foremost cattle breeders and cultivators, but they also work for wood contractors (Koppers and Jongblut 1942-45). Their most important domestic animals are the buffalo and the zebu. Every Bhil tries to have at least one buffalo and two zebus. Of the buffalo a smaller and a larger breed are recognized. Those are crossbred because the crossbred cow is supposed to give more milk. The cow is used for milking, the bull for work. The bull, male goats and cocks are the sacrificial animals of the Bhil. The bull may be consumed. Pig, horse, dog and cat are not mentioned. Chakraborti and Mukherji (1971) also mention fishing and the hunting of pigs, small game and birds. Hunting was still done with arrows, but snares were also used.

It appears that in prehistoric Navdatoli a proportion of the pigs were slaughtered when approximately 1/2 year old, most of the other animals were slaughtered when two years old or older (table 16). The majority of the slaughtered bovids reached the age of three years or more (table 16). Comparatively few calves were slaugtered.

An interesting feature of Navdatoli is the pottery, decorated with paintings of many animal species including mammals, birds, reptiles and insects (fig. 7, 8, 9). It seems that the ancient inhabitants of Navdatoli took a keen interest in the animals in and around their settlement. Of interest is that domestic animals are comparatively scarce. Most frequent are the pictures of black buck and peacock, for many centuries the two species most often used in Indian art and decoration. Only the 3 black buck is depicted, the 2 seems to be absent.

The domestic ox is depicted four times (fig. 7, A 1-4). In two cases it seems that the tips of the horns are gaily decorated, which is still done. Goats are depicted possibly, three times. One scene shows two heads, one clearly with a beard, the second shows one and half animals with straight horns and spotted bodies, they may be pied goats. Fig. 7, B2 shows an animal, also with relatively straight horns, busily browsing from the vegetation. The dog is depicted three times (fig. 7, C 1,2,3). Fig. 7, C 3 may be the picture of a fowl, wild or domesticated, fig. 7, C 2 may be a goose.

fig. 7, C 1 a pigeon; in either case it is uncertain whether domestic animals are meant. The same holds for the numerous paintings of the peacock. It seems that but few deer are represented (fig. 8, A 1, 2, 3), the pig and nilgai are missing. Of the large carnivores the tiger and the panther occur, as well as two foxes. The rodents are represented by the hystrix. Other birds are a row of flamingos and a bird of prey or vulture (fig. 8, A 1, 2, 3). Fig. 8, A 4 seems to be a stylized little egret with flowing headfeathers. The reptile world is represented by tortoises. The plastic shape of a crocodile was moulded on to a pot. Finally, four insects have to be mentioned (fig. 8, C 1-4).

The species portrayed on the pottery are an addition to those that could be identified from the bones. It seems that all these species could be expected in the valley. The domestic animals were kept in the settlement, the antelopes and pigs roamed in the grassy plains, the large carnivores lived in the woods, the birds belong to the marshy region and the tortoises and crocodiles belong to the river. Birds of prey and vultures circling above the Indian villages are still a common sight.

#### NEVASA-NVS

Present-day Nevasa is a village of regional importance, partly built on an ancient dwelling-mound, situated on the right bank of the Pravara river, before it joins the Godavari river. The Godavari is one of the large rivers of the Deccan, flowing east and ending in the Bay of Bengal. The river formed a broad flat valley, reminiscent of the valley system of the Danube in Central Europe. It seems that the earliest farmers of the northwest Deccan settled on the banks of the Godavari and its tributaries. There were three excavation campaigns (Sankalia, Deo, Ansari and Eberhardt 1960). The bones collected during the first in 1954 were described by Eapen (1960), those of 55/56 and 59/61 are discussed here. The bones of the excavation of 55/56 belong to four periods (fig. 10).

Period VI—Muslim-Maratha 1400-1700 A. D.;

Period V-Indo-Roman 100-300 A. D.;

Period IV-Early historic 300 B. C.-100 A. D.;

Weathered horizon

Period III-Chalcolithic 1300-1000 B. C.

The bones of 59/61 belong to the Chalcolithic period and are connected with Jorwe ware.

During the excavations of Nevasa, most bones were thrown away, and only a small, in all probability not representative, collection was kept. Although Eapen does not mention it, this also seems to have happened in 1954. In Chalcolithic Nevasa (tables 5-11), Bos sp., buffalo, sheep/goat, pig, horse, donkey or wild ass, dog and a small cat were found. In historic Nevasa, most of those animals were also present. Of the wild animals, three antelope species, nilgai, four horned antelope, and black buck can be mentioned. Two species of small carnivores are present, of which one may be the domestic cat, the other a mongoose. Remains of deer, mostly antler fragments, may have belonged to sambar, swamp deer or the spotted deer.

Bones of fowl, probably domesticated, were found in Chalcolithic Nevasa as well as in Muslim-Maratha Nevasa. The remains of a large fowl were found in the Muslim-Maratha layers. A maxilla of a young elephant was collected in the layers of the Indo-Roman period. Tortoise remains seem to have been collected from all periods. Three species could be distinguished, A number of bones of small rodents were found in all layers. It seems that most are of the rat and the bandicoot rat; both are animals with burrowing habits and could have intruded the ancient remains.

In Nevasa the opportunity was missed to see whether there was a change in diet in the Early Historic and Indo-Roman periods. As we cannot even assume that the bias in collecting was always the same, we can learn nothing more than that cattle and small ruminants seem to have been the most frequently slaughtered animals. The species found are indicative of the surroundings, the antelopes needed grassy plains, the deer could live there too, the pig, which is more a forest animal, is absent. The fowl were probably domesticated.

#### INAMGAON-INM

Inamgaon is a dwelling-mound on the right bank of the Ghod river, a tributary of the Bhima, which belongs to the drainage system of the Krishna river, the second, large, east flowing river system of the Deccan. The valley is narrow and the region is very dry at present.

Inamgaon lies on the border of the thorn-scrub region in which, more southward, the ash-mounds are also located. Contrary to the other dwelling-mounds, which were still habitated, Inamgaon was deserted at c. 700 B. C. At present it has the form of a horse-shoe-shaped sanddune.

Inamgaon was excavated by Dr. Z. D. Ansari and Dr. M. K. Dhavalikar from 1968-71 (fig. 11). Three occupation periods could be distinguished (fig. 4).

Period III-late Jorwe (c. 1000-700 B. C.);

Period II-early Jorwe (c. 1300-1000 B. C.):

Period I-Malwa (c. 1600-1300 B. C.)

In Inamgaon the remains of Bos sp. and the small ruminants were most frequently collected. Horse, dog and pig are represented by one bone each. A large number of horn-cores of the black buck was found, two of a nilgai and one of a four-horned antelope. Eight fragments may belong to the spotted deer, and six to the sambar or swamp deer. All these species indicate a relatively open vegetation, and an area covered with grass and bushes.

Two phalanges of an animal that may have been a rhinoceros or an elephant were found, but have still to be identified (fig. 17). A fragment of a heavy long bone must have been of an elephant or rhinoceros. The elephant lives in forests, the rhinoceros prefers swamp and grass regions.

During a short visit to Inamgaon in 1972, I observed that among the bones that were not brought to Poona there were numerous shells of freshwater mussels, which must have been collected in the river. Fish bones were not found, but the river today contains catfish and carp, which can be easily caught (Ansari, pers. comm.). It seems not improbable that the ancient inhabitants of Inamgaon were also fishermen.

### Discussion of the species

The bones were identified as far as was possible without the help of an extensive comparative collection of recent skeletons and with only a few reference works.

The selective collecting of the larger bones by the archaeologists made my task easier because it limited the collection mainly to the remains of the suborder of the Ruminantia. Of those, the Bovidae took the first place, followed by the Suidae and Cervidae. Few remains could be ascribed to the Equidae, Canidae, Felidae and the Muridae. The bones from the Bovidae and the Cervidae could be distinguished easily in most cases. The identification as to species was often difficult or impossible. Although most bones of the large Bovidae belong, in all probability, to the domestic ox (Bos taurus in s. s.), we also have to reckon with the presence of the gaur (Bos gaurus) and its domestic form the gayal (Bos gaurus frontalis), the wild buffalo (Bubalus

bubalis) and its domestic form (Bubalus bubalis domesticus) and the nilgai

(Boselaphus tragocamelus).

Of the small Bovidae, most bones belong to domestic sheep, Ovis aries, and to domestic goat, Capra hircus. Here we have to reckon, however, with the possibility that part of the bones may belong to the four-horned antelope, Tetracerus quadricornis, to the black buck, Antilope cervicapra, or the gazelle, Gazella gazella.

The bones were measured if this was possible. Most of the measurements were taken after Duerst (1930). The measurements were taken with a slide-rule, with a precision of 0.5 mm. The circumference of the horn-cores was taken with a cotton thread. It was often difficult to measure the teeth properly when they were covered by the thin crust mentioned earlier. The numbers used are those given by the excavators.

#### CANIDAE

Wolf—Canis lupus Linnaeus, 1758 Jackal—Canis aureus Linnaeus, 1758 Dhole—Cuon alpinus Pallas, 1811 Fox—Vulpes bengalensis Shaw, 1800

The Indian fox: Vulpes bengalensis, is found everywhere in India. The animal keeps to open country and rarely enters the forest. Many live in cultivated land bordering irrigation canals. The fox is a culture follower.

The dhole: Cuon alpinus, is found in central and eastern Asia, it lives in forests but is found occasionaly in open steppes.

The wolf: Canis lupus, is found in the north and in the dry open plains of peninsular India. The animals may live in forests, but in India they are more common in bare and open regions.

The jackal: Canis aureus, is found in nearly any environment, all over India.

In Kodekal, Kayatha III, Nevasa III '55/56, Nevasa '59/61, Inamgaon, Nevasa W and Nevasa V, bones of the Canidae were found.

In India we can expect the above wild species next to the domestic dog. The dhole differs from the other species in one characteristic, in the lower jaw the third molar is missing (Clutton-Brock 1965). Whether there are differences in the long bones I do not know. The wolf is supposed to be slightly larger than the dog, jackal and dhole. The fox is smaller than those species.

Most bones were collected at Nevasa and Inamgaon. Two maxilla were found at Nevasa III, they are badly preserved and dirty (fig. 13). A premaxilla may belong to maxilla nr. 4857 x 5, A left and a right maxilla of

one individual were found at Inamgaon (fig. 14 a above, 15 a), it seems that the pre-molars are slightly crowded. A left proc. orb. is probably of a second animal. Seven mandibulae collected at Nevasa could be measured (table 15).

In Nevasa W the 1, maxilla of a young animal was found with the p<sup>3</sup>M<sup>1</sup>
and without M<sup>2</sup>.

In Nevasa III '55/56 a 1, mandibula of a young animal was found (nr. 6182 Y2. The length of M<sub>1</sub> and the height of the horizontal ramus are so small that we have to reckon with the possibility that it belonged to a fox. A second 1, mandibula (nr. 3107 x 4) also seems to be of a young dog (fig. 15 b). Five other mandibulae were found, of which nr. 4227 III '59/61 seems of a slender type (fig. 14 b middle).

In all cases, the teeth were more or less crowded, with P<sub>4</sub> partly screening M<sub>1</sub>. In nr. 256 III '59/61, the M<sub>3</sub> was missing, and no alveole was present (fig. 14 b above). We have to reckon in this case with the possibility that this mandibula may be of a dhole. Because the M3 may also have been missing in the mandibula of the domestic dog, its absence is not conclusive. Of a fragment of a r. mandibula found at Inamgaon (A<sub>2</sub> 4), the labial side was slightly burnt. Another r. mandibula (C<sub>3</sub> 4), was that of a young animal (fig. 14a). Carving marks on the inner side of the mandibula seem to indicate that the animal was slaughtered.

In Nevasa III an atlas, a radius and an astragalus were found; in Inamgaon two r. humeri that belonged to large animals.

Clutton-Brock (1965) studied the remains of the Canidae collected at Langhnaj. She came to the conclusion that they probably belonged to the Indian wolf and described them as Canis cf. lupus pallipes Sykes, 1831. In Langhnaj no long bones were found, and the mandibulae made it possible to rule out the dhole. Clutton-Brock gave a number of measurements of recent dingo, wolf and domestic dog. The mean values of the skull measurements are given in a table. If we compare the measurements of the maxillae and mandibulae of Nevasa and Inamgaon with those measurements, we see that they fall into the range of the true domestic dog. Only mandibula nr. NVS 1272 III (fig. 14b under) is comparatively sturdy, the horizontal ramus is larger than those of the others, the length of M<sub>1</sub> falls in the upper range of the domestic dog and in the lowest of the wolf, as given by Clutton-Brock. We have thus to reckon with the possibility that the inhabitants of prehistoric Nevasa hunted the fox, the wolf and the Indian wild dog, and kept the domestic dog.

FELIDAE

Leopard cat-Felis bengalensis Kerr, 1720

Desert cat-Felis lybica Foster, 1780

Domestic cat-Felis catus Linnaeus

The leopard cat-Felis bengalensis is found all over India. The animal frequents grassland, scrub and jungle.

The desert cat—Felis libica, is found in the Indian desert region and in the dry zone of central India, also near Poona in the Deccan.

Both the two above mentioned species and the domestic cat can be expected in Nevasa where the cat remains were found. Prashad describes the skull of a cat from Harappa as domesticated, but Conrad (1966) thinks it more likely that it belonged to Felis ornata (Indian desert cat). The domestic cat was mentioned for the first time in the textbook of Kautilya (4th/3rd century B. C.).

In Nevasa III, the long bones of a young cat were found (nr. 823H 13). The skull, vertebral column and the bones of the fore and hind feet are missing. The bones seem to have belonged to an animal slightly larger than a present-day domestic European cat. Also from Nevasa III, a 1. mandibula of a catlike animal was collected (fig. 15 f), which seems to belong to the same species as the r. mandibula found in Nevasa 1959/61 (fig. 15 c). A r. mandibula (fig. 15 f) from the Weathered horizon, a 1. mandibula (fig. 15 c) from Period V, and a r. mandibula from Period VI belong to the same species and in all probability to the domestic cat. The other two mandibulae were found in the oldest layers of Nevasa and probably do not belong to domesticated animals.

| (measurements in n | nm)   |      |      |      |
|--------------------|-------|------|------|------|
|                    | III   | W    | v    | VI   |
| length of :        | 5053  | 3254 | 1543 | 627  |
| teeth row          |       | 22.0 | 18.0 | 22.2 |
| M <sub>1</sub>     |       | 8.1  | 6.2  | 8.5  |
| diastema           | (5.5) | 4.0  | 6.0  |      |

Of all five mandibulae only the pars molaris was found and of the two oldest, the  $M_1$  is missing (fig. 15e, f).

The domestic cat is often thought to be the descendant of the desert cat: Felis lybica, and first domesticated in the middle of the 2nd millennium B. C. in Egypt. When and how the cat was brought to India is unknown. It is not even certain at all that the cat was domesticated only in Egypt—none of the other species or subspecies of small cats occurring in areas outside Egypt.

PROBOSCIDAE

ELEPHANTIDAE

Indian elephant-Elephas maximus Linnaeus, 1758

The Indian elephant is still found in the Western Ghats, Orissa, Bihar, Uttar Pradesh, West Bengal and Assam. They frequent areas with tall forests. The Indian elephant is smaller in size than the African. The male has large tusks, the females only small, scarcely protruding, tusks.

In Nevesa V (nr. 5541 I 4), a maxilla of an apparently young animal was found (fig. 16).

In Inamgaon, a fragment of a heavy long bone was collected. It is not possible to tell to what part of the skeleton it belongs. Only elephant and rhinoceros can have such massive bones. For either species the surroundings of Inamgaon did not seem to be too favourable.

There is evidence that as far back as the Indus civilisation the elephant was domesticated (Conrad 1966; Brentjes 1965), although the elephant never became a real domestic animal like others. The time it takes before an elephant can be used for work, results in the majority of the animals being caught when grown up and then tamed and trained.

#### RHINCEROTIDAE

Great one-horned rhinoceros—Rhinoceros unicornis Linnaeus, 1758 Asiatic two-horned rhinoceros—Didermoceros sumatrensis Fisher, 1814 See Indian elephant

#### EQUIDAE

Horse—Equus caballus Linnaeus Donkey—Equus asinus Asiatic wild ass—Equus hemionus Pallas, 1775

At present two subspecies of the wild ass are found in India; in the north Equus hemionus Kiang, the Tibetan wild ass, and in the west in the deserts of the Rann of Cutch and Baluchistan Equus hemionus Khur, or the Indian wild ass. The latter subspecies is readily tamed when young. After growing up they become recalcitrant and vicious and cannot ordinarily be trained to accept a harness.

The domestic ass was first domesticated in Egypt at the end of the third millennium B, C. (Boessneck 1953), and was brought from there to Mesopotamia. According to Wheeler (1968) there existed an intensive trade between the Indus Valley cultures and the Near East. Thus it is not unlikely that the domestic ass was known in Western India during the Indus Valley culture.

Prashad (1936) describes the Equid bones from Harappa as Equus asinus Linnaeus. This is corroborated by Conrad (1966) who also thinks that the upper jaw fragments and a phalanx II belong to the domesticated ass, but the metacarpi which Prashad also identified as belonging to a domestic ass probably belong to a small horse and a wild ass.

The wild horse, a species that is not indigenous in India, was found north of the Caucasus in Eurasia. At the end of the Ice Age these wild Eurasian horses formed one species with two distinct subspecies, a western and an eastern. According to Nobis (1971) the western species was domesticated around 3000 B. C. in southern Russia, from where it spread to Europe, the Middle East and southern Asia. Zeuner (1963) states that, in any case, in latter periods the Chinese domesticated the local wild horses in China. According to Prashad (1936), and confirmed by Conrad (1966), a l. and a r. lower jaw of a horse were found in Mohenjodaro. Conrad thinks that the metacarpus and the phalanx II from Harappa which were also described as belonging to a horse by Prashad, possibly belonged to a donkey or a wild ass. In any case it is not surprising to find horse remains at ca. 2000 B. C. in India, if the first domestication took place around 3000 B. C. in southern European Russia. In Inamgaon, Nevasa and Navdatoli, Equid remains were collected in small numbers as well. It is difficult, however, to assign the fragments to species with complete certainty. From Inamgaon comes (nr. IA2 2) a 1. M2 (fig. 18c, table 13), which is thought to belong to a horse. At Navdatoli a large 1, radius was collected (fig. 20a) which is also thought to be of a horse. From the same site comes a lower jaw, with M1 M2 and M3 (fig. 19a, b), which probably belongs to a domestic donkey, as well as a radius (fig. 20b, table 13). Of a third radius it is not certain whether it belongs to an Equid. At Nevasa III a large 1. P4/M1 was found, probably belonging to domestic horse (fig. 18b). Also considered to have belonged to a domestic horse are a r. M3 and a r. and 1. pars incisiva of Nevasa W. A r. mandibula fragment from Nevasa V probably also belongs to a horse, and a small number of fragmented check teeth of a lower jaw probably belong to a young horse (Nevasa?). Finally, a small, badly damaged P4/M1 of Nevasa 1959/61 has to be mentioned (fig. 19e) which probably belonged to a donkey (table 13). In the ash-mounds and at Kayatha no equid remains were found.

#### SUIDAE

Indian wild boar—Sus scrrofa cristatus Wagner, 1839 Domestic pig—Sus scrofa

Sus scrofa cristatus is considered to be a subspecies of Sus scrofa Linnaeus, 1758, and closely related to the European wild boar: Sus scrofa scrofa. The

Indian wild pig is distinctive for its sparser coat and its fuller crest of black bristles reaching from the nape right down the back. Osteologically, the skull of the Indian wild boar is considered to be more slender, and the os lacrimales of the skull of the Indian wild boar is less clongated, and comparatively higher. The same features are found in the domestic animals.

The Indian wild boar is found in most parts of India.

Little is known about the domestication of the pig in Asia, but it is generally accepted that the pig was domesticated in India. At what time the pig was domesticated it is difficult to say. In the hill settlements of Baluchistan no pig bones were found, this in contrast with Mohenjo-Daro and Harappa (Conrad 1966). The Indian wild boar lives in grass or scanty bush jungle, only sometimes in the forest. The domestic pig found in the villages is a small, high legged, inconspicuous animal, that feeds on garbage.

Pig remains are missing from the surface finds collected at the sites of the ash-mounds in Karnatak. In all other settlements, phase I and II of Kayatha excluded, a few pig bones were collected.

Only in Navdatoli a much larger number of bones, mostly of the upper and lower jaw, were picked up (fig. 21). Most of the lower jaws from Navdatoli were of young animals, only seven belonged to animals with a complete set of cheek teeth (table 15). Of those it seems that six are of domesticated animals (table 16). The Ma of the seventh jaw exceeds the measurements of those of a skull of an old of wild boar on loan from the collection of the Bombay Natural History Museum (table 15). Although I had no skeletons at my disposal of a recent wild boar and domestic pig, it seems to me that all the long bones that could be measured were of domestic animals. It is interesting that most of the pig jaws are from animals about half a year old, or from animals that were two years old or older. This indicates a policy in the slaughtering of pigs in Navdatoli. In how far this observation is reliable will have to be corroborated by future investigations. According to Prater (1971), wild boar breeds in all seasons, but there is a peak before and after the rainy season. If this should also apply to the prehistoric and the early historic domestic pig, the peak season in Navdatoli for births must have been May and October/November. The killing of half year-old pigs in Navdatoli would then correspond with the birth of new litters of pigs just before and after the rains. Singh (1966) mentions two breeding seasons for contemporary domestic pigs: August/September and February/March.

#### BOVIDAE-CERVIDAE

A large number of genera and species of the Ruminantia are still found

in India, although a number of them are nearly extinct. The species that could be identified belonged to three families: the Suidae (see above), the Cervidae and the Bovidae. The males of the Cervidae have antlers, the males as well as most of the females of the Bovidae have horns.

Although the bones of a number of species can be identified in most cases as to species, still, as they have a large number of characteristics in common, a representative collection of recent skeletons is needed to make this task easier and reliable. During my stay in Poona, I had not the advantage of such a collection and a number of bones could not be identified as to species. An added difficulty is a manifest sexual dimorphism in most species, with the result that the females of one species fall within the size range of the males of a smaller species next to it in size. Table 14, in which the height at the withers is given of a number of species, illustrates this clearly. In most cases it is possible to distinguish the Cervidae from the Bovidae. Both skulls and mandibulae are rather easy to identify and the long bones of the Cervidae have a number of characteristics in common that distinguish them from the Bovidae. The bones of the carpus and tarsus gave difficulties however in identification, especially when damaged.

#### CERVIDAE

One of the most conspicuous features of the Cervidae are the antiers of the males. Antiers are part of the frontal bone of the skull and belong to the skeleton. They grow yearly from a pedicle and are also shed yearly. The period of growing and shedding of antiers is fixed for a species. When skulls are found with antiers, or without, it will enable the archaeozoologist to establish approximately the season in which the animal was hunted if the growing and shedding periods for the region where the material is found are known. Also, when shed antiers are found, the collecting period is known, since shed antiers perish quickly when left lying outside. Antiers are useful material for the manufacturing of tools and ornaments, and were in prehistory widely collected by human beings.

Five deer species can be expected to have been hunted in the areas we are discussing.

Muntjak—Muntiacus muntjak Zimmermann, 1780 Chital or spotted deer—Axis axis Erxleben, 1777 Barking deer—Axis porcinus Zimmermann, 1780 Sambar—Cervus unicolor Kerr, 1792 Swamp deer—Cervus duvauceli G. Cuvier, 1823

The other Indian species have a more northerly or easterly distribution. The muntjak: Muntiacus muntjak, ranges over the larger part of India. The

height at the shoulder of an adult male is from 50-75 cm. It is found in thickly wooded hills and comes out to graze in the outskirts of the forests. The animal is not a culture follower. The young are born at the onset of the rains. The muntjak has a typical skull with small antlers placed on very clongated pedicles. The males have large canines in the upper jaw, which protrude at either side.

The spotted deer or chital: Axis axis, is found from the base of the Himalayas to the south of the Peninsula and Ceylon, wherever there is jungle combined with good grazing and enough water. In the arid plains it is unknown. The chital is a culture follower. In Madhya Pradesh and south India antlers are shed in August and September. A well-built stag stands 90

cm, at the shoulder.

Hog deer: Axis parcinus. At present, this species occurs on the low alluvial grass plains of North India from Sind and Punjab to Assam. The height at the shoulder is 61 cm. The animals favour grass jungles near river banks or open grass plains, provided the grass is not too high. In upper Sind they live in the scrub jungles of the upper Indus. In Burma they were once common in mangroves. The hog deer is a solitary animal, its young are born in April and May. Clutton-Brock identified the hog deer with certainty in Langhnaj. It is possible that in earlier times the hog deer was also found in the Peninsula.

The sambar: Cervus unicolor, is the largest Indian deer. The height at the whithers is approximately 140-150 cm. The sambar can be found in the wooded districts of India and Ceylon; it prefers forested hills near cultivated areas. In central and southern India the antlers are shed between the end of March and mid-April. The young are born at the commencement of the rains in late May or June.

The swamp deer: Cervus duvauceli, is limited to India and is nearly extinct. In former times, two forms were found, the real swamp-dwelling deer of the Terai, Uttar Pradesh, Assam and the Sunderbans; and a form that was found in the hard open grounds of Madhya Pradesh. It is thought that altogether there remain about 4,000 animals of both races.

The identification of the few deer remains found in Kannekolur, Kayatha, Navdatoli, Nevasa and Inamgaon as to species was in most cases impossible. It was, however, possible to make a good guess. Most bones collected are shed antlers and antler fragments, but a small number of mandibulae and long bones were also picked up. We have to admit of the possibility that a few of the astragali identified as Bos sp. belong to Cervus unicolor (fig. 37, 38, table 15). Antlers were collected at Kayatha, Navdatoli Nevasa and Inamgaon. Most of them are fragments, and could be divided

into three groups: 1. relatively heavy fragments of the "main beam" found in Nevasa. They could be of Cervus duvauceli or Axis axis; 2. smaller, flattened, fragments with a thick cortex and fine spongiosa. It is possible that these are not antiers but horn cores of a large gazelle; they are found in Nevasa and possibly Kayatha; 3. the third group are cut off antler tines, which can belong to Cervus unicolor, Cervus duvauceli or Axis axis as well. Three shed antlers were collected, two at Navdatoli and one at Inamgaon, One of those from Navdatoli had a circumference of the rose of approximately 150 mm. A recent of skull of Axis axis, on loan from the Bombay Museum of Natural History, had a circumference of 160 mm. The other two antlers could not be measured. Of both antlers the main beam was cut off just above the rose, the first tine was present. This first tine has a "bump" that seems characteristic for Axis axis (fig. 28). The antler from Inamgaon was much smaller; part of its main beam was preserved. The circumference of the rose was approximately 85 mm. It is possible that this antler is from Axis porcinus.

The open vegetation of the dry thorn scrub forest around Inamgaon would have been a favourable biotope for this deer.

In Inamgaon a mandibula (fig. 22a) was found, with the deciduous molars p<sub>1</sub>p<sub>2</sub>p<sub>3</sub>. The p<sub>3</sub> is deerlike, with two additional columns that are not found with the Bovidae. Three mandibulae of adult animals, and a pars incisiva of a young deer (fig. 22 b), were found in Nevasa. The adult mandibulae are too large for Axis axis, but could be of Cervus unicolor or Cervus duvauceli. In Inamgaon the distal part of a humerus was found. The bipartition by a shallow ridge of the fossa coronoidales is a clear indication that it belonged to deer. A similar fragment was found in Kannekolur. The width of the trochlea, 35.0; 37.0 mm. is less than that of small-sized red deer in Europe. In all probability those humeri are of Axis axis.

Both in Nevasa and Inamgaon one radius was found, and since the measurements of those two fall well into the range of the above mentioned Cervus elaphus, it is possible that they are from Cervus unicolor or Cervus duvauceli.

It seems that a badly-damaged bone fragment found at Nevasa could be a radius (63 B 1 '60).

A small part of the prox. ant. surface of a metacarpus in Kayatha could be of a deer. In Kayatha the diaphysis of a metatarsus of a small-sized deer, possibly Axis axis was collected. In Inamgaon 4 phalanx I were found, with the same length as those of Bos sp; they are, however, more slender. Whether they are from Gervus unicolor or from Boselaphus it is difficult to say (fig. 22c). Also in Inamgaon, a number of phalanx I were found, which are

slightly larger than those of sheep or goat. Two groups can be distinguished. Whether they are of Axis sp., Gazella gazella or Antilope cervicapra it is impossible to say at this moment.

Summarizing, we can say that although the remains of the Cervidae are scarce they may represent four species, Cervus unicolor, Axis axis, Axis porcinus and Cervus duvauceli. No indications for the existence of Muntiacus muntjak were found.

The antlers of Navdatoli, if they are of Axis axis may have been collected in August or September. The collected, and cut-to-pieces, antlers of Axis axis and Cervus sp. indicate that the prehistoric inhabitants of Inamgaon, Nevasa and Navdatoli used them as raw material for the manufacture of objects. The long bones indicate that deer were occasionally hunted or trapped, and used for food.

#### BOVIDAE

Subfamily Bovinae.

Tribe Boselaphini. Boselaphus - Boselaphus tragocamelus Pallas, 1766

Tetracerus - Tetracerus quadricornis Blainville, 1816

Tribe Bovine. Bos-Bos gaurus H. Smith, 1827

Bos taurus Linnaeus

Bubalus-Bubalus bubalis Linnaeus, 1758

Tribe Antilopini. Antilope - Antilope cervicapra Linnaeus, 1758

Gazelle-Gazella gazella Pallas 1766

Tribe Caprini. Capra—Capra hircus Linnaeus

Ovis - Ovis aries Linnaeus

The main characteristic of this family is the horns, carried, in most species, by males as well as females. Exceptions are the nilgai and the black buck, the females of which species are hornless. The horns of domesticated sheep and goat tend to be smaller than those of the wild species, and finally to disappear altogether. Horns are part of the skin and are built up, just like nails, from ceratin. They cover the horn cores which are, like the antlers of Cervidae, part of the skeleton. Contrary to the antlers of the Cervidae, horn cores are not shed annually. The horn grows a little every year and in some cases the growth-rings can give a rough indication of the age of the animal. Horns are seldom found in an archaeological context. The horn-core is found frequently.

The bones of the Bovidae could in most cases be separated from those of the Cervidae.

Nilgai or blue bull: Boselaphus tragocamelus. The nilgai is a typical Indian species. It is found from the base of the Himalayas to Mysore. The animals

shun dense forest, and live in undulating plains covered with grass and scrub. The nilgai is not a culture follower, but freely enters cultivated areas where the animals damage the crops. In many parts of India they are not hunted, because they are considered to be near relations of cattle and thus sacred. An adult male stands 130-140 cm at the shoulder. According to Clutton-Brock (1965) the nilgai has the same overall size as the sambar and the bones have the same size too. The nilgai, however, belongs to the Bovidae, the sambar to the Cervidae, and it will be possible to distinguish between most of their bones. This proves, however, to be difficult for the astragali (fig. 35, 37); (see also cattle).

In Navdatoli, Nevasa III '55/56, Nevasa '59/61 and Inamgaon a few bones of the nilgai were collected.

Typical are the short, sturdy horn cores of the males, five of which were found: two in Nevasa III, and three in Navdatoli. The horn core is roughly triangular at the base, compact, without a hollow, and slightly bent forward (fig. 23a).

In Navdatoli two mandibulae were found that belong, in all probability, to the nilgai. They have the same length measurements as those of small cattle, but are more slender (table 15; fig. 23 b, c). In Inamgaon the proximal part of a metacarpus was found together with the distal parts of two metatarsi. The metacarpus is neither of a deer nor of a small ox. The anterior-posterior depth is larger with relation to the proximal width than in cattle (table 15, fig. 24 b). The two metatarsi are too small for cattle. The fascular grove that reaches down to the trochlea shows that they are not the metatarsi of a deer (fig. 24c, d). In the Cervidae, this grove always ends at the distal foramen. A number of the small astragali, described as Bos sp., may belong to Boselaphus, although they could also be of Gervus unicolor (see Bos sp.) (fig. 35, 37).

Clutton-Brock measured the astragali of a number of recent Boselaphus and Gervus unicolor skeletons in the collection of the British Museum (Natural History) in London. According to those measurements one astragalus from Kayatha III, and two from Inamgaon III, could belong to either species.

#### OTHER SKELETAL ELEMENTS

As I had no nilgai skeleton at my disposal for comparison, it is possible that some of the smaller bones described as Bos sp. may belong to Boselaphus; the possibility that this is so is small, however.

The group of phalanx I, already discussed with the Cervidae, may also contain bones of this species.

Four-horned antelope or chowsingha Tetracerus quadricornus. The four-horned antelope belongs, with the nilgai, to the Boselaphini, but is considerably smaller. An adult male has a shoulder height of 65 cm. The females are hornless. Typical for the males are the four small horns, the posterior of which reaches a length of 80-100 mm, the anterior of 10-25 mm. The four-horned antelope is found in peninsular India south of the Himalayas. It favours lightly wooded, undulating or hilly country. It needs water and seldom lives far from it. Young animals are born from October to February. The four-horned antelope is easily tamed when caught young.

At Inamgaon two r. posterior horn cores were collected. The cross section of the horn cores is more or less round (fig. 25a, b), they are slightly curved, solid and the tips are missing. One was of a comparatively young animal.

In Nevasa two right mandibulae were found which did not belong to one of the Caprini. They were small and slender (fig. 25c, d; table 15) and compared very well with the mandibula of a skull on loan from the Museum of Natural History in Bombay (table 15). A maxilla, also found at Nevasa, may be from the fourhorned antelope. It was, however, so thickly covered with the "crust" that certain identification was impossible. It seemed to have belonged to a young animal, and the second and third deciduous molars were still present.

The surroundings both of Nevasa and Inamgaon would have suited the fourhorned antelope. There are indications that in ca. 1000 B.C. the country must have been rather open without heavy forest.

#### BOVINI

Wild cattle—Bos primigenius namadicus

Dom. cattle—Bos taurus Linnaeus

Gaur—Bos gaurus H. Smith, 1827

Gayal or mithan—Bos gaurus frontalis

Wild buffalo—Bubalus bubalis Linnaeus, 1758

Domestic buffalo—Bubalus bubalis domesticus

Two wild species of the tribe of the Bovini are still living in India. Bos gaurus is mainly a hill animal at present, but comes down now and then for pasture. A large adult bull stands 195 cm at the withers, the average is 180 cm. In Madhya Pradesh the young are born between December and March. The gaur seems a culture fleer.

The domesticated gaur, the gayal or mithan: Bos gamus frontalis, is found is the east in Assam and Bangla Desh, but not in the western part of the country, where the settlements here discussed are situated. This does not

exclude the possibility that in earlier times the mithan could have been found more westward than at present. We know little or nothing about the domestication history of the gayal (Simoons and Simoons 1968).

The wild buffalo: Bubalus bubalis, is found in the grass jungles of Nepal and Assam. In the south there are still a few herds in Orissa and the adjoining part of Madhya Pradesh. In the northeast the buffalo needs grass jungles in the neighbourhood of swamps, but in the south the animal lives in drier country with scattered trees and open expanses of grass. The wild buffalo is a culture follower, and enters cultivated areas. An adult male stands 170 cm. at the shoulder. The young are born in March, April and May.

Domesticated buffalo: Bubalus bubalis domesticus. The buffalo must have been domesticated in Asia, possibly in more than one locality, but we know very little about the process. According to Cockrill (1967), two major groups can be recognised: river buffaloes, which are found mostly in India, and swamp buffaloes, which are most plentiful in the great rice-growing lands east and south of Burma. The river buffalo prefers clear running water to mud, and is more suitable for milk production than the swamp buffalo. The swamp buffalo needs to wallow in mud. In 1961, there were in India approximately 51 million buffaloes, and 6 major buffalo breeds can be distinguished (Harbans Singh 1966).

According to Conrad (1966) some buffalo bones and teeth were found in Mohenjodaro. In Harappa also, bones of buffalo were found, according to Prashad (1936). Buffaloes are, however, less frequently depicted than cattle in the Indus Valley culture, and it is not clear whether the depicted animals were domesticated or wild.

Both in Navdatoli and Nevasa, much flattened horn cores with a distinct keel at the inner and outer curve were found which belong, in all probability, to the domestic buffalo (fig. 27a, b). In Inamgaon, the distal part of a metatarsus was found that seems to belong to a domestic buffalo, since the ratio between distal depth and distal width is the same as that of a wild buffalo measured by Clutton-Brock (table 15, fig. 39). The measurements are, however, much smaller, and are the same as those of Bos sp.

Wild cattle—Bos primigenius namadicus Falconer, 1859. Cattle—Bos taurus.

No wild taurine cattle are found in India today, and it is not known whether in the period of first domestication, the wild Bos primigenius namadicus could still have been present in the country.

Nowadays it is generally accepted that the domestic cattle found in India are descendents of Bos primigenius, whether it was Bos primigenius primigenius

Bojanus, 1827 from West Asia, or Bos primigenius namadicus from India (Herre and Röhrs 1973). The most characteristic features of the present-day Asian taurine cattle are the dew lap and hump, which features distinguish it from European cattle. The earliest known cattle-remains are those from the Quetta Valley and the Zhob region in Baluchistan, (Fairservis 1956, 1959) dated +3500 B.C. Not only bones were found, but prehistoric man left potsherds behind, on which he has depicted cattle with well-developed humps. The next information comes from the Indus civilisation. From this civilisation, too, not only bones were found, but cattle depicted on seals and pottery. Cattle figurines were made of copper and clay. The majority of those cattle are humped, but also hump-less animals were portrayed. As far as the Indus civilisation is concerned, we have thus to reckon with at least two different breeds of cattle, one with and one without a hump. At present, most of the cattle in India have more or less well developed humps. Harbans Singh (1966) distinguishes 26 major breeds. The humpless breeds are all imported from Europe. Olsen (1960) tried to work out the osteological difference between humped and hump-less cattle. The most characteristic difference is found in the spina dorsalis of the thoracic vertebrae. In the humped cattle they broaden dorsally, are flattened, and have a cleft due to the developed hump. Only one spina dorsalis of a thoracic vertebrae, which showed the peculiarities ascribed above, was found in Inamgaon. Of the other characteristics described by Olsen, only the flattening of the trochlea of the humerus was found in one piece collected in Nevasa 1959/61. That no more bones clearly show the characteristics described by Olsen can have several explanations. Firstly the bones from the prehistoric settlement were badly damaged; secondly Olsen worked with humped cattle bred in the U.S.A.; and thirdly the possibility exists that some of the bones were of hump-less cattle. The finds from Inamgaon and Nevasa 1959/61 indicate, however, that at 1000 B.C. at least part of the cattle in this region had humps.

From the foregoing discussion it will be clear that we have to reckon with the existence of three wild species of the Bovidae and their domesticated forms, of which the domestic cattle can be humped or hump-less. In both wild and domestic Bovidae there exists a marked difference between the males and females, and to complicate the issue further we also have to consider the existence of castrates. It is evident that it will be difficult to identify the bones of the Bovidae found in prehistoric settlements in India to species as long as no data are known about the single species, the difference between the sexes, and the influence of castration on the skeleton. Even in Europe, where only two wild species of the Bovidae existed and only one was domesticated, it often proves difficult for the archaeozoologist to identify the

Bovidae remains with certainty, and often they differ in opinion about which remains belong to wild and which to domesticated animals, especially if found in Neolithic settlements. In the following discussion of the bones of the Bovini they will be described as Bos sp. or cattle. Most of them may actually belong to domesticated cattle: Bos taurus L., with or without hump.

BOS SP.

It appears that, during excavations, various policies of bone collecting were followed at all the sites discussed. At Navdatoli, a large number of horn cores, upper and lower jaws were collected; long bones were nearly absent. At Kayatha however, nearly all the bones collected were long bones. At Inamgaon, skull as well as long bones were taken. As none of the complexes can give us any idea about the prehistoric reality, we will discuss the remains of Bos sp. found at all the sites as one complex.

Horn Cores

Most horn cores come from Navdatoli, a few from Nevasa and Inamgaon. Horn cores of cattle have a round or oval cross-section. The horn core of the buffalo is flattened or oval. The horn cores of the only gaur skull at my disposal were rounder than those of the wild buffalo measured by Clutton-Brock, but less round than those of the majority of horn cores found at Navdatoli (fig. 26).

One horn core from Navdatoli and one found at Inamgaon, both from unknown layers, differ from the others in being nearly totally round in crosssection. One horn core, nr. 2872 (fig. 27b) from Nevasa III, is flattened with a distinct keel both along the inner and the outer curve. Nr. 3395 from Navdatoli is flattened in the same way, but without keel (fig. 27b). A second horn core, also cellected in Nevasa, is also flattened. Unfortunately the base is missing (it may belong to Bubalus bubalis). It seems that those horn cores could be identified as Bubalus (the small size makes it likely that they are from domestic buffaloes: Bubalus bubalis domesticus.) A horn core collected at Navdatoli, NVT nr. 2654, is small and sturdy, and is more flattened at the base than the other horn cores. A distinctive keel is missing however, so I counted it among Bos sp. (fig. 27c). In my opinion, all the other horn cores belong, without exception, to domestic cattle (fig. 28-31a). Whether those cattle were humped or hump-less it is difficult to say. It seemed that most of the horns were pointing sideways, and not upwards as is found in the present-day cattle in Maharashtra.

Two horn cores from Navdatoli have a faint depression at their bases (fig. 31a). Similar features have been described for European horn cores,

There, the phenomenon was thought to be the result of the fastening of a yoke on the horns. In Maharashtra, however, I have so far only seen cattle with the yoke fastened on the neck.

#### Atlas

At most sites and in most layers one or more atlasses were collected. Most of them were small, broken and only four could be measured. At NVS W (nr. 3108) a very large and heavy piece was found, which belongs to Bos gaurus or the wild buffalo—Bubalus bubalis. The other two measurable pieces from Nevasa are small and fall into the size range given by Grigson (manuscript) for Bengali Zebu. A fourth atlas is larger than the former and falls into the size-range of three Zebus in the collection of the Leiden Museum (Netherlands). These skeletons probably belong to animals which come from Indonesia. (Grigson manuscript)

## Epistropheus

The epistropheus was also found in most layers. In a number of cases it could be measured. The largest was found at Kodekal, the smallest at Nevasa.

### Other vertebrae

At most sites, vertebrae were collected. They were generally damaged. One *spina thoracalis* from Inamgaon (fig. 31c) had the dorsal broadening and cleft that is typical for the humped Zebu cattle. This piece is the only direct indication that, at least in Inamgaon, humped cattle were kept.

### Maxilla

In Nevasa and Navdatoli, a number of maxillae with milk teeth were found. In some cases, the p<sup>2</sup> had a ridge at the posterior side. Because this feature was not familiar to me I considered the possibility that they might belong to Boselaphus. A weakness of this theory was the lack of other skeletal elements that could possibly be ascribed to the nilgai. Whether this ridge can be a feature of Bos indicus I do not know. Olsen (1960) does not mention it. Maxillae of adult animals were collected at most of the sites. Those from Nevasa and Navdatoli could be measured. It seems that some of the animals from Nevasa III were slightly larger than those from Navdatoli (table 15).

### Mandibulae

Most mandibulae of young animals were collected at Navdatoli and Nevasa. It appears that the mandibulae of Nevasa were also slightly larger than those of the animals from other sites. Mandibulae of adult animals were collected at most of the sites. M<sub>3</sub> was the tooth found most frequently. It seems that the length of some of the M<sub>3</sub> of Navdatoli and Nevasa III exceeds those of the other settlements.

Scapulae

Only a few fragments of scapulae were collected. Scapulae are easily damaged during the butchering process, and when fragments are not collected, the scapulae tends to be missing in a collection. A number of the articular ends of scapulae were available, and could be measured. These measurements could be compared with those of a  $\mathcal{P}$  and  $\mathcal{P}$  Boselaphus tragocamelus, and  $\mathcal{P}$  and  $\mathcal{P}$  Bos gaurus, Bos gaurus frontalis and Bubalus bubalis of the British Museum (table 15) as well as with the measurements taken by Grigson (manuscript) of recent zebu cattle in the 'Rijksmuseum van Natuurlijke Historie' at Leiden in the Netherlands and the 'Royal Museum' at Calcutta. The few subfossil specimens are larger than those of the nilgai, fall into the range of Bos gaurus and Bos gaurus frontalis but are smaller than the scapula of the wild buffalo, Bubalus bubalis.

### Humerus

The humerus is a large bone, the distal end is compact and difficult to destroy. The proximal end is more brittle and is often destroyed during butchering, or gnawed at by scavenging dogs. Owing to this sturdiness, a number of distal ends were well preserved and collected. Two groups can be distinguished. The first has a width of the trochlea of between 59-76 mm, the second of between 78-82 mm. The trochlea width of a large humerus was 106 mm. This piece probably belonged to a wild buffalo. A humerus with a width of the trochlea of 94 mm was collected in Nevasa (NVS, nr. 1466). The width of the trochlea of the of Gaur in the British Museum Collection measured 93.5. Whether those groups represent QQ and 33, two or more different species, or domestic races is difficult to say at this moment. Conrad (1966) points out that hump-less as well as humped cattle were depicted in the Indus Valley culture. Allchin (1961) also mentions the remains of small and large cattle found in the ash-mound of Utnur, which he thinks may correspond with the large and small breeds of humped cattle that are still found in that region at present.

Ar. humerus (Nevasa '59/61) has the straight distal surface of the trochlea at the medial side, which according to Olsen is one of the characteristics of humped cattle. The other humeri show a more curved surface like those of European cattle. To me, this does not seem to be conclusive evidence. It only indicates that the study of more material may give an answer to the question—in which ratio cattle with and without hump were slaughtered.

### Radius

The proximal and distal parts of the radius are resistant, and even when the bones are broken for the extraction of marrow, they are often not seriously damaged. The proximal part could be measured. It appears that at least two groups can be distinguished; the first group has a max. prox. width of between 85.94 mm, the second of between 72.0-80.5. The numbers are too small however, to be relevant. The limits Grigson found for the Leiden animals were 82.5 and 93.5 and those for the Bengali animals at Calcutta 67-81. These measurements were 59.0 and 60.0 for the 3 and 4 Boselaphus tragocamelus of the British Museum. Those of Bos gaurus (4 and 4 Boselaphus 100 mm, of Bos gaurus frontalis 85.0 mm, and of the wild buffalo 116.0 mm. It seems therefore improbable that any of the bones belonged to the nilgai or the wild buffalo.

### Ulna

The ulna is often badly damaged during butchering, and most of the fragments were not collected. The only ulna found at Kodekal seems to have belonged to a rather large animal.

### Metacarpus

The metacarpus and metatarsus are solid bones, which are often broken into two or three parts to extract marrow, leaving the proximal and distal epiphysis undamaged (fig. 34). According to Clutton-Brock (1965) the distal end of the metapodia of the buffalo is wider but not deeper than those of cattle. This enables the toes to have a better possibility of spreading to a certain degree, to faciliate walking in mud. To what extent this is also applicable to the river buffalo I do not know. Altogether, little is known about the differences in the skeletons of cattle and buffalo. Clutton-Brock measured the metacarpus of a wild buffalo, and compared it with four of Bos gaurus, one of Bos indicus and two of Bos frontalis of the British Museum collection. We can calculate the ratio distal depth x 100/distal width, which should be lower for the buffalo than for cattle (fig. 33). The ratio for the wild buffalo is 46.6. The majority of the calculated ratios for the prehistoric sites is between 49-56. Two bones of Inamgaon gave ratios of 47.5 and 49, respectively. Two other bones of Inamgaon have ratios that are higher, 59 and 59.5. The ratios of the two metacarpi of Bos frontalis measured by Clutton-Brock are 59.3 and 60; the bones were, however, much larger than those of Inamgaon. Three of the four metacarpi of Bos gaurus have the same index as that of the Bos sp. here discussed: 54.0; 55.6; 56.8; the fourth has a ratio of 58.3. It seems that the gayal has a sturdier metacarpus than the gaur. The width is in two cases slightly larger than that of Bos sp. The distal width of the metacarpi of Langhnaj is also larger, the ratio depth/width, however, lies between those of the Bos sp. and Bubalus bubalis.

The only thing that seems certain is that no Bubalus bubalis is present in the metacarpus samples. It seems, further more, that Bos gaurus is more slender than Bos frontalis, and that two bones of Inamgaon with a low ratio could belong to Bubalus bubalis domesticus, and the two other to Bos frontalis. The possibility that three large bones from Nevasa III with a width of 53.2; 54.2; 53.5 belonged to Bos gaurus, cannot be ruled out altogether. The majority of the remaining metacarpi belongs in all probability to Bos sp. This is also corroborated by the measurements of the recent metacarpus of Bos indicus in the collection of the British Museum. The measurements sometimes exceed those of the skeletons in the collection of the Royal Museum in Calcutta, and correspond with those of the measurements of the skeletons in Leiden. (Grigson, manusceript).

Pelvis

Only a few pelvis bones were collected.

Femur

The proximal and distal epiphysis of the femur are brittle and easily damaged. In butchering the femur is mostly broken up into many smaller fragments, and only a few have been collected.

Tibia

The distal end is the most frequently collected part. The measurments suggest the existence of a group of larger and smaller-sized animals (table 15).

#### Metatarsus

The metatarsus is, like the metacarpus, often broken up into two or three parts. The depth/width ratio was calculated for the distal epiphysis. What was surmised for the metacarpus, applies to the metatarsus as well (fig. 36). Clutton-Brock (1965) also measured the metatarsi of the animals mentioned above.

The depth/width ratio for the distal part of the bones of the prehistoric sites lies between 51.5 and 61.5 (fig. 35). One metatarsus of Navdatoli had a ratio of 64.0. The ratio of Bos gaurus and Bos frontalis lies between 59.6-63.5. The ratios of two metatarsi that may belong to Boselaphus tragocamelus

are 73 and 74. The ratio of a recent \$\top Boselaphus\$ is actually 74.0. The ratio of Bubalus bubalis is 50.7. One bone from Inamgaon has a ratio that compares with that of the buffalo. The bone is, however, much smaller and could only have belonged to a domesticated animal. A metatarsus from Navdatoli and one from Kayatha, have a larger ratio than those of the others, 64.0 and 66.7. In general the evidence indicates that domestic buffalo was found in Inamgaon, and that it might be possible that Bos gaurus was hunted or domesticated in the west. Most of the bones seemed, however, to have belonged to Bos taurus.

### Astragalus

The astragalus is often found in large numbers in prehistoric settlements; it is a solid bone, not easily destroyed (fig. 37). It proved difficult to distinguish between the astragalus of small Bos sp., Cervus unicolor and Boselaphus tragocamelus. Clutton-Brock measured six astragali of Cervus unicolor and three of the Boselaphus tragocamelus. She found that the length measurements for the two species are the same and that the ratio width trochlea/length does not differentiate them. They lie within the limits of the Bos sp. astragali collected at Kayatha, Navdatoli and Inamgaon. Two bones of Inamgaon and one of Kayatha I are considered to belong to Boselaphus tragocamelus, because their width is smaller than those of the others.

When we plot the length against the width of the trochlea in a diagram (fig. 38), a slight gap shows between 56.5 and 58.0 mm. The length of the measured astragali of the sambar and nilgai is smaller than 61.5. Clutton-Brock did not measure the astragali of the other *Bovini*. It seems that the astragalus of Nevasa III, with a length of 85.0, may have belonged to *Bos gaurus*.

In the diagram (fig. 38) the Langhnaj measurements are plotted as well. Three Langhnaj bones have a length of between 62 and 74 mm, three other bones are larger than the Wg bones, but smaller than the large astragalus from Nevasa III, which measured 85.0 mm, and is as large as the astragalus of a 3 Bos gaurus of the collection of the British Museum (Nat. Hist.). We can surmise that the larger number of the astragali belonged to Bos sp., but that three are of Boselaphus tragocamelus, and a few other may be of Cervus unicolor, although it is not likely. The astragali of Nevasa III might belong to the wild gaur. The measurements of zebu cattle in the collection of the Royal Museum in Calcutta range from 56.6-75.4 and those of the Leiden Collection from 70.0-82.5 mm. (Grigson op. cit.).

### Calcaneum

Only a small number of measurable calcanea were found. It appears that the calcanea of Nevasa III are slightly larger than those of Kayatha II, Navdatoli and Inamgaon III. Nr. 3934 of Nevasa IV is exceptionally large, and may have belonged to a wild bovid. The calcaneum of the & Bos gaurus of the British Museum (Nat, Hist.) collection measured 175.0 mm. The measurements of zebu cattle given by Grigson are, for those in the collection of the Royal Museum in Calcutta: 99 and 111; for the specimens in the Leiden collection: 138-166; and for those of the Royal Veterinary College in London: 147-158. (Grigson op. cit.).

## Phalanges I, II and III

At all sites a comparatively large number of phalanges have been discovered. Phalanges are often undamaged. It is difficult to distinguish the phalanges from fore and hind feet.

Phalanx I. At all sites phalanx I shows the same variation, only NVS 2423 '59/61 is slightly larger. INM III C 4 4 is small. This specimen may belong to Boselaphus tragocamelus.

Phalanx II. The measurements of phalanx II also seem to be fairly constant.

Phalanx III. The collected phalanx III seemed more varied: large and small, sturdy and slender pieces have been found. In Kayatha II, the maximum length lies between 47 and 67 mm, in Inamgaon III, between 52.5 and 71.0 mm. It is difficult to make specific identifications, but most of them may belong to Bos sp.

## SLAUGHTERING AGE (Table 16)

At Kayatha, one maxilla and three mandibulae were of animals younger than three years old when slaughtered. Most animals were killed when three years old or older. At Inamgaon, one mandibula was of an approximately half-year old animal, the others of animals of three years old or older. At Navdatoli, the majority of the maxillae and mandibulae collected seem to be of 3 year old and older animals; the same applies to Nevasa. It seems that most of the cattle reached maturity before being slaughtered, although the number of adult animals is possibly too high because the small, fragmented jaws of young animals might not have been collected. For determining the age at the time of death, the data are used which were given by Ellenberger and Baum (1943) for later maturing European cattle. The remains of the Indian cattle must also have belonged to late-maturing races, as Singh (1966) remarks that "under Indian village conditions, cattle are in general mature

at the age of approximately three years". This is actually also the age for the old European landraces.

### TRIBE ANTELOPINE

Blackbuck or Indian antelope-Antilope cervicapra. The blackbuck favours open plains covered with scrubs or cultivation. It avoids dense forest. Blackbuck is essentially a culture-follower and not long ago it was still found in large numbers all over India (Schaller 1967). Although the blackbuck seems to be the most intensively hunted species since prehistory in India, it is only in the last decades that the number of animals reached nearly zero and the species is even threatened with extinction. The blackbuck 3 is the animal most frequently depicted on Navdatoli pottery, it is part of Hindu and Buddhist art, and played an important role in the Moghul paintings. The hide of the male blackbuck was important both in the Hindu (Hubert et al. 1899) and the Buddhist religions. A torso of the well-known Buddha of Shanshi shows him wearing a blackbuck skin with the head and paws still attached to it.

An adult buck stands 80 cm at the shoulder. The females are smaller. The males carry characteristically tightly wound, straight horns. The stature of the blackbuck 33 is the same as those of the spotted deer and domestic sheep and goat. The females may have the stature of a gazelle.

No skeletons of the blackbuck or gazelle were available for comparison in Poona, but skeletons seen in European museums gave me the impression that the gazelle skeleton is more slender than that of chital, sheep and goat. The blackbuck breeds at all seasons. It seems that the blackbuck is easily tamed and in Moghul art it is often depicted when being fed or led on a leash by beautiful women. One picture shows a blackbuck male adorned with brass horn-tips with streaming ribbons.

Remains of the blackbuck could be identified in all the settlements except in those of the south. The horn core was most frequently found (fig. 40a, b, c, d). Only two mandibula could be identified, one from Navdatoli and one from Nevasa III (table 15)(fig. 40e). It is possible that the bones of the blackbuck are very similar to those of sheep and goat. One proximal part of a metacarpus was found that seems more slender than that of a sheep/goat. As it was not of a deer we have to consider that it may be of a blackbuck or a gazelle. The many horn cores may have belonged to skins which were used in ritual rebirth practices (Hubert et al. 1899). The many pictures of the tamed blackbuck raise the question whether the blackbuck was ever domesticated in India, or semi-domesticated.

Chinkara or Indian gazelle-Gazella gazella

The male chinkara stands 65 cm at the whithers. It is a graceful little animal found in northwestern and central India. It lives in waste lands with scattered bush and thin jungle, and in deserts. The chinkara needs little water. Contrary to the blackbuck they are culture fleers and shun man. The chinkara breeds at all seasons. The horns of chinkara are gracefully curved. At Navdatoli two mandibulae (fig. 32b) of the chinkara were collected (table 4). The mandibula is more compact and also smaller than that of the four-horned antelope. The metacarpus mentioned above for the blackbuck could be of a gazelle. The fact that the animals shun man and live in small herds may account for the fact that they appear to have been less frequently hunted than the blackbuck.

### TRIBE CAPRINI

Osteologically it is often difficult or impossible to distinguish between sheep and goat, especially when the bones are badly preserved or broken into small fragments. Boessneck, Müller and Teichert (1964) showed, however, that in a number of cases, when the bones are well preserved, it is possible to determine, with a degree of certainty, which bones belong to sheep and which to goats. Ellerman and Morrison Scott (1951) described the following differences between the skulls of wild sheep and goat.

## Ovis:

- Horns of males either in a spiral with the tips directed outwards, or bent in an arc of a circle with the tips pointing either forwards and slightly inwards, or towards each other behind the head.
- Coronal suture projecting forward at an angle; lambdoidal suture forming a more or less straight line.
- Lachrymal pit well-developed, or at least with its upper edge forming a distinct longitudinal ridge on the lachrymal bone.
- Infraorbital foramen small and with a well-defined rim all around it: its diameter about equal to the length of the last upper premolar.
- Upper ends of praemaxillae not wedged between the nasals and the maxillae.

# Capra:

 Horns scimitar-like and bent back in a more or less vertical plane, or twisted like a screw and pointing up or bent backwards over the neck in a single spiral turn with the tips pointing inwards and up.

- Coronal suture straight; lambdoidal suture projecting forward in an angle
- No lachrymal pit or longitudinal ridge on the lachrymal bone.
- Infraorbital foramen large and with no well-defined rim anteriorly; its dorso-ventral diameter greater than the length of the last premolar.
- Upper ends of the praemaxilla wedged between the nasals and the maxillae.

Ellerman and Morrisson Scott op. cit. recognise five species of sheep and goat each in Eurasia.

For sheep they are:

Ovis ammon, Ovis canadensis, Ovis laristanica, Ovis musimon, Ovis orientalis.

For goat they are:

Capra caucasica, Capra falconeri, Capra hircus, Capra ibex, Capra pyrenaica.

On sheep Ellerman and Morrisson Scott (op. cit.) remark, that the characteristics of the four species found in Eurasia are distributed in a mosaic fashion and no one or two characteristics suffice to separate one from another. Even combining all the available characters it is difficult to draw a clear line between the reduced number of species here recognized. Perhaps it is better to consider all the sheep species as subspecies of one species.

### Goat-Capra Linnaeus

Of the goat, three of the above-mentioned species still live in northern India. The domestic goat is spread all over the country.

Markhor—Capra falconeri Wagner, 1839. This species is still found in Afghanistan, Kashmir, Punjab and Baluchistan. An adult male may stand 95–100 cm at the withers according to Prater (op. cit. 1971). It has straight corkscrew-wound horns.

Ibex—Capra ibex Linnaeus, 1758. This species is found in Kashmir, Northern Punjab to Kumaon and in Afghanistan. It does not occur east of the river Sutlej. An adult male may reach 100 cm at the shoulder. The horns are curved like a scimitar.

Wild goat—Capra hircus Linnaeus, 1758. The wild goat is found in Baluchistan and Sind according to Ellerman and Morrisson Scott (op. cit.), A fullgrown male stands 95 cm at the withers. The horns are curved like a scimitar and have an anterior keel. In Sind the wild goat lives in small or large herds.

The last-mentioned species is considered to be the ancestor of all domestic goats. It is thought to have been first domesticated in West Asia around 10,000 B. C. (Reed 1969). Remains of sheep and goat are found in the ancient settlements of the Quetta Valley and the Loralai-Zhob region

(Fairservis 1956, 1959). It is generally accepted that these bones belonged to domesticated animals, although the wild species still live in this region as well. In the settlements of the Indus Valley culture, bones of sheep and goat were collected in small numbers. Conrad (1966) pointed out that the older bone identifications are not reliable enough to say that both sheep and goats were found. The animals that are depicted in various ways do not leave room for any doubt that the people of the Indus Valley culture kept both sheep and goat. I have not been able to ascertain how far south and east wild goat populations were found in Ancient India. The domestic goat is said to have been imported from West Asia, but it could just as well have been locally domesticated in the Western regions. If the domestic goat was imported initially, in later times it could have been cross-bred with animals from the local wild population.

Five horn cores of goat were found at Navdatoli and Nevasa. They are small and straight, with an oval cross section at the base (fig. 42a, b). One horn core at Nevasa seemed slightly twisted.

In 1961 there were approximately 60,000,000 goats in India of which 5 million were found in Maharashtra (Harbans Singh 1966).

Sheep-Ovis Linnaeus

Five species of sheep are recognized in Eurasia by Ellerman and Morrisson Scott:

Ovis orientalis Gwenlin, 1774; Ovis ammon Linnaeus, 1758; Ovis laristanica Nasanov, 1909; Ovis musimon Pallas, 1811; Ovis canadensis Shaw, 1804.

Of those species two are found in India.

Ovis ammon - the great Tibetan sheep or Marco Polo sheep, which is the largest known, and stands 110-120 cm at the shoulder. It may be found in Ladakh and Spiti. Its major range is, however, the Tibetan plateau. Prater (op. cit. 1971) describes the great Tibetan sheep as a different species, the Marco Polo sheep. Ellerman and Morrisson Scott (op. cit.) consider both to be one species.

Ovis orientalis —the Asiatic moufflon. According to Ellerman and Morrisson Scott this species is still found in Kashmir, Punjab and Baluchistan, but not in Sind. The animals in Ladakh reach a height at the withers of 90 cm, those of Punjab 80 cm.

Ovis aries L.—domestic sheep. Sheep are, together with the goat, the oldest known domesticated animals. Ovis laristanica, found in West Asia, and Ovis orientalis may both have been domesticated. Whether the domestic sheep were first imported, or were originally domesticated in the Punjab, is a question that cannot be answered at present. Possibly, both happened. As

stated earlier, sheep and goat were not identified in the Indus Valley culture. Their existence is, however, attested by clay figurines and depictions on pottery. Two horn cores of sheep were found in Navdatoli; they belong to one individual (fig. 41c). The horn cores are short and sturdy.

Sheep/goat—Most bones could not be identified as to species. Among the bones here described as sheep and goat there may be a few from the blackbuck. No skull bones were found. In all settlements, bones of sheep and goat were collected. It appears that in the south, where all the animal remains were found, fewer small ruminants were slaughtered than in the north. The scarcity of long bones in Kayatha seems due to a bias of the collector. The bones most frequently collected are the mandibulae. All those belonged to sheep or goat, a number were of young animals. The long bones were less frequently collected.

Scapulas-were found at Nevasa and Inamgaon.

Humerus—12 pieces were picked up at Inamgaon, two at Kodekal and two at Nevasa.

Radius and ulna-were collected only at Inamgaon.

Pelvis-there were only a few unmeasurable pelvis bones.

Femur—only a few fragments were collected at Kodekal, Navdatoli and Inamgaon.

Tibia-were primarily collected at Inamgaon.

Metacarpus—The metacarpus of the Bovidae can, in most cases, easily be distinguished from the Gervidae. To what extent they are distinguishable from those of the blackbuck is unknown to me. Those of gazelle will be smaller and more slender. A small metacarpus found at Kodekal may be of a gazelle.

Metatarsus—In Inamgaon a number of metatarsi were found of which the vascular groove was more pronounced than in the others (fig. 41d. e). There were no differences in the measurements. They could be of the blackbuck; they were, however, most likely those of sheep and goat.

Astragalus—The astragali of sheep/goat and blackbuck may prove to be difficult to separate. One astragalus collected at Navdatoli was much smaller measuring 26.5 cm. The other lengths lay between 30—32.5 Cms.

Phalanx I.—It seems that the phalanges of Inamgaon separate into three groups. Whether this is due to the small number or to the fact they are really of different species is not known with certainty. It seems, however, that they fall within the range from Nevasa. In summary, it is possible to be certain that both sheep and goat were present in prehistoric India east of the realm of the Indus Valley culture. It is impossible to say anything about

the ratio in which they were slaughtered, or the numbers in which they were kept,

The maxillae and mandibulae collected give us an insight into the slaughtering age (table 14). In Kayatha, two mandibulae were collected of animals younger than two years. In Inamgaon III, one mandibula was collected of an approximately one year-old animal, six were of animals older than two years. Of the mandibulae, 13 were of animals younger than two years. Apparently, one out of four animals was slaughtered after reaching maturity. In Nevasa, the majority of the animals were also slaughtered after reaching maturity. This seems to indicate that the animals were milked (sheep and goat) and the wool (sheep) collected. Since the bones were selectively collected this can be only a guess.

## Order Lagomorpha

## Fam Leporidae

Lepus nigricollis Cuvier, 1823-Indian hare or blacknaped hare.

According to Prater (1971), two subspecies of the Indian hare Lepus nigricollis nigricollis and Lepus nigricollis ruficaudatus are found in India. Ellerman and Morrisson Scott describe them as one species Lepus nigricollis.

Hares are still numerous in India, in cultivated areas with enough scrubs for hiding. It seems that the hare is a culture follower. In two places, the remains of hares were collected. In Kodekal a premaxilla, in Nevasa a r. mandibula, r. humerus, and r. femur. The mandibula was discovered in the weathered zone, the humerus and femur in period V.

In Europe the hare became more abundant during the Bronze and Iron Ages when man destroyed more and more of the forests. Until more evidence is available it is difficult to say whether something similar happened in some parts of India.

## Order Rodentia

# Fam. Hystricidae

Hystrix indica Kerr, 1972—Indian porcupine. The Indian porcupine is a large mammal that can reach a length of 70-90 cms (without tail). It is a large rodent found all over India from Cape Comorin and Ceylon to the Himalayas. The animal favours rocky hill sides, but can adapt itself to any type of country. In the daytime, it takes shelter in caves, or in burrows dug by itself. The burrows have a gallery and a chamber that are up to 150 cm below ground level. We should remember those burrowing habits of the

porcupine when we find the remains of porcupines in prehistoric settlements. In Nevasa two fragments of a mandibula were found (fig. 12).

Fam. Murinae

Genus Rattus Fisher, 1803

Rattus rattus Linnaeus, 1758. Wild rats originally occurred in Asia, parts of India, Ceylon, the Himalayan foot-hills, etc. The rat was spread over large parts of the world by human beings. In India the wild species is white, the communal dark. A species with a world-wide distribution as the rat has many races, but it is difficult to divide the species in well-defined races.

A number of the rodent bones collected may be of rats. Rats have burrowing habits. It seems that in the plains they favoured the dwelling mounds of human beings for digging holes and obtaining food. In Kodekal four long bones were found. A humerus 758 2(4) is probably of a rat, the proximal epiphysis was not yet fused with the shaft. Three femurs were collected. Nr. 755 2(4) is only a diaphysis; the epiphyses had not yet fused and were lost. The bone is larger than that of a recent rat in the Poona collection. The proximal part of a second femur was found. This specimen is smaller than that of the recent rat. The third femur was only a fragment. At Nevasa, a large number of rodent remains were collected from the levels III, V and VI. They represent more than one species. A number of bones may be of Rattus sp., although the measurements are slightly larger than those given by Ellerman (1961). A skull fragment and five mandibulae also belong to this group.

Bandicota indica Bechstein/Dacnomys? 1800. Three mandibulae in Nevasa belong to a second group of animals which are much larger than the rat. They may belong to the bandicoot rat, which species is found in Ceylon and in Peninsular India, north upto Kathiawar. Like the rat, the bandicoot rat is found where human beings live.

cf. Rhizomus sumatrensis Raffles, 1821—large Bamboo rat. A skull found in Nevasa, is much larger than that of a rat. When compared with the skulls depicted by Ellerman (1961), it had the same dimensions as those of Rhizomus sumatrensis, at present not found further west than Burma.

### Unidentified rodent

Five bones from small rodents found in Nevasa could not be identified as to species.

AVES-birds

Bird bones are, in general, lightly built, small, and easily damaged. Owing to this, only a few bird bones could be collected. This is regrettable, since bird remains especially can tell us much about the environment of a settlement.

India may be the country where fowl and peacock were first domesticated. Of both domestic birds the wild parent species Gallus gallus L, and Pavo cristatus L, still live in India.

Gallus gallus Linnaeus—red jungle fowl. The wild red fowl is found in northern India, in the Himalayan foot-hills as far as eastern Assam, and south to the Godavari river in eastern Madhya Pradesh. The red jungle fowl lives at the edge of the forest and comes out in the early morning and the afternoon to feed in the fields.

Clay statues of the domestic and probably of the wild fowl were found in Harappa, and there was also a fowl depicted on a sherd. According to Conrad (1968) the clay figures portray domestic animals, the one on the sherd a wild animal. Remains of the domestic fowl were found in Nevasa VI, which belonged to a large animal. (fig. 43).

Pavo cristatus Linnaeus—common peafowl. The wild peacock is still found in many parts of India today. The bird lives in dense scrub, and deciduous jungle, preferably in the neighbourhood of rivers and streams (Salim Ali 1968). The peacock motif was already used on a large scale by the Indus Valley culture. In Navdatoli also, the peacock was the bird most frequently depicted on the pottery. Here we find a large variety of displayingand non displaying peacocks (fig. 8D).

According to Conrad, one of the femora found at Harappa and described as domestic fowl, belongs to a peacock. Basham (1966) mentioned that the peacock was originally a food animal. It was the favourite dish of the Emperor Asoka, before he became a vegetarian. In the Middle Ages there were villages of peacock rearers, who supplied the birds to the king and other important people.

Aves sp.—Bones of other species were found at Kodekal and Nevasa, but could not be identified. An ulna of a small bird and a claw of a large bird were found in Nevasa V and Nevasa W. What seems to be a fragment of a skull was found in Nevasa IV. Another ulna was found in Nevasa? and a tibiotarsus in Nevasa V. In Kodekal a metacarpus of a bird, the size of a fowl or duck was found.

## REPTILIA—reptiles

Only few remains of reptiles were collected. The most conspicuous are those of the tortoises. It seems that the large crocodiles were not hunted although even at present they still live in a number of rivers and along seashores.

#### Tortoise

In several settlements the carapaces of tortoises were found. At least three species are present. Both Nath and Shah mention three species of which the remains were found in prehistoric settlements.

### PISCES-Fish

Only a few fish bones were collected. Fish bones are mostly small and brittle, and they can be easily overlooked, although the bones of the large carp and catfishes must have been rather conspicuous. In Kodekal, where all the bones were collected, 4 fish bones were found. In Nevasa V the rays of the dorsal fins of three small ciprinides were found, in Nevasa '59/61 the jaw of a large fish. In Navdatoli a finray and some vertebrae that could not be identified.

At present, several carp and catfish species are among the most frequently caught fresh-water fish in the Indian rivers and tanks. Chandy (1970) reports that at present catfishes and carp constitute about 64 per cent of the fresh-water fish of India and are very important as a food. Also in ancient India, where the earliest settlements are found along the rivers, fish was, in all probability, an important constituent of the diet. According to Ansari (pers. comm.), Robur or Tambda masa (carp), Labeo rohita and Singala (catfish), Mystus seenghala, as well as a few other species were among the species caught in the river during the excavation campaign of Inamgaon.

### MOLLUSCA-Molluscs

Although few molluses were collected, in prehistoric Inamgaon, in particular, a river mussel (unidentified) must have been an important part of the daily diet.

# Conclusion

From the earliest times, the inhabitants of the prehistoric and early historic settlements of the Shorapur Doab, Navdatoli, Nevasa, Inamgaon and Kayatha, kept the five domestic animals known at that time: cattle, sheep, goat, pig and dog. In later periods, the horse, the donkey, and poultry were added. The remains of cattle were the most frequently collected by the excavators. Those of pigs were collected only in small numbers, except in Navdatoli. The small ruminants (sheep and goat) take second place, except for the microlithic settlement of Bagor (Misra 1971) in Rajastan, where Thomas (1975) found that in the oldest layers sheep and goat dominated, as they did in the settlements in Baluchistan and the Loralai-Sind region. Animal proteins were not only obtained from domestic animals but also from wild ones. The sambar, chital, chinkara, blackbuck and nilgai were hunted, as well as smaller and larger carnivores.

It is not yet possible to obtain a clear picture of the stockbreeding and hunting practices of the settlements investigated, but there is little doubt that in the farming communities stockbreeding was practised alongside plant cultivation.

### REFERENCES

- Agrawal, D. P., S. K. Gupta & Sheela Kusumgar 1971 Teta Institute Radiocarbon Date List IX. Radiocarbon 13, 2,
- Ali, S. 1949 Indian hill birds. Oxford University Press, Oxford.
- ----- 1968 The book of Indian birds. Bombay Natural History Society, Bombay.
- Allchin, B. & R. 1968 The hirth of Indian civilization. Penguin, Harmondsworth.
- Allchin, F. R. 1961 Utmar Excavations. Hyderabad.
- ----- 1963 Neolithic cattle-keepers of South India. Cambridge.
- G. W. Dimbleby (ed.), The domestication and exploitation of plants and animals.

  Duckworth, London.
- Alur, K. R. (n. d.) Note on the animal remains from Utnur. Manuscript.
- ——1975 Report on the animal remains from Kayatha. in Z. D. Ansari and M. K. Dhavalikar, Excavations at Kayatha. Deccan College, Poona.
- Ansari, Z. D. & M. K. Dhavalikar 1975 Excavations at Kayatha. Deccan College, Poona.
- Basham, A. L. 1971 The wonder that was India. Fontana Books, Calcutta.
- Boersneck, J. 1953 Die Haustiere in Altagypten. Veroff. Staat-sammlung München 3.
- Boessneck, J., H. H. Müller & M. Teichert 1964 Osteologische Unterscheidungsmerkmule zwischen Schaf (Ovis aries Linne) und Ziege (Capra hircus Linne). Kühn-Archiv 78.
- Brentjes, B. 1965 Die Haustierwerdung in Orient. Die Neue Brehm. Bucherei, Wittenburg.
- Calkin, V. 1960 Die Veranderlichkeit der Metapodien und ihre Bedeutung für die Erforschung der grossen Hornviehs der Frühgeschichte. Bulletin der Moskauer Gesellschaft der Naturferscher. Abt. Biologie, 16. (Russian).
- Chandy, M. 1970 Fishes. National Book Trust India, New Delhi.
- Clutton-Brock, J. 1965 The Mongoose skeleton found at the microlithic site of Langhnaj, Gujarat. Decean Coll. Mon. Ser., Poona.
- ----- 1965 Excavations at Langhnaj : 1944- '63. Part II. The fauna. Poona.
- Cockrill, W. R. 1967 The water buffalo. Scientific American, Dec.
- (ed.), 1974 The husbandry and health of the domestic buffalo. F. A. O. Rome.
- Conrad, R. 1966 Die Haustiere in den frühen Kulturen Indiens. Franz Frank. München.
- Dhavalikar, M. K. 1970 Kayatha: A new Chalcolithic Culture. Indica 7.
- Duerst, G. U. 1930 Vergleichende Untersuchungsmethoden am Skelett bei Säugern. in Abderhalden, E., Handbuch der Biologischen Arbeitsmethoden I. Berlin-Wien.
- Eapen, J. 1960 A report on the animal remains from Nevasa excavations. in From History to Prehistory at Nevasa, 1954—\* 56. Univ. of Poona Publ., 1, Poona.
- Edwardes, M. 1969 Every day life in Early India. Jarolds & Sons Ltd., Norwich/London.
- Ellenberger, W. & H. Baum 1943 Handbuch der vergleichende Anatomie der Haustiere, (18th. ed.) Berlin.

- Ellerman, J. R. 1961 The fauna of India. Manualia 3: Rodentia (in two parts). Manual of Publ. New Delhi.
- Ellerman, J. R. & T. C. S. Morrisson—Scott 1951 Checklist of Palaearctic and Indian mammals (1758-1946). British Museum, London.
- Epstein, H. 1956 The origin of the Africander cattle, with comments on the classification and evolution of Zebu cattle in general. Zeitschrift für Tierzüchtung und Züchtungsbiologie, 66.
- Fairservis, W. A. J. 1955 Excavations in the Quetta Valley, West Pakistan. Anthropological Papers of the Am. Museum of Natural History, 45. Part 2. New York. Appendix 4: G. G. Goodwin, Fauna and Flora.
- Flannery, K. V. 1959 The animal bones, in Hole, F., K. V. Flannery & J. A. Neely, Prehistory and Human Ecology of the Deh Luran Plain. An early village sequence from Khuzistan, Iran., Ann Arbor.
- Grigson, C. (n. d.) Unpublished report on the osteology of Bas taurus L., B. indicus L., B. primigenius L., and B. namadicus Falc.
- ——1974 The craniology and relationships of four species of Bos. Journal of Archaeological science, 35.
- Habermehl, K. H. 1961 Die Alterbestimmung bei Haustieren, Pelztieren, und beim jagdbaren Wild. Berlin/Hamburg.
- Herre, W. & M. Röhrs 1973 Haustiere, zoologisch gesehen. Fischer Stuttgart.
- Higham, C. 1970 An early centre of Bovine husbandry in Southeast Asia. Science, 172.
- Hubert, H. & Maus, M. 1899 Essai sur la nature et la function du sacrifice. Paris.
- Klein, R. G. 1974 Ice hunters of the Ukraine. Scientific American. June.
- Koppers, W. & L. Jungblut 1942-1945 The water buffalo and the Zebu in Central India. Anthropos, 37-40. Heft 4-6.
- Misra, V. N. 1971 Two late Mesolithic settlements in Rajasthan. A brief review of investigations. Journal of the University of Poona 35.
- Nath, B. 1973 Prehistoric fauna excavated from various sites in India with special reference to domestication. in Matolcsi, J. (ed.), Domestikations for schung und Geschichte der Haustiere. Kiadō, Budapest.
- Nobis, G. 1971 Vom Wildpferd zum Hauspferd. Böhlau Verlag. Köln/Wien.
- Olsen, S. J. 1960. Postcranial Skeletal characters of Bison and Bos. Papers of the Peabody Museum of Archaeology and Ethnology. Harvard University 35, 4.
- Paddavya, K. 1971 Radiocarbon dates of South Indian Neolithic culture. Antiquity 45.
- ——1974 The domestic animals in the early cultures of India. Journal of Indian History, 52 [Summary of R. Conrad, 1966 Die Haustiere in den frühen Kulturen Indiens].
- ——1975 The faunal background of the Neolithic culture in South India. Clason, A. T. (ed.), Archaeozoological Studies. Noth Holland Publ. Comp., Amsterdam.
- Prashad, B. 1936 Animal remains from Harappa. Memoirs of the Archaeological Survey of India, 51,

- Prater, S. H. 1971 The book of Indian animals. Bombay Natural History Society, Bombay.
- Reed, C. A. 1969 The pattern of animal domestication in the prehistoric Near East. in Ucko, P. J. & R. W. Dimbleby (ed.), The domestication and exploitation of plants and animals. Duckworth, London.
- Sankalia, H. D. 1974 Prehistory and Protohistory of India and Pakistan. Deccan College, Poona.
- ----S. B. Deo and Z. D. Ansari 1971 Excavations at Navdatoli, 1957-1959. Poona/Baroda.
- S. Ehrhardt 1960 From History to Prehistory at Nevasa (1954-\* 56). Poona.
- Sankalia, H. D., B. Subbarao & S. B. Deo 1958 Excavations at Mahtshwar and Navdateli, Poona—Baroda.
- Schaller, G. B. 1967 The deer and the tiger. A study of wild life in India. University of Chicago Press, Chicago.
- Schmid, E. 1972 Atlas of animal bones. Elsevier, Amsterdam/Brussel.
- Sewell, R. B. S. & B. S. Guha, 1931 Zoological remains. in Marshall, J., (ed.), Mohenjodaro and the Indus civilisation, Probsthain, London.
- Shah, D. R. 1971 Animal remains from the excavation at Navdatoli. in Sankalia, H. D., S. B. Deo & Z. D. Ansari, Excavations at Navdatoli, 1957-1959. Poona/Baroda.
- Simoons, F. J. & E. S. 1968 A ceremonial ex in India. The University of Wisconsin Press, Madison, Milwaukee, London.
- Singh, G. 1971 'The Indus Valley Culture. Seen in the context of postglacial climatic and ecological studies in North-West India. Archaeology and Physical Anthropology in Oceania, 6.
- Singh, H. 1956 Domestic animals. National Book Trust India, New Delhi.
- Solheim, W. G. 1972 An earlier Agricultural Revolution. Scientific American, 4.
- Thomas, P. K. 1974 Zoological Evidence from prehistoric India, with special reference to domestication. Bulletin of the Deccan College Research Institute, Poona.
- ——1975 Role of animals in the food economy of the Mesolithic culture of Western and Central India. in Clason, A. T. (ed.), Archaeozoological Studies. North-Holland Publ. Comp., Amsterdam.
- Wheeler, M. 1968 The Indus civilization. Cambridge University Press, Cambridge.
- Zeist, W. van 1959a Oecologische Aspecten van de Neolitische Revolutie. Wolters-Noordhoff, Groningen.
- Zeuner, F. E. 1963 A history of domesticated animals. Hutchinson, London.

65403





TABLES & HOURS

## TABLES

- Table 1. The approximate duration of the habitation phases of Kayatha, Navdatoli, Nevasa and Inamgaon.
- Table 2. A survey of the distribution of the bones collected from the ashmounds.
- Table 3. A survey of the distribution of the bones collected from Kayatha;
- Table 4. A survey of the distribution of the bones collected at Navdatoli.
- Table 5. A survey of the distribution of the bones collected at Nevasa during the campaign of 1959-1961.
- Table 6. A survey of the distribution of the bones of Nevasa, phase III (1955-1956).
- Table 7. A survey of the distribution of the bones of Nevasa, layer W (1955-56).
- Table 8. A survey of the distribution of the bones of Nevasa, phase IV (1955-1956).
- Table 9. A survey of the distribution of the bones of Nevasa, phase V (1955-1956).
- Table 10. A survey of the distribution of the bones of Nevasa, phase VI (1955-1956).
- Table 11. A survey of the distribution of bones of Nevasa, dating not certain.
- Table 12. A survey of the distribution of the bones collected from Inamgaon.
- Table 13. The species identified and the number of bones.
- Table 14. The height at the whither's of the Bovidae.
- Table 15. The measurement in mm. of bones studied. (39 pages)
- Table 16. The age at which pig (Sus sp.), sheep/goat (Ovis/Capra), and cattle (Bos sp.) were slaughtered, according to the cruption of the teeth in maxilla and mandibula,

| Site              | State         | Phase          | Culture/Period                                                 | Date                                                                 |
|-------------------|---------------|----------------|----------------------------------------------------------------|----------------------------------------------------------------------|
| Cayatha           | Rajashan      | 111<br>11<br>1 | Jorwe<br>Malwe<br>Harappa                                      | 1500-1300 B.C.<br>1700-1500 B.C.<br>2000-1800 B.C.                   |
| Navdatoli         | Madya Pradesh | 1-4            | Chalcolithic                                                   | 1600-1400 B.C.                                                       |
| Nevasa (1955-156) | Maharastra    | VI<br>V<br>III | Moslim-Haratha<br>Indo-Roman<br>Early Historic<br>Chalcolithic | 1400-1700 A.D.<br>100-300 A.D.<br>300 B.C 100 A.D.<br>1300-1000 B.C. |
| Nevasa (1959-*61) |               |                | Jorwe                                                          | 1300-1000 B.C.                                                       |
| Inamgaon          | Maharastra    | 111<br>11      | Late Jorwe<br>Early Jorwe<br>Malwe                             | 1100-800 B.C.<br>1300-1100 B.C.<br>1600-1300 B.C.                    |

Table 1. The approximate duration of the habitation phases of Kayatha, Navdatoli. Nevasa and Inamgaon.

| *ds sog                         |       |                                        | N         |                 | ٠     |              |           | 6       | ٠.      |        |      | *          | -      | ٠     |         |       |               |           | -          | +          | à.            | -                  | +       | + 10       |
|---------------------------------|-------|----------------------------------------|-----------|-----------------|-------|--------------|-----------|---------|---------|--------|------|------------|--------|-------|---------|-------|---------------|-----------|------------|------------|---------------|--------------------|---------|------------|
| KUPI                            |       |                                        |           |                 |       |              |           |         |         |        |      |            |        |       |         |       |               |           |            |            |               |                    |         |            |
| BivO\sags0                      |       |                                        | is        |                 |       | 6            |           |         |         |        | *    |            | 2      | *     |         |       |               | *         |            | +          | *             | *                  |         |            |
| •ds sog                         |       |                                        | -         |                 |       | . 6          | 9         | *       |         |        |      | 9          | *      |       |         |       |               |           | 04         | -          | ¥             | -                  | -       |            |
| HIRIT                           |       |                                        |           |                 |       |              |           |         |         |        |      |            |        |       |         |       |               |           |            |            |               |                    |         |            |
| *ds sou                         |       |                                        | m         | -               | a:    | 1.5          | -         | 6.0     | 48      | -2     | -    | m          | *      | 6     | +3      | 7     |               | (4)       | ei :       | 30         |               | -                  | m       |            |
| AUDIEAL                         |       |                                        |           |                 |       |              |           |         |         |        |      |            |        | 273   |         |       |               |           |            |            |               |                    |         |            |
| ide sog                         | *     | - P4                                   | -         | ti              |       |              |           | + -     | -       | -      | -    | -          | en     |       | *:      | -     |               | -         | -          | *          | *             | -                  | *.      |            |
| Bos/Cervus                      | -     |                                        | 5         | 7.              |       | *            | 20        |         | 2017    |        |      |            | 2      | ı.    | *       |       |               | *         | *          | 1          |               | -                  | *       | 2.51       |
| sixe sixA                       | 2     |                                        | 1912      | 1               |       |              |           | ī       | : 5     |        |      |            |        |       | . 13    |       |               | Ţ         |            |            |               | ,                  |         |            |
| KANNEKOLUR<br>Cervis duvanceli/ |       |                                        |           |                 |       |              |           |         |         |        |      |            |        |       |         |       |               |           |            |            |               |                    |         |            |
| ·ds sog                         | (+)-  |                                        | 0         | à               | *     | 1            | 9         | 4       |         |        |      | 7.0        | ¥      | 16    | 6       | •     |               |           | 73         |            | i             |                    |         |            |
| яцттин                          |       |                                        |           |                 |       |              |           |         |         |        |      |            |        |       |         |       |               |           |            |            |               |                    |         |            |
| -ds sou                         | 24    |                                        | 24        | -               |       | . 3          | 86        | 0       | 0.42    |        | -    | -04        | 8      | -     | 50      |       | +1            | _         | 0          | 4          | 24            | 24                 |         |            |
| xxxbail soslius                 |       |                                        |           |                 |       |              |           |         |         |        |      |            |        |       |         |       |               |           |            |            |               |                    |         |            |
| Fiscis indet:                   |       |                                        |           | *               | 1     | 1            | 13        | 1       | *       |        |      |            |        | e i   | 53      | ini   | rini          | Sr.       | 11         | 2          |               | 5                  |         | * 15       |
| Avis indet,                     | -     |                                        |           | 3               |       |              |           |         |         |        |      | -          |        | 7     | *       |       |               |           |            |            |               |                    |         |            |
| sivo\sage3                      | 6.    |                                        | m         | 124             |       | 2.3          | ni .      | 1. 40.0 | 507     |        | AIR  | 1          | 0      | 6     |         | (0)   |               | 8         |            |            |               | 4                  | 8       |            |
| x ds sog                        | 30)   | 300                                    | 4 00      | 0               |       | - :          | 0 0       | 00      | - 99    | 4 60   | in   | 4          | (0 4   | 0 4   | -       | 8     | -             |           | n          | -          | 4             | 3 3                | -       | nn.        |
| Door                            | (0)   | 0.7                                    |           | *               |       |              |           | •       | * (2.5  |        |      | 130        |        | +     | 8.3     | 8     |               | ٠         | 4          | *          |               |                    | 4       |            |
| *de eng                         | 17.   | ***                                    | 3         | 77              |       | 20           | •         |         | ***     |        |      |            |        | =     | *       | -     | *             | . *       | •          |            |               | ti                 | *       | . 8        |
| elimiliani gino                 |       |                                        | 2         |                 |       | 10           | N         | +       |         | 1 03   |      |            |        | 8     |         |       |               | *         | 4          |            | t             |                    | 6       | 1.5        |
| Rattus sp.                      | 4     |                                        |           | *               |       | ži.          | 1215      |         | -       |        |      |            |        | 1     |         | 9     |               |           |            |            |               |                    |         |            |
| . Jabni alinaboA                | *     |                                        |           |                 |       | 40           | 4         |         |         |        |      |            |        | 73    |         | G.    |               |           |            | ÷          |               | 2                  |         | 1          |
| Lepus sp.                       |       | -                                      |           |                 |       | +1           | •         | •       | •       |        | - 14 |            |        |       |         |       | ٠             |           | ā          | ÷          | 196           | ÷.                 |         |            |
| trench 2 <sup>xx</sup>          |       |                                        |           |                 |       |              |           |         |         |        |      |            |        |       |         |       |               |           |            |            |               |                    |         |            |
| Capra/Ovis                      | *     |                                        | 50        | /2              |       | *//          |           | *       | *       |        |      | S(*)       |        | -     |         |       |               | *         | •          |            | 4             | 4                  | à       | * *        |
| bos sp.                         | 10    | *                                      | -         |                 | T     | 2.5          | TS        |         | *       |        | -    | -          |        | 1     | *;      |       |               | *         |            |            | *             | t                  | *       |            |
| KODEKAL, trench 1               |       |                                        |           |                 |       |              |           |         |         |        |      |            |        |       |         |       |               |           |            |            |               |                    |         |            |
|                                 |       | -                                      |           |                 |       |              |           |         |         |        |      |            |        |       |         |       |               |           |            |            |               |                    |         |            |
|                                 |       | Maxilla + praemaxilla<br>Teerh maxilla |           |                 |       |              |           |         |         |        |      |            |        |       |         |       |               |           |            |            |               | 12                 |         |            |
|                                 |       | ema                                    |           | dia.            |       |              |           |         |         |        |      |            |        |       |         |       | 1             |           |            |            |               | BILB               |         |            |
|                                 |       | pra                                    |           | Libu            |       | 575          |           |         |         |        |      | 14         |        |       |         |       | ale           |           |            |            | FS3           | 1-1                |         | -          |
|                                 |       | + 4                                    | ila       | nand            |       | ophe         | 082       |         |         |        |      | rpus       |        |       |         |       | SHER          | mn        | lus        | SWE        | 1/20          | pag.               | -       |            |
|                                 | 11    | Maxilla + pra                          | Mandibula | Teeth mandibula | 納田    | Epistropheus | Vertebrae |         | Scapula | Radios |      | Metacarpus | V15    | TI.   | Patella | 10    | Centrotarsale | Calcaneum | Astragalus | Meralarsws | O.carpi/tarsi | Metacarpus/-tarsus | Phalanx | Phalanx II |
|                                 | Skul1 | Max                                    | Man       | Tee             | Atlas | Epi          | Ver       | Ribs    | Soa     | Dad    | Ulna | Met        | Pelvis | Femur | Pat     | Tibia | Cen           | Cal       | Ast        | Mer        | 0.0           | Mer                | Pha     | The Part   |
|                                 |       |                                        |           |                 |       |              |           |         |         |        |      |            |        |       |         |       |               |           |            |            |               |                    |         |            |

A survey of the distribution of the bones collected from the ash-mounds. Table 2.

<sup>()</sup> Identification is not certain.

<sup>\*</sup> Long bones of young animals probably belonging to Bos (nr. 351.2 , 797 2 not included).

<sup>\*\*</sup> One unidentified vertebrae, three unidentified rib fragments, seven unidentified fragments. Two vertebrae of a small animal, probably not a mammal.

<sup>\*\*\*</sup> Twelve unidentified fragments.

|         | Capra/Ovis         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *(*)                      |
|---------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
|         | *ds sog            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|         | cervus sp.         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4 .                       |
|         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| erdepie | Antilope cer       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2021                      |
|         | +ds sog            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|         | •ds sns            | NA CONTRACTOR AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | • •                       |
|         | ΔI                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|         | Capra/Ovia         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|         | +d= <del>sog</del> | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 04                        |
|         | Deer               | ed not bed no til domi to to the tilling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.7                       |
|         | *ds Eng            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|         | canin sp.          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|         | 111                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|         | Capra/Ovis         | and the enable of the energy of the enable of the energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (+ X)                     |
|         | -qa aod            | in in = + : Gの : m d : t : cu = = + = + + + d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 =                       |
|         | 111-11             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| wadest  | Antilope cery      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|         | Deer               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|         | ds sog             | - n n Su                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | L 3                       |
|         | sivO/mideD         | 6 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |
|         | 11                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|         | #iv0\engal         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Calla.                    |
|         | ds sog             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|         | Back!              | g g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |
|         |                    | a a a a a a a a a a a a a a a a a a a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |
|         |                    | Morecore/antler Manilla Teeth maxilla Findibula Teeth mandibula Actiss Epistopheus Vertebrae Epistopheus Vertebrae Epistopheus Vertebrae Epistopheus Vertebrae Epistopheus Vertebrae Epistopheus Vertebrae Fints Ulna Motacarpus Femur Patella Tibia Calcancum Astragalus Metatarsus Occapi/tarsi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Phalank II<br>Phalank III |
|         |                    | WALLE OF SECTION SECTI | 4.4                       |

Table 3. A survey of the distribution of the bones collected from Kayatha.

() Identification is not certain.

\* Gervus cf. duvancell.

| Homo sapiens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | * * * * * * * * * * * * * * * * * * *                                                                                                                                                      |
| Indet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | anod bakirow f .                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Account to the second to                                                                                                                                                                   |
| Pisces indet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | notified the state to the first total and                                                                                                                                                  |
| Reptilis indet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AAAA                                                                                                                                                                                       |
| capra/Ovis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 25.50                                                                                                                                                                                      |
| Ovis aries                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | war and a restrict a state of a state of                                                                                                                                                   |
| Capra hircus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                            |
| Gazella gazella                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n · · · · · · · · · · · · · · · · · · ·                                                                                                                                                    |
| Antilope cervicapra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                            |
| siladud suladud                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                            |
| -ds sog                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4458-684 44 .44 44                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00                                                                                                                                                                                         |
| Roselaphus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4 6                                                                                                                                                                                        |
| Deer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8                                                                                                                                                                                          |
| 3000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21                                                                                                                                                                                         |
| cf Axis porcinus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .8                                                                                                                                                                                         |
| sixe sixA to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | m                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                            |
| *ds sng                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .2.3                                                                                                                                                                                       |
| xx sunise sunp3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                            |
| The same of the sa |                                                                                                                                                                                            |
| Equus caballus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                            |
| *, Johni ailneboñ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                            |
| ds sulles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | · · · · · · · · · staubivibni S 30                                                                                                                                                         |
| an outself                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | skeletal parts                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | il il                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ib iib                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e/a<br>las and<br>and and<br>and and and and and and and and and and                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nx n                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Horncore/antles Maxilla Teeth maxilla Mandibula Teeth mandibula Vertebrae Scapula Humerus Radius Metacarpus Fenvis Fenvis Centrotarsale Calcaneum Astragalus Actagalus Actatarsus Helanx I |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | THE COLTER BEEN SATE                                                                                                                                                                       |

Table 4. A survey of the distribution of the bones collected at Navdatoli.

() Identification is not certain.

\* Rodent, larger sized than a rat.

\*X This bone probably does not belong to the site.

xxx Small animal, larger than middle sized rodent.

|                     |                |            | - 35                   |             |          |         |         | . 3    |          |        |       |       |          |           |           |                |         |         |         |
|---------------------|----------------|------------|------------------------|-------------|----------|---------|---------|--------|----------|--------|-------|-------|----------|-----------|-----------|----------------|---------|---------|---------|
| Pisces indet.       |                |            |                        |             |          |         |         |        |          |        |       |       |          |           |           |                |         |         |         |
| Simplified glass    | 4 +            |            |                        |             |          | 9.3     | 9       |        | 619      | *      | *     | 25    | *.       | 4 1 4     | ED#       |                | *       |         |         |
| Capea/Ouls          |                | W.         | 9 8                    |             |          |         |         |        | -        |        | 2     | Kit   |          | - 14      | 0.0       |                | (*)     |         |         |
| Capra hircus        | E4,51          |            | *                      |             | *        | 20      |         |        |          | *      |       | *     | *        | * 12      |           |                | (*)     | 10      |         |
| Antilope cervicapra | 0 .            | * 1        | N 8                    | 176         |          |         |         | 1      |          | 18     | 9     | 1     | *        |           |           | *              |         | -       | -       |
| Biladud buladud     | T .            |            |                        |             |          |         |         | 2//    |          | - 1    |       | -     | 40       | \$ 1.73   |           | *              |         | •       | •       |
| *ds sog             | 4 80           | 38         | 27.0                   | - 1         | 88       | 607     | 16.00   | 4 -    | - 14     |        | 20)   | Die s | 5 0      | 20        | m         |                | R       | Na Al   |         |
| Posetaphus          | -              | -          |                        |             | 4        |         |         | 41)    | 0.71     |        | 0     | *     |          | *         | 034       | *              | G#      | *       | *       |
| Tetracerus          | -              | *          | 3                      | *           | 9. 1     |         |         | *      | *        | 11.2   |       | *     | *        |           |           | . 5            |         | 20      |         |
| Deerxx              | 0.             |            |                        | *           | 200      | 152     | 1       | 200    | 100      |        | 1     | *     | * 1      | 6         |           |                |         |         |         |
| Cervus of unicolor  | 11.0           | 10.5       |                        |             | 100      |         | *       | -      | 5        |        |       | 4)    | 1        |           |           |                |         |         | •       |
| *ds sns             | 113            |            | 14 .                   |             |          |         | 4       |        | +        |        |       | *     |          | *10.5     | +. (1     |                |         | 1       |         |
| Ednua caballum      | 200            | -          |                        | *           |          |         | -       | ***    |          |        | - 4   | *     |          |           | (0)       |                | *       | 10      |         |
| Small carmivore     |                |            | - •                    | 0)          |          |         |         | *      | •        |        |       | *     |          | * 1       | * (3      | 2.5            |         | -       | •       |
| Large carnivore     |                |            | 10/19                  |             | *        |         | 2       | *      | *        | tot    | 24    | *     | *        | 100       | 17        |                |         | *       | *       |
| Canis/Cuon          | A              |            |                        | *           | *        | 100     | 8       |        |          | * 1 *  | *     | *     | *        |           | •         |                |         |         | •       |
| Modent B*           | 1 500          |            | - '                    | -           |          |         | •       | -      | •        |        |       |       |          | ****      |           |                |         | *.);    |         |
| Rattus sp.          | 110            |            | 1                      |             | *        |         | 114     |        | •        |        |       |       |          | *15       |           |                | - 4     | A       |         |
| Histrix indica      | 200            |            | - 1                    | 5040<br>-   | *        |         | 1 (4)   | 160    |          |        | 0.4   | (1)   | •        | *:5       | *         | * * * *        |         | -       |         |
|                     |                |            |                        |             |          |         |         |        |          |        |       |       |          |           |           | 9              |         |         |         |
|                     | er             |            | 10                     |             |          |         |         |        |          |        |       |       |          |           | 11        | Carsu          |         |         |         |
|                     | ant1           | 111a       | andibula               | ens         |          |         |         |        |          | 10     |       |       |          | 97        | etatarius | etacarpus/-tar |         |         |         |
|                     | ore/           | max        | bula                   | roph        | brae     | al.     | gn      | 47     | STATE OF | ar pr  |       |       | alcaneum | stragalus | etataraus | arp            | XUI     | anx.    | ишк     |
|                     | Horncore/antle | eeth maxil | Mandibula<br>Teerh man | pistropheus | ertebras | Scapula | lumerus | Radius | lina.    | Pelvis | Femur | Tibia | Calca    | Astra     | Meta      | Hetac          | Phalanx | Phalanx | Phalanx |

A survey of the distribution of the bones collected at Nevasa during the campaign of 1959-1961. Table 5.

() Identification is not certain.

\* Pandicota indica/dacmomys.

XX Are possibly not all of the same species.

3 Worked bones, I bone disc nom. diam. 31.5 mm. I bone peint, I antler die, I piece of ivory (waste piece).

|                                  | Horncore/antler | Maxilla | Teeth maxilla | Randibula<br>Teeth mandibula | Atlas | Epistropheus | Ribs | Scapula | Humerus | Radius | Metacarpus | Pelvis | Fenur | Tibia | Tibio-tarsus | Astragalus | Metatarsus | Phalanx I | Phalank II |
|----------------------------------|-----------------|---------|---------------|------------------------------|-------|--------------|------|---------|---------|--------|------------|--------|-------|-------|--------------|------------|------------|-----------|------------|
| Rodent A                         |                 |         |               | N +                          | ٠     | 3150         |      |         |         |        | 100        | 7:     |       |       |              |            |            | .:        |            |
| of Rattus                        |                 |         |               |                              | 4.    |              |      |         | 1.61    |        |            | *      | -     | 20    |              |            | 79         | 10        |            |
| Canis familiaris<br>Volpes sp.   | **              |         | 10.5          | ***                          | -     |              |      | 4       | 14      |        |            | 4 14   | 14    | V.    | *            |            | 100        | *         |            |
| Small carnivore                  | 127             |         |               |                              | 4     |              |      |         |         |        |            | 100    |       | 1     |              |            |            |           |            |
| Equus caballus                   |                 |         | 111           |                              | -     |              |      | -       | 4       | -      |            | 7      | *     |       |              |            |            |           |            |
| cervus sp.                       | -               |         |               |                              | 45    |              |      |         | 6       |        |            | 51     | 3     |       |              | * 1.9      |            |           |            |
| Cervus of unicolor<br>Boselaphus | n               | 41±     |               | 1/50                         |       |              |      |         |         |        |            | +      |       |       | (0)          | 4 (4       | G          |           |            |
| tragocamelus.                    | 1 30)           | . 17    | F :           | 7 17                         | -     | 010          | 8    | in.     | 4.23    | in a   |            | 10     | 279 1 | 7     |              | 2 24       | in :       |           |            |
| Antilope cervicapra              | 64              |         | 100           |                              |       |              |      |         |         |        |            |        |       |       |              |            |            |           |            |
| Capra/Ovis                       |                 |         |               |                              | 10 00 |              |      |         |         |        |            |        | -     |       |              | * **       |            | 4         |            |
| ailadud\sod                      | 301             |         |               |                              |       | -            |      | 124     | 10      |        |            | *      | ٠     |       | •            |            |            | 577       |            |

A survey of the distribution of the bones of Wevasu, phase III (1955-1956). () Identification is not certain. Table 6.

|                   | of Bactus | Canis familiaris. | Felis sp. | Equus caballus | Sus sp. | Cervus of unicolor | Bos sp.  | Antilope cervicapra | Capra/Ovis |
|-------------------|-----------|-------------------|-----------|----------------|---------|--------------------|----------|---------------------|------------|
| Horncore/antler   | 1925      | - 2               | 2         |                |         | 2                  | -2       | 2                   |            |
| Maxilla           |           |                   |           |                |         | . 5                | 6        | -                   | 6 3 6 .    |
| Teeth maxilla     | 100       | 20                |           | - 1            |         | ***                | .9       |                     | 3          |
| Mandibula         |           | i                 | i         | 1              | 1       |                    | 9        |                     | 6          |
| Teeth mandibula   | skeleton  |                   |           |                |         |                    | 9        | 14                  |            |
| Atlas             | 9         |                   | - 12      |                |         | +                  | 1×<br>2× | 247                 |            |
| Epistropheus      | 9         |                   |           | T              | -       | 1 20               | 2*       |                     | i<br>(1)   |
| Vertebrae         |           | 00                |           |                |         |                    | -1.      |                     | (1)        |
| Ribs              | -         | 10.0              |           |                |         |                    | 3 2      |                     |            |
|                   | 0.0       |                   |           |                |         |                    | 3        |                     | 14         |
| Scapula           | 100       | 16                |           |                |         |                    | 2        | 300                 | 14         |
| Humerus<br>Eadius | parts     |                   |           |                | 100     | -                  |          | 0)                  |            |
|                   | 4         | -                 |           | 8              |         |                    | 1        | (0)                 |            |
| Metacarpus        |           |                   |           | 14             |         | 1 6                | 100      |                     | 4          |
| Pelvis            | -         |                   |           |                |         |                    | 12       |                     | +          |
| Femur             |           | - 3               |           | - 21           | - 0     |                    | 3        |                     | 2          |
| Astragalus        |           |                   |           |                | -       |                    | 3        | -                   | 1          |
| Metatarsus        |           | *                 | -10       |                |         |                    | 3        |                     |            |
| Phalanx I         |           | - 8               |           | - 53           | 100     |                    | 3 3      |                     |            |
| Phalanx II        |           |                   |           |                |         |                    |          |                     | 3          |
| Phalanx III       |           |                   |           |                | 1 2     | 18                 | - 1      | - 57                | 2000       |

Table 7. A survey of the distribution of the bones of Nevasa, layer W (1955-1956).

<sup>()</sup> Identification is not certain.

<sup>\*</sup> Large piece, probably Bubalus.

|                 | Elephan maximus | Sus sp. | Cervus of unicolor | Bos sp. | Antilope cervicapes | Capra/Ovia | Callus gallus | Aves indet. | Reptilia indet. | Pisces indet. | Ruminant |
|-----------------|-----------------|---------|--------------------|---------|---------------------|------------|---------------|-------------|-----------------|---------------|----------|
|                 |                 |         |                    |         |                     | 30         |               |             |                 |               | 250 70   |
| Berncore/antler |                 | (4)     | 2                  |         | 2                   |            |               |             | *               | 200           |          |
| Sku11           |                 |         |                    |         |                     | 14         |               | 1           |                 |               | 45.41    |
| Maxilla:        | - 1             | î       | 20                 | 4       | 100                 | 3          |               |             |                 |               |          |
| Teeth maxilla   |                 |         |                    | 15      |                     | - 1        |               |             |                 | 1383          | 2×x      |
| Mandibula       |                 | - 14    |                    | 8       |                     | 11.        | - 12          |             | *               | (0)           | 4        |
| Teeth mandibula |                 | 1 (1)   |                    | 19      |                     | (3)        | *             | 15          | *11             |               | 1500     |
| At Eas          |                 |         |                    | 2       | - 51                | -          | - 0           |             | - 17            | - 17          |          |
| Vertebrae       |                 | 7.10    |                    | 4       |                     | -1         | - 1           |             | tortoise        |               | 13.      |
| Ribs            | - 4             | 72      |                    | 0)      | +                   | 1          | 1             | - 1         | 2               | *1            |          |
| Humerus         | 1.0             | 85      | 35                 | 2       | 7.0                 | - 3        |               |             |                 |               | 1        |
| Radius          | 114             |         | 9                  | - 1     | - 10                |            | 7             |             | 4               | #             |          |
| Metacarpu*      |                 | 33      | 1.3                | 1×      |                     |            |               | 74          | fragment        | fragment      | 1533     |
| Pelvis          |                 |         |                    |         |                     | 100        |               | - 87        | 100             | 70<br>10      |          |
| Femur           |                 |         |                    | 2 2     |                     | 200        | 4             |             | #               | 144           | The str  |
| Calcaneum       |                 | 1.7     | *                  | 2       | - 53                |            |               |             | -               | 1             |          |
| Metatarsus      |                 |         |                    | 1       |                     |            |               | 10          |                 |               | Best     |
| O.carpi/tarsi   |                 | 1 97    |                    | -       |                     | - 1        |               |             |                 |               |          |
| Phalanx I       |                 | 114     | -6                 | 4       | - 8                 |            | 1             | 1 02        |                 |               | -        |
| Phalans II      |                 |         |                    | 0)      |                     |            |               | THE.        |                 | - 2           |          |
| Phalane III     | 1.8             |         |                    | 97      |                     |            | 13.0          |             | 18              |               |          |

Table 8. A survey of the distribution of the bones of Nevasa, phase IV (1955-1956)

<sup>()</sup> Identification is not certain.

<sup>\*</sup> Large piece probably Bubalus.

XX Ruminant with the size of small Bos taurus.

| Fisces indet.       |                          | . ,                |           | *103           |       |      |         |         |      |            | 830    | emil   | 7.7          | 3 1          |           |            |           |         |         |
|---------------------|--------------------------|--------------------|-----------|----------------|-------|------|---------|---------|------|------------|--------|--------|--------------|--------------|-----------|------------|-----------|---------|---------|
| Reprilia inder.     | × *                      |                    |           | 100            |       | at a |         |         |      | •          | sau    | əwii   | 7.1          | 3            | 7         |            |           |         | 2       |
| Aves indet.         | 3 %                      |                    | va.       | *              | 3     |      |         |         | -1   | f          | 27/2   |        |              |              |           | 412        |           | 4       |         |
| Capra/Ovis          |                          | NM                 | 21        |                |       |      | -       |         |      |            |        |        | *            | 98           |           | →R:        | . +       | -       |         |
| Capra hirous        |                          | 4 1                |           | 23.33          |       |      | *       |         |      |            | *      | +1     | *            |              |           | 0.00       | •33       |         | *:      |
| Antilope cervicapra | 9 .                      | 4                  | 804       | *100           |       | 200  |         | 4/16    |      | 39,        | 00     |        |              | +            |           | **         | • 7.      | *       | •       |
| ·ds sog             | 2400                     | m 7                | -         | 4              | 8     | 8    | 5.5     | N e     |      | 20         | * .    | -      | (4)          | -            | - :       | N +        | -         | **      |         |
| Cervus of unicolor  |                          |                    | 100       | *              |       |      | *       | * 1     |      |            |        |        |              | *            | *         | *          |           | *       | •       |
| Deer                |                          | (*)                |           | *15            |       |      | *       |         |      |            | *      |        |              | *            |           | -          | *         | 1       |         |
| Cervus sp.          | ***                      | *                  | -         | 100            |       | *    | * '     |         |      | •          |        |        | *            | *            |           |            |           |         | •       |
| ·ds Eng             | 18.7                     | •                  |           | **             | • •   |      | *       |         |      | 1161       |        | 24     |              | *            |           | 400        | +         | *17     |         |
| ed Shipoceros       | -                        |                    |           |                |       |      | 0.      |         |      |            |        |        | *            | *            | *         | *2         |           | *20     | •       |
| *ds snnb3           |                          | 1.614              | -         |                |       | *    | ***     | •       | * *  |            |        |        | *            | *            | •         |            | •         | *()     |         |
| relis sp.           |                          |                    | -         |                |       |      | *       |         | • •  |            |        |        | •            |              | ,         |            | •         | •       |         |
| Canis familiarls    |                          | -                  |           |                |       | *    | **      |         | ***  |            |        | •      |              |              |           |            | •         |         |         |
| insbor Ilem?        |                          | *103               |           | Sta            | ¥.    |      | 50      |         |      | 0          |        |        | 6            | 100          |           | 50         |           | -       |         |
| eufleg lo           |                          |                    | H_        | 335            |       |      | ±       | 100     |      | 13         | 7      |        |              |              |           |            |           |         |         |
| A Juston Ifam?      | 100                      | *100               | -         |                |       |      |         |         |      |            |        |        | 6            |              | -         |            | -         |         | 4       |
| 'ds snda';          |                          | 200                |           |                |       | 9    | 100     |         |      |            |        |        |              |              |           |            |           |         |         |
|                     | 20                       |                    |           | Į.             |       |      |         |         |      |            |        |        |              | ė            |           |            |           |         |         |
|                     | amel                     | 1113               | -         | eeth mandibula |       |      |         |         |      | 2          |        |        | sns.         | rank         |           | 10         | 127       |         | =       |
|                     | ore/                     | lakilla            | bula      | -              | clas  |      | 114     | 80.     | on.  | arpu       | 100    |        | ribio-tarsus | Centrotarsal | Jalcaneum | galu       | detatarsu |         | nux I   |
|                     | Horncore/antler<br>Skull | Maxilla<br>Fabrica | Sandibula | Ceeth          | Verse | Ribs | Scapula | Sumerus | Ulna | Metacarpus | Pelvis | Tibia  | Tibic        | Centi        | Calca     | Astragalus | Meca      | Phalanx | Phalanx |
|                     | 100                      | 7                  | -         | 1              | -     | 200  | 100     | 77.3    |      | -          |        | No. of |              | 133          |           | 1          | 10        | -       |         |

Table 9. A survey of the distribution of the bones of Nevasa, phase V (1955-1936).

we Probably ! individual.

<sup>()</sup> Identification is not certain.

\* Rodent larger than a rat.

|                  | Small rodent | of Sattus | Sus sp. | Cervus of unicolor | Box sp. | Antilope cervicapt | Capra/Ovis | Callus gallus |
|------------------|--------------|-----------|---------|--------------------|---------|--------------------|------------|---------------|
| Horncore/antler  | 9            | -         | 41      | V                  |         | 2                  |            |               |
| Skull            | 12           | - 1       | - 7     |                    |         |                    | 2          |               |
| Teeth maxilla    |              | - 8       |         |                    | 2       |                    | 2          |               |
| Mandibula        | 1            | - 201     | 2       |                    | -       | 10                 | 2          |               |
| Teeth mandibula  | - 2          | 9.        |         | .90                | - 50    |                    | 1          | 3             |
| Ribs             | - 1          |           |         | +:                 | (1)     | *                  |            | i             |
| Humerus          |              |           |         |                    | *       |                    |            | 1             |
| Radius           | -            |           |         |                    |         | *                  |            | - 1           |
| Ulna             | 2.9          |           |         | +                  |         | 211                | 100        | - 1           |
| Tibio-tursus     |              | 1         |         |                    | 7.1     | *                  | 10         | - 1           |
| Tarso-metataraus |              | -         |         | -                  | 1       |                    |            | . 1           |
| Phalanx I        |              | -         | -       |                    | 1       | *                  |            |               |
|                  |              |           |         |                    |         |                    |            |               |

Table 10. A survey of the distribution of the bones of Nevasa, phase VI (1955-1956).

<sup>()</sup> Identification is not certain.

M Dacomys/Bandicota.

|                    | Rodent indet. | Rodent indet. | of Esttus | Rodent (small) indet | Rodent (large) indet | Canin familiaris | Felis sp. | Equus sp. | Sus sp. | Cervus sp. | Cervid (small) | Cervus of unicolor | Bos sp. xx | Antilope cervicapra | Capra/Ovis |
|--------------------|---------------|---------------|-----------|----------------------|----------------------|------------------|-----------|-----------|---------|------------|----------------|--------------------|------------|---------------------|------------|
| Horncore/antler    | 12            |               | 1         |                      | +0                   |                  | 74        |           |         | 1          | *              | 1                  |            | 2                   |            |
| Skull              | 100           | - 1           | - 1       | *                    | ***                  | 17.              |           |           |         |            |                | 10.00              | 2          | 11.0                | - 6        |
| Maxilla            |               |               |           | +                    | *                    |                  |           | 1         |         | *          | *              | 100                | 15         |                     | 2          |
| Teeth maxilla      |               |               |           | *                    | *                    |                  | - 1       | 2         | 2       |            | ***            | 3                  | 100)       |                     | 8          |
| Mandibula          |               |               |           |                      | *                    |                  |           |           | -       |            | *              |                    | 2001       | i.                  | 5          |
| Teeth mandibula    |               |               |           |                      |                      |                  |           |           | - 1     |            | *              |                    |            |                     | - 3        |
| Atlas              |               |               |           |                      | *                    |                  |           | 1         |         |            | - 1            |                    | 1          | 100                 |            |
| Epistropheus       |               | 7.4           |           | 6                    | 5                    | - 0              | 2.63      |           | *       |            |                |                    | 0          |                     |            |
| Ribs               |               | 17            |           | skeleton             | skeleton             | *                | 7.        |           |         |            | - 5            |                    | - 4        |                     |            |
| Scapula            | 7.6           |               |           | -                    | - 4                  | - *              |           |           | *       | -          | - 3            | - 1                | 2          |                     | 1          |
| Humerus            | (5.4)         |               | 15        | - 1                  | (4)                  | -                |           |           |         |            |                |                    | 10)        | 0)                  | -          |
| Radius             | (0)           | 1.4           |           | -                    | -                    | *                | 13        |           |         | 112        | - 8            |                    | 2          | 0)                  |            |
| Metacarpus         | 1.5           |               | - 3       | 90                   | of                   |                  |           |           |         |            |                | - 0                | 1          |                     | *          |
| Femur              | - 1           |               |           |                      |                      | *                |           |           | 1       | - 6        | - 2            | -                  | 1          |                     |            |
| Tibia              | 1             |               |           | parts                | parts                | */               |           |           |         |            | 1              |                    | - 1        | 1                   | -          |
| Astragalus         |               |               |           | 24                   | 4                    | **               | Te        | 197       | 33      | 1 23       | (8)            |                    | 1          |                     |            |
| Metatarsus         | 1             |               |           |                      |                      | 1                |           | 2         | 1       | 1100       | 1 3            |                    | 1          | 1756                |            |
| Metacarpus/-tarsus |               | 13            | 1         | 13                   |                      | _ 10%            | 1         | 17.0      | 65      | - 3        |                |                    |            |                     |            |

Table II. A survey of the distribution of the bones of Nevasa, dating not certain.

() Identification is not certain.

<sup>\*</sup> of Rhizomys sumatrensis.

<sup>\*\*</sup> Skull fragment, mandibula, 3 teeth of 1 very young individual.

|                           | Canis familiarie | Equus caballus | Hhipoceros* | Sus sp. | Axis axis | Cervus unicolor | Tetracerus<br>quadricornis | tragocamelus | Bos sp. | Antilope cervicapra | Capra/Ovis | No. | Reptilia indet. | Mollusca indet. |
|---------------------------|------------------|----------------|-------------|---------|-----------|-----------------|----------------------------|--------------|---------|---------------------|------------|-----|-----------------|-----------------|
| Horncore/antler           | - 7              | 1              | -           | 200     | 140       | -               | 2                          |              | 80)     | 27                  | 200        |     | 1               | 0               |
| Skull                     | 2                | 1.5            |             |         |           |                 |                            | 100          | 40)     | +1                  | 2          |     |                 |                 |
| Maxilla                   |                  |                |             | *       |           |                 | 5 19                       | 1            | 780)    | - 5                 | 1          |     |                 | 31              |
| Teeth maxilla             |                  | - 1            |             | *       | 2.2       | 11.4            | 114                        |              | 280)    | 2                   | 20         |     |                 | 15              |
| Mandibula                 | 2                |                | . +         |         | 0)        | 13              | 3 5                        | 7            | 50      |                     | 2          |     |                 | species         |
| Teeth mandibula           |                  | -              | - 4         |         |           |                 |                            |              | 1       | - 3                 | -          |     |                 | 0               |
| Atlas                     |                  |                |             | *       | - 1       |                 | 1 5%                       |              | 9       |                     | 2          |     |                 | D.              |
| Epistropheus              | -6               |                |             | *       |           |                 |                            | *            | (54)    |                     | 4          |     |                 | 100             |
| Vertebrae                 |                  |                | 7           | 0)      |           | -               |                            |              | (33)    |                     | - 1        |     | 100             |                 |
| Ribs                      |                  |                | 0)          |         |           |                 |                            | 100          | 150)    |                     | 7          |     | -11             | species; smail, |
| Scapula                   | - 4              | 17             |             |         |           |                 |                            |              | 19      |                     | 16         |     | 99              | 3               |
| Humerus                   | 2                |                |             |         |           |                 |                            |              | 14      |                     | 3          |     | 0               | iit.            |
| Radius                    |                  |                | -           |         |           |                 |                            |              | 20)     |                     | î          |     | tortoise        | 15              |
| Ulna                      |                  |                |             |         | *         |                 | 5 50                       | 1            | 39      |                     | 10         |     | a to            | 9.              |
| Metacarpus                |                  |                | 14          | 2       |           |                 |                            |              | 120     |                     |            |     |                 | 9               |
| Pelvis                    |                  |                | 3           |         |           |                 |                            | - 1          | 90      |                     | 50)        |     | 10              | di-             |
| Femur                     |                  |                | - 4         |         | - 15      |                 |                            | - 1          | 2       | me                  | 200        |     | un.             | Bivalves, 2     |
| Patella                   |                  |                |             | 1 15    |           |                 |                            |              | 17      |                     | 100        |     | n n             | 10              |
| Tibia                     |                  |                |             |         |           |                 |                            | - i          | . 5     |                     |            |     | fragments       | 9               |
| Centrotarsale             |                  |                |             |         |           |                 |                            |              | 29      |                     | 16         |     | 署               | 2               |
| Calcaneum                 |                  |                |             |         | - 3       |                 |                            |              | 46      |                     | - 4        |     | 10-0            | 200             |
| Astragalus                |                  |                |             |         |           |                 | . 0                        | 2            |         |                     | 21         |     | 2               | in              |
| Metatarsus                |                  |                |             |         |           |                 |                            |              | -       | - 6                 | 0 .        |     | 1.0             |                 |
| O.carpi/tarsi             |                  |                |             |         |           |                 |                            |              | 18      |                     |            |     |                 |                 |
| Metacarpus/-tarsus        |                  |                | i           |         |           |                 | 6) .                       | 6            |         |                     | . 11       |     |                 | -               |
| Phalanx I                 | -                |                | i           | 10      |           |                 |                            |              |         |                     |            |     | 10              |                 |
| Phalanx II<br>Phalanx III | -                | -              |             |         | .30.      |                 |                            |              | 30      | 0.0                 | - 14       |     |                 |                 |
| Phalanx III               |                  |                |             | 100     |           |                 |                            |              |         |                     |            |     |                 |                 |

Table 12. A survey of the distribution of the bones collected from Inamgson.

<sup>()</sup> Identification is not certain. Some bones of Homo sapiens.

<sup>\*</sup> Fragment of heavy long bone from Rhinoceros or Elaphus.

|   |     |      | Shineceres unicornis L |        |     |                                       | quadricornis Blainville  Pallas domesticus L |
|---|-----|------|------------------------|--------|-----|---------------------------------------|----------------------------------------------|
|   | *** | 1.47 |                        | 101    | 1   |                                       |                                              |
|   |     |      |                        |        | +1. |                                       |                                              |
|   | 1   | 10.1 |                        |        |     | . 14                                  |                                              |
| - |     |      | -                      |        |     |                                       |                                              |
|   |     |      |                        | - + 12 | 73  | 202                                   | .45400008                                    |
|   |     |      | -                      |        | 67  | . 23 .                                | 3                                            |
| 4 |     |      | 8                      | 2      | 2 1 | = = = = = = = = = = = = = = = = = = = | 225 570<br>225 570<br>11 270<br>2            |
|   |     |      |                        |        | 7   | 24                                    |                                              |
|   | -   |      |                        | 84     | 74  | * 64                                  | 2 . 5 5                                      |
|   | 9   | -    |                        | 2.53   | ~   | ×84                                   |                                              |
|   |     |      | -                      |        |     | +-                                    | + + 60 + 60 + 410                            |

m

| *                                                       |                                                       | - 5-5-<br>1+5-4-                                 |                                                                                                  |          |        |         | Seeavelt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------|----------|--------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                         | 74                                                    |                                                  |                                                                                                  |          |        | *       | Yedleyed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                         |                                                       |                                                  | n .                                                                                              |          |        | *       | IV seaveN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 24                                                      | 0.00                                                  | 0.4                                              |                                                                                                  | 4        | 0      |         | V saavsk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                         |                                                       |                                                  | N -                                                                                              | -        | -      |         | VI BERVSK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| -                                                       |                                                       | *                                                |                                                                                                  |          |        |         | W memunic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                         | 10                                                    | 4 2                                              | 18 192                                                                                           |          | - N.   |         | Wayacha IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                         |                                                       | 17 1                                             |                                                                                                  | 66       |        | +       | nceymenī                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| *                                                       | -                                                     |                                                  | 1000                                                                                             | 110      |        |         | (19, +55') seeval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4                                                       | *                                                     |                                                  | N .                                                                                              |          |        | 2 3     | (95, '55') III asavs#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                         | ¥ī.                                                   | ×~ +                                             | 140 +0                                                                                           | 000      | -      | e 19    | Motaboak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 14                                                      | *                                                     |                                                  | 0.00                                                                                             |          |        | 1.0     | III adiakaM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                         | *:                                                    |                                                  |                                                                                                  | 5.5      | 1      | 8 0     | III/II adsayaM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2                                                       | *                                                     | 11203                                            | 5.5                                                                                              | 107      |        |         | Nayatha II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 13                                                      | 1                                                     |                                                  |                                                                                                  |          |        |         | Kayatha 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                         |                                                       | F 4                                              | * *                                                                                              | (0.      |        | e: ( e) | rdny                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                         |                                                       | ****                                             |                                                                                                  |          |        |         | daail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                         |                                                       |                                                  |                                                                                                  |          |        |         | Budikal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                         |                                                       | 1102.0                                           |                                                                                                  | 000      |        |         | kannekolut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -                                                       | 4                                                     | \$11.6<br>\$1.54                                 | - 100                                                                                            |          |        |         | Mallur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3                                                       | - A                                                   | n) NI                                            |                                                                                                  |          | 4      |         | Kodekal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                         |                                                       |                                                  |                                                                                                  |          |        |         | nes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                         |                                                       |                                                  | 7                                                                                                |          |        |         | po po                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                         |                                                       |                                                  | 77                                                                                               |          |        |         | 0 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                         |                                                       |                                                  |                                                                                                  |          |        |         | number of bones                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1405                                                    |                                                       |                                                  | 1.                                                                                               |          |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 000                                                     | Cerr                                                  |                                                  | 2                                                                                                |          |        |         | The state of the s |
| HII                                                     | 100                                                   |                                                  | Tome                                                                                             |          |        |         | p o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| grice                                                   | pui                                                   |                                                  |                                                                                                  |          |        |         | 11%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 18                                                      | rr i k                                                |                                                  | ing an                                                                                           |          |        |         | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| to ct                                                   | I V                                                   | 7                                                | 11us<br>gal                                                                                      |          |        |         | C. e.s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Legar                                                   | 90                                                    | *                                                | 315                                                                                              |          |        |         | ad a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                         | de                                                    | Ract<br>et.                                      | 3 1                                                                                              |          |        |         | The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| dae                                                     | Por                                                   | er.                                              | 9 1 0                                                                                            | Y.       | 122    | 5       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Leporidae<br>Indian Hare - Lepus of. nigricollis Cuvier | Hystricidae<br>Indian Porcupios - Hystrix indica Kerr | Maridae<br>Rat - of, Rattus sp.<br>Rodent indet. | AVES Galanae Collanae Domestic Fowl - Gallus gallus domesticus Wild Fowl - Gallus gallus L. Avia | REPTILIA | PISCES | Piscin  | Table 13. The species identified and the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3.5                                                     | Hy                                                    | 事品百                                              | 8 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                                          | RE       | =      | Z 0E    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                         |                                                       |                                                  |                                                                                                  |          |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

() Identification is not certain.

|                                                               | ę.   | ď          | mean |
|---------------------------------------------------------------|------|------------|------|
|                                                               |      |            | 170  |
| Banteng - Bos banteng                                         | 170  | 195        | 182  |
| Gaur - Bos gaurus<br>Wild Buffalo - Bubalus bubalis           |      | 170        |      |
|                                                               |      | 130-140    | 135  |
| Nilgai - Boselaphus tragocamelus                              | - 0  | 65         | *1   |
| Fourhorned Antilope - Tetracerus quadifectus                  |      | 65         | 80   |
| Chinkara - Gazelle garelle<br>Blackbuck - Antilope cervicapra |      | 3.50       |      |
|                                                               |      | 150        | 140  |
| Sambar - Cervus unicolor                                      |      | 135        |      |
| Swamp Deer - Cervus duvaucell                                 |      | market and | 61   |
| Hog Deer - Axis porcinus<br>Muntjak - Muntiacus muntjak       | 11 4 | 50-75      |      |

Table 14. The height at the whithers of the Bovidae mentioned in this paper (after Prater, 1971) in cm.

| IVI         | 2711       | 220.0<br>74.5<br>66.5<br>                                                                                                                    |                                              |                                |                                                        |                                                                                                             |
|-------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
|             |            | 220.0<br>73.5<br>67.5                                                                                                                        |                                              |                                |                                                        |                                                                                                             |
| NVT         | 12850      | 213.0<br>72.0<br>65.0<br>90.3                                                                                                                |                                              |                                |                                                        |                                                                                                             |
| IVI         | 10792      | 210.0<br>68.0<br>67.2<br>67.2<br>91.5                                                                                                        | NVS<br>III<br>2872                           | 49.0%<br>29.0%<br>59.3         |                                                        |                                                                                                             |
| IVI         | 1723       | 188.0<br>64.0<br>51.0<br>027.0<br>79.6                                                                                                       |                                              |                                |                                                        |                                                                                                             |
| NVT         | 3577       | 175.0<br>56.5<br>49.5<br>87.6                                                                                                                | 3395                                         | 26.0<br>38.5<br>68.8<br>8b     |                                                        |                                                                                                             |
| NVT         | 5630       | 173.0<br>58.0<br>50.0<br>87.0<br>86.2                                                                                                        |                                              |                                |                                                        |                                                                                                             |
| IVI         | 27         | 168.0<br>56.5<br>52.0<br>90.0<br>92.0                                                                                                        | NVS<br>W<br>4634                             | 820.00                         |                                                        |                                                                                                             |
| IVI         | 10787      | 56.0<br>56.0<br>115.0<br>020.0<br>89.3                                                                                                       |                                              |                                |                                                        |                                                                                                             |
| IVN         | 1727       | 51.0<br>51.0<br>44.0                                                                                                                         | MNI<br>III<br>?                              | 0.52<br>0.03<br>0.03<br>0.03   |                                                        |                                                                                                             |
| NVT         | 3988       | 43.5<br>43.5<br>82.0                                                                                                                         | HH H                                         | 91.0                           |                                                        | 55/56<br>NVS<br>III<br>6335<br>98.0<br>110.0                                                                |
| IVN         | 10967      | 142.0<br>46.5<br>41.5                                                                                                                        | INN<br>D to                                  | 36.5                           |                                                        |                                                                                                             |
| NVT         | 196        | 130.0<br>46.5<br>37.0<br>86.0<br>104.0<br>79.5                                                                                               |                                              |                                |                                                        | NVS<br>IV<br>4268<br>(75.0)<br>(64.0)                                                                       |
| NVT         | 781        | 126.0<br>42.0<br>36.0<br>90.0<br>100.0<br>85.7                                                                                               | NVS<br>111<br>4395                           | 86.00                          |                                                        | NVS<br>11<br>6669<br>60.09                                                                                  |
| IVN         | Bri        | 125.0<br>39.5<br>38.5                                                                                                                        | NVS<br>III<br>4395                           | 83.2                           |                                                        |                                                                                                             |
| NVT         | 2197       | 121.0<br>41.0<br>33.5<br>72.0<br>81.8                                                                                                        | NVS<br>111<br>3226                           | 93.9                           |                                                        | 3108<br>3108<br>3108                                                                                        |
| NVT         | 1096       | 36.0<br>36.0<br>31.0<br>80.0<br>86.1                                                                                                         | NVS<br>III<br>2564                           | 38.0                           |                                                        | 90 90                                                                                                       |
|             |            | Circumference at the base<br>Maximum diameter<br>Minimum diameter<br>Length of the inter curve<br>Length of the outer curve<br>Index 3 x 100 | NVT NVS 1111 111 111 111 111 111 111 111 111 | 62.5 59.0<br>65.3 52.0<br>88.2 | 50s<br>272.0<br>93.0<br>71.5<br>26.0<br>76.9           | Atlas<br>Anterior-posterior length<br>Width posterior articular surface<br>Width anterior articular surface |
| Bos/Bubalus | Horn-cores | 1. Circumference at<br>2. Maximum diameter<br>3. Minimum diameter<br>4. Length of the in<br>5. Length of the ou<br>6. Index 3 x 100          |                                              | 969                            | 1. 272.0<br>22. 71.5<br>3. 71.5<br>5. 336.0<br>6. 76.9 | Atlas<br>Anterior-posterior length<br>Width posterior articular<br>Width anterior articular                 |

xx Top is missing.

| MM 11  | 8            | 40.0                                                                                                        |                             | NVT   | 25              | 9/4           |                  | 20.5   | 22.0     |           |         | NVS         | 2650      | 67.0 | 27.0 | 19.5 |        |
|--------|--------------|-------------------------------------------------------------------------------------------------------------|-----------------------------|-------|-----------------|---------------|------------------|--------|----------|-----------|---------|-------------|-----------|------|------|------|--------|
|        |              |                                                                                                             |                             | NVT   | 1602            |               | 25.5             | 21.0   | 28.5     |           |         | NVS         | 2747      | 78.5 | 24.0 | 19.0 |        |
| MEI II | 006          | 91.5                                                                                                        |                             | NVT   | 1238            |               | 2 46             | 19.0   |          | ( ( 0 ) ( |         | NVS         | 3163      | 07.0 | 20.5 | 22.5 | 4554   |
|        | 9            |                                                                                                             |                             | NVT   | 7438            | 87.0          | 33.5             | 23.5   | 29.5     | 31.5      |         | NVS         | 6905      | 33.5 | 62.0 | 25.0 | 2000   |
| MI I   | 00           | 34.5                                                                                                        |                             | NVT   | 2438            | 85.0          | (0)              | 19.30  | 29.0     | 31.0      |         | NVS         |           | _    |      |      |        |
|        | 8            | 35.5                                                                                                        |                             |       |                 | 80.5          |                  |        |          |           |         | NVS         |           |      |      |      |        |
|        | 1            | 2.0                                                                                                         |                             |       |                 | 80.0          |                  |        |          |           |         | NVS         |           |      |      |      |        |
| K VS   | 53           | 55.0                                                                                                        |                             |       | -               | 79.0. 8       |                  |        |          |           |         | NVS<br>1111 |           |      |      |      |        |
| 24     | 29           | 24.8                                                                                                        |                             |       |                 | 78.5 76       |                  |        | 3        |           |         | NVS         |           |      |      |      |        |
|        |              |                                                                                                             |                             |       |                 |               |                  |        |          |           |         |             |           |      |      |      |        |
| NVS    | 4915         | 87.0<br>42.0<br>57.0                                                                                        |                             | IAN   | 11061           | 27.0          | 7.0              |        | 29.0     | 200       | 40.0    | NVS         | 8312      |      |      | 19.5 |        |
|        |              |                                                                                                             |                             | NOT   | 6140            | 75.0          |                  | 21.5   | 25.0     | 27.0      | 73.0    | NVS         | 7683      |      |      | 17.0 |        |
| 夏日     | AI           | 43.0                                                                                                        |                             | MAY   | 445             | 74.0          |                  | 18.5   | 24.0     | 25.0      | 18.0    | NVS         | 8295      |      | 55.0 |      |        |
|        |              |                                                                                                             |                             | NOT.  | 11247           | 0.00          |                  |        | 23.0     | 25.0      | 20.0    | NVS         | 8293      | ě    | 52.0 | • •  | *      |
| TDQ1   | 637          | 66.39                                                                                                       |                             | NO.   | 200             | . 0           | 000              | 22.0   | 20.5     | 26.0      | 22.5    | NVS         | 7933      | -    | 50.0 |      |        |
|        |              |                                                                                                             |                             | NO.   | 4325            | 125.0         | 46.5             | 21.0   | 25.5     | 27.5      | 23.0    |             |           |      |      |      |        |
|        |              | cess                                                                                                        |                             | - ton |                 | 1             |                  | 20.0   |          |           | 20.5    |             | 2510      |      |      |      | 27.5   |
|        |              | lar pro                                                                                                     |                             |       |                 |               |                  |        |          |           |         | NVT         | 8753      |      | tel  |      | 25.0   |
|        |              | articu                                                                                                      | INM<br>III<br>81 00<br>41.0 |       |                 | -             | row              |        |          |           |         | NVT         | 7724      |      |      |      | 25.0   |
|        |              | Maximum width anterior articular process<br>Maximum height anterior articular process<br>Maximum width dens | C1 (3) B 29.0 4             |       |                 | the tooth row | the premolar row |        |          |           |         | NVT         |           |      |      | * *  | 25.5 2 |
|        |              | th an                                                                                                       |                             |       |                 | he to         | the pr           |        |          |           |         | NVT         | 781 11245 |      |      |      |        |
|        | 808          | wid<br>wid                                                                                                  | INH<br>III<br>81 Ø<br>80.0  |       | lult.           | of t          | # to             | X)-,   | 7 × 5    | Car.      | _       | ×           | 7         |      |      |      | 22.5   |
|        | Epistropheus | Maximum width ante<br>Maximum height ant<br>Maximum width dens                                              |                             |       | Maxilla adult - | Length of     | Length of        | Length | Length M | Width M.  | Width M |             |           |      |      |      |        |
|        | Epis         |                                                                                                             |                             |       | Maxi            | 1. 1          |                  | 4. 1   |          |           | 9       |             |           | +    | i.i  | 4.0  | .0     |

| 4                    | NV6 IV71 IV                                   |            |                 |                     |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------|-----------------|---------------------|
| 20.0                 |                                                                                                                                   | JAN        | -               | 32.0                |
| 22.0                 | NVS W W Z626, 2526, 20.0                                                                                                          | IVE        | 324             | 29.0                |
| 28.0                 | NVS 44 1178 1178 1178 1170 1170 1170 1170 1170                                                                                    | NVT        | 1721            | 80.0                |
| 29.0                 | NVS W W W W W W W W W W W W W W W W W W W                                                                                         | IVN        | 203             | 27.5<br>12.5        |
| 18.0                 | NV 8 11 26 17 18 8 8 17 18 18 18 18 18 18 18 18 18 18 18 18 18                                                                    | NAT        | 2597            | 29.5                |
| 20.0                 | MVS W W W W W W W W W W W W W W W W W W W                                                                                         | TAN        | 3510            | 65.0<br>28.5<br>9.5 |
| 32.0                 | MVS W 25.0 94.0 94.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19                                                                        | IVN        | 1139            | 25.0<br>12.0        |
| 21.0<br>30.5<br>22.5 |                                                                                                                                   | IWI        | 10790           | 28.0                |
| 63 K                 | 23.0                                                                                                                              | NVI        | 1610            | 22.5                |
| \$5.4 (4)            |                                                                                                                                   |            |                 |                     |
|                      | NVS<br>1111<br>2504<br>30.0<br>20.0                                                                                               | 50         | (0 Y            | 26.0                |
| * * * *              | NVS<br>1111<br>25335<br>30.0<br>22.0<br>20.0<br>20.0<br>20.0                                                                      |            |                 |                     |
| * >1*                | Manage Materials                                                                                                                  | KTN 111/11 | 80 4            | 3.0                 |
|                      | NVS<br>IIII 3493<br>26.0<br>26.0<br>27.0<br>24.0                                                                                  |            |                 |                     |
| * *                  | NVS<br>1111<br>4229<br>25.5<br>29.0<br>21.0<br>29.0<br>21.0<br>29.0<br>22.5<br>25.5<br>25.5<br>25.5<br>25.5<br>25.5<br>25.5<br>25 | Ē=         | B 0.2           | 29.5                |
| 20.0                 | . NVS<br>1111<br>4408<br>                                                                                                         |            |                 | 90                  |
| 28.5                 | NVS<br>1111<br>4393<br>24.0<br>24.0<br>V<br>V<br>V<br>V<br>4636<br>22.0<br>22.0                                                   |            |                 | the milk-molar row  |
| 26.5                 | NAN 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                           |            |                 | e milky             |
| 22.0                 | NVS<br>1111<br>4024<br>90.00<br>26.0<br>26.0<br>20.00<br>20.00<br>19.0<br>11V<br>5538<br>27.0<br>22.5<br>22.5<br>22.5             |            | . dut.          |                     |
|                      |                                                                                                                                   |            | Mandibula, juv. | Length of Length py |
| × 8 5                | ಗಳಗಳಿಗಳಿಗಳು ತಿಗೆಹೆಕ                                                                                                               |            | Ma              |                     |

|                                             |                                            | * = 6                   | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------------------------|--------------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                             |                                            | 1 - A                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| NVS<br>17.5                                 |                                            | KTH III-III             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                             |                                            | KTH<br>11-111<br>A G) A | 35.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| NVS<br>1V<br>3174<br>32.5                   |                                            | KTH<br>11-111<br>A Ø    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                             |                                            | KT28<br>11-111<br>A 60  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| NVS<br>111<br>3814<br>36.0                  |                                            |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| MS 11188 11198 1110                         |                                            | KTH A                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| NVS<br>1H1<br>763<br>32.0<br>11.3           |                                            | En 4                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3823<br>30.0<br>12.0                        |                                            | E = 52                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3164<br>1111<br>3164<br>11.0                |                                            | 百 ×                     | 14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55<br>14.55 |
| NVS<br>1111<br>767<br>39.0<br>32.0          |                                            | M H A                   | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 8966<br>111<br>5966<br>13.5<br>11.5         |                                            | ATH OF A                | 13.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| NVS<br>111<br>6339<br>. 28.5<br>17.5        |                                            |                         | hysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| NVS<br>111<br>4953<br>25.5<br>16.5          |                                            |                         | ar sym                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| NVS<br>111<br>4950<br>25.5<br>15.5          |                                            |                         | munidbular                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NVS<br>111<br>6089<br>64.0<br>25.0<br>14.5  |                                            |                         | 9 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 8308<br>63.0<br>25.0<br>14.0                |                                            |                         | us behind<br>us behind<br>us behind                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| NVE<br>1111<br>1277<br>10.5<br>10.5<br>13.5 |                                            |                         | al ramus<br>cal ramus<br>cov<br>cov<br>cov<br>r row                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 89.0<br>59.0<br>59.0<br>31.5                | 111<br>111<br>12 G<br>63.5<br>34.5<br>11.5 |                         | Depth of the horizontal ramus behind Depth of the horizontal ramus behind Length of the horizontal ramus behind Length of the moiar row Length of the moiar row Length M Midth M M Midth M Midth M M M M M M M M M M M M M M M M M M M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NVS<br>1111<br>7739<br>36.3<br>36.3<br>12.0 | 1111<br>1111<br>10.00<br>30.00             |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                             |                                            | Mandibola               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                             | 244                                        | ž                       | -44444444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| IVV           | 327   | *    | 1 1  |      |      |      | 25.0 | 12.0  | 28.0 | 12.0  | 300   | 1955 | NVT  | 11063 | -    | •     |     |      |       | 50.0 | ٠    | ,    |       | •     |      |
|---------------|-------|------|------|------|------|------|------|-------|------|-------|-------|------|------|-------|------|-------|-----|------|-------|------|------|------|-------|-------|------|
| NVT           | 8465  |      |      |      |      | (4)  | 24.5 | 13.5  | 26.0 | 12.0  | 4     |      | NVT  | -     | 200  |       |     |      |       | 50.5 |      |      | ٠     | •     |      |
| NVT           | 4     |      |      |      |      |      | 24.0 | 15.5  | 25.5 | 15.0  | i     | T.   | NVT  | 386   |      | 200   |     |      | V (e  | 47.0 | 17.5 | 18.5 | 50.07 | 13.3  |      |
| NAT           | 908   | *    |      |      |      | ٠    | 9    | 04.50 | 25.0 | 6.9   |       |      | NVT  | 1682  |      |       |     | 102  | 1     | 0.74 |      |      |       |       |      |
| TAN           |       |      |      |      |      |      |      |       |      |       |       |      | NVT  |       |      | 100   |     |      |       |      |      |      |       |       |      |
| 10.00         |       |      |      |      |      |      |      |       |      |       |       |      | 1450 |       |      |       |     |      |       | 377  |      |      |       |       |      |
| IVN           | 10968 | •    |      |      | 84.0 |      | 07.5 | 0     | 0.62 | 000   | 6/-2  | 0.90 | NVT  | 254   |      |       |     |      |       | 45.5 | 4.   | 41   | •     |       |      |
| IVA           | 6682  | * (  | 76.5 |      | 87.0 |      | 24.5 | 12.5  | 23.0 | 13.0  | 21.5  | 13.0 | NAT  | 69601 |      | \$20¢ |     |      | 93.0  |      |      | ٠    |       | 60.0  | 17.0 |
| NVT           | 1606  | . 13 |      |      |      |      | 24.0 | 0.4.0 | 20.3 | 13.3  |       |      | HVT  | 325   |      |       | 0.4 |      | 87.5  |      |      |      | *.10  |       | 5%   |
| NA            | 786   | 5 07 |      |      | 73.0 |      |      |       | 20.0 | 0.4.0 | 34.3  | 0.41 | NVT  | 2087  |      |       |     | 27.5 | 77.5  | 47.5 |      |      |       |       | -    |
| NVT           | 6134  | 26.0 |      | 30.0 | 83.0 | 47.0 | 22.5 | 25.5  | 23.0 | 24.0  | 0.45  | 0.4  | NVT  |       |      |       |     | _    |       |      |      |      |       |       |      |
| NVT           |       | 25.0 |      | 77   |      |      |      |       |      |       |       |      | NVT  |       |      | 55.0  |     |      |       |      |      |      |       |       |      |
|               | -     |      |      | -    | 1 8  |      |      |       |      |       |       |      | -    |       |      |       |     |      |       |      |      |      |       |       |      |
|               |       |      |      |      |      |      |      |       |      |       |       |      | TAN  |       |      | 67.73 |     |      |       |      |      |      |       |       |      |
| KTH           |       | -011 |      |      | 8.5  | *)   | 1    |       | ***  | 3,96  | 20.0  | 13.3 | NVI  | 12017 | 00   | 53.0  | *   | 18   |       | 53.0 | *#   |      | *100  |       |      |
|               |       |      |      |      |      |      |      |       |      |       |       |      | NVT  | 18895 | 0 20 | 46.0  |     |      | *     | 53.0 | *10  | •    |       |       |      |
| KTH           | (0 V  | 0.69 |      | *    |      | *    | *    | •     | *(3) | 33 €  | 20.00 | 13.0 | HVT  | 0-    |      |       |     |      |       |      | •    |      |       | 34.0  | 11.5 |
| E             | 8     |      |      |      |      |      |      |       |      |       | 2 "   | 2    |      | 6683  |      |       |     |      |       |      |      |      |       | 0     | 5    |
| HT3<br>111    | ¥     |      |      |      |      |      |      |       |      | 3.6   | 3 -   | 4    | 4    | 99    |      |       |     |      |       |      |      |      |       | 14    | 15   |
|               |       |      |      |      |      |      |      |       |      |       |       |      | 2 .  | 6683  |      |       |     |      |       |      | *    | 27.0 | 17.0  | 42.0  | 16.0 |
| KIII-III      | V (9) |      |      |      | 3.   | *00  | •    | 24.0  | 15.0 |       | 16.0  | 13.0 | IAN  | 02601 |      |       | 100 | 100  | 13411 |      | 000  | 26.5 | 16.5  | 60.09 | 16.5 |
| MA -III-II    |       |      |      |      |      |      |      |       |      |       |       |      |      | 3182  |      |       |     |      |       |      |      |      |       |       |      |
|               |       |      |      |      |      |      |      |       |      |       |       |      |      |       |      |       |     |      |       |      |      |      |       |       |      |
| MEN<br>TIT-TI | ٧ (   |      |      | ,    | -    | 410  |      |       |      | 33    | 12    | 100  | NV   | 7     |      |       |     |      | **    |      | ***  | 24.  | 15.   | 38,   | 16.  |
|               |       | - 6  | 3.   | 4.   | •    | 10.  |      |       | 10.  | =     | 1.0   | 191  |      |       |      | 2     | 3.  | 4.   |       |      |      |      | 10.   | =     | 12.  |

| 2560                                          | 34.5<br>12.0<br>NVS<br>UII  | 3508<br>25.0<br>25.0<br>13.0<br>12.0                | NVS W 4378 4378 15.0 37.5                          |
|-----------------------------------------------|-----------------------------|-----------------------------------------------------|----------------------------------------------------|
| 1083 1                                        |                             | 2906<br>49.0<br>65.59<br>0.5.9                      | NVS<br>H H 169<br>10.55                            |
| NVT<br>11064<br>\$8.0<br>21.0<br>13.0<br>27.0 | 14.0<br>34.0<br>13.5<br>III | 3858                                                | NVS NV 2867 666.00 11.5.5 15.5 15.5 15.5 15.5 15.5 |
| 1440<br>440<br>6.99                           | . · · · III                 | (15.0<br>31.0<br>31.0<br>32.5<br>16.0<br>45.0       |                                                    |
| 1305 · · · · ·                                | 39.0<br>13.5<br>NVS<br>111  | 2926<br>105.0<br>31.0<br>17.0<br>34.0<br>15.0       | C1 G)                                              |
| 11235                                         | 38.0<br>15.0<br>III         | 766<br>91.0<br>24.0<br>25.0<br>16.0<br>40.0<br>15.5 | B1 0) 81 0)                                        |
| IVI<br>1204                                   | 67.59<br>15.5<br>NVS        | 3166<br>90.0<br>23.0<br>15.5<br>16.0                | 111 B3 CO CO                                       |
| 101 · · · · ·                                 | 36.0<br>14.5<br>NVS         | 38.0                                                | 111<br>111<br>12 60<br>48.5<br>48.5                |
| WY 1130                                       | 35.0<br>14.0<br>NVS         | 37.5                                                |                                                    |
| 1257 · · · · · · · · · · · · · · · · · · ·    | 34.0<br>14.5<br>HVS         | 37.5                                                | 1111<br>4259<br>                                   |
| 6684<br>6684<br>                              | 12.5<br>32.0<br>12.5<br>NVS | 34.5                                                | NVS<br>1111<br>3092<br>                            |
| NVT 4412                                      | 15.5<br>37.0<br>16.0<br>IHI | 34.5                                                | AVS<br>1111<br>4.192<br>                           |
| 963                                           | 9.2<br>40.0<br>13.5<br>HVS  | 34.0                                                | NVS<br>1111<br>2659<br>                            |
| 11398<br>                                     | 12.5<br>35.5<br>13.0<br>MVS | 26.0<br>14.5<br>17.5<br>15.5                        | NVS<br>1111<br>1269<br>                            |
| 152 · · · 52.0                                | 15.5<br>19.0<br>19.0<br>III | 3518<br>14.0<br>22.0<br>25.0<br>13.5                | NVS<br>1111<br>3886<br>                            |
| NVT<br>19681<br>                              | 12.0<br>                    | 4377<br>46.5<br>20.0<br>14.5<br>sen.                | 3907<br>1111<br>3907<br>                           |
|                                               |                             | 85.5                                                |                                                    |
| NVT<br>12127<br>22.5<br>14.5                  | 15.0                        |                                                     | NVS<br>1111<br>3674<br>                            |
| NVT 656                                       | 14.5<br>NAT                 | 35.5                                                | 3162<br>3162<br>3163<br>3163<br>10.0<br>15.5       |
| 1005<br>1005<br>14.5                          | 14.5<br>TVN                 | 35.0                                                | NV8<br>1111<br>2426<br>                            |

W. 4 4 4 4 6 - 5

\*\*\*\*\*

" neasured along the alveole.

57.88.0.75

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 111-111<br>111-111<br>00 11-0.01<br>10.00 |                                      | NVS<br>W<br>3865<br>57.0<br>45.5<br>70.0                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | 1884<br>30.5<br>23.0                 |                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 111<br>11 0.20<br>38.5<br>12.5            | 1MH<br>28.59<br>14.0                 | 111<br>118 (9)<br>18 (5)<br>62.0<br>62.0<br>13.5                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NVS<br>111<br>8244<br>47.5<br>16.5        | NVS<br>V<br>1661<br>35.0<br>12.0     | INH<br>1 1 0 11 1<br>1 1 0 0 11 1<br>1 1 0 0 1 1 1 1                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NVS<br>111<br>3627<br>39.0<br>14.0        |                                      |                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NWS<br>111<br>6208<br>36.0                | NVS<br>1V<br>10.00<br>16.0           | EWS<br>111<br>1775<br>63.0<br>53.5<br>76.0                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NVS<br>111<br>6530<br>34.0                | NVS<br>1V<br>2392<br>03.39           | NVS<br>111<br>4395<br>58.0<br>65.5                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NVS<br>111<br>4232<br>33.5<br>15.5        | NVS<br>1V<br>1662<br>36.5<br>15.5    | NVS<br>1111<br>5164<br>48.5<br>48.5                                                                                   |
| 25.0<br>20.5<br>20.5<br>20.5<br>20.5<br>20.5<br>20.5<br>20.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |                                      | 3168<br>5168<br>50.0                                                                                                  |
| NVS<br>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NWT<br>11891<br>37.5<br>15.5              | NVS<br>W 25170<br>39.0               |                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2593<br>135.5                             | NVS<br>92<br>37.0<br>14.0            | A 00 A 00 A 66.5                                                                                                      |
| adu I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7 7 7 13.0                                | NVS<br>W<br>5284<br>36.0             |                                                                                                                       |
| Mandibula adult                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 34.0<br>14.5                              |                                      | Bud.<br>111<br>136.0<br>69.0<br>69.0                                                                                  |
| THE REAL PROPERTY.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NVT<br>1427<br>32.0<br>13.5               | INN<br>111<br>19 (0)<br>19.0<br>13.0 |                                                                                                                       |
| NVS 1V 1V 26.00 11V 27.50 13.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.0 | NVT<br>481<br>32.0<br>12.5                | INN<br>III<br>CJ Ø<br>37.5           | Kants<br>15<br>47.0                                                                                                   |
| NVS<br>1 IV<br>22.5<br>22.5<br>14.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NVT<br>3095<br>40.0<br>16.0               | INCH<br>IIII<br>A1 93<br>13.0        | *                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | INH<br>III<br>D2 60<br>37.0          | X                                                                                                                     |
| MVS 4.268 607.59 605.59 605.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2 60<br>307<br>39.0                       | INH<br>III<br>14.0<br>14.0           | pula<br>Minimum height of the ne.k<br>Length articular surface<br>Width articular surface<br>Length proc. articularis |
| MVS<br>N V V V V V V V V V V V V V V V V V V V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                           | ISM<br>III<br>BI 63<br>34.5<br>14.5  | eight<br>ricular<br>icular                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ngch                                      | =055=0                               | la<br>nimum l<br>ngth ar<br>dth art                                                                                   |
| .44494999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M3<br>1. Length<br>2. Width               | 24                                   | Scapula 1. Minti 2. Leng 3. Widtl                                                                                     |

|                                            | TAN           | 566.3                                                               |                                        | NVS<br>NVS | 6828    | 65.0  |      |     |               |                      |
|--------------------------------------------|---------------|---------------------------------------------------------------------|----------------------------------------|------------|---------|-------|------|-----|---------------|----------------------|
|                                            | <b>夏日</b>     | 62.5                                                                |                                        | NE II      | 18 00   |       |      |     |               |                      |
|                                            | 日日 3          | 65.5                                                                |                                        | HE         | 08 0)   |       |      |     |               |                      |
|                                            |               |                                                                     |                                        | 器計         | B5 @    |       |      |     |               |                      |
|                                            | HTH<br>111-11 | 3                                                                   | 6.19                                   | HH         | AI Ø    | 75.0  |      |     |               |                      |
|                                            |               |                                                                     |                                        | 器日         | A4 (3)  | 73.5  |      |     |               |                      |
|                                            | Malli         | 82.0                                                                |                                        | II II      | D1 00   | 67.0  | 30.5 |     |               |                      |
|                                            |               |                                                                     |                                        |            |         |       |      |     |               |                      |
|                                            | Bod           |                                                                     | 22.0<br>juv.                           | INI<br>11  | 08 0 10 |       |      |     |               |                      |
|                                            |               |                                                                     |                                        |            |         |       |      |     |               |                      |
|                                            | Kan           | 80.5                                                                |                                        |            |         | 61.0  |      |     |               |                      |
|                                            | 2             |                                                                     |                                        |            |         | 56.0  |      |     |               |                      |
|                                            | . C           |                                                                     |                                        |            |         | 74.3  |      |     | 8             |                      |
| 98 - 888                                   |               | ourface)                                                            |                                        |            |         |       |      | NVS | 1466<br>320-1 | 94.0                 |
| 55/56<br>805.5<br>63.5<br>83.5             |               | icular e                                                            | shaft)                                 |            | 2606    |       |      | 120 |               |                      |
| 181 0 0                                    |               | ser arti                                                            | ysis (s                                | NVS IIII   | 2661    | 83.0  |      | NVS | 2906          | 78.0                 |
| 39/62<br>NWS<br>NWS<br>111<br>111<br>136.5 |               | th<br>th<br>lea (100                                                | ne diapl                               | NVS        | 1704    | 017.5 | 58.5 | NVS | 5603          | 76.0<br>67.0<br>38.5 |
| # ~ o                                      |               | th capu                                                             | th of ti                               |            | mi      |       |      |     |               |                      |
| 1384<br>42.0                               |               | Maximum width caput<br>Maximum distal width<br>Width of the trochle | Minimum width of the diaphysis (shaft) | IVV        | 4822    | 70.0  | 29.0 | NVS | 5760          | 39.0                 |
| in in it                                   | Humerus       | 1. Maxis<br>2. Maxis<br>3. Wide                                     | 4. Mini                                |            |         | -:::: | .4   |     | 3             | 444                  |

| NVS<br>III<br>1725<br>94.0<br>84.5                                                                                                                                                   |                                           |                                                                                     |                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| 111<br>111<br>1735<br>166.3<br>866.3                                                                                                                                                 |                                           |                                                                                     |                                                                                   |
|                                                                                                                                                                                      |                                           |                                                                                     |                                                                                   |
| HH W 97                                                                                                                                                                              |                                           |                                                                                     |                                                                                   |
|                                                                                                                                                                                      | 78.0<br>78.0                              |                                                                                     | 1MM<br>1.10                                                                       |
| METH<br>HIII<br>76.3<br>5                                                                                                                                                            |                                           |                                                                                     | IDM<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13 |
|                                                                                                                                                                                      | NVS V V 4269                              |                                                                                     |                                                                                   |
| ити<br>А О А О                                                                                                                                                                       | 4 99                                      |                                                                                     | INM<br>III<br>A2 Ø<br>72.0                                                        |
| A 69                                                                                                                                                                                 | KTT1<br>IV<br>IV<br>86 038<br>85.00       |                                                                                     | INM<br>III<br>69 69 A                                                             |
| H 1 2 0 0                                                                                                                                                                            | 2 ( Table )                               |                                                                                     | - 6 3                                                                             |
| KTH LT 172.0 72.0 46.3                                                                                                                                                               |                                           |                                                                                     | 480                                                                               |
|                                                                                                                                                                                      | C1 69                                     |                                                                                     | 11-11<br>G8 0.3<br>69.5                                                           |
| 2 @ 2 302 302                                                                                                                                                                        | 1111<br>111 Q 61<br>8:00                  |                                                                                     |                                                                                   |
|                                                                                                                                                                                      | 111<br>111<br>PS © 90.5<br>82.0           |                                                                                     | 1111<br>4383                                                                      |
| BHL. 16 86.0 82.0                                                                                                                                                                    | 111<br>111<br>89.5<br>78.5                |                                                                                     |                                                                                   |
| Bill.<br>6 6<br>80.5<br>72.0                                                                                                                                                         | 13 (9) 75.0 (68.0                         | 2 69 502 592.0                                                                      | КТН<br>1111<br>A Ф<br>51.0                                                        |
| lius<br>Maximum proximal width<br>Width of the proximal articular surface<br>Maximum distal width<br>Width of the distal articular surface<br>Minimum width of the diaphysis (shaft) | 111-11<br>CB CD<br>111-12<br>0.84<br>0.85 | face<br>ecranon process                                                             | KKL<br>2.40<br>309<br>03.00                                                       |
| proximal width, the proximal a distal width to the distal art width of the distal art                                                                                                | NVS NVS<br>111 111<br>1729 2655<br>       | Uina<br>Width of the articular surface<br>Minimum diameter of the olectanon process | Pelvis<br>Length of the acetabulum                                                |
| Eadius 1. Maximum 2. Width of 3. Naximum 4. Width of 5. Minimum                                                                                                                      | 2444                                      | Uina<br>Width of ti<br>Minimum dia                                                  | Polivis<br>Length of                                                              |

|                                                                            | 111 (0) 111 (0) 53.0                                          |                                                                                | H = 4               | 37.0                                                                                                                                                                                                                           |
|----------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                            |                                                               |                                                                                | K TH                | 33.0                                                                                                                                                                                                                           |
|                                                                            | NVS<br>111<br>2422<br>105.0                                   |                                                                                | KTH<br>111<br>6 230 | 35.55                                                                                                                                                                                                                          |
|                                                                            | NVS<br>III<br>6337                                            |                                                                                | KTH<br>TT           | .0                                                                                                                                                                                                                             |
|                                                                            | 3784<br>3784<br>83.0                                          | KTH<br>IV<br>8 039<br>56.0                                                     |                     |                                                                                                                                                                                                                                |
|                                                                            |                                                               |                                                                                | 18 L                | .0.09                                                                                                                                                                                                                          |
|                                                                            | KITH<br>1111<br>A 23<br>62.3                                  | INN<br>7<br>7<br>63.5                                                          | NET NE              |                                                                                                                                                                                                                                |
|                                                                            |                                                               |                                                                                |                     |                                                                                                                                                                                                                                |
| NVS<br>1290<br>84.5<br>61.0                                                | кти<br>11<br>л 69 л                                           | INH<br>III<br>62.60<br>67.0                                                    | 821                 | 69                                                                                                                                                                                                                             |
|                                                                            | A 69 A 69 C66.39                                              | 1111<br>C3 60.0                                                                |                     |                                                                                                                                                                                                                                |
| 0.06<br>0.06                                                               |                                                               | INN<br>IIII<br>DI Ø<br>59.0                                                    | K 26                | 36.0                                                                                                                                                                                                                           |
| NVS<br>1111<br>654.2<br>84.5                                               | 31.<br>99.0                                                   | 1111<br>02.00<br>57.5                                                          |                     | 3.100                                                                                                                                                                                                                          |
| 1111<br>4049<br>60.09<br>66.0                                              | BHL 22 58.0                                                   | 111<br>111<br>83 0)<br>57.0                                                    | 1 1 1 S             |                                                                                                                                                                                                                                |
|                                                                            |                                                               | 1111<br>1111<br>18 @ 55.5                                                      | 2 (%)               | 51.0                                                                                                                                                                                                                           |
| BML 2 2 49.0 37.0                                                          | 17 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19               | 1111<br>A1 Ø<br>56.0                                                           | 151/160             | 53.0                                                                                                                                                                                                                           |
|                                                                            | EEL 11 56.0                                                   | 104<br>111<br>56.5                                                             |                     | 9                                                                                                                                                                                                                              |
| ₹2 c 64.                                                                   |                                                               | 18 0<br>53.5                                                                   |                     | is (shar                                                                                                                                                                                                                       |
| Femur<br>Length of the caput<br>Width of the caput<br>Maximum distal width | Tibla<br>1. Maximum proximal width<br>2. Maximum distal width | 1389 1389<br>11 11 11 11 11 12 11 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13 | Metacarpus          | 1. Maximum length 2. Maximum proximal width 3. Maximum proximal width 4. Maximum distal width 5. Maximum distal width 6. Maximum distal thickness 6. Maximum width of the diaphysis (shaft) 7. Index 7 \$ 100 8. Index 7 x 100 |

| NVS<br>1111<br>76<br>76<br>56.0<br>29.0<br>29.0 | 111<br>112<br>A2 (0)<br>144.0<br>24.0<br>24.0                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NVS<br>IIII<br>2538<br>57.0<br>50.0             | 1111<br>1111<br>14.5<br>54.5<br>31.5<br>58.2                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NVS<br>1111<br>500<br>77.0<br>63.0              |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3557<br>1111<br>3557<br>62.09                   | INH<br>11<br>42 0.0)<br>51.0<br>75.5<br>90.0                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                 | 110 A2 0.1)<br>72 0.1)<br>52.0<br>27.0                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 36.0<br>2506<br>                                | 111<br>118 (%)<br>119 (%)<br>119 (%)<br>119 (%)<br>119 (%)<br>119 (%)<br>119 (%)         | 234.2 v v v 61.0 0 34.0 34.0 0 35.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                 | 1100<br>111<br>111<br>110<br>110<br>110<br>110<br>110<br>110<br>11                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MTH NTH 1111 A 00                               | 110<br>11<br>11<br>55.0<br>34.0<br>34.0                                                  | NWS<br>1V<br>6192<br>52.0<br>30.0<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| MH HH 13.0° · · · · ·                           |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                 | 1181<br>1/11<br>G8 03)<br>56.0                                                           | KTH 1V 18 0.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| A 00 A 00 56.0 36.0 36.0 33.6                   | 1711<br>1711<br>68 03)<br>55.0<br>30.0<br>55.0                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A 90                                            |                                                                                          | DNN<br>1111<br>CB 00<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| KTH II-III A 00                                 | 111 (0) 111 (0) 57.0 30.0 30.0 52.7                                                      | DI Ø DI Ø S55.0 26.0 26.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                 | 110 111 0)                                                                               | 1111<br>1111<br>157 (8)<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ИТН<br>111<br>146.5<br>24.5<br>24.5             | 11 () 11 ()                                                                              | 111 00 00 1111 00 00 1111 00 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 00 1111 0 |
| MTH III A 60 5 50.5 50.5 52.4                   | 11 0)<br>11 0)<br>11 0)<br>212.0<br>58.0<br>35.0<br>35.0<br>35.0<br>36.0<br>36.0<br>36.0 | INN<br>111<br>111<br>81 &<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| КТН<br>111<br>11<br>50.0<br>50.0<br>56.5        |                                                                                          | 1111<br>1111<br>1112<br>113 GB<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| KHI III B 628                                   | NVS<br>111<br>2600<br>                                                                   | DBM<br>1111<br>C3 00<br>46.5<br>23.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| KTR 111 A 60                                    | NVS<br>1111<br>2413<br>                                                                  | 1111<br>CC2 G<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| KIH<br>111<br>A 60<br>64.0<br>G4.0              | MVS<br>1111<br>1736<br>                                                                  | 1111<br>69 &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                 |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| #H & OO 8                                                                                                                                                                                             | EH 6 40 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5 5 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ХЛН<br>П<br>11<br>69.0<br>69.0<br>27.5<br>27.5<br>56.2                                                                                                                                                | 11 60.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1365<br>1365<br>28.5<br>58.5<br>58.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| KTH<br>11<br>146.5<br>27.5<br>27.5<br>60.4                                                                                                                                                            | A2 60 46.0 26.5 57.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | KTH<br>1V<br>B 0.30<br>45.0<br>30.0<br>66.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| KHH<br>D A 6.0<br>26.0<br>25.0                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| KHH HH                                                                                                                                                               | 3122<br>3122<br>54.5<br>31.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 111<br>111<br>0 0 0<br>57.5<br>33.0<br>57.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| KTH LI LI                                                                                                                                                                                             | 26.6<br>26.5<br>26.5<br>26.5<br>26.5<br>26.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 111<br>111<br>C4 0)<br>52.0<br>31.0<br>59.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ATH<br>TI<br>TI<br>11<br>146.5<br>43.5<br>43.5<br>                                                                                                                                                    | NVS<br>111<br>1016<br>64.0<br>42.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 111<br>111<br>A2 G0<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| KTH TI TI V 60 42.0 42.0                                                                                                                                                                              | NWS<br>1111<br>33289<br>33.53<br>53.53<br>58.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | INH<br>IIII<br>B (8)<br>50.00<br>27.5<br>55.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| KTH<br>111<br>139.0<br>37.5<br>5.0<br>95.0                                                                                                                                                            | NVS<br>111<br>5217<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1111<br>1111<br>1111<br>149.5<br>89.5<br>86.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| KTH                                                                                                                                                                                                   | NVS<br>111<br>2274<br>44.0<br>42.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1111<br>1111<br>A2 Ø<br>49.0<br>28.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                       | NVS<br>1111<br>3942<br>41.5<br>40.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1111<br>1111<br>12 40<br>7.00<br>7.00<br>7.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BKL 39                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DI (8) 1111 (27.0 24.0 24.0 21.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| H 2                                                                                                                                                                                                   | 80.0<br>32.0<br>32.0<br>84.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 18 % D D 18 % D D 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.00 2 28.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                       | 25-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 38.00<br>50.00<br>50.00<br>58.8                                                                                                                                                                       | NVT (69.00 08.00 08.00 08.00 08.00 08.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 | 111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1384<br>1111<br>122 60<br>145.5<br>145.5<br>25.0<br>55.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| RKL 2 60 328 328 31.5 31.5 55.7                                                                                                                                                                       | A 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EH S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 9                                                                                                                                                                                                     | ######################################                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 111<br>111<br>124<br>14,93<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>14,03<br>16,03<br>16,03<br>16,03<br>16,03<br>16,03<br>16,03<br>16,03<br>16,03<br>16,03<br>16,03<br>16,03 |
| is (shu                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 111<br>111<br>12 0<br>14<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ness<br>ness<br>ilaphys                                                                                                                                                                               | KITH<br>111<br>A & 55.0<br>26.0<br>58.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Atarsus<br>Maximum proximal width<br>Maximum proximal thickness<br>Maximum distal width<br>Maximum width of the diaphysis (shaft)<br>Index $\frac{3}{4} \times 100$<br>Index $\frac{3}{4} \times 100$ | KTH<br>11<br>11<br>55.0<br>55.0<br>30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | INH<br>111<br>H8 (0)<br>57,0<br>32.0<br>56.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| atarsus Maximum proximal wid Maximum proximal thi Maximum distal width Maximum distal thick Minimum width of the Index 3 2 100                                                                        | MIN A MIN HIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Netatarsus  1. Maximum p  2. Maximum p  3. Maximum p  4. Maximum p  6. Index 3  7. Index 2  7. Index 2                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 7.0.5.0.0.<br>7.0.5.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -4646                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

\* Measured over the trochlea.

| KT# K 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 70.0<br>£2.4<br>NUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 78113            | 59.0<br>56.0<br>37.0 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------|
| ### 4 22% % 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 63.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                      |
| MH B 260<br>600 500<br>825 000<br>825 0 | 64.4<br>64.4<br>KTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | H O V            |                      |
| MIH 4 60.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H W              | 38.0                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H &              | 31.5                 |
| 9 .00 .00 .00 .00 .00 .00 .00 .00 .00 .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 80.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                      |
| 96.5<br>36.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11-111<br>B ¢0   | 55.5<br>37.0         |
| 1 01 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ξ H &            | 65.5                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7 T V 69 V       | 38.0                 |
| # w wooooww                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 64.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A 60             | 69.0                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | The state of the s | TH V             | 61.59                |
| 34.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 8 v            | 68.0<br>64.0<br>46.0 |
| 70.0<br>70.0<br>43.0<br>38.0<br>38.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A H              | 63.0                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A 60 A           | 67.5<br>62.0<br>41.5 |
| KKI. 13 72.5 69.0 46.0 46.0 39.0 39.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 63.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A 60             | 66.5                 |
| ochlea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11<br>A 60       | 66.0                 |
| th<br>trochliness<br>ness<br>the tro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A 60             | 66.0<br>61.0<br>42.0 |
| length<br>length<br>of the<br>lthick<br>thick<br>ess of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A 60 A           | 65.5<br>61.5<br>44.0 |
| Astragalus  1. Maximum lateral length  2. Maximum medial length  3. Maximum width of the trochlea  4. Maximum medial thickness  5. Maximum medial thickness  6. Maximum thickness of the trochlea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Index 2 5 x 10<br>Index 3 x 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ктн<br>11<br>A 6 | 58.5                 |
| A - 4.0.4.0.9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  | -: 0: 0:             |

KIH 7 2 42.0 38.5 91.5

- 20 6

RTH II-III Patella A-3 Maximum length 55.0

| 0 . 0 ^                                    | <b>西</b> 內           | 500000                                       | 9-7- 1-9                                                      | 25.5<br>25.5<br>25.5<br>25.5<br>25.5<br>25.5<br>25.5<br>25.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------|----------------------|----------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 73:0                                       | -                    |                                              |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                            | VI VI                | 21.15<br>21.15<br>48.0<br>48.5               | 62.4<br>INN<br>IIII<br>IIII                                   | 23.55.55.55.55.55.55.55.55.55.55.55.55.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| .9                                         |                      |                                              | D2 60                                                         | 228282828<br>20000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 57.2                                       | 1111<br>1111<br>1447 | 85.0<br>79.0<br>55.0<br>60.0<br>41.0         | 27.0<br>74.5<br>1111<br>At 6                                  | 628823856<br>6286556<br>6286556<br>6286556                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 27.5<br>27.5<br>23.0<br>55.0<br>74.1       | 111<br>1776          | 78.0<br>71.0<br>44.0<br>40.0<br>41.0<br>33.5 | 56.5<br>56.5<br>111<br>19.6                                   | 28.5<br>28.5<br>23.5<br>23.5<br>23.5<br>23.5<br>23.5<br>23.5<br>23.5<br>23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                            | 1111<br>75           | 22.0<br>65.0<br>84.0<br>80.5<br>70.5         | 18 E B HNH                                                    | 24.5<br>33.5<br>30.0<br>24.5<br>55.2<br>61.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                            | 111<br>1728          | 71.0<br>66.5<br>66.5<br>40.0<br>40.0<br>33.0 | 25.4<br>23.4<br>1111<br>118 G                                 | 28.48.45.50<br>28.48.65.50<br>28.48.65.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50<br>20.50 |
|                                            | NVS<br>111<br>1724   | 70.0<br>64.0<br>45.0<br>37.0<br>32.0         | 22.23                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 8.88.0<br>0.08.27.2<br>4.4.6<br>6.3.4.4.6  | 111<br>2406          | 70.0<br>65.5<br>45.0<br>37.5                 | 53.6<br>64.2<br>111-111<br>C9 Ø                               | 58.5<br>53.5<br>32.0<br>32.5<br>26.5<br>71.6<br>63.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 26.62                                      | 111<br>111           | 69.5<br>63.5<br>38.0<br>39.0<br>30.5         | 2.56<br>2.26<br>2.37                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 32.0<br>32.0<br>53.6<br>70.3<br>65.9       | NWS<br>1111<br>2660  | 886                                          |                                                               | 28.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 35.55                                      | 754 H 254            | 28.5<br>28.5                                 | 54.6<br>69.5<br>64.0<br>111 0)                                | 2.5.<br>4.1.3.<br>5.6.6.<br>6.6.6.<br>4.7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 38.5<br>30.5<br>66.3<br>67.7               | NVS<br>111<br>3917   | 71.5<br>64.5<br>38.0<br>38.0                 | 53.2<br>71.6<br>60.0                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 36.0<br>36.5<br>30.5<br>53.7               | NVS<br>1111<br>6137  | 66.0<br>61.5<br>36.0<br>37.5<br>29.5         | 54.5<br>67.8<br>61.0<br>1 INM                                 | 61.5<br>46.0<br>37.0<br>29.0<br>63.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 38.5<br>38.5<br>38.5<br>38.5<br>4.4<br>4.4 |                      |                                              | I 0) II                                                       | 57.0<br>37.5<br>33.0<br>29.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 35.0<br>39.0<br>39.0<br>52.6<br>58.6       | NVT<br>781C          | 70.5<br>65.0<br>45.0<br>36.5<br>31.5         | 111 0)                                                        | 67.0<br>62.0<br>33.5<br>33.5<br>53.0<br>69.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 35.5<br>27.5<br>28.7<br>58.7<br>65.2       | 3003                 | 73.0<br>61.5<br>43.0<br>38.0                 | 52.1<br>69.6<br>59.0<br>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 65.5<br>62.0<br>38.5<br>34.5<br>28.0<br>52.7<br>52.7<br>58.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 63.7                                       | 781                  | 65.0<br>64.5<br>40.0<br>36.0<br>34.0         | 54.5<br>61.7<br>1<br>1<br>111 (0)                             | 54.0<br>34.0<br>34.0<br>34.5<br>53.2<br>53.2<br>62.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 35.0<br>32.0<br>52.2<br>72.7<br>66.7       | TWI 781              | 57.0                                         |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 03.5<br>27.5<br>51.6<br>62.3               | TVN<br>781           | 63.0<br>37.0<br>38.5<br>32.0<br>31.5         | 61.0                                                          | ×42<br>000 ×<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                            |                      |                                              |                                                               | Index 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 444444                                     |                      | -4444                                        |                                                               | . 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

| LNM.         | 24     | inc   | 0 0  | 0       | 0                 | 2    | _    | 9    | 0    |      |          |      |       |       |      |      |       |      |      |      |      | -     | S H | 8         |         | 2 10    | 0      |  |
|--------------|--------|-------|------|---------|-------------------|------|------|------|------|------|----------|------|-------|-------|------|------|-------|------|------|------|------|-------|-----|-----------|---------|---------|--------|--|
| N            |        | 64.5  | 000  | 34.     | 36.               | 30.  | 53.  | 75.  | 62.  |      |          |      |       |       |      |      |       |      |      |      |      |       |     | B4 G      |         |         |        |  |
| INM          | 2-     | 0.49  | 0.60 | 32.5    |                   | 27.5 | 50.7 | 72.4 |      |      |          |      |       |       |      |      |       |      |      |      |      | Time  | H   | 18 60     | 116 5   | 38.0    | 50.0   |  |
|              |        |       |      |         |                   |      |      |      |      |      |          |      |       |       |      |      |       |      |      |      |      |       |     |           |         |         |        |  |
| INM          | 80 40  |       | 5 69 |         |                   |      |      |      | 139  |      |          |      |       |       |      |      |       |      |      |      |      | 7.00  | 11  | A1 69     |         | 41.5    | 52.5   |  |
| INM          | 18 (0) | . 77  | 0.40 |         | 0.04              |      | ٠    |      |      |      |          |      |       |       |      |      |       |      |      |      |      |       |     |           |         |         | 44     |  |
| INH          |        | 0.99  |      |         |                   |      |      |      |      |      |          |      |       |       |      |      |       |      |      |      |      | WIDG. | 111 | 2405      | 8 5     |         |        |  |
| INM          |        | 20.0  |      |         |                   |      |      |      |      |      |          |      |       |       |      |      |       |      |      |      |      |       |     | 1720      |         |         |        |  |
| INN          |        | 67.0  |      |         |                   |      |      |      |      |      |          |      |       |       |      |      |       |      |      |      |      |       |     | 217       |         |         |        |  |
| INM          |        | 0.05  |      |         |                   |      |      |      |      |      |          |      |       |       |      |      |       |      |      |      |      |       |     |           |         |         |        |  |
|              |        |       |      |         |                   |      |      |      |      |      |          |      |       |       |      |      |       |      |      |      |      | MUT   |     | de        | 19.0    | 35.5    | 48.0   |  |
| MMI<br>III   | 8      | 73.5  | 46.0 | 39.0    | 39.0              | 32.0 | 53.0 | 69.3 | 62.6 |      |          |      |       |       |      |      |       |      |      |      |      |       |     | e.        | 33      |         |        |  |
| NAM I        | 03 69  | 71.0  | 44.0 | 35.5    | 39.0              | 31.0 | 20.0 | 70.0 | 62.0 |      |          |      |       |       |      |      |       |      |      |      |      |       |     | 3487      |         |         |        |  |
| 1111         | AI S   | 70.5  | 44.5 | 37.0    | 38.5              | 4    |      | **** | 63.2 | Merc | 2        | 1512 | 14.0  |       | 44.0 |      | 2,672 | 32.0 | ***  | 72.6 | *    |       |     |           | 5       |         |        |  |
| NINI<br>TTT  | 18 (0) | 69.0  | 41.3 | 37.0    | 36.0              | 28.0 | 97.6 | 4.79 | 0.09 | MUG  | <b>*</b> | 1517 | 0.69  | 61.15 | 43.0 | 35.5 | 35.5  | 28.5 | 51.4 | 86.3 | 62.3 | кти   | 11  | A (6)     |         | 45.5    | 53.0   |  |
| HILL         | D2 60  | 69.0  |      |         | 14                | +    |      | -    | 4    | MATE | -        | 1513 | 68.5  | 64.5  | 44.5 | 37.5 | 37.5  | 31.0 | 54.0 | 9.69 | 65.0 | KTH   | п   | A (4)     |         | 45.0    | 24.0   |  |
| THE          | D2 (S) | 65.0  | 60.3 | 35.0    | The second second | 67.3 | 53.8 | 9.99 |      |      |          |      |       |       |      |      |       |      |      |      |      | KUR   | П   | A 60      | 128.0   | 45.5    | 52.0   |  |
| INM          | B1 (0) | 63.0  | 38.0 | 33.0    | 33.0              | 26.0 | 52,4 | 68,3 | 9.09 | MUS  | 3        | 2954 | 00.00 |       |      | 4    | ı     |      | 120  | 2    | ı    | кти   | 11  | A 63      | 115.0   | 42.5    | 47.5   |  |
| 1111<br>1111 | DI 03  | 63.0  | 39.5 | 33.5    | 34.0              | 25.0 | 53.5 | 63.7 | 62.7 | MVS  | 3        | 3866 | 65.0  | 0.19  | 40.0 | 33.5 |       |      | 51.6 |      | 61.3 | KTH   | 11  | A 63      | 0.411   | 38.0    | 46.0   |  |
| 111<br>111   | D2 @   | 63.00 | ii.  | *       |                   |      | ٠    |      | ě,   |      |          |      |       |       |      |      |       |      |      |      |      |       |     |           |         |         |        |  |
| 11 EN        | D2 60  | 62.0  | *    | Author. | 34.0              |      | +3:  |      | 2    | TINN |          | 4    | 69.0  | 65.0  | 5.05 | 35.0 | 36.5  | 27.0 | 50.7 | 0.00 | 20.7 |       |     |           | length  |         | height |  |
|              |        |       |      |         |                   |      |      |      |      |      |          |      |       |       |      |      |       |      |      |      |      |       |     | mean      | ix imum | Maximum | wimm's |  |
|              |        | 1.2.  | 3.   | 4.      | ć.                | . 0  |      | ė e  | 7    |      |          |      | 1.    | 2.    | 'n   | **   | 5.    | . 9  | 1    | ė e  | 3.   |       |     | Calcaneum | I. Ma   | 2. Ha   | 3. Ma  |  |

|                                            |                                | HTM<br>TI W | 29.0<br>29.0<br>26.5                                                                                      | KTH<br>HII<br>A 00<br>28.0<br>25.5                     |
|--------------------------------------------|--------------------------------|-------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
|                                            |                                | HI O V      | 58.0<br>32.0<br>28.5<br>27.0                                                                              | КТН<br>ПП<br>А О О                                     |
|                                            |                                | KITH<br>III | 25.0                                                                                                      | A 90 24.5                                              |
|                                            |                                | HIII S      | 36.0<br>27.5<br>27.5<br>23.5                                                                              | A 20 13 15 15 15 15 15 15 15 15 15 15 15 15 15         |
|                                            |                                | E S         | 25.00                                                                                                     | METH<br>HHI<br>A Q<br>S1.5<br>27.0<br>23.5             |
|                                            |                                | HI .        | 63.3<br>28.5<br>24.0<br>23.0                                                                              | MA W 24.5 24.5 24.5 22.5 22.5                          |
|                                            |                                | 臣= 5        | 53.0<br>28.5<br>25.0<br>24.5                                                                              |                                                        |
|                                            |                                |             |                                                                                                           | KTM<br>B 2.0<br>30.0<br>27.5                           |
|                                            |                                | KTH         | \$2.5<br>25.0                                                                                             | KTH 11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1             |
|                                            |                                |             |                                                                                                           | KTH<br>11-111<br>B @1)<br>57.0<br>25.5<br>24.5<br>20.5 |
|                                            |                                | IRL         | 30<br>28.0<br>26.0<br>26.0<br>25.0                                                                        |                                                        |
|                                            | 2 667<br>667<br>69.0           | BKT         | 27.0<br>28.5<br>27.0<br>25.0                                                                              | HTH<br>TI 11 C.29<br>11 C.29<br>12 C.55                |
| 1507<br>V V<br>V V<br>1507<br>51.5         |                                | BICT        | 59.0<br>29.0<br>25.5<br>23.0                                                                              | KTH<br>11<br>B C 2<br>27.0<br>24.5                     |
|                                            | 1514 V V 52.0                  |             |                                                                                                           | A & & 23.5                                             |
| 178<br>174<br>174.5<br>68.5<br>66.0        |                                | +           | 27.0<br>34.0<br>30.0<br>27.0                                                                              | A 60<br>62.5<br>30.0<br>26.0                           |
| NVS<br>1V<br>5392<br>135.0<br>44.0<br>52.5 | 24<br>50.5                     |             |                                                                                                           | A 60<br>61.0<br>29.5<br>27.0<br>23.5                   |
|                                            | TVII 7. 0.64                   | 2.40        | 24.5                                                                                                      | KTH<br>TI<br>A ©<br>60.0<br>26.5<br>27.0<br>23.3       |
| DBF 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  |                                |             | ch<br>shaft                                                                                               | KTH<br>TT<br>8 (2.3)<br>60.00<br>32.0<br>31.5<br>26.0  |
|                                            | KTH<br>LI<br>A 69<br>50.0      |             | Lacus I<br>Maximum Length<br>Maximum proximal width<br>Maximum distal width<br>Minimum width of the shaft | ETH III B 62.0 50.0 30.5 24.5 24.5                     |
| HH HH C1 00 51.0                           | ath<br>dth                     |             | Maximum length<br>Maximum proxim<br>Maximum distal<br>Minimum vidth                                       | КЕТН<br>ПП<br>В 0.23<br>59.5<br>22.5<br>21.0           |
|                                            | Centrotarsale<br>Maximum vidth |             | Phalacut I<br>1. Maximum<br>2. Maximum<br>3. Maximum<br>4. Minimum                                        |                                                        |
| 244                                        | Cen                            |             | 7.5.6.4                                                                                                   | -464                                                   |

| INM<br>1<br>C1 0.9<br>28.0<br>27.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 111<br>111<br>199 0<br>26.0<br>26.0<br>26.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | KTH<br>1111<br>A 60.0<br>33.2<br>23.5                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| TAM L L L L L L L L L L L L L L L L L L L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A 20 35.0 220.5 19.5                                                                                             |
| M 64.0<br>29.0<br>24.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 111 HT 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | HH 4 82 22 22 23 23 23 23 23 23 23 23 23 23 23                                                                   |
| INM<br>11 (9)<br>62.5<br>30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 138 ES G C 22.0 24.5 20.5 20.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                  |
| 111 G 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 111<br>111<br>25.55<br>22.55<br>22.55<br>22.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | KTB<br>11-111<br>B 20<br>24.5<br>24.5<br>20.5                                                                    |
| 100 T 1 T 1 T 1 T 1 T 1 T 1 T 1 T 1 T 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 188 18 60 27.00 27.00 24.50 24.50 24.50 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | KTH<br>II-III<br>B 2.0<br>40.0<br>28.5<br>24.5<br>23.0                                                           |
| 1100 A 450 A | MWS 130 41.0 41.0 41.0 41.0 41.5 18.5 18.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | KT#<br>11-111<br>18 2.0<br>26.0<br>26.5<br>26.5<br>23.0                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | KTH II-III I B & D B S D B S D B S D B S D B S D B S D B S D B S D B S D B S D B S D B S D B S D B B D B B D B D |
| NVS<br>1111<br>2423<br>263.0<br>29.5<br>27.5<br>25.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1111<br>1111<br>1111<br>1111<br>1111<br>1111<br>1111<br>1111<br>1111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | KTH 1-111 1 A 09 37.5 22.5 22.5                                                                                  |
| NVS<br>1777<br>1777<br>1777<br>1777<br>1777<br>1777<br>1777<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 111<br>111<br>128 00<br>125.5<br>125.0<br>125.0<br>127.5<br>135.0<br>135.0<br>135.0<br>135.0<br>135.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A (0) 24.0 24.0 20.0 18.5                                                                                        |
| NVS<br>111<br>2467<br>14.0<br>34.0<br>24.0<br>24.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LIBH 1111 C2 60 C C2 C0 C C2 C0 C C2 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3 0000                                                                                                           |
| MWS<br>J111<br>492<br>63.0<br>32.5<br>23.0<br>28.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HHH<br>HH HH<br>HH BH GO 23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50<br>23.50 | ХТН<br>П<br>10.0<br>26.0<br>26.0<br>26.0<br>26.0                                                                 |
| NVS<br>1111<br>2424<br>61.3<br>25.0<br>24.5<br>22.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HM [41] 18 60 53.0 25.0 25.0 22.0 22.0 22.0 22.0 22.0 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 111<br>1140.0<br>26.0<br>26.0<br>20.0<br>20.0                                                                    |
| 8WS<br>111<br>2654<br>57.5<br>30.0<br>25.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1111 CG 40 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | KTH 111 8 CJ) 39.5 28.0 24.5 21.5                                                                                |
| NVS<br>111<br>126<br>28.0<br>28.0<br>28.0<br>23.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MTH<br>TV<br>18 0.39<br>59.5<br>50.00<br>22.5<br>27.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | KITH<br>111<br>19.5<br>28.0<br>24.5<br>23.5                                                                      |
| NVS<br>IIII<br>6011<br>61.0<br>29.5<br>28.5<br>25.5<br>25.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1384<br>11-111<br>140 Ø<br>60.0<br>28.5<br>28.5<br>28.5<br>28.5<br>28.5<br>28.5<br>28.5<br>28.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | KTH<br>111<br>8 £34<br>38.5<br>28.5<br>27.0<br>25.0                                                              |
| NVS<br>111<br>2169<br>27.5<br>27.5<br>26.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | INH<br>II<br>M2 0.0<br>63.5<br>27.0<br>27.0<br>23.0<br>23.0<br>111<br>C2 0<br>28.0<br>25.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 200<br>200<br>200<br>200<br>200<br>200<br>210<br>210                                                             |
| 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 111 P9 0.0 P9 0.0 P9 0.0 P9 0.0 P9 0.0 PP 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 134<br>2 40<br>334<br>41.0<br>29.0<br>28.0<br>25.0                                                               |
| # TIII # TIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 111 18 69 57.5 528.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57.00 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Phalank 11<br>1.<br>2.<br>3.<br>4.                                                                               |
| 2444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1444 1444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Phal. 2.                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                  |

|             |        | 32,5      |      | . 1 | III III |        |      |       |      |      |     |      | 41.0 41.0 |      |      |     |         |      |       | 48.0      |  |
|-------------|--------|-----------|------|-----|---------|--------|------|-------|------|------|-----|------|-----------|------|------|-----|---------|------|-------|-----------|--|
|             | 1000   | 36.0 40.0 |      |     | IN I    | 0 10   | 35.0 | 23.5  | 19.5 |      | 102 |      | 43.0      | 2    | 83   |     |         |      | 5.416 | 20.0 21.5 |  |
|             |        | 31.0      |      |     | I I I   |        |      |       |      |      |     |      |           |      |      |     |         |      |       | 20.0      |  |
|             |        | 0 0.60    |      |     | E IN    | 3000   |      |       |      |      |     |      |           |      |      |     |         |      |       | 22.5 2    |  |
|             |        | 02.00     |      |     | TI III  | 000    |      |       |      | TINH |     | 8 0  |           | 2.0  |      |     |         |      |       | 26.0 2    |  |
| NVS         | 712    | 15.0      | 2.0  |     | I III   |        |      |       |      | -    | 20  | 4    | 4         | 17   | 13   |     |         |      |       | 24.5 28   |  |
| HNI         | AI 0   | 42.3      | 22.0 |     | INM INM |        |      |       |      | ANA  | = " | 8    | 42.5      |      | 5.5  |     |         | 123  |       | 28.0 22.0 |  |
| MAI .       |        |           |      |     | 1111 1  |        |      |       |      | MVS  | 3   | 4354 | 38.0      | 24.5 | 22.5 |     |         | 9    |       |           |  |
|             |        |           |      |     | E I     | (0.80  | 38.5 | 26.0  | 20,5 |      |     |      |           |      |      | ктн | 111-111 | 971) | 1     | 20.0      |  |
| INM<br>11-1 | CB 030 | 37.0      | 20.5 |     | 111     | 82.00  | 39.0 | 0.72  | 22.0 | NVS  | 100 | 2330 | 58.0      | 30.0 | 28.0 |     |         |      |       |           |  |
| INN<br>1-11 | GB 030 | 10.5      | 24.5 |     | E I     | D2 G0  | 39.5 | 28.0  | 24.5 |      |     |      |           |      |      | KTH | HH      | VV   | 0.09  | 22.0      |  |
|             |        |           |      | 1   | 1111    | D2 (A) | 40.0 | 27.5  | 22.2 | NVS  |     | 1311 | 33.5      | 20.0 | 17.5 | KTH | 111     | 909  | 0.19  | 19.5      |  |
| IIM<br>II   | 09 60  | 34.0      | 19.0 |     | E E     | D1 CB  | 0.04 | 21.50 | 21.0 |      |     |      |           |      |      | HIZ | 111     | N S  | 66.39 | 23.5      |  |
| NN II       | -      |           |      |     | 111     | 03 00  | 40.0 | 18.0  | 17.3 |      |     |      |           |      |      |     |         |      |       |           |  |
| NNI<br>11   | 0 0 61 | 25.0      | 20.5 | 700 | 111     | (0 011 | 0.05 | 5.01  | 0.91 |      |     |      |           |      |      | NVS |         | 311  | 67.0  | 47.74     |  |

| 111<br>111<br>H8 ©                              |                              |                                                                                  |                                |
|-------------------------------------------------|------------------------------|----------------------------------------------------------------------------------|--------------------------------|
| 111<br>111<br>12.00<br>67.50<br>23.0            |                              |                                                                                  |                                |
| BI © 69.0 54.0 24.0                             |                              |                                                                                  |                                |
| D3 (9) 66.0 53.0 21.0                           |                              |                                                                                  |                                |
| 1111<br>111 HO ©)<br>59.5<br>47.0<br>22.5       |                              |                                                                                  |                                |
| 1111<br>1111<br>1111<br>123.0<br>23.0<br>21.5   |                              |                                                                                  |                                |
| 1111<br>1111<br>105 60<br>55.5<br>65.50<br>20.5 |                              | Cands<br>fam.<br>par.d.<br>6                                                     | 16.45                          |
| INM<br>111<br>13 & 55.0<br>55.0<br>46.0<br>23.0 |                              |                                                                                  |                                |
| 1111<br>1111<br>115 0)<br>55.5<br>49.0          |                              | Canis<br>Jupue<br>poll.<br>16                                                    | 18.77                          |
| 111<br>111<br>A4 (0)<br>54.0<br>39.5<br>21.0    |                              |                                                                                  |                                |
| C3 (3) (52.5) (53.0) (63.0) (63.0)              |                              | Canis<br>dingo<br>27<br>27<br>19.56<br>9.20                                      |                                |
|                                                 |                              |                                                                                  |                                |
| 111-111<br>A4 Ø<br>67.0<br>53.0<br>22.5         |                              | H 55 200                                                                         |                                |
| INN<br>11-111<br>A4 ©<br>60.0<br>49.5<br>22.0   |                              | 18.5                                                                             | 7                              |
|                                                 |                              |                                                                                  |                                |
| INM<br>11<br>11 00<br>28.5<br>47.5<br>21.5      | 1111<br>C8 69<br>26.0        | MVS 8357 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                   | 10.02.5                        |
| INM<br>III<br>H8 69<br>28.5<br>48.0<br>21.5     | INN<br>1111<br>H2 Ø)<br>24.5 |                                                                                  | K                              |
| 11<br>D2 00<br>53.5<br>46.0<br>16.5             | 1111<br>1111<br>84 Ø<br>23.5 |                                                                                  | 6.00                           |
|                                                 | 111<br>118 G)<br>20.5        | liaris<br>the molar row                                                          |                                |
| 111<br>1281<br>1281<br>655.0                    | 1111<br>B1 (9<br>20.0        | the mo                                                                           |                                |
|                                                 |                              | Canis familiaris Maxilla Length of the mo Length Pa Length Pa Length Pa Midth Pa | Length #<br>Width H<br>Width H |
| -444                                            | il.                          | 3 7 333                                                                          | 2272                           |

\* Measured over the cusp.

| Mandibula Length of the teeth row Length of the molar row Length of the premolar row Length M. | MVS<br>1111<br>6182<br> | NVS<br>111<br>5355<br>26.0<br>19.0** | NVS<br>111<br>7143<br><br>9.5 | KVS<br>111<br>77.0<br>35.0<br>36.0<br>8.0 | NWS<br>111<br>256<br> | NVS<br>1111<br>1272<br> | Canis dingo 11 11 | Canis<br>Jupus<br>poll.<br>16 | Canis<br>fam.<br>par.d.,<br>5<br>21.48<br>8,48 |  |
|------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------|-------------------------------|-------------------------------------------|-----------------------|-------------------------|-------------------|-------------------------------|------------------------------------------------|--|
| I the horizontal ramus before P                                                                | 16.5<br>juv.            |                                      | 20.5                          | 0.                                        |                       | . 53.0                  | 6.82              | 7.63                          | 27.7                                           |  |
| Radius Statimal width 17.2 Minimum width of the disphysis 12.0 18.0 IRM                        |                         |                                      |                               |                                           |                       |                         |                   |                               |                                                |  |
| Mumerus Mangmum distal width Minimum width of the diaphysis 12.5                               |                         |                                      |                               |                                           |                       |                         |                   |                               |                                                |  |
| Astragalus 5175 Haximum length 47.0                                                            |                         |                                      |                               |                                           |                       |                         |                   |                               |                                                |  |

| Felis sp.                                        | MUSC             | WVS      | NVS  | RVS  | NAS  |
|--------------------------------------------------|------------------|----------|------|------|------|
|                                                  | A                | E        | III  | IV   | VI   |
| and the same                                     | 1543             | 5036     | 2609 | 3256 | 627  |
|                                                  |                  |          |      |      | 100  |
| the                                              | 27.7             | 9.00     | 1/4  | 22.0 | 22.2 |
| the                                              | 17.6             | 6 6 6    |      | 0.4  |      |
| Length of the diasthoma                          | 0.0              | •        |      | 100  | 8.5  |
| × .                                              | 7.0              | 14.0     | 13.0 |      |      |
| Length at 4                                      |                  |          |      |      |      |
|                                                  |                  |          |      |      |      |
|                                                  | NVS              |          |      |      |      |
|                                                  |                  |          |      |      |      |
| Humerus                                          | +                |          |      |      |      |
| Maximum distal width                             |                  |          |      |      |      |
| Width of the trochles                            | 13.0 13.5        |          |      |      |      |
| Minimum width of the disphysis                   | 6.2              |          |      |      |      |
|                                                  | Juv.             |          |      |      |      |
|                                                  |                  |          |      |      |      |
|                                                  | NVS              |          |      |      |      |
|                                                  | ш                |          |      |      |      |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1            | 4                |          |      |      |      |
| Minimum length of the acetabulum                 | 13.0             |          |      |      |      |
|                                                  |                  |          |      |      |      |
|                                                  |                  |          |      |      |      |
| Elephas maximum                                  |                  | SAM      |      |      |      |
|                                                  |                  | 10       |      |      |      |
|                                                  |                  | 5541     |      |      |      |
| Maxilla                                          |                  |          |      |      |      |
| Length teeth still preserved 69.09 Maximum width |                  | 33.0     |      |      |      |
| Maximum beight measured from the ra              | n of the arveore | n contra |      |      |      |

| Equus caballus  M <sup>3</sup> Length Width                                                                      | NVS<br>W<br>4258<br>Q6.5)<br>Q2.5)                                     | H1/2                                      | NVS<br>III<br>6129<br>02.0<br>26.5 |
|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------|------------------------------------|
| Mandibula  Length of the mo Length P <sub>2</sub> Width P <sub>3</sub> Width P <sub>3</sub> Width P <sub>4</sub> | NVS<br>V<br>7<br>plar row 93.5<br>31.5<br>13.5<br>29.0<br>13.0<br>13.5 |                                           |                                    |
| Radius<br>Maximum proximal<br>Width of the art<br>Minimum width of                                               | ticular surface                                                        | NVT<br>III<br>157<br>80.0<br>75.0<br>36.0 |                                    |

| Equus asinus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| ACCOUNT TO A SECOND SEC | NVT  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11   |
| Mandibula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7    |
| Maximum length M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 24.5 |
| Maximum width M.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13.0 |
| Maximum length A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22.0 |
| Maximum width M."                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16.5 |
| Maximum length R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 22.0 |
| Maximum width Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15.5 |

. 62.0 Maximum distal width Minimum width of the diaphysis Radius

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19.5<br>9.5<br>9.5                                                                                     |                      |                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------|------------------------------|
| NVT.<br>3472                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1090<br>19.0                                                                                           |                      |                              |
| MVT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11465<br>19.0<br>19.0                                                                                  |                      |                              |
| NVT 2086                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | F 6.5.5 · ·                                                                                            |                      |                              |
| 8VT<br>4462<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 35.0<br>18.0<br>8.0<br>8.0                                                                             |                      |                              |
| FVT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MVT 679 38.0 177.0 9.0 9.0                                                                             |                      |                              |
| 12651<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 37.0<br>19.5<br>9.0                                                                                    |                      |                              |
| 9328<br>15.0<br>12.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MVT<br>10684<br>36.0<br>18.0<br>8.5                                                                    |                      |                              |
| 1601<br>14.0<br>12.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18.0<br>18.0                                                                                           |                      |                              |
| NAT 2409 13.0 11.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NVT<br>12343<br>36.0                                                                                   |                      |                              |
| NVT<br>1484<br>12.5<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NVT<br>680<br>36.0<br>18.0<br>\$.0                                                                     |                      |                              |
| 582<br>582<br>12.5<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2408<br>05.0<br>16.5<br>8.0                                                                            |                      |                              |
| NVT<br>8839<br>35.0<br>14.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 35.5<br>17.5<br>8.0                                                                                    | NVS<br>W             | 18.0                         |
| 34.5<br>15.0<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 35.0                                                                                                   |                      |                              |
| NAT 20.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11 | 27 24.5<br>0.8.9<br>8.5 · · ·                                                                          | 59/61<br>NVS<br>1111 | 7.55                         |
| NAT<br>1734<br>34.0<br>12.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13.0<br>23.0                                                                                           | NVS                  |                              |
| NVT<br>2240<br>33.0<br>12.5<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                        | NVS                  | 30.5<br>10.0<br>13.0<br>15.0 |
| 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | lar row                                                                                                |                      |                              |
| molar molar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nilk mo                                                                                                | TVM                  | 18.5                         |
| Sus sp. Maxilla, juv. Length of the milk molar row Length of p Width of p Length of the Length M <sup>1</sup> M <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Nandibula juv.  1. Length of the milk molar row  2. Length P3  3. Width P4  4. Length P4  5. Length M2 | IAM                  | 19.0                         |
| Sus sp. Maxilla, juv. Length of th Length of p Width of p Length of p Length of ph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mandibula juv.  1. Length of t.  2. Length P3  4. Length P4  5. Length P4  5. Length P4                |                      |                              |
| Sus sp. Maxilla Length Length Width of Length Length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Nand<br>2. 1. 1. 2. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.                                          |                      | -4444                        |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |      | S.d.  | S.d. | S.d. | S.d. | S.d. | 3.4. | S.3cr. |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------|-------|------|------|------|------|------|--------|
| Mandibula adult                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |      | 8750  | 1625 | **   |      | 1212 |      | 5988   |
| Length of the praemolar row without P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ith P  |      |       |      | -    |      | • •  | 37.0 |        |
| Length of the molar row Length My                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |      | 2.0.2 | 33.0 | 30.5 | 32.5 | 13.5 |      |        |
| Ø C alveolus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |      | ٠     |      |      | *    |      | 12.5 |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | KKR  |       |      |      |      |      |      |        |
| Humerus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        | 22   |       |      |      |      |      |      |        |
| Maximum distal width<br>Width of the trochlea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        | 38.0 |       |      |      |      |      |      |        |
| Minimum Vidin of the dispuysia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |      |       |      |      |      |      |      |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TNM    |      |       |      |      |      |      |      |        |
| Pelvis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 02 (4) |      |       |      |      |      |      |      |        |
| Length of the acetabulum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 29.0   |      |       |      |      |      |      |      |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | KTH    |      | SAN   |      |      |      |      |      |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 111    |      | >     |      |      |      |      |      |        |
| Penut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | W 00   |      | 5486  |      |      |      |      |      |        |
| Maximum proximal width                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 66.0   |      | 58.0  |      |      |      |      |      |        |
| Length of the caput                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 23.0   |      | *:::  |      |      |      |      |      |        |
| MANAGEMENT AND THE PARTY AND T |        |      |       |      |      |      |      |      |        |

|                                                                                                    | NVS<br>V                              |      |
|----------------------------------------------------------------------------------------------------|---------------------------------------|------|
| Tibia                                                                                              | 5488                                  |      |
| Maximum length<br>Maximum proximal width<br>Maximum distal width<br>Minimum width of the diaphysis | 184.0<br>51.0<br>32.0<br>32.0<br>1 is | 33.0 |

|                                                                                                                      | III                          | 111                                          |
|----------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------------------|
| Phalanx I                                                                                                            | A2 (a) Phalanx II            | A2 (4)                                       |
| Maximum length Maximum proximal width Maximum distal width Minimum width of the disphysis Maximum thickness proximal | 67.0<br>63.0<br>59.0<br>58.5 | 49.0<br>43.0<br>47.5<br>44.0<br>44.0<br>31.5 |
| Maximum dietal thickness                                                                                             |                              | 1                                            |

cf <u>Axis</u> <u>axis</u>

NVT

7424

Circumference rose 050.0

| Tetracerus quadricornus                                           | INM                  | INM<br>III           |
|-------------------------------------------------------------------|----------------------|----------------------|
| Horn-cores                                                        | H9 (11)              | 18 Ø                 |
| Gircumference at the base<br>Maximum diameter<br>Minimum diameter | 40.0<br>13.5<br>10.0 | 45.0<br>13.5<br>12.5 |

|                             |       | NVS         | NVS   | Recent     |
|-----------------------------|-------|-------------|-------|------------|
|                             |       | 111         | 111   |            |
| Mandibula                   |       | 4226        | 1781  | UV87       |
| Height behind the symphysis |       |             | 20.00 | 9.0        |
| Height before Ni            |       | 14.5        | 16.0  | 16.0       |
| Height behind Ng            |       |             | 24.0  | 22.0       |
| Height before P,            |       | 12.0        |       | 11.5       |
| Length of the teeth row     |       | 65.5        | 63.0  | 65.0       |
| Length of the molar row     |       | 37.0        | 61.0  | 38.0       |
| Length of the praemolar row |       | 28.5        | 127   | 27.0       |
| Length Ma                   |       | 12.5        | 11074 | 13.0       |
| Length M                    |       | 16.0        | 05.0  | 15.0       |
| Width M.                    |       | 6.5         | 7.0   | 7.0        |
| Thickness pars molaris      |       | 7.          | 13.0  | 11.5       |
| Boselaphus tragocamelus     |       |             |       | 55/56      |
| Dozetapina Cragocameros     | NVI   | NVT         | NVI   | NVS<br>III |
| Horn-cores                  | 148   | 2887        | 8904  | 7688       |
| Circumference at the base   | 128.0 | 040.0       | 052.0 | 125.0      |
| Width a                     | 38.0  |             | 43.0  | 37.0       |
| Width b                     |       |             | 36.0  | 36.5       |
| Width c                     | 43.0  | 120,700,000 |       | 45.0       |

| cf <u>Boselaphus</u> tragocamelus                                                                                                                                                                             | NVT                  | NVT                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------|
| Mandibula                                                                                                                                                                                                     | 6412                 | 12849                                                                         |
| Height behind the symphysis Height before M Height behind M Length of the teeth row Length of the molar row Length of the praemolar row Length M Length M S Width M S | 45.0<br>32.0<br>13.0 | 09.9<br>31.5<br>64.0<br>021.9<br>76.0<br>45.0<br>23.5<br>13.0<br>29.5<br>12.5 |
| Thickness of the horizontal ramus                                                                                                                                                                             | 22.5                 | 21.0                                                                          |

|                                                                                  | III                  |                      |
|----------------------------------------------------------------------------------|----------------------|----------------------|
| Metacarpus                                                                       | D2 (2)               |                      |
| Maximum proximal width Maximum proximal thickness index $\frac{2}{1} \times 100$ | 45.0<br>31.0<br>69.0 |                      |
|                                                                                  | INM<br>I             | III                  |
| Metatarsus                                                                       | A2 04)               | D2 Ø                 |
| Maximum distal width<br>Maximum distal thickness<br>Index $\frac{7}{4}$ x 100    | 38.5<br>28.5<br>74.0 | 63.Q<br>32.0<br>73.0 |

INM

Boselaphus tragocamelus

| Boselaphus/Cervus                                                                 | VUS                                                                                                                                                           |                       |                                                       | INH                  |                                              |                      |                      |                        |                        |                       |     |                      |       |                       |                      |                        |                         |
|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------------------------------------|----------------------|----------------------------------------------|----------------------|----------------------|------------------------|------------------------|-----------------------|-----|----------------------|-------|-----------------------|----------------------|------------------------|-------------------------|
| Radius<br>Maximus distal width<br>Maximus width distal                            | Radius<br>Maximum dintal width<br>Maximum width distal articular surface                                                                                      | surface               |                                                       | 54.0<br>66.0         |                                              |                      |                      |                        |                        |                       |     |                      |       |                       |                      |                        |                         |
| Antilope cervicapis                                                               | capra                                                                                                                                                         | IWI                   | TAX                                                   | WI                   |                                              | M                    |                      | 1304                   | INN<br>III-II          | 100                   |     | 111                  | 111   | 1101                  | INH                  | ME                     | MI                      |
| Morn-cores  1. Circumference at the 2. Diameter at the base                       | n-cores<br>Circumference at the base<br>Dismeter at the base                                                                                                  | 2756<br>92.0<br>28.0  | 1028                                                  | 632 000.00 30.0      |                                              | 6136                 |                      | 11 0)<br>93.0.<br>29.5 | H0 Ø)<br>102.0<br>32.0 | 93.0<br>29.0          |     | 59.0<br>18.5<br>juv. | 29.50 | 19 00<br>94.0<br>29.5 | 65 G<br>95.0<br>28.0 | C3 (0)<br>98.0<br>32.5 | D1 (6)<br>101.0<br>32.0 |
| 8.1                                                                               | NHI 1111                                                                                                                                                      | NVS                   |                                                       | NVS                  |                                              | WS V                 | SWS W                | NVS                    | NVT                    |                       | TAN |                      |       |                       |                      |                        |                         |
| 1. 101.0<br>2. 31.5                                                               | 000                                                                                                                                                           | 2457<br>110.0<br>33.5 |                                                       | 2995<br>97.0<br>31.0 |                                              | 3201<br>98.0<br>30.0 | 4287<br>82.0<br>24.5 | 2712<br>96.0<br>29.5   | 2756<br>92.0<br>28.0   | 1028<br>101.0<br>32.0 | 632 |                      |       |                       |                      |                        |                         |
|                                                                                   |                                                                                                                                                               |                       | NVT                                                   |                      | NVS<br>111                                   |                      |                      |                        |                        |                       |     |                      |       |                       |                      |                        |                         |
| Mandibula Height behind M3 Length M2 Width M3 Length M3 Width M4 Thickness of the | Mandibula Height behind M <sub>3</sub> Length M <sub>2</sub> Width M <sub>3</sub> Width M <sub>3</sub> Width M <sub>3</sub> Thickness of the horizontal ramus | SOM                   | 00.00<br>21.0<br>21.5<br>21.5<br>11.0<br>10.0<br>18.0 |                      | 3732<br>(20.3)<br>11.5<br>8.0<br>16.0<br>8.2 |                      |                      |                        |                        |                       |     |                      |       |                       |                      |                        |                         |

| Gazella gazella                                 | TAN   | TVN  |         |             |      |            |       |        |
|-------------------------------------------------|-------|------|---------|-------------|------|------------|-------|--------|
| Mandibula                                       | 255   | 3097 |         |             |      |            |       |        |
| Height behind the symplesis<br>Height before Mi | 15.0  | 11.0 |         | - To        |      |            |       |        |
| Length of the teeth row                         | 60.09 | 99 • |         |             |      |            |       |        |
|                                                 | 0.00  | 25.0 |         |             |      |            |       |        |
| Width Mg                                        | 0+9   |      |         |             |      |            |       |        |
| Capra hirons                                    |       |      |         |             |      | Ovis aries |       |        |
|                                                 | NVT   | NVT  |         | NVS<br>1111 |      |            | TAN   | IN T   |
| Horn-cores                                      | 250   | 198  |         | 319         |      |            | 3374  | 337    |
| Circumference at the base                       | (0)   | 20.0 |         | 71.0        |      |            | 107.0 | 0.10.6 |
| Maximum diameter                                |       | 17.5 |         |             |      |            | 26.0  | 27. (  |
| Maximum length<br>Minimum length                | 0.00  | 74.0 |         |             |      |            |       |        |
|                                                 |       |      |         |             |      |            |       |        |
| Capra/Ovis                                      | NVT   | NAT  | TAN     | TAIL        | NVT  | NVT        | 111   |        |
| Makilla                                         | 7436  | 2361 | 1098    | 9035        | 447  | 106801     | 7936  |        |
|                                                 | 64.0  | 0.49 |         | 62.0        |      |            | 5 47  |        |
| Length of the praemolar row                     | 25.0  | 21.5 | # D = D |             | 28.5 |            |       |        |
| Longth HT                                       | ***   | *01. | ****    | KO          | 2.15 | 02.0       | 1.0   |        |
| Length M3                                       | 05.0  | 16.0 | 16.0    |             |      | 0.77       |       |        |
| Width Ma                                        | 0.4   | 11:0 | 0.61    |             |      | 0.71       |       |        |

FVT 9035 28.5

Length millomolar row

Maxilla jur.

|     |                                                                                 | NVS<br>W 6474<br>32.0<br>7.0                    |                                           |
|-----|---------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------|
| NAT | 12.5                                                                            |                                                 |                                           |
|     | 17.0                                                                            | 111<br>111<br>p3 loose<br>18.5<br>6.2           |                                           |
| RVI | 257<br>16.5<br>6.5                                                              | C3 C3 C4 C5 | 26291<br>16.0<br>6.0                      |
| MY  | 11229                                                                           | DI 00<br>30.0<br>16.0<br>5.5                    | 28.0<br>28.0<br>15.0                      |
| NAT | 393                                                                             | 111<br>123.0<br>13.0<br>6.0                     |                                           |
| IWI | 15.5                                                                            |                                                 | 31.0                                      |
| IVX | 14.5<br>6.5                                                                     | 362<br>33.0<br>19.0                             | NVS<br>V<br>V<br>2453<br>32.0<br>18.0     |
| IVI | 14.0                                                                            | NVS<br>111<br>2925<br>14.0<br>5.0               | 1453<br>7 7<br>7 2453<br>32.0<br>18.0     |
| TAN | 77722<br>29.0<br>16.3<br>6.3                                                    | 3272<br>03.0                                    | NVS.<br>V V<br>1742<br>29.0               |
| TAN | 466<br>28.0<br>15.0<br>6.0                                                      | 3445<br>16.5                                    | 4787<br>4787<br>16.0                      |
| IVI | 20<br>27.0<br>15.0<br>6.0                                                       | NVS<br>1111<br>4514<br>15.0                     | NVS<br>V<br>1143<br>29.0<br>15.0          |
| BVT | 1659 26.0                                                                       | NVS<br>111<br>768<br>29.5<br>16.0<br>5.5        | NVS<br>V<br>1154<br>116.5<br>6.0          |
|     |                                                                                 | NWS<br>1111<br>636<br>17.0<br>6.5               | NVS<br>V V<br>1143<br>28.0<br>15.5<br>6.0 |
| Ē   | A 09<br>28.5<br>15.0<br>5.5.                                                    | NVS<br>111<br>6651<br>30.0<br>17.0<br>6.0       |                                           |
|     |                                                                                 | NVS<br>111<br>7826<br>28.0                      | NVS<br>1V<br>6651<br>30.1<br>17.0<br>6.0  |
|     | 901 II                                                                          | NVS<br>111<br>8421<br>27.5<br>19.5<br>5.5       | 3210<br>31.0<br>31.0<br>18.0<br>7.0       |
|     | ilkmoli                                                                         | NVS<br>111<br>4741<br>30,5<br>17,5              | NVS<br>1V<br>5210<br>31.0<br>18.0<br>7.0  |
|     | Mandibula jww.<br>1. Length of the milkmolar row<br>2. Length py<br>3. Width po | 111<br>4860<br>69.09                            | NVS<br>119<br>6140<br>32.0<br>77.0        |
|     | Mandibula juv-<br>1. Length of t<br>2. Length py<br>3. Width py                 | -44                                             | 2444                                      |

| TVR   | 2995                                                                                                                                           | INN<br>IIII<br>BI 69<br>65.0<br>43.0<br>22.0<br>8.5                                                                             | NVS<br>V V V<br>V V V<br>V V V V V V V V V V V V V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MYT   | E                                                                                                                                              | - C                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| NVT   | 1966                                                                                                                                           | 805<br>111<br>2743<br>66-59<br>8.0<br>8.0<br>7-7                                                                                | NVS 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| NVI   | 2 9                                                                                                                                            | MVS<br>IIII<br>3331<br>                                                                                                         | NVS<br>IV<br>6292<br>6292<br>6300<br>2300<br>1900<br>7,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| NVT   | 11337<br>36.0<br>32.5<br>8.5                                                                                                                   | 1100<br>1111<br>1111<br>1111<br>1111<br>1111<br>1111<br>111                                                                     | 865<br>1V<br>15.5<br>12.5<br>18.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| IVN   | 2049                                                                                                                                           | NWS<br>1111<br>13821<br>                                                                                                        | 1360<br>1360<br>1360<br>1360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| NAT   | 20.00<br>33.00<br>43.00<br>22.50                                                                                                               | 1111<br>1401<br>1.55<br>1.55<br>1.55<br>1.55                                                                                    | 149<br>14<br>14<br>1988<br>1888<br>1889<br>1889<br>1889<br>1889                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| TVN   | 3001<br>32.5<br>49.5<br>20.0<br>7.5                                                                                                            | NVS<br>1111<br>15.0<br>                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| IVI   | 13.0                                                                                                                                           | NVS<br>1111<br>3813<br>41.0<br>74.5<br>74.5<br>18.5<br>18.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7 | 18.5<br>18.5<br>18.0<br>18.0<br>6.0<br>6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| TVN   | 30.0<br>67.0<br>8.0                                                                                                                            | NVS<br>111<br>2870<br>7.                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| NVT   | 20.00                                                                                                                                          | 59/61<br>NVS<br>III<br>362<br>14.0<br>22.5<br>07.3<br>07.3<br>23.5<br>23.5<br>8.0                                               | 1111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| TVN   | . 69.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0                                                                                         | THE REAL PROPERTY.                                                                                                              | 24.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| IVI   | 3376                                                                                                                                           | 114.7<br>112.0<br>22.5<br>05.0<br>69.50                                                                                         | 13.0<br>22.0<br>22.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| HVT   | 4607<br>60.90<br>60.73<br>60.03<br>60.03<br>60.03                                                                                              | NVT 6093                                                                                                                        | 9 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       | Pare Pare                                                                                                                                      | 3446                                                                                                                            | 100 CO OS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| KIKIT | 128<br>128<br>8.3                                                                                                                              | 21.5<br>21.5<br>24.5                                                                                                            | 111 111 111 111 111 111 111 111 111 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       |                                                                                                                                                | 982<br>982<br>14.0<br>65.03<br>8.0.3                                                                                            | 1110<br>1110<br>1110<br>1110<br>1110<br>1110<br>1110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|       | mphyses<br>row<br>lar row                                                                                                                      | 1433<br>1433<br>13.0<br>22.0<br>22.0                                                                                            | 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 18 00 |
|       | the symphyse M. M. M. Leeth cov. molar run praemolar ro                                                                                        | 1143<br>1143<br>125.0<br>21.5<br>69.3<br>23.0                                                                                   | 18 G 1.0 21.0 20.0 20.0 20.0 20.0 20.0 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       | 202000                                                                                                                                         | MVT 60913                                                                                                                       | 1111<br>P8 00<br>12.0<br>20.0<br>20.0<br>20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       | Mandibula adult  1. Height behin  2. Height befor  3. Height behin  4. Length of th  6. Length of th  6. Length of th  8. Width M <sub>3</sub> | 1. 1                                                                                                                            | * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       | - 一種 となるなるのであ                                                                                                                                  | 2444444                                                                                                                         | 5444444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

|                                             |                                                                                                                                                                                                                     | 1384<br>1-11<br>C8 0.3<br>24.0<br>23.5<br>cf.                                                                                                     |
|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
|                                             | 55/56<br>NVS<br>111<br>5402<br>18.5<br>23.5<br>21.0<br>30.5                                                                                                                                                         |                                                                                                                                                   |
| Mary Service                                |                                                                                                                                                                                                                     | 11 At 6.2                                                                                                                                         |
|                                             | 1509<br>1509<br>20.0                                                                                                                                                                                                |                                                                                                                                                   |
|                                             |                                                                                                                                                                                                                     | 1111 BI (2) 28.0 28.0 27.5                                                                                                                        |
|                                             | 25.00                                                                                                                                                                                                               | BI @ BI @ 31.5 29.5                                                                                                                               |
|                                             |                                                                                                                                                                                                                     | INM<br>IIII<br>18 49<br>30.0<br>27.5                                                                                                              |
|                                             | IIII<br>IIII<br>Di (3)<br>23.55<br>33.55                                                                                                                                                                            | 1111<br>1111<br>188 0)<br>112.0<br>31.0                                                                                                           |
|                                             | DOM 1111 DO 20.5 20.5 24.5 25.0 97.5                                                                                                                                                                                | 1111 02 0 02 0 03 03 28.00                                                                                                                        |
| 21.0<br>7.0                                 | 100H<br>1111<br>119 (0)<br>233.5<br>273.5<br>274.5<br>335.5<br>16.0<br>68.2                                                                                                                                         | 18 G 18 G 29.0 29.0                                                                                                                               |
| 2037<br>2037<br>2037<br>17.0<br>6.0<br>19.0 |                                                                                                                                                                                                                     | 18 S                                                                                                           |
| NVS<br>V V<br>1140<br>                      | 11 11 11 11 11 11 11 11 11 11 11 11 11                                                                                                                                                                              | 18 0)<br>10 00 0<br>27.0                                                                                                                          |
| 857 4 857 11.5 11.5 19.0 72.0 23.0 8.0      | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                               | 17 (0) (17 (0) (17 (0) (17 (0) (17 (0) (0) (17 (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)                                                            |
| HVS<br>893 v v<br>20.00<br>20.00            |                                                                                                                                                                                                                     | 111<br>111<br>18 G) 18 C)                                                                                                                         |
| MUSS # 11-49                                | 9 9                                                                                                                                                                                                                 | 2                                                                                                                                                 |
| MVS V V V V V V V V V V V V V V V V V V     | ck<br>surface<br>surface<br>culari<br>surface<br>scapula                                                                                                                                                            | h<br>diaphys                                                                                                                                      |
| 20.0                                        | the ne loular social as social as social as spinar apina.                                                                                                                                                           | an yidt<br>apuk<br>viden<br>trochil<br>of the                                                                                                     |
| 2932<br>2932<br>10.5<br>20.0<br>21.0        | ageh of<br>the act<br>he article pri<br>the art<br>of the<br>100                                                                                                                                                    | proxim<br>f the c<br>distail                                                                                                                      |
|                                             | Scapula Minimum length of the neck Length of the articular surface Width of the articular surface Midth over the proc. articularis Height of the articular surface to beginging of the apina scapulae Index 1 x 100 | Homerus  1. Maximum proximal yidth  2. Width of the caput  3. Maximum discal vidth  4. Width over the trochles  5. Minimum width of the diaphysis |

|                                          |                                                                                    |                        |                       |                                                                                                | INM<br>III<br>IB ©<br>28.0                                                                |
|------------------------------------------|------------------------------------------------------------------------------------|------------------------|-----------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
|                                          |                                                                                    |                        |                       |                                                                                                | 1111<br>111 00<br>119 00<br>119 00<br>119 00                                              |
|                                          |                                                                                    |                        |                       |                                                                                                | 1111<br>1111<br>69 49<br>27.0                                                             |
|                                          |                                                                                    |                        |                       |                                                                                                | 111<br>111<br>19 ()<br>26.0<br>16.5                                                       |
|                                          |                                                                                    |                        |                       |                                                                                                | 111<br>111<br>19.0<br>19.5                                                                |
|                                          |                                                                                    |                        |                       |                                                                                                | 1111<br>109 00<br>40.0                                                                    |
|                                          | 1111 CG 42                                                                         | 18.0                   | 1 (0)<br>1 (0)<br>823 | 30.0                                                                                           | HB 40                                                                                     |
|                                          | INN<br>III<br>IB Ø<br>31.5<br>29.5                                                 | 21.5                   |                       |                                                                                                |                                                                                           |
|                                          | 111<br>111<br>18 60<br>31.0<br>29.5                                                |                        | 111<br>111<br>19 (0)  | 6                                                                                              | D1 00 00 00 00 00 00 00 00 00 00 00 00 00                                                 |
|                                          | D2 0)                                                                              | 3                      | 1111<br>18 G          | 34.0                                                                                           |                                                                                           |
|                                          |                                                                                    |                        | ING<br>1111<br>18 60  | 31.0                                                                                           | LNN<br>1<br>1<br>42 0.40<br>28,0                                                          |
| 11 17 17 17 17 17 17 17 17 17 17 17 17 1 | 9                                                                                  |                        |                       |                                                                                                | INM<br>1<br>11 (0)<br>11 (0)<br>29,0<br>18,0                                              |
|                                          | sucta                                                                              |                        | NVT<br>9140           | 34.5                                                                                           |                                                                                           |
| 111<br>5167<br>32.5                      | Radius + Ulna<br>Maximum proximal width<br>Width of the proximal articular surface | articular surface      |                       | width<br>the shaft                                                                             | Tibia<br>Maximum proximal width<br>Maximum distal width<br>Minimum width of the diaphysis |
| 2 49<br>2 49<br>30.0<br>13.5<br>28.5     | Radius + Ulna<br>Maximum proximal width<br>Width of the proximal                   | Width of the articular |                       | Maximum length<br>Maximum proximal width<br>Minimum width of the shaft<br>Maximum distal width | Tibia<br>Maximum proximal wideh<br>Moximum distal wideh<br>Minimum wideh of the d         |
| 4444                                     | Radiu<br>Waxin<br>Width                                                            | Wideh                  | Femur                 | Maxin<br>Maxin<br>Minis<br>Maxin                                                               | Tibia<br>Maxim<br>Maxim<br>Minim                                                          |

юд × 0.0.

|                                                                         | HNI                  |      | TIT                  | INH   | TINH                 | INM    |       | TINE  | TINI                 | INN   | TIEN  | TINH. | 111  | NVS  |
|-------------------------------------------------------------------------|----------------------|------|----------------------|-------|----------------------|--------|-------|-------|----------------------|-------|-------|-------|------|------|
| Phalanx I                                                               | 18 69                |      | 00 00                | 00 10 | E4 (0)               | 6918   |       | 18 6) | 19 00                | 69 81 | C8 C9 | 71    | 1963 | 4136 |
| t. Maximum length<br>2. Maximum proximal width                          | 10.0                 |      | 42.0                 | 44.0  | 13.0                 | 12.0   |       | 50.0  | 52.0                 | 61.0  | 10.5  | 53.5  | 44.5 | 49.0 |
| 3. Maximum distal width<br>4. Minimum width of the diaphyses            | 7.5                  |      | 10.0                 | 9.5   | 10.0                 | 9.5    |       | 9.5   | 9.5                  | 8.0   | 8.5   | 9.5   | 9.0  | 11.0 |
| NVS NVS NVS V V V V V V V V V V V V V V                                 |                      |      |                      |       | NV5<br>IV            |        |       |       |                      |       |       |       |      |      |
| 4874 6238 5688                                                          |                      |      | Phalanc II           | 11    | 2162                 |        |       |       |                      |       |       |       |      |      |
|                                                                         | 12.0                 |      |                      |       | 27.0<br>12.5<br>10.0 |        |       |       |                      |       |       |       |      |      |
| 4. 10.0 13.0 10.0                                                       |                      |      |                      |       |                      |        |       |       |                      |       |       |       |      |      |
| IAN                                                                     | NVS<br>111           | NVS  | NVS<br>III           |       | NVS<br>V             | INM    | TINI  |       | INDI                 |       |       |       |      |      |
| Astragalus 3092                                                         | 6747                 | 4228 | 312                  |       | 3341                 | 18 (0) | AI CO |       | 18 (9)               |       |       |       |      |      |
| Length lateral 26.5<br>Length medial 25.0<br>Width of the crochles 17.0 | 30.0<br>27.5<br>18.0 | 31.0 | 31.5<br>29.0<br>18.5 |       | 32.5<br>28.5<br>17.0 | 29.5   | 30.5  |       | 31.0<br>29.5<br>18.5 |       |       |       |      |      |
|                                                                         |                      | NVS  |                      | MVS   |                      |        |       |       |                      |       |       |       |      |      |
| Epistropheus                                                            |                      | 9649 |                      | 2456  |                      |        |       |       |                      |       |       |       |      |      |
| Maximum width of the articular surface<br>Maximum width of the dens     | ce                   | 40.5 |                      | 36.0  |                      |        |       |       |                      |       |       |       |      |      |

|           |           |                |                |               |           | KIC    | 735                             |                        | 18.5                           | *                 |                 | 9.4           |        |                 |       |       |       |      |
|-----------|-----------|----------------|----------------|---------------|-----------|--------|---------------------------------|------------------------|--------------------------------|-------------------|-----------------|---------------|--------|-----------------|-------|-------|-------|------|
|           |           |                |                |               |           | INDA   | 64                              |                        | 23.0                           | *:                | 16.5            | 13.0          |        |                 |       |       |       |      |
|           |           |                |                |               |           | THE    | 09 60                           | *                      | 21.5                           |                   | 16.5            | 13.0          |        |                 |       |       |       |      |
|           |           |                |                |               |           | INH    | 18 6)                           |                        | 23.5                           |                   | 17.0            | 12.5          |        |                 |       |       |       |      |
|           |           |                |                |               |           | INN    | D2 (2)                          |                        | 24.0                           |                   | 17.0            | 13.0          |        |                 |       |       |       |      |
| NVS       | 1 6       | 72.6           | 23.5           | 0.62          |           | INM    | 60                              |                        | 24.0                           |                   | 17.0            | 79.7          |        | DI 68           | 10/19 | (4)   |       | 17.0 |
|           |           |                |                | 0.07          |           | IH.    | 19 (0)                          | 47.9                   | 24.0                           | 4                 |                 | 4 8           | *:     | A1 (8)          |       | 24.5  |       | 0.81 |
| NVS       | 10 @      | 70.0           | 22.0           |               |           | IN III | 18 (2)                          |                        | 26.0                           |                   | **              |               | K-e    | - 194           | **    | *(3)  | 18.0  | + 3  |
| NVS       | 08.80     | 68.0           | 5,15           |               |           | ME     | 19.60                           | 29.0                   |                                |                   |                 | # E           | K r    | P9              |       | 24.5  | 15.5  | 14.0 |
| NVS       | C9 (0)    | 67.0           | 21.0           |               | *         |        |                                 |                        |                                |                   |                 |               |        |                 |       |       |       |      |
| NVS       | 18 60     | 65.0           | 23.5           | 7             | 4         |        |                                 |                        |                                |                   |                 |               | * 1    | (b) (i)         |       | 24.0  | 14.5  | 13.0 |
| NVS       | 01 60     | 64.5           | 24.0           | 100           |           |        |                                 |                        |                                | distal            | idge of         |               | H      | 00 61           |       | 13.0  | 05.00 | 12.5 |
| NVS       | 02 00     | 63.5           | 24.5           | *             |           |        |                                 |                        | is                             | of the            | erior r         |               | Ko     |                 |       | 0.4.0 | 18.5  |      |
|           |           |                |                |               |           |        |                                 | æ                      | diaphys                        | al part           | ro-post         | antiace       |        |                 |       |       |       |      |
| WS<br>III | 18 0      | 20.0           | 24.0           | 67.0          | 00.30     |        |                                 | anl wide               | of the                         | ace medi          | al ante         | 1             |        |                 |       |       |       |      |
|           | Calcaneum | Maximum length | Maximum height | Medial length | U1014 181 |        | Setacarpus<br>1. Maximum leneth | Maximum proximal width | Minimum width of the diaphysis | articular surface | Thickness medi- | Index 2 x 100 | WVS II | Hetatarses 1038 | 17.5  | 16.5  |       | 148  |
|           | 2         | Man W          | Man            | Med           |           |        | ₩                               |                        |                                |                   | ÷               | 1             |        | Heta.           | 111   | 4     |       | ,    |

| NVS | 6193      | 51.0                            |
|-----|-----------|---------------------------------|
|     | alanx 111 | taximum length<br>borsal length |

| NVS   | 4382                                 |
|-------|--------------------------------------|
|       | NOI                                  |
|       | Mandibula<br>Length of the molar row |
| Lepus | Mandibula<br>Length of               |

| humerus flaximum length fittininum proximal width flaximum proximal width | v Femur Femur Length; measured of the caput 4.5 |  |
|---------------------------------------------------------------------------|-------------------------------------------------|--|
| iaphysis                                                                  |                                                 |  |

4198 4198 100.0 16.5

| MH II             | Dy (G)    | 62.5<br>21.5 20.0 19.0<br>19.5 . 17.0                                                              |
|-------------------|-----------|----------------------------------------------------------------------------------------------------|
|                   |           | 62.0 62.5<br>18.5 20.5<br>18.0 18.5<br>16.0 16.5                                                   |
| 1180              | (70 TV    | 20.5<br>20.5<br>18.5                                                                               |
| Cervus/Boselaphus | Phalanx I | Maximum length<br>Maximum proximal width<br>Maximum distal width<br>Minimum width of the diaphysis |

Table 15. Measurements in mm. The measurements are mainly taken after Ducrat.

<sup>()</sup> The measurement is not accurate.

| cf <u>Cervus</u> <u>unicolor</u>                                       | NVS<br>III          |      | INM  |
|------------------------------------------------------------------------|---------------------|------|------|
| Radius                                                                 | 1718                |      | D2 6 |
| Maximum distal width<br>Length pur.vl.                                 | 52.0<br>(49.5)      |      | 64.0 |
|                                                                        |                     | NVS  |      |
| Mandibula sdult                                                        |                     | 4796 |      |
| Height behind the symph<br>Length of the premolar                      | ysis<br>row         | 20,5 |      |
|                                                                        | ī                   |      |      |
| of Axis axis                                                           | INM                 |      |      |
| Mandibula juv.                                                         | D1 (2)              |      |      |
| Length milk molar row<br>Length p <sub>3</sub><br>Width p <sub>3</sub> | 26.5<br>16.0<br>6.5 |      |      |

INM

11 (9

43.5

37.0

18.0

Kann

35.0

Small deer

Maximum distal width

Width of the trochlea 35.0 Minimum width of the diaphysis 20.5 Minimum width of the epiphysis

Humerus

|                                                        | NVS                  |
|--------------------------------------------------------|----------------------|
| Astrogalus                                             | 591                  |
| Maximum lateral<br>Maximum medial I:<br>Width trochlea | 40,5<br>38,0<br>26,0 |

## Gallus gallus NVS IV Humerus 2552 1 2 20.0 1 3 05.5 12 13 9.0 10 11 17.0

|                                      | NVS<br>111 |
|--------------------------------------|------------|
| Femur                                | 6360       |
| Maximum length<br>Maximum proximal   | width 13.0 |
| Maximum distal w<br>Minimum width of | idth 11.0  |

NVS 111 Tibiotatsus 629 3 4 19.5 7 8 7.5

| Ca  | llus gallus | dom.   |
|-----|-------------|--------|
|     |             | NVS    |
|     |             | VI     |
| Til | biotarsus   | 306    |
| 12  | 13          | 160.0  |
| 3   | 4           | (32.0) |
| 7   | 9           | 14.5   |
| 5   | 6           | 10.5   |
| 6   | 10          | 17.5   |

## Tarsometatarsus

| Maximum length         | 120.0 |      |
|------------------------|-------|------|
| Maximum proximal width | 20.0  |      |
| Maximum distal width   | 21.0  |      |
| Length of the spur     |       | 37.0 |
| Height of the spur     | 14.0  | 14.0 |
|                        | 1 ir  | id.  |

## Tibiotarsus

| 12 | 13 | 160.0  |
|----|----|--------|
| 3  | 4  | (32.0) |
| 7  | 8  | 14.5   |
| 5  | 6  | 10.5   |
| 9  | 10 | 17.5   |

| Avis sp.         | KKL  |
|------------------|------|
| Carpo netacarpus |      |
| 1 2              | 68.0 |
| 3 4              | 19.0 |
| 5 6              | 13.0 |
| 7 9              | 5.0  |

| 120             | 4                        |         |                          |                                           |                                | 14         | 117.2                |            | -                                  |                          |                          |                                    |              |
|-----------------|--------------------------|---------|--------------------------|-------------------------------------------|--------------------------------|------------|----------------------|------------|------------------------------------|--------------------------|--------------------------|------------------------------------|--------------|
| Inamgaon        | Mand Max.                | 63      | * E(*)                   |                                           |                                | (.*)       |                      |            | . 22                               |                          |                          | . 2                                |              |
| E **            | ž.                       | (5)     |                          |                                           |                                | 112        | 25 :                 | 12 1 21    |                                    |                          |                          | -                                  |              |
| H               |                          | +       | 14 XVIII.                |                                           |                                |            |                      |            | (2020)                             | ## #                     |                          |                                    | 100000       |
| 35              |                          | *       |                          | 100                                       | 100                            |            |                      | 72 F       | 4.4                                | W                        | (a. a.)                  |                                    |              |
| =               |                          | (4)     | - 400                    | 475 E                                     | * 14                           |            |                      | e: •:      |                                    |                          | + 1                      | N                                  |              |
| 4               | 1113                     |         | 200                      | ****                                      |                                |            |                      |            |                                    |                          | W 48                     |                                    |              |
|                 | Нах                      |         |                          | W 24 F)                                   | ¥ 143                          |            | 074 W.S.             | e Kir      |                                    |                          | 02 23                    |                                    |              |
| 111             |                          | 1.5     |                          |                                           |                                |            |                      |            |                                    |                          | KE.                      | 61 4                               |              |
| 35              |                          | 11      | 100 1                    |                                           |                                |            |                      |            |                                    | A 575                    | ÃĘ.                      | ×1 =                               |              |
| 11              | -                        | 21      | 103 6                    | (87 <b>9</b> 5 5 5)                       |                                |            |                      |            |                                    |                          | 14                       | . Az ~                             |              |
| Kayadka         | hdibal                   | 3       | 1012.4                   |                                           |                                |            | 100                  |            |                                    |                          | 100                      |                                    |              |
| W. Kay          | Na                       | ,       | (100 A                   |                                           |                                |            |                      |            |                                    | 1.12                     |                          | 111111                             |              |
| >               |                          |         |                          |                                           | 14.4                           |            |                      | 12.        | K) 71                              |                          |                          |                                    |              |
| à               |                          |         |                          | . 62 *                                    | A1 *                           |            |                      | 13%        | 61 ~                               | 100                      |                          |                                    |              |
| 3               |                          |         | 111 111                  | · 62 .                                    | 41 -                           |            |                      | 42 *       | £1 ·                               | 4)/4/1                   |                          | + + 40                             |              |
| E               | Maxilla                  |         | eti eti                  | + 62 *                                    | 41 .                           |            | erene                | X2 *       | K1 -0                              | 70.7                     |                          | 9                                  |              |
| +-              | Z.                       |         | tild tid                 |                                           | . 12                           |            |                      | VSV        | 14                                 | 2012                     |                          | 31000                              | 9            |
| 14              |                          |         | \$1 1 N                  | 62 1                                      | 'al '                          |            |                      | 67.5       |                                    | 10.5                     | 15:00.0                  | 20.7                               | 14           |
| Þ               |                          |         | * * * * *                |                                           | ****                           |            | - • ~                |            |                                    | 25%                      | Pier                     | + 24                               | -1           |
| E               |                          |         | 200                      | 180                                       |                                |            |                      | - 1        | + 100                              | 80.51                    | + 3(t, 1)                |                                    |              |
| 59/50<br>W      | - 1                      |         | * * *                    | . 53                                      | 1.4.1                          |            | - ~                  | <b>-</b> 0 | - 2                                | 192                      |                          | anay.                              |              |
| Nevasa          | muliba                   |         | 3 - 1980<br>3 - 1980     | - KZ                                      | * KZ *                         |            | - ~ -                |            | - 14                               | - 1                      |                          | 11000                              | 2            |
| ž               | W                        |         |                          | (S#)(F)                                   |                                |            |                      | d 5        |                                    |                          | - 740                    | F.60.                              | 7            |
| 59751<br>Nevasa | M Proof                  | -       | 2 10                     |                                           |                                |            | 1411                 | - 1        | . 0                                | - 24                     |                          | - 1                                | 2            |
|                 | 2                        | TW.     |                          |                                           | + Se + 1                       |            | E 53                 | = 1        | _ •                                |                          |                          | ~~                                 | 0            |
| Navdatoli       | Mand Man Mand Man Mandib | 10.00   | -25                      |                                           | - ~ ~                          |            |                      | -          | 772                                | 2                        |                          |                                    | 1            |
| Nav             | 100                      | Man     |                          | 1                                         |                                |            |                      |            | 33                                 |                          |                          | (1)                                |              |
| Site            | EUC LOSS                 | The sp. | pip2p3(H1)<br>pip2p3(H1) | plp2plMI(M2)<br>plp2plMiM2<br>p2plp4/MiM2 | PZP SP4MIM2 (M3) PZP SP4MIM2M3 | Capra/Ovis | p1p2p3<br>p1p2p1(M1) | pip2p3M1M2 | (P2P3P4)MIM2(M3)<br>P2P1P4MIM2(M3) | <br>p1p2p3<br>p1p2p3(M1) | pip2p3H1<br>pip2p3H1(M2) | (P2P3)p3M1M2(M1)<br>P2P3(P4)M1M2M3 | P2P3P4M1M2M3 |

The age at which pig (Sun up.), sheep/goat (Ovis/Capra), and cattle (Nos sp.) were slaughtered, according to the eruption of the teeth in maxilla and mandibula. Table 16.



Fig. 1 Dispersion of the domesticated animals from the Near East and other areas.



Fig. 2 Mean annual rainfall in inches (after Salim Ali 1949).



Fig. 3 The major vegetation areas (after Schaller 1967), and the location of the sites (Roelink, B. A. I., Groningen).



Fig. 4 The occupation phases of the ash-mounds, Kayatha, Navdatoli, Nevasa (1955-1961) and Navdatoli. The symbol refers to the diagrams (fig. 26, 33, 35, 39).



Fig. 5 Kodekal, trench I, section facing north (after Paddayya 1971).



Fig. 6 The excavated trenches (I-IV) in Navdatoli. The faunal material was mainly collected in trenches I and II.



Fig. 7 Animals depicted on Navdatoli pottery.

A: 1, 2, 3, 4—cattle.

B: 1, 2, 3-goat.

C: 1, 2, 3-dog.

D: 1, 2, 3, 4, 5, 6—blackbuck; 7—♂ blackbucks pursuing ♀ (Warke, Deccan College, Poona).



Fig. 8 A: 1, 2, 3, deer.

B: 1, panther; 2?; 3, porcupine; 4, tiger. C: 1, pigeon; 2, goose; 3, domestic cock.

D: 1, 2, 3, 4, peacoks (Warke, Deccan College, Poona),



Fig. 9 A: 1, flamingo; 2, bird of prey or vulture; 3, little egret.

B: 1, 2, 3, crocodiles.

C: 1, butterfly; 2, centipede; 3, scorpion; 4, centipede (Warke, Deccan College, Poona).



Fig. 10 The dwelling mound of Nevasa and the excavated areas (after Sankalia et al. 1960).



Fig. 11 The excavated trenches of Inamgaon (after Ansari 1975).



Fig. 12 The two pieces of the mandibula of an Indian porcupine (Hystrix-indica) found at Nevasa.



Fig. 13 Two I, maxillae of a dog, Nevasa III (1955-1956).



Fig. 14a Canidae, from bottom to top : mandibula (Inamgaon C3 2, Inamgaon A2 6, Nevasa 7143 F 11) and maxilla (Inamgaon).



Fig. 14b Mandibulae of a canid, from bottom to top: Nevasa 1272, NVS 4222 4, Nevasa 356 B3 2 (without P3).



Fig. 15 A: Mandibula of a young canid (Nevasa 3107 x 4; c, d, e, f: Mandibulae of catlike animals found at Nevasa.



Fig. 16 The maxilla of a young elephant found in Nevasa -V NVS 5541 I 4.



Fig. 17 The second phalanx of an elephant found in Inamgaon (H2 4).





Fig. 18 Equid. a: P2 Nevasa 4758 x 5; b: 1. P4/M1 Nevasa G 129 Fv Ib; c: 1. M2 Inamgaon: d, r. mandibula, Nevasa NVS E 2.



Fig. 19 Equid remains. a, r. M<sub>5</sub> Navdatoli IV; b, r. mandibula with M<sub>2</sub> M<sub>1</sub>, Navdatoli IK 3 (same piece); c, premolar or molar from the upper jaw, Nevasa 2759 238 2.



Fig. 20 Equid remains, Large and small radius from Navdatoli (NVS IV 157 III 19 2; IV 98 I).



Fig. 21 Suid remains. Navdatoli. From top to bottom.
 1. mandibula, -P<sub>2</sub> P<sub>3</sub> (M<sub>1</sub> not yet erapted) (11465 I 2)
 r. mandibula, -P<sub>1</sub> P<sub>2</sub> P<sub>3</sub> M<sub>1</sub> (M<sub>2</sub> not yet erupted) (9140 Bl)

l. mandibula,  $-P_2$   $P_3$   $M_1$  ? (679 I N  $\beta)$ 

l. mandibula, - - -  $M_1 M_2 M_3 (2/3 \text{ used}) (1425)$ 







Fig. 22 Cervidae remains. a: l. mandibula (P<sub>1</sub> P<sub>2</sub> P<sub>3</sub>), Inamgaon (D, 2); b: l. mandibula (P<sub>2</sub>P<sub>3</sub>M<sub>1</sub>M<sub>2</sub> crupting), Nevasa (4229 180 4); c: phalanx II either of sambar or nilgai, (1A1 14).



Fig. 23 Nilgai. a: horncore from Navdatoli III (148-2); b: r. mandibula (M<sub>2</sub> M<sub>3</sub>), Navdatoli (1023 I IV 4); c: r. mandibula P<sub>2</sub> P<sub>4</sub>-M<sub>2</sub> M<sub>3</sub>, Navdatoli (12849 IV 8).



Fig. 24 Nilgai. a : astragalus, Inamgaon (I 8 3); b : metacarpus, Inamgaon (D 2 2); c : metacarpus, Inamgaon (INM—1); d : metatarsus ? Inamgaon (INM—1 I2 2).



Fig. 25 Four-horned antelopes (chowsingha). a : horncore, Inamgaon (INM-1 H9 II); b : horncore, Inamgaon (INM-1 I 8 2); c : l. mandibula (M<sub>2</sub> M<sub>3</sub>), Nevasa (4226 Tr 163 B 4); d : r. mandibula (M<sub>1</sub> M<sub>2</sub> M<sub>3</sub>), Nevasa (1781 Tr 27 2).



Bovids. Circumference at the base of the horncore (horizontal, plotted against the Index Minimum diameter/Maximum diameter × 100 (see table 4 for site and period). Fig. 26



Fig. 27 Bubalus bubalis. a: horncore from Navdatoli (3395 Tr. 1); b: horncore from Nevasa (2872 Tr. 43 2). Bos taurus (indicus); c: horncore from Nevasa (2569 Tr. 14 2).



Fig. 28 Bos taurus (indicus). a: r. horncore, Navdatoli (V II Tr. 6); b: horncore, Navdatoli (IV Tr. I 10; c : horncore, Navdatoli (1096 I F 2 ).



Fig. 29 Bos tawns (indicus). a: 1. horncore Navdatoli (196, Tr. III 2); b: Navdatoli (5630, Tr. II 3).



Fig. 30 Bos taurus (indicus), a: 1. horncore, Navdatoii (12850 IA6 7); b: Navdatoli (3374 I u 9), 3375IU 9.



Fig. 31 Bos taurus (indicus) a: 1 horncore (caudal), Navdatoli (Tr. 16 1722); b: spina dorsalis, Inamgaon (1 I 9 2); c: phalanx I, Inamgaon (-1 B 1 2).





Fig. 32 Bos taurus (indicus). a : 1. mandibula, Kayatha (A9—I); Gazella gazella; b : 1 mandibula ( $M_1$   $M_2$   $M_3$ ), Navdatoli (255 IV. III. II 2).





Fig. 34 Bos sp. Metacarpus from Inamgaon.



Bovid. Metatarsus. The maximum distal width (horizontal) plotted against the Index Maximum distal thickness/Maximum distal width × 100 (vertical). Fig. 35



Fig. 36 Bovid. Distal epiphysis of metatarsus found at Inamgaon (from r. to 1.) D 1, I 8 4; 04 1, A2 2; D1 4, C3 4.



Fig. 37 Bovid. Astragali found at Inamgaon (from r. to 1.; ?, HN 1 I 8 4, II I; D4, 19 I).



Fig. 38 Bovid. Astragalus. The lateral length (horizontal) plotted against the width of the trochlea (vertical).



Fig. 39 Bovid. Astragalus. The lateral length (horizontal) plotted against the index width of the trochlea/lateral length × 100.



Fig. 40 Antilope cervicapra, horncores, a : Inamgaon (-1 J 8 3); b: Inamgaon (-1 J 9 I); c : Navdatoli (2756 I V 9); d : 1, mandibula (M<sub>2</sub> M<sub>3</sub>), Nevasa (3732 Tr. 200 8).



Fig. 41 Capra hircus, horncores. a: Navdatoli (111 198 I 2);
b: Nevasa (319 Tr. A 5 1); Ovis aries, horncore;
c: Navdatoli (IV, I U 9 3374); Capra/Ovis metatarsus;
d: Inamgaon (D2 2); e: Inamgaon (D 2 3 I).



Fig. 42 Capra/Ovis, mandibulae, from above to r. mandibula (P<sub>4</sub> M<sub>1</sub> M<sub>2</sub> M<sub>3</sub>); Inamgaon (—I B, 3); r. mandibula (P<sub>3</sub> P<sub>4</sub> M<sub>1</sub> M<sub>2</sub>), Inamgaon (P 8 I); 1. mandibula (M<sub>1</sub> M<sub>2</sub> M<sub>3</sub>); Inamgaon (I 8 3); 1. mandibula (P<sub>4</sub> M<sub>1</sub> M<sub>2</sub>), Inamgaon, this mandibula probably belongs to another species. The pattern of the enamel is not the same as that of the other three pieces.



Fig. 43 Gallus gallus domesticus. Nevasa. a, humerus; b, tibio-tarsus; c, tarso metatarsus 3.



Fig. 41 The rays of the dorsal fins of ciprinide fish found in Nevasa (at least 2 species).





## Index

| Aves                     | 44                                   |
|--------------------------|--------------------------------------|
| Ash Mounds               | 8                                    |
| Birds                    | 5                                    |
| Birds, distribution of,  | 5,                                   |
| paintings of,            | 12                                   |
| Bones                    | 3, 9, 10, 25, 41, 44                 |
| Bones, fractured         | 6                                    |
| Bones, preservation of   | 6, 16                                |
| Bones, identification of | 9, 15, 20, 22                        |
| Bos                      |                                      |
| Bovidae - Caroidae       | 5, 9, 11, 15, 23, 24, 27-37<br>21-42 |
| C 14 dating              | 9                                    |
| Climate                  | 3, 4                                 |
| Canidae                  | 16-19                                |
| Deserts                  | 4, 19                                |
| Deserts cultural         | 7                                    |
| Equidae                  | 19-20                                |
| Fauna, Indian            | 3-5                                  |
| Faunal remains           | 1                                    |
|                          | 4                                    |
| Forest, tropical         |                                      |
| Forest, deciduous        | 10                                   |
| Forest, species          | 5, 14, 15, 19                        |
| Forest, thorn            | 8                                    |
| Fossilisation            | 6, 9                                 |
| Horns, description of    | 25                                   |
| Horn cores               | 16, 24, 26, 27, 37, 40               |
| Indus Valley settlements | 1, 2, 4, 19, 40                      |
| Indus civilisation       | 7, 19, 41                            |
| Ice Age                  | 20                                   |
| Lagomorpha               | 42                                   |
| Mammals                  | 5                                    |

| 16, 35, 43    |
|---------------|
| 17            |
| 26            |
| 45            |
| 45            |
| 19            |
| 42-43         |
| 45            |
| 15            |
| 2, 40         |
| 5, 12, 21, 39 |
| 4, 18         |
| 5, 23         |
| 21, 23        |
| 37            |
| 8             |
| 8-15          |
| 8             |
| 15            |
| 20-21         |
| 4, 5          |
| 7, 8          |
|               |





Prehistoric Archaeology - India Judia - Prehistoric Archaeology

CATALOGUED.

## Central Archaeological Library, NEW DELHI. 65403 Call No. 9/3,054 P Clason, 12-1. Author-Clason, 12-1. Wild and Domestic Title-toric Bond Food Title-toric Shorted Food Borrower No. | Date of Msue | Date of Return "A book that is shut is but a block" GOVT. OF INDIA Department of Archaeology NEW DELHI. Please help us to keep the book dean and moving.